UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE CIÊNCIAS E TECNOLOGIA COORDENAÇÃO DOS CURSOS DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

Determinação da Função de Transferência

de Transformador de Potencial Capacitivo

José Carlos Rosa e Silva de Abreu Vasconcelos

Campina Grande - Paraíba - Brasil

Janeiro de 2001

José Carlos Rosa e Silva de Abreu Vasconcelos

Determinação da Função de Transferência de Transformador de Potencial Capacitivo

Dissertação apresentada à Coordenação dos Cursos de Pós-Graduação em Engenharia Elétrica da Universidade Federal da Paraíba, em cumprimento às exigências para obtenção do Grau de Mestre em Ciências no Domínio da Engenharia Elétrica.

Área de Concentração: Processamento da Energia

Washington Luíz Araújo Neves, Ph.D. Orientador

Campina Grande - Paraíba - Brasil Janeiro de 2001

621.314Vasconcelos, José Carlos Rosa e Silva de AbreuV329dDeterminação da função de transferência de transformador
de potencial capacitivo/José Carlos Rosa e Silva de Abreu
Vasconcelos. - Campina Grande - PB: UFPB, 2001. 95p.: il. -

Dissertação (Mestrado) - UFPB/CCT-Engenharia Elétrica Inclui Bibliografia

1. Transformador de potencial capacitivo I - Título

DETERMINAÇÃO DA FUNÇÃO DE TRANSFERÊNCIA DE TRANSFORMADOR DE POTENCIAL CAPACITIVO

JOSÉ CARLOS ROSA E SILVA DE ABREU VASCONCELOS

Dissertação Aprovada em 31.01.2001

ION LUIZ ARAÚJO NEVES, Ph.D., UFPB PROF. WASHING Orientador

marde Source umak

PROF. BENEMAR ALENCAR DE SOUZA, D.S., UFPB Componente da Banca

PROF. ANTONIO MARCUS NOGUEIRA LIMA, Dr., UFPB Componente da Banca

> CAMPINA GRANDE - PB Novembro - 2000

Aos meus pais Dagmar de Abreu Vasconcelos e Maria Adalgisa Rosa e Silva de Abreu Vasconcelos, pelo amor e incentivo, OFEREÇO. A minha esposa Maria de Lourdes Magalhães Baltar de Abreu Vasconcelos e aos meus filhos Daniel Baltar de Abreu Vasconcelos, Rafael Baltar de Abreu Vasconcelos, pelo amor, compreensão e incentivo, DEDICO.

如此是我们的问题。"他们是我们的问题,我们就是我们们就能够不能能能够。"他们就是我们是你们的话题。"他们是我们的话,我们就是我们的话题。""我们就是我们的话,我们就是你们的,我们就不能是你的。""你们

ų"

ę.

Agradecimentos

À COPELE pela seleção do meu nome.

, second second

À CHESF pelo suporte financeiro durante a vigência do Curso.

Ao professor Washington Luíz Araújo Neves pela orientação, dedicação, compreensão, amizade e apoio.

Ao professor Carlos Prestes pela confiança depositada.

Aos engenheiros Nóbrega e Maribondo pela indicação, amizade e apoio.

Ao professor Edson Guedes pela amizade e apoio.

Aos professores Naidu, Marcos Barbosa, Benemar, Wellington e Creso pelos ensinamentos.

Ao professor Antônio Marcus pela compreensão e apoio.

Aos engenheiros Alécio e Damásio pelo apoio técnico, pelas discussões e pelas sugestões.

Aos engenheiros Elias, Luiz da Penha, Valmir e Valter pelo apoio.

Aos auxiliares de engenharia do Centro de Ensaios do Sistema de Transmissão da CHESF,

Élio, João, Ronaldo e Sivini pela amizade e valiosa ajuda.

Ao auxiliar de engenharia do Centro de Reparo de Equipamentos da CHESF, Amaral.

Aos funcionários do Laboratório de Alta Tensão da UFPB, Adalberto, Eduardo, Francisco,

Dona Lourdes e Selma.

Aos funcionários da Miniblio-COPELE, Ângela, Eleonôra e Pedro.

Sumário

Lista de Figuras	vii
Lista de Tabelas	xiii
Lista de Símbolos	xv
Resumo	xxi
Abstract	xxii
Capítulo 1 - Introdução	01
1.1 Motivação	01
1.2 Objetivo	01
1.3 Estrutura da Dissertação	02
Capítulo 2 - Fundamentação Teórica	03
2.1 Transformador de Potencial	03
2.2 Transformador de Potencial Capacitivo	04
2.3 Resposta em Freqüência	08
2.3.1 Função de Transferência	08

6

ł

2.3.2 Pólos e Zeros	10
Capítulo 3 - Revisão Bibliográfica	12
Capítulo 4 - Detalhamento do TPC	37
4.1 Identificação dos Componentes do TPC	37
4.2 Verificação da Função dos Componentes	39
4.3 Medições em Laboratório	40
4.3.1 Determinação das Relações de Transformação	40
4.3.1.1 Relação do Reator Série	40
4.3.1.2 Relações do Transformador Intermediário	41
4.3.2 Medição da Resistência dos Componentes Principais	43
4.3.2.1 Resistência dos Enrolamentos do Reator	43
4.3.2.2 Resistência dos Enrolamentos do Transformador	45
4.3.2.3 Resistor de Amortecimento	47
4.3.2.4 Resistores e do Reator do Filtro	47
4.3.3 Ensaio em Vazio	47
4.3.3.1 Reator Série	48
4.3.3.2 Transformador Intermediário	48
4.3.4 Ensaio de Curto-circuito	49
4.3.4.1 Reator Série	49
4.3.4.2 Transformador Intermediário	50

v

4.3.5 Determinação das Curvas de Saturação	51
4.3.5.1 Curva de Saturação do Reator do Filtro	51
4.3.5.2 Curva de Saturação do Reator Série	54
4.3.5.3 Curva de Saturação do Transformador Intermediário	57
4.3.5.4 Curva de Saturação da Parte Indutiva do TPC	60
4.3.6 Saturação Artificial do TPC	63
4.3.7 Resposta em Freqüência	66
4.3.7.1 Sensibilidade ao Nível de Tensão Primária	67
4.3.7.2 Sensibilidade ao Enrolamento Secundário Utilizado	68
4.3.7.3 Sensibilidade a Bobina de Drenagem	69
4.3.7.4 Sensibilidade ao Valor da Carga Secundária	69
4.3.7.5 Sensibilidade a Saturação do Transformador	70
Capítulo 5 – Representação do TPC	72
5.1 Representação do TPC através de sua Função de Transferência	72
5.2 Representação do TPC por Elementos Concentrados	76
Capítulo 6 – Conclusões	80
Referências Bibliográficas	83
Apêndice A - Resultados dos Ensaios de Resposta em Freqüência	88
Apêndice B – Figuras	96

Lista de Figuras

Figura 2.1	- Transformador de potencial	4
Figura 2.2	- Diagrama do divisor de potencial capacitivo	5
Figura 2.3	- Diagrama do primeiro projeto de transformador de potencial capacitivo	5
Figura 2.4	- Diagrama do projeto modificado de transformador de potencial	
	capacitivo	6
Figura 2.5	- Preço do TP e do TPC em relação ao do TP de 500 kV	7
Figura 2.6	- Circuitos supressores de ferroressonância	7
Figura 2.7	- Circuitos de proteção	8
Figura 2.8	- Diagrama simplificado do transformador de potencial capacitivo	8
Figura 3.1	- Circuito equivalente do TPC segundo Sweetana & Flugum (1966)	13
Figura 3.2	- Circuito de teste considerando a tensão da linha	13
Figura 3.3	- Circuito de teste considerando a tensão da derivação	14
Figura 3.4	- Circuito equivalente utilizado por Sweetana (1971)	14

vii

viii

- Base do Modelo de Lucas et al (1902)	
- Dase do Modelo de Edeas et al (1992)	16
- Circuito equivalente do TPC segundo Lucas et al (1992)	18
- Diagrama genérico do TPC	18
- Técnicas de medição de resposta em freqüência. (a) Usando	
gerador de sinal. (b) Utilizando analisador de sinal dinâmico	19
- TPC. (a) Circuito real. (b) Circuito equivalente	19
- Modelo detalhado do TPC	20
- Modelo simplificado do TPC segundo Kezunovic et al (1992)	20
- Circuito do TPC utilizado por Kojovic et al (1994)	21
- Circuito para resposta em freqüência do TPC a partir do	
secundário	21
- Diagrama de bloco do método de campo para resposta em	
freqüência de TPC	22
- Circuito equivalente do TPC segundo Kojovic et al (1994)	23
- Circuitos do filtro supressor de ferroressonância. (a) Real. (b)	
Equivalente	23
- Diagrama simplificado do TPC utilizado por Vermeulen et al	
(1995)	25
- Circuito equivalente do TPC segundo Vermeulen et al (1995)	25
- Diagrama de um transformador de potencial capacitivo	28
- Circuitos equivalentes a elementos concentrados para alta	
	 Diagrama genérico do TPC segundo Lucas et al (1992)

	freqüência. (a) Transformador de dois enrolamentos. (b) Reator 28	3
Figura 3.21	- Circuito simplificado para o transformador de dois enrolamentos 29)
Figura 3.22	- Modelo de Chimklai & Marti (1995) para representar $Z_{ee}(\omega)$ 29)
Figura 3.23	- Representação aproximada de $Z_{\infty}(\omega)$ proposta por Marti et al	
	(1997))
Figura 3.24	- Diagrama esquemático do TPC para simulação no EMTP 33	1
Figura 3.25	- Circuito para ensaio do TPC utilizado por Iravani et al (1998) 3	1
Figura 3.26	- Circuito simplificado do TPC segundo Fernandes Jr. (1999) 32	2
Figura 3.27	- Circuitos do filtro supressor de ferroressonância. (a) Real. (b)	
	Equivalente 33	3
Figura 3.28	- Circuito de blocos de impedância do TPC 32	3
Figura 3.29	- Esquema para medição da resposta em freqüência do TPC	
	utilizado por Fernandes Jr. (1999) 33	5
Figura 3.30	- Filtro obtido experimentalmente por Moraes & Silva (1999) 3	5
Figura 3.31	- Diagrama esquemático do circuito de teste	6
Figura 3.32	- Blindagem proposta por Moraes & Silva (1999)	6
Figura 3.33	- Circuito de teste para avaliação não linear	6
Figura 4.1	- Diagrama simplificado do TPC de 230 kV 3	7
Figura 4.2	- Esquema para medição da relação de transformação do reator	
	série 4	1
Figura 4.3	- Esquema para medição da relação de transformação do	

	transformador	42
Figura 4.4	- Esquema para medição da resistência do enrolamento primário	44
Figura 4.5	- Esquema para medição da resistência do enrolamento primário do transformador	45
Figura 4.6	 Esquema para medição da resistência do enrolamento secundário X₁-X₃ 	45
Figura 4.7	- Circuito do ensaio em vazio do reator série	48
Figura 4.8	- Arranjo do ensaio em vazio do transformador intermediário	48
Figura 4.9	- Arranjo do ensaio de curto-circuito do reator série	49
Figura 4.10	 Arranjos para determinação da impedância de curto-circuito. (a) Z_{HX}. (b) Z_{HY}. (c) Z_{XY} 	50
Figura 4.11	- Circuito para determinação da curva de saturação do reator do filtro	51
Figura 4.12	- Curva de saturação do reator do filtro	53
Figura 4.13	- Circuito para determinação da curva de saturação do reator série	54
Figura 4.14	- Curva de saturação do reator série	56
Figura 4.15	- Circuito para determinação da curva de saturação do transformador intermediário	57
Figura 4.16	- Curva de saturação do transformador intermediário	60
Figura 4.17	- Circuito para determinação da curva de saturação da parte indutiva do TPC	60

2. 「「ある」「おい」「おい」がない」がない。「かい」がない。「おい」はない。「おい」の「おい」のない」がないた。

x

- Curva de saturação da parte indutiva do TPC	63
- Circuito para determinação da corrente contínua necessária para	
saturar o TPC	64
- Curva corrente contínua versus tensão	66
- Esquema genérico utilizado nos ensaios de resposta em	
freqüência no TPC	67
- Sensibilidade ao nível de tensão primária. (a) Módulo. (b) Fase	68
- Sensibilidade ao enrolamento secundário. (a) Módulo. (b) Fase	68
- Sensibilidade a bobina de drenagem. (a) Módulo. (b) Fase	69
- Sensibilidade a carga secundária. (a) Módulo. (b) Fase	70
- Sensibilidade a saturação do transformador intermediário. (a)	
Módulo. (b) Fase	71
- Valores medidos e ajustados até 10 kHz considerando uma função	
com 8 pólos	73
- Valores medidos e ajustados até 2 kHz considerando uma função	
com 8 pólos	74
- Valores medidos e ajustados até 2 kHz considerando uma função	
com 34 pólos	74
- Valores medidos e ajustados até 10 kHz considerando somente o	
ganho e uma função com 8 pólos	75
- Circuito equivalente do TPC	76
	 Curva de saturação da parte indutiva do TPC

xi

A11-11

and the second sec

xii

¢,

The last of the start with the set of the start of the

Figura B.1	- Vista do TPC no local de ensaio	96
Figura B.2	- Vista da conexão do terminal de alta tensão	96
Figura B.3	- Ponta de prova na conexão de alta tensão	97
Figura B.4	- Ponta de prova na conexão de baixa tensão	97
Figura B.5	- Arranjo para medição de resposta em freqüência	97
Figura B.6	- Arranjo para medição de resposta com carga	97
Figura B.7	- Arranjo utilizado para saturar artificialmente o TPC	97
Figura B.8	- Conexões para ensaio de relação do transformador	97
Figura B.9	- Arranjo para medição da relação	98
Figura B.10	- Vista de topo da parte indutiva do TPC	98
Figura B.11	- Caixa de terminais e bobina de drenagem	98
Figura B.12	- Filtro supressor de ferroressonância	98
Figura B.13	- Reator série	99
Figura B.14	- Resistência de amortecimento e bobina de bloqueio	99

Lista de Tabelas

an an agus a Lean an Daois

Tabela 4.1	- Características dos secundários	39
Tabela 4.2	- Relação de transformação do reator série	41
Tabela 4.3	- Relações de transformação do transformador intermediário	42
Tabela 4.4	- Resistência dos enrolamentos do reator série	44
Tabela 4.5	- Resistência dos enrolamentos do transformador	46
Tabela 4.6	- Valores calculados a partir do ensaio de curto-circuito do	
	transformador	50
Tabela 4.7	- Resistências dos enrolamentos e indutâncias de dispersão do	
	transformador	51
Tabela 4.8	- Dados da curva de saturação do reator do filtro	52
Tabela 4.9	- Dados da curva de saturação do reator série	54
Tabela 4.10	- Dados da curva de saturação do transformador intermediário	57
Tabela 4.11	- Dados da curva de saturação da parte indutiva	61
Tabela 4.12	- Valores da corrente CC aplicada e da tensão X2-X3 medida	65

Tabela 51	- Curva de saturação do reator do filtro	73
Tabela A.1	 Resposta em freqüência H₁₀-X₂₃ - 720 V a 60 Hz - Carga = 0 VA Sem bobina de drenagem - Sem saturação. 	88
Tabela A.2	Resposta em freqüência H ₁₀ -X ₂₃ - 720 V a 60 Hz - Carga = 0 VA – Com bobina de drenagem – Sem saturação	91
Tabela A.3	Resposta em freqüêencia H_{10} - X_{23} - 720 V a 60 Hz - Carga = 0 VA	
	– Sem bobina de drenagem – Com saturação	93

Lista de Símbolos

I ₂	- Corrente secundária
V_2	- Tensão secundária
Vı	- Tensão primária
nı	- Número de espiras do enrolamento primário do transformador
n ₂	- Número de espiras do enrolamento secundário do transformador
I	- Corrente primária
V'2	- Tensão intermediária do divisor capacitivo
Ci	- Capacitância superior do divisor capacitivo
C ₂	- Capacitância inferior do divisor capacitivo
Ic	- Corrente de carga
Ze	- Impedância de carga
a, b, c, d, e	- Pontos de conexão
n	- Relação de transformação
С	- Capacitância

L	- Indutância
Xı	- Reatância do enrolamento primário do transformador
X ₂	- Reatância do enrolamento secundário do transformador
Im	- Corrente de magnetização
Т	- Transformador
R_{f}, R_{f1}, R_{f2}	- Resistências do filtro supressor de ferroressonância
$C_{\rm f}$	- Capacitância do filtro supressor de ferroressonância
L _f	- Indutância do filtro supressor de ferroressonância
R	- Resistência
Ze	- Impedância equivalente
Z_1	- Impedância do enrolamento primário
Z ₂	- Impedância do enrolamento secundário
Zm	- Impedância de magnetização
Ce	- Capacitância equivalente
C _{es}	- Capacitância equivalente referida ao secundário
R _p	- Resistência do enrolamento primário
R _s	- Resistência do enrolamento secundário
Res	- Resistência equivalente referida ao secundário
L _{es}	- Indutância equivalente referida ao secundário
I' ₁ , I' ₂ , I' ₃	- Correntes de malha

		xvii

es	- Valor instantâneo da tensão secundária
Vc	- Tensão
r _p	- Resistência do enrolamento primário
r _s	- Resistência do enrolamento secundário
1 _p	- Indutância do enrolamento primário
łs	- Indutância do enrolamento secundário
R _{cp}	- Resistência paralela da carga padrão
R _{cs}	- Resistência série da carga padrão
X _{cs}	- Reatância série da carga padrão
Cp	- Capacitância parasita primária do transformador
Cs	- Capacitância parasita secundária do transformador
C _{ps}	- Capacitância parasita entre o primário e o secundário do transformador
V_{eq}	- Tensão equivalente
ТР	- Tranformador de potencial
L_{d1}, L_{d2}	- Indutâncias das bobinas de drenagem
L _m	- Indutância do ramo de magnetização
R _m	- Resistência do ramo de magnetização
Vs	- Tensão de saída
Ve	- Tensão de entrada
La	- Indutância da bobina de drenagem

L_{1}, L_{2}	- Indutâncias das partes do indutor do filtro
М	- Mutua indutância entre as partes do indutor do filtro
C_{Th}	- Capacitância equivalente
V_{Th}	- Tensão equivalente
R'L	- Resistência do enrolamento do reator
L'L	- Indutância do enrolamento do reator
C'L	- Capacitância do enrolamento do reator
R' _{Le}	- Resistência do ramo de magnetização do reator
L' _{Le}	- Indutância do ramo de magnetização do reator
R _{T11}	- Resistência do enrolamento primário do transformador
L_{T11}	- Indutância do enrolamento primário do transformador
C _{T11}	- Capacitância do enrolamento do transformador
R _{Tel}	- Resistência do ramo de magnetização do transformador
L _{Tel}	- Indutância do ramo de magnetização do transformador
R _{T21}	- Resistência do enrolamento secundário do transformador
L _{T21}	- Indutância do enrolamento secundário do transformador
R _{Td1}	- Resistência do enrolamento do transformador onde está o filtro
L _{Td1}	- Indutância do enrolamento do transformador onde está o filtro
C _d	- Capacitância do filtro
L_{dL1}, L_{dL2}	- Indutâncias das partes do indutor do filtro

R_{dL1}, R_{dL2}	- Resistências das partes do indutor do filtro
M _{dL1L2}	- Mutua indutância entre as partes do indutor do filtro
R _{dLe}	- Resistências do ramo de magnetização do indutor do filtro
R _d	- Resistência do filtro
G	- Gap ou Centelhador
Сн	- Capacitância do enrolamento de alta tensão
C _L	- Capacitância do enrolamento de baixa tensão
C _{HL}	- Capacitância entre os enrolamentos
C _{HT}	- Capacitância do enrolamento de alta para terra
C_{LT}	- Capacitância do enrolamento de baixa para terra
C_c	- Capacitância parasita do reator
L _b	- Indutância da bobina de bloqueio
V_{m}	- Valor médio da tensão
V_{ef}	- Valor eficaz da tensão
R _{rm}	- Resistência do ramo de magnetização do reator
L _{rm}	- Indutância do ramo de magnetização do reator
R _{tm}	- Resistência do ramo de magnetização do transformador
L _{tm}	- Indutância do ramo de magnetização do transformador
R _{rp}	- Resistência do enrolamento primário do reator
L _{rp}	- Indutância do enrolamento primário do reator

R _{rs}	- Resistência do enrolamento secundário do reator
L _{rs}	- Indutância do enrolamento secundário do reator
R _{ih}	- Resistência do enrolamento de alta do transformador
L _{th}	- Indutância do enrolamento de alta do transformador
R _{tx}	- Resistência do enrolamento secundário x do transformador
L _{tx}	- Indutância do enrolamento secundário x do transformador
R _{ty}	- Resistência do enrolamento secundário y do transformador
L _{ty}	- Indutância do enrolamento secundário y do transformador
I_{ef}	- Valor eficaz da corrente
Ipico	- Valor de pico da corrente
λ_{pico}	- Valor de pico do fluxo
Z _{eq}	- Impedância equivalente
C_{th}	- Capacitância parasita do enrolamento de alta do transformador
C _{rp}	- Capacitância parasita do enrolamento primário do reator

Resumo

10 A 40 C

A utilização de modelos matemáticos é fundamental para a solução de problemas de sobretensões transitórias em transformadores de potencial capacitivos (TPC) causadas por operações de chaveamento. Este trabalho apresenta uma metodologia baseada num método de ajuste vetorial utilizado para obter a função de transferência de TPC a partir de suas respostas em freqüência medidas em laboratório. No processo de ajuste, os dados necessários são o módulo e a fase da resposta em freqüência. Medições das características de elementos que contêm núcleo de ferro são realizadas de modo a permitir a obtenção de um modelo que contemple as não linearidades. No trabalho também é apresentado um outro método de otimização para a estimação de capacitâncias parasitas de TPC. O modelo pode ser aplicado em estudos de transitórios eletromagnéticos, através da utilização de programas do tipo EMTP (Electromagnetic Transients Program).

Abstract

The use of mathematical models is essential to solve problems related to transient overvoltages caused by switching operations in coupling capacitor voltage transformers (CCVT). This work presents a methodology based on a vector fitting method used to obtain the CCVT frequency response from laboratory measurement data. The magnitude and phase of the transfer function are the required input data to the fitting routine. Measurements of iron core characteristics are carried out to include nonlinearities in the model. In this work, an optimization method to estimate CCVT stray capacitances, is also presented. The model may be used in connection with the EMTP (Electromagnetic Transients Program).

Capítulo 1

Introdução

1.1 Motivação

A Companhia Hidro Elétrica do São Francisco (CHESF) tem reportado a interrupção no fornecimento de energia elétrica em decorrência da operação intempestiva de relés de sobretensão alimentados pelos terminais de baixa tensão de transformadores de potencial capacitivos (TPC). Essas sobretensões ocorreram durante operações normais de chaveamento e este fato motivou a realização de diversos ensaios de campo e de laboratório para uma melhor compreensão do problema. Torna-se imprescindível a determinação de um modelo que, através de estudos de transitórios eletromagnéticos, permita a determinação de formas de onda da tensão no TPC. A necessidade do estabelecimento desse modelo motivou a presente dissertação.

1.2 Objetivo

Esta dissertação tem por objetivo apresentar uma metodologia para definição de modelos de TPC para estudos de transitórios eletromagnéticos, tendo como base a curva de resposta em freqüência e os valores medidos de cada um dos seus componentes.

1.3 Organização da Dissertação

A estrutura da dissertação é a indicada a seguir:

- O capítulo 2 apresenta os conceitos fundamentais do transformador de potencial usado na proteção e medição, o histórico do TPC, as vantagens do TPC, e uma breve revisão da teoria de resposta em freqüência;
- O capítulo 3 mostra a revisão bibliográfica e o estado da arte;
- O capítulo 4 fornece a metodologia utilizada na realização dos ensaios do TPC e um estudo da sensibilidade de alguns parâmetros na resposta em freqüência;
- O capítulo 5 menciona duas formas possíveis de representação do TPC em estudos de transitórios eletromagnéticos;
- O capítulo 6 enumera as principais conclusões desta dissertação e sugestões para trabalhos futuros.

Capítulo 2

Fundamentação Teórica

Neste capítulo apresentaremos os conceitos fundamentais do transformador potencial usado para alimentar os relés de proteção e os instrumentos de medição, a evolução nos projetos dos TPC, as vantagens da sua utilização, e uma breve revisão da teoria de resposta em freqüência.

2.1 Transformador de Potencial

O transformador de potencial (TP) destina-se a alimentação de relés e de instrumentos de medição cujas bobinas possuem impedâncias muito elevadas. Portanto, em operação normal a corrente secundária, I_2 na Figura 2.1 é muito pequena, e o TP se comporta de maneira similar a um transformador de potência operando em vazio.

A Figura 2.1 representa de forma simplificada o TP constituído de dois enrolamentos. Como o enrolamento secundário possui uma tensão padrão V₂ de 115 V bem menor do que a primária V₁, o número de espiras do primário n_1 é bem maior do que o do secundário n_2 . O enrolamento secundário geralmente tem uma derivação que fornece a

tensão de 115/ $\sqrt{3}$ V.

A utilização do transformador de potencial está limitada a níveis de tensão primária menor ou igual a 138 kV, porque para valores superiores a este o seu peso, as suas dimensões e o seu custo aumentam significativamente.

Figura 2.1 – Transformador de potencial

2.2 Transformador de Potencial Capacitivo

Na década de trinta já se usava o divisor capacitivo cujo diagrama está indicado na Figura 2.2 para alimentar instrumentos indicadores e equipamentos de proteção, sendo a utilização do mesmo limitada pela baixa potência da carga que podia ser alimentada [SWEETANA & FLUGUM, 1966].

Posteriormente passou-se a utilizar um divisor capacitivo acoplado a um transformador, que por sua vez tinha em seu secundário um reator, e um capacitor variável para ajustar o fator de potência da carga, conforme diagrama do primeiro projeto de transformador de potencial capacitivo mostrado na Figura 2.3 [SWEETANA & FLUGUM,

1966].

O reator tem por finalidade compensar a defasagem provocada pelo divisor capacitivo de maneira a obter-se no secundário, em condição normal de operação a freqüência industrial, a tensão primária corrigida pela relação de transformação.

Figura 2.2 – Diagrama do divisor de potencial capacitivo.

Este arranjo melhorou a exatidão ao corrigir parcialmente o efeito capacitivo provocado por C_1 e C_2 , e ampliou a gama de cargas passíveis de serem alimentadas porque a inclusão do transformador permitiu a elevação da tensão intermediária do divisor e consequentemente a potência que pode ser fornecida. Ele não eliminou a restrição deste equipamento para medição em virtude da corrente de magnetização só circular no primário o que impedia o ajuste necessário para anular totalmente o efeito de C_1 e C_2 . A transmissão de grandes blocos de energia acarretou a necessidade de elevação da tensão a níveis superiores a 138 kV, estimulando os fabricantes a produzirem TPC para medição, o que foi obtido através de pequenas mudanças internas tais como a colocação do reator no primário do transformador, conforme indicado na Figura 2.4 [SWEETANA & FLUGUM, 1966].

Esta alteração impôs a mesma condição de carga no reator e no divisor capacitivo permitindo que a tensão secundária fosse uma réplica quase perfeita da tensão primária quando,

$$\frac{1}{(C_1 + C_2)\omega} = L\omega + X_1 + n^2 X_2,$$
(2.1)

Figura 2.4 – Diagrama do projeto modificado de transformador de potencial capacitivo.

Esta melhoria permitiu a utilização do TPC ao invés do TP na maioria dos casos, e com isto uma redução significativa de custo conforme indica o gráfico da Figura 2.5, onde verifica-se claramente a vantagem em termo de preço do TPC em relação ao TP [SWEETANA & FLUGUM, 1966] válida até a presente data.

Posteriormente verificou-se a necessidade da inclusão de um filtro supressor de ferroressonância [SWEETANA, 1971], cujo objetivo é eliminar as possíveis oscilações a freqüência industrial e subharmônicas, que podem ocorrer em circuitos compostos de capacitores e indutores com núcleo de ferro, face a uma eventual ressonância.

Figura 2.5 – Preço do TP e do TPC em relação ao do TP de 500 kV.

A Figura 2.6 apresenta alguns circuitos para amortecimento dessas oscilações. Eles são do tipo passivo quando formados de resistores, capacitores e/ou indutores, e ativos quando possuírem dispositivos semicondutores.

Figura 2.6 – Circuitos supressores de ferroressonância.

Verificou-se, também, a necessidade da inclusão de um circuito com a finalidade de proteger a parte indutiva do transformador de potencial capacitivo de eventuais sobretensões. Este circuito pode ser constituído de um centelhador em série com um resistor, de um centelhador em série com um circuito formado por um resistor e um capacitor em paralelo, ou por um simples pára-raios conforme Figura 2.7.

Capítulo 2 - Fundamentação Teórica

Figura 2.7 – Circuitos de proteção.

O diagrama indicado na Figura 2.8 é uma representação do TPC válido para freqüência industrial. Para freqüências superiores devem ser consideradas as capacitâncias parasitas do transformador intermediário existentes entre seus enrolamentos, e entre eles e a terra.

Figura 2.8 – Diagrama simplificado do transformador de potencial capacitivo.

2.3 Resposta em Freqüência

O conhecimento da resposta em freqüência de equipamentos que possuam elementos capacitivos e indutivos, tais como o TPC, é extremamente importante para evitar situações indesejáveis.

2.3.1 Função de Transferência

O termo geral função de transferência é utilizado para indicar a relação entre os valores das grandezas de saída e de entrada de um dado sistema, sem que haja

 $a_n \frac{d^n v}{dt^n} + \dots + a_1 \frac{dv}{dt} + a_0 v = b_m \frac{d^m f}{dt^m} + \dots + b_1 \frac{df}{dt} + b_0 f.$ (2.2)

Utilizando o operador $D \equiv d / dt$ temos:

$$(a_{n}D^{n} + \dots + a_{1}D + a_{0})v = (b_{m}D^{m} + \dots + b_{1}D + b_{0})f$$
(2.3)

Supondo f(t) um sinal senoidal, podemos representar v(t) e f(t) pelos fasores V e F, e se substituirmos D por jo, podemos escrever a função de transferência correspondente a Equação 2.3, isto é:

$$\mathbf{G}(j\omega) = \frac{\mathbf{V}}{\mathbf{F}} = \frac{\mathbf{b}_{m}(j\omega)^{m} + \dots + \mathbf{b}_{1}(j\omega) + \mathbf{b}_{0}}{\mathbf{a}_{n}(j\omega)^{n} + \dots + \mathbf{a}_{1}(j\omega) + \mathbf{a}_{0}}$$
(2.4)

A função de transferência $G(j\omega)$ é complexa e na forma polar é dada por:

$$\mathbf{G}(\mathbf{j}\boldsymbol{\omega}) = \mathbf{G}(\boldsymbol{\omega}) \angle \theta_{\mathbf{G}}(\boldsymbol{\omega}) \tag{2.5}$$

A variação de G(jo) com a freqüência o é chamada de resposta em freqüência do sistema, enquanto $G(\omega)$ é a amplitude e $\theta_G(\omega)$ a fase. Quando a função de transferência é adimensional, é comum expressar sua amplitude em decibéis, isto é:

$$G_{dB} = 20 \log_{10} G(\omega)$$
 (2.6)

necessidade das referidas grandezas possuírem a mesma natureza.

Quando as grandezas de saída e de entrada são de naturezas elétricas, a função de transferência é freqüentemente chamada de função de rede, que por sua vez pode receber o nome de função de impedância quando for a relação entre tensão e corrente, e função admitância quando for a relação entre corrente e tensão.

9

Nos sistemas lineares a saída v(t) e a entrada f(t) relacionam-se através de uma equação diferencial linear onde os coeficientes ai e bi são números reais.

Os gráficos de amplitude e fase, em decibéis e em graus, versus freqüência em escala logarítmica são conhecidos como diagramas de Bode em homenagem a H. W. Bode [CLEMENT & JOHNSON, 1960].

2.3.1 Pólos e Zeros

Vamos supor agora que ao invés de termos um sinal f(t) senoidal, tenhamos um sinal Fe^{st} , e que a aplicação do mesmo resulte numa resposta da forma $v(t) = Ve^{st}$. Substituindo f(t), v(t) e o operador D da Equação 2.3 por Fe^{st} , Ve^{st} e s, respectivamente, obtemos a função de transferência G(s) indicada a seguir:

$$\mathbf{G}(s) = \frac{\mathbf{V}}{\mathbf{F}} = \frac{\mathbf{b}_{m} \mathbf{s}^{m} + \dots + \mathbf{b}_{1} \mathbf{s} + \mathbf{b}_{0}}{\mathbf{a}_{n} \mathbf{s}^{n} + \dots + \mathbf{a}_{1} \mathbf{s} + \mathbf{a}_{0}}$$
(2.7)

ou

$$\mathbf{G}(\mathbf{s}) = \frac{\mathbf{V}}{\mathbf{F}} = \frac{\mathbf{b}_{m}}{\mathbf{a}_{n}} \cdot \frac{\mathbf{s}^{m} + \dots + \frac{\mathbf{b}_{1}}{\mathbf{b}_{m}} \mathbf{s} + \frac{\mathbf{b}_{0}}{\mathbf{b}_{m}}}{\mathbf{s}^{n} + \dots + \frac{\mathbf{a}_{1}}{\mathbf{a}_{n}} \mathbf{s} + \frac{\mathbf{a}_{0}}{\mathbf{a}_{n}}}$$
(2.8)

Na equação anterior se $s \to \infty$ temos que: $G(s) \to 0$ quando n>m, $G(s) \to \infty$ quando n<m, $G(s) \to b_m / a_n$ quando n = m.

O numerador e o denominador da Equação 2.8 são polinômios em s que podem ser fatorados em m e n fatores respectivamente, de maneira que G(s) pode ser escrita da forma abaixo.

$$\mathbf{G}(\mathbf{s}) = \frac{\mathbf{b}_{\mathrm{m}}}{\mathbf{a}_{\mathrm{n}}} \cdot \frac{(\mathbf{s} + \mathbf{z}_{\mathrm{1}}) \cdot (\mathbf{s} + \mathbf{z}_{\mathrm{2}}) \cdots (\mathbf{s} + \mathbf{z}_{\mathrm{m}})}{(\mathbf{s} + \mathbf{p}_{\mathrm{1}}) \cdot (\mathbf{s} + \mathbf{p}_{\mathrm{2}}) \cdots (\mathbf{s} + \mathbf{p}_{\mathrm{n}})}$$
(2.9)

ou

$$\mathbf{G}(\mathbf{s}) = \mathbf{K} \cdot \frac{(\mathbf{s} + \mathbf{z}_1) \cdot (\mathbf{s} + \mathbf{z}_2) \cdots (\mathbf{s} + \mathbf{z}_m)}{(\mathbf{s} + \mathbf{p}_1) \cdot (\mathbf{s} + \mathbf{p}_2) \cdots (\mathbf{s} + \mathbf{p}_n)}$$
(2.10)

 $= \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_$

Na Equação 2.10 os números z_i são valores de s que anulam G(s) e são chamados de zeros da função G(s), os números p_i são valores de s que tornam o valor de G(s) infinito e são chamados de pólos da função G(s), e K é uma constante.

Os zeros e os pólos podem ser reais ou complexos, sendo que os últimos podem ser simples ou múltiplos, e o conjunto especifica a função de transferência G(s) de tal maneira que se duas funções possuem os mesmos zeros e pólos elas representam a mesma função, a menos do fator de escala K.

No caso particular de f(t) ser nula a solução é dita natural, e a Equação 2.3 assume a forma abaixo.

$$a_n p^n + \dots + a_1 p + a_0 = 0 \tag{2.11}$$

Esta equação possui n raízes p_i que podem ser simples ou múltiplas, reais ou complexas conjugadas, e pode ser escrita na forma fatorada a seguir.

$$\mathbf{a}_{n} \cdot (\mathbf{p} + \mathbf{p}_{1}) \cdot (\mathbf{p} + \mathbf{p}_{2}) \cdots (\mathbf{p} + \mathbf{p}_{n}) = 0$$
(2.12)

Então a resposta natural conterá um termo exponencial para cada raiz real, um termo contendo oscilação para cada par de raízes complexas conjugadas, e será dada pela Equação 2.13 no caso de só possuir raízes simples e pela Equação 2.14 quando a raiz p₁ for de ordem dois, sendo os coeficientes A_i e A_{ij} constantes.

$$\mathbf{v}(t) = \mathbf{A}_1 \mathbf{e}^{\mathbf{p}_1 t} + \mathbf{A}_2 \mathbf{e}^{\mathbf{p}_2 t} + \dots + \mathbf{A}_n \mathbf{e}^{\mathbf{p}_n t}$$
(2.13)

$$\mathbf{v}(t) = \mathbf{A}_{11} \mathbf{e}^{\mathbf{p}_1 t} + \mathbf{A}_{12} t \mathbf{e}^{\mathbf{p}_1 t} + \mathbf{A}_2 \mathbf{e}^{\mathbf{p}_2 t} + \dots + \mathbf{A}_n \mathbf{e}^{\mathbf{p}_n t}$$
(2.14)

Salientamos que os expoentes da resposta natural são os pólos da função de transferência G(s).
Capítulo 3

Revisão Bibliográfica

Apresentaremos a seguir o estado da arte de modelos de TPC para estudos de transitórios eletromagnéticos, e sempre que possível faremos comparações com o presente trabalho de dissertação. Sweetana & Flugum (1966) fizeram considerações sobre transitórios e ferroressonância, e apresentaram um circuito equivalente do TPC válido para estudos de transitórios sem considerar a saturação. Segundo eles a severidade do transitório depende tanto das características da carga conectada ao TPC como do valor da tensão primária no instante da falta, o amortecimento do transitório depende da freqüência natural do circuito, e a saturação do transformador intermediário do TPC pode provocar oscilações ferroressonantes quando da ocorrência de variações bruscas na tensão, como aquelas que ocorrem nas operações de chaveamento e no caso de curto-circuito no secundário.

Eles salientaram a necessidade de projetar cuidadosamente o filtro supressor de ferroressonância do TPC em virtude de R ser baixo e Q alto o que afeta o amortecimento, principalmente para pequenas cargas secundárias; lembraram que o circuito de proteção colocado no primário contribui para a supressão das oscilações ferroressonantes, e propuseram o circuito equivalente da Figura 3.1, obtido a partir do diagrama do TPC da Figura 2.4, onde a existência de saturação e de capacitâncias parasitas entre enrolamentos, e entre estes e a terra não foram consideradas.

Figura 3.1 - Circuito equivalente do TPC segundo Sweetana & Flugum (1966).

Sweetana (1971) apresentou os resultados dos testes efetuados em um TPC e no seu equivalente de Thévenin, um programa de computador, e oito fatores que afetam a resposta transitória do TPC. Ele utilizou os circuitos de teste indicados nas Figuras 3.2 e 3.3, e obteve os mesmos resultados para as condições extremas de tensão igual a zero, e tensão igual ao valor de pico na inicialização da falta, independente do valor da tensão de ensaio considerada.

Figura 3.2 – Circuito de teste considerando a tensão da linha.

Figura 3.3 - Circuito de teste considerando a tensão da derivação.

Em virtude dos resultados terem sido os mesmos ele optou pela utilização do circuito equivalente da Figura 3.4 que considera a tensão intermediária do divisor, para desenvolver um programa de computador para estudos de transitórios. Este circuito não considera o ramo de magnetização porque ele tem uma impedância elevada, acarretando uma corrente de excitação extremamente baixa.

Os oito fatores identificados por ele que afetam a resposta transitória de um transformador de potencial capacitivo são:

1. Valor da tensão de alimentação e energia armazenada nos capacitores e indutores no

instante da falta. Supondo uma carga resistiva o transitório mais longo ocorre quando os capacitores estão carregados, e a tensão da linha no instante da falta aproxima-se de zero;

- Valores das capacitâncias C₁ e C₂. O aumento da capacitância reduz a amplitude e aumenta a duração do transitório.;
- Relação entre espiras dos enrolamentos do transformador intermediário. O aumento da relação entre espiras reduz a amplitude e aumenta a duração do transitório;
- Filtro supressor de ferroressonância. A amplitude e a duração do transitório depende dos indutores, capacitores, e resistores que constituem o filtro.
- 5. Amplitude e fator de potência da carga. Quando a amplitude da carga aumenta o transitório é mais severo para falta iniciando com tensão nula, e mais suave para falta iniciando na crista. Quando a carga torna-se mais reativa o transitório piora e tende a torna-se mais oscilatório;
- Composição e conexão da carga. A carga normalmente é composta de indutâncias e de resistências, e a melhor resposta transitória ocorre quando elas são colocadas em série;
- Resistência própria do TPC. A resistência própria do TPC tem que ser baixa para atender a classe de exatidão, e com isto piora a resposta transitória;
- 8. Corrente de excitação. A corrente de excitação deve ser a menor possível, da ordem de 2 a 3 mA, porque para cargas pequenas ela pode ter uma participação significativa na corrente total, e com isto provocar grandes transitórios.

O principal mérito deste trabalho foi ter mostrado que os resultados dos ensaios com tensão de linha e de derivação eram iguais. Salientamos que a tensão de derivação é superior aquela utilizada nos ensaios de resposta em freqüência apresentados

no presente trabalho.

Working Group of the Relay (1981) apresentou um relatório comentando que até a data da sua publicação os problemas associados a transitório com relés eletromecânicos eram poucos, segundo os fabricantes de relés, mas eles estavam preocupados com os efeitos de transitórios rápidos sobre os relés de estado sólido. Para minimizar tais efeitos os fabricantes de relés passaram a adicionar um filtro na entrada do relé com a finalidade de provocar um retardo na operação do mesmo, e os usuários passaram a reduzir o alcance do relé, sendo que a alternativa dos usuários não resolvia o problema quando havia erro na direção de detecção. Segundo o relatório a única maneira de garantir a operação correta do relé era comprar um TPC que tivesse sido testado em fábrica com o respectivo relé.

O relatório mencionava os principais fatores que afetam a operação do conjunto TPC/Relé, os principais parâmetros de projeto do TPC que afetam a resposta transitória, e a influência da resposta transitória do TPC sobre alguns tipos de relés.

Lucas et al (1992) desenvolveram um modelo para estudar o comportamento transitório do TPC considerando a saturação do núcleo ferromagnético do transformador intermediário, representado por uma fonte de corrente correspondente a soma das correntes que circulam em uma combinação em paralelo de uma resistência e de um indutor não linear conforme Figura 3.5.

Figura 3.5 – Base do Modelo de Lucas et al (1992).

A curva de magnetização pode ser expressa pela Equação 3.1 [LUCAS,

1988].

$$H = \sum k_1 B^{\alpha_1} \tag{3.1}$$

ou alternativamente por

$$\mathbf{i}_{\mathbf{m},\mathbf{n}} = \sum \mathbf{k}_{\mathbf{l}} \boldsymbol{\psi}^{\boldsymbol{\alpha}_{\mathbf{l}}} \tag{3.2}$$

sendo $k_1 > 0$ e α_1 tal que $0 < \alpha_1 \le 1$. Caso a região do joelho da curva B-H seja de grande importância $0 < \alpha_1 < 1$; do contrário $\alpha_1 = 1$.

A relutância do núcleo magnético S_n é dada por

$$S_n = \frac{i_{m,n}}{\psi^{\alpha_1}}$$
(3.3)

ou

$$S_n = \sum k_l \psi^{\alpha_l - l} \tag{3.4}$$

A corrente de perdas no núcleo é função da tensão e pode ser expressa por

$$i_{c,n} = k_n v_n^{\beta - 1} + \frac{v_n}{R}$$
 (3.5)

A corrente de excitação do transformador, considerando a presença de fluxo remanescente de magnetização anterior, é dada ela Equação 3.6 abaixo.

$$i_n = i_{m,n} + i_{c,n} + i_{\delta,n}$$
 (3.6)

sendo $i_{\delta,n} = I_r \cdot f(B_n)$ a corrente remanescente, que será igual ao seu valor máximo I_r quando B_n se aproximar da saturação. O circuito equivalente utilizado na simulação do TPC é o da Figura 3.6, onde os elementos estão referidos ao primário e as fontes de corrente correspondem as correntes de magnetização e perdas por histerese.

Figura 3.6 – Circuito equivalente de Lucas et al (1992).

Fazemos a ressalva de que apesar do estudo apresentar um modelo para considerar a saturação do transformador, ele não indica em nenhum momento a possibilidade de tal ocorrência.

Kezunovic et al (1992) desenvolveram um modelo de TPC a partir de técnicas experimentais de medição dos parâmetros do TPC indicados na Figura 3.7, e realizaram um estudos de sensibilidade para identificar aqueles parâmetros que eram relevantes na resposta transitória e nos estudos de proteção.

Figura 3.7 – Diagrama genérico do TPC.

As resistências e as indutâncias dos enrolamentos primário e secundário do transformador foram determinadas através de ensaios de curto-circuito, enquanto as capacitâncias parasitas foram calculadas a partir dos valores das indutâncias e das freqüências ressonantes dos enrolamentos utilizando-se:

$$C = \frac{1}{L(2\pi f_r)}$$
(3.7)

As freqüências ressonantes foram obtidas através de medições das impedâncias dos enrolamentos em função da freqüência. As medições da resposta em freqüência foram realizadas usando duas técnicas, uma para validação do modelo e a outra para análise de sensibilidade dos parâmetros, empregando respectivamente um gerador de sinal e um analisador de sinal dinâmico conforme Figura 3.8.

Figura 3.8 – Técnicas de medição de resposta em freqüência.

(a) Usando gerador de sinal. (b) Utilizando analisador de sinal dinâmico.

Os ensaios de resposta em freqüência foram realizados com uma carga resistiva de 100 Ω no secundário do TPC, numa faixa de freqüência de 10 Hz a 10kHz e com um sinal de tensão senoidal de 100 V no caso da primeira técnica, e de 30 V na segunda. Para que o sinal fosse um percentual aceitável da tensão primária nominal do TPC, ele foi aplicado conforme mostra o circuito equivalente indicado na Figura 3.9.

Figura 3.9 – TPC. (a) Circuito real (b) Circuito equivalente.

 $\sim 10^{10} \lesssim 10^{10}$

Figura 3.10 – Modelo detalhado do TPC.

A utilização do modelo detalhado exigia muito esforço computacional e apresentava dificuldade de obtenção de alguns parâmetros. Para efeito de simplificação do modelo foram realizados estudos de sensibilidade. Esses estudos consistiram na alteração de alguns parâmetros e na observação do impacto na resposta em freqüência até 10 kHz e tiveram como resultado o circuito da Figura 3.11.

A resistência e a indutância do enrolamento secundário foram mantidas, apesar de desprezíveis segundo resultados dos estudos de sensibilidade, porque a rotina Transformer do EMTP exige que sejam informados os valores de R_s e L_s , que no caso do TPC podem ser quaisquer desde que pequenos.

Salientamos que o método proposto por Kejunovic et al (1992) leva em conta a medição dos parâmetros de cada componente assim como o apresentado no

20

presente trabalho, mas não leva em conta a deteterminação da curva de saturação dos componentes com núcleo de ferro.

Kojovic et al (1994) desenvolveram um método prático para a realização de ensaios de resposta em freqüência no TPC instalado na subestação, e um método analítico para estimar os seus parâmetros. Eles tomaram como base o circuito do TPC indicado na Figura 3.12.

Figura 3.12 – Circuito do TPC utilizado por Kojovic et al (1994).

Inicialmente foram realizadas simulações com o EMTP e ensaios em laboratório, que validaram o procedimento de efetuar os ensaios de resposta em freqüência aplicando-se um sinal de 115 V no secundário do TPC. O objetivo desse procedimento era eliminar a necessidade da tensão de ensaio ser igual a tensão nominal do TPC, o acesso a parte interna do mesmo para alterar as conexões das capacitâncias $C_1 e C_2$ e reduzir a tensão de ensaio [SWEETANA et al, 1971; KEZUNOVIC et al, 1992].

O diagrama do circuito geral de teste utilizado está indicado na Figura 3.13. O resistor R é colocado no primário para que se obtenha um sinal de saída adequado, enquanto o resistor R_c representa a carga do TPC.

Figura 3.13 – Circuito para resposta em freqüência do TPC a partir do secundário.

21

O método desenvolvido para verificar o desenpenho do TPC na subestação consiste de:

- Isolar e aterrar a seção do barramento onde está conectado o TPC. O aterramento tem a finalidade de proteger o operador e reduzir o nível de ruído durante a medição;
- 2. Desligar o TPC da seção do barramento;
- 3. Conectar o resistor R no primário do TPC conforme Figura 3.14;
- Retirar a carga existente no secundário do TPC;
- Conectar o resistor R_e, representando a carga do TPC, em série com um amplificador de tensão de baixa impedância de saída;
- Conectar um gerador de sinal ao amplificador, que seja capaz de cobrir a faixa de freqüência desejada;
- Medir as tensões V_e e V_s para cada valor de freqüência e calcular o ganho usando a Equação 2.6.

A Figura 3.14 apresenta o diagrama de bloco do método utilizado por Kojovic et al (1994) nas medições de campo, e que foi validado em ensaios de laboratório. O computador foi utilizado para calcular o ganho e traçar o diagrama de Bode, utilizando o programa MATLAB.

O método analítico desenvolvido para estimar os parâmetros do TPC, utiliza uma metodologia de identificação de sistema baseada no método proposto por Rolain et al (1990), que considera somente a amplitude da função de transferência complexa.

O circuito equivalente utilizado para estimação dos parâmetros do TPC está indicado na Figura 3.15.

Figura 3.15 - Circuito equivalente do TPC segundo Kojovic et al (1994).

A Figura 3.16 mostra o circuito real e o circuito equivalente do filtro supressor de ferroressonância proposto por Kojovic et al (1992).

A formulação matemática do método analítico foi desenvolvida a partir dos circuitos equivalentes das Figuras 3.15 e 3.16, e consiste na obtenção das tensões através da Equação 3.8.

$$[\mathbf{V}] = [\mathbf{Y}]^{-1}[\mathbf{I}] \tag{3.8}$$

<u>23</u>

Os valores [I] e de [Y] são obtidos a partir das Equações 3.9 e 3.10, respectivamente.

$$\begin{bmatrix} \mathbf{j} \boldsymbol{\omega} \mathbf{C}_{1} \mathbf{n} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix}$$
(3.9)
$$\begin{bmatrix} \mathbf{Y} \end{bmatrix} = \begin{bmatrix} \mathbf{Y}_{11} & \mathbf{Y}_{12} & \mathbf{Y}_{13} & \mathbf{Y}_{14} \\ \mathbf{Y}_{21} & \mathbf{Y}_{22} & \mathbf{Y}_{23} & \mathbf{Y}_{24} \\ \mathbf{Y}_{31} & \mathbf{Y}_{32} & \mathbf{Y}_{33} & \mathbf{Y}_{34} \\ \mathbf{Y}_{41} & \mathbf{Y}_{42} & \mathbf{Y}_{43} & \mathbf{Y}_{44} \end{bmatrix}$$
(3.10)

onde n é a relação do transformador, as parcelas Y_{ij} estão referenciadas ao secundário e a tensão aplicada está normalizada.

Uma vez definido o método de medição e a formulação matemática do método analítico eles estabeleceram o procedimento para estimação de parâmetros, que consiste dos dois passos indicados a seguir:

• Efetuar o ensaio de resposta em freqüência do TPC;

• Estimar os parâmetros usando o programa MATLAB e o método analítico descrito.

Supondo a representação do TPC a elementos concentrados, as principais diferenças do presente trabalho em relação ao de Kojovic et al (1994) são devido ao fato de considerar a saturação, realizar os ensaios de resposta em freqüência a partir de um sinal injetado no primário, restringir a estimação dos parâmetros às capacitâncias parasitas dos enrolamentos primários do transformador e do reator e levar em conta o ganho e a fase no processo de estimação.

Vermeulen et al (1995) apresentaram um modelo de TPC baseado em um circuito equivalente a elementos concentrados para estudos na faixa de freqüência correspondente aos harmônicos do sistema de potência. O diagrama simplificado do TPC

utilizado nos testes é aquele da Figura 3.17 e a partir dele foi obtido o circuito equivalente.

Figura 3.17 - Diagrama simplificado do TPC utilizado por Vermeulen et al (1995).

A Figura 3.18 mostra o circuito equivalente a elementos concentrados, onde os valores dos componentes de cada uma das partes, isto é divisor capacitivo, reator, transformador e filtro supressor de ferroressonância, foram obtidos a partir de medições realizadas em um equipamento de teste desmontado.

Figura 3.18 - Circuito equivalente do TPC segundo Vermeulen et al (1995).

as Equações 3.11 e 3.12.

$$V_{Th} = V_1 \frac{C_1'}{C_1' + C_2}$$
(3.11)

$$C_{\rm Th} = C_1 + C_2 \tag{3.12}$$

onde:
$$C'_{1} = \frac{C_{d1}C_{d2}C_{1}}{C_{d1}C_{d2} + C_{d1}C_{1} + C_{d2}C_{1}}$$
 (3.13)

 C_{d1} e C_{d2} foram obtidas da placa do TPC;

 \mathbf{C}_1 e \mathbf{C}_2 foram obtidas através de medições na unidade desmontada.

Os parâmetros do reator foram obtidos utilizando-se as Equações 3.14, 3.15, 3.16, 3.17 e 3.18. $R'_{L} = 2R_{L}$ (3.14) $R'_{Le} = 2R_{Le}$ (3.15)

$$\mathbf{L}_{\mathrm{r}} = 2\mathbf{L}_{\mathrm{r}} \tag{3.16}$$

$$\dot{L}_{Le} = 2L_{Le}$$
 (3.17)
 $\dot{C}_{L} = \frac{C_{L}}{2}$ (3.18)

 $R_{L} = R_{L1} = R_{L2};$

 $L_{L} = L_{L1} = L_{L2};$

 $\mathbf{C}_{\mathrm{L}} = \mathbf{C}_{\mathrm{LI}} = \mathbf{C}_{\mathrm{L2}};$

$$\mathbf{R}_{\mathrm{Le}} = \mathbf{R}_{\mathrm{Le1}} = \mathbf{R}_{\mathrm{Le2}};$$

 $L_{\text{Le}} = L_{\text{Le1}} = L_{\text{Le2}} = M_{\text{Le1Le2}};$

 R_{L1} , R_{L2} , C_{L1} e C_{L2} foram obtidas através de medições;

<u> 26</u>

$$R_{Le1} = \frac{2V_{23}^2}{P_{13} - I_{13}^2 R_{14}}$$
(3.19)

$$L_{LI} = \frac{V_{13} - V_{23} - I_{13}R_{LI}}{2\pi f I_{13}}$$
(3.20)

$$L_{Le1} = \frac{V_{23}}{2\pi f \sqrt{I_{13}^2 - \left(\frac{V_{23}}{R_{Le1}}\right)^2}}$$
(3.21)

f, V_{13} , V_{23} , I_{13} e P_{13} foram obtidas através de ensaio do reator isolado.

Os parâmetros do transformador intermediário R_{T11} , R_{T21} , R_{Td1} , L_{T11} , L_{T21} e L_{Td1} foram obtidos através de ensaios enquanto C_{T11} , L_{Te1} e R_{Te1} foram calculados utilizando-se as Equações 3.22, 3.23 e 3.24, e referidos ao lado primário.

$$C_{T11} = \frac{I_{1c}}{2\pi f_c V_{1c}}$$
(3.22)

$$L_{\rm Tel} = \frac{1}{(2\pi f_{\rm r})^2 C_{\rm Tll}}$$
(3.23)

$$R_{Tel} = \frac{V_{lr}}{I_{lr}}$$
(3.24)

Os valores de V_{le} , I_{le} , V_{tr} e I_{le} foram obtidos através de ensaios sendo os dois primeiros considerando uma freqüência $f_c = 500$ Hz, e os dois últimos uma freqüência $f_r = 42$ Hz.

Os parâmetros do filtro supressor de ferroressonância a menos de C_d , que é um dado de placa, foram obtidos através de ensaios.

O método proposto por Vermeulen et al (1995) leva em conta a necessidade de desmontagem para medição dos componentes assim como o proposto no presente trabalho, mas não considera a saturação dos elementos de núcleo de ferro.

27

Marti et al (1997) apresentaram um modelo de TPC para simulação de transitórios eletromagnéticos em tempo real, baseado em técnicas de redução e síntese de rede para reduzir as operações de cálculo.

A obtenção de um modelo detalhado de um TPC, para uma faixa larga de freqüência, é complicado devido as interações magnéticas e capacitivas existentes no reator, transformador e filtro supressor de ferroressonância, que fazem parte do referido equipamento conforme diagrama da Figura 3.19.

Figura 3.19 – Diagrama de um transformador de potencial capacitivo.

Eles reduziram a complexidade do problema utilizando os circuitos equivalentes a elementos concentrados para o transformador e o reator indicados na Figura

3.20.

(a) Transformador de dois enrolamentos. (b) Reator.

Usando transformação de circuito [SLEMON & STRANGHEN, 1980], eles

obtiveram o circuito equivalente simplificado do transformador indicado na Figura 3.21, e mostraram que a impedância de dispersão $Z_{disp}(\omega)$ em paralelo com a capacitância parasita C_{HL} / n era igual a impedância de curto-circuito $Z_{cc}(\omega)$ medida durante o ensaio de curtocircuito, e isto foi feito comparando-se a resposta em freqüência da impedância de curtocircuito medida com a calculada.

Com a validação dos resultados, as capacitâncias parasitas foram consideradas constantes, e os efeitos da dependência da freqüência alocados na impedância de curto-circuito representada pelo modelo de Chimklai & Marti (1995), que consiste de um circuito contendo tantos blocos RLC quantos forem os picos de ressonância, conforme indicado na Figura 3.22.

Segundo a experiência deles a resposta em freqüência da impedância de curto-circuito, nos transitórios superiores a alguns kilohertz, pode ser representada pela região do primeiro pico de ressonância, ou seja por um único bloco RLC conforme Figura 3.23, onde $R_0 e L_0$ são os valores obtidos a 60 Hz, e C_1 é calculada a partir do primeiro pico de ressonância. C_1

Figura 3.23 – Representação aproximada de $Z_{cc}(\omega)$ proposta por Marti et al (1997).

Eles asseguram que um modelo muito exato de TPC, similar ao sugerido por Lucas et al (1992), pode ser obtido utilizando-se o modelo de transformador proposto por eles, juntamente com os respectivos modelos para o reator, o filtro supressor de ferroressonância, e as capacitâncias do divisor.

Iravani et al (1998) desenvolveram um modelo de TPC para simulações no domínio do tempo utilizando elementos concentrados com o objetivo de: avaliar, comparar e quantificar os impactos dos parâmetros, e dos circuitos de proteção e de supressão de ferroressonância do TPC na sua resposta transitória; predizer e quantificar o impacto do comportamento transitório do TPC no sistema de proteção; e investigar os impactos dos transitórios do sistema de potência, quando da ocorrência de falta ou operação de chaveamento, no comportamento transitório do TPC.

Inicialmente eles efetuaram estudos no domínio da freqüência, utilizando um modelo linear, para identificar a sensibilidade da saída aos diversos parâmetros do TPC visando: determinar as características apropriadas dos componentes do TPC para simulações no EMTP, e de comparar os resultados obtidos com o EMTP com os valores medidos nos ensaios de laboratório.

Após a análise dos componentes do TPC, eles utilizaram a biblioteca de modelos do EMTP para obtenção de um modelo detalhado do TPC que contemplasse: a característica de saturação e as derivações do transformador; as derivações do reator série; Ģ

o circuito de proteção; o filtro supressor de ferroressonância; e o tipo de carga.

A Figura 3.24 apresenta o diagrama esquemático do circuito utilizado para simular no EMTP os diversos tipos de transitórios impostos ao TPC.

Figura 3.24 – Diagrama esquemático do TPC para simulação no EMTP.

O modelo foi validado comparando os resultados dos testes de ferroressonância obtidos de simulações com o EMTP, com aqueles de ensaios de laboratório utilizando o circuito da Figura 3.25. Os testes de ferroressonância consistiram na aplicação de curto-circuito no secundário do TPC através da chave S₁, e posterior remoção para as condições de tensão zero e máxima, considerando uma carga de resistência nula nas simulações com o EMTP, e uma carga de 1 VA nos testes de laboratório.

<u>31</u>

O modelo foi utilizado para analisar alguns parâmetros e componentes do TPC através de simulações com o EMTP, para as condições de falta no primário e de curto-circuito no secundário. No primeiro caso verificou-se que um projeto que minimize C_{ps}, e que tenha uma bobina de dreno com fator Q adequado, pode praticamente eliminar a componente de alta freqüência, enquanto no último a utilização de um circuito de proteção reduzia o fenômeno de ferroressonância devido ao curto-circuito no secundário.

Fernandes Jr. (1999) apresentou um método para obtenção dos parâmetros do TPC a partir da sua curva de resposta em freqüência obtida em laboratório, e da utilização de uma rotina desenvolvida em FORTRAN, baseada no método de ajuste não linear de Levenberg-Marquardt, para ajustar a curva do modelo utilizado para o TPC à curva obtida experimentalmente.

Inicialmente foi feita uma análise de sensibilidade e foi obtido o circuito simplificado do TPC indicado na Figura 3.26, que é similar ao proposto por Kezunovic et al (1992).

Figura 3.26 - Circuito simplificado do TPC segundo Fernandes Jr (1999).

O modelo utilizado para o filtro supressor ferroressonância foi igual ao proposto por Kojovic et al (1994), que é aquele indícado na Figura 3.27.

a seguir:

i Cg

Figura 3.27 - Circuitos do filtro supressor de ferroressonância. (a) Real (b) Equivalente.

A expressão analítica do TPC foi desenvolvida a partir do circuito constituído de blocos de impedância indicado na Figura 3.28, onde foi desprezado o circuito de proteção com base em estudo de Kezunovic et al (1992).

Figura 3.28 – Circuito de blocos de impedância do TPC.

As expressões das impedâncias no domínio s, onde s = j ω , são as indicadas

$$Z_{1} = (R + sL) / (1 / sC)$$
(3.25)

$$Z_2 = R_p + sL_p \tag{3.26}$$

$$Z_3 = R_m // sL_m$$
 (3.27)

$$Z_4 = [s(L_1 + M) + 1/sC_f] / / s(L_2 + M)$$
(3.28)

$$Z_5 = R_f - sM \tag{3.29}$$

A relação entre a tensão de saída e a de entrada é dada pela Equação 3.30.

allen. V. C.

<u>33</u>

$$\frac{\mathbf{V}_{s}}{\mathbf{V}_{e}} = \left(\frac{\mathbf{V}_{s}}{\mathbf{V}_{2}}\right) \cdot \left(\frac{\mathbf{V}_{2}}{\mathbf{V}_{1}}\right) \cdot \left(\frac{\mathbf{V}_{1}}{\mathbf{V}_{e}}\right)$$
(3.30)

onde:

$$\frac{V_s}{V_2} = \frac{Z_c //(Z_4 + Z_5) //Z_3}{Z_2 + Z_c //(Z_4 + Z_5) //Z_3}$$
(3.31)

$$\frac{V_2}{V_1} = \frac{(1/sC_p)/[Z_2 + Z_c/(Z_4 + Z_5)/Z_3]}{Z_1 + (1/sC_p)/[Z_2 + Z_c/(Z_4 + Z_5)/Z_3]}$$
(3.32)

$$\frac{V_{1}}{V_{e}} = \frac{(1/sC_{2})/(\{Z_{1} + (1/sC_{p})/([Z_{2} + Z_{c})/(Z_{4} + Z_{5})/(Z_{3}]]\}}{1/sC_{1} + (1/sC_{2})/(\{Z_{1} + (1/sC_{p})/([Z_{2} + Z_{c})/(Z_{4} + Z_{5})/(Z_{3}]]\}}$$
(3.33)

A Equação 3.34 indica a expressão final para a relação V_s / V_e no plano s, cujo módulo para s = j ω é dado pela Equação 3.35 que foi a Equação implementada na rotina de ajuste não linear.

$$\frac{V_s}{V_e} = \frac{A_7 s^7 + A_6 s^6 + A_5 s^5 + A_4 s^4 + A_3 s^3 + A_2 s^2}{B_8 s^8 + B_7 s^7 + B_6 s^6 + B_5 s^5 + B_4 s^4 + B_3 s^3 + B_2 s^2 + B_1 s + B_0}$$
(3.34)

$$\left|\frac{V_{s}}{V_{e}}\right| = \frac{\sqrt{\left(-A_{6}\omega^{6} + A_{4}\omega^{4} - A_{2}\omega^{2}\right)^{2} + \left(-A_{7}\omega^{7} + A_{5}\omega^{5} - A_{3}\omega^{3}\right)^{2}}}{\sqrt{\left(B_{8}\omega^{8} - B_{6}\omega^{6} + B_{4}\omega^{4} - B_{2}\omega^{2} + B_{0}\right)^{2} + \left(-B_{7}\omega^{7} + B_{5}\omega^{5} - B_{3}\omega^{3} + B_{1}\omega\right)^{2}}}$$
(3.35)

onde os coeficientes Ai e Bi dependem dos parâmetros R, L e C do TPC.

A validação da rotina não linear consistiu: da geração da curva de resposta em freqüência do TPC usando os parâmetros obtidos por Kojovic et al (1994), e o programa MICROTRAN[®] [MICROTRAN POWER SYSTEM ANALYSIS CORPORATION, 1992]; da estimação dos parâmetro do TPC usando a rotina e a curva obtida anteriormente; da obtenção de uma segunda curva utilizando os parâmetros obtidos com a rotina e o programa MICROTRAN[®]; e da comparação das curvas geradas.

O método foi validado comparando a curva de resposta em freqüência obtida em ensaio de laboratório usando o esquema indicado na Figura 3.29, e aquela obtida usando o EMTP e os parâmetros estimados a partir da rotina não linear e da curva medida.

O trabalho apresentado por ele se assemelha ao de Kojovic et al (1994) e difere do presente trabalho principalmente devido ao fato de não considerar a saturação.

Moraes & Silva (1999) descreveram uma metodologia experimental utilizada para solucionar o problema de sobretensões observadas no secundário de TPC do sistema de 500 kV, quando das manobras de chaves seccionadoras. Através de avaliações das respostas lineares efetuadas até 100 kHz eles desenvolveram o filtro indicado na Figura 3.30, com o objetivo de deslocar os pólos da função de transferência para faixa de freqüência de baixa probabilidade de ocorrência.

A Figura 3.31 apresenta o diagrama esquemático do circuito de teste utilizado na determinação do filtro.

<u>35</u>

Figura 3.31 – Diagrama esquemático do circuito de teste.

Posteriormente eles avaliaram experimentalmente a utilização do filtro, e da blindagem proposta indicada na Figura 3.32, no contexto não linear através de manobras que induzem ferroressonância.

Figura 3.32 – Blindagem proposta por Moraes & Silva (1999).

Na avaliação não linear foi utilizado o circuito de teste indicado de forma esquemática na Figura 3.33 a seguir.

Figura 3.33 – Circuito de teste para avaliação não linear.

Como resultado dos ensaios foi recomendada a implantação da dupla blindagem indicada na Figura 3.32.

<u>36</u>

Capítulo 4

Detalhamento do TPC

Apresentamos neste capítulo a metodologia proposta para a realização dos ensaios do TPC e um estudo da sensibilidade de alguns parâmetros na resposta em freqüência. Salientamos que utilizamos um tanque e um TPC de 230 kV completo.

4.1 Identificação dos Componentes do TPC

O diagrama da Figura 4.1 indica os componentes do TPC utilizado.

Figura 4.1 – Diagrama do TPC de 230 kV.

Verificamos da Figura 4.1 que o TPC é constituído de um divisor capacitivo formado pelos capacitores $C_1 e C_2$, um transformador de tensão intermediária T, um reator série, um filtro supressor de ferroressonância, um circuito de proteção, uma bobina de drenagem com seu centelhador e sua chave, e uma bobina de bloqueio com seu centelhador e sua chave.

O divisor capacitivo, o transformador e o reator série são considerados componentes principais enquanto os demais são ditos secundários.

Da placa do TPC utilizado obtivemos as características indicadas a seguir:

- Tipo: TEM 230H
- Ano de fabricação: 1987
- Peso total: 397 kg
- Volume de óleo: 0,047 m³
- NBI: 1050 kV
- Capacitância: $C_1 = 4300 \text{ pF} / C_2 = 38100 \text{ pF}$
- Potência térmica: 1150 VA
- Carga total simultânea: 400 VA
- Tensão primária: 230 kV
- Freqüência: 60 Hz
- Fatores de tensão: 1,2 contínuo / 1,5 durante 30 s
- Tensão fase / terra: nominal = 132,80 kV / máxima = 139,73 kV
- Volume de óleo = 43 l
- Peso = 397 kg

A Tabela 4.1 apresenta as características dos secundários.

Secundário	Tensão	Relação	Exatidão	Carga (VA)	
	(V)		(ANSI)	Nominal	Térmica
X1-X3	115	1155	0,30MWXYZ,ZZ	400	550
X ₂ -X ₃	66,4	2000	0,30MWXYZ,ZZ	400	550
Y ₁ -Y ₃	115	1155	1,2ROWXYZ,ZZ	400	600
Y ₂ -Y ₃	66,4	2000	1,2ROWXYZ,ZZ	400	600

Tabela 4.1 - Características dos secundários.

4.2 Verificação da Função dos Componentes

A função do divisor é reduzir a tensão primária a um nível adequado ao transformador intermediário, que por sua vez reduz a mesma a tensão de serviço, enquanto o reator série tem a função de eliminar o efeito capacitivo do divisor.

O filtro de supressão de ferroressonância é constituído dos componentes R_{fl} , R_{f2} e L_{f} , onde o reator é saturável e é projetado para que a saturação ocorra com 1,5 pu da tensão nominal, quando isto ocorre tem-se um circuito de carga que amortece as oscilações subharmônicas em causa.

O circuito de proteção é o conjunto formado pelo resistor R_a em série com o centelhador conectado entre P_1 e P_2 , que atua como um contato normalmente aberto que se fecha quando a tensão intermediária ultrapassa 1,9 pu do seu valor nominal, ou quando a corrente secundária supera o seu limite térmico. O fechamento desse contato faz com que o TPC saia de sintonia, já que a inserção do resistor modifica as características do circuito, e limita a corrente secundária disponível no caso de curto-circuitos secundários e de sobretensões. Caso a condição anormal persista por mais de 30 segundos o dispositivo de

proteção se danificará e o contato permanecerá fechado.

A bobina de drenagem L_d , o centelhador e a chave de aterramento são componentes auxiliares que permitem que o TPC opere ou não como capacitor de acoplamento para transmissão de sinais de onda portadora.

O circuito formado pela bobina de bloqueio L_b , pelo centelhador e pela chave de aterramento tem a finalidade de impedir a perda do sinal de onda portadora quando houver a necessidade de isolar a parte indutiva do TPC.

Como o transformador, o reator série, e o reator do filtro possuem núcleo de ferro é necessário a determinação das curvas de saturação dos mesmos até o nível de tensão de disparo do circuito de proteção.

4.3 Medições em Laboratório

Descreveremos a seguir os ensaios realizados em laboratório para obtenção das características do TPC e de seus componentes, necessárias a modelagem do mesmo. Salientamos que a principal diferença em relação as medições realizadas por Kezunovic et al (1992) e por Vermeulen et al (1995), diz respeito ao fato de termos determinados a curva de saturação de cada elemento com núcleo de ferro.

4.3.1 Determinação das Relações de Transformação

Inicialmente determinamos as relações do reator série e do transformador intermediário utilizando os procedimentos indicados a seguir:

4.3.1.1 Relação do Reator Série

Na medição da relação de transformação do reator série, Figura 4.2,

utilizamos a fonte de tensão CA variável para alimentar o primário do reator, e efetuamos

sete medições usando o osciloscópio e duas pontas de prova sendo uma conectada ao primário e a outra ao secundário. A Tabela 4.2 apresenta as medições efetuadas e as relações calculadas.

Figura 4.2 – Esquema para medição da relação de transformação do reator série.

Terminais	Tensão (V)		Re	lação
	V ₁	V ₂	$(\mathbf{V}_{i}/\mathbf{V}_{2})_{i}$	$\sum_{i=1}^{7} \left(\mathbf{V}_{1} / \mathbf{V}_{2} \right)_{i} / 7$
P ₁ -P ₀ /S ₁ -S ₀	10,61	0,54	19,65	20,27
	21,50	1,06	20,28	
	43,84	2,15	20,39	
	66,47	3,25	20,45	
	86,27	4,24	20,35	
	108,89	5,37	20,28	
	127,28	6,22	20,46	

Tabela	4.2	Relação	de	transformação	do	reator	série.
Lavour		renguo	uç	ci unstormașao	uo	reation	20110.

4.3.1.2 Relações do Transformador Intermediário

Com o transformador do tanque de TPC isolado de todos os demais

41

componentes aplicamos tensão nos terminais X_1 - X_3 usando uma fonte de tensão CA variável, e efetuamos quatro medições usando um osciloscópio com uma ponta de prova para 20 kV conectada a H₁-H₀, e uma outra ponta de prova conectada alternadamente a X_1 - X_3 e X_2 - X_3 , conforme indicado na Figura 4.3 no caso da medição da relação de transformação H₁-H₀ / X_1 - X_3 .

Posteriormente, aplicamos tensão nos terminais Y_1 - Y_3 e medimos os níveis de tensão aplicados neles e os obtidos em Y_2 - Y_3 e H_1 - H_0 usando esquema similar aquele indicado na Figura 4.2.

A Tabela 4.3 apresenta as medições efetuadas e as relações calculadas.

Terminais	Tensā	0 (V)	Relação		
	V ₁	V ₂	$(\mathbf{V}_1/\mathbf{V}_2)_i$	$\frac{\sum_{i=1}^{4} \left(\mathbf{V}_{1} / \mathbf{V}_{2} \right)_{i} / 4}{2}$	
H_1-H_0/X_1-X_3	3330,0	30,2	110,26	110,34	
	6580,0	59,4	110,77	_	
	9830,0	89,1	110,33	-	

Tabela 4.3 - Relaç	ões de transforma	ção do transformad	or intermediário.
--------------------	-------------------	--------------------	-------------------

<u>42</u>

Capítulo 4 - Detalhamento do TPC

	13200,0	120,0	110,00	
H_1-H_0/X_2-X_3	3330,0	17,3	192,49	194,94
	6580,0	34,1	192,96	
	9830,0	49,9	196,99	
	13200,0	66,9	197,31	
$H_1 - H_0 / Y_1 - Y_3$	3290,0	29,8	110,40	110,02
	6620,0	59,8	110,70	
	9840,0	89,6	109,82	
	13100,0	120	109,17	
H ₁ -H ₀ /Y ₂ -Y ₃	3290,0	17,1	192,40	195,12
	6620,0	33,8	195,86	
	9840,0	50,1	196,40	
	13100,0	66,9	195,81	

4.3.2 Medição da Resistência dos Componentes Principais

Visando obter maiores informações sobre os diversos componentes que constituem a parte indutiva do TPC efetuamos a medição da resistência de cada enrolamento do reator série e do transformador intermediário, e dos resistores de amortecimento e do filtro supressor de ferroressonância.

4.3.2.1 Resistência dos Enrolamentos do Reator

Na obtenção dos valores da resistência dos enrolamentos do reator série

<u>43</u>

utilizamos uma fonte de tensão CC e dois multímetros. Aplicamos três níveis de tensão a cada um dos enrolamentos, medimos as respectivas correntes, e calculamos a resistência como sendo a média dos valores associados a cada um dos mencionados níveis.

Os esquemas que utilizamos nas medições das resistências dos enrolamentos primário e secundário do reator são similares. A Figura 4.4 apresenta o esquema para medição da resistência do enrolamento primário. Os resultados obtidos nos ensaios estão indicados na Tabela 4.4.

Figura 4.4 – Esquema para medição da resistência do enrolamento primário.

1 a peta 4.4 -	Resistencia	dos	enrolamentos	do reator	serie

Enrolamento	v	I	Resistência (Ω)	
	(mV)	(mA)	V/I	$\sum_{i=1}^{3} (\mathbf{V}/\mathbf{I})_{i} / 3$
P ₁ -P ₀	2043,00	5,11	399,61	399,52
	4080,00	10,23	398,83	
	6130,00	15,32	400,13	
S ₁ -S ₀	2043,00	375,00	5,45	5,43
	4080,00	751,38	5,43	
	6130,00	1135,19	5,40	

Salientamos que o valor de 399,52 Ω corresponde a derivação onde está

<u>44</u>

conectado o transformador.

4.3.2.2 Resistência dos Enrolamentos do Transformador

Na obtenção dos valores da resistência dos enrolamentos do transformador intermediário utilizamos uma fonte de tensão CC e dois multímetros. Aplicamos três níveis de tensão a cada um dos enrolamentos, medimos as respectivas correntes, e calculamos a resistência como sendo a média dos valores associados a cada um dos mencionados níveis.

A Figura 4.5 apresenta o esquema que utilizamos na medição da resistência do enrolamento primário do transformador.

Figura 4.5 – Esquema para medição da resistência do enrolamento primário do

transformador.

Na medição da resistência do enrolamento secundário X1-X3 utilizamos o

arranjo da Figura 4.6, onde a resistência R de 52,82 Ω tem a função de limitar o valor da

corrente. H_1 H_1 X_2 V R E X_3 Y_1 Y_2 H_0 Y_3

Utilizamos um circuito similar aquele da Figura 4.6 para medir a resistência

dos demais enrolamentos secundários. Os resultados obtidos estão indicados na Tabela 4.5.

Enrolamento	V	I	Resistên	cia (mΩ)
	(mV)	(mA)	V/I	$\sum_{i=1}^{3} \left(\mathbf{V}/\mathbf{I} \right)_{i} / 3$
H ₁ -H ₀	2043,00	5,97	342211,05	341617,43
	4080,00	11,96	341137,12	
	6130,00	17,95	341504,17	-
X ₁ -X ₃	0,90	38,64	23,29	22,29
	1,70	77,21	22,02	
	2,50	116,01	21,53	
X ₂ -X ₃	0,50	38,65	12,94	12,65
	1,00	77,22	12,95	
	1,40	116,03	12,07	
Y ₁ -Y ₃	1,70	38,63	44,01	44,01
	3,40	77,18	44,05	
	5,10	115,96	43,98	
Y2-Y3	1,10	38,64	28,47	27,46
	2,10	77,02	27,20	
	3,10	116,00	26,72	

Tabela 4.5 - Resistência dos enrolamentos do transformador.

<u>46</u>

ζÝ

Salientamos que o valor de 341617,43 m Ω corresponde a derivação onde está conectado o reator série.

4.3.2.3 Resistor de Amortecimento

O valor do resistor de amortecimento é $R_a = 25,0 \Omega$ e foi determinado com o auxilio de um multímetro.

4.3.2.4 Resistores e Reator do Filtro

Os valores dos resistores são iguais a $R_{fl} = 74,77 \ \Omega \ e \ R_{f2} = 2,29 \ \Omega \ e \ a$ resistência do enrolamento do reator é $R_f = 1,60 \ \Omega$, e foram determinados utilizando um multímetro.

4.3.3 Ensaio em Vazio

A seguir realizamos o ensaio em vazio no reator série e no transformador intermediário com o objetivo de determinar a resistência equivalente de perda no ferro, e a indutância de magnetização.

Neste ensaio utilizamos uma fonte de tensão CA variável, um wattímetro, um osciloscópio, duas pontas de prova, e um retificador de meia onda. A partir do wattímetro obtivemos a potência e a corrente, e do osciloscópio juntamente com as pontas de prova e o retificador o valor eficaz e o valor médio da tensão.

A determinação do valor da resistência de perda no ferro e da indutância de magnetização foi realizada de acordo com a norma NBR 5380 da Associação Brasileira de Normas Técnicas.

<u>47</u>
4.3.3.1 Reator Série

Na realização do ensaio em vazio do reator série utilizamos o circuito indicado na Figura 4.7, onde PR é uma ponte retificadora de meia onda e foi utilizada na medição do valor médio da tensão.

Figura 4.7 – Circuito do ensaio em vazio do reator série.

A partir dos valores medidos determinamos o valor da resistência de perda no ferro e da indutância de magnetização em relação ao secundário S_1 - S_0 , isto é, $R_{rm} =$ 3814,81 Ω e $L_{rm} =$ 387,28 mH.

4.3.3.2 Transformador Intermediário

Na realização do ensaio em vazio do transformador intermediário utilizamos o arranjo indicado na Figura 4.8.

A partir dos valores medidos determinamos o valor da resistência de perda no ferro e da indutância de magnetização em relação ao secundário X_1 - X_3 , isto é, $R_{tm} =$ 1094,53 Ω e $L_{tm} =$ 1419,65 m H.

4.3.4 Ensaio de Curto-circuito

A seguir realizamos o ensaio de curto-circuito no reator série e no transformador intermediário com o objetivo de determinar a resistência e a indutância de dispersão de cada um dos enrolamentos.

Neste ensaio utilizamos uma fonte de tensão CA variável, e um wattímetro para medir a potência, a corrente e a tensão.

Este ensaio foi realizado de acordo com as normas de reatores e transformadores da Associação Brasileira de Normas Técnicas.

4.3.4.1 Reator Série

Na realização do ensaio de curto-circuito do reator série utilizamos o arranjo indicado na Figura 4.9.

Figura 4.9 – Arranjo do ensaio de curto-circuito do reator série.

A partir dos valores medidos determinamos a impedância, a resistência e a reatância de curto-circuito, como sendo 2651,62 Ω , 2592,62 Ω e 556,24 Ω , respectivamente.

A seguir assumimos que a resistência do enrolamento primário era R_{rp} =

399,52 Ω , igual a obtida usando corrente contínua, e calculamos a resistência do secundário, e as indutâncias de dispersão de ambos enrolamentos, tendo encontrado os seguintes valores $R_{rs} = 5,34 \Omega$, $L_{rp} = 227,37 mH$, e $L_{rs} = 3,04 mH$.

4.3.4.2 Transformador Intermediário

Na realização do ensaio de curto-circuito do transformador intermediário

Figura 4.10 - Arranjos para determinação da impedância de curto-circuito.

(a) Z_{HX} (b) Z_{HY} (c) Z_{XY} .

A Tabela 4.6 apresenta os valores de impedância, resistência e reatância de

curto-circuito de cada arranjo.

tion and a March Street

Tabela 4.6 – Valores calculados a partir do ensaio de curto-circuito do transformador.

Grandeza	Valor / Arranjo		
	H – X	H – Y	X – Y
$Z_{cc}\left(\Omega ight)$	2539,68	3698,41	0,29
$R_{cc}(\Omega)$	937,26	1360,54	0,10
$X_{cc}\left(\Omega ight)$	2360,41	3439,07	0,27

A seguir calculamos a resistência, e a indutância de dispersão de cada enrolamento, tendo encontrado os valores indicados na Tabela 4.7.

Tabela 4.7 - Resistências dos enrolamentos e indutâncias de dispersão do transformador.

Resistência (mΩ)		Indutância (mH)	
R _{th}	342190,00	L _{th}	2226,73
R _{tx}	23,21	L _{tx}	0,16
R _{ty}	46,66	L _{ty}	0,32

4.3.5 Determinação das Curvas de Saturação

Posteriormente, procuramos determinar a curva de saturação do reator do filtro, do reator série, e do transformador, e verificamos que para tensões até cerca 1,9 pu o único elemento saturável é o reator do filtro. Verificamos, também, que a saturação do reator do filtro acarreta a saturação da parte indutiva do TPC.

Na determinação das curvas utilizamos uma fonte de tensão CA variável e dois multímetros.

4.3.5.1 Curva de Saturação do Reator Filtro

A Figura 4.11 apresenta o circuito que utilizamos no levantamento da curva

de saturação do reator do filtro.

<u>51</u>

Os valores eficazes de corrente e tensão obtidos no ensaio, bem como os valores de pico de corrente e de fluxo calculados usando o programa desenvolvido por Neves & Dommel (1993) estão indicados na Tabela 4.8.

Valores Medidos		Valores Calculados	
I _{ef} (A)	V _{ef} (V)	I _{pico} (A)	λ_{pico} (V.s)
0,000	0,00	0,0000	0,0000
0,005	8,40	0,0071	0,0315
0,006	9,86	0,0087	0,0370
0,008	14,94	0,0109	0,0560
0,010	19,62	0,0134	0,0736
0,012	25,20	0,0166	0,0945
0,014	29,92	0,0193	0,1122
0,016	35,44	0,0222	0,1329
0,019	40,02	0,0290	0,1501
0,022	44,96	0,0298	0,1687
0,025	50,42	0,0365	0,1891
0,028	55,60	0,0405	0,2086
0,032	60,62	0,0501	0,2274
0,037	65,37	0,0569	0,2452

Tabela 4.8 – Dados da curva de saturação do reator do filtro.

<u>52</u>

0,049	70,14	0,0957	0,2631
0,072	75,75	0,1422	0,2842
0,129	80,38	0,3042	0,3015
0,220	85,08	0,5055	0,3192
0,720	90,65	1,8992	0,3401
1,500	95,53	3,7552	0,3584
2,650	100,19	6,4676	0,3758
5,100	105,00	12,9380	0,3939

A Figura 4.12 apresenta a curva de saturação do reator do filtro.

Figura 4.12 – Curva de saturação do reator do filtro.

<u>53</u>

4.3.5.2 Curva de Saturação do Reator Série

A Figura 4.13 apresenta o circuito que utilizamos no levantamento da curva

de saturação do reator série.

Figura 4.13 – Circuito para determinação da curva de saturação do reator série.

Os valores eficazes de corrente e tensão obtidos no ensaio, bem como os valores de pico de corrente e de fluxo calculados usando o programa desenvolvido por Neves & Dommel (1993) estão indicados na Tabela 4.9.

Valores Medidos		Valores Calculados	
I _{ef} (A)	V _{ef} (V)	I _{pico} (A)	λ _{pico} (V.s)
0,000	0,00	0,0000	0,0000
0,050	10,00	0,0707	0,0375
0,135	20,00	0,2037	0,0750
0,200	30,00	0,2779	0,1125
0,265	40,00	0,3747	0,1501
0,330	50,00	0,4649	0,1876
0,395	60,00	0,5573	0,2251

Tabela 4.9 – Dados da curva de saturação do reator série.

·····			
0,460	70,00	0,6490	0,2626
0,520	80,00	0,7239	0,3001
0,580	90,00	0,8100	0,3376
0,645	100,00	0,9127	0,3751
0,705	110,00	0,9833	0,4126
0,765	120,00	1,0708	0,4502
0,830	130,00	1,1755	0,4877
0,890	140,00	1,2440	0,5252
0,950	150,00	1,3317	0,5627
1,015	160,00	1,4384	0,6002
1,075	170,00	1,5048	0,6377
1,135	180,00	1,5928	0,6752
1,195	190,00	1,6752	0,7128
1,255	200,00	1,7600	0,7503
1,315	210,00	1,8444	0,7878
1,375	220,00	1,9290	0,8253
1,435	230,00	2,0135	0,8628
1,495	240,00	2,0984	0,9003
1,556	250,00	2,1890	0,9378
1,615	260,00	2,2628	0,9753

<u>55</u>

1,674	270,00	2,3474	1,0129
1,735	280,00	2,4417	1,0504
1,796	290,00	2,5278	1,0879
1,855	300,00	2,6022	1,1254
1,915	310,00	2,6926	1,1629
1,974	320,00	2,7692	1,2004
2,035	330,00	2,8670	1,2379
2,094	340,00	2,9382	1,2754
2,155	350,00	3,0375	1,3130

A Figura 4.14 apresenta a curva de saturação do reator série referida ao secundário.

Figura 4.14 - Curva de saturação do reator série.

<u>56</u>

4.3.5.3 Curva de Saturação do Transformador Intermediário

A Figura 4.15 apresenta o circuito que utilizamos no levantamento da curva de saturação do transformador intermediário.

Figura 4.15 – Circuito para determinação da curva de saturação do transformador intermediário.

Os valores eficazes de corrente e tensão obtidos no ensaio, bem como os valores de pico de corrente e de fluxo calculados usando o programa desenvolvido por Neve & Dommel (1993) estão indicados na Tabela 4.10.

Tabela 4.10 - Dados da curva de saturação do transformador intermediário.

Valores	Valores Medidos		Calculados
I _{ef} (A)	V _{ef} (V)	I _{pico} (A)	λ_{pico} (V.s)
0,000	0,00	0,0000	0,0000
0,010	5,17	0,0141	0,0194
0,019	10,51	0,0264	0,0394
0,028	15,41	0,0398	0,0578
0,037	20,02	0,0530	0,0751

<u>Capítulo 4 – Detalhamento do TPC</u>

r			
0,046	25,45	0,0631	0,0955
0,054	30,61	0,0759	0,1148
0,062	35,18	0,0865	0,1320
0,072	40,61	0,1038	0,1523
0,081	45,53	0,1140	0,1708
0,089	50,15	0,1272	0,1881
0,100	55,77	0,1445	0,2092
0,109	60,57	0,1555	0,2272
0,119	65,35	0,1701	0,2451
0,129	70,73	0,1846	0,2653
0,139	75,42	0,1999	0,2829
0,148	79,96	0,2126	0,3000
0,159	85,51	0,2287	0,3208
0,169	90,29	0,2424	0,3387
0,178	94,78	0,2569	0,3555
0,189	100,36	0,2712	0,3765
0,200	105,90	0,2871	0,3973
0,210	110,49	0,2994	0,4145
0,219	115,09	0,3128	0,4317
0,230	120,62	0,3269	0,4525
8		L	1

Capítulo 4 - Detalhamento do TPC

0,239	125,26	0,3394	0,4699
0,250	130,82	0,3568	0,4907
0,259	135,63	0,3667	0,5088
0,269	141,14	0,3815	0,5295
0,280	146,66	0,3968	0,5502
0,290	152,25	0,4104	0,5711
0,297	155,76	0,4238	0,5843
0,307	160,64	0,4359	0,6026
0,316	165,11	0,4505	0,6194
0,327	170,57	0,4660	0,6399
0,335	174,96	0,4726	0,6563
0,345	180,46	0,4866	0,6770
0,355	186,02	0,4989	0,6978
0,362	189,99	0,5079	0,7127
0,370	194,42	0,5198	0,7293
0,381	200,70	0,5329	0,7529
0,390	205,55	0,5490	0,7711
0,397	209,77	0,5524	0,7869
0,406	215,20	0,5652	0,8073
			·····

A Figura 4.16 apresenta a curva de saturação do transformador

<u>59</u>

intermediário referida ao secundário X1-X3.

Figura 4.16 - Curva de saturação do transformador intermediário.

4.3.5.4 Curva de Saturação da Parte Indutiva do TPC

A Figura 4.17 apresenta o circuito que utilizamos no levantamento da curva de saturação da parte indutiva do TPC, que incorpora todos os componentes com núcleo de ferro.

Os valores eficazes de corrente e tensão obtidos no ensaio, bem como os valores de pico de corrente e de fluxo calculados usando o programa desenvolvido por Neves & Dommel (1993) estão indicados na Tabela 4.11.

Valores Medidos		Valores Calculados	
I _{ef} (A)	V _{ef} (V)	I _{pico} (A)	λ _{pico} (V.s)
0,000	0,00	0,0000	0,0000
0,004	5,37	0,0057	0,0201
0,007	10,47	0,0095	0,0393
0,012	15,84	0,0180	0,0594
0,013	20,36	0,0150	0,0764
0,018	26,02	0,0278	0,0976
0,020	31,11	0,0252	0,1167
0,024	36,77	0,0352	0,1379
0,027	41,72	0,0373	0,1565
0,029	45,25	0,0403	0,1697
0,033	50,91	0,0475	0,1910
0,035	56,57	0,0451	0,2122
0,039	62,23	0,0568	0,2334
0,043	67,88	0,0613	0,2546
0,045	73,54	0,0590	0,2759
0,049	79,20	0,0712	0,2971
0,052	83,44	0,0742	0,3130

 Tabela 4.11 - Dados da curva de saturação da parte indutiva.

Capítulo 4 - Detalhamento do TPC

0,054	89,10	0,0712	0,3342
0,057	94,75	0,0794	0,3554
0,062	100,41	0,0925	0,3767
0,065	104,65	0,0932	0,3926
0,069	110,31	0,1000	0,4138
0,072	115,97	0,0999	0,4350
0,075	121,62	0,1046	0,4562
0,078	127,28	0,1082	0,4775
0,081	131,52	0,1162	0,4934
0,083	138,59	0,1072	0,5199
0,086	144,25	0,1197	0,5411
0,089	149,91	0,1219	0,5624
0,093	155,56	0,1335	0,5836
0,097	161,22	0,1389	0,6048
0,100	166,88	0,1390	0,6260
0,107	169,71	0,1880	0,6366
0,159	175,01	0,3962	0,6565
0,247	181,02	0,6104	0,6791
0,283	183,85	0,6525	0,6897
0,368	189,50	0,8471	0,7109

<u>62</u>

 \hat{k}_{ij}

 e_{i+1}

and the second second

A DE LE LEVEL MAN

and the second second

and the second sec

and the second strategy and the second se

·	····		
0,467	195,16	1,0530	0,7321
0,544	199,76	1,1747	0,7494
0,622	205,77	1,2416	0,7719
0,707	211,07	1,4465	0,7918
0,795	217,08	1,5479	0,8143
0,887	222,39	1,7619	0,8343
0,972	227,69	1,8614	0,8541

A Figura 4.18 apresenta a curva de saturação da parte indutiva do tanque do TPC referida ao secundário X_1 - X_3 , com o joelho próximo ao fluxo de 0,626 V.s que corresponde a uma tensão eficaz de aproximadamente 167 V ou 1,5 pu.

Figura 4.18 - Curva de saturação da parte indutiva do TPC.

4.3.6 Saturação Artificial do TPC

Determinamos, também, qual o nível de corrente contínua necessário para

saturar artificialmente o TPC, e isto foi feito até o valor máximo de 13 A que corresponde a corrente do fusível que é de 16 A dividida pelo fator de dimensionamento do mesmo de 1,25.

Na realização deste ensaio utilizamos o arranjo da Figura 4.19 contendo um amplificador de potência, um gerador de sinais, um osciloscópio, duas pontas de prova, um amperímetro CC, seis baterias, e dois reostato.

Figura 4.19 - Circuito para determinação da corrente contínua necessária para saturar o

TPC.

A Tabela 4.12 apresenta os valores obtidos e indica que a corrente contínua

de 13 A leva o transformador intermediário a operar numa região saturada.

Corrente contínua em Y ₂ -Y ₃	Tensão pico a pico em X ₂ -X ₃	
(A)	(V)	
0,0	0,376	
0,2	0,368	
0,5	0,368	
1,0	0,368	
1,5	0,368	
2,0	0,368	
3,0	0,360	
4,0	0,360	
5,0	0,352	
6,0	0,344	
7,0	0,344	
8,0	0,344	
9,0	0,344	
10.0	0,344	
11,0	0,344	
12,0	0,328	
13,0	0,328	

Tabela 4.12 - Valores da corrente CC aplicada e da tensão X2-X3 med	ida.
---	------

A Figura 4.20 apresenta a curva da corrente contínua aplicada ao enrolamento secundário Y_2 - Y_3 versus tensão pico a pico medida no enrolamento secundário X_2 - X_3 .

Figura 4.20 – Curva corrente contínua versus tensão.

4.3.7 Resposta em Freqüência

Finalmente efetuamos um estudo de sensibilidade para determinar os impactos nos ensaios de resposta em freqüência do TPC, decorrentes do nível da tensão primária, da consideração ou não da bobina de drenagem, do enrolamento secundário usado, do valor da carga considerada, e da existência ou não de saturação do transformador intermediário.

Na realização dos ensaios de resposta em freqüência utilizamos um amplificador de potência, um gerador de sinais, um osciloscópio, duas pontas de prova, um amperímetro CC, duas cargas padrões, seis baterias, e dois reostato.

A Figura 4.21 apresenta o esquema genérico utilizado nos ensaios de resposta em freqüência do TPC, que consistiu de 81 medições para cada um dos 10 ensaios

(1) An over second s

A CONTRACTOR AND

AN INCOMENTARY

den Stehnen under inder

r Alexandre Ave

realizados.

Creditamos os formatos das curvas de ganho e de fase determinadas a partir dos resultados dos nove ensaios de resposta em freqüência, realizados sem considerar a saturação do transformador intermediário, as características de projeto do TPC utilizado no presente trabalho.

Figura 4.21 - Esquema genérico utilizado nos ensaios de resposta em freqüência no TPC.

4.3.7.1 Sensibilidade ao Nível de Tensão Primária

Aplicamos ao primário do TPC tensões senoidais tendo valores pico a pico de 1 kV_{p-p}, 720 V_{p-p} e 360 V_{p-p}, a 60 Hz, e depois variamos a freqüência de 20 Hz até 35 kHz, e medimos os módulos das tensões primária e secundária, e a diferença de fase entre elas.

A tensão secundária foi obtida no enrolamento X_1 - X_3 , sem considerar a carga padrão e o circuito CC indicado na Figura 4.21, e com a chave S_d fechada.

A Figura 4.22 mostra que para as tensões de 1 kV_{p-p} e 720 V_{p-p} os valores são praticamente iguais, e por este motivo utilizamos nos demais ensaios a tensão primária

de 720 V_{p-p} a 60 Hz.

Figura 4.22 - Sensibilidade ao nível de tensão primária. (a) Módulo. (b) Fase.

4.3.7.2 Sensibilidade ao Enrolamento Secundário Utilizado

Verificamos que os resultados dos ensaios de reposta em freqüência são praticamente os mesmos qualquer que seja o enrolamento secundário usado, como indica a Figura 4.23. Por isso, escolhemos o enrolamento de menor tensão onde está o filtro que é X_2 - X_3 para ser utilizado nos próximos ensaios.

A tensão de cada enrolamento secundário foi obtida sem considerar a carga padrão e o circuito CC indicado na Figura 4.21, e com a chave S_d fechada.

4.3.7.3 Sensibilidade a Bobina de Drenagem

Realizamos ensaios de resposta em freqüência para determinar a influência da bobina de drenagem e verificamos que a sua existência ou não só tem influência na fase para freqüências superiores a 20 kHz como pode ser comprovado da Figura 4.24, e por este motivo optamos em continuar os ensaios sem a referida bobina.

A tensão secundária foi obtida no enrolamento X_2 - X_3 sem considerar a carga padrão e o circuito CC indicado na Figura 4.21, e com a chave S_d na posição aberta e fechada.

(a) Módulo. (b) Fase.

4.3.7.4 Sensibilidade ao Valor da Carga Secundária

Em termo da carga conectada ao secundário verificamos através dos ensaios de resposta em freqüência que a mesma provoca alterações no ganho e na fase como indicado na Figura 4.25, e por este motivo optamos pela não inclusão da mesma nos ensaios subseqüentes.

A tensão secundária foi obtida no enrolamento X_2 - X_3 inicialmente sem carga e posteriormente alimentando uma carga padrão de 200 VA, que foi elevada em seguida para 400 VA, sem considera o circuito CC indicado na Figura 4.21, e com a chave S_d fechada.

Figura 4.25 - Sensibilidade a carga secundária. (a) Módulo. (b) Fase.

4.3.7.5 Sensibilidade a Saturação do Transformador

Finalmente realizamos ensaios para determinar a influência da saturação do núcleo do transformador intermediário na resposta em freqüência do TPC, e verificamos que a saturação do referido componente provoca grandes variações no ganho e na fase conforme indicado na Figura 4.26, o que torna imprescindível a representação da mesma em estudos de transitórios, caso o transformador sature antes da atuação do circuito de proteção.

A tensão secundária foi obtida no enrolamento X_2 - X_3 sem carga, com a chave S_d fechada, e com o circuito CC indicado na Figura 4.21 conectado ao enrolamento Y_2 - Y_3 e fornecendo uma corrente de 13 A de maneira a provocar a saturação artificial do transformador.

(a) Módulo. (b) Fase.

71

(b)

Capítulo 5

Representação do TPC

Descrevemos neste capítulo os resultados dos estudos referentes as duas formas possíveis de representação do TPC em estudos de transitórios eletromagnéticos, isto é, representação através da função de transferência e representação a elementos concentrados.

5.1 – Representação do TPC através da sua Função de Transferência

Nesta linha, a parte linear da rede física do TPC é representada pela sua função de transferência, a parte não linear por um indutor representando as características do elemento saturável, e os estudos de transitórios eletromagnéticos podem ser realizados utilizando-se a rotina TACS do EMTP.

A função de transferência pode ser obtida a partir da resposta em freqüência em módulo e em fase do TPC utilizando-se um processo de ajuste vetorial [GUSTAVSEN & SEMLYEN1, 1999], e a não linearidade pode ser determinada através de ensaios que permitam a obtenção das características dos elementos saturáveis. A Tabela 5.1 apresenta a curva de saturação do reator do filtro que é o único elemento saturável até o nível de atuação da proteção do TPC.

Ponto	Corrente (A)	Fluxo (V.s)
1	0,0501	0,2274
2	0,1422	0,2842
3	0,5055	0,3192
4	6,4676	0,3758
5	12,9380	0,3939

Tabela 5.1 – Curva de saturação do reator do filtro

A Figura 5.1 apresenta a resposta em freqüência medida e ajustada até 10 kHz, sendo que a ajustada foi obtida considerando uma função de transferência com 8 pólos, e apresenta diferenças significativas em ganho para valores de freqüência em torno de 300 Hz e a partir de 2 kHz, e em fase para freqüências na faixa de 20 a cerca de 400 Hz e superiores a 7 kHz. Dos 8 pólos resultantes do ajuste, 2 são reais.

Figura 5.1 – Valores medidos e ajustados até 10 kHz considerando uma função com 8 pólos.

73

A limitação da freqüência a um valor máximo de 2 kHz e a utilização de uma função de transferência com o mesmo número de pólos, resultou em diferenças de ganhos iguais aquelas correspondentes a 10 kHz, e de fases para valores inferiores a cerca de 20 Hz, conforme indicado na Figura 5.2. Os 8 pólos resultantes do ajuste são complexos.

Figura 5.2 – Valores medidos e ajustados até 2 kHz considerando uma função com 8 pólos.

A seguir aumentamos o número de pólos para 34 que corresponde ao número de leituras efetuadas até 2 kHz e observamos uma melhora significativa em termos de ganho e de fase, conforme indicado na Figura 5.3. Os 34 pólos resultantes do ajuste são complexos.

Figura 5.3 – Valores medidos e ajustados até 2 kHz considerando uma função com 34 pólos.

Verificamos que se o ajuste for feito usando unicamente o ganho como considerado por Kojovic et al (1994) e por Fernandes Jr. (1999) nos métodos de estimação de parâmetros, ele é bastante razoável até 10 kHz mesmo que a função de transferência só tenha 8 pólos conforme mostrado na Figura 5.4. Dos 8 pólos resultantes do ajuste 2 são reais.

Figura 5.4 – Valores medidos e ajustados até 10 kHz considerando somente o ganho e uma função com 8 pólos.

Verificamos que o TPC utilizado por Fernandes Jr. (1999) apresenta um ajuste em ganho e em fase até 10 kHz bastante razoável para função de transferência com 8 pólos, e muito bom para função com 44 pólos. No primeiro caso os 8 pólos resultantes do ajuste são complexos, e no segundo 4 são reais e os 40 restantes são complexos.

Lembramos entretanto que o TPC em estudo é diferente do utilizado por Fernandes Jr. (1999), apesar de pertencerem a mesma classe de tensão, isto é, o primeiro por incorporar tecnologia mais moderna é bastante compacto o que acarreta uma resposta em freqüência totalmente diferente e de ajuste mais complexo. A título de ilustração, o volume de óleo existente no tanque do TPC em estudo é de 47 litros, enquanto aquele utilizado por Fernandes Jr. (1999) possui 205 litros.

5.2 Representação do TPC por Elementos Concentrados

Esta linha considera a parte linear da rede física do TPC representada por elementos concentrados, a parte não linear por um indutor representando as características do elemento saturável, e os estudos de transitórios eletromagnéticos podem ser realizados utilizando-se o EMTP.

Salientamos que esta representação ainda está em desenvolvimento e as principais diferenças em relação a de Kojovic et al (1994) e a de Fernandes Jr. (1999) são: a consideração do módulo e da fase no processo de ajuste, e a redução dos parâmetros a serem estimados que no nosso caso ficam restritos aos de medições extremamentes complexas, tais como as capacitâncias parasitas envolvidas, evitando-se com isto a obtenção de parâmetros diferentes dos medidos isoladamente para um dado componente. Com isto pretendemos fixar os parâmetros conhecidos através de medições utilizando corrente contínua e corrente alternada com freqüência de 60 Hz.

A Figura 5.5 apresenta o circuito equivalente que estamos utilizando nos estudos da representação do TPC por elementos concentrados, onde todos os parâmetros estão referidos ao primário do transformador intermediário.

Figura 5.5 – Circuito equivalente do TPC de 230 kV em estudo.

Os valores de Zeq e I são dados pelas Equações 5.1 e 5.2 respectivamente.

$$Z_{eq} = 1 / j\omega(C_1 + C_2)$$
(5.1)

$$I = [V_{e} . C_{1} / (C_{1} + C_{2})] / Z_{eq}$$
(5.2)

Na determinação do circuito equivalente do TPC da Figura 5.5 levamos em consideração:

- O circuito do TPC da Figura 4.1;
- O estudo de sensibilidade que indicou que a resposta em freqüência independe do enrolamento secundário considerado, e a localização do filtro supressor de ferroressonância no enrolamento X₂ – X₃ para escolher o referido enrolamento para ser representado no circuito equivalente;
- Os resultados do estudo de resposta em freqüência com e sem bobina de drenagem que indicaram que a mesma não precisa ser representada no circuito equivalente;
- O valor da tensão utilizada nos ensaios de resposta em freqüência que foi bastante inferior àquela necessária para saturação do reator do filtro;
- A curva de saturação do reator do filtro, visto que é o único componente com núcleo de ferro que satura com tensão inferior a 1,9 pu do valor nominal, correspondente ao nível de disparo do centelhador existente no secundário do reator série.
- Os resultados das medições realizadas por Kezunovic et al (1992) e das simulações realizadas no EMTP por Fernandes Jr. (1999), que indicam que as únicas capacitâncias parasitas sensíveis a resposta em freqüência são as do primário do transformador e do reator série.

A partir do circuito equivalente da Figura 5.5 utilizamos um procedimento similar ao utilizado por Kojovic et al (1994) e determinamos a matriz nodal do modelo do TPC indicada na Equação 5.3.

77

$$\begin{bmatrix} \mathbf{Y} \end{bmatrix} = \begin{bmatrix} \mathbf{Y}_{11} & \mathbf{Y}_{12} & \mathbf{Y}_{13} & \mathbf{Y}_{14} & \mathbf{Y}_{15} \\ \mathbf{Y}_{21} & \mathbf{Y}_{22} & \mathbf{Y}_{23} & \mathbf{Y}_{24} & \mathbf{Y}_{25} \\ \mathbf{Y}_{31} & \mathbf{Y}_{32} & \mathbf{Y}_{33} & \mathbf{Y}_{34} & \mathbf{Y}_{35} \\ \mathbf{Y}_{41} & \mathbf{Y}_{42} & \mathbf{Y}_{43} & \mathbf{Y}_{44} & \mathbf{Y}_{45} \\ \mathbf{Y}_{51} & \mathbf{Y}_{52} & \mathbf{Y}_{53} & \mathbf{Y}_{54} & \mathbf{Y}_{55} \end{bmatrix}$$
(5.3)

As Equações 5.4 a 5.17 fornecem as admitâncias $Y_{ij}. \label{eq:constraint}$

$$Y_{11} = j\omega(C_1 + C_2) + j\omega C_{th} + 1/(R_{th} + j\omega L_{th})$$
(5.4)

$$Y_{12} = Y_{21} = -1/(R_{th} + j\omega L_{th})$$
(5.5)

$$Y_{13} = Y_{31} = Y_{15} = Y_{51} = 0 (5.6)$$

$$Y_{14} = Y_{41} = -j\omega C_{th}$$
(5.7)

$$Y_{22} = 1/(R_{th} + j\omega L_{th}) + 1/R_{tm} + 1/j\omega L_{tm} + 1/(R_{tx} + j\omega L_{tx})$$
(5.8)

$$Y_{23} = Y_{32} = -1/(R_{tx} + j\omega L_{tx})$$
(5.9)

$$Y_{24} = Y_{42} = -1/R_{tm} - 1/j\omega L_{tm}$$
(5.10)

$$Y_{25} = Y_{52} = 0 \tag{(5.11)}$$

$$Y_{33} = 1/(R_{tx} + j\omega L_{tx}) + 1/R_{f1} + 1/(R_{f2} + R_f + j\omega L_{f1})$$
(5.12)

$$Y_{34} = Y_{43} = -1/R_{fl} - 1/(R_{f2} + R_f + j\omega L_{fl})$$
(5.13)

$$Y_{35} = Y_{53} = 0 \tag{5.14}$$

$$Y_{44} = j\omega C_{th} + 1/R_{tm} + 1/j\omega L_{tm} + 1/R_{fl} + 1/(R_{f2} + R_f + j\omega L_f) + j\omega C_{rp} +$$

$$1/(R_{rp}+j\omega L_{rp})$$
 (5.15)

$$Y_{45} = Y_{54} = -1/(R_{rp} + j\omega L_{rp})$$
(5.16)

$$Y_{55} = 1 / R_{\rm rm} + 1 / j\omega L_{\rm rm}$$
(5.17)

O vetor de fontes de corrente é dado pela Equação 5.18.

- -

18 4 4 5

$$[\mathbf{I}] = \begin{bmatrix} \mathbf{I} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix}^{\mathrm{T}}$$
(5.18)

Utilizando as Equações 5.3 e 5.18 determinamos o vetor de potencial dos nós a partir da Equação 5.19.

$$[\mathbf{Y}] \cdot [\mathbf{E}] = [\mathbf{I}] \tag{5.19}$$

Posteriormente utilizamos os potenciais dos nós associados às tensões de saída e de entrada para determinarmos a relação entre elas.

Inicialmente, implementamos o modelo levando em consideração a formulação matemática proposta, o método de ajuste não linear de Levenberg-Marquardt, a linguagem FORTRAN, a função de erro da Equação 5.20, e que as únicas variáveis eram as capacitâncias parasitas indicadas nos estudos realizados por Kezunovic et al (1992) e por Fernandes Jr. (1999).

$$\sigma(C_{th}, C_{tp}) = \sum_{i=1}^{m} \left[\left(\frac{G_i - G}{G_i} \right)^2 + \left(\frac{\theta_i - \theta}{\theta_i} \right)^2 \right]$$
(5.20)

Onde G e θ são o módulo e a fase da função de transferência obtida a partir da formulação matemática conforme Equação 5.21.

$$G(j\omega) = \frac{E_3 - E_4}{V_e} = G \angle \theta$$
(5.21)

No momento estamos tentando identificar e incluir novas variáveis que tornem viável uma solução, visto que a inclusão de somente duas variáveis não está dando resultado. Salientamos que as duas únicas variáveis consideradas até o momento são as capacitâncias parasitas dos enrolamentos primários do transformador intermediário e do reator série.

Capítulo 6

Conclusões

Apresentamos a seguir as principais conclusões decorrentes dos ensaios realizados em laboratórios e dos estudos para representação do TPC de 230 kV:

- Apesar do filtro supressor de ferroressonância e do circuito de proteção serem considerados circuitos auxiliares, é extremamente importante na representação do TPC a determinação do princípio de funcionamento dos mesmos, bem como a identificação e a medição dos parâmetros dos seus componentes;
- É imprescindível a determinação das curvas de saturação dos componentes que contêm núcleo de ferro, para que possamos identificar os componentes responsáveis pela saturação do TPC até o nível de tensão de disparo do circuito de proteção, possibilitando com isto a representação da sua característica não linear. Salientamos que no TPC em estudo o único componente que saturou até o limite de atuação do circuito de proteção foi o reator do filtro;
- A bobina de drenagem praticamente não tem nenhuma influência no ensaio de resposta em freqüência;
- Em termo da carga conectada ao secundário, verificamos através dos ensaios de

Capítulo 6 - Conclusões

resposta em freqüência que na faixa até cerca de 100 Hz quanto maior a carga menor é o ganho;

- Caso haja interesse, é possível saturar artificialmente o transformador intermediário e obter a resposta em freqüência do TPC saturado;
- É praticamente impossível o estabelecimento de um modelo único para todos os tipos de TPC mesmo que eles possuam a mesma classe de tensão, em virtude principalmente das diferenças de projetos do filtro, do circuito de proteção, das dimensões do tanque, e da conexão do reator série antes ou após o transformador intermediário. Salientamos que quanto menor o tanque, maior é a importância das capacitâncias parasitas;
- Os procedimentos utilizados na determinação do modelo do TPC dependem da sua topologia, das características de seu filtro supressor de ferrorressonância e de seu circuito de proteção;
- O ajuste considerando somente o ganho, como utilizado por Kojovic et al (1994) e Fernandes Jr. (1999) nos métodos de estimação de parâmetros, permitiu a obtenção de uma função de transferência com menor número de pólos numa faixa maior de freqüência;
- A redução da dimensão do problema de estimação unicamente a determinação das capacitâncias parasitas dos enrolamentos primários do transformador e do reator evita a obtenção de valores irreais para os componentes que podem ser ensaiados, permitindo com isto a utilização do ensaio de resposta em freqüência na identificação de componentes defeituosos, e a obtenção do valor real da tensão em cada nó do circuito equivalente. Entretanto, este procedimento juntamente com as dimensões das grandezas envolvidas praticamente inviabilizam qualquer tentativa de ajuste, considerando o ganho e a fase, no sentido de obter as referidas capacitâncias e

consequentemente a representação do TPC por elementos concentrados;

Sugerimos para trabalhos futuros os tópicos indicados a seguir:

- Efetuar estudos para verificar a validade da utilização de função de transferência ajustada considerando unicamente o ganho obtido a partir de ensaios de resposta em freqüência;
- Verificar a validade do ajuste para obtenção da função de transferência ser realizado por faixa de freqüência;
- Estabelecer uma metodologia que permita para cada tipo de TPC a identificação de variáveis cujos valores possam ser obtidos através de estimação de parâmetros considerando o ganho e a fase, que juntamente com as grandezas medidas em laboratório permitam a representação do TPC por elementos concentrados;
- Realização em laboratório de ensaios de ferroressonância com a finalidade de validação do modelo.

Referências Bibliográficas

- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. Transformador de Potência Método de Ensaios. NBR 5380. Rio de Janeiro, Maio 1993.
- BRASIL, D. O. C., e FERREIRA, F. M. C. Fundamentos do Programa EMTP. Recife: ATEPE-UFPE/DEESP, Setembro 1995.
- CLEMENT, P. R., and JOHNSON, W. C. Electrical Engineering Science. Tokyo: McGraw-Hill Kogakusha Ltd, 1960.
- CHAPRA, S. C. and CANALE, R. P. Numerical Methods for Engineers. Third Edition, WCB/McGraw-Hill, 1998.
- CHIMKLAI, S. and MARTI, J. R. "Simplified Three-Phase Transformer Model for Electromagnetic Transient Studies". IEEE Transactions on Power Delivery. Vol. 10, No.3, pp. 1316-I325, July 1995.
- DE MEDEIROS FILHO, S. Medição de Energia Elétrica. Rio de Janeiro: Editora Guanabara, 1976.
- DESOER, C. A., and KUH, E. S. Basic Circuit Theory. Tokyo: Kogakusha Company Ltd, 1969.
- DOMMEL, H. W. "Digital Computer Solution of Electromagnetic Transients in Single and Multiphase Networks". IEEE Transactions on Power Apparatus and Systems.
Vol. PAS-88, No. 4, pp. 388-399, April 1969.

- DOMMEL, H. W. EMTP Theory Book. Microtran Power System Analysis Corporation. Vancouver, British Columbia, April 1996.
- DOUGLASS, D. A. "Potential Transformer Accuracy at 60 Hz Voltages Above and Below Rating and at Frequencies Above 60 Hz". IEEE Transactions on Power Apparatus and Systems. Vol. PAS-100, No. 3, pp. 1370-1375, March 1981.
- FERNANDES, A. B. Linhas de Transmissão: Modelo Otimizado para Estudos de Transitórios Eletromagnéticos. Dissertação de Mestrado, UFPB, 1996.
- FERNANDES Jr., D. Estimação de Parâmetros para Transformadores de Potencial Capacitivo. Dissertação de Mestrado, UFPB, Setembro de 1999.
- FLUKE CORPORATION. 5205A Precision Power Amplifier Instruction Manual. U.S.A, 1976.
- GREENWOOD, A. Electrical Transients in Power Systems. Second Edition. New York: John Wiley & Sons INC., 1991.
- GUSTAVSEN, B., SEMLYEN, A. "Rational Approximation of Frequency Domain Responses by Vector Fitting". IEEE Transactions on Power Delivery. Vol. 14, No. 3, pp. 1052-1061, July 1999.
- IEEE Committee Report. "Transient Response of Current Transformers". Working Group of the Relay Imput Sources Subcommittee of the Power System Relay Committe. IEEE Transactions on Power Apparatus and Systems. Vol. PAS-96, No. 6, pp. 1809-1814, November / December 1977.
- IEEE Committee Report. "Transient Response of Coupling Capacitor Voltage Transformers". Working Group of the Relay Imput Sources Subcommittee of the Power System Relay Committee. IEEE Transactions on Power Apparatus and Systems. Vol. PAS-100, No. 12, pp. 4811-4814, December 1981.

- IRAVANI, M. R., WANG, X., POLISHCHUK, I., RIBEIRO, J. and SARSHAR, A. "Digital Time-Domain Investigation of Transient Behaviour of Coupling Capacitor Voltage Transformer". IEEE Transactions on Power Delivery. Vol.13, No.2, pp. 622-629, April 1998.
- KEZUNOVIC, M., KOJOVIC, Lj., SKENDZIC, V., FROMEN, C. W., SEVCIK, D. R. and NILSSON, S. L. "Digital Models of Coupling Capacitor Voltage Transformers for Protective Relay Transient Studies". IEEE Transactions on Power Delivery. Vol.7, No. 4, pp. 1927-1935, October 1992.
- KEZUNOVIC, M., KOJOVIC, Lj., ABUR, A., FROMEN, C. W., SEVCIK, D. R. and PHILLIPS, F. "Experimental Evaluation of EMTP-Based Current Transformer Models for Protective Relay Transient Study". IEEE Transactions on Power Delivery. Vol. 9, No. 1, pp. 405-413, January 1994.
- KOJOVIC, Lj., KEZUNOVIC, M., SKENDZIC, V., FROMEN, C. W. and SEVCIK, D. R.
 "A New Method for the CCVT Performance Analysis Using Field Measurements, Signal Processing and EMTP Modeling". IEEE Transactions on Power Delivery. Vol.9, No.4, pp. 1907-1915, October 1994.
- LUCAS, J. R., MCLAREN, P. G., KEERTHIPALA, W. W. L. and JAYASINGHE, R. P. "Improved Simulation Models for Current and Voltage Transformers in Relay Studies". IEEE Transactions on Power Delivery. Vol.7, No.1, pp. 152-159, January 1992.
- MARTI, J. R., LINARES, L. R. and DOMMEL, H. W. "Current Transformers and Coupling-Capacitor Voltage Transformers in Real-Time Simulations". IEEE Transactions on Power Delivery. Vol.12, No.1, pp. 164-168, January 1997.
- MICROTRAN REFERENCE MANUAL. Transients Analysis Program for Power and Power Electronic Circuits. Microtran Power System Analysis Corporation.

時にするのできるというないのである。ないないないである。

Vancouver, British Columbia, June 1991.

- MORAES, H. M., e SILVA, J. C. R. "Sobretensões em TPC Durante Manobra de Chave Seccionadora". Anais do XV SNPTEE, Grupo de Estudo de Sobretensões, Coordenação de Isolamento e Interferência, Novembro de 1999.
- NEVES, W. L. A., and DOMMEL, H. W. "On modeling iron core nonlinearities". IEEE Transactions on Power Systems. Vol.8, No.2, pp. 417-423, May 1993.
- PRESS, W. H., TEUKOLSKY, S. A., VETTERLING, W. T. and FLANNERY, B. P. Numerical Recipes in FORTRAN 77 The Art of Scientific Computing. Second Edition. New York: Cambridge University Press, Reprinted with corrections 1996.
- PRESS, W. H., TEUKOLSKY, S. A., VETTERLING, W. T. and FLANNERY, B. P. Numerical Recipes in FORTRAN 90 - The Art of Parallel Scientific Computing. Second Edition. New York: Cambridge University Press, 1996.
- ROLAIN, Y., PINTELON, R., SCHOUKENS, J. "Amplitude-Only versus Amplitude-Phase Estimation". IEEE Transactions on Instrumentation and Measurement. Vol 39, No. 6, pp. 818-823, December 1990.
- SIMONE, G. A. Transformadores. Primeira Edição. São Paulo: Editora Érica Ltda, 1998.
- SLEMON, G. R. and SRANGHEN, A. Electric Machines. Addison-Wesley, pp. 139-141, 1980.
- STIGANT, S. A., and FRANKLIN, A. C. J&P Transformer Book. 10th Edition. London: Newnes-Butterworths, 1976.
- SWEETANA, A., and FLUGUM, R. W. "A New Metering Accuracy Capacitive Potential Device". IEEE Transactions on Power Apparatus and Systems. Vol. PAS-85, No. 5, pp. 499-510, May 1966.

SWEETANA, A. "Transient Response Characteristics of Capacitive Potential Devices".

IEEE Transactions on Power Apparatus and Systems. Vol. PAS-90, pp. 1989-2001, September/October 1971.

TEKTRONIX. CFG280 11 MHz Function Generator - User Manual. U.S.A., 1991.

- TEKTRONIX. TDS 210 & TDS 220, Digital Real-Time Oscilloscopes User Manual. U.S.A., 1997.
- VERMEULEN, H. J., DANN, L. R. and ROOIJEN, J. "Equivalent Circuit Modelling of a Capacitive Voltage Transformer for Power System Harmonic Frequencies". IEEE Transactions on Power Delivery. Vol.10, No.4, pp. 1743-1749, October 1995.

Apêndice A

Resultados dos Ensaios de Resposta em Freqüência

Fabela A.1 – Resposta em	frequência H ₁₀ -X ₂₃	- 720 V a 60 Hz -	Carga = 0 VA - Sem

f	Vp	Vs	Ganho	θ	F	Vp	Vs	Ganho	θ
(Hz)	(V _{p-p})	(V _{p-p})	(dB)	(graus)	(Hz)	(V _{p-p})	(V _{p−p})	(dB)	(graus)
10	740	0,12	-9,780	-180	3597	720	0,30	-1,469	0
20	740	0,86	7,326	-36	3802	720	0,31	-1,355	0
40	740	0,44	1,505	0	4000	720	0,31	-1,355	0
60	720	0,38	0,561	0	4202	704	0,31	-1,048	0
80	720	0,35	-0,195	0	4401	704	0,31	-1,048	0
100	720	0,35	-0,195	0	4602	696	0,31	-0,948	0

bobina de drenagem - Sem saturação.

150	728	0,30	-1,796	0	4798	696	0,32	-0,729	0
200	72.8	0.28	-2.279	14	5000	696	0.32	-0.729	0
200	, 20			I /			0,52	-0,725	
249	728	0,24	-3,618	18	5198	704	0,33	-0,613	0
300	728	0,12	-9,638	0	5400	696	0,33	-0,514	0
350	728	0,34	-0,592	-50	5605	696	0,34	-0,305	0
402	728	0,35	-0,291	0	5800	704	0,34	-0,200	0
451	728	0,34	-0,491	0	5995	704	0,35	0,000	0
500	720	0,33	-0,809	0	6203	712	0,36	0,193	0
550	728	0,32	-1,011	0	6394	704	0,37	0,480	0
600	720	0,32	-1,023	0	6596	704	0,38	0,756	0
650	720	0,32	-1,023	0	6793	704	0,40	1,110	0
699	720	0,31	-1,243	0	7003	704	0,42	1,451	0
750	720	0,31	-1,243	0	7205	704	0,43	1,779	26
800	720	0,31	-1,243	0	7396	696	0,46	2,348	27
849	720	0,31	-1,243	0	7599	704	0,49	2,838	28
901	720	0,30	-1,469	0	7800	696	0,54	3,752	33
949	720	0,30	-1,469	0	8000	704	0,59	4,516	42
1004	720	0,30	-1,469	0	8197	696	0,66	5,506	58
1099	720	0,30	-1,469	.0	8403	696	0,67	5,716	69
1200	720	0,30	-1,469	0	8591	696	0,58	4,377	90

<u>89</u>

202

ŀ

1300	720	0,30	-1,469	0	8803	696	0,43	1,878	110
1399	720	0,30	-1,469	0	8993	696	0,30	-1,406	131
1499	720	0,30	-1,469	0	9208	696	0,19	-5,166	131
1600	720	0,30	-1,469	0	9398	696	0,13	-8,687	115
1701	720	0,30	-1,469	0	9597	696	0,09	-11,942	103
1799	720	0,30	-1,469	0	9804	696	0,06	-14,708	88
1905	720	0,30	-1,469	0	10000	696	0,06	-15,563	72
2000	720	0,30	-1,469	0	12080	704	0,11	-9,793	0
2203	720	0,31	-1,355	0	13850	696	0,07	-13,447	-37
2404	720	0,32	-1,132	0	14990	696	0,26	-2,532	-67
2604	720	0,30	-1,469	0	20000	696	0,36	0,294	7
2801	720	0,29	-1,938	0	25000	704	0,19	-5,448	23
3003	720	0,29	-1,938	0	30010	696	0,45	2,194	25
3205	720	0,30	-1,700	0	35010	696	0,22	-3,827	46
3401	720	0,30	-1,700	0					

<u>90</u>

Tabe	la A	.2 –]	Resposta	em	freqüência	H_{10} - X_{23} ·	- 720 V	' a 60	Hz -	Carga	= 0	VA ·	– Com
------	------	--------	----------	----	------------	-----------------------	---------	--------	------	-------	-----	------	-------

f	Vp	Vs	Ganho	θ	f	V _p	Vs	Ganho	θ
(Hz)	(V _{p-p})	(V _{p-p})	(dB)	(graus)	(Hz)	(V _{p-p})	(V _{p-p})	(dB)	(graus)
10	700	0,13	-8,737	-171	3597	660	0,31	-0,487	0
20	700	0,78	6,961	-18	3794	660	0,31	-0,487	0
40	700	0,42	1,501	0	4000	660	0,32	-0,267	0
60	700	0,37	0,436	0	4202	660	0,32	-0,267	0
79	700	0,34	-0,150	0	4401	660	0,33	-0,053	0
100	700	0,33	-0,564	0	4604	660	0,33	-0,053	0
150	700	0,29	-1,694	0	4808	660	0,33	-0,053	0
200	700	0,26	-2,717	18	5000	660	0,33	-0,053	0
250	700	0,22	-3,876	23	5208	660	0,34	0,157	0
299	700	0,10	-11,236	0	5400	660	0,35	0,561	0
350	700	0,35	-0,050	-51	5605	660	0,36	0,756	0
400	700	0,37	0,436	-14	5800	660	0,37	0,947	0
451	700	0,34	-0,355	0	5995	660	0,37	0,947	11
500	680	0,33	-0,312	0	6196	660	0,38	1,133	11
550	680	0,32	-0,527	0	6402	660	0,38	1,316	20

bobina	de	drenagem	-	Sem	saturação.
--------	----	----------	---	-----	------------

		17							
600	680	0,31	-0,746	0	6596	660	0,40	1,671	21
649	680	0,30	-0,972	0	6793	660	0,41	1,843	24
700	680	0,31	-0,746	0	7003	660	0,43	2,339	25
749	680	0,30	-0,972	0	7194	660	0,45	2,655	26
799	680	0,30	-0,972	0	7396	660	0,46	2,960	26
850	680	0,30	-0,972	0	7599	660	0,49	3,398	32
901	68 0	0,30	-0,972	0	78 00	660	0,52	3,950	39
951	680	0,30	-1,204	0	8000	660	0,56	4,593	50
1000	680	0,30	-1,204	0	8197	660	0,62	5,533	59
1101	680	0,30	-1,204	0	8403	660	0,64	5,753	75
1202	680	0,30	-1,204	0	8591	660	0,56	4,593	96
1299	680	0,29	-1,442	0	8803	660	0,42	2,012	119
1397	680	0,30	-1,204	0	9009	660	0,29	-1,182	129
1499	680	0,30	-0,972	0	9200	660	0,19	-4,704	131
1603	680	0,30	-0,972	0	9407	660	0,14	-7,448	126
1701	680	0,30	-0,972	0	9597	660	0,11	-9,386	120
1802	680	0,30	-0,972	0	9804	660	0,09	-11,285	104
1901	680	0,30	-0,972	0	10000	660	0,09	-11,680	89
2000	680	0,30	-0,972	0	11990	660	0,14	-7,325	21
2198	680	0,30	-0,972	0	13850	660	0,10	-10,725	-61
	<u> </u>		<u> </u>	<u> </u>		L	_ _		

<u>92</u>

Apêndice A - Resultados dos Ensaios de Resposta em Freqüência

an Star

1999 1999

10.200 10.400

and the second second

2402	660	0,31	-0,487	0	14990	660	0,26	-2,205	-65
2604	660	0,31	-0,487	0	20000	660	0,33	-0,053	32
2800	660	0,30	-0,944	0	24940	660	0,13	-7,828	43
2994	660	0,30	-0,944	0	30010	660	0,32	-0,267	53
3197	660	0,30	-0,713	0	34970	660	0,17	-5,660	127
3401	660	0,31	-0,487	0					

Tabela A.3 – Resposta em freqüência H_{10} - X_{23} - 720 V a 60 Hz - Carga = 0 VA – Sem

bobina	de drenagem	- Com	saturação.
--------	-------------	-------	------------

f	Vp	Vs	Ganho	θ	f	Vp	Vs	Ganho	θ
(Hz)	(V _{p-p})	(V _{p-p})	(dB)	(graus)	(Hz)	(V _{p-p})	(V _{p-p})	(dB)	(graus)
10	720	0,03	-22,183	-180	3602	688	0,14	-8,060	26
20	720	0,02	-23,522	-180	3794	688	0,14	-8,060	27
41	720	0,13	-8,715	-144	4006	688	0,14	-7,934	28
60	720	0,40	0,915	0	4202	688	0,14	-7,564	30
80	720	0,20	-5,105	0	4409	688	0,14	-8,060	31
100	720	0,10	-10,785	36	4604	680	0,14	-7,832	33
150	720	0,07	-14,579	53	4808	680	0,13	-8,351	33
201	720	0,04	-18,416	18	5000	688	0,13	-8,189	36
252	720	0,02	-24,278	45	5208	680	0,13	-8,218	36

<u>93</u>

Apêndice A –	Resultados	dos En	saios de	Resposta	em	Freqüência
	فتعادي الأنشاء المتقافين الفنفية المتعادية				_	

300	720	0,01	-31,481	0	5400	680	0,14	-7,832	38
350	720	0,01	-28,715	-72	5605	672	0,13	-8,115	39
398	720	0,02	-25,370	-115	5800	680	0,13	-8,218	40
451	720	0,04	-20,097	-82	5995	688	0,14	-8,060	41
500	720	0,06	-15,798	-90	6203	688	0,13	-8,320	45
548	720	0,07	-14,076	-76	6394	688	0,13	-8,587	45
601	720	0,10	-11,126	-85	6596	688	0,15	-7,444	46
649	712	0,11	-10,361	-90	6803	688	0,14	-8,060	47
700	720	0,13	-8,715	-103	7002	688	0,13	-8,587	50
749	712	0,15	-7,392	-80	7194	680	0,14	-7,584	39
797	712	0,17	-6,318	-69	7396	688	0,14	-7,934	39
850	712	0,20	-5,008	-60	7599	688	0,14	-7,685	40
901	704	0,22	-3,926	-50	7800	680	0,14	-7,584	42
951	704	0,24	-3,183	-46	8000	688	0,15	-7,094	28
998	704	0,27	-2,368	-34	8197	680	0,14	-7,584	29
1099	704	0,29	-1,623	-19	8403	672	0,14	-7,360	45
1205	704	0,30	-1,505	-21	8606	680	0,14	-7,959	45
1300	704	0,29	-1,743	0	8803	672	0,14	-7,856	61
1401	704	0,27	-2,368	0	8993	672	0,13	-7,985	63
1504	704	0,25	-2,903	13	9191	672	0,13	-8,519	65

<u>94</u>

10.20

1595	704	0,23	-3,772	28	9398	680	0,12	-9,046	82
1706	704	0,22	-4,242	30	9579	672	0,10	-10,186	100
1795	696	0,20	-4,811	31	9804	672	0,12	-9,163	103
1898	696	0,19	-5,166	33	10000	672	0,11	-9,699	106
1996	696	0,18	-5,726	34	12200	678	0,09	-11,794	-106
2198	696	0,17	-6,325	38	13850	680	0,18	-5,428	-141
2404	696	0,15	-7,426	40	15040	680	0,21	-4,021	-120
2601	688	0,15	-7,094	19	20000	672	0,14	-7,856	0
2803	688	0,15	-7,326	20	25000	688	0,25	-2,703	-135
3005	688	0,15	-7,326	32	30030	688	0,22	-3,883	154
3201	688	0,16	-6,869	34	35010	680	0,36	0,496	-50
3401	688	0,14	-8,060	24					
9	h	1					t.		

Apêndice B

Figuras

Figura B.2 – Vista do terminal de alta tensão.

Figura B.3 – Ponta de prova na conexão de alta tensão.

Figura B.4 – Ponta de prova na conexão de baixa tensão.

Figura B.5 – Arranjo para medição de resposta em freqüência.

Figura B.7 – Arranjo utilizado para saturar artificialmente o TPC

Figura B.6 – Arranjo para medição de resposta com carga.

Figura B.8 – Conexões para ensaio de relação

Figura B.9 – Arranjo para medição da relação

Figura B.10 – Vista de topo da parte indutiva do TPC.

Figura B.11 – Caixa de terminais e bobina de drenagem.

Figura B.12 – Filtro supressor de ferroressonância.

<u>98</u>

Figura B.13 – Reator série.

Figura B.14 – Resistência de amortecimento e bobina de bloqueio.