
Universidade Federal de Campina Grande

Centro de Engenharia Elétrica e Informática

Coordenação de Pós-Graduação em Ciência da Computação

An Approach to Rank Program Transformations

Based on Machine Learning

José Aldo Silva da Costa

Dissertação submetida à Coordenação do Curso de Pós-Graduação em

Ciência da Computação da Universidade Federal de Campina Grande -

Campus I como parte dos requisitos necessários para obtenção do grau

de Mestre em Ciência da Computação.

Área de Concentração: Ciência da Computação

Linha de Pesquisa: Engenharia de Software

Gustavo Araújo Soares, and Rohit Gheyi

(Orientadores)

Campina Grande, Paraíba, Brasil

c©José Aldo Silva da Costa, 01/02/2019

C837a

Costa, José Aldo Silva da.

 An approach to rank program transformations based on

machine learning / José Aldo Silva da Costa. – Campina Grande,

2019.

 93 f. : il. color.

 Dissertação (Mestrado em Ciência da Computação) –
Universidade Federal de Campina Grande, Centro de Engenharia

Elétrica e Informática, 2019.

 "Orientação: Prof. Dr. Gustavo Araújo Soares, Prof. Dr. Rohit

Gheyi ".

 Referências.

 1. Transformações de programas. 2. Ranqueamento. 3.

Aprendizado de máquina. I. Soares, Gustavo Araújo. II. Gheyi,

Rohit. III. Título.

 CDU 004.42(043)
 FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECÁRIA MARIA ANTONIA DE SOUSA CRB 15/398

Resumo

À medida que o software evolui, desenvolvedores realizam edições repetitivas ao adi-

cionarem features e corrigirem bugs. Técnicas de Programação-por-Exemplo (PbE) automa-

tizam edições repetitivas inferindo transformações a partir dos exemplos. No entanto, exem-

plos são ambíguos e limitados, uma vez que os usuários desejam fornecer um número mín-

imo deles (de preferência 1). Assim, técnicas de PbE precisam ranquear as transformações

inferidas selecionando aquelas que melhor se ajustam ao interesse do usuário. Abordagens

comuns de ranqueamento favorecem transformações mais simples ou menores, ou atribuem

pesos às suas características específicas, ou features. No entanto, o peso ideal de cada fea-

ture varia de acordo com o domínio do problema e encontrar esses pesos requer esforço

manual e conhecimento específico. Propomos uma abordagem baseada em Aprendizado de

Máquina (ML) para reduzir o esforço manual em encontrar pesos para funções de ranquea-

mento eficientes, que ranqueiam a transformação desejada usando o mínimo de exemplos.

Nossa abordagem compreende a) banco de dados de treinamento/teste, b) extração de carac-

terísticas, c) treino e teste de modelo, e d) instanciação das funções. Também investigamos

o efeito de exemplos negativos na eficiência das abordagens de ranqueamento, bem como a

acurácia das transformações nas primeiras 10 posições. Comparamos cinco abordagens: a)

Máquina de vetores de suporte (SVM), b) Regressão logística (LR), c) Redes neurais (NN),

d) Especialista-Humano (HE) e e) Pesos aleatórios (RW). Nós as avaliamos em 28 cenários

de cinco projetos em C# do GitHub usando a técnica REFAZER que aprende múltiplas trans-

formações a partir de exemplos. Medimos a eficiência das abordagens contando os exemplos

necessários para colocar a transformação correta na primeira posição, usando exemplos neg-

ativos para evitar transformações que editam locais desnecessários. Como resultado, o LR

apresentou um desempenho similar em relação ao HE, com médias de 1,67 e 1,64, respecti-

vamente. Comparado a RW, LR provê uma diferença estatística, com p-valor < 0.05. Quanto

à efetividade, LR é similar a HE com Precisão e NDCG de 0,5 e superior a RW com 0,2.

Portanto, a abordagem baseada em ML pode ser tão eficiente quanto HE, enquanto reduz o

esforço manual em encontrar pesos para criar funções de ranqueamento dos projetistas de

ferramentas PbE.

iii

Abstract

As software evolves, developers perform repetitive edits while adding features and fix-

ing bugs. Programming-by-Example (PbE) techniques automate repetitive edits by inferring

transformations from examples. However, examples are ambiguous and limited, since users

want to provide a minimum of them (preferably 1). Thus, PbE techniques need to rank the

inferred transformations to select the ones that best fit the user intent. Common ranking ap-

proaches favor the simplest or the shortest transformations, or they assign weights to their

specific characteristics, or features. However, the ideal weight of each feature varies ac-

cording to the problem domain and finding these weights requires manual effort and specific

knowledge. We propose a Machine Learning (ML) based approach to reduce the manual ef-

fort in finding the weights for efficient ranking functions, which rank the desired transforma-

tion using the minimum number of examples. Our approach comprehends a) training/testing

database, b) feature extraction, c) model training and testing, and d) ranking instantiation. We

also investigate the effect of negative examples on the ranking approaches efficiency, as well

as the accuracy of the top-10 rank positions. We compare five approaches: a) Support Vector

Machine (SVM), b) Logistic Regression (LR), c) Neural Networks (NN), d) Human-Expert

(HE), and e) Random Weights (RW). We evaluate them in 28 scenarios of five C# projects

from GitHub using REFAZER technique that learns multiple transformations from examples.

We measure the approaches’ efficiency by counting the examples required to put the correct

transformation in the first position, adding negative examples to prevent transformations that

edit unneeded locations. As a result, LR presented a similar efficiency compared to HE, with

example means of 1.67 and 1.64, respectively. Compared to RW, LR provides a statistical

difference, with p-value < 0.05. Concerning the effectiveness, LR is similar to HE with both

Precision and NDCG of 0.5 and superior to RW with 0.2. Therefore, the ML-based ranking

approach can be as efficient as HE, while reducing the manual effort in finding weights to

build ranking functions of PbE tool’s designers.

iv

Agradecimentos

A Deus pela força e amparo em momentos difíceis dessa jornada, meu refúgio e minha

fortaleza, auxílio sempre presente na adversidade;

Aos meus pais José Vicente da Costa Neto e Maria das Neves Silva da Costa, aos meus

irmãos José Júnior Silva da Costa de Leidiane Silva da Costa, e a todos os familiares;

Aos irmãos da igreja que congrego pelo apoio e orações;

Aos meus orientadores, Gustavo Soares e Rohit Gheyi, pelas excelentes contribuições na

minha formação como pesquisador e orientações para que esse trabalho se tornasse possível;

A Reudismam Rolim, que também me acompanhou de perto durante o mestrado e contribuiu

com orientações valiosas e pela paciência;

Aos professores Tiago Massoni e Leandro Balby pelas sugestões e contribuições no trabalho;

A meus colegas do SPG, Software Productivity Group.

Aos professores e funcionários da Coordenação de Pós-graduação em Informática (COPIN)

e do Departamento de Sistemas e Computação (DSC);

A Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) pelo apoio e

suporte financeiro fornecidos a este trabalho.

v

Contents

1 Introduction 1

1.1 Problem . 2

1.2 Motivating Example . 2

1.3 Solution . 5

1.4 Evaluation . 6

1.5 Conclusions . 7

1.6 Summary of contributions . 7

1.7 Organization . 7

2 Background 8

2.1 Software Evolution . 8

2.1.1 Repetitive Edits . 10

2.2 Program Transformation . 10

2.3 Program-by-Example . 11

2.3.1 Ranking Problem in Program Transformations 15

2.3.2 Domain-Specific Language . 16

2.3.3 Ranking Functions . 17

2.3.4 Human-Expert Ranking Approach 20

2.4 Machine Learning . 21

2.4.1 Supervised Learning . 23

2.4.2 Learning Algorithms . 28

2.5 Learning Ranking Function for Ranking Problems 33

vi

CONTENTS vii

3 State of the art 35

3.1 Motivation . 35

3.1.1 Research Questions . 36

3.2 Methodology . 37

3.2.1 Search String . 38

3.2.2 Databases . 38

3.2.3 Study Selection . 39

3.2.4 Information Extraction . 40

3.2.5 Execution . 40

3.3 Results . 42

3.3.1 Selected Studies . 43

3.4 Discussion . 46

3.4.1 Programming by Example approaches 46

3.4.2 Study limitations . 48

3.5 Conclusion Remarks . 49

3.6 Answers to the Research Questions . 50

4 A Machine Learning Based Ranking Approach 51

4.1 Overview . 51

4.2 Training/Testing Data Generation . 52

4.3 Feature Extraction . 54

4.4 Model Training and Testing . 55

4.5 Ranking Instantiation . 57

5 Evaluation 60

5.1 Definition . 60

5.2 Planning of the experiment . 61

5.2.1 Benchmark . 61

5.2.2 Instrumentation . 62

5.2.3 Training Database Generation . 64

5.2.4 Training Models . 65

5.2.5 Using Negative Examples . 66

CONTENTS viii

5.2.6 Ranking Evaluation . 67

5.3 Results . 69

5.4 Discussion . 71

5.4.1 Characteristics of the domain . 71

5.4.2 Characteristics of the edits . 73

5.4.3 Efficiency of ranking approaches 74

5.4.4 Generalization versus specialization 75

5.4.5 Effectiveness of ranking approaches 76

5.4.6 Characteristics of ML-based ranking approaches 77

5.5 Threats to Validity . 77

5.6 Answers to the Research Questions . 79

6 Related Work 80

6.1 Human-expert based ranking approaches 80

6.2 Machine Learning based ranking approaches 82

7 Conclusions 84

A Training Models Parameters 93

List of Figures

1.1 Examples of two edits applied by the developer 3

2.1 Components of the PbE architecture . 13

2.2 Example of a DSL for string transformation 14

2.3 Data for the e-mail automation problem 14

2.4 A core DSL for describing AST transformations in REFAZER 17

2.5 Binary classification problem . 25

2.6 Regression problem . 25

2.7 Fitting of function and complexity in a regression problem 26

2.8 Confusion Matrix . 27

2.9 Logistic sigmoid function . 29

2.10 SVM function . 30

2.11 Neural Networks structure . 31

2.12 Activation functions . 32

3.1 Number of studies for each event. 42

3.2 Number of studies by year. 42

3.3 Number of studies by application domain and ranking approach. 43

4.1 Workflow of the proposed ML-based ranking approach. The inputs consist

of a PbE tool, edit examples, and ML algorithms. Step 1 comprehends the

generation of training and testing data, Step 2 consists of feature selection

and extraction, and Step 3 consists of training and testing models. The output

of the ML approach consists of a model, or a function, which is instantiated

in a PbE tool in Step 4. 52

ix

LIST OF FIGURES x

4.2 Before and after version of code . 53

4.3 A program in the DSL generated consistent with input-output examples . . 56

4.4 Example of feature vector for a program in the DSL 56

4.5 Cross-validation strategy for estimating the performance of the model . . . 57

4.6 Ranking score computation process . 58

List of Tables

3.1 Studies for key terms and other spellings 37

3.2 Synonyms and other spellings . 38

3.3 Study selection criteria . 39

3.4 Number of papers retrieved, selected before snowballing, and selected after

performing snowballing . 41

3.5 Summarizing the results . 45

5.1 Edit scenarios characterization. Project = name of the project; Scenario =

edit scenario that represents a specific task; Locations = number of edit loca-

tions; Identical = whether the edit is the same for all the location; Granularity

= whether one or more lines were changed; Scope = scope of the edit; Role =

whether the scenario was used for training/testing the model or for evaluating

the distinct ranking approaches . 63

5.2 Dataset of labeled transformations. Project = name of the project; Scenario

ID = ID of the edit scenario; Learned transformations = number of learned

transformations; Correct = number of transformations labeled as correct; In-

correct = number of transformations labeled as incorrect 65

5.3 Performance of models predictions . 66

5.4 The "FPG" represents treatments where the highest number of examples

available were given but were not enough to rank the correct transforma-

tion on the first position. The symbol "-" represents the scenarios where

approaches with only positive examples were able to put the correct trans-

formation in the first position . 68

xi

LIST OF TABLES xii

5.5 Comparison of the number of examples required by ranking approaches.

N/A represents the absence of the value due to memory errors and other

types of issues . 69

5.6 Comparison of the number of examples required by distinct random ap-

proaches. N/A represents the absence of the value for memory errors and

types of similar issues . 70

5.7 Comparison of the p-values for the distinct approaches 71

5.8 Comparison of the NDCG and Precision metrics for the top-10 positions in

ranking approaches . 72

5.9 Comparison of the p-values for the distinct approaches 72

Chapter 1

Introduction

During software evolution, developers often perform code edits when adding features and

fixing existing bugs. Some of these edits are similar, sharing the same structure but involve

different expressions, and repetitive, occurring in multiple locations throughout the entire

source code. Searching for each of these locations to be edited and manually applying all

necessary edits becomes a tedious, time-consuming, and error-prone task.

Integrated Development Environments (IDEs) and static analyzers are tools that support

developers in automating repetitive code edits. However, these tools are based on pre-defined

classes of transformations and their scope is limited to a subset of common transformations

applied by developers. To extend these classes of transformations, the developer would

need a specific set of skills. On the other hand, Programming-by-Example (PbE) techniques

appear as an alternative solution to automate repetitive edits [13]. PbE techniques learn new

classes of transformations based on input-output examples of edits applied by users using

inductive reasoning.

PbE techniques have been used in a wide range of applications, being the most predom-

inant ones the string and program transformation domains [14]. An example of such PbE

techniques for program transformation domain is REFAZER [7], which receives examples

of edited locations and generalizes those edits into classes of transformations that can be

applied to other similar unseen locations.

1

1.1 Problem 2

1.1 Problem

Examples are ambiguous and constitute an incomplete form of specification, which often

results in a large set of inferred transformations, reaching an amount of 1020 in some cases

[44]. However, some of these transformations satisfy the provided examples but are unde-

sired by the developer, requiring more examples to filter them out [44]. Nevertheless, users

want to provide only a few examples (preferably 1) [59] and still get the correct transforma-

tion (i.e., the one that produces the user intent when applied to unseen similar locations). It

happens because providing many examples implies it would be better to perform the edit by

themselves, thus the key challenge here is to learn an efficient ranking function, which ranks

the correct transformation in the first position with the minimum number of examples. To

this end, common ranking approaches favor the simplest or the shortest transformations [30;

11], or they assign weights to specific characteristics, or features [7; 26; 16], such as size,

simplicity, frequency, and generality [7; 30; 11; 26; 16; 14], using only positive examples.

However, the ideal weight of each feature varies according to the problem domain and find-

ing these weights requires manual effort and specific knowledge.

Manually finding the ideal weight of each feature follows a trial and error approach,

which is cumbersome because the number of different combinations grows exponentially

as features are added. For instance, to build a function with three features, trying integer

weights in a range of 1 to 100, the number of distinct combinations reaches up to 1003, since

the ranking function has to capture the relevance of the feature considering its relationship

with the others features, making this task even more challenging. Even though this effort can

be reduced by using the domain knowledge of an expert, the manual effort of the expert is

necessary and a trial and error approach is used to test the ideal weights that can be used to

make the functions efficient, ranking with minimum number of examples.

1.2 Motivating Example

We start by presenting a repetitive edit that occurs at the Roslyn repository, the Microsoft’s

library for compilation and code analysis for C# [35]. Consider the two following edits

for a given task in Figure 1.1. This figure presents two examples of code edits to perform

1.2 Motivating Example 3

a repetitive task. In this task, the developer intends to replace the "==" operator with an

invocation of a new method IsKind on the left-hand side expression, passing the right-

hand side expression as the new method argument. Thus, 26 locations in the source code

share the same structure and need to be modified. A learned transformation from these two

examples can be used to automatically edit the other 24 locations in the source code.

Figure 1.1: Examples of two edits applied by the developer

- if (m.CSharpKind() == modifier)
+ if (m.IsKind(modifier))

- if (trivia.CSharpKind() == SyntaxKind.None)
+ if (trivia.IsKind(SyntaxKind.None))

1
2
3
4
5

To perform the edits intended by the developer, a PbE technique, such as REFAZER,

generates a set of program transformations consistent (i.e., produces the output example for

the given input example, but not necessarily for unseen inputs) with the given examples.

Some of these program transformations that are consistent with the given two examples of

edits in Figure 1.1 can be described as follows:

• p1: replace the “==” operator with an invocation of a new method IsKind, passing

the right-hand side expression as the method’s argument, where an identifier precedes

CSharpKind, inside an if statement as context.

• p2: replace the “==” operator with an invocation of a new method IsKind, pass-

ing the right-hand side expression as the method’s argument, where other expression

precedes CSharpKind, disregarding the if statement as context.

• p3: replace the “==” operator with an invocation of a new method IsKind, passing

the right-hand side expression as the method’s argument, where an expression precedes

the “==” operator, disregarding the if statement as context.

The learned transformations differ in terms of generalization and specialization capacity.

For instance, p1 can be applied only to locations that share similar structure but an identifier

(i.e., a name given to an entity) precedes CSharpKind(), and the whole operation must

be inside an if context, which makes it a specialized transformation. A more generalized

1.2 Motivating Example 4

transformation, p2, can be applied to locations where an expression (i.e., combination of

one or more entities, such as function calls) precedes CSharpKind(), disregarding the

if statement as context. Another still more generalized transformation, p3 can be applied

to locations where an expression precedes an equals operator, disregarding the if state-

ment as context. Even if the edit examples have identifiers preceding CSharpKind(), and

CSharpKind() is present in both examples, REFAZER infers all sorts of possible transfor-

mations that include the node itself, the context around it, and the type of node, which may

vary from identifier to expression.

Even though all the shown learned transformations have the ability to produce the

specified given outputs for the input-examples in Figure 1.1, not all of these trans-

formations can be considered correct ones, producing the desired edits. For in-

stance, consider the unseen location that shares a similar structure of the examples,

such as if (r.Parent.CSharpKind() == SyntaxKind.WhileStatement),

which the developer intends to edit. The learned transformations p1 cannot generalize

to match this location, since, in this case, an expression and not an identifier precedes

CSharpKind(), which makes p1 an incorrect transformation. On the other hand, p2 and

p3 can generalize to match this unseen location, but they also match other locations. For in-

stance, consider another unseen location a.AsNode() == null. The developer does not

intend to edit this location, but it is matched by the transformation p3, thus editing incorrectly

more locations than needed.

An example-based specification can be based on two types of examples, namely positive

and negative examples. Only positive examples may cause overgeneralized transformations,

which tend to edit more locations than needed. In this context, negative examples work as

counterexamples providing additional information for preventing overgeneralized transfor-

mations. For instance, a negative example is a location such as a.AsNode() == null,

which specifies where the transformation must not edit. Thus, the negative example filters

out all the learned transformations that match this location, which includes p3, since it gen-

eralizes CSharpKind() to match the undesired location that contains AsNode().

Thus, having in mind that the set of synthesized transformations from an example-based

specification includes correct and incorrect transformations, the challenge of the PbE tool’s

designers consists of building a ranking function that is able to find the correct transforma-

1.3 Solution 5

tion, p2, and move it to the first position while penalizing incorrect transformations, p1 and

p3, so that they go down in the rank. Intuitively, we realize that some transformations char-

acteristics are more desirable than others and human-experts use their domain knowledge to

favor transformations with these more desirable characteristics to best rank the correct one.

For instance, too specific or too general transformations tend to produce undesired edits [7].

The human-expert has to find the weights to favor transformations that are not too specific,

but not too general. For instance, consider a simple linear ranking function such as f(·) = w1

× identifier + w2 × expression + w3 × context, where identifier, expression and context are

characteristics of the transformations. Assigning a high weight to w1 and w3 while penaliz-

ing w2 will favor p1, so that it goes to the top. However, assigning a high weight to w2 and

penalizing w1 and w3 will favor p3. The challenge is to find a balance between specialization

and generalization so that p2 goes to the top.

However, finding the ideal weights to build a ranking function that ranks the correct

transformation in the first position is cumbersome. The number of characteristics is usually

more numerous than only three such as used in our examples. In addition, the function can

be more complex, such as a polynomial one. It requires the human-expert to test a large

set of distinct combinations in order to evaluate how useful is the resulting function. The

number of combinations grows exponentially as more features are used, which requires a lot

of manual effort, is tedious and time consuming to test all possible values assigned to the

weights.

1.3 Solution

In this work, we propose a Machine Learning (ML) based approach to automatically build

ranking functions. Our solution proposes to reduce the manual effort involved in building

efficient ranking functions by assigning to the transformations characteristics automatically

computed weights. Our key idea is that efficient ranking functions can rank correct transfor-

mations in the first position with the minimum number of examples provided.

Our approach comprehends a) training/testing database generation, b) feature extraction,

c) model training and testing, and d) ranking instantiation. In Step 1, we take a set of learned

program transformations as the input, and we label them according to their correctness. In

1.4 Evaluation 6

Step 2, we select and extract a set of features to describe correct and incorrect transformation.

In Step 3, we build feature vectors, train and test ML models. In Step 4, we instantiate the

model weights in a PbE tool ranking system.

1.4 Evaluation

We provide a comparison analysis among five distinct approaches to rank program trans-

formations: Support Vector Machine (SVM), Logistic Regression (LR), Neural Networks

(NN), Human-Expert (HE), and Random Weights (RW). We first compare the three ML-

based ranking approaches, SVM, LR, and NN, for ranking program transformations, and

then we compare them with a HE and RW approaches. To compare these approaches, we

instantiated them on a state-of-the-art PbE technique, REFAZER [7], given its capabilities to

learn multiple transformations in program transformation domain given examples of edits

[7]. We have used edit scenarios from three open-source C# projects from GitHub, namely

Roslyn [35], Entity Framework [33], NuGet available in public usage [7]. In addition, we

have manually analyzed commits from other two C# projects, namely ShareX [37] and [34]

Newtonsoft [36]. In total, we use 43 edit scenarios, from which 15 are used to generate

transformations for training ML models, and we evaluate all the approaches in the other 28

edit scenarios. We measure their efficiency in ranking the transformations by comparing the

number of examples required to rank the desired transformation in the first position for each

edit scenario. We also measure their effectiveness by accessing their accuracy and relevance

of the ranked transformations by evaluating how well the ranking approaches put correct

transformations in the top-10 using the Normalized Discounted Cumulative Gain (NDCG)

and Precision metrics.

An ML-based approach presented a similar performance compared to the HE, however,

reducing the manual effort in finding the weights of the ranking function. In terms of effi-

ciency to rank program transformations, LR presented similar results compared to HE, with

example means of 1.67 and 1.64, respectively. Compared to RW, LR provides a statistical

difference, with p-value < 0.05, which indicates that the weight automatically obtained had

an effect in ranking transformations. In terms of effectiveness, LR presented similar results

to HE with both Precision and NDCG of 0.5 and superior to RW with 0.2.

1.5 Conclusions 7

1.5 Conclusions

In this work, we propose an ML-based approach for automatically computing the weights

to build ranking functions. We evaluate three ML-based ranking approaches for program

transformations and compare them with a HE and RW approaches. ML-based approaches

are efficient and effective as HE approach while reducing the manual effort in finding the

weights, which reduces the manual effort of PbE tool designers to find the ideal weights of

transformations features. For end-users, it helps to reduce the manual effort in providing

examples to PbE tools, contributing to widespread their usage. Future studies are required to

analyze how users can interact with the top ranked solutions to express their preference.

1.6 Summary of contributions

In summary, this study makes the following key contributions:

• An ML-based approach to automatically build ranking functions for program transfor-

mations (Chapter 4);

• An empirical study comparing different ML-based ranking approaches to rank trans-

formations (Chapter 5);

• A comparative study involving an ML-based approach with a Human-Expert and Ran-

dom ranking approaches (Chapter 5).

1.7 Organization

This work is organized as follows: In Chapter 2, we provide a background with relevant

concepts for the understanding of this work. In Chapter 3, we present the state of the art on

ranking approaches employed by PbE tools dealing with ranking of program transformations.

In Chapter 4, we present our approach for ranking program transformations, based on ML

techniques to automatically build ranking functions. In Chapter 5, we describe the evaluation

of our technique. In Chapter 6, we describe the main related work covering Human-Expert

and ML-based ranking approaches. In Chapter 7, we present the conclusion of this work.

Chapter 2

Background

In this chapter, we present the background with relevant concepts for the understanding of

our work. In Section 2.1 we present the context of software evolution, emphasizing repeti-

tive edit. In Section 2.2 we describe program transformations. In Section 2.3 we describe the

Program-by-Example (PbE) approach, Ranking problem in program transformations, Do-

main Specific Language (DSL), ranking functions, and human-expert ranking approach. In

Section 2.4 we present the context of machine learning, supervised techniques, and main

algorithms. Finally, in Section 2.5 we discuss about learning functions in ranking problems.

2.1 Software Evolution

Evolution consists of an essential aspect of the nature of any entity across domains. It relates

to changes that occur over time, mainly for adaptations and progressive improvements given

a changing environment in the domain [29]. Each domain has their own properties and

characteristics to determine whether a phenomenon can be considered an evolution or not.

However, we are not interested in discussing the aspects of this topic across domains. Our

discussion in this work is limited to how evolution occurs in software engineering domain,

more specifically, how software evolves over time.

Software engineering is a discipline that is concerned with the aspects of software pro-

duction, including techniques that support program specification, design, and evolution [61].

It also can be seen as a discipline involves the aspects of development, operation and main-

tenance of software [17]. Even though much attention has been given to the development

8

2.1 Software Evolution 9

aspect of the software production, evolution plays a key role in the lifetime of a software.

For example, when we compare the costs involved in these two aspects, the evolution costs

for a custom software often exceeds the development costs [61], reaching 40% or more [2].

According to the first law of evolution of Lehman [27], software employed in a real-world

environment must be continually adapted. If it does not happen, the software will become

less and less useful in that environment. The discipline that studies the software changes is

called software maintenance. Software maintenance refers to the process of evolving, chang-

ing, adapting a software maintaining embedded its assumptions and compatibility valid in

changed domains and under new circumstances [28]. Software maintenance consists mainly

of changes to repair design defects, add incremental function, or adapt to changes in the use

environment or configuration [2]. Usually, the environment in which the software operates

has a dynamic nature. Given that dynamism, new needs often arise and designing a software

to attend those needs, most of which previously unknown, makes the changes inevitable.

According to IEEE [17], software maintenance can be categorized into the following

types:

• Corrective - performed to correct faults;

• Adaptive - performed to make the software usable in a changed environment;

• Perfective - performed to improve the performance, maintainability, or other attributes

of the software;

• Preventive - performed to prevent problems before they occur.

However, as software evolves and changes are made, its structure will become more and

more complex. Thus, the second law of Lehman [28] affirms that this will happen, unless

active efforts are made to avoid or reduce it. One of the main strategies adopted to handle that

side-effect, reducing the complexity of the software while allowing to be easier to maintain

is called refactoring. Refactoring can be understood as the process of changing a software to

improve its internal structure in such a way that it does not alter the external behavior of the

code [8]. Although, the changes that occur in software maintenance are not restricted only

to refactorings, but may involve other types modifications in the source code such as adding

new functionalities and bug fixing activities.

2.2 Program Transformation 10

2.1.1 Repetitive Edits

Correcting errors, performing adaptive modifications in the software, implementing requests

and suggestions, and reorganizing code are activities that involve a number of edits in the

source code. Many of these edits are repetitive, in the sense that, one specific edit can occur

in two or more locations in the code base. Since manually applying multiple repetitive edits,

specially in a large system, can be tedious, time consuming and error-prone, several tools are

proposed to automate them.

Among these tools, we have Integrated Development Environments (IDEs) such as

Eclipse [63], Visual Studio [38], and NetBeans [1] offer several functionalities to support

developers automating repetitive edits. For instance, these tools include refactoring func-

tions such as rename, extract method, move method, and others. In addition of IDEs, static

analyzers such as ReSharper [19], Error Prone [10], and FindBugs [62] automate the analysis

of potential errors in the code, finding mistakes and providing fixes.

Even though there are many tools to automate repetitive code edits, many developers still

perform edits manually. For instance, the majority of refactorings are performed manually

without the help of any tool [55] [41]. The three main reasons for that are awareness of an

existing tool to apply the refactoring, opportunity to use a certain refactoring feature even

though the developer knows how to use the feature, and lack of trust in the tool, given the

concern of introducing errors or having unintended side-effects [41]. Another reason is that

many edits cannot be automated by current IDEs and static analyzers. The aforementioned

tools, as well as others, rely on predefined classes of program transformations that represent

common edits applied by developers. More complex edits would require the developer to

have knowledge and specific skills to extend the classes of program transformations.

2.2 Program Transformation

A program transformation is the process of mapping a program to another program. It

can be understood as a set of rules that should be applied to a program in order to edit it,

producing another program. The transformation represents a higher level of abstraction than

the concrete edits, which are the actual edit operations in the code performed according to

the specification rules in the transformation.

2.3 Program-by-Example 11

A program is represented in a Abstract Syntax Tree (AST), which is an abstraction of the

source code represented as a tree. Thus, the edit operations are performed in an input AST

in order to map it to another tree. The elementary tree operations consist basically of insert,

delete, update, and move [6]. To understand how these operations occur, let us consider an

input tree T1, on which the edit operations are applied, and a target tree T2, the resulting tree,

once operations are performed. These operations can be defined as:

• Insert(a,b,c): insert node a as the cth child node of b of tree T1;

• Delete (a): delete the node a from the tree T1;

• Update(a,b): change the value of node a to b in tree T1;

• Move(a,b,c): move node a with all its children to cth child node of b in tree T1.

The sequence of edit operations necessary to transform tree T1 into tree T2 represents an

edit script. Usually, the difference between two distinct trees can be represented by more than

only one edit script. For instance, the result of move operation can be obtained combining

delete and insert operations. In that case, usually, we want the edit script with the minimum

number of edits operations.

Many tools include a set of transformations to help developers along the software de-

velopment and evolution. However, these tools are based on a predefined set of classes of

transformations, such as rename, since it is not possible to include all the transformations that

the developers would like to perform in a tool. Thus, the transformations are limited to com-

mon edits applied by the developers and extending these transformations requires specific

skills, time and manual effort. Automating the process of extending these transformations in

order to support more complex edits would provide a useful solution. In this scenario, one of

the approaches to allow abstracting new classes of program transformations automatically is

called Program-by-Example (PbE).

2.3 Program-by-Example

Repetitive edits are often similar, in the sense that they share the same structure but involve

different expressions. For instance, replacing "==" expression, by invocating a method, in

2.3 Program-by-Example 12

two or more locations with same structure represents an edit, which happens to be similar

and repetitive in this case. Similar edits can then be generalized into a transformation, which

is an abstraction of the concrete edits, and applied to other locations in the code. However,

the generalization process can be cumbersome if it is done by analyzing each similar location

and manually implementing a transformation. To obviate this process, a PbE approach aims

to infer new classes of transformations from input-output examples of edits performed by

developers [11]. Previous and after versions of code edited are used as examples of the

desired transformation the user wants to perform. A PbE tool abstracts the edits, generalizes

them and applies this generalization to other similar locations in the source code.

PbE tools have been used across distinct domains, supporting users dealing with repet-

itive edits. The two most common application domains include data transformation/wran-

gling and code transformations [14]. In data wrangling domain, which we refer to as string

transformation domain, end-users deal with transforming the raw data format into a more

appropriate and easy to visualize format. A large number of end-users have computers nowa-

days. They want the benefits provided by the computers, but usually they do not have enough

skills to write programs even to automate simple tasks. For instance, 99% of end-users do not

know how to program, and struggle with repetitive edits [12]. PbE tools arise in this context

enabling end-users to specify their desired intent by giving examples of edits. An example of

these tools is FlashFill, which supports end-users automating repetitive edits in spreadsheets

generating new classes of transformations from input-output examples [11]. Other PbE tools

are designed to automate more specific transformations, such as those related to numbers

[57] and matrices [66].

In program transformation domain, PbE tools are designed to support developers dealing

with edits in the source code. Most common situations in this domain include the applica-

tion of refactorings, API migration, and feedback generation for programming assignments

in education scenario [14]. For instance, PROSPECTOR [30] tool uses a technique for au-

tomatically synthesizing code fragments given a query that expresses the input and output

examples of the desired code, helping developers. Another tool designed to address two of

these common needs is REFAZER [7], which takes input-output examples of edits performed

by the developers and infer classes of transformation to automate the repetitive edit. In the

education scenario, REFAZER takes examples of edits applied by students, infers classes of

2.3 Program-by-Example 13

transformations, and then uses the transformations to fix new submissions or provide feed-

back.

The process of inferring the desired transformation from examples involves three key

components, which are the search algorithm, ranking strategy and interaction models [14].

Figure 2.1 depicts the components of the PbE architecture. The search algorithm receives as

inputs an example-based intent, a ranking function, and a Domain Specific Language (DSL),

and it is able to synthesize a set of transformations consistent with the given examples. This

set of transformations is expected to have the correct programs on the top, i.e., the ones with

the highest likelihood of being correct on unseen data. The debugging component interacts

with the user, presenting the ranked list of programs, usually top-k transformations. The user

can refine the specification, whenever the set of transformations does not correspond to her

desired intent. When the synthesized transformations correspond to the desired intend, they

can be translated into the target language.

Figure 2.1: Components of the PbE architecture

Since PbE tools usually are designed to solve problems in specific domains, such as

automating string or programs transformations, the tool designers have to deal with the rep-

resentation of those domain tasks being specified through examples. The space of possible

programs that can be learned can be expressed in a DSL.

The DSL describes the syntax of possible programs abstracted from the given examples

in a specific domain. Since the range of program possibilities the user might want to ex-

press is extensive, the DSL has to meet some criteria. The DSL has to be expressive enough

to represent several common programs that occur in practice and restrict enough to enable

2.3 Program-by-Example 14

efficient search [13]. Figure 2.2 depicts an example of a DSL used in FlashFill for string

transformation domain [11]. For instance, concat is an operator of the language respon-

sible for the concatenation of two expressions E1 and E2. substr operator receives as an

input a string x and returns the substring between its initial and final position P1 and P2. The

operator conststr constructs a constant string while String is any constant and Integer

can take any integer to specify a position, and pos returns the kth position of string x that

matches the regular expressions R1 and R2.

Figure 2.2: Example of a DSL for string transformation

For instance, consider Figure 2.3. In column A, it includes undergraduate students’ first

and second names, and in column B, the names of the first student concatenated to the uni-

versity domain. The second and third row of column B are the expected outputs, given the

first row. Let us suppose that an Excel user wants to create an academic email for all stu-

dents of the university campus and wants to use FlashFill to automate this task. Thus, the

task consists of concatenating the first and second names of the students with the university

academic domain. Once the user gives one example of the desired intent based on the first

row of the column A, the tool infers a transformation that can be applied to other rows of the

same column.

A B
1 Input Output
2 maria silva mariasilva@uni.edu.br
3 pedro costa pedrocosta@uni.edu.b
4 clara torres claratorres@uni.edu.br

Figure 2.3: Data for the e-mail automation problem

The following string transformations can be generated from the given example:

• p1: concat(conststr(“mariasilva”), conststr(“@uni.edu.br”))

• p2: concat(substr(Input, ǫ, “ ”, 1), conststr(“silva”), conststr(“@uni.edu.br”))

2.3 Program-by-Example 15

• p3: concat(conststr(“maria”), substr(Input, “ ”,ǫ, -1), conststr(“@uni.edu.br”))

• p4: concat(substr(Input, ǫ, “ ”, 1), substr(Input, “ ”,ǫ, -1), conststr(“@uni.edu.br”))

The synthesized transformations range from the most specific, generating only "mari-

asilva@uni.eu.br" for any given input, to the most general one, generalizing the input names.

Give that p4 has the highest probability of satisfying the user intent when generalized to

"pedro costa", thus is can be considered the correct one. This transformation receives two

strings "maria" and "silva" as input strings, concatenates them, constructs the constant string

"@uni.edu.br", and transforms the expressions into mariasilva@uni.edu.br. In this transfor-

mation, the first substr operator returns the first position within the input string such that

the left-hand side of the position matches anything, represented by ǫ, and the right-hand side

matches white space. The second substr operator returns the last position within the input

string such that the left-hand side of the position matches white space and the right-hand side

matches anything. The resulting strings of these two substr operations are concatenated

and added a constant string.

2.3.1 Ranking Problem in Program Transformations

In general, PbE approaches that learn transformations from examples deal with the key

challenge associated with the nature of the examples. Examples are under-specified

and specifying a desired task by using examples of edits may lead to a number

of desired and undesired transformations by the developer. For instance, consider

the edit that replaces "==" expression in if(m.CSharpKind() == modifier),

by invocation a new method IsKind, passing the right-hand side expression as the

new method argument, resulting in if(m.IsKind(modifier)). The same edit

is applied to if(trivia.CSharpKind() == SyntaxKind.None) resulting in

if(trivia.IsKind(SyntaxKind.None)). The set of learned transformations from

these two examples includes transformations that edits less similar locations than needed

by the developer, such as one that edits only locations where an identifier precedes

CSharpKind(). Another transformation edits more locations than needed, such as one

that edits all locations that have an expression preceding the equals operator.

2.3 Program-by-Example 16

Being concerned that the learned transformation selected by the PbE tool could produce

undesired modifications in the source-code, developers could naturally avoid using those

tools and opt for manually performing the edits. Thus, the challenge posed to PbE tools

in program transformation domain relies on selecting the learned transformation, in a set of

learned transformations, that has the highest probability of producing the developer’s desired

edits on unseen similar locations. In addition, developers do not feel encouraged to provide

many examples to specify the desired transformation, since providing many examples im-

plies that it would be more advantageous to perform the edit by themselves.

2.3.2 Domain-Specific Language

Similarly to PbE tools for string domain, in program transformation domain, PbE tools also

base on the DSL for describing possible transformations. For instance, let us consider RE-

FAZER. A transformation is defined as a sequence of distinct rewrite rules applied to an

Abstract Syntax Tree (AST). Each of these rules specifies an operation that should be ap-

plied to some locations in the input AST. In Figure 2.4, we can see REFAZER DSL with the

tree edit operators such as Insert, Delete, and Update, a list of processing operators such as

Filter and Map, and pattern-matching operators on trees.

The DSL can be seen as a tree. For each production rule (i.e., line in the DSL), the

terminal symbols (i.e., right-hand side in the production rule) are nodes, and the parameter

of each of the terminal symbols (i.e., non-terminal symbols) are the children of this node.

For instance, the Transformation terminal symbol has as children a sequence of rules.

A rule specifies an edit operation that has to be applied to a specific location in the input AST

in order to generate a new AST. A location is specified by a filter, which analyses all nodes

in the input AST looking for a pattern matching. According to Figure 2.4, the hierarchical

structure of AST transformations are built upon two main nodes: ConstNode (i.e., creates a

sub-tree from scratch, without any reference to the nodes in the AST input specification) and

Reference (i.e., creates a sub-tree making references to the AST input specification.). The

operation described in the DSL operates over these two nodes to build a new AST.

For instance, in the aforementioned problem in program transformation domain, the

transformation edit operations in the DSL can be applied in the locations characterized by the

pattern expression.CSharpKind() == expression. The edit operation Update is applied

2.3 Program-by-Example 17

〈transformation〉 ::= Transformation(〈rule〉1, . . . , 〈rule〉n)

〈rule〉 ::= Map(λx → 〈operation〉, 〈locations〉)

〈locations〉 ::= Filter(λx → Match(x, 〈match〉), AllNodes())

〈match〉 ::= Context(〈pattern〉, 〈path〉)

〈pattern〉 ::= 〈token〉 | Pattern(〈token〉, 〈pattern〉1, . . . , 〈pattern〉n)

〈token〉 ::= Concrete(kind, value) | Abstract(kind)

〈path〉 ::= Absolute(s) | Relative(〈token〉, k)

〈operation〉 ::= Insert(x, 〈ast〉, k) | Delete(x, 〈ref 〉)

| Update(x, 〈ast〉) | Prepend(x, 〈ast〉)

〈ast〉 ::= 〈const〉 | 〈ref 〉

〈const〉 ::= ConstNode(kind, value, 〈ast〉1, . . . , 〈ast〉n)

〈ref 〉 ::= Reference(x, 〈match〉, k)

Figure 2.4: A core DSL for describing AST transformations in REFAZER

to the matched locations. It edits the selected location by applying the rule that updates the

location by applying the ConstNode, which creates "IsKind" that is not present in the input

AST and reuses nodes from the input tree, making reference to it, such as the expression that

precedes CsharpKind() and the one that succeeds the "==" expression.

This operation updates the selected location x with a fresh call to IsKind, performed on

the extracted receiver AST from x, and with the extracted right-hand side AST from x as its

argument. Pattern(==, Pattern(., Abstract(expression), Concrete

(<call>, "CSharpKind()"), Abstract(expression)). The transformation

applied to this location is characterized by Update(x, ConstNode(., r1, <call>,

"IsKind", r2)), where r1 and r2 make reference to the input.

2.3.3 Ranking Functions

Examples are ambiguous, hence the number of inferred transformations consistent with an

example based specification is often huge. Although the inferred transformations are con-

2.3 Program-by-Example 18

sistent with the given examples, they are distinct and do not equally satisfy the user desired

intent. In general, very specific or very general transformations are not desired, as they are

likely to respectively produce false negative or false positive edits on unseen programs [7].

For instance, in Figure 2.3, consider the input-output example given "maria silva" to "mari-

asilva@uni.edu.br". A very specific transformation inferred from this example would be

restricted only to input strings "maria" and "silva", treated as constant strings in the specifi-

cation, and all the other locations following the same constant pattern. However, this specific

inferred transformation would not satisfy the user desired intent when editing, which is to

generalize the example specification to "pedro" and "costa", and "clara" and "torres". When-

ever one example, such as this one, is unable to specify the correct intent, another example

would be required by the tool in order to refine the example-based specification producing a

more generalized transformation.

Thus, in this context, a challenge to PbE approaches is identifying the correct trans-

formation (i.e., the one that has the highest likelihood of producing the desired edits when

generalized to other inputs) in a large set of inferred transformations consistent with the

input-output examples. The task of selecting the correct transformation is done by a ranking

function, which sorts the transformations aiming to put the ones that are more prone to be

correct in the top position. In this context, the main goal consists of learning an appropriate

ranking function to rank transformations regarding their correctness. In order to be more

usable, PbE approaches have to infer the desired transformations and rank them based on the

minimal number of examples, preferable one.

Since the set of inferred transformations may involve distinct transformations, the rank-

ing function has to be able to disambiguate them. These transformations involve distinct

characteristics, and intuitively, we realize that some of these characteristics are more desir-

able than others. For example, transformation with more general expressions are more likely

to produce the desired intent in the email problem, rather the very specific expressions such

as constants. One common strategy to build ranking functions relies on using heuristics,

which uses specific knowledge from an expert in the application domain to favor transfor-

mations that hold specific characteristics.

The idea of using heuristics is to assign transformations with specific properties a dis-

tinct score. Each transformation in the set of synthesized transformations receives a score,

2.3 Program-by-Example 19

which represents the correctness of the transformation. In other words, the score represents

the probability of the transformation producing the programmer’s desired intent. The rank-

ing scores are given by a ranking function. The ranking function is built based on specific

properties of the grammar and each property receives a weight, which is a real number that

represents the influence of that particular property on the final score of a given program.

In string transformation domain, FlashFill tool ranking approach is based on a set of

heuristics. One general principle adopted, also observed in other data wrangling tools rank-

ing approaches, consists of using the Occam’s razor principle. This heuristic principle states

that the simplest explanation is usually the correct one [11]. Thus, simpler transformations

are preferable and favored, occupying the highest positions in the ranking. For example,

considering the example in Figure 2.3, a subStr operator is simpler than both constStr

and concatenate. constStr involves constant expressions that are less likely to oc-

cur in the input string, since they are built from the scratch, thus increasing the chances of

producing a very specific edit. concatenate is simple if it contains a small number of ar-

guments. However, in concatenate constructor, if a long substring match between input

and output is observed, it is more probable that the corresponding part of the output was pro-

duced by a single substring. In order to select the desired transformation, ranking functions

have been built in order to benefit specific transformations. A function in string domain can

be expressed as f(·) = w1 × concat + w2 × input + w3 × substr + w4 × conststr + b. To

favor subStr over constStr, a domain specialist assigns a higher real value to w3 than

w4. Is implies that the subStr is more relevant, thus contributing more to the ranking score

of the transformation.

In the program transformation domain, the ranking approach employed by REFAZER tool

follows similar heuristics, favoring transformations with specific properties. The ranking

favors transformations that reuses nodes from the input AST rather than those ones that

construct nodes from the scratch, thus, being less likely to occur in the input AST. Another

similar idea concerns to the surrounding context of the edit location. REFAZER ranking

favors transformations that select its locations based on the existing context, and when they

do exist, the ranking favors the shorter ones. The ranking favors specific transformations by

assigning their desired properties higher weights, resulting in distinct scores.

However, building a heuristic based ranking approach may present some disadvantages.

2.3 Program-by-Example 20

Manually assigning weights to specific transformation properties can be tedious and cumber-

some. The ranking designer is required to have domain specific knowledge and understand-

ing of how each property may influence the final score and manually giving a real number to

describe that level of influence.

2.3.4 Human-Expert Ranking Approach

Based on the intuition that certain properties of the transformations have greater contribu-

tion in the final computed score, the Human-Expert based ranking approach follows some

principles or heuristics, such as favoring specific features in a set of features. These specific

features receive higher weights, thus moving the transformations with these features to a

better position in the ranking.

There are three main heuristics employed in the approach. The first one consists of

favoring Reference over ConstNode, therefore, Reference receives a higher weight. Ac-

cording to this principle, a transformation that reuses a node from the input AST has

higher probability of producing the desired developer’s intent than creating a constant

node without any reference to the input nodes. For instance, a transformation that receiv-

ing the input trivia.CShapKind generalizes it to expression.CShapKind has higher

probability of selecting other similar locations, rather than only locations with constant

trivia.CSharpKind. Thus, consider the human-expert based approach as a linear func-

tion, in which weights are assigned to specific characterizes in order to benefit certain trans-

formations. A function expressed in the form of f(·) = w1 × Reference + w2 × ConstNode

+ w3 × Concrete + w4 ×Abstract + w5 × Context + ... + b. The heuristic used here assigns

a higher real value to w1 than to w2.

The second principle builds on the idea of favoring patterns that consider surrounding

context of a location. Transformations that ignore the context of a location have higher

probability of generating more false positives, thus ignoring locations that must be edited.

The heuristic used here assigns a high real value to w5.

The third principle affirms that, whenever a non-empty context appears, it favors the

shorter ones, following the Ocam’s razor principle. By doing so, the rank prevents favor-

ing transformations that generate false negatives, which means those that edit locations that

should be edited. The idea behind this principle, and the previous one, relies on searching

2.4 Machine Learning 21

for a balanced solution, favoring transformations that do not ignore locations that must be

edited whilst ignore locations that must not be edited.

In addition, Concrete patterns receive higher weights over Abstract patterns, which fa-

vors transformations that match more specific edits. Favoring specific patterns reduces the

capacity of generalization of the transformations, restricting the matches to specific loca-

tions. However, this heuristic can be useful in situations where the output follows the same

pattern in all the locations to be edited, thus reducing the number of required input examples.

The heuristic used here assigns higher real values to w3 than to w4.

Building ranking functions based on favoring selected features requires specific knowl-

edge and skills of an expert in the program transformation domain. Manually selecting

relevant features and assigning distinct weights to them to build a ranking function can be a

tedious, time-consuming and error-prone task. In addition, trying all possible values follows

a trial and error approach, which, depending on the number of features, becomes unsuitable.

Moreover, the complexity of the function, is another aspect to deal in building functions

manually. Thus, building a ranking function can be benefited from automated techniques.

ML techniques have been applied in several application domains to solve difficult problems

[39], thus learning several types of functions, ranging from the easiest to the most complex

ones, such as nonlinear functions. In program transformation domain, ML techniques can be

used to automatically learn the weights of the features based on experience and build ranking

functions that can properly rank transformations.

2.4 Machine Learning

Machine Learning (ML) is the field of study concerned with programs that learn from past

experience [50]. Another more detailed view explains that a program is said to learn from

experience when it improves a measured performance on a task with experience [39]. For

instance, suppose we have a cat learning problem. We want a program to learn whether an

image represents a cat or not based on experience. For this problem, the previous experi-

ence could consist of a collection of images previously labeled as "cat" and "not cat". This

collection of images constitute our training examples dataset and each training example is a

pair consisting of an input image and the correct label for that input image. The task of an

2.4 Machine Learning 22

ML algorithm is to learn the desired model based on the training examples. This model is

a mathematical function that receives an unseen image as an argument and outputs a label,

which is a prediction of the correct label for that image. For our example, our task is to sim-

ply learn a model that assigns a label "cat" or "not cat" to any given image, classifying them

in two groups. To evaluate the performance of an ML algorithm we can use some metrics.

For this problem, we can use as metric the accuracy, which measures the number of instances

correctly classified over the total number of instances.

The range of domain applications of ML techniques is wide, involving robotics and au-

tonomous vehicle control, speech processing and natural language processing (i.e., voice

recognition), neuroscience research, applications in computer vision, and more recently, rec-

ommendation systems [20]. The later topic, for example, is concerned with predicting the

preference of a user for a item, in a list of items, based on experience. The experience repre-

sents a collection of records of interactions of the user with items of her preference, and the

ML technique learns a function the is able to predict the user’s preference for unseen items.

Once the ML technique is able to predict the items that have higher probability of matching

the user’s preference, the technique ranks them and recommends those on the top (i.e., items

with highest probabilities of matching user’s preference). Some of the main applications of

recommended systems are music, movies, books, and product for sale in general.

Learning problems, as well as learning strategies, can be divided in three main categories:

supervised learning, reinforcement learning, and unsupervised learning [50]. Each of these

categories can be understood as follows:

• Supervised Learning - for each training example, there is an associated output. The

goal consists of finding a function that relates the output to the associated input ex-

ample, aiming to predict outputs for future observations (prediction) or understand the

relationship between the output and the observation.

• Reinforcement Learning - the learning process aims to improve some measured perfor-

mance at some task by being rewarded or penalized. Whenever the action taken goes

toward the task’s goal, it is rewarded. Whenever it takes a step into another direction

other than the goal, it is penalized. The goal consists of predicting which step to take

that maximizes the rewards, which eventually leads to an oriented goal.

2.4 Machine Learning 23

• Unsupervised Learning - there is no explicit outcome or correct answer associated

with the observations. The goal consists of understanding the relationship between

the observations and finding patterns. One of the sub-classes of unsupervised learning

problems relies on finding a function that can group similar observations in distinct

classes, a process called clustering.

Even though these three learning strategies are important to understand how application

domains have been benefited from their contributions, we do not focus on discussing in de-

tails the reinforcement and unsupervised learning in this work. We have briefly expressed

how these learning strategies occur but, instead, we focus on supervised leaning, since it

plays a more relevant role in the comprehension of this work. PbE has been a promising

application domain of supervised strategies, specially to guide the search of possible trans-

formations and rank the correct ones based on their properties. But, before getting into more

details about supervised learning, let us consider an important contrast.

It is important to make a distinction between the role of PbE techniques and ML tech-

niques, since these both techniques are learning strategies that can take examples of a task

from the user (training examples), learn a function (model) and are able to automate the

same task in the future on unseen data (prediction of future behavior) [25]. These techniques

can easily be misunderstood; however, they differ in certain aspects. First, ML techniques

require as many training examples as possible, even thousands, to be able to learn a reliable

function. On the other hand, in order to be useful, PbE techniques must learn a function

based on the minimum number of examples, preferable one. Second, functions learned by a

PbE are human-readable and, usually, editable programs unlike some ML functions, which

are black-box, such as Neural Networks. Nevertheless, ML is better suited for fuzzy/noisy

tasks [12].

2.4.1 Supervised Learning

Supervised machine learning is the learning strategy that observes some example in-

put–output pairs and learns a function that maps from input to output [51]. The function

has to generalize and predict the correct output of new observations based on the training

data examples. Generalization is fundamental because the training data represents only a

2.4 Machine Learning 24

sample, usually noisy, of the total of the observations in a domain. To access how well the

function generalizes and performs on novel observations, the technique uses a set of test ex-

amples, usually a fraction of the training examples not included in the training process. If the

function is able to predict correctly the outputs for test examples, then the function is said to

have a good generalization for novel observations.

There are two common types of output variables for input examples in machine learning

problems, which are quantitative and qualitative or categorical. Quantitative variables are

represented by continuous values and are used in distinct contexts, such as predicting one’s

age, income or the price of products in the market. Qualitative variables are represented by

discrete values, categories or classes, instead of continuous numerical values. For example,

determining if an email is a spam or not, diagnosing cancer, recognizing an animal’s breed,

and others. Problems with quantitative responses are referred to as Regression problems,

while problems with categorical responses are referred to as Classification problems [18].

In this sense, the cat learning problem previously mentioned can be seen as a classification

problem. Since there are two possible outputs for the images, this problem can be defined as

a binary classification. The classifier function has to be able to classify the observation into

predefined categories of objects, in this case, the two classes "cat" and "not cat".

In Figure 2.5a, we can see a classification problem, two sets of observations being sepa-

rated by a dotted straight red line, which represents a linear function or linear classifier. For

this specific example, based on the input-output examples and their properties, the learning

strategy finds a simple linear function that is able to completely and successfully classify

the observations in two categories. However, more complex problems involve observations

that are a much more difficult to separate using a simple straight line. In those cases, the

learning strategy requires more complex solutions, such as polynomial functions with high

degrees. The less uniformly spread the observations look like, the higher the complexity and

the degree of the polynomial function learned. For instance, in Figure 2.5b we see a prob-

lem with observations that are not uniformly spread, becoming difficult to separate them in

two categories with a straight line. In this case, a 6-degree polynomial function is able to

successfully reach that goal.

In Figure 2.6 we see a regression problem, characterized by numerical values or con-

tinuous outputs. By regression problem, we mean the problem of predicting a continuous

2.4 Machine Learning 25

(a) Linear classifier (b) 6-degree polynomial classifier

Figure 2.5: Binary classification problem

quantity based on input examples quantities. For example, predicting a price of a house

based on its size, or number of rooms, or predicting one’s income based on years studied. To

solve those types of problems, a linear function takes the input examples, such as different

sizes of houses along with their prices, and predicts the price of a novel house given its size.

Figure 2.6: Regression problem

The complexity of the function may have an influence on how the function will fit new

observations. The goodness of the fit is not determined by how well the function fits the

training data but how well it generalizes to new observations. Depending on how the obser-

vations are spread on the graph, a too much simple function leads to underfitting, as seen

in Figure 2.7a. This undesirable phenomenon is characterized by a function that does not

capture a great part of the observations in the training data and does not learn its trend. On

the other hand, more complex functions lead to overfitting, as seen in Figure 2.7b, which

is also an undesirable situation, since the function captures basically all the observations,

2.4 Machine Learning 26

including the noise and outliers. In other words, the function will be biased to the training

data and will not generalize on new observations. The best scenario is seen in Figure 2.7c,

which represents a goodfitting. In this case, there is a balanced trade-off between complexity

and capacity of generalization. The function is complex enough to capture the trend of the

observations but flexible enough to be generalized to new observations.

(a) Underfitting (b) Overfitting (c) Goodfitting

Figure 2.7: Fitting of function and complexity in a regression problem

The goodness of the fitting or the performance of the function is an important factor to

determine how effective the function can be in producing the correct outputs for the observa-

tions. To access the performance of a given function, we base on some metrics. To explain

each one of these metrics, we will use a confusion matrix. In supervised learning, the con-

fusion matrix allows us to visualize the performance of a function. Figure 2.8 represents a

confusion matrix with the classification on the row and the actual class on the column. Let us

consider the cat problem again to understand the confusion matrix. True Positive (TP) refers

to images classified as "cats" that are actually as "cats", True Negative (TN) refers to images

classified as "not cats" that are actually "not cats", False Positive (FP) refer to images classi-

fied as "not cats" that are actually "cats", and False Negative (FN) refers to images classified

as "not cats" that are actually "cats".

The first metric that we will see is the accuracy, which is commonly used across different

techniques in supervised learning. The accuracy can be seen as the number of instances

correctly classified over all the instances. We show the formal definition of accuracy in (Eq.

2.1) [45], based on the confusion matrix. For our cat problem, the accuracy relates to how

frequently "cats" are classified as "cats" and "not cats" are classified as "not cats".

Accuracy =
TP + TN

TP + TN + FP + FN
(2.1)

2.4 Machine Learning 27

Yes No

Yes TP FN

No FP TN

Predicted Class

Ac
tu
al
Cl
as
s

Figure 2.8: Confusion Matrix

Precision evaluates over all instances classified as positives, the ones that are really posi-

tives. We show the formal definition of precision at (Eq. 2.2). For our cat problem, precision

refers to the proportion of images classified as "cats" that are really images of "cats".

Precision =
TP

TP + FP
(2.2)

Recall evaluates over all instances that are true positives, the ones that the classifier was

not able to classify correctly as true positives. We show the formal definition of recall at (Eq.

2.3). For our cat problem, recall refers to proportion of images of "cats" that were really

classified as "cats".

Recall =
TP

TP + FN
(2.3)

However, there has to be a trade-off between the metrics precision and recall. In many

situations, we have unbalanced classification problems. In situations, such as spam detecting,

the number unimportant e-mails may outnumber the number of really important ones, or in

diagnosing cancer, the number of healthy people may outnumber the number of sick people.

These situations impose a challenge to measuring the performance of classifiers.

In spam-detecting problem, mis-classifications (FP) can have serious implications, for

examples, classifying an important e-mail as spam. In another situation, such as cancer diag-

nosing problem, mis-classification (FN) can have serious implications, for example, classi-

fying a person who has cancer as not having cancer. In the spam-detecting problem, we want

a classifier with high precision, classifying as spams only the e-mails the are really spams.

While in diagnosing cancer problem, we want a high recall, classifying people as not having

cancer only the ones that are really healthy. Let us suppose our model classifies every single

e-mail as spam. The precision is high, even though it is not useful since we have many false

2.4 Machine Learning 28

positives, and the recall is low. In the cancer diagnosing problem, a model that classifies

every single person as not having cancer has high recall, but it is not useful, since we have

many false negatives, and the precision is low. F-measure (Eq. 2.4) attempts to provide a

solution to the previous trade-off dilemma by computing the harmonic mean of precision and

recall, especially in unbalanced classification problems.

F -measure = 2 ∗
precision ∗ recall

precision+ recall
(2.4)

Regarding the differences in performances, as well as the number of metrics to evaluate

them, there is no single learning strategy that provides the best performance over all possible

learning problems. This problem is emphasized by the No Free Lunch (NFL) theory [69],

which explains that if a learning technique A performs better then B in one class of problems,

then A must perform worse than B in other classes of problems. Similarly, there is no

standard metric to evaluate the performance of all the distinct learning techniques and each

metric has advantages and disadvantages depending on the data, the importance of false

positives and false negatives, and whether the number of observations are unbalanced or not.

2.4.2 Learning Algorithms

Machine learning algorithms are the learning techniques responsible for solving classifica-

tion or regression problems by estimating the function that maps input to desired the outputs.

Common algorithms in supervised learning include logistic regression, Support Vector Ma-

chine (SVM), Neural Networks (NN), random forests, K-Nearest Neighbors and Decision

Trees [5]. In this section, we describe the algorithms used in this work.

Logistic Regression

Even though the term "regression" can be used to describe predictive models of continuous

output, such as linear regression, in this context, logistic regression concerns with classifica-

tion models of discrete outputs, more specifically, 0 and 1. The algorithm is characterized

by being simple and applied for classification or prediction in problems with two possible

outputs, binary classification, such as "cats" or "not cats", "cancer" or "not cancer". As seen

in Figure 2.9, the goal consists of finding a sigmoid function, called logistic function, which

given an input value, it produces an output between 0 and 1. Note, from Figure 2.9, that

2.4 Machine Learning 29

when the module of the input value is large, the output is always 0 or 1. However, when the

module of the input value is small, the value oscillates between 0 and 1. Thus, the algorithm

uses a threshold, which is commonly 0.5, to decide whether the instance should be classified

as 0 or 1. To do so, it compares the output of the sigmoid function with the threshold. If

the output is greater than the threshold, the instance is classified as 1, otherwise the instance

is classified as 0. In a ranking problem, such as predicting or classifying a transformation

regarding its correctness, the output of the sigmoid function can be used to determine how

confident the model is in classifying the transformation. The value represents a probability,

which can be used to distinguish between transformations.

‐6 ‐4 ‐2 0 2 4 6

0.5

1

0

Figure 2.9: Logistic sigmoid function

Support Vector Machine

Support Vector Machine (SVM) learning algorithm is a classifier. It aims to find a function,

known as hyperplan, that maximizes the distance between the two classes of observations,

as seen in Figure 2.10. The closest observations to the hyperplan are called support vectors

and the distance between a support vector and the hyperplan is the margin. The support

vectors determine how the hyperplan can separate the two classes while maximizing their

margins. SVM algorithms can also deal with observations that are not linearly separable. In

the problem of classifying transformations as correct or incorrect, the line the best separates

the two classes represents the function to be used. The most determinant observations will

be the closest ones to the line, which shape the line. On the other hand, the furthest ones of

the line represent the ones the model is most confident in classifying.

2.4 Machine Learning 30

Figure 2.10: SVM function

Neural Networks

Neural Networks (NN), also called Artificial Neural Networks, have inspiration in the op-

eration of the human brain, which is a network of interconnected neurons that can process

information using parallelism. From a computational point of view, NN can be understood as

a method of representing functions using networks of computing elements and about meth-

ods for learning such representations from examples [51]. Using the analogy of the brain,

NN consist of networks of interconnected processing units that can process information.

A neural network can be seen as a graph where each processing unit represents a node

in this graph. A neural network has a number of levels, and each level contains a number of

nodes. The first level represents the input for the neural network and the last level represents

the output, which is the classification of the neural network. For instance, in 2.11b, we have

a network with three levels, where the first level contains 10 nodes, the second level contains

four nodes, and the last level contains two nodes.

In a neural network, each node represents a function that receives n inputs and produces

0 or 1 as output. Each one of the n inputs has a weight associated with it. In Figure 2.11a, we

can see the details of a processing unit. The function associated with a node can be composed

of two functions. The transfer function that produces as output a real value, given the inputs

and the weights. Then, given this value, the activation function produces as output a value

that can be 0 or 1. An example of an activation function is the sigmoid function discussed

previously. The output of a function in a node, by its hand, works as the input for all the

nodes in the next level that, that by its hand, works as input for the next level. This process

continues until the last level, which is the output of the neural network.

2.4 Machine Learning 31

Along the learning process, the neural network is modified to improve the classification.

In successive iterations, the output of the neural network is compared with the real label

of the training example instance. This comparison is used to improve the neural network.

For instance, when the output of the neural network differs from the real label, the weights

of the network need to be modified in order to improve the neural network to classify this

instance correctly. This update goes backward, a process known as backpropagation. First,

the weights associated with the output level is updated, then the weight associated with the

previous level and so on.

Now that we have a general overview of an neural network, let’s discuss how the pro-

cessing unit works. Figure 2.11a presents a processing unit. The processing unit includes

and transfer function, a linear component that computes the sum of the weights of the input’s

values, represented by Σ. It also includes an activation function, a nonlinear component that

modifies the weighted sum in the final activation value, and represented by ϕ. In Figure

2.11b, we see a neural network with one two layers of processing units. The first layer does

not count since there is no computation on it.

(a) Processing unit (b) Neural Network

Figure 2.11: Neural Networks structure

As activation function, a number of functions can be used. Previously, we have discussed

one of these functions, the Sigmoid function. In Figure 2.12 we see three simple types of

activation functions given by ϕ(υ). Among these functions, we have:

• Threshold function: this can be seen in Figure 2.12a. Given the value of υ, the corre-

2.4 Machine Learning 32

‐6 ‐4 ‐2 0 2 4 6

0.5

1

0

ϕ(ν)

(a) Threshold

‐1 ‐0.5 0 0.5 1

0.5

1

0

ϕ(ν)

(b) Piecewise-linear

2

ϕ(ν)

‐6 ‐4 ‐2 0 2 4 6

4

6

(c) ReLU

Figure 2.12: Activation functions

sponding output will be given in terms of the equation (Eq. 2.5).

ϕ(υ) =











1 if υ ≥ 0

0 if υ < 0

(2.5)

• Piecewise-linear function: this can be seen in Figure 2.12b. Given the value of υ, the

corresponding output will be given in terms of the equation (Eq. 2.6).

ϕ(υ) =



























1 if υ ≥ 0.5

υ if − 0.5 < υ < 0.5

0 if υ < −0.5

(2.6)

• Rectified Linear function (ReLU): this can be seen in Figure 2.12c. Given the value of

υ, the corresponding output will be given in terms of the equation (Eq. 2.7).

ϕ(υ) =











0 if υ < 0

υ if υ ≥ 0

(2.7)

In classification problems, such as classifying transformations as correct or incorrect

based on their characteristics, the first level of the NN receives a set of features with corre-

sponding values, which are then propagated through the next levels until reaching the last

level, thus having a class as the output. The connections between the nodes in the levels

receive weights, which indicate the strength of the connection and are determinant in com-

puting the final class.

2.5 Learning Ranking Function for Ranking Problems 33

2.5 Learning Ranking Function for Ranking Problems

We have seen a variety of learning problems that can be solved by supervised learning tech-

niques, more specifically, linear regressions and classifiers. Another class of problems con-

sists of ranking problems. The main goal of ranking problems consists of sorting multiple

instances according to specific criteria in order to evaluate the most relevant instances. These

instances are usually sorted in ascending or descending order according to their assigned

scores, which is a measure of their relevance to the problem. Instances with higher scores

are ranked in higher positions while instances with lower scores receive lower positions in

the rank.

There is a variety of applications of ranking approaches in distinct problem domains. In-

formation retrieval is one of the most popular ranking application domains, involving search

engines and recommendation systems. In searching engines, for example, the users want to

access the most relevant documents given a search query. The documents are ranked accord-

ing to certain ranking criteria, such as frequency of key-words, number of links, and others.

Each of these criteria are associated with specific weights that represent the importance of

that criterion to the document. Performing arithmetic operations over the weights the can

result in a final score.

Similar to the previous learning problems, ranking involves learning a function that as-

signs scores to instances based on their degree of relevance or preference. For example, in

recommendation problems, ranking functions aim to compute the preference of a user for an

item, in a set of multiple items, based on past interactions with them. In those situations, the

number of times the user viewed an item, number of votes the user gave to it or to similar

items, the number purchases of similar items, and other interactions are relevant properties

that can be used by a function to assign a score.

While the ranking function can be constructed manually, based on the knowledge of

an expert in the problem domain, it can also be obtained automatically by means of ma-

chine learning. Intuitively, some characteristics of specific items are more desirable than

others. For example, documents with high frequency of key-words that match the search

query might be more desirable than documents that do not have this property. Thus, manu-

ally constructing a function the assigns higher weights to some specific characteristics based

2.5 Learning Ranking Function for Ranking Problems 34

domain knowledge of an expert may provide an appropriate solution.

However, manually assigning weights to characteristics can be tedious, time consuming

and error-prone. Another strategy to obtain a ranking function consists of using machine

learning algorithms for automatically learning the weights of the characteristics of the in-

stances and constructing a function. In this scenario, traditional ML algorithms, such as

linear regressions and classifiers can provide an alternative solution to learn ranking func-

tions. Considering that some of these algorithms can predict the preference of the user for

an item based on examples, the prediction usually is estimated as a real valued probability

that, given a threshold, can be converted to a class. These probabilities provide a mean-

ingful strategy to ranking instances, providing a list of instances ranked according to their

probabilities.

Chapter 3

State of the art

In this chapter, we present the state of the art on ranking approaches employed by

Programming-by-Example (PbE) tools dealing with ranking of program transformations. To

obtain the state of the art, we employed a systematic review of the literature. In Section 3.1

we present the background, motivation, goal and research questions of our study. In Section

3.2 we present the review methodology including the search string formulation, selection of

searching databases and criteria for the selection of studies. In Section 3.3 we present the

results of the systematic review. In section 3.4 we discuss the results obtained in our state

of the art and present the limitations of our study. Finally, in Section 3.5 we present the

conclusion remarks.

3.1 Motivation

During software evolution, developers often perform similar repetitive edits when adding

features, refactoring code and fixing bugs. These bugs are often recurring and can be fixed

by similar edits [42]. Some approaches have been proposed to support developers automat-

ing repetitive edits, such as IDEs and static analyzers. Another approach is Programming-

by-Example (PbE), which aims to infer a program from input and output examples using

inductive reasoning, thus saving time, minimizing the manual effort, and errors. Usually,

users are reluctant to provide many examples, otherwise, they are performing the repeti-

tive edits by themselves. Thus, PbE approaches have to infer the desired program from the

minimal number of examples, preferable a single one.

35

3.1 Motivation 36

However, examples are underspecified and the inferred transformation consistent with an

example-based specification are often numerous [44]. Identifying the correct transforma-

tion in a large set of transformations poses a ranking problem to PbE approaches. The key

challenge is to learn an appropriate ranking function to select the correct transformation in a

large set of transformations induced from a minimal number of examples.

To overcome the posed ranking problem, approaches have been proposed. Commonly

adopted ranking approaches are based on heuristics favoring certain aspects of the solutions

such simplicity, size and others [11; 21; 56]. Instead of relying on heuristics, others employ a

Machine Learning (ML) ranking approach to automatically learn a ranking function to rank

transformations in string transformation context [59].

The literature presents reviews that gather specific studies on the automation of repetitive

code edits to support developers [40]. Kim et al. [22] conduct a comparison of existing

PbE approaches in terms of input, output, edit type, and automation capability. However,

the study is limited to a predefined set of studies, rather than collected in a systematic way.

Also, it does not focus on ranking approaches. To the best of our knowledge, no systematic

review was conducted on the exploration of different ranking approaches in the context of

transformation transformations.

The main goal of this systematic review of the literature relies on identifying and de-

scribing the main approaches used by these tools to deal with ranking of transformations in

distinct domains. Formally, we can express our goal in the following sentence:

Goal: Analyze ranking approaches for the purpose of characterizing them with respect

to the ranking of program transformations from the point of view of tools and techniques in

the context of Programming by Example.

3.1.1 Research Questions

Once we have expressed the goal of our study, we address our research question. We address

the following question:

• RQ1: What approaches do Programming-by-Example tools employ to rank multiple

learned transformations in different domains?

• RQ2: What are the most common features employed by Programming-by-Example

3.2 Methodology 37

tools to build ranking functions for ranking transformations in different domains?

We systematically gather a set of studies from specific databases and through a search-

ing procedure, we intend to find studies that contribute somehow to answer our RQs. This

selection process is described in the Section 3.2.

3.2 Methodology

We start by exploring a set of pre-selected studies with the intent of obtaining a meaningful

comprehension about program transformation in PbE. These studies can help us understand

the topic, investigate possible research gaps and obtain a reference of how the key terms may

change according to the domain of applications. These insights can help us perform a more

useful selection procedure.

In this exploring phase, the initial set of papers examined for the extraction of the key

terms and synonyms were indicated mostly by specialists. Table 3.1 presents a set of three

papers selected in order to explore the topic and obtain the key terms for searching, as well

as other synonyms.

Authors Studies

Singh and Gulwani [59] Predicting a correct transformation in programming by ex-

ample

Gulwani, S. [11] Automating string processing in spreadsheets using input-

output examples

Rolim et al. [7] Learning syntactic program transformations from examples

Table 3.1: Studies for key terms and other spellings

The key terms found in the previously mentioned studies admit synonyms and other

spelling as they refer to the same object of study. For example, considering these three stud-

ies, the term Programming by Example [7] can also be referred to as Program by Demonstra-

tion [11] and example-based program synthesis [59]. In Table 3.2 we present the key terms,

synonyms and other spellings obtained from the previously mentioned studies.

3.2 Methodology 38

Key Terms Synonyms and Other Spellings

Programming by example programming by demonstration, program syn-

thesis, example-based programming and learn-

ing from examples.

Ranking sorting and ordering

Approaches techniques and strategies

Table 3.2: Synonyms and other spellings

3.2.1 Search String

Using specific keywords and synonyms found in the initially set of selected papers along

with boolean connectors, we constructed our search string.

("programming by example" OR "programming by demonstration" OR "program synthe-

sis" OR "example-based programming" OR "learning from examples") AND (Approach OR

technique OR strategy) AND (ranking OR sorting OR ordering)

3.2.2 Databases

In the selection process of the databases, we considered using certain criteria, such as, ob-

serving their relevance to the area studied in this work and also considering the opinion

of experts regarding to the choice of databases. We decided to concentrate our efforts on

databases with the English language, considering that the number of published studies in

English are more numerous. Regarding the selection of the databases, since we use a search

string, it is recommended to use ACM Digital Library - Association for Computing Machin-

ery, IEEE Xpore digital library - Institute of Electrical and Electronics Engineers and Scopus

[23]. In addition, we also found relevant to use ScienceDirect and Google Scholar, which

seem to be common used databases in systematic reviews.

3.2 Methodology 39

3.2.3 Study Selection

Once we have performed the search procedure over the selected databases, a number of

studies are retrieved. The studies are gathered from distinct publication sources and only a

subset of these studies may be selected to be included in the review. In order to select these

studies, we specify two types of criteria: Inclusion Criteria (IC) and Exclusion Criteria (EC).

We accept and discard studies according to the following criteria specified in Table 3.3.

ICs Criteria ECs Criteria

IC1 The study relates to PbE or Program

Synthesis technique

EC1 The study does not present a tool,

system, approach or technique

IC2 The study describes the ranking ap-

proach of the mentioned tool

EC2 The study is duplicated

IC3 The study was indicated by a special-

ist in the area

EC3 The study is not in English

Table 3.3: Study selection criteria

We analyze each study retrieved by the search procedure according to the following order

of priority: first we read the title, then the abstract and keywords, then the introduction and

finally the complete article. According to this analysis process, we read the studies observing

the priority and judging the studies according to the previously pre-defined ECs. At this

stage, we aim to exclude all those studies that have no potential to help us answer our RQ.

Studies that meet any of the ECs receive a label of Rejected. Once we get all the studies that

seem more relevant to us, we then judge them according to the ICs. The studies have to meet

IC1 and IC2 at the same time, in order to help us answering our RQ, unless they meet the

IC3. These studies receive the label Accepted.

The studies cited in the bibliographic references may also be taken into account as ad-

ditional research resources, if they have not been returned in the research databases, also

undergoing analysis according to the ICs and ECs. In these cases, we perform backward and

forward snowballing process to find other relevant studies.

3.2 Methodology 40

3.2.4 Information Extraction

In order to address our RQ1 and RQ2, we extract relevant information from the selected

studies. Besides general information such as author, title, year and proceeding, we focus on

specific additional information:

• Tool: We collect the name of the tool, technique or system (e.g. REFAZER, Prospector,

CodeHint)

• Domain: We collect the transformation domain in which the tool operates (e.g. Pro-

gram, String, numbers)

• Ranking: We collect the type of ranking approach employed by the tool (e.g. Heuris-

tics, ML)

• Features: We collect the main features used to disambiguate between the programs in

the ranking approach (e.g. size of the program, context, similarity)

3.2.5 Execution

The total number of studies retrieved, as well as, the number of studies selected after inclu-

sion, exclusion criteria and quality assessment are found in Table 3.4. The total of studies

retrieved includes the duplicated ones but when we perform the selection process, we remove

them, thus they do not appear in the total number of selected studies. We also indicate how

many studies we select after performing backward and forward snowballing according to

studies retrieved from each database.

Database Studies retrieved Selected Snowballing Total Selected

ACM Digital Library 65 8 5 13

IEEE Xplore 62 0 0 0

Scopus 39 2 1 3

ScienceDirect 4 0 0 0

Google Scholar 100 2 4 6

Total 270 12 10 22

3.2 Methodology 41

Table 3.4: Number of papers retrieved, selected before snowballing, and selected after per-

forming snowballing

ACM Digital Library

We performed a search in ACM Digital Library with the predefined search string and had 65

resulting papers. We performed the search using the default search field.

IEEE Xplore

We performed an advanced search in IEEE Xplore with the predefined search string and had

62 papers resulting papers. We used the command search field in the advanced search op-

tions. Initially, we searched for full-text and metadata but the number of resulting papers was

numerous. We restricted the search for metadata only, which includes abstract (summary),

title, and indexing terms.

Scopus

We performed a search in Scopus with the predefined search string and had 39 resulting

papers. We limited the search to abstract (summary), title and key terms.

Science Direct

We performed a search in Science Direct with our search string and the number of resulting

papers was around 1,700. Thus, we limited our search to the abstract (summary), title and

key terms but the number of relevant returned results decreased to 4 studies. However, none

of them had to contribute to our RQs.

Google Scholar

We performed a search in Google Scholar with our search string and the number of resulting

paper was too high, around 13,000. Thus, we limited our search to the title, selected the

option to sort the results by relevance and restricted patents, citations and the language to

3.3 Results 42

English but still the number of retrieved studies was too high, reaching up to 2,550 studies.

Then we decided to analyze only the first 100 results.

3.3 Results

In this section, we summarize the results obtained. In total, we selected 22 studies summa-

rized in Figure 3.1 according to the events.

0

1

2

3

4

5

6

Nu
m
be

r o
f s
tu
di
es

Number of studies vs. Events

Figure 3.1: Number of studies for each event.

Figure 3.2 depicts the published studies grouped by five years. The majority of studies

selected were published in the last five years. Also, there has been an increase on the number

of studies when we consider the last fifteen years.

0

2

4

6

8

10

12

14

2004‐2008 2009‐2013 2014‐1018

Nu
m
be

r o
f s
tu
di
es

Number of studies vs. Years

Figure 3.2: Number of studies by year.

3.3 Results 43

In Figure 3.3 we depict the number of studies by application domains. The majority of

studies selected are divided between string and program transformation domain. We also

observe that the heuristic ranking based approach predominates and are employed basically

in string and program transformation.

0

2

4

6

8

10

12

String Program Number Matrix SQL Queries

Nu
m
be

r o
f s
tu
di
es

Application domain

Number of studies vs. Application domain vs. Ranking approach

Hybrid

Heuristics

ML

Figure 3.3: Number of studies by application domain and ranking approach.

3.3.1 Selected Studies

After gathering all the selected studies reported in the section of the results, we performed

the information extraction process. This process was carefully performed aiming to help us

answer our RQ. We focused on the domain of application of the tools, the type of ranking

and the criteria used in the ranking approaches for multiple solutions.

Study Year Tool Domain Ranking Criteria

[7] 2017 REFAZER Program Heuristics Size of program transformations, presence of

context and frequency of occurrences of char-

acteristics (constants, references, nodes, pat-

terns, operations)

[30] 2005 PROSPECTOR Program Heuristics Size (length) and simplicity of code snippets.

[43] 2012 - Program Heuristics Similarity between suggested and known ex-

pressions (type distance, depth or size, in-

scope static methods, common namespace

and same name)

3.3 Results 44

[52] 2006 XSnippett Program Heuristics Size (length) of code snippets, frequency of

occurrences of characteristics and context.

[9] 2014 CodeHint Program Heuristics Frequency of certain types, methods, and

fields in real-world lines of code.

[11] 2011 FlashFill String Heuristics Size of substrings and simplicity (number of

arguments and whether arguments are pair-

wise)

[21] 2011 Wrangler String Heuristics Types of transforms, specification difficul-

ties, frequency, length of selected text, fre-

quency of equivalent transforms and measure

of transform complexity.

[56] 2016 BlinkFill String Heuristics Context of token sequences with the contexts

around them in the transformation.

[68] 2016 FIDEX String Heuristics Generality of tokens (a general token has a

higher score than a constant token)

[47] 2017 - String Heuristics Correspondence between different programs

(maximal collection of field-level extractions

that align well with one another)

[59] 2015 LearnRank String ML Frequency-based features denoting frequen-

cies of patterns in the programs.

[32] 2013 - string ML A probability model defined over training

data assigns a probability to each program

based on characteristics in the structure, such

as textual features: whether output is subtring

of the input, duplicated lines in the output but

not in the input, etc.

[16] 2013 InSynth Program Heuristics Statistical information from a corpus of code,

with more frequently occurring declarations

having smaller weight.

[25] 2013 SMARTedit String ML A probability is assigned to each hypothesis,

which are formulated from a demonstration of

a task. The user can interact with the most

probable hypothesis and choose one.

3.3 Results 45

[46] 2013 RESYNTH Program ML/

Heuris-

tics

Refactoring sequences are obtained with a

minimization of the edit distance and expres-

sion distance from the user edits.

[26] 2017 S3 Program Heuristics Syntactic and semantic differences between

candidate solutions and original expression in

the AST, observing operations, number of oc-

currences of node types, variables and con-

stants.

[15] 2014 NLyze String ML Scores associated with specific rules used to

produce the candidate solution and their oc-

currences, how completely produced expres-

sions cover words in the input.

[70] 2013 STEPS String ML A probability model defined over training

data assigns a probability to each program

based on characteristics in the structure, such

as textual features: whether output is sub-

string of the input, duplicated lines in the out-

put but not in the input, etc.

[58] 2012 Excel add-in Numbers Heuristics Gives preference to smaller and simpler solu-

tions, favoring less trailing zeros and white-

spaces, unnecessary number truncation and

number formatting expressions over rounding

transformations

[66] 2017 SCYTHE SQL

Queries

Heuristics Favors simpler structures and filter predicates,

natural predicates more seen in practice and

constant coverage.

[67] 2017 SYNGAR string/

matrix

Heuristics Favors small programs over larger ones. In

case of tie, favors use of smaller constants.

[14] 2017 - String ML properties such as length of the program,

number of operators, etc.

Table 3.5: Summarizing the results

3.4 Discussion 46

3.4 Discussion

In this section, we discuss the primary studies selected, giving attention to the application domains,

the approaches used by different PbE tools and techniques, and the main features along with more

details about them.

3.4.1 Programming by Example approaches

Ranking multiple solutions consistent with an example-based specification has been a great barrier to

the success of PbE tools. Even though this study explores a specific topic in the area of program syn-

thesis from examples, findings on this topic have a lot to contribute to the development of approaches

and tools for this context. Investigating different ranking approaches used by PbE tools in distinct

domains may contribute with relevant insights on how to build a more efficient ranking function for

the context of program transformations.

The number of studies retrieved in our search confirmed a recent increasing effort in the discussion

and proposal of PbE tools and techniques aiming to support different types of users dealing with

various tasks. Our interest was to find distinct tools and techniques that employed ranking approaches

and investigate the strategies they used to construct proper ranking functions to sort multiple solutions.

From this investigation, we aimed to obtain relevant insights on what strategies can be useful to in

the construction of efficient ranking approaches. With that in mind, we have filtered all the retrieved

studies extracting insights from only 22 selected studies, which seemed to have the quality necessary

to help us answering our RQs.

Application domains

The final selected studies did not present a diversity in terms of domain of applications of PbE tools.

Regarding these tools, they operate mainly in two domains, being 8 studies in program and 11 in string

domain. In the program domain, it was observed that there is an effort to support developers dealing

with various forms of edits in the source code [7; 30; 52; 9; 16; 43]. Also, there has been initiatives

in supporting programming students through program transformation to provide useful feedback in

the education scenario, which seemed to be a recent topic investigated in the selected studies [7].

On the other hand, in the string transformation domain, the support is mainly given to end users

dealing specially with data wrangling tasks, which has been investigated for a much longer time [44;

21; 56; 25; 70]. We also observed that there is an effort to provide support to matrix and numbers

transformations, which is slightly different from the application of string, considering their nature.

3.4 Discussion 47

For instance, in matrix transformation domain, SYNGAR [67] operates by transforming matrices from

distinct dimensions, such as the ones performed in MATLAB, using examples. In numbers, the

attempt is to learn number transformations from examples, using a language specially designed for

that purpose, for instance, changing dates of the year or time of events [57].

Ranking approaches

Regarding the ranking approaches employed by the tools, the selected studies presented two main

types of strategies adopted, which are based on heuristics and ML concepts. Both heuristics and ML

concepts are used in program and string transformations presenting positive results according to the

studies. The use of human expert knowledge to guide the ranking of the multiple transformations has

been investigated by studies dating from earlier years [30; 52], while the application of ML concepts

relies on a more recent topic, specially concepts of Neural Networks and probabilistic models [32;

59].

The majority of the ranking approaches observed in the studies relies on specific properties of

grammar of domain specific languages used to describes the transformations. Based on the obser-

vation that some properties are more desirable that others, these properties are used to disambiguate

between multiple programs. We focus our attention on these specific used properties and how they

were used to disambiguate between the multiple transformations. A general approach to distinguish

between different transformation consists of assigning them a score. This score is computed by as-

signing weights to specific properties, which according to the approaches reported in the studies, is

done manually, based on heuristics, and automatically, generated by ML algorithms. We now discuss

some of the main properties used by the reported ranking approaches across different domains: size,

frequency, simplicity, context, generality, tree edit distance, and others.

Ranking criteria

Properties such as size and simplicity are commonly adopted in the greater part of the rank-

ing approaches across different domains reported in the studies [7; 30; 52; 44; 57; 67]. Usu-

ally, they relate to the length of the transformation that are measured by using some type of cri-

teria such as the number of tokens or nodes in the AST. As observed, the ranking approaches

based on heuristics usually give preference to shorter transformations, following the Ocam’s ra-

zor principle, i.e., the principle that sates the simpler solutions are more likely to be the desired

ones. The studies seem to be categorical when they affirm that shorter solutions are more likely

to satisfy the desired intent and encouraging results are reported to support that type of affirma-

3.4 Discussion 48

tion. Another common property relies in the notion of frequency, which may have distinct us-

ages depending on the domain of application. Some studies refer to it as the number of occur-

rences of a specific property in the transformations and the number of times a certain snippet

appears across different locations in the search, in mining code context, for example [7; 9; 59;

26]. Context refers to the presence of expressions surrounding a modified location. Usually these

expressions represent a pattern used in the matching. The notion of generality consists of giving

higher or lower weights to more general expressions, which are the ones that match more general

sequences of tokens. In this case, it was observed that two studies expressed different views on this

heuristic. One of the studies gave preference to more general expressions [68], while the other favored

more specific or constant expressions [7]. Even though they diverged in domain and perspective, both

of these studies presented potential results making use of this heuristic.

The DSL plays an important role in the generation and ranking of program transformations. The

language has to be expressive enough to represent a wide space of tasks in a specific domain and

restricted enough to allow efficient search over that space. The language consists of a set of operators

and a grammar to describe how to properly make use of the operators. The grammar of different

DSLs may be expressed and constructed over distinct operators or properties, considering the char-

acteristics of the application domain. For example, in the string transformation domain, properties

inherent to characters are relevant, such as substring operations, character positions, concatenation,

and others. Some of these properties do not fit in the program transformation domain. When ML

models are employed, such as Neural Network, for example, the importance of these properties are

not predefined, but given automatically.

The notion of specific properties in the underlying application domain indicates that a ranking

based on general properties may be not enough to guarantee an efficient ranking. However, according

to results observed, the most general properties previously mentioned seem to have the greatest con-

tribution to the success of a ranking approach across domains. We have focused on the most common

and general properties that transcend the domains, and thus can be used in the construction of more

general ranking approaches.

3.4.2 Study limitations

We have designed our search string to automatically find the maximum number of studies dealing

with ranking approaches employed by tools to sort multiple program transformations in different

databases. Given the simplicity and generality of the string, it is possible that we have missed studies

that used different terminologies from the three first collected studies we have based to extract the

3.5 Conclusion Remarks 49

search terms. To mitigate that limitation, we have performed snowballing to find additional studies,

even though we consider the lack of these studies is due to the string formulation process.

We did not include technical reports and graduate thesis assuming that the journals and conference

papers have valuable studies to provide a reliable systematic review and state of the art. Even though

we did not include those sources, we are aware that they may have relevant, and in some cases, cutting

edge material that could contribute with the topic.

The planning and execution of the reviewing process was mostly performed by a single reviewer.

The risk of bias in that case is real but to mitigate that limitation, we have tried to discuss any obstacle

or unexpected outcome in any of the phases of the reviewing process with a specialist. Also, the first

three studies were discussed with an specialist to construct a common understanding and the resulting

selected studies were reviewed by the same specialist.

3.5 Conclusion Remarks

PbE tools are proposed to support developers dealing with repetitive edits. Given the underspecified

nature of the examples, these tools have to deal with ranking of multiple inferred program transfor-

mations. The construction of ranking functions does not consist of a trivial task, and the problem

of building an efficient ranking has been handled using different approaches across distinct domains.

Our purpose relied on identifying and describing different approaches PbE tools employ to rank mul-

tiple learned transformations in different domains.

The state of the art provided us with important insights on the construction of ranking functions.

We could observe that the underlying specific application domain has shown to have an influence

on the construction of an effective ranking function. Distinct application domains, such as string or

program transformation domain, involve common and distinct properties. The common properties

involved size, simplicity, frequency, context, generality, and edit distance. These properties are de-

sirable across distinct domains, as observed in the studies. Even though many of them have greater

contribution than others to the success of a ranking, they are supported by specific properties.

Regarding the ranking approach, two main strategies were observed: heuristics, based on human

expert knowledge of the application domain and ML, based on knowledge automatically extracted

from the domain. Studies that presented the ranking based on heuristics made explicit the relevance

of the properties of size, simplicity and generality, assigning them more weights. However, finding

these weights manually using heuristics and domain knowledge is costly and time consuming.

To efficiently construct a ranking approach disregarding the application domain, the most general

3.6 Answers to the Research Questions 50

properties size, simplicity and generality showed to be necessary. However, we have to consider

the characteristics of the application domain, as well as, the DSL for that specific domain, in order

to extract other properties to support the most general ones. When considering to manually assign

weights or doing so automatically, these general properties are the ones to receive more weights.

3.6 Answers to the Research Questions

Next, we summarize the answers of our research questions.

• RQ1: What approaches do Programming-by-Example tools employ to rank multiple learned

transformations in different domains?

Regarding the ranking approaches employed by PbE tools, two main strategies were observed:

heuristics, favoring specific properties based on the domain knowledge of a human expert, and

ML-based, using weights automatically obtained from training examples.

• RQ2: What are the most common features employed by Programming-by-Example tools to

build ranking functions for ranking transformations in different domains?

The main properties used to build ranking functions for transformation consisted of size, sim-

plicity, frequency, context, generality, and edit distance. However, the influence of each one of

them may vary according to the problem domain.

Chapter 4

A Machine Learning Based Ranking

Approach

In this chapter, we present our approach for ranking program transformations, based on machine

learning techniques to learn ranking functions. In Section 4.1 we present the overview of the steps of

the ML approach for program transformations.

4.1 Overview

We propose a supervised ML-based approach to automatically build ranking functions to rank pro-

gram transformations for PbE techniques.1 Figure 4.1 presents the workflow of the proposed ap-

proach, which comprehends four steps. It receives a PbE tool, examples of edits, and ML algorithms

as input. In Step 1, we use an approach to automatically label the transformations learned by the

PbE tool from the edit examples. The edit examples include the before and after version of the code,

which can be used to judge whether the edits applied by the transformations correspond to what the

developer edited. We compare the edits performed by the transformations with the edits applied the

developers using a test suite. If the edits are syntactically the same, the transformation is labeled

as correct. If the transformation edits incorrectly, or edits more or less locations than needed, it is

labeled as incorrect (Section 4.2). In Step 2, we select 12 features based on the literature [7; 30; 11;

26; 16; 14] and on operators of transformation Domain Specific Language (DSL). The values of the

features are the number of their occurrences in the transformations (Section 4.3). In Step 3, using the

10-fold cross-validation method, we train and test three classifiers commonly used in practice, SVM,

1https://sites.google.com/view/ml-to-rank-transformations/

51

4.2 Training/Testing Data Generation 52

LR, and NN (Section 4.4). Finally, in Step 4, we instantiate the model weights in a PbE tool for

ranking transformations. We use REFAZER since we are able to change its ranking scheme in order

to test other ranking functions (Section 4.5).

Input

Ranking
Instantiation

Training/Testing
Data Generation

Model
Training and Testing Function

Feature
Extraction

Output

(Step 1) (Step 2) (Step 3) (Step 4)

f(x) =v1× C1+
v2×C2+ …
vn×Cn+ b

PbE
Tool

Edit
Examples

ML
Algorithms

Figure 4.1: Workflow of the proposed ML-based ranking approach. The inputs consist of a

PbE tool, edit examples, and ML algorithms. Step 1 comprehends the generation of training

and testing data, Step 2 consists of feature selection and extraction, and Step 3 consists

of training and testing models. The output of the ML approach consists of a model, or a

function, which is instantiated in a PbE tool in Step 4.

4.2 Training/Testing Data Generation

A set of edits applied by the developers that follow a similar structure, thus representing a repetitive

task are referred as an edit scenario. Different edits applied by them imply in distinct edit scenarios

and these scenarios of edits are used as an input to the approach. We have a benchmark with scenarios

of code edits, where each scenario contains a set of locations edited repetitively by developers in some

GitHub repositories. These scenarios include the before and after version of the edited locations. In

Step 1, we use REFAZER to learn a set of transformations from the examples of edits, which includes

correct and incorrect transformations.

In this step, we propose a labeling approach to automatically label the transformations learned.

In this approach, each transformation in the set of transformations is applied to the other unseen

locations. We compare the edits from the transformation applied to unseen locations with the edits

performed by the developers described in our benchmark. If the transformation edits are exactly the

same, we label the transformation as Correct. On the other hand, if the technique does not locate or

does not edit a target location in our benchmark correctly, we label it as Incorrect. A transformation

is also considered incorrect if it edits more locations than needed (i.e., more locations than those

described in our benchmark).

4.2 Training/Testing Data Generation 53

For instance, consider the edit applied the developer in 18 non-identical locations in Entity Frame-

work repository in C# [33] in Figure 4.2. The task here consists of changing the locations with the pat-

tern "identifier.GetModel()". The edit consists of invoking a new method VersionedModel()

passing the identifier.GetModel() as its argument. However, let us consider that a PbE tool has

to infer a transformation from only one example, such as the first location (Location 1). Some of the

inferred transformations with this example can be described as follows:

- Owner.GetModel()
+ VersionedModel(Owner.GetModel())
context.GetModel()

1
2
3

18 Owner.GetModel()
……

// Location 1

// Location 2

// Location 18

Figure 4.2: Before and after version of code

• p1: change the locations that follow the pattern Owner.GetModel(), invoking a new

method VersionedModel() passing Owner.GetModel() as its argument.

• p2: change the locations that follow the pattern identifier.GetModel(), invoking a new

method VersionedModel() passing identifier.GetModel() as its argument.

• p3: change the locations that follow the pattern identifier.expression, invoking a new method

VersionedModel() passing identifier.expression as its argument.

Each of these transformations inferred from the edit example (Location 1) gets applied to all

the other 17 locations of the source code and we test the outputs produced, comparing them with

the ones in our benchmark. The comparison is given by test cases, which are constructed based

on the edits applied by the developers. To be considered correct, it has to produce the correct

output specified by the developer. Whenever it fails to produce the desired output for any of the

locations, it is labeled as incorrect. In addition, if it produces the correct outputs for all 17 loca-

tions, but also edits additional unneeded locations, is it considered incorrect. In this scenario, any

transformation that generalizes the function call GetModel() to any other function call, such as

Owner.GetValidationErrors(), edits more locations than needed, thus being labeled as in-

correct.

4.3 Feature Extraction 54

4.3 Feature Extraction

In Step 2, we select a set characteristics of the transformations, a process known as feature selection.

The features are selected based on the literature, that points out some relevant characteristics such

as size, context, generality, etc., and on operators of transformation DSL. Intuitively, we realize that

certain properties of the programs are more desirable than others. For instance, depending on the

applications domain or the problem, a more specific transformation could be more desirable, and,

in other situations, a more general is more desirable to perform the edits desired by the developer.

Context is also another aspect of the transformation that can be desirable, when the developer intends

to edit only locations inside a specific context.

We propose a set of features based on some of these desired properties, being the majority of

them pointed out in the literature [7; 30; 11; 26; 16; 14]. We observe the DSL operators as relevant

candidates for the feature selection process. To select the features, we pick the grammar properties

assumed to have relevant information to construct the function. Our set of features cover the majority

of the DSL operators. This strategy has been used in literature, which selects properties of the gram-

mar to help in the ranking functions [59; 11]. These features vary according to the problem domain.

Even though some problem domains share common properties, such as size, this process cannot be

automated, since distinct DSLs have their own particularities. Thus, to evaluate the approach in pro-

gram transformation domain using REFAZER to generate the transformations, we select the following

12 features based on its DSL. It is worth mentioning that, in this step, the feature selection process

may include more or less features, or even different ones, and their relevance will be tested in other

additional steps. The more features selected the more options to be evaluated in terms of relevance.

• ConstNode represents the nodes that create a sub-tree from scratch, without any reference to

the nodes in the input specification. The nodes are created only using expressions found in the

AST output specification.

• Reference represents the nodes that create a sub-tree making references to the input specifica-

tion. The nodes are created using the expressions found in the AST input specification.

• Variable represents the abstract node in the tree. It matches the types of the node instead of the

content of the node.

• Context represents the presence of expressions surrounding the node modified, which consti-

tutes a location. This location contains a pattern that holds some expressions to be matched to

a particular sub-tree in the AST.

4.4 Model Training and Testing 55

• Size represents the size of the tree, in terms of the total of the nodes that constitutes it.

• Nodes represents all the nodes in the AST that have children, which means, all the nodes that

are not terminal ones.

• ParentOne represents the nodes being connected to one parent node. In this case, the surround-

ing context of this node has only one node or expression that can be matched.

• ParentTwo represents the nodes being connected to a grandparent node. In this case, the sur-

rounding context of this node has two nodes or expressions that can be matched.

• ParentThree represents the nodes being connected to great-grandparent node. In this case, the

surrounding context of this node has three node or expressions that can be matched.

• NodeItself represents the node that stands by itself, which means that the node has no sur-

rounding context to be matched.

• Patterns represents a single or multiple expressions that compose the surrounding context of

a node. These surrounding expressions compose a sub-tree used to be matched using filtered

nodes from the input.

• Operations represents tree operations such as delete, insert and update applied to the nodes

of the input AST that generate a new AST corresponding to the desired modifications in the

specification.

We automatically assign values to these features based on the number of times they occur in the

transformations, building feature vectors. For instance, consider Figure 4.4. It represents a program

in the DSL generated from input-output examples and is consistent with the description of program

transformation p2. We present it with the purpose of exemplify how the feature vectors are computed.

We can build a feature vector according to number of occurrences of the features in the program.

For instance, for the transformation in Figure 4.4, the following features vector can be built, which is

presented in Figutre 4.3.

4.4 Model Training and Testing

In Step 3, we train and test the ML model given our feature vectors. Since we have a supervised

learning problem, which learns from labeled training data, we focused on commonly used and studied

supervised learning models [5]. One of the major challenges in learning supervised ML models is

4.4 Model Training and Testing 56

<transformation>: Transformation(<rule>)
<rule>: EditMap(\target => (operation, location)
<operation>: Update(x, <ast>)
x: target

<ast>: <const>| <ref>

<const>: Node(Object CreationExpression, NList(ConstNode(new),

NList(Node(IdentifierName, SN(ConstNode(VersionedModel))),

SN(Node(ArgumentList,SN(Node(Argument))))))))

<ref>: Reference(target, <match1>, 1)

<match1>: Context(<pattern1>,<path1>)
<pattern1>: Context (Abstract("InvocationExpression"))

<path1>: "."

<location>: EditFilter(\ x => Match(x, <match2>), AllNodes(node,

"PostOrder"))

<match2>: Context(<pattern2>,<path2>)
<pattern2>: Concrete (= context.GetModel()),

<path2>: "/[1]"

Figure 4.3: A program in the DSL generated consistent with input-output examples

Features Value Features^2 Value Feature^3 Value

ConstNode 2 ConstNodeˆ2 4 ConstNodeˆ3 8
Reference 1 Referenceˆ2 1 Referenceˆ3 1

ConcretePattern 1 ConcretePatternˆ2 1 ConcretePatternˆ3 1
AbstractPattern 1 AbstractPatternˆ2 1 AbstractPatternˆ3 1

Node 1 Nodeˆ2 1 Nodeˆ3 1
Pattern 0 Patternˆ2 0 Patternˆ3 0

ParentOne 1 ParentOneˆ2 1 ParentOneˆ3 1
ParentTwo 0 ParentTwoˆ2 0 ParentTwoˆ3 0
ParentThree 0 ParentThreeˆ2 0 ParentThreeˆ3 0
NodeItself 1 NodeItselfˆ2 1 NodeItselfˆ3 1
SizeProg 25 SizeProgˆ2 625 SizeProgˆ3 15625

NumberOp 1 NumberOpˆ2 1 NumberOpˆ3 1

Figure 4.4: Example of feature vector for a program in the DSL

dealing with over-fitting. To avoid over-fitting, we used cross-validation, a technique that successively

divides the data in training and testing datasets, as seen in Figure 4.5. We selected the k-fold cross-

validation [24], which is commonly used in practice with k set to 10. It splits the training dataset in

10 equal sized subsets. The first subset is treated as a validation set, in which is evaluated the model

fit on the other 9 subsets. Each subset is given the opportunity to be treated as a validation set for the

model trained on remaining 9 subsets, thus this process is repeated 10 times. At the end, the model

4.5 Ranking Instantiation 57

with the best performance is used. This strategy allows us to access how the model generalizes to

unseen data.

Figure 4.5: Cross-validation strategy for estimating the performance of the model

Transformations Dataset

Training Dataset Testing Dataset

Cross‐validation

Once we have trained our model using a cross-validations strategy, we apply it to a testing dataset,

which is not included in the training dataset, as see in Figure 4.5. We want a model that is able to fit

the training data presenting a high precision and recall while being able to generalize to unseen data,

thus to access how accurately the models perform on the unseen data, we have focused on f-measure.

The test set works as a model’s validation approach and can be used to analyze how well the model

can generalize to data that are not present in the training dataset. In practice, the testing dataset consist

of around 25% of the original dataset [54].

When we separate the testing dataset from the training data, we have to be sure not to include only

one type of transformation, such as only correct or incorrect transformations. In order to avoid that

our testing dataset consists only of one type of transformation, we have used a stratified approach to

divide our data. A stratified approach allows to divide the data such that classes are equally balanced

in both training and testing datasets. The mean of correct and incorrect transformations of the original

dataset remains in the training and testing subsets to avoid situations in which we could only have

correct or incorrect in one of the classes.

4.5 Ranking Instantiation

The output of the Model Training and Testing step consists of a function. The function is given by a

set of coefficients, which are the features, along with corresponding weights, which are real number

that represent the relevance of each feature in the classification. Each feature receives a weight. Thus,

in Step 5, we substitute the original ranking approach of a PbE tool by the function obtained in the

ML-based approach. The output of our proposed approach, the function, works as the input for the

tool, which used the ranking function to order the transformations. This process consists of evaluating

4.5 Ranking Instantiation 58

each of the learned transformations assigning them ranking scores by employing the ranking function.

The function receives a transformation as an input, evaluates it regarding its properties, and assigns

it a real number, the score, which corresponds to how correct is that transformation. Each of the

transformations receives a score, which is used to differentiate between them. The output of the tool

consists of an ordered set of transformations.

Since REFAZER works in the program transformation domain and allows us to modify its ranking

scheme testing other approaches, we select it and evaluate the ML-based ranking approaches. The

ranking scheme allows us to test different ranking approaches by substituting its original weights to

new ones, a process the we call instantiation. The ranking scheme is linear, follows a tree structure

and the function is computed in a bottom-up fashion, where the score of a node is computed in terms

of the score of its children.

For instance, consider the Context node in Figure 4.6. This node has two expressions

pattern and path as its children. Let us suppose that the pattern expression has a weight

0.2 and the path expression has a weight 0.1. The score of the Context is computed in terms

of the values of its children’ expressions, applying mathematical operations (e.g., summing-up these

values 0.2+0.1 = 0.3 and multiplying these values (0.2+0.1)∗0.1 = 0.03. The function to compute

the Context node is characterized by: Context = (pattern + path * Context). The score

for the Context and other bottom-up nodes flow-up in the tree, helping to compute the score for

the node immediately above it until reaching the tree root node. Thus, the function to compute the

immediately node above depends of the results for the computed function. The ranking function gives

the final aggregated score by computing the involved mathematical operations over the weights from

the external nodes back through their ancestors to the topmost node.

Filter(λx → Match
(x,match), AllNodes())

Context(pattern, path)

Path Pattern

... ...

Wpattern = 0.2 Wpath = 0.1

Wcontext = 0.1 Score context = 0.1 * (0.2 + 0.1)
Score context = 0.03

...

Figure 4.6: Ranking score computation process

LR and SVM models are easier to interpret than NN, and they provide a more explicit function,

4.5 Ranking Instantiation 59

thus being easier to instantiate. For instance, let us consider the SVM. In the SVM model, each feature

receives a weight, which is a real number that represents the influence of that feature in relation to the

others to generate a hyper-plane, a function, that best separates two classes. Thus, the instantiation

consists of assigning the weights to the features in REFAZER ranking scheme, which are used to

compute the ranking score. The ranking score is characterized by a probability of the transformation

of belonging to one class or another, which is, of being correct or not.

LR aims to find a function that estimates the probability of an unseen observation belonging to

one class or another. The weight of a feature represents its influence or relevance in relation to the

others in the classification task. A higher weight means that the feature has a higher contribution in

the classification. These weights are assigned to the features in the instantiation in REFAZER ranking

scheme and the ranking score represents the probability of the transformation being correct.

However, NN provides a more difficult solution to interpret and more difficult to instantiate than

the previous models SVM and LR. NN models are composed of layers and nodes. Each connection

between nodes is associated with a weight, which in NN represents the strength of a connection.

The idea is to updates these weights in order to decrease the error, or missclassified transformations.

Each node represents a function, such as ReLU, that for a real value as an input, the corresponding

output of the function will be 0 if the value is less than 0, or the same value given, is it greater than

0. The output of this function in a node works as an input for all the nodes in the next layer, that

by its hand, works as an input for the next layer, and successively until the last layer, which is the

output of the neural network. In the instantiation, the NN model receives the number of each feature,

propagates its values through the nodes in the hidden layers, and outputs a class, which corresponds

to the probability of the program being correct.

Chapter 5

Evaluation

In this section, we describe the evaluation of our approach. We evaluate it in real edit scenarios of C#

projects of GitHub and provide a comparison with other approaches to rank program transformations.

In Section 5.1, we present the goal of our evaluation along with our research questions and metrics.

In Section 5.2, we show the planning of the experiments. In Section 5.3, we present the main results

obtained and, in Section 5.4, we discuss our results. In Section 5.5, we describe the threats to validity

and finally, in Section 5.6, we answer our research questions.

5.1 Definition

We define our experiment according to the Goal Question Metric (GQM) approach [3]. Thus, the goal

of our study consists of analyzing ML-based ranking approaches for the purpose of characterizing

them with respect to their efficiency and efficacy to rank correct program transformations from the

point of view of Programming-by-Example tools’ designers in the context of software evolution.

For this purpose, we address the following research questions:

• RQ1: How efficiently does an ML-based ranking approach rank program transformations when

compared to a manual or random ranking approach?

Considering that an efficient ranking function can rank correct transformations in the first po-

sition with the minimum number of examples (preferably 1), we measure the number of exam-

ples required to rank the correct transformation in the first position by the ML-based ranking

approaches, SVM, NN, and LR, and compare them to a HE and RW approaches.

• RQ2: How effectively does an ML-based ranking approach rank program transformations

60

5.2 Planning of the experiment 61

when compared to a manual or random ranking approach?

Two metrics for evaluating ranking quality commonly used in information retrieval are

Precision@k and Normalized Discounted Cumulative Gain (NDCG@k) [31]. Here, Precision

is not based on the prediction but on the data obtained after instantiated the model. Typically,

users do not feel encouraged to analyze many instances of a top-k ranking positions. Thus,

we focused on the 10 first positions as the more relevant ones. We measure the Precision@10

(i.e., rate of correct ranked transformations by the classifier models in top-10 positions) and

NDCG@10 (i.e., instead of rewarding only the first correct transformation, all of the top-10

correct transformations are rewarded at a decaying discount factor).

5.2 Planning of the experiment

In this section, we describe our benchmark, instrumentation, training databse generation, how we

trained the models, how we used negative examples, and how the ranking approaches were evaluated.

5.2.1 Benchmark

We start by building a benchmark of repetitive code edits. We have reused edit scenarios manually

analyzed and obtained from three open-source C# projects from GitHub, namely Roslyn [35], Entity

Framework [33], NuGet available for public usage [7]. We have selected these edit scenarios be-

cause of their availability for public usage and also because they were used in REFAZER evaluation

using a ranking approach based on domain knowledge of en expert. This allowed us to compare the

performance of distinct approaches with REFAZER original ranking in the same edit scenarios.

In addition, similarly to the previous reused scenarios, we have analyzed commits from other two

C# projects, namely ShareX [37] and [34] Newtonsoft [36]. We compare the before and after version

of the modified codes looking for syntactic similar changes. As repetitive edits, we considered those

that were performed systematically by the developers and occurred in three or more locations in the

codebase. We focused on similar edits, which are edits that share the same structure involving dif-

ferent or same expressions and present distinct granularity, involving changes in a single line and in

multiple lines. Once we have selected the edit scenarios, we build a before and after file of the devel-

oper based on the diff. This file is be used as an oracle so that we can judge whether a transformation

edits exactly as specified by the developer.

We used 43 distinct scenarios of repetitive edits: Roslyn (15), Entity Framework (9),

5.2 Planning of the experiment 62

NuGet (9), Newtonsoft (6), and ShareX (4). The number of edited locations in each scenario

ranges from 3 to 24, with a median of 5 locations. Each project contains at least one sce-

nario with 8 edited locations. These scenarios along with their edited locations are charac-

terized in Table 5.1. More details about the edits used are available in the approach’s web-

site.1 In 31 (72%) out of the 43 scenarios, the edits are complex and context-dependent.

The notion of complex edits relies on that fact that a search/replace strategy available in

IDEs is not capable of correctly applying the edits to all the necessary locations automatically.

For instance, one of these scenarios are characterized by the edits (Owner.GetModel())

and context.GetModel() to (new VersionedModel(Owner.GetModel())) and new

VersionedModel(context.GetModel()). Moreover, 35 (81.6%) of these scenarios include

changes in a single line. The most common type of edit consists of changes in methods. The changes

are characterized as adding, deleting or updating the methods’ properties, such as names, their param-

eters, return statements, and others. In addition, the edit scenarios are divided in two groups according

to the role they play in the study. We have the scenarios used for train/test and for evaluation. We

randomly select 15 of the 43 edit scenarios, which corresponds to approximately 1/3 of it, for gener-

ating training and testing data and evaluate the models on the other 28 edit scenarios. For evaluation,

we mean the step, in which, having trained and tested the model, we deploy it in a tool. We had to

provide a balance between number of scenarios used for training the models and number of scenarios

used for evaluation. We wanted to generate as much data as we could from the edit scenarios while

preserving as many scenarios as we could to evaluate the approaches, and provide a comparison with

other ranking approaches on the same scenarios.

5.2.2 Instrumentation

Given that we evaluate the ML-based approach in program domain, we have used REFAZER [7]

to generate the transformations for our training dataset, given examples of edits performed in the

edit scenarios. From an example-based specification, REFAZER generates multiple transformations.

Originally, REFAZER employs a HE based ranking approach and is available in both C# [48] and

Python [60] programming languages. In our experiment, we have used the C# version, which received

more recent updates at the time of writing. The experiments were performed on a Windows, Intel Core

i5 3.20 GHz CPU with 16 GB RAM.

For the purpose of learning ML models, we have used scikit-learn (version 0.19.0), an open

1https://sites.google.com/view/ml-to-rank-transformations/

5.2 Planning of the experiment 63

Table 5.1: Edit scenarios characterization. Project = name of the project; Scenario = edit

scenario that represents a specific task; Locations = number of edit locations; Identical =

whether the edit is the same for all the location; Granularity = whether one or more lines were

changed; Scope = scope of the edit; Role = whether the scenario was used for training/testing

the model or for evaluating the distinct ranking approaches

Project Scenario Locations Identical Granularity Scope Role

NewtonSoft

NJ025 3 No Multiple lines Method Train/Test
NJ059 9 No Single line Method Evaluation
NJ224 4 No Single line Method Evaluation
NJ236 3 No Single line Method Evaluation
NJ844 11 Yes Single line Method Evaluation
NJ1491 24 No Single line Method Train/Test

ShareX

S564 4 Yes Single line Method Train/Test
S583 3 Yes Single line Method Evaluation
S863 5 No Single line Method Evaluation
S1088 8 Yes Single line Conditional Evaluation

Entity
Framework

E1 13 No Multiple lines Method Train/Test
E3 18 No Single line Method Evaluation
E5 3 Yes Multiple lines Method Train/Test
E6 3 No Single line Method Evaluation
E7 10 Yes Multiple lines Method Evaluation
E9 3 No Multiple lines Method Train/Test
E10 12 Yes Single line Method Evaluation
E11 7 No Single line Method Evaluation
E12 3 No Single line Method Evaluation

Nuget

N13 4 No Single line Property Evaluation
N14 13 No Single line Method Evaluation
N15 8 Yes Single line Method Train/Test
N18 8 No Single line Method Train/Test
N20 4 No Single line Method Evaluation
N21 11 No Multiple lines Method Train/Test
N23 3 No Multiple lines Method Train/Test
N26 20 No Single line Method Evaluation
N27 4 No Single line Method Evaluation
N28 4 No Single line Method Train/Test

Roslyn

R30 21 Yes Single line Method Train/Test
R36 4 No Single line Method Evaluation
R41 15 No Single line Class Evaluation
R42 14 Yes Single line Method Evaluation
R44 12 Yes Single line Method Evaluation
R45 4 No Single line Method Evaluation
R46 5 No Multiple lines Method Evaluation
R48 11 No Single line Method Train/Test
R49 5 No Single line Method Evaluation
R50 5 No Single line Constructor Train/Test
R51 5 No Single line Method Evaluation
R53 6 No Single line Method Evaluation
R54 16 Yes Single line Using Directive Evaluation
R56 4 No Single line Method Train/Test

5.2 Planning of the experiment 64

source ML library for Python (version 3), which contains a number of state-of-the-art algorithms im-

plemented in Python and usable for a variety of supervised and unsupervised learning problems. For

finding the ideal hyper-parameters, which is known as tuning process, we have used GridSearchCV

strategy, available in scikit-learn [53]. It searches exhaustively over a set of parameters values for the

best estimators using cross-validation and can be used to tune models such as SVM and LR where

we have to find the ideal hyper-parameters, such as C value. A very high or low value for this hyper-

parameter can cause the model to be over-fitted or under-fitted. In addition, in these models, we tested

both L1 and L2 regularization term, and L1 presented higher performance. Thus, we have used L1

regularization or Lasso Regression (Least Absolute Shrinkage and Selection Operator), as a means of

penalty for the complexity of the function, thus avoiding over-fitting. It shrinks the values of some

features to zero, which works as a feature selection.

To prevent unbalanced training database where we have more data belonging to one class than to

another, which is common in classification problems, we have used a scikit-learn helper function that

divides the training data in train and test subsets. This function returns stratified folds and preserve

the percentage of samples for each class.

5.2.3 Training Database Generation

Now we describe how the training/testing dataset was generated. Out of 43 scenarios, we randomly

selected 15 of them for generating transformations to be used as training. For each scenario, we

provide REFAZER with positive examples corresponding to the edited locations by the developers.

The examples are given incrementally until REFAZER is able to learn a correct transformation in

the first position. It is possible, given constraints in the generalization process, that REFAZER may

not be able to learn a correct transformation in the first position using all the examples. In N21,

for instance, where that happens, all the learned transformations are incorrect. In Section 5.2.5 we

discuss more about this scenario. Thus, the dataset of transformations inferred for each scenario

are used as an input to learn ML models. REFAZER builds on PROSE, a framework that allows

synthesizing program transformations. Since REFAZER can learn a huge number of transformations,

which may not to fit the computer memory, we used a feature of PROSE that allows to restrict the

number of the learned programs to the top-200 programs generated, except for the scenarios where

the number of transformations does not reach 200. This value influences the number of inferred

transformations, restricting them. The number of transformations could be higher. However, to cope

with that, we need more memory power. Each transformation automatically receives a label (correct

or incorrect) based on the edits in our benchmark. Thus, for the 15 pre-selected scenarios to generate

5.2 Planning of the experiment 65

the training/testing dataset, we have 1,677 transformations, from which 1,026 were labeled as Correct

and 651 as Incorrect. The number of correct and incorrect labeled transformations according to each

scenario is depicted in Table 5.2.

Table 5.2: Dataset of labeled transformations. Project = name of the project; Scenario ID =

ID of the edit scenario; Learned transformations = number of learned transformations; Cor-

rect = number of transformations labeled as correct; Incorrect = number of transformations

labeled as incorrect

Project Scenario ID Learned
Transformations Correct Incorrect

NewtonSoft
NJ025 200 136 64
NJ1491 58 54 4

ShareX S564 6 6 ‐

Entity Framework

E1 5 5 ‐
E5 135 50 85
E9 135 135 ‐

NuGet

N15 138 60 70
N18 200 200 ‐
N21 200 ‐ 200
N23 200 200 ‐
N28 6 6 ‐
N30 45 43 2

Roslyn

R48 106 28 78
R50 200 110 90
R56 43 43 ‐
Total 1,677 1,026 651

To perform the feature extraction, we count the occurrences of the 12 transformation features,

build feature vectors with the computed values and train three models SVM, LR, and NN. We added

pseudo-features to obtain non-linear models, by adding new features corresponding to the second and

third power of each of the 12 features, resulting in 36 features.

5.2.4 Training Models

We have tuned the models by observing their performance in the predictions using the testing dataset.

This dataset consists of the 20% of the transformation dataset, randomly selected and set apart in the

training step for the purpose of only testing the learned models, as seen in Figure 4.5. For this purpose,

we have used a scikit-learn helper function, which divides the transformation dataset in training and

5.2 Planning of the experiment 66

testing subsets. We set the train size in 80%. For SVM and LR, we have tuned the C hyper-parameter.

For SVM, the C represents how much we want to avoid misclassifications, in which high values for

C mean small margin in the hyper-plane, and low value for C mean large margin. Since increasing

or decreasing the margin leads to the inclusion of more or less training examples, we want a value

that does not misclassify and is useful. For both LR and SVM models, using the GridSearchCV

strategy, we have tested the following values for C: 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 1.5, 2, 2.5, 3,

4, 5, 6, 7, 8, 9, 10. For the SVM approach, the best estimator C was 0.1. For LR, the best estimator C

was 2.5. We also tested different NN architectures with different number of nodes and hidden layers,

in order to find the best parameters, and the one with best performance was 3 hidden layers of 30

nodes each. The NN model receives the features as inputs, process them propagating the weights

feed-forward and outputs a label.

After training and testing the model using the testing data, we achieved the f-measures depicted

in Table 5.3. After this process, we instantiated the ranking approaches and evaluate them on the

other 28 edit scenarios of the initial 43 C# projects. Along with the ML models, we evaluate the HE

and RW approaches on the same scenarios. We added RW as a control group to evaluate whether its

outcome compared to the ML-based models’ ones were statistically different, meaning that the ML

models’ weights have an effect.

Table 5.3: Performance of models predictions

Ranking Approach Precision Recall F‐measure

SVM 0.88 0.88 0.88

LR 0.90 0.90 0.90

NN 0.91 0.90 0.90

5.2.5 Using Negative Examples

Until now, we have discussed how we collected the edit scenarios, the instrumentation process, how

we generated the training database, and how we trained the models. Another important aspect re-

garding the planning of the experiment, which can be considered a contribution, consists of the use

of negative examples. The literature has pointed out two ways of evaluating learning techniques

from examples, which is from only positive, and positive and negative examples [4]. In addition, in

PbE, the use of negative examples is an open topic in program transformations [7]. Originally, RE-

FAZER and other PbE tools employ a ranking approach based on only-positive based specification [59;

5.2 Planning of the experiment 67

44]. In the dataset of labeled transformations, we realize that for one specific scenario, N21, the in-

ferred transformations are labeled as incorrect. N21 is characterized by having 11 non-identical edited

locations involving more than one line. In this scenario, all the positive examples, corresponding to

the number of edited locations, were given but they are not enough for the employed HE ranking

approach to rank the correct transformation in the first position. One of the possibilities can be due

to the HE, which may benefit more specific transformations and the scenario may require a more

general transformation, or the HE ranks an overgeneralized transformation in the first position. Con-

sidering the latter, the best-ranked transformation for the giving ranking approach incorrectly applies

edits to locations that should not be applied (false positive locations). We refer to them as False Posi-

tive Generators (FPG), since false positives were generated by these overgeneralized transformations.

Since giving only positive example leads to overgeneralized transformations, we need an approach

to prevent them, filtering them out. Thus, we implemented a solution in REFAZER so that negative

examples could be used to prevent overgeneralized transformations.

To understand how efficient this solution can be when applied to other FPG scenarios, we mea-

sured the number of positive and negative examples required by the ranking approaches to rank trans-

formations compared to an only positive example-based specification. In Table 5.4, we learn that the

ranking approaches could rank the correct transformation in all the FPG scenarios by adding negative

examples. Thus, we have used them in our evaluation.

5.2.6 Ranking Evaluation

For the RQ1, we measure the ranking efficiency in terms of the number of positive and negative

examples required to rank the correct transformation in the first position. The same metric has been

used to evaluate ranking functions in previous work for measuring ranking efficiency [59]. Each edit

scenario has a predefined number of positive examples available, which corresponds to the number

of edited locations by the developer. The number of negative examples depends on the number of

unneeded edited locations by an incorrect transformation ranked in the first position. To simulate

what would happen in a real situation with a developer making use of a PbE tool with the ML-

based ranking approach, for each scenario, we start by providing one random positive example. The

transformation in the first position is evaluated whether it edits all the needed locations correctly.

For instance, consider the random positive location if (trivia.CSharpKind() ==

SyntaxKind.None) edited to if (trivia.IsKind(SyntaxKind.None)). With this ex-

ample, a set of transformation can be learned, ranging from the most specific to the most general. For

instance, consider p1, p2 and p3 as transformations learned from this given example. These trans-

5.2 Planning of the experiment 68

Table 5.4: The "FPG" represents treatments where the highest number of examples available

were given but were not enough to rank the correct transformation on the first position. The

symbol "-" represents the scenarios where approaches with only positive examples were able

to put the correct transformation in the first position

Project Scenario ID
Only Positive Positive and Negative

RW HE SVM NN LR RW HE SVM NN LR

NewtonSoft
NJ224 FPG ‐ ‐ ‐ ‐ 3 ‐ ‐ ‐ ‐
NJ236 ‐ ‐ FPG ‐ ‐ ‐ ‐ 3 ‐ ‐

ShareX S583 FPG ‐ ‐ ‐ ‐ 2 ‐ ‐ ‐ ‐

Entity
Framework

E3 FPG ‐ ‐ ‐ ‐ 2 ‐ ‐ ‐ ‐
E6 ‐ ‐ FPG ‐ ‐ ‐ ‐ 3 ‐ ‐
E7 FPG ‐ FPG FPG FPG 3 ‐ 2 2 2

NuGet

N14 FPG ‐ FPG ‐ FPG 2 ‐ 2 ‐ 2
N20 FPG ‐ ‐ ‐ ‐ 2 ‐ ‐ ‐ ‐
N26 FPG ‐ ‐ FPG FPG 2 ‐ ‐ 2 2

Roslyn

R36 FPG ‐ ‐ ‐ ‐ 4 ‐ ‐ ‐ ‐
R41 ‐ ‐ FPG FPG FPG ‐ ‐ 2 2 2
R42 FPG ‐ ‐ FPG ‐ 3 ‐ ‐ 3 ‐
R44 FPG ‐ FPG ‐ FPG 2 ‐ 2 ‐ 2
R46 FPG ‐ ‐ ‐ ‐ 2 ‐ ‐ ‐ ‐
R49 FPG ‐ ‐ ‐ ‐ 2 ‐ ‐ ‐ ‐
R51 ‐ ‐ ‐ FPG ‐ ‐ ‐ ‐ 3 ‐
R54 FPG ‐ ‐ ‐ ‐ 2 ‐ ‐ ‐ ‐

formations are ranked using a ranking approach. Suppose that the ranking approach ordered 1st: p2,

2nd: p3, and 3rd: p1. We than evaluate the p2, the first position, regarding whether or not it edits all

the other needed locations similar to the example given. If it does not edit all the needed locations, we

add another positive example for refinement purpose and reevaluate the transformations. However,

if it edits all needed locations, we also evaluate whether, in addition of the needed locations, p2 also

edits unneeded locations. If it does, we start providing a random negative example corresponding to

the unneeded edited locations by that transformation. But if it edits only the needed locations cor-

rectly, we stop the process and consider p2 a correct transformation. For the RQ2, we measure the

accuracy and relevance of the ranked transformations. Thus, we provide only one positive example to

all approaches. Our purpose is to evaluate how accurate and relevant are the top-10 transformations

ranked with the minimum number of examples available, which is one. Providing more than one

would benefit some approaches over the others, thus the specification has to be the same for each one.

For instance, given the aforementioned examples, we evaluate p1, p2, .., p10. However, whenever any

of the transformations edits more or less locations than needed, instead of giving another example,

we consider it an incorrect transformation.

5.3 Results 69

5.3 Results

Table 5.5 summarizes our results for our RQ1. Compared to the HE, which is our baseline, the LR

ranking approach is the most efficient one, requiring the mean of 1.67 and median of 2 examples

to rank the desired transformation in the highest position of the rank. NN provides a more efficient

solution than a SVM with mean and median of 1.76 and 2 examples, respectively, in despite of

SVM with mean of 1.78 and median of 2 examples. When compared to a RW ranking approach,

LR provided a superior performance in terms of examples. The RW approach required the highest

number of examples on average overall, with mean of 2.32 and median of 2.16 examples.

Table 5.5: Comparison of the number of examples required by ranking approaches. N/A

represents the absence of the value due to memory errors and other types of issues

Project Scenario ID
Positive and Negative

RW HE SVM NN LR

NewtonSoft

NJ059 2.3 3 2 2 2
NJ224 1.6 1 1 1 1
NJ236 3 2 3 N/A 2
NJ844 1.6 1 1 1 1

ShareX

S863 2.3 3 2 3 1
S583 2.6 2 2 2 2
S1088 1.3 1 1 1 1

Entity
Framework

E3 2.6 1 1 1 1
E6 3 2 3 N/A 2
E7 2.3 1 2 2 2
E10 1.6 1 1 1 1
E11 4 3 3 3 3
E12 1.3 1 1 1 1

NuGet

N13 1 2 2 2 2
N14 2 1 2 1 2
N20 2.6 2 2 2 1
N26 1.6 1 1 2 2
N27 2.5 2 2 N/A 2

Roslyn

R36 3.3 2 2 2 2
R41 1 1 2 2 2
R42 3 2 2 3 2
R44 1.6 1 2 1 2
R45 3 2 2 2 2
R46 2 1 1 1 1
R49 2 1 1 1 1
R51 2 2 2 3 2
R53 5 3 3 3 3
R54 2 1 1 1 1
Mean 2.31 1.64 1.78 1.76 1.67
Median 2.16 1.5 2 2 2

St. Deviation 0.88 0.73 0.68 0.77 0.61

5.3 Results 70

In order to have a more consistent idea on how an approach based on randomly generated weights

rank correct transformations, we have generated three distinct random ranking approaches. For each

of these three random approaches, different weights were computed. This number allows us to un-

derstand how the number of examples vary from one random approach to another. In cases where a

random approach was not able to rank the correct transformation given memory constraints, we have

used a strategy pointed out in the literature. We have computed the mean of the values of those that

were able to rank the correct transformation in the first position and imputed in the missing values,

which is a method commonly applied to handle missing data [49]. We collected the number of ex-

amples required by each approach and performed an aggregated of the means, which is depicted in

Table 5.6. The mean of all the means for the evaluated scenarios was 2.31 and median 2.16.

Table 5.6: Comparison of the number of examples required by distinct random approaches.

N/A represents the absence of the value for memory errors and types of similar issues

Project Scenario ID
Comparing Random Approaches

R1 R2 R3 Mean

NewtonSoft

NJ059 1 3 3 2.3
NJ224 2 1 2 1.6
NJ236 N/A 3 N/A 3
NJ844 2 1 2 1.6

ShareX

S863 2 3 3 2.6
S583 3 2 2 2.3
S1088 1 2 1 1.3

Entity
Framework

E3 3 2 3 2.6
E6 N/A 3 N/A 1.6
E7 3 1 3 3
E10 2 1 2 1.6
E11 N/A 4 N/A 4
E12 2 1 1 1.3

NuGet

N13 1 1 1 1
N14 2 2 2 2
N20 3 2 3 2.6
N26 2 1 2 1.6
N27 3 2 N/A 2,5

Roslyn

R36 4 2 4 3.3
R41 1 1 1 1
R42 4 2 3 3
R44 2 1 2 1.6
R45 3 3 3 3
R46 2 2 2 2
R49 2 2 2 2
R51 N/A 2 N/A 2
R53 N/A 5 N/A 5
R54 2 2 2 2

Mean 2.31

Median 2.16

St. Deviation 0.88

We have performed a statistical test t-test for evaluating whether there is a difference among

5.4 Discussion 71

ranking approaches. A t-test is one of the most common tests, which analyzes whether the means of

two groups are equal to each other [64]. We used a paired test with confidence interval of 95% for

all the comparisons and our results can be seen in Table 5.7. Statistically, the LR and HE ranking

approaches are not significantly different from each other, with p-value of 0.76, which indicates that

both approaches have similar performance. As observed, HE, SVM, NN, and LR approaches are

significantly different from RW, with p-values of 0.00001, 0.0002, 0.004, and 0.00008 respectively.

Table 5.7: Comparison of the p-values for the distinct approaches

p‐value RW HE SVM NN LR

RW ‐ 0.00001 0.0002 0.004 0.00008

HE 0.00001 ‐ 0.16 0.10 0.76

SVM 0.0002 0.16 ‐ 0.42 0.18

NN 0.004 0.10 0.42 ‐ 0.32

LR 0.00008 0.76 0.18 0.32 ‐

Table 5.8 summarizes our results for our RQ2. For NDCG@10 metric, the HE approach pre-

sented the closest results to the ideal ranking, which is 1.0, followed by LR and the other approaches.

However, for the Precision, HE and LR were able to put the highest number of correct transforma-

tions on the 10 highest positions of the ranking, also followed by the other approaches. The RW

approach was the one with the most inferior effectiveness overall. We have performed statistical tests

for evaluating whether there is a difference among ranking approaches, which can be seen in Table

5.9. The results confirm how similar are the ML-based approaches, specially LR, and HE approach.

In terms of NDCG, the difference between both approaches present p-value > 0.05. The same result

is observed for the precision metric. In addition, SVM and NN are not statistically different from HE,

thus presenting a similar performance.

5.4 Discussion

5.4.1 Characteristics of the domain

In the string transformation domain, the ML-based, in average, require less examples than HE ap-

proach. Evaluated in terms of average of the number of examples required to learn the desired task,

5.4 Discussion 72

Table 5.8: Comparison of the NDCG and Precision metrics for the top-10 positions in rank-

ing approaches

Project Scenario ID
NDCG Precision

RW HE SVM NN LR RW HE SVM NN LR

NewtonSoft

NJ224 0.41 1 1 1 1 0.40 1 1 1 1
NJ236 0 0 0 0 0 0 0 0 0 0
NJ844 0.41 1 1 1 1 0.40 1 1 1 1

ShareX
S863 0.42 0 0 0 0.87 0.29 0 0 0 0.29
S1088 1 1 1 1 1 1 1 1 1 1

Entity
Framework

E3 0.44 1 1 1 1 0.40 1 1 1 1
E7 0 1 0.39 0.31 0.60 0 1 0.29 0.1 0.69
E10 0.55 1 1 1 1 0.50 1 1 1 1
E11 N/A 0 0 0 0 N/A 0 0 0 0
E12 0.90 1 1 1 1 0.69 1 1 1 1

NuGet

N13 1 0 0 0 0.30 0.57 0 0 0 0.10
N14 0.50 1 0.60 0.77 0.51 0.40 1 0.69 0.59 0.50
N20 0.42 0 0 0 0.92 0.29 0 0 0 0.29
N26 0.67 1 1 0.72 0.50 0.5 1 0.29 0.50 0.10
N27 0 0 0 0 0 0 0 0 0 0

Roslyn

R36 0 0 0 0 0 0 0 0 0 0
R41 0.77 1 0.50 0 0.43 0.40 1 0.50 0 0.29
R44 0.61 0.96 0.85 0.78 0.82 0.59 0.80 0.69 0.69 0.69
R45 0 0 0 0 0 0 0 0 0 0
R46 0.80 1 1 1 1 1 0.66 1 1 1
R49 0.71 1 0.95 1 0.95 0.50 0.50 0.50 0.50 0.50
R51 0 0 0 0 0 0 0 0 0 0
R53 0 0 0 0 0 0 0 0 0 0
R54 0.71 1 0.80 1 0.95 0.50 0.50 0.50 0.50 0.50
Mean 0.22 0.56 0.44 0.45 0.50 0.22 0.50 0.41 0.38 0.50
Median 0 1 0 0 0,5 0 0,5 0 0 0,5

St. Deviation 0.44 0.50 0.51 0.51 0.51 0.44 0.51 0.50 0.50 0.51

Table 5.9: Comparison of the p-values for the distinct approaches

p‐value
NDCG Precision

RW HE SVM NN LR RW HE SVM NN LR

RW ‐ 0.07 0.32 0.51 0.03 ‐ 0.04 0.17 0.33 0.09

HE 0.07 ‐ 0.03 0.06 0.94 0.04 ‐ 0.10 0.09 0.29

SVM 0.32 0.03 ‐ 0.43 0.22 0.17 0.10 ‐ 0.33 0.47

NN 0.51 0.06 0.43 ‐ 0.11 0.33 0.09 0.33 ‐ 0.23

LR 0.03 0.94 0.22 0.11 ‐ 0.09 0.29 0.47 0.23 ‐

an ML-based solution for string transformations required 1.49 examples compared to a manual rank-

ing as baseline, which required 4.17 examples [59]. However, in program transformation domain, we

do not observe this effect. Indeed, the average of the HE approach for program transformation, which

5.4 Discussion 73

is our baseline, already ranks the correct transformation with 1.64 examples. It implies that much

effort has been given by an expert to find the ideal weights for the features so that the HE approach

could achieve a high efficiency in program transformation, compared to how a HE approach performs

in string domain. But we have to consider the characteristics of the domain.

In string transformation, for example, the edits are characterized by manipulating spreadsheets,

such as formatting and performing name abbreviations or extracting last names, formatting phone

numbers, and typically these edits must be generalized to a list of locations [11]. For instance,

"Maria Silva" and "Pedro Costa" formatted to "Silva, M." and "Costa, P." The

transformation has to generalize to match locations "name1 name2", updating them to "name2,

first letter of name1." On the other hand, in program domain, typically we tend to have a more

specific instance involved in different locations. For instance, "a.CSharpKind() == b" and

"c.CSharpKind() == d" edited to "a.isKind(b)" and "c.isKind(d)". In order to pro-

duce the desired output, the transformation has to match the locations with the specific instance

"exp1.CSharpKind() == exp2" updating to "exp1.isKind(exp2)", generalizing only

the surrounding context expressions. Thus, the characteristics of the application domain may favor

more or less generalized transformations. In program transformation, HE approach assigns higher

weights than ML-based ones to specialized transformations features and provides high efficiency in

this domain. On the other hand, we observed that the ML-based ranking approaches assigns lower

weights to features that favors specialized transformations, favoring more generalized transforma-

tions. One of the reasons for that may rely on the fact that, in the training data, we might have more

generalized transformations associated with the label correct than incorrect, making this characteris-

tic more relevant.

5.4.2 Characteristics of the edits

Regarding the characteristics of the repetitive edits applied by the developers in our benchmark,

we learn that the edits vary from simply adding, removing, updating constants in identical lo-

cations to more complex and context-dependent ones, such as invoking a new method to per-

form comparisons. As expected, for complex and context-dependent edit locations, ranking ap-

proaches require more examples to rank the correct transformation. For instance, consider the

scenario NJ844, in which all the approaches require only one example, except for RW. This sce-

nario is characterized by an edit reader.Read() to CheckedRead(reader) and all the

other locations follow the same pattern with same expressions, thus being identical and not re-

quiring any generalization. The same occurs in S1088 and E10. In these cases, specialized

5.4 Discussion 74

transformations perform the user intent and, thus, need to be ranked higher. On the other hand,

N20, R36, and R51, in which all the approaches require 2 or more examples, are character-

ized by requiring generalization. For instance, the scenario R51 is characterized by the edits

useHexadecimalNumbers:false)+"U" and useHexadecimalNumbers:false)+"L"

being updated to ObjectDisplayOptions.IncludeTypeSuffix) in both locations. The

locations to be edited are not identical, involving different expressions. In these cases, generalized

transformations are the ones to perform the user intent and, thus, need to be ranked higher.

5.4.3 Efficiency of ranking approaches

In scenarios E7, N14, N26, R41, and R44, HE performs more efficiently than LR. These five scenar-

ios are the only ones in which LR is characterized by being FPG, generating false positives from an

only positive example-based specification. For instance, in E7, the edits are characterized by the ed-

its c() to ExtendedSqlAzureExecutionStrategy.ExecuteNew(c). For these specific

scenarios, LR can rank the correct transformation only by adding negative examples, which prevents

overgeneralized transformations that cause false positives. Two of the scenarios (E7 and R44) are

characterized by involving identical changes and, in those cases, overspecialized transformations can

rank correctly. In the other three, the changes made are identical for all the locations, but they are

context-dependent, which means that the context around the instance changed varies from location to

location. In these cases, the generalization has to occur in the context around the instance modified.

However, for these cases, overgeneralized transformations tend to generate false positives and need

to be prevented by adding negative examples in ML-based approaches.

By refining the specification with negative examples, ML-based approaches are more efficient in

FPG scenarios. For the scenarios where HE requires less examples than LR, LR could not rank the

correct transformation in the first position, even using all the available positive examples. It reinforces

the idea that ML favors more generalized transformations and, in some cases, overgeneralized trans-

formations, which causes an increase in the number of examples for specification refinement purpose.

Overgeneralized transformations generate false positives, which causes FPG scenarios. However, by

adding only one negative example, the LR was able to rank the correct transformation. It was also ob-

served in the RW approach, where the majority of the scenarios were FPG, and by adding negative ex-

amples, FPGs did not occur. Thus, by providing negative examples, overgeneralized transformations

are avoided, which enables ranking approaches to rank the correct transformation in FPG scenarios.

The results presented by the HE, which did not differ from only positive to positive and negative ex-

amples, can be due to the fact that the HE approach tends to benefit more specialized transformations,

5.4 Discussion 75

naturally preventing more generalized transformations, disregarding negative examples.

Regarding the ML-based approaches when compared to HE and RW approaches in terms

of efficiency, it is important to consider the edit scenarios S863 and N20. The LR ap-

proach was the only one to be able to rank the desired transformation in the highest posi-

tion with one positive example. The performance of LR in these scenarios can be due to

the fact that they are all characterized by requiring generalization and LR tends to benefit

more generalized transformations, assigning higher weights to their characteristics, and conse-

quently, assigning higher ranking scores to them. For instance, in N20, the two locations

CaptureWindow(wi.Handle) and CaptureScreenshot(CaptureType.Region) are

edited by the developer to CaptureTaskHelpers.CaptureWindow(wi.Handle) and

CaptureTaskHelpers.CaptureScreenshot(CaptureType.Region), respectively. A

specific transformations in these cases would not produce the desired edits. The HE approach required

one more example in these cases for refinement purpose, and probably, because the transformation in

the first position was too specific, since it was not characterized by being FPG. On the other hand,

RW generated FPG transformation in these scenarios and required two more negative examples to

rank the correct transformation. In addition, it was also able to decrease the number of examples in

NJ059 from 3 to 2 examples, compared to HE.

5.4.4 Generalization versus specialization

When we compare the ranking approaches in terms of weights used to build the ranking functions,

focusing on the essential features related to generalization and specialization capacity, we learn that

they differ from each other. For example, the HE approach employs a heuristic to give a higher

weight to the feature Reference than ConstNode, to favor transformations that reuses nodes from

the input AST rather that creating a node from the scratch. It also favors patterns that consider

the surrounding context of a location. Most importantly, Concrete patterns receive higher weights

than Abstract patterns, which favors transformations that match more specific edits, thus reducing

the capacity of generalization of the transformations, restricting the matches to specific locations.

For instance, the human expert assigns a value close to 1000 to the feature Concrete in HE ranking

function. In the LR approach, the feature’s weight indicate the size of the effect of that feature in

predicting correct and incorrect transformations. L1 has shrunk the value of Constant and Concrete

features to zero and with that, they are no longer relevant in predicting the transformations. While

HE assigns a high value to Concrete, LR considers this feature irrelevant. For Abstract and Reference

features, negative weights were assigned. Therefore, in LR, the capacity of generalization of the

5.4 Discussion 76

transformations are not restricted as HE.

Regarding the distinct ML-based approaches used, NN, SVM, and LR, all of them presented

a statistical difference from a RW approach but not from the baseline, HE. This implies that any

of the ML-based approaches can be used to build ranking functions for program transformations,

presenting a similar efficiency to the ranking approach based on knowledge domain. However, among

the ML-bases approaches, the LR presented the closest mean of examples to HE. In addition, LR and

SVM have the advantage of being more simple models and easier to interpret than NN, for example.

NN model does not provide an intuitive representation of the relationship between the input and the

outputs. Moreover, LR and SVM have presented high accuracy from a fairly small training dataset,

which is a disadvantage for NN models.

Another aspect relates to the transformation themselves. For example, it is expected that all the

locations in an edit scenario could be correctly edited by two or more transformations with different

characteristics, ranging from more specific to more general ones. However, the transformations are

evaluated only in terms of performing exactly what the developer intends, given the before and after

version of the edits applied by them in our benchmark. If this goal is achieved by the transformation,

editing correctly only the needed locations, it is a correct transformation. Since different ranking

functions are compared, the transformations in the first position in each scenario are not expected to

be the same for all the ranking approaches, but certainly is the one with the highest probability of

producing the desired edits.

5.4.5 Effectiveness of ranking approaches

Regarding the effectiveness of the ranking approaches, the comparison analysis in terms of the Pre-

cision and relevance of ranked transformations allowed us to make important observations. In seven

scenarios, the computed NDCG and Precision exhibit the ideal ranking for most of the approaches,

which is represented by the value 1. This means that the top-10 are all correct transformations and

consists of a valuable resource for interacting with the user, allowing her to choose between any of

the top-10 ranked transformations. Considering all the scenarios, overall, we have the HE and LR

approach presenting higher Precision and more correct transformations closer to the first position.

The reason why RW presented an inferior performance using these metrics compared to the

other approaches can be explained by the fact that RW was the one to have the highest number

of FPGs, followed by the ML-based approaches. FPGs can be solved by adding a negative ex-

ample, thus, for some scenarios, RW and LR approaches can rank the correct transformation with

one positive and one negative example. For instance, the scenario E7, where c() is edited to

5.5 Threats to Validity 77

ExtendedSqlAzureExecutionStrategy.ExecuteNew(c). In this scenario, HE puts all

correct transformations in top-10, with Precision and NDCG 1. Since we have only one positive ex-

amples available for all the approaches, RW and ML-based ones were expected to present an inferior

performance on the FPG scenarios, such as in E7, where Precision and NDCG of RW was zero, while

LR results were 0.69 and 0.39, respectively. However, HE approach does not present FPGs since it

favors more specialized transformations, disregarding the need of a negative examples.

5.4.6 Characteristics of ML-based ranking approaches

Observing the results obtained regarding efficiency and effectiveness, we learn that ML-based ap-

proaches are promising in building ranking functions. The results of ML-based approaches are simi-

lar to an approach based on domain knowledge of an expert, which requires effort and time to find the

ideal weights and build the function manually. ML-based approaches perform similar while reducing

the manual effort in building the functions. The reason why LR performed best compared to the other

ML-based approaches may be due to the characteristics of the problem.

It is worth mentioning that ML-approaches also involve effort. For instance, obtaining examples

of edits and selecting an appropriate tool to learn transformations from the given examples are activi-

ties that take effort. Labeling training data is also costly, even though is not done manually. The effort

in selecting features is reduced since ML strategies can perform features selection. Feature extraction

can be done automatically. When we know which configurations to use, training and testing models

do not take so much time. In addition, the instantiation process may require effort to substitute the

original weights of the PbE tool used. However, even though it takes effort to use an ML-based ap-

proach to build the ranking function, when compared to finding the weights manually by using a trial

and error approach, it is advantageous. Since the number of combinations of weights and features,

and distinct functions that can be obtained is so enormous, this process can take years. Even if an

ML-based approach takes one month, it is a reduction of time and effort.

5.5 Threats to Validity

The number of examples had a significant role in determining the efficiency of the ranking functions

in our work. The examples selected may influence the total number of examples necessary to rank

the transformations. However, instead of choosing examples that cover more similar or more differ-

ent patterns in the experiment, we minimized this threat by randomly selecting the examples. We

also used the same seed for randomly selecting the examples so that each ranking approach could

5.5 Threats to Validity 78

be given the same examples, thus being treated equally. Concerning our benchmark, the collected

edit scenarios contain edits with distinct granularity, ranging from perfective evolution to bug fixing

and adding features. As pointed out in the discussion, the ranking approaches tend to require more

examples to rank correct transformations that perform edits that require generalization. This threat

was reduced since we did not prioritize edit scenarios with more or less generalized or specialized

edits. Our priority in the code edit mining process was whether they shared a similar structure and

occurred in three or more locations.

We have evaluated our approach in C# programming language. Even though the approach can

also be used in other languages, using features based on their own DSLs, additional experiments are

required to give us a more clear idea on it could work or ways to be improved. Another limitation

concerns to the projects and edit scenarios. The number of scenarios used gave us evidence that

ML-based approaches can be as efficient and effective as HE, but we would need more scenarios to

provide a broader evaluation. With respect to the ML models, we focused on three common classifiers

used in practice, but Decision Trees, K-Nearest Neighbors and Random Forests could also be viable

approaches, which also need to be explored. Another direction could possibly be learning-to-rank

techniques, such as RankSVM. We tried RankSVM, but it requires some effort to find an appropriate

available algorithm that works with our data. Regarding REFAZER technique to evaluate the ranking

approaches, it is restricted to PROSE framework an its limitations to learn program transformations.

However, this threat concerns more the PbE tool than the ranking approaches employed by them.

Regarding the selected features and the number of them, more features could give a broader range

of characteristics to be analyzed, and more options be analyzed as relevant or not to the ML-based

models. However, this threat is reduced since we have used features pointed out in the literature as

relevant across domains. In addition, each domain has their own particularities, which makes harder

to find a set that can be used across any domain.

Another aspect to consider relates to the size of the training/testing dataset for the ML approaches.

Given memory issues, we had to focus on 200 programs to generate our dataset, which restricts the

number of transformations. Classifier models, specially the NN, typically have higher performances

with a large number of training examples. The size of the training dataset in program transformations

depends on the amount of learned and labeled transformations, which depends on the number of

number of edit scenarios mined from code repositories. It may have had an effect on the performance

of the NN in this study. However, with fairly small training database, it provided a more effective

approach than a SVM in terms of number of examples required to rank the correct transformation.

5.6 Answers to the Research Questions 79

5.6 Answers to the Research Questions

Next, we summarize the answers of our research questions.

• RQ1: How efficiently does an ML-based ranking approach rank program transformations when

compared to a manual or random ranking approach?

An ML-based ranking approach provides a similar efficiency to HE approach, with LR being

the most efficient among ML-based ones, requiring the mean of 1.67 example. However, ML

performs similar to HE while reducing the manual effort involved by automatically finding the

weights to build the ranking functions. Compared to RW, LR is superior providing a statistical

difference with p-value of 0.00008.

• RQ2: How effectively does an ML-based ranking approach rank program transformations

when compared to a manual or random ranking approach?

An ML-based approach, LR, presented a similar effectiveness in terms of Precision and NDCG

compared to HE, with the average of 0.50 for both metrics. On the other hand, LR presented

a higher Precision and NDCG compared to the RW, with 0.22 for both metrics. Statistical

difference was observed for NDCG but not for Precision.

Chapter 6

Related Work

This chapter describes the main related works. In Section 6.1 we describe the main studies on PbE

techniques based on human-expert knowledge domain to build ranking approaches. In Section 6.2 we

describe the main studies based on ML techniques to build ranking approaches.

6.1 Human-expert based ranking approaches

Aiming to support developers by automating repetitive code edits, Rolim et al. [7] propose REFAZER,

a PbE technique that learns program transformations from input-output examples. The technique uses

examples of code edits applied by developers to synthesize a program transformation that applies the

same edits to other similar locations in the source code. Moreover, in the education scenario, it

learns program transformations to fix new students’ submissions with similar faults in the programs.

To sort the set of program transformations learned and pick the correct one, REFAZER employs a

ranking function. The function uses particular weights, given by an expert in the domain, to favor

specific features such as: constant nodes over references in the AST, presence of context surrounding

nodes and shorter transformations. The weights are used to compute the transformation ranking

scores. Even though we use the idea of assigning weights to transformation features, our weights

are automatically computed using an ML-based approach, which helps to reduce the manual effort in

finding them testing distinct configurations to build ranking functions.

There is a set of tools that mine software repositories and APIs searching for code fragments

to support programmers. Often, the code fragments found or synthesized from an example based

specification do not equally satisfy the user’s desired intent. To provide the best-fit code, these tools

usually build ranking approaches that employ similar sorting strategies. PROSPECTOR [30] tool uses

80

6.1 Human-expert based ranking approaches 81

a technique for automatically synthesizing code fragments given a query that expresses the input

and output examples of the desired code. The ranking approach employed builds on a heuristic that

smaller and simpler solutions, the jungloids, are usually the correct ones. The tool sorts the jungloids

by their length, assigning the top ranks to the shortest ones. The idea of designing ranking functions

considering specific features of the code and giving preference to shorter solutions is also shared

by other tools. Perelman et al. [43] propose a technique for generating and ranking completions

for partial expressions and XSnippet [52], a framework that finds all the code snippets that satisfy

a given query in a code repository. To rank the multiple XSnippet uses the notion of heuristics to

favor certain solutions, such as the shortest one, most frequent snippets in the source code, and also

context. We do not give preference to any of the features used, since that requires specific knowledge

domain. Instead, we use an ML algorithm that computes the relevance of each feature based on their

simultaneous influence on the final label of the training data.

In the domain of string transformation, PbE tools support end users performing tasks in spread-

sheets, such as data wrangling. FlashFill [11] has been an expressive tool in this context. This tool is

capable of synthesizing a wide range of programs in spreadsheets from input-output examples. The

ranking strategy adopted to rank the programs uses features based on their syntactic structure and

observes the Occam’s razor principle, that states that smaller and simpler explanations are usually the

correct ones. Wrangler [21], a system for interactive data transformation, follows the same heuristic

preferentially ranking simpler solutions. In addition, the system uses other criteria such as explicit

observed types from the interaction with the user, length of selected text, specification difficulty and

frequency of equivalent transformations in the corpus. Diversely, BlinkFill [56], a system that learns

string transformation from spreadsheets, uses a ranking approach that gives preference to token se-

quences that have larger contexts around them as they are more likely to correspond to the desired

transformation. FIDEX (FIltering Data using EXamples) [68] uses positive and negative examples

of string edits to learn a set of filtering expressions in spreadsheets. To sort the learned expressions,

the system uses an algorithm to identify the highest ranked filter expression and scores are given

empirically according to their generality, thus a general token receive higher score than a constant

token. Another program synthesis approach for text and web extraction infers programs given input

examples and the ranking relies on the correspondence between the extractions, that is how they align

with one another [47]. Similar to FIDEX, we include negative examples in our example-based spec-

ification. However, differently from these approaches, we use an ML-based approach for building

ranking functions and we evaluate it in the program transformation domain.

6.2 Machine Learning based ranking approaches 82

6.2 Machine Learning based ranking approaches

Singh and Gulwani [57] propose a solution for efficiently predicting a correct program from a large

number of programs induced from examples, in the string transformation domain. The solution relies

on building the ranking function using automatically generated weights based on supervised machine

learning, a concept of ML. The key idea is to rank any correct program higher than all the incorrect

ones for each example of the task. The features used in the ranking approach includes frequency-based

features, as well as boolean features and their corresponding weights. Menon et al. [32] introduce a

framework for learning general programs that speed up the search and is also used for ranking. The

framework is based on ML techniques and the weights are given based on textual features. The under-

lying idea considers that textual features may help bias the search over possible solutions providing

clues about the most relevant features to the problem. The idea of assigning weights to guide the

search and rank solutions is also present in InSynth [16], a tool that synthesizes code snippets. The

tool generates and suggests a list of expressions of a given type. The ranking approach to sort the

expressions is based on weights derived from a corpus of code. Such as, more frequently occurring

declarations receive smaller weight, and therefore are favored in the ranked suggested expressions.

Likewise, we use the idea of assigning weights to features, such as frequency of patterns, size, and

others, to rank the transformations. However, we do not favor any of them based on heuristics. More-

over, we evaluate in the program transformation domain.

Lau [25] presents SMARTedit, a string transformation tool that allows a user to demonstrate

a desired task and the tool infers and generalizes the demonstration, generating a set of hypothesis

consistent with the given demonstrated actions. Through the proposition of a probabilistic framework,

probabilities are assigned to each hypothesis that represents how probable the hypothesis will produce

the right output. The tool presents a list of output states, ranked by probability, and allows the user

to interact and choose the most consistent one. Similarly, our ML-based approach uses the idea of

probabilities to disambiguate between the transformations and the higher the probability assigned by

the ML model, the higher the position in the rank.

Raychev et al. [46] propose RESYNTH, an approach to refactoring based on program synthesis

from examples of code edits. The approach builds on a search strategy to synthesize a sequence of in-

vocations of refactorings functions based on examples of edits performed by users. The search engine

employs an A∗ algorithm to synthesize the refactoring sequences, guided by a heuristic function that

minimizes the edit distance and expression distance from the user edits. The edit distance is given by

the number of node renames, leaf node inserts and deletes required to get from the input tree to the

6.2 Machine Learning based ranking approaches 83

target tree. The expression distance is given in terms of the number of expressions the are present in

one tree that are not present in the other one. Likewise, the ranking scheme used in the evaluation

of our approach follows a tree structure and the score is computed in a bottom-up fashion, where the

weight of a node is computed in terms of the weights of its children. However, the weights given by

the approach are not restrict to a tree structure.

Chapter 7

Conclusions

In this work, we propose an ML-based ranking approach for automatically building ranking func-

tions. From a dataset of automatically labeled transformations, we train and test ML models that

automatically compute the ideal weights to build ranking functions to rank program transformations.

We have trained and evaluated three ML-based ranking approaches from 15 edit scenarios of five

C# projects and compared them with HE and RW approaches, evaluating them in other 28 edit scenar-

ios. We evaluate their efficiency and effectiveness in ranking program transformations by measuring

the minimum number of examples required to rank the correct transformation in the first position, as

well as the Precision and relevance of the ranked transformations in the top-10 position with only one

example. The results obtained indicated that ML-based approaches can be as efficient and effective

as HE approach in ranking program transformations while reducing the manual effort in finding the

weights based on the expert domain knowledge. In addition, including negative examples allowed

ML-based approaches to prevent over-generalized transformations and rank the correct transforma-

tion in the first position.

Since each domain has their own particularities and properties, which reflect in the DSLs, the

feature selection based on these properties for assigning automatically obtained weights is not auto-

mated. However, compared to a manual approach, the effort for selecting relevant features from the

DSL to be used for training is reduced, since ML techniques, such as L1 regularization, performs

a feature selection. Regarding the training data, for program transformations in C#, edit scenarios

are available for generating transformations for training the algorithms [7], which obviates the need

to obtain edit scenarios. However, to operate in another domain, there is a need for obtaining edit

scenarios for training, selecting features to be used, and instantiation in a PbE tool, the same process

used by another ML-based approach for string transformation domain [59].

84

85

For PbE tools’ designers, building ranking functions based on human-expert domain knowledge

involves manual effort to find the ideal weights of transformations features, which follows a trial

and error approach. This task is cumbersome because the number of different combinations grows

exponentially according to the number of features. By employing an ML-based ranking approach,

compared to a trial and error approach, the effort is reduced since the weights are obtained automat-

ically. Other domains, such as string transformation, also provide a promising problem domain in

which our approach can be used, but additional experiments are necessary. We have to build a bench-

mark mining data from Excel product team and help forums, select features based on the DSL from

the domain, and find a tool to instantiate the model trained.

For end-users, providing a solution that requires a minimum number of examples to rank correctly

the transformations helps to obviate their manual effort in providing examples to PbE tools. Another

important aspect that concerns end-users consists of providing options to them, such as showing

the first 10 positions of the rank. In this aspect, an effective ranking approach that presents high

accuracy in the first 10 positions becomes useful. Comparing the ML-based approaches, LR presented

a superior effectiveness, which is similar to HE approach. Thus, we conclude that, in this domain, the

LR presents the best ML-based approach to be used for transformations. To the best of our knowledge,

there is no study using LR approach for ranking transformations, specially in transformation domain.

For future work, we intend to investigate how to automate the process of obtaining repetitive

edit scenarios in the code mining process. A solution that automatically finds repetitive patterns

obviates the need of manually analyzing code edits looking for similar patterns. This would allow

us to reduce the effort in obtaining edit scenarios to generate a training dataset. We also intend to

investigate other supervised ML-based models that were not included in this study, such as Decision

Trees, Random Forests, and K-Nearest Neighbors, aiming to improve performance such as obtaining

a higher accuracy and higher efficiency. Learning to rank approaches could also be used to build

ranking functions for transformations, which can use semi-supervised or reinforcement learning. In

addition, an unsupervised learning approach could be used to group transformations regarding their

characteristics. Other categories of transformations with higher granularity also need to be explored.

We also intend to gather more training data to test a Deep Learning approach. It has been used in

learning problems, such as providing recommendations, which can be similar to our problem in the

sense of recommending transformations based on their probability of being correct in general, but it

requires thousands of observations [65].

Human-computer interaction approaches also need to be explored, which can have an influence

on the ranking approach performance. We intend to analyze how the user can interact with the top-

86

10 ranked solutions in order to express her preference or even filter out incorrect transformations,

providing negative examples visually. Instead of randomly selecting a positive or negative example

for the PbE tools, such as in our evaluation, an approach to help users selecting examples also could

possibly help ranking approaches to be more efficient.

Bibliography

[1] Apache Software Foundation. Netbeans IDE, 2018. https://netbeans.org/, Last ac-

cessed on 2018-09-11.

[2] Frederick P Brooks Jr. The Mythical Man-Month: Essays on Software Engineering, Anniversary

Edition. Pearson Education India, 1995.

[3] Victor R Basili-Gianluigi Caldiera and H Dieter Rombach. Goal question metric paradigm.

Encyclopedia of Software Engineering, 1:528–532, 1994.

[4] Jaime G Carbonell, Ryszard S Michalski, and Tom M Mitchell. An overview of machine learn-

ing. In Machine Learning, Volume I, pages 3–23. Elsevier, 1983.

[5] Rich Caruana and Alexandru Niculescu-Mizil. An empirical comparison of supervised learning

algorithms. In Proceedings of the 23rd International Conference on Machine Learning, pages

161–168. ACM, 2006.

[6] Sudarshan S Chawathe, Anand Rajaraman, Hector Garcia-Molina, and Jennifer Widom. Change

detection in hierarchically structured information. In ACM SIGMOD Record, volume 25, pages

493–504. ACM, 1996.

[7] Reudismam Rolim de Sousa, Gustavo Soares, Loris D’Antoni, Oleksandr Polozov, Sumit Gul-

wani, Rohit Gheyi, Ryo Suzuki, and Bjoern Hartmann. Learning syntactic program transforma-

tions from examples. In Proceedings of the 39th International Conference on Software Engi-

neering, ICSE’17, Piscataway, NJ, USA, 2017. IEEE Press.

[8] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts. Refactoring: im-

proving the design of existing code. Addison-Wesley Professional, 1999.

[9] Joel Galenson, Philip Reames, Rastislav Bodik, Björn Hartmann, and Koushik Sen. Codehint:

Dynamic and interactive synthesis of code snippets. In Proceedings of the 36th International

87

BIBLIOGRAPHY 88

Conference on Software Engineering, ICSE’14, pages 653–663, New York, NY, USA, 2014.

ACM.

[10] Google. ErrorProne, 2018. https://errorprone.info/, Last accessed on 2018-09-11.

[11] Sumit Gulwani. Automating string processing in spreadsheets using input-output examples. In

Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-

ming Languages, POPL ’11, pages 317–330, New York, NY, USA, 2011. ACM.

[12] Sumit Gulwani. Programming by examples: Applications, algorithms, and ambiguity resolu-

tion. In International Joint Conference on Automated Reasoning, pages 9–14. Springer, 2016.

[13] Sumit Gulwani, José Hernández-Orallo, Emanuel Kitzelmann, Stephen H Muggleton, Ute

Schmid, and Benjamin Zorn. Inductive programming meets the real world. Communications of

the ACM, 58(11):90–99, 2015.

[14] Sumit Gulwani and Prateek Jain. Programming by examples: PL meets ML. In Asian Sympo-

sium on Programming Languages and Systems, pages 3–20. Springer, 2017.

[15] Sumit Gulwani and Mark Marron. Nlyze: Interactive programming by natural language for

spreadsheet data analysis and manipulation. In Proceedings of the 2014 ACM SIGMOD inter-

national conference on Management of data, pages 803–814. ACM, 2014.

[16] Tihomir Gvero, Viktor Kuncak, Ivan Kuraj, and Ruzica Piskac. Complete completion using

types and weights. SIGPLAN Not., 48(6):27–38, June 2013.

[17] IEEE. IEEE standard glossary of software engineering terminology. IEEE Std, 1990.

[18] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An introduction to statis-

tical learning, volume 112. Springer, 2013.

[19] JetBrains. ReSharper, 2018. https://www.jetbrains.com/resharper/, Last ac-

cessed on 2018-09-11.

[20] Michael I Jordan and Tom M Mitchell. Machine learning: Trends, perspectives, and prospects.

Science, 349(6245):255–260, 2015.

[21] Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffrey Heer. Wrangler: Interactive

visual specification of data transformation scripts. In Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems, CHI ’11, pages 3363–3372, New York, NY, USA, 2011.

ACM.

BIBLIOGRAPHY 89

[22] Miryung Kim and Na Meng. Recommending program transformations. In Recommendation

Systems in Software Engineering, pages 421–453. Springer, 2014.

[23] Barbara Kitchenham and Pearl Brereton. A systematic review of systematic review process

research in software engineering. Information and software technology, 55(12):2049–2075,

2013.

[24] Ron Kohavi. A study of cross-validation and bootstrap for accuracy estimation and model

selection. In Proceedings of the 14th International Joint Conference on Artificial Intelligence -

Volume 2, IJCAI’95, San Francisco, CA, USA, 1995. Morgan Kaufmann Publishers Inc.

[25] Tessa Lau, Steven A. Wolfman, Pedro Domingos, and Daniel S. Weld. Programming by demon-

stration using version space algebra. Mach. Learn., 53(1-2):111–156, 2003.

[26] Xuan-Bach D Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and Willem Visser. S3: syntax-

and semantic-guided repair synthesis via programming by examples. In Proceedings of the 2017

11th Joint Meeting on Foundations of Software Engineering, pages 593–604. ACM, 2017.

[27] M. M. Lehman and L. A. Belady, editors. Program Evolution: Processes of Software Change.

Academic Press Professional, Inc., San Diego, CA, USA, 1985.

[28] Meir Lehman and Juan C Fernández-Ramil. Software evolution. Software evolution and feed-

back: Theory and practice, 1:7–40, 2006.

[29] Meir M Lehman and Juan F Ramil. Software evolution and software evolution processes. Annals

of Software Engineering, 14(1-4):275–309, 2002.

[30] David Mandelin, Lin Xu, Rastislav Bodík, and Doug Kimelman. Jungloid mining: Helping to

navigate the api jungle. SIGPLAN Not., 40(6):48–61, June 2005.

[31] Brian McFee and Gert R Lanckriet. Metric learning to rank. In Proceedings of the 27th Inter-

national Conference on Machine Learning (ICML-10), pages 775–782, 2010.

[32] Aditya Krishna Menon, Omer Tamuz, Sumit Gulwani, Butler Lampson, and Adam Tauman

Kalai. A machine learning framework for programming by example. In Proceedings of the

30th International Conference on International Conference on Machine Learning - Volume 28,

ICML’13, pages I–187–I–195. JMLR.org, 2013.

[33] Microsoft. Entity framework 6, 2010. http://www.asp.net/entity-framework,

Last accessed on 2019-06-02.

BIBLIOGRAPHY 90

[34] Microsoft. Nuget 2, 2011. https://github.com/nuget/nuget2, Last accessed on

2019-06-02.

[35] Microsoft. Project roslyn, 2011. https://github.com/dotnet/roslyn, Last accessed

on 2019-06-02.

[36] Microsoft. Newtonsoft, 2018. https://github.com/JamesNK/Newtonsoft.Json,

Last accessed on 2019-06-02.

[37] Microsoft. Sharex, 2018. https://github.com/ShareX/ShareX, Last accessed on

2019-06-02.

[38] Microsoft. Visualstudio, 2018. https://visualstudio.microsoft.com/, Last ac-

cessed on 2018-09-11.

[39] T.M. Mitchell. Machine Learning. McGraw-Hill International Editions. McGraw-Hill, 1997.

[40] Martin Monperrus. Automatic software repair: a bibliography. ACM Computing Surveys

(CSUR), 51(1):17, 2018.

[41] Emerson Murphy-Hill, Chris Parnin, and Andrew P Black. How we refactor, and how we know

it. IEEE Transactions on Software Engineering, 38(1):5–18, 2012.

[42] Tung Thanh Nguyen, Hoan Anh Nguyen, Nam H Pham, Jafar Al-Kofahi, and Tien N Nguyen.

Recurring bug fixes in object-oriented programs. In Proceedings of the 32Nd ACM/IEEE Inter-

national Conference on Software Engineering-Volume 1, pages 315–324. ACM, 2010.

[43] Daniel Perelman, Sumit Gulwani, Thomas Ball, and Dan Grossman. Type-directed completion

of partial expressions. SIGPLAN Not., 47(6):275–286, June 2012.

[44] Oleksandr Polozov and Sumit Gulwani. Flashmeta: A framework for inductive program synthe-

sis. In Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented

Programming, Systems, Languages, and Applications, OOPSLA’15, pages 107–126, New York,

NY, USA, 2015. ACM.

[45] David Martin Powers. Evaluation: from precision, recall and f-measure to roc, informedness,

markedness and correlation. 2011.

[46] Veselin Raychev, Max Schäfer, Manu Sridharan, and Martin Vechev. Refactoring with synthesis.

SIGPLAN Not., 48(10):339–354, October 2013.

BIBLIOGRAPHY 91

[47] Mohammad Raza and Sumit Gulwani. Automated data extraction using predictive program

synthesis. January 2017.

[48] Reudismam Rolim. Refazer. https://github.com/reudismam/Refazer/, 2018.

[49] Donald B Rubin. Multiple imputation after 18+ years. Journal of the American statistical

Association, 91(434):473–489, 1996.

[50] Stuart J Russell and Peter Norvig. Artificial intelligence: a modern approach. Malaysia; Pearson

Education Limited„ 1995.

[51] Stuart J Russell and Peter Norvig. Artificial intelligence: a modern approach, 3rd Edition.

Pearson Education, 2009.

[52] Naiyana Sahavechaphan and Kajal Claypool. Xsnippet: Mining for sample code. SIGPLAN

Not., 41(10):413–430, 2006.

[53] scikit-learn developers. sklearn.model_selection.gridsearchcv, 2007. https:

//scikit-learn.org/stable/modules/generated/sklearn.model_

selection.GridSearchCV.html, Last accessed on 2019-1-28.

[54] scikit-learn developers. sklearn.model_selection.train_test_split, 2007. https:

//scikit-learn.org/stable/modules/generated/sklearn.model_

selection.train_test_split.html#sklearn.model_selection.train_

test_split, Last accessed on 2019-5-2.

[55] Danilo Silva, Nikolaos Tsantalis, and Marco Tulio Valente. Why we refactor? confessions of

github contributors. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium

on Foundations of Software Engineering, pages 858–870. ACM, 2016.

[56] Rishabh Singh. Blinkfill: Semi-supervised programming by example for syntactic string trans-

formations. Proceedings of the VLDB Endowment, 9(10):816–827, June 2016.

[57] Rishabh Singh and Sumit Gulwani. Synthesizing Number Transformations from Input-Output

Examples, pages 634–651. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[58] Rishabh Singh and Sumit Gulwani. Synthesizing number transformations from input-output ex-

amples. In International Conference on Computer Aided Verification, pages 634–651. Springer,

2012.

BIBLIOGRAPHY 92

[59] Rishabh Singh and Sumit Gulwani. Predicting a correct program in programming by example.

In International Conference on Computer Aided Verification, pages 398–414. Springer, 2015.

[60] Gustavo Soares. Refazer. https://github.com/gustavoasoares/refazer, 2017.

[61] Ian Sommerville et al. Software engineering. Addison-wesley, 2007.

[62] Source Forge. FindBugs, 2018. http://findbugs.sourceforge.net/, Last accessed

on 2018-09-11.

[63] The Eclipse Foundation. Eclipse, 2018. https://www.eclipse.org/, Last accessed on

2018-09-11.

[64] University of california, Berkeley. Using t-tests in R, 2014. https://statistics.

berkeley.edu/computing/r-t-tests, Last accessed on 2019-29-18.

[65] Aaron Van den Oord, Sander Dieleman, and Benjamin Schrauwen. Deep content-based music

recommendation. In Advances in Neural Information Processing Systems, pages 2643–2651,

2013.

[66] Chenglong Wang, Alvin Cheung, and Rastislav Bodik. Synthesizing highly expressive sql

queries from input-output examples. In ACM SIGPLAN Notices, volume 52, pages 452–466.

ACM, 2017.

[67] Xinyu Wang, Isil Dillig, and Rishabh Singh. Program synthesis using abstraction refinement.

Proceedings of the ACM on Programming Languages, 2(POPL):63, 2017.

[68] Xinyu Wang, Sumit Gulwani, and Rishabh Singh. Fidex: Filtering spreadsheet data using exam-

ples. In Proceedings of the 2016 ACM SIGPLAN International Conference on Object-Oriented

Programming, Systems, Languages, and Applications, OOPSLA’16, pages 195–213, New York,

NY, USA, 2016. ACM.

[69] David H Wolpert and William G Macready. No free lunch theorems for optimization. IEEE

Transactions on Evolutionary Computation, 1(1):67–82, 1997.

[70] Kuat Yessenov, Shubham Tulsiani, Aditya Menon, Robert C Miller, Sumit Gulwani, Butler

Lampson, and Adam Kalai. A colorful approach to text processing by example. In Proceedings

of the 26th annual ACM symposium on User interface software and technology, pages 495–504.

ACM, 2013.

Appendix A

Training Models Parameters

The parameters used for training SVM were:

LinearSVC(C=0.1, class_weight=None, dual=False,

fit_intercept=True, intercept_scaling=1, loss=’squared_hinge’,

max_iter=1000, multi_class=’ovr’, penalty=’l1’, random_state=None,

tol=0.0001, verbose=0)

The parameters used for training LR were:

LogisticRegression(C=2.5, class_weight=None, dual=False,

fit_intercept=True, intercept_scaling=1, max_iter=100,

multi_class=’ovr’, n_jobs=1, penalty=’l1’, random_state=None,

solver=’liblinear’, tol=0.0001, verbose=0, warm_start=False)

The parameters used for training NN were:

MLPClassifier(activation=’relu’, alpha=0.0001,

batch_size=’auto’, beta_1=0.9, beta_2=0.999, early_stopping=False,

epsilon=1e-08, hidden_layer_sizes=(30, 30, 30),

learning_rate=’constant’, learning_rate_init=0.001,

max_iter=200, momentum=0.9, nesterovs_momentum=True, power_t=0.5,

random_state=None, shuffle=True, solver=’adam’, tol=0.0001,

validation_fraction=0.1, verbose=False, warm_start=False)

93

	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters
	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Software Evolution
	Repetitive Edits

	Program Transformation
	Program-by-Example
	Ranking Problem in Program Transformations
	Domain-Specific Language
	Ranking Functions
	Human-Expert Ranking Approach

	Machine Learning
	Supervised Learning
	Learning Algorithms

	Learning Ranking Function for Ranking Problems

	State of the art
	Motivation
	Research Questions

	Methodology
	Search String
	Databases
	Study Selection
	Information Extraction
	Execution

	Results
	Selected Studies

	Discussion
	Programming by Example approaches
	Study limitations

	Conclusion Remarks
	Answers to the Research Questions

	A Machine Learning Based Ranking Approach
	Overview
	Training/Testing Data Generation
	Feature Extraction
	Model Training and Testing
	Ranking Instantiation

	Evaluation
	Definition
	Planning of the experiment
	Benchmark
	Instrumentation
	Training Database Generation
	Training Models
	Using Negative Examples
	Ranking Evaluation

	Results
	Discussion
	Characteristics of the domain
	Characteristics of the edits
	Efficiency of ranking approaches
	Generalization versus specialization
	Effectiveness of ranking approaches
	Characteristics of ML-based ranking approaches

	Threats to Validity
	Answers to the Research Questions

	Related Work
	Human-expert based ranking approaches
	Machine Learning based ranking approaches

	Conclusions
	Training Models Parameters

