

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE

CENTRO DE CIÊNCIAS E TECNOLOGIA

UNIDADE ACADÊMICA DE ENGENHARIA QUÍMICA

CÓDIGOS COMPUTACIONAIS PARA RESOLUÇÃO DE SISTEMAS FLASH E CÁLCULOS DE PROPRIEDADES TERMODINÂMICAS E DE TRANSPORTE

Hélder de Carvalho da Silva Fernandes

Campina Grande, abril de 2014.

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE

CENTRO DE CIÊNCIAS E TECNOLOGIA

UNIDADE ACADÊMICA DE ENGENHARIA QUÍMICA

CÓDIGOS COMPUTACIONAIS PARA RESOLUÇÃO DE SISTEMAS FLASH E CÁLCULOS DE PROPRIEDADES TERMODINÂMICAS E DE TRANSPORTE

Dissertação apresentada ao departamento de Engenharia Química da Universidade Federal de Campina Grande, sob orientação do Professor Doutor Antonio Carlos Brandão de Araújo, para obtenção do grau de mestre em Engenharia Química.

Hélder de Carvalho da Silva Fernandes

Campina Grande, abril de 2014.

FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA CENTRAL DA UFCG		
F363c	Fernandes, Hélder de Carvalho da Silva. Códigos computacionais para resolução de sistemas flash e cálculos de propriedades termodinâmicas e de transporte /Hélder de Carvalho da Silva Fernandes. – Campina Grande, 2014. 115 f. : il.	
	Dissertação (Mestrado em Engenharia Química) – Universidade Federal de Campina Grande, Centro de Ciências e Tecnologia, 2014.	
	"Orientação: Prof. Dr. Antônio Carlos Brandão de Araújo". Referências.	
	 Termodinâmica. Equações de Estado(EOS). Propriedades de Transporte. Sistema Flash. Coluna de Destilação. Araújo, Antônio Carlos Brandão. Título. 	
	CDU 66.0:536.7(043)	

UFC G

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIÊNCIAS E TECNOLOGIA COORDENAÇÃO DE PÓS-GRADUAÇÃO EM ENGENHARIA QUÍMICA

PARECER FINAL DO JULGAMENTO DA DISSERTAÇÃO DO ALUNO HÉLDER DE CARVALHO DA SILVA FERNANDES

TÍTULO: Código Computacionais para resolução Flash e Cálculo de Propriedades Termodinâmicas e de Transporte

COMISSÃO EXAMINADORA CONCEITO

Prof. Antonio Carlos Brandão de Araújo. (Doutor) APROVADO Prof. Sidinei kleber Silva (Doutor) (Examinador Externo) Prof. José Nilton Silva (Doutor) CU AY (Éxaminador Externo) APROVADO Pesg. Arlan Lucas de Souza (Doutor) (Examinador Externo) Prof. José Jailson Nicacio Alves (Doutor) APROVADO Examinador Interno) Prof. Marcello Maia de Almeida (Doutor) Standho Minou alle: (Examinador Externo)

Campina Grande, 24 de abril de 2014

UFCG/CCT/CPGEQ - Av. Aprígio Veloso 882, Campina Grande, PB - CEP - 58.429-900 Fone: 83 -2101-1053 - Fax: 83 - 2101-1053

Dedico este trabalho a minha família,

a meu pai, Fernando Fernandes Vieira,

e minha mãe, Laura Teresa de Carvalho da Silva Fernandes,

"A verdadeira viagem do descobrimento não consiste em procurar novas paisagens, mas em ter novos olhos.".

Marcel Proust

Agradecimentos

Aos meus pais Fenando e Laura, pelo amor incondicional, carinho, incentivo e apoio de todas as horas.

A Coordenação do Curso de pós-graduação em Engenharia Química da UFCG.

Ao professor Antonio Carlos Brandão de Araújo pela orientação, amizade e a confiança a em mim depositada.

Ao Laboratório LARCA-GSQ de uma forma geral, aonde o trabalho foi desenvolvido.

A CAPES que disponibilizou uma bolsa de estudo para que eu me aperfeiçoasse profissionalmente.

A todos os professores do Departamento de Engenharia Química da Universidade Federal de Campina Grande.

Aos amigos que fiz dentro do curso de engenharia química que de alguma forma contribuíram para minha formação profissional. Em especial a Alisson Nascimento, Everton Ranny e Tassila Neves.

A todos que contribuíram direta ou indiretamente para a concretização deste mestrado.

Resumo

Esta pesquisa tem como objetivo desenvolver um pacote de códigos computacionais que possibilitaram a resolução de problemas envolvendo algumas propriedades termodinâmicas e de transporte, muito úteis no estudo de processos da engenharia química. Entre elas estão o cálculo de propriedades via equações de estado como a Peng-Robinson, Redlich-Kwong e Soava- Redlich-Kwong, o cálculo do coeficiente de atividade pelos métodos NRTL e Wilson, pressão de vapor para componentes puros em uma mistura e volume molar de líquido. Dentre as propriedades de transporte estão o cálculo da viscosidade, tensão superficial e capacidade térmica. Todas essas propriedades são de grande importância quando se está desenvolvendo um projeto que envolva o trabalho de um engenheiro químico, podendo-se facilmente alterar os parâmetros das equações a fim de se aperfeiçoar o processo sem a necessidade de se refazer inúmeras operações matemáticas e resolução de sistemas. Um estudo e desenvolvimento de códigos computacionais sobre os métodos de resolução do sistema flash também foi realizado com a finalidade de se reunir quatro métodos (Newton, Newton otimizado, substituição sucessiva e substituição sucessiva acelerada) que se encontra disperso na literatura. Todos os cálculos foram validados e para eles foram obtidos erros inferiores a 5%, mostrando a boa precisão na utilização dos códigos.

Palavras-chave: Equações de estado (EOS), propriedades termodinâmicas, propriedades de transporte, sistema flash, coluna de destilação.

Abstract

This research aims to develop a suite of computer codes that enabled the resolution of some problems involving thermodynamic and transport, very useful in the study of processes of chemical engineering . These include the calculation of properties via equations of state such as the Peng-Robinson, Redlich-Kwong and Soave-Redlich-Kwong , calculation of activity coefficient by the NRTL and Wilson methods , vapor pressure for pure components in a mixture and molar volume liquid . Among the transport properties are calculating the viscosity, surface tension and thermal capacity. All these properties are of great importance when developing a project that involves the work of a chemical engineer and can easily change the parameters of the equations in order to optimize the process without the need to redo númerous mathematical operations and resolution of systems. A study and development of computer codes and methods of resolution of the flash system was also carried out in order to meet four methods (Newton, Newton optimized successive substitution and accelerated successive substitution) that is dispersed in the literature. All calculations were validated and less than 5% error were obtained showing good accuracy in the use of codes.

Keywords : Equations of state (EOS), thermodynamic properties, transport properties, flash system, distillation column .

Lista de Tabelas

	Página
Tabela 01 - Valores das constantes para alguns modelos de EOS	37
Tabela 02 - Tipo de flash	4 9
Tabela 03 - Composição das misturas usadas nos cálculos de pressão de	
ponto de bolha e de ponto de orvalho	56
Tabela 04 - Resultado do cálculo de pressão de ponto de bolha pelos	
métodos de Newton e otimizado para a mistura 1	57
Tabela 05 - Resultado do cálculo de pressão de ponto de bolha pelo método	
de substituição sucessiva, substituição sucessiva acelerada e	
Aspen Plus® para a mistura 1	57
Tabela 06 - Resultado do cálculo de pressão de ponto de bolha pelos	
métodos de Newton e otimizado para a mistura 2	58
Tabela 07 - Resultado do cálculo de pressão de ponto de bolha pelo método	
de substituição sucessiva, substituição sucessiva acelerada e	
Aspen Plus® para a mistura 2	58
Tabela 08 - Resultado do cálculo de pressão de ponto de bolha pelos	
métodos de Newton e otimizado para a mistura 3	58
Tabela 09 - Resultado do cálculo de pressão de ponto de bolha pelo método	
de substituição sucessiva, substituição sucessiva acelerada e	
Aspen Plus® para a mistura 3	59
Tabela 10 - Erro entre modelos de ponto de bolha e Aspen Plus® para a	
mistura 1	60
Tabela 11 - Erro entre modelos de ponto de bolha e Aspen Plus® para a	
mistura 2	60
Tabela 12 - Erro entre modelos de ponto de bolha e Aspen Plus® para a	
mistura 3	60
Tabela 13 - Resultado do cálculo de pressão de ponto de orvalho pelos	
métodos de Newton e otimizado para a mistura 1	62
Tabela 14 - Resultado do cálculo de pressão de ponto de orvalho pelo	
método de substituição sucessiva, substituição sucessiva	
acelerada e Aspen Plus® para a mistura 1	62
Tabela 15 - Erro entre modelos de ponto de orvalho e Aspen Plus® para a	
mistura 1	63
Tabela 16 - Resultado do cálculo de pressão de ponto de pelos métodos de	
Newton e otimizado para a mistura 2	63
Tabela 17 - Resultado do cálculo de pressão de ponto de orvalho pelo	
método de substituição sucessiva, substituição sucessiva	E 4
acelerada e Aspen Plus® para a mistura 2	04

Tabela 18 - Erro entre modelos de ponto de orvalho e Aspen Plus® para a	
mistura 2	64
Tabela 19 - Resultado do cálculo de pressão de ponto de orvalho pelos	
métodos de Newton e otimizado para a mistura 3	64
Tabela 20 -Resultado do cálculo de pressão de ponto de orvalho pelo método	
de substituição sucessiva, substituição sucessiva acelerada e	
Aspen Plus® para a mistura 3	65
Tabela 21 -Erro entre modelos de ponto de orvalho e Aspen Plus® para a	
mistura 3	65
Tabela 22 - Composição e temperatura da mistura de entrada do reformador	
catalítico	66
Tabela 23 - Resultado do cálculo de pressão de ponto de bolha pelos	
métodos de Newton e otimizado para a alimentação do	
reformador catalítico	68
Tabela 24 - Resultado do cálculo de pressão de ponto de bolha pelo método	
de substituição sucessiva, substituição sucessiva acelerada e	
Aspen Plus® da alimentação do reformador catalítico	68
Tabela 25 -Erro entre modelos de ponto de bolha e Aspen Plus® para a	
alimentação do reformador catalítico	69
Tabela 26 -Resultado do cálculo de pressão de ponto de orvalho pelos	
métodos de Newton e otimizado para a alimentação do	
reformador catalítico	70
Tabela 27 -Resultado do cálculo de pressão de ponto de orvalho pelo método	
de substituição sucessiva, substituição sucessiva acelerada e	
Aspen Plus [®] da alimentação do reformador catalítico	70
Tabela 28 -Erro entre modelos de ponto de orvalho e Aspen Plus® para a	
alimentação do reformador catalítico	71
Tabela 29-Pressão e vazão molar de hidrogênio para cada caso do	
reformador catalítico	72
Tabela 30 - Resultado do cálculo da fração vaporizada (flash) pelos métodos	
de Newton e otimizado para a alimentação do reformador	
catalítico	72
Tabela 31 - Resultado do cálculo da fração vaporizada (flash) pelo método de	
substituição sucessiva, substituição sucessiva acelerada e Aspen	-
Plus [®] para a alimentação do reformador catalítico	73
Tabela 32 - Erro entre os modelos de fração vaporizada (flash) e Aspen Plus®	-
para a alimentação do reformador catalítico	73
Tabela 33 - Fração de Vapor calculada para cada EOS	75
Tabela 34 - Composições da fase líquida e vapor para a EOS-PR	75
Tabela 35 - Composições da fase líquida e vapor para a EOS-RK	76
Tabela 36 - Composições da fase líquida e vapor para a EOS-SRK	76

Tabela 37 - Capacidade Calorífica dos componentes puros na mistura	77
Tabela 38 - Volume molar de líquido dos componentes puros na mistura	77
Tabela 39 - Volume molar de líquido da Mistura	77
Tabela 40 - Tensão superficial da Mistura	77
Tabela 41 - Viscosidade da Mistura	78
Tabela 42 - Pressão de vapor dos componentes puros na mistura	78
Tabela 43 - Coeficiente de atividade dos componentes na mistura calculados	
pelo método NRTL	78
Tabela 44 - Coeficiente de atividade dos componentes na mistura calculados	
pelo método de WILSON	78
Tabela 45 - Temperatura em cada estágio da coluna de destilação	80
Tabela 46 - Vazão molar de vapor e líquido em cada estágio da coluna de	
destilação	80
Tabela 47 - Composição de cada componente (fase líquida) em cada estágio	
da coluna	81
Tabela 48 - Composição de cada componente (fase líquida) em cada estágio	
da coluna de destilação	81
Tabela 49 - Composição de cada componente (fase líquida) em cada estágio	
da coluna de destilação	82
Tabela 50 - Composição de cada componente (fase vapor) em cada estágio	
da coluna de destilação	82
Tabela 51 - Composição de cada componente (fase vapor) em cada estágio	
da coluna de destilação	83
Tabela 52 - Composição de cada componente (fase vapor) em cada estágio	
da coluna de destilação	83

.

|

.

Lista de llustrações

	PAG
Figura 01 - Gráfico de uma curva de saturação	34
Figura 02 - Estado de equilíbrio entre as fases	41
Figura 03 - Algoritmo para cálculo do ponto de bolha	44
Figura 04 - Algoritmo para cálculo do ponto de orvalho	44
Figura 05 - Algoritmo para cálculo do flash	45
Figura 06 - Esquema de um único estágio em uma coluna de destilação	52
Figura 07 - Esquema de múltiplos estágios em uma coluna de destilação	53
Figura 08 - Metodologia para implementação dos códigos para cálculo de propriedades de termodinâmicas e de transporte	54
Figura 09 - Metodologia para implementação dos códigos para resolução de flash e coluna de destilação	55
Figura 10 - Metodologia para validação dos resultados obtidos com os códigos implementados	55
Figura 11 - Tanque flash para separação de uma mistura contendo propano,	
n-butano, n-pentano e n-hexano implementada no Aspen Plus®.	75
Figura 12 - Coluna exemplo	79
Figura 13 - Coluna implementada no Aspen Plus®	79

Lista de Símbolos

 A_{ij} – Parâmetro de interação entre os componentes i-j para o modelo de Wilson a_{ij} , b_{ij} , c_{ij} , d_{ij} e e_{ij} – Wilson Parâmetros experimentais dos componentes para se determinar A_{ij}

a_{ij}, b_{ij}, c_{ij}, d_{ij}, e_{ij} e f_{ij} – NRTL Parâmetros experimentais dos componentes para se determinar τ_{ij} e α_{ij}

a – Parâmetro de atração (EOS)

b – Parâmetro de repulsão (EOS)

C_p – Capacidade Calorífica

C_i (Pressão de Vapor)- Parâmetros experimentais dos componentes para a determinação da pressão de vapor

C_i (Capacidade Calorifica)- Parâmetros experimentais dos componentes para a determinação da capacidade calorifica

C_i (Tensão Superficial)– Parâmetros experimentais dos componentes para a determinação da tensão superficial dos componentes puros

F_c – Função para correção da viscosidade devido a geometria molecular

 G_{ij} – Combinação dos parâmetros $\tau_{ij} \in \alpha_{ij}$

k_{ij} – Parâmetro de interação molecular (considerando eletronegatividade)

l_i-Parâmetro de interação molecular (considerando a forma da molécula)

M – Massa molecular da mistura

M_{ii} – Massa molecular entre componentes i-j

p – Pressão

P_c – Pressão critica

R – Constante universal dos gases

T – Temperatura em K

T_c – Temperatura critica

T_{ri} – Temperatura reduzida do componente i

T_{cm} – Temperatura critica da mistura

T_{Cii} – Temperatura critica entre componentes i-j

V – Volume Molar

V_c – Volume critico

V_{cm} – Volume critico da mistura

V_{Cii} – Volume critico entre componentes i-j

x_i – composição do componente i

Z_{RA} – Parâmetro de Rackett

α_{ii} -- Parâmetro relacionado aleatoriedade da mistura entre os componentes i-j

σ^I – Tensão Superficial

σ*' – Tensão superficial dos componentes puros

τ_{ii} – Parâmetro de energia característica devido a interação os componentes i-j

 η_v – Viscosidade

ω – Fator acêntrico da mistura

μ – Momento dipolo

 μ_r – Momento dipolo reduzido

ω_{ii} -- Fator acêntrico entre componentes i-j

 ω – Fator Acêntrico

Sumário

	PAG
1.0 – INTRODUÇÃO	16
2.0 – OBJETIVOS	18
2.1 – OBJETIVO GERAL	18
2.2 – OBJETIVO ESPECÍFICO	18
3.0 – FUNDAMENTAÇÃO TEÓRICA	19
3.1 - PROPRIEDADES TERMODINÂMICAS	19
3.1.1 - EQUAÇÕES DE ESTADO	19
3.1.2 - COEFICIENTE DE ATIVIDADE	21
3.1.3 - PRESSÃO DE VAPOR	22
3.1.4 - VOLUME MOLAR DE LÍQUIDO	23
3.1.5 - CAPACIDADE CALORIFICA	24
3.2 - PROPRIEDADES DE TRANSPORTE	24
3.2.1 – VISCOSIDADE	24
3.2.2 - TENSÃO SUPERFICIAL	26
3.3 – FLASH	26
3.3.1 - CRITÉRIO DE FUGACIDADE PARA EQUILÍBRIO DE FASE	28
3.3.2 - COEFICIENTE DE FUGACIDADE	29
3.3.3 - CÁLCULO DA FUGACIDADE	30
3.3.4 - FUGACIDADE DE UM LÍQUIDO PURO	34
3.3.5 - EQUAÇÃO DO VIRIAL	36
3.3.6 - EQUAÇÕES DE ESTADO ANALÍTICAS	37
3.3.7 - REGRA DE MISTU RAS	39
3.3.8 - EQUILIBRIO LÍQUIDO VAPOR POR EOS	39
3.3.9 - CRITÉRIO DE ESTABILIDADE	47
3.3.10 – MODELO BÁSICO DE RESOLUÇÃO DE UM FLASH	49
3.4 – COLUNA DE DESTILAÇÃO	50
4.0 – METODOLOGIA	52
5.0 – RESULTADOS E DISCUSSÕES	56
5.1 – PRESSAO DE PONTO DE BOLHA E DE PONTO DE ORVALHO EM MISTURAS	56

5.2 – FRAÇÃO VAPORIZADA (FLASH) EM REFORMADOR CATALÍTICO	66
5.3 – PRORPIEDADES TERMODINÂMICAS E DE TRANSPORTE EM UM FLASH	74
5.4 – COLUNA DE DESTILAÇÃO	7 9
6.0 – CONCLUSÕES	85
7.0 – TRABALHOS FUTUROS	86
8.0 – REFERÊNCIAS BIBLIOGRAFICAS	87
APÊNDICE	8 9

П

`

-

1.0 - INTRODUÇÃO

As resoluções de equações para análise de sistemas do ponto de vista termodinâmico e de suas propriedades de transporte são de fundamental importância (cada uma em áreas específicas) na solução de problemas da engenharia química.

Atualmente existem softwares para a resolução de tais equações tal como o Procise – Simulis Thermodynamics, entretanto sua licença para utilização é cara (na faixa de US\$ 1000 por ano para uma licença de uso local). O desenvolvimento de códigos computacionais no Matlab® irá proporcionar a disponibilização de um método de resolução das equações através do File Exchange da própria Mathworks (desenvolvedora do Matlab®), podendo posteriormente serem transcodificados em uma linguagem mais popular e gratuita. Os códigos desenvolvidos também poderão ser usados em meio acadêmico por estudantes de engenharia química e demais engenharias que necessitem da utilização de tais equações e modelos, além de posteriormente serem utilizados em um simulador em desenvolvimento.

Para se determinar a solução das equações são necessários parâmetros termodinâmicos das substâncias em estudo de cada caso e para isso será utilizado como banco de dados o software *Aspen Plus*[®].

As quantidades de calor e trabalho necessárias para realizar processos industriais são calculadas a partir do conhecimento de propriedades termodinâmicas como a energia interna e a entalpia. Para fluidos, essas propriedades são frequentemente avaliadas a partir de medidas do volume molar como uma função da temperatura e da pressão, fornecendo relações pressão/volume/temperatura (PVT), as quais podem ser expressas matematicamente como equações de estado. A equação com menor grau de complexidade, PV = RT, fornece o modelo mais simples do comportamento de fluidos, com aplicação prática. Equações de estado também servem para a medição de fluidos e dimensionamento de vasos e tubulações (SMITH, 2007).

O equilíbrio líquido vapor é de fundamental importância quando, por exemplo, se projeta uma coluna de destilação em uma indústria química. Muitos experimentos são necessários para se obter os dados de equilíbrio de um sistema, onde a não idealidade em ambas as fases (líquido e vapor) precisam ser determinadas.

Entretanto, existem modelos teóricos que descrevem e predizem estas não idealidades, porém se encontram dispersos por vários trabalhos na área. Neste ponto temos mais uma utilidade deste trabalho, que tornará possível o acesso aos modelos mais tradicionais em uma única fonte.

Em baixas pressões, desvios do comportamento ideal se dão principalmente devido a fase líquida, onde existem forças de interação entre as moléculas que necessitam ser contabilizadas no instante em que se deseja calcular o equilíbrio de fase. Equações de estado têm sido tradicionalmente utilizadas para modelar sistemas com componentes apolares ou com baixa polaridade.

Propriedades de transporte (momento, calor e matéria) têm sua importância nos sistemas químicos, permitindo-se determinar a possibilidade ou não de um fluido escoar em uma determinada superfície, a perda de calor pelas paredes de um duto ou reator e se calcular a dificuldade de uma determinada substância ser transferida de um local para outro apenas pelo efeito da diferença de concentração (são apenas alguns exemplos da utilidade dos cálculos dos fenômenos de transporte) (SMITH, 2007). Dentre as propriedades analisadas nesse meio pode-se destacar a viscosidade, a condutividade térmica, difusividade e a tensão superficial.

Devido ao grau de complexidade apresentado por algumas das equações tornase necessário o desenvolvimento de ferramentas computacionais capazes de predizer com exatidão a relação existente entre as propriedades. Esta tarefa é bastante importante na engenharia química, pois estas equações podem ser utilizadas na avaliação de desempenho, além de serem de fundamental importância para que trabalhos de modelagem e simulação alcancem resultados satisfatórios.

2.0 – OBJETIVOS

2.1 – OBJETIVO GERAL

O objetivo principal desse trabalho é o desenvolvimento de uma ferramenta computacional (conjunto de códigos) utilizando o *Matlab®*, para o cálculo de propriedades termodinâmicas e de transporte de componentes puros e misturas. Além do desenvolvimento de um código para resolução de sistemas tipo flash e consequentemente colunas de destilação.

2.2 – OBJETIVO ESPECÍFICO

- Implementar códigos computacionais para o cálculo das funções de estado para componentes puros e misturas, usando as equações de estado: Peng-Robinson, Redlich-Kwong, e Soave-Redlich-Kwong.
- Implementar códigos computacionais para o cálculo do equilíbrio de fases líquido-vapor, usando os seguintes modelos de equilíbrio: Para cálculo do coeficiente de atividade foi implementado o método NRTL e método de Wilson. Cálculo da pressão de vapor para componentes puros em mistura e cálculo do volume molar de líquido
- Implementar códigos computacionais para o cálculo das seguintes
 propriedades: tensão superficial, viscosidade e capacidade térmica.
- Implementar modelos matemáticos para resolução de um flash (Método de Newton, Newton otimizado, substituição sucessiva e substituição sucessiva acelerada), além de uma coluna de destilação utilizando as equações de estado e então utilizar os demais códigos para se obter as propriedades termodinâmicas e de transporte em correntes de entradas e saídas de tais equipamentos.

3.0 – FUNDAMENTAÇÃO TEÓRICA

3.1 - PROPRIEDADES TERMODINÂMICAS

3.1.1 - EQUAÇÕES DE ESTADO

A primeira equação de estado cúbica foi proposta por Van Der Walls em 1873. Com os valores de a (correção devido à interação eletrostática das moléculas) e b (correção da não idealidade das moléculas) para uma determinada substância ou mistura.

Pode-se calcular o valor da pressão (P) como uma função do volume (V) para vários valores de temperatura (T). Caso se considere os valores das constantes como nulo, obtêm-se a equação do gás ideal (SMITH, 2007).

$$p = \frac{RT}{V-b} - \frac{a}{V^2} \tag{1}$$

Apresenta-se a partir disso, varias outras equações de estado cúbicas, onde todas são casos particulares de uma forma mais generalizada:

$$p = \frac{RT}{V-b} - \frac{a(T)}{(V-b)(V^2 + \kappa + \lambda)}$$
(2)

Nesta equação, $\kappa \in \lambda$ são números (o mesmo para todas as substâncias e misturas), enquanto o parâmetro a(T) e b são dependentes da substância. Valendo salientar que a(T) é específico para cada uma das equações de estado que se esteja trabalhando (SMITH, 2007).

Umas das equações que pode ser obtida por meio da equação generalizada é a equação de Peng-Robinson. Tal equação é recomendada para hidrocarbonetos em processamento de gás, refinaria e processos petroquímicos. Os parâmetros e os modelos dessa equação podem ser observados a seguir (PENG, 1976):

$$p = \frac{RT}{V_m - b} - \frac{a}{V_m (V_m + b) + b(V_m - b)}$$
(3)

$$b = \sum_{i} x_i b_i \tag{4}$$

$$a = \sum_{i} \sum_{j} x_{i} x_{j} (a_{i} a_{j})^{0.5} (1 - k_{ij})$$
(5)

$$a_{i} = \frac{0.42748R^{2}T_{c}^{2}}{n}$$
(6)

$$b_i = \frac{0.08662RT_c}{P_c} \tag{7}$$

$$k_{ij} = k_{ij}^{(1)} + k_{ij}^{(2)}T + \frac{k_{ij}^{(3)}}{T}$$
(8)

Onde, a e b são os parâmetros de correção já mencionados anteriormente e o parâmetro k_{ij} representa a interação entre as moléculas i e j respectivamente.

Outra forma (mais simples da equação genérica) é a equação de Redlich-Kwong que pode ser usada para sistemas à baixa pressão com um bom resultado (máximo de 8 atm). Tal condição é explicada pelo fato da equação não possuir um bom comportamento quando a não idealidade da fase vapor é alta. Também não se é indicada para uso cálculo de propriedades em fase líquida (REDLICH, 1979). Seu modelo é da forma:

$$p = \frac{RT}{V_m - b} - \frac{\frac{a}{T^{0.5}}}{V_m (V_m + b)}$$
(9)

$$b = \sum_{i}^{m} x_{i} b_{i}$$
⁽¹⁰⁾

$$a = \sqrt{\sum_{i} x_i \sqrt{a_i}} \tag{11}$$

$$a_i = 0.42748023 \frac{R^2 T_{ci}^{2.5}}{P_{ci}}$$
(12)

$$b_i = 0.08664035 \frac{RT_{ci}}{p_{ci}}$$
(13)

Outra equação é a SRK (Soave-Redlich-Kwong). Seu modelo se adéqua tanto a baixas como a altas pressões e pode ser utilizado para sistemas de hidrocarbonetos e gases leves como H_2S CO₂ e N_2 (SOAVE, 1972). Um novo parâmetro de interação entre as moléculas é introduzido na equação.

Neste modelo alguns novos parâmetros aparecem: o I_{ij} que é uma medida da dificuldade de interação entre as moléculas devido a sua forma geométrica e o c que é

uma nova correção do volume devido a não idealidade das moléculas levando em consideração a forma geométrica.

h

C

$$p = \frac{RT}{V_{m} - b} - \frac{a}{V_{m}(V_{m} + b)}$$
(14)
(15)

$$a = (a_0 + a_1)\alpha \tag{15}$$

$$=\sum_{i} x_i b_i \tag{10}$$

$$=\sum_{i} x_{i} c_{i} \tag{19}$$

$$a_{0} = \sum_{i} \sum_{j} x_{i} x_{j} (a_{i} a_{j})^{0.5} (1 - k_{ij})$$
⁽¹⁸⁾

$$a_{1} = \sum_{i} x_{i} \left(\sum_{j} x_{j} \left(\left(a_{i} a_{j} \right)^{0.5} l_{ij} \right)^{1/3} \right)^{3}$$
(19)

$$\alpha = (1 + c(1 - T_r^2))^2$$
(20)

$$a_{i} = \frac{0.427R^{2}T_{c}^{2}}{p_{c}}$$
(21)

$$b_i = \frac{0.08664RT_c}{p_c}$$
(22)

$$c_i = 0.48508 + 1.55171\omega - 0.15613\omega^2$$
(23)

$$k_{ij} = k_{ij}^{(1)} + k_{ij}^{(2)}T + \frac{k_{ij}^{(3)}}{T}$$
(24)

$$l_{g} = l_{g}^{(1)} + l_{g}^{(2)}T + \frac{l_{g}^{(3)}}{T}$$
(25)

3.1.2 - COEFICIENTE DE ATIVIDADE

Atividade na química é uma medida do quanto as interações entre moléculas em uma solução ou num gás não-ideal desviam da idealidade.

$$a_i = \gamma_i \mathbf{x}_i \tag{26}$$

A atividade é proporcional à concentração, **x**, por um fator conhecido como coeficiente de atividade, **y**, que leva em consideração outros íons em solução. Assim, numa solução ideal o coeficiente de atividade é aproximadamente igual a 1 e a atividade pode ser aproximada como igual à concentração (SMITH, 2007).

Os efeitos da atividade são resultados das interações tanto eletrostáticas como covalentes entre os ions. Em soluções muito diluídas as interações de um ion com sua vizinhança são desprezíveis e por isso pode-se considerar que a solução comporta-se idealmente.

A atividade é de suma importância quando se deseja estudar o equilíbrio entre a fase líquida e a fase vapor (ELV). Existem vários modelos na literatura para se obter o valor do coeficiente de atividade, dentre eles, os mais comumente usados são o NRTL e Wilson.

O modelo NRTL é recomendado para sistemas altamente não ideais, onde as equações para o modelo NRTL são (RENON, 1968):

$$\ln \gamma_{i} = \frac{\sum_{j} x_{j} \tau_{ij} G_{ij}}{\sum_{k} x_{k} G_{ki}} + \sum_{j} \frac{x_{j} G_{ij}}{\sum_{k} x_{k} G_{kj}} \left(\tau_{ij} - \frac{\sum_{m} x_{m} \tau_{mj} G_{mj}}{\sum_{k} x_{k} G_{kj}} \right)$$
(27)

$$G_{ij} = \exp(-\alpha_{ij}\tau_{ij}) \tag{28}$$

$$\tau_{ij} = a_{ij} + \frac{b_{ij}}{T} + e_{ij} \ln T + f_{ij}T$$
(29)

$$\alpha_{ii} = c_{ii} + d_{ii}(T - 273.15) \tag{30}$$

Onde os parâmetros a_{ij}, b_{ij}, c_{ij}, d_{ij}, e_{ij}, f_{ij}, são medidas da interação entre as moléculas i e j, já α_{ij}, τ_{ij}, e G_{ij} são as correções destas iterações devido à temperatura.

O modelo de Wilson possui uma boa aproximação da realidade quando comparado aos modelos citados anteriormente, entretanto possui um comportamento muito melhor para sistemas álcool água (WILSON, 1964):

$$\ln \gamma_i = 1 - \ln\left(\sum_j A_{ij} x_j\right) - \sum_j \frac{A_{ij} x_j}{\sum_k A_{jk} x_k}$$
(31)

$$A_{ij} = \exp(a_{ij} + \frac{b_{ij}}{T} + c_{ij}\ln T + d_{ij}T + \frac{e_{ij}}{T^2})$$
(32)

Onde os parâmetros a_{ij} , b_{ij} , c_{ij} , d_{ij} e e_{ij} , são medidas da interação entre as moléculas i e j.

3.1.3 - PRESSÃO DE VAPOR

Pressão de vapor é a pressão exercida por um vapor quando este está em equilíbrio termodinâmico com o líquido que lhe deu origem, ou seja, a quantidade de líquido que evapora é a mesma que se condensa (SMITH, 2007). É uma medida da

tendência de evaporação de um líquido. Quanto maior for a sua pressão de vapor, mais volátil será o líquido, e menor será sua temperatura de ebulição relativa a outros líquidos com menor pressão de vapor à mesma temperatura de referência. O modelo a seguir é conhecido como equação de Antoine extendida.

Modelo (REID, 1987):

$$\ln p_{i} = C_{1i} + \frac{C_{2i}}{T + C_{3i}} + C_{4i}T + C_{5i}\ln T + C_{6i}T^{C_{7i}}$$
(33)

Onde os parâmetros "C" são parâmetros experimentais característicos das substâncias puras para tal modelo.

3.1.4 - VOLUME MOLAR DE LÍQUIDO

Outra característica útil a ser conhecida quando se está estudando as substâncias puras e as misturas, é o volume molar de líquido em dadas condições, que nada mais é que a razão entre volume e a quantidade de matéria (SMITH, 2007).

Modelo para cálculo do volume molar proposto por Rackett (REID, 1987):

$$V_{m} = \frac{RT_{c}(Z_{m}^{RA})^{(1+(1-T_{r})^{2/7})}}{P_{c}}$$
(34)

$$T_{c} = \sum_{i} \sum_{j} \frac{x_{i} x_{j} V_{ci} V_{cj} (T_{ci} T_{cj})^{1/2} (1 - k_{ij})}{V_{cm}^{2}}$$
(35)

$$k_{ij} = A_{ij} + B_{ij}T + \frac{C_{ij}}{T}$$
(36)

$$\frac{T_c}{P} = \sum_{i} x_i \frac{T_{ci}}{p_i}$$
(37)

$$Z_m^{RA} = \sum x_i Z_m^{\bullet,RA}$$
(38)

$$Z_{m}^{*,RA} = a_{i} + b_{i}T + c_{i}T^{2}$$
(39)

$$V_{cm} = \sum_{i} x_i V_{ci} \tag{40}$$

$$T_r = \frac{T}{T_c} \tag{41}$$

Onde o parâmetro " Z_M^{RA} " é o fator de compressibilidade para a equação de Rackett para a mistura.

3.1.5 - CAPACIDADE CALORIFICA

A capacidade térmica ou capacidade calorífica de substâncias puras que determina a relação entre a quantidade de calor fornecida a um corpo e a variação de temperatura observada neste, pode ser calculada a partir do seguinte modelo (REID, 1987):

$$C_{p}^{ig} = C_{1i} + C_{2i} \left(\frac{C_{3i} / T}{\sinh(C_{3i} / T)} \right)^{2} + C_{4i} \left(\frac{C_{5i} / T}{\sinh(C_{5i} / T)} \right)^{2}$$
(42)

Onde os parâmetros "C" são parâmetros experimentais característicos das substâncias puras para tal modelo.

3.2 - PROPRIEDADES DE TRANSPORTE

3.2.1 - VISCOSIDADE

De acordo com (BIRD, 2007) a viscosidade de um fluido nada mais é que a propriedade física que caracteriza sua resistência ao movimento. Ou seja, quanto maior a viscosidade, menor será a velocidade em que o fluido se movimenta quando sujeito a uma força. O modelo a ser utilizado para se determinar a viscosidade de uma mistura foi o Chung-Lee-Starling.

Modelo Chung-Lee-Starling (REID, 1987):

$$\eta_{v} = \frac{C_{1}(MT)^{1/2}}{V_{cm}^{2/3}\Omega_{n}} \mathbf{F}_{c} + \frac{(MT)^{1/2}}{V_{cm}^{2/3}}$$
(43)
(44)

$$F_c = 1 - 0.2756\omega + 0.059035\mu_r^4 + \kappa$$

$$\mathbf{V}_{\rm cm} = \sum_{i} \sum_{j} y_i y_j V_{cij} \tag{45}$$

$$T_{cm} = \frac{\sum_{i} \sum_{j} y_{i} y_{j} T_{cij} V_{cij}}{V_{cm}}$$
(46)

$$M = \left(\frac{\sum_{i} \sum_{j} x_{i} x_{j} T_{cij} V_{cij}^{2/3} M_{ij}}{T_{cm} V_{cm}^{2/3}}\right)^{2}$$
(47)
$$\sum \sum x x \omega V$$

$$\omega = \frac{\sum_{i} \sum_{j} v_{i} v_{j} \omega_{ij} v_{cij}}{V_{cm}}$$
(48)

$$\mu_r = \frac{131.3\mu}{V_{cm}T_{cm}^{-1/2}}$$
(49)

$$\mu = \sqrt[4]{\frac{\sum_{i} \sum_{j} x_{i} x_{j} p_{i}^{2} p_{j}^{2} V_{cm}}{V_{cij}}}$$
(50)

$$V_{cij} = (V_{ci}V_{cj})^{1/2}$$
(51)

$$T_{cij} = (T_{ci} T_{cj})^{n2}$$

$$(\omega_i + \omega_j)$$
(52)

$$\omega_{ij} = \frac{1}{2} \tag{53}$$

$$M_{ij} = \left(\frac{2M_i M_j}{M_i + M_j}\right)$$
(54)

Onde F_c é uma correção do formato/esfericidade das moléculas, μ é u momento dipolo, μ_r é o momento dipolo reduzido e C_1 é uma constante que pode modificar dependendo do tipo de substância que está se trabalhando, para a maioria dos casos deve-se usar o valor de 33,34.

3.2.2 - TENSÃO SUPERFICIAL

A tensão superficial é uma característica física que existe na camada superficial de um líquido, o qual faz com que as moléculas presentes nesta área criarem uma película que tendem a se comportar como uma membrana elástica (BIRD, 2007). Para o cálculo da tensão superficial foi utilizado o seguinte modelo (REID, 1987):

$$\sigma^{I} = \sum_{i} x_{i} \sigma_{i}^{*,I}$$
(55)

$$\sigma_i^{(3)} = C_{1i}(1 - T_{ri})^{C_{2i}(-3\mu_{ri} + C_{4}\mu_{ri} + C_{3}\mu_{ri})}$$
(56)

Onde os parâmetros C são valores experimentais das substâncias puras para se determinar a tensão superficial de cada componente e, a partir deles, calcular a tensão superficial da mistura, ponderando esses valores com a composição de cada um dos componentes.

3.3 - FLASH

Considerando uma mistura de líquidos a uma temperatura T e pressão P, em equilíbrio com seu vapor a mesma temperatura e pressão. As variáveis de interesse são a pressão, temperatura e composição em ambas as fases, onde, a partir de algumas dessas variáveis, é possível se calcular as demais.

O equilíbrio de fase governa a distribuição de espécies moleculares entre as duas fases (líquida e vapor). As condições de equilíbrio podem ser derivadas de forma simples utilizando a energia de Gibbs. A energia livre de Gibbs de uma mistura é função da temperatura, pressão e composição, e sua derivada total pode ser escrita em termos de derivadas parciais em variáveis independentes (ADEWUMI, 2014):

$$dG = \left(\frac{\partial G}{\partial T}\right)_{P,n_{i}} dT + \left(\frac{\partial G}{\partial P}\right)_{T,n_{i}} dP + \left(\frac{\partial G}{\partial n_{i}}\right)_{P,T,n_{j}} dn_{i} + \left(\frac{\partial G}{\partial n_{2}}\right)_{P,T,n_{j}} dn_{2}...$$
(57)

Onde, n_i é o número de mols de todos os componentes, n_j é o número de mols de todos os componentes exceto o que está sendo considerado (i).

Considerando a pressão e temperatura constante, a Equação 57 é reduzida a:

$$dG_{P,T} = \mu_1 dn_1 + \mu_2 dn_2 + \dots = \left(\sum_{i=1}^{total} \mu_i dn_i\right)_{P,T}$$
(58)

Onde μ_i é o potencial químico do componente i,

$$\mu_{i} = \left(\frac{\partial G}{\partial n_{i}}\right)_{P,T,n_{j\neq i}}$$
(59)

Para o equilíbrio a P e T constantes, a energia de Gibbs é minimizada e matematicamente significa dG=0. Portanto a equação 58 é igual a zero no mínimo e para sistemas fechados todos os dn; são zero, assim,

$$dG_{T,P} = 0 \tag{60}$$

Em um sistema de duas fases, no equilíbrio, aplicando a equação 58, temos que:

$$dG_{T,P} = \sum_{i} \mu_{i}^{\nu} dn_{i}^{\nu} + \sum_{i} \mu_{i}^{L} dn_{i}^{L} = 0$$
(61)

Onde V e L denotam as fases vapor e líquida respectivamente.

Para um sistema fechado sem reação química , onde dni^V=-dni^L, a Equação 61 é reduzida a Equação 62.

$$\boldsymbol{\mu}_i^V = \boldsymbol{\mu}_i^L \tag{62}$$

Assim, o critério de equilibro geral para um sistema fechado, heterogêneo, consistindo de π fases e n componentes no equilíbrio, e dado por:

$$T^{(1)} = T^{(2)} = \dots = T^{(\pi)}$$

$$P^{(1)} = P^{(2)} = \dots = P^{(\pi)}$$

$$\mu_1^{(1)} = \mu_1^{(2)} = \dots = \mu_1^{(\pi)}$$

$$\dots$$

$$\mu_n^{(1)} = \mu_n^{(2)} = \dots = \mu_n^{(\pi)}$$
(63)

lsso quer dizer que no equilíbrio, a temperatura, a pressão e os potenciais químicos de todas as espécies são uniformes em todo o sistema.

O potencial químico não possui uma equivalente física e por isso é necessário expressa-la em termos de alguma função auxiliar que possa ser mais facilmente identificada no mundo físico. No tratamento termodinâmico do equilíbrio de fases, funções termodinâmicas auxiliares como o coeficiente de fugacidade e o coeficiente de atividade são usados, e estas funções estão relacionadas com a energia de Gibbs (ADEWUMI, 2014).

3.3.1 - CRITÉRIO DE FUGACIDADE PARA EQUILÍBRIO DE FASE

A fugacidade do componente i na mistura é definida como:

$$RTd\ln f_i = d\mu_i$$
; T = cte (64)

Onde, f_i é a fugacidade do componente i na mistura e μ_i é o potencial químico do componente.

A igualdade dos potenciais químicos no equilibro pode ser interpretada em termos de fugacidade. Integrando a Equação 64 como uma função da composição mantendo a temperatura constante de um estado puro até o estado de mistura, temos:

$$\mu_{i}^{V} - \mu_{i}^{0} = RT \ln \frac{f_{i}^{V}}{f_{i}^{0}}$$
(65)

Onde os termos que possuem sobrescritos "0" são as propriedades do fluido puro na temperatura do sistema. Escrevendo uma expressão análoga para a fase líquida e igualando os potenciais, temos:

$$\mu_{i}^{V} - \mu_{i}^{L} = RT \ln \frac{f_{i}^{V}}{f_{i}^{L}} = 0$$
(66)

Então, a condição para equilíbrio de fase pode ser escrito como:

$$f_i^V = f_i^L \tag{67}$$

3.3.2 - COEFICIENTE DE FUGACIDADE

Lewis define a fugacidade de um componente i na mistura por:

$$dG = VdP \equiv RTd \ln f_i \quad ; \quad T = \text{cte}$$
(68)

Para um fluido real, o volume é dado por V = ZRT/P, então:

$$dG = RTZ \frac{dP}{P}$$
(69)

Em um gás ideal, Z =1, logo:

$$dG^{ig} = RT\frac{dP}{P} = RTd\ln P \tag{70}$$

Comparando as Equações 68 e 69,

$$d(G-G^{ig})/RT = d\ln(f/P)$$
⁽⁷¹⁾

Integrando a Equação 71 a baixa pressão e a temperatura constante, temos que o lado esquerdo da expressão é dado pela Equação 72, uma vez que o termo (G-G^{ig}) se aproxima de zero em baixas pressões.

$$\frac{1}{RT} \int_{0}^{P} d(G - G^{ig}) = \frac{1}{RT} \Big[(G - G^{ig}) \Big|_{P} - (G - G^{ig}) \Big|_{P=0} \Big] = \frac{(G - G^{ig})}{RT}$$
(72)

Pois, (G-G^{ig}) se aproxima de zero em baixas pressões. Integrando agora o lado direito da equação 71, temos:

$$\ln\left(\frac{f}{P}\right)\Big|_{P} - \ln\left(\frac{f}{P}\right)\Big|_{P=0}$$
(73)

Para completar a definição de fugacidade, define-se o limite de baixa pressão,

$$\lim_{P \to 0} \left(\frac{f}{P}\right) = 1 \tag{74}$$

Onde a razão f/P é definida como coeficiente de fugacidade ϕ .

$$\frac{(G-G^{ig})}{RT} = \ln\frac{f}{P} = \ln\varphi$$
(75)

Na prática, o coeficiente de fugacidade é calculado com base na fugacidade da seguinte forma:

$$f = \varphi P \tag{76}$$

3.3.3 - CÁLCULO DA FUGACIDADE

Pode-se calcular a fugacidade do componente í, a partir da Equação 77, uma vez que essa expressão relaciona com o potencial químico, f_i, com a fugacidade, ou seja:

$$RT\ln\varphi_i = \mu_i^r(T, P, n) \tag{77}$$

Onde:

$$\mu_{i}^{r}(T,P,n) = \left(\frac{\partial G^{r,P}}{\partial n_{i}}\right)_{T,P,n_{j\neq i}}$$
(78)

Para um gás ideal, a fugacidade é igual a pressão e o coeficiente de fugacidade é 1. Para a representação de dados P-V-T na forma de Z=f(T,P), o coeficiente de fugacidade é avaliado da seguinte forma:

$$\frac{(G-G^{ig})}{RT} = \ln\left(\frac{f}{P}\right) = \ln\varphi = \frac{1}{RT}\int_{0}^{P} \left(V - V^{ig}\right)dP = \int_{0}^{P} \left(\frac{Z-1}{P}\right)dP$$
(79)

Ou na forma Z=f(T,V), como é usando na equações cúbicas de estado:

$$\frac{(G-G^{ig})}{RT} = \ln\left(\frac{f}{P}\right) = \ln\varphi = \frac{1}{RT}\int_{0}^{P} \left(\frac{Z-1}{\rho}\right)d\rho + (Z-1) - \ln Z$$
(80)

O potencial químico de um componente, μ_i, é a energia de Gibbs parcial molar, mas ela também pode ser derivada de outras propriedades:

$$\mu_{i} = \left(\frac{\partial G}{\partial n_{i}}\right)_{T,P,n_{j\neq i}} = \left(\frac{\partial A}{\partial n_{i}}\right)_{T,V,n_{j\neq i}} = \left(\frac{\partial U}{\partial n_{i}}\right)_{S,V,n_{j\neq i}} = \left(\frac{\partial H}{\partial n_{i}}\right)_{S,P,n_{j\neq i}}$$
(81)

Então, quando fixamos o volume ao em vez da pressão, o coeficiente de fugacidade pode ser obtido a partir da derivada total da energia de Helmholz residual. Tradicionalmente a definição de coeficiente de fugacidade não é alterada da transição da energia de Gibbs(G) para a energia de Helmholz (A), isto descreve o ponto de partida entre um fluido real e um gás ideal a uma dada pressão e não a um dado volume (ADEWUMI, 2014). Então, para determinar energia de Helmholz residual (A^r) deve-se fixar a pressão usando a Equação 82:

$$\left(\frac{\partial A}{\partial V}\right)_{T,n} = -P \tag{82}$$

E levando em consideração que a pressão é a mesma no gás ideal e no gás real, porém a volumes diferentes, pode-se escrever:

$$A^{r}(T, V(P), n) = A(T, V(P), n) - A^{ig}(T, V^{ig}(P), n) = \int_{\infty}^{V(P)} (\pi^{ig} - \pi) dv - \int_{V^{ig}(P)}^{V(P)} \pi^{ig} dv = \int_{\infty}^{V(P)} \left(\frac{nRT}{v} - \pi\right) dv - nRT \ln Z$$
(83)

Então,

$$\ln \varphi_{i} = \frac{\partial}{\partial n_{i}} \left(\frac{A^{r}}{RT}\right)_{T,V} - \ln \left(\frac{PV}{n_{i}RT}\right) = \int_{\infty}^{V} \left[\frac{1}{v} - \left(\frac{\partial \pi}{\partial n_{i}}\right)T, V, n_{j\neq i}\right] - \ln Z$$
(84)

A fugacidade de um componente de uma mistura depende da temperatura, pressão e da composição da mistura. Para uma mistura de gases ideais, $\phi_i=1$.

Para a fase vapor, a composição é expressa pela fração molar y. Para relacionar f_i^V com a temperatura, pressão e fração molar, é muito útil se introduzir o coeficiente de fugacidade da fase vapor φ_i^V :

$$\varphi_i^{\nu} = \frac{f_i^{\nu}}{y_i P} \tag{85}$$

A qual pode ser calculada por dados da fase vapor PVT-y, usualmente determinados por uma equação de estado. O coeficiente de fugacidade depende da temperatura, pressão e em uma mistura multicomponente, bem como de todas as frações molares na fase vapor (não apenas y_i).

A fugacidade do componente i na fase liquida é geralmente calculada por uma das duas seguintes aproximações: aproximação por equação de estado ou aproximação por coeficiente de atividade.

<u>Aproximação por coeficiente de atividade</u>: A fugacidade de um componente i na fase líquida é relacionada com a composição daquela fase por meio do coeficiente de atividade Y_i. Para desenvolver expressões para o coeficiente de atividade, escreve-se

uma relação para a energia de Gibbs total(n_ig^E) substituindo as frações molares xi pelo número de mols n_i. Os coeficientes de atividade são então calculados por:

$$\ln \gamma_i = \frac{\partial}{\partial n_i} \left(\frac{n_i g^E}{RT} \right)_{T,P}$$
(86)

O Coeficiente de atividade Υ_i é relacionado com x_i e com a fugacidade em estado padrão f_i^0 , por:

$$\gamma_{i} = \frac{a_{i}}{x_{i}} = \frac{f_{i}^{L}}{x_{i}f_{i}^{0}} = \frac{\varphi_{i}(T, P, x_{1}, x, ...)}{\varphi_{i}(T, P, x_{i} = 1)}$$
(87)

Onde \mathbf{a}_i é a atividade do componente i. A fugacidade de estado padrão \mathbf{f}_i^0 é a fugacidade do componente i na mesma temperatura do sistema a uma pressão e composição arbitraria.

Embora existam algumas exceções importantes, coeficientes de atividade para a maioria das soluções típicas de não-eletrólitos são baseados em um estado padrão, onde, para cada componente i, 0 f_i^0 é a fugacidade de líquido puro i à temperatura e pressão do sistema, isto é, a pressão arbitraria escolhida é pressão total, e a composição arbitraria é x_i = 1 (ADEWUMI, 2014). Sempre que a fugacidade de estado padrão é a do líquido puro, à temperatura e pressão do sistema, se obtém a relação limitante (Lei de estado padrão de Raoult):

$$y_i \to 1 \implies x_i \to 1 \tag{88}$$

<u>Aproximação por equação de estado</u>: O coeficiente de fugacidade da fase líquida, φ_i^L , é calculada usando a equação que foi utilizada para o vapor (Equação 85). A única observação significante que deve ser considerada é o fator de compressibilidade do líquido. De tal forma que as propriedades do fluido da mistura são escritos em termos dos mesmos parâmetros da equação de estado utilizando os fluidos puros. No entanto, é importante ressaltar que os parâmetros da equação de estado são funções das composições e para isso deve-se utilizar as regras de mistura.

3.3.4 - FUGACIDADE DE UM LÍQUIDO PURO

Para calcular a fugacidade para o líquido usando a Equação 68, considere a Figura 01. O ponto A representa o estado de vapor, o ponto B – vapor saturado, o ponto C – líquido saturado e o ponto D representa o estado líquido.

Cálculos da fugacidade de saturação podem ser efetuados por qualquer método que determine a fugacidade de vapor. Mas entre os pontos C e D, os métodos diferem ligeiramente na forma de calcular. Existem dois métodos primários para se calcular essa mudança de fugacidade expressa entre os pontos C e D, que é o método de Poynting e o método de equação de estado (ADEWUMI, 2014).

O método de Poynting aplica a equação de Lewis (Equação 68) entre a saturação (pontos B, C) e o ponto D. Onde a integral é:

$$RT\ln\frac{f_D}{f^{Sat}} = \int_{P^{Sat}}^{P_D} V dP$$

Como o líquido é bastante incompressível para Tr<0,9, o volume é aproximadamente constante sobre o intervalo de integração e pode ser removido da integral, obtemos como resultado a Equação 90:

34

(89)

$$\frac{f}{f^{Sat}} = \exp\left(\frac{V^L(P - P^{Sat})}{RT}\right)$$
(90)

Então a fugacidade para o líquido é calculada por:

$$f^{0,L} = \varphi^{Sat} P^{Sat} \exp\left(\frac{V^L (P - P^{Sat})}{RT}\right)$$
(91)

O volume saturado pode ser estimado usando a equação de Rackett

$$V^{SatL} = V_c Z_c^{(1-Tr)0.2857}$$
(92)

A correção de Poynting é essencialmente igual uma unidade (1 UNIDADE) para a maioria dos componentes e por isso é frequentemente ignorada.

$$f \approx \varphi^{\text{Sat}} P^{\text{Sat}} \tag{93}$$

As propriedades volumétricas de um fluido puro em um dado estado são normalmente expressadas com o fator de compressibilidade Z, o qual pode ser escrito como uma função de T e P ou T e V:

$$Z = \frac{PV}{RT} = f_P(T, P) = f_V(T, V)$$
(94)

Onde V é o volume molar, P é a pressão absoluta, T é a temperatura absoluta e R é a constante universal dos gases. Para um gás ideal, Z=1, já para gases reais, Z normalmente é menor que um exceto em altas temperaturas e pressões.

A relação algébrica entre P, V e T é chamada de equação de estado (EOS), e muitas delas têm sido propostas para aplicações no campo da engenharia. As EOS podem ser classificadas em:
- Equação do virial
- Semi-teórica EOS cúbica no volume, e este volume pode ser encontrado de forma analítica a partir de uma especificação de P e T
- Equações não analíticas

A equação virial pode ser derivada a partir da teoria molecular, mas é limitada em sua aplicabilidade. Pode representar desvios modestos do comportamento de gás ideal, mas não propriedades de líquido. Já as equações semi-teóricas (EOS) podem representar o comportamento tanto de líquido quanto de vapor ao longo de uma faixa limitada de temperaturas e pressões. Finalmente, as equações não analíticas são aplicáveis em faixas mais amplas de P e T que são as equações analíticas, mas eles normalmente requerem muitos parâmetros que necessitam de adaptação para grande quantidade de dados de várias propriedades (ADEWUMI, 2014).

3.3.5 - EQUAÇÃO DO VIRIAL

A equação do virial, proposta por Thiesen em 1885, representa o comportamento volumétrico de um fluido real a partir da equação de gás ideal. Tratase de um série polinomial na pressão ou no inverso do volume no qual os coeficientes são função apenas de T para um fluido puro. A equação com seus termos iniciais é:

$$Z = 1 + B\left(\frac{P}{RT}\right) + (C - B^2)\left(\frac{P}{RT}\right)^2 + \dots = 1 + \frac{B}{V} + \frac{C}{V^2} + \dots$$
(95)

Onde os coeficientes B,C,... são chamados de segundo, terceiro,... coeficientes do virial. Estes coeficientes são relacionados com a força de interação entre as moléculas. Apesar da sua base teórica, a equação virial não é amplamente utilizada, principalmente porque os valores dos coeficientes não são conhecidos. Na verdade, apenas o segundo coeficiente virial foi estudado extensivamente para fluidos simples e alguns hidrocarbonetos leves. Como resultado, na prática, a equação virial é usada apenas para vapores a baixas pressões (1 a 5 atm) e longe da transição líquido-vapor.

3.3.6 - EQUAÇÕES DE ESTADO ANALÍTICAS

Entre as equações analíticas do estado, EOS cúbicas são as mais difundidas e simples na forma. É possível formular todas as possíveis EOS cúbicas em uma única forma geral, com um total de cinco parâmetros. A forma cúbica geral para P é:

$$P = \frac{RT}{V-b} - \frac{\Theta(V-\eta)}{(V-b)(V^2 + \delta V + \varepsilon)}$$
(96)

Onde dependendo do modelo, Θ , b, η , $\delta \in \varepsilon$ são constantes ou podem variar com T e/ou composição. A tabela abaixo apresenta os valores das constantes para alguns modelos:

EOS	Δ	3	Θ	Parâmetros
Van der Waals (1890)	0	0	а	a, b
Redlich e Kwong (1949)	0	0	a/T _r ^{0,5}	a, b
Wilson (1964)	В	0	aα(T _r)	a, b, α(T)
Soave (1972)	В	0	aa(Tr)	a, b, α(T)
Peng e Robinson (1976)	2b	-b ²	aα(T _r)	a, b, α(T)
Soave (1979)	в	0	aα(T _r)	a, b, α(T)
Peneoux, et al. (1982)	b+3c	2c ²	aa(Tr)	a, b, c, α(T)
Soave (1984)	2c	c ²	aα(T _r)	a, b, c, α(T)
Twu, et al. (1992)	4b+c	bc	aα(T _r)	a, b, c, $\alpha(T)$
Soave (1993)	В	0	aα(T _r)	a, b, α(T)
Patel (1996)	b+c	-bc	aα(T _r)	a, b, c, α(T)
Zabaloy e Vera (1996, 1998)	2b	-b ²	$a\alpha(T_r)$	a, b, α(T)

Tabela 01 - Valores das constantes para alguns modelos de EOS

Para estimar os parâmetros a e b para um fluido puro, usando a EOS SRK:

$$p = \frac{RT}{v-b} - \frac{a(T)}{v(v+b)}$$
(97)

Esta equação pode ser rearranjada na forma de um polinômio cubico:

$$v^{3} - \frac{RT}{p}v^{2} + \left(\frac{a}{p} - b^{2} - \frac{RTb}{p}\right)v - \frac{ab}{p} = 0$$
(98)

No ponto critico, está equação precisa considerar que $(v - v_c)^3$ =0. Isso é:

$$v^{3} - 3v^{2}v_{c} + 3vv_{c}^{2} - v_{c}^{3}$$
⁽⁹⁹⁾

Quando compara-se termo a termo os dois polinômios encontram-se um sistema de equações que podem ser resolvidos para se determinar a, b e v_c.

$$3v_{c} = \frac{RT_{c}}{p_{c}}, \qquad 3v_{c}^{2} = \frac{a}{p_{c}} - b^{2} - \frac{RT_{c}b}{p_{c}}, \qquad v_{c}^{3} = \frac{ab}{p_{c}}$$
(100)

A segunda equação é combinada com as outras duas, chegando:

$$2v_c^3 - (v_c + b)^3 = 0$$
(101)

A qual é resolvida para a raiz positiva de b = $(2^{1/3} - 1)v_c$. Em termos de temperatura e pressão critica, para qualquer componente i,

$$b_i = 0,08664 \frac{RT_{c,i}}{P_{c,i}}$$
(102)

$$a_i = 0,042747 \frac{R^2 T_c^2}{P_c}$$
(103)

Em temperaturas diferentes da critica,

$$a_i(T) = a_i \alpha(T)$$

onde: (104)

$$\alpha(T) = (1 + c(1 - T_r^2))^2$$
(105)

O parâmetro c_i está diretamente conectado com o fator acêntrico dos componentes:

$$c_i = 0.48508 + 1.55171\omega - 0.15613\omega^2$$
(106)

38

UFCG/BIBLIOTECA/B

3.3.7 - REGRA DE MISTURAS

A grande utilidade das equações cubicas de estado é para cálculos de equilíbrio de fase envolvendo misturas. As considerações assumidas nestes cálculos são as mesmas usadas para fluidos puros, uma vez que se possuam os parâmetros de mistura. Por muito tempo usou-se apenas a regra de mistura de Van der Waals com um ou dois parâmetros.

$$a = \sum \sum x_i x_j a_{ij} \tag{107}$$

$$\boldsymbol{b} = \sum \sum \boldsymbol{x}_i \boldsymbol{x}_j \boldsymbol{b}_{ij} \tag{108}$$

Onde:

$$a_{ij} = \sqrt{a_{ii}a_{jj}} (1 - k_{ij})$$
(109)

$$b_{ij} = \frac{1}{2} (b_{ii} + b_{jj})(1 - l_{ij})$$
(110)

Onde k_{ij} e l_{ij} são parâmetros de interação binários obtidos a partir do ajuste da equação de estado para dados experimentais. Fisicamente o k_{ij} representa a interação eletrostática entre as moléculas envolvidas e o l_{ij} representa uma dificuldade de interação entre as moléculas devido ao seu formato.

3.3.8 - EQUILÍBRIO LÍQUIDO VAPOR POR EOS

O equilíbrio líquido vapor é comum em todas as aplicações de petróleo e gás natural. Uma vez que se entende a matemática por trás deste fenômeno, pode-se resolver uma grande variedade de aplicações.

A condição para que ocorra o equilíbrio líquido vapor é que o potencial químico de cada componente em ambas as fases sejam iguais:

$$\boldsymbol{\mu}_i^V = \boldsymbol{\mu}_i^L \tag{111}$$

Ou de forma equivalente,

۱

$$f_i^V = f_i^L \tag{112}$$

Com isto o sistema encontra-se em equilíbrio. A fugacidade de cada componente e cada uma das fases também precisa ser igual e a fugacidade de um componente em uma mistura pode ser expressa em termo dos coeficientes de fugacidade como já foi dito anteriormente, logo (ADEWUMI, 2014):

$$f_i^{\nu} = y_i \phi_i^{\nu} P \tag{113}$$

$$f_i^L = x_i \phi_i^L P \tag{114}$$

Como as fugacidades devem ser iguais:

$$y_i \phi_i^V P = x_i \phi_i^L P \tag{115}$$

A condição de equilíbrio pode ser escrita em termos da razão de equilíbrio $K_i=y_i/x_i$,

$$K_i = \frac{y_i}{x_i} = \frac{\phi_i^L}{\phi_i^V}$$
(116)

Considerando um sistema em estado estacionário e em estado de equilíbrio como mostrado na figura a seguir:

Figura 02 - Estado de equilíbrio entre as fases

Onde F é a alimentação do sistema com uma composição z_i (i = número de componentes), uma vaporização flash ocorre a uma dada temperatura e pressão (T e P), originando duas correntes de saída, uma líquida, nomeada de L, como composição x_i e uma vapor, V, com composição y_i. O balanço molar global é:

$$F = L + V \tag{117}$$

E as frações de gás (fração vaporizada) e de líquido são dadas por:

$$\alpha_{\nu} = \frac{V}{F} \tag{118}$$

$$\alpha_L = \frac{L}{F} \tag{119}$$

Se dividirmos a equação 117 por F, teremos:

$$1 = \alpha_L + \alpha_V \tag{120}$$

Pode-se também dizer que o número de mols de um componente "i" por mols de mistura na fase liquida é dado por $x_i \alpha_L$ e na fase vapor é $y_i \alpha_V$. Logo, a conservação de cada componente no sistema é:

$$y_i \alpha_V + x_i \alpha_L = z_i \tag{121}$$

A equação 120 pode ser introduzida na equação 121,

$$y_i \alpha_v + x_i (1 - \alpha_v) = z_i \tag{122}$$

Substituindo o valor de xi retirado da equação de equilíbrio e resolvendo para

 $y_i \alpha_{\nu} + \frac{y_i}{K_i} (1 - \alpha_{\nu}) = z_i$ (123)

$$y_{i} = \frac{z_{i}K_{i}}{1 + \alpha_{\nu}(K_{i} - 1)}$$
(124)

Sabendo que o somatório das composições na fase vapor é uma unidade,

$$\sum_{i=1}^{n} y_i = 1$$
 (125)

Temos:

Yi,

$$\sum_{i=1}^{N_c} \frac{z_i K_i}{1 + \alpha_V (K_i - 1)} = 1$$
(126)

Efetuando as mesmas manipulações matemáticas só que desta vez trabalhando com o valor de x_i, temos:

$$K_i x_i \alpha_{\nu} + x_i (1 - \alpha_{\nu}) = z_i$$
(127)

$$x_{i} = \frac{z_{i}}{1 + \alpha_{\nu}(K_{i} - 1)}$$
(128)

$$\sum_{i=1}^{N_c} \frac{z_i}{1 + \alpha_V(K_i - 1)} = 1$$
(129)

Logo, para os somatórios de xi e yi,

$$\sum_{i=1}^{C} y_i - \sum_{i=1}^{C} x_i = \sum_{i=1}^{C} (y_i - x_i) = \sum_{i=1}^{C} \frac{z_i(K_i - 1)}{1 + \alpha_V(K_i - 1)} = 0$$
(130)

Esta equação também é chamada de função objetivo ou função objetivo de Rachford-Rice, pois, é usada como ponto de partida para a solução de problemas que envolvam equilíbrio líquido vapor.

42

T

Para se resolver um problema que envolva equilíbrio de fases, pode-se analisar um flash e utilizar as equações anteriores, principalmente a equação de Rachford-Rice. Para se obter a solução de uma forma mais simples, pode-se utilizar o método de Newton-Raphson. No entanto, faz-se necessário calcular os pontos de bolha e de orvalho do sistema, os quais são usados para determinar a condição de saturação do líquido e do vapor. Quando o equilíbrio líquido vapor ocorre, o vapor está no ponto de orvalho e o líquido está no ponto de bolha (ADEWUMI, 2014).

Para o caso do ponto de bolha, a fração vaporizada é zero e por isso:

$$\alpha_{\nu} = 0 \quad f\left\{0\right\} = 0 \tag{131}$$

$$f\{0\} = \sum_{i=1}^{C} z_i (1 - K_i) = \sum_{i=1}^{C} z_i - \sum_{i=1}^{C} z_i K_i = 0$$
(132)

$$\sum_{i=1}^{C} z_i K_i = 1 \implies K_i = P_i^S / P \implies P_{bubble} = \sum_{i=1}^{C} z_i P_i^S (T)$$
(133)

Já para o caso do ponto de orvalho,

$$\alpha_{\nu} = 1 \quad f\{1\} = 0 \tag{134}$$

$$f\{1\} = \sum_{i=1}^{C} \frac{z_i(1-K_i)}{K_i} = \sum_{i=1}^{C} \frac{z_i}{K_i} - \sum_{i=1}^{C} z_i = 0$$
(135)

$$\sum_{i=1}^{C} \frac{z_i}{K_i} = 1 \quad \Rightarrow \quad K_i = P_i^S / P \quad \Rightarrow \quad P_{dew} = \left[\sum_{i=1}^{C} \frac{z_i}{P_i^S(T)}\right]^{-1}$$
(136)

Um algoritmo deve ser seguido a fim de se resolver as equações do sistema quando ele se encontra no ponto de bolha ou no ponto de orvalho é apresentado nas figuras 03 e 04.

Figura 03 - Algoritmo para cálculo do ponto de bolha

A necessidade de se fazer os cálculos do ponto de bolha e de orvalho está no fato de que, para se resolver o flash, no estado de equilíbrio líquido vapor, é necessário saber se a fase (ou as fases) é estável. Se a fase não for estável, faz-se a necessidade de se efetuar os cálculos para o ponto de bolha e/ou de orvalho. Para a resolução do sistema flash deve-se seguir o seguinte algoritmo apresentado na figura 05:

Figura 05 - Algoritmo para cálculo do flash

Este método de resolução do flash é o modelo mais simples de se obter a solução a partir da equação de Rachford-Rice e do procedimento de Newton-Raphson para convergência, conhecido como método das substituições sucessivas (SSM).

Entretanto, quando o sistema está perto do ponto crítico e as fugacidades são fortemente dependentes da composição, uma baixa convergência do método SSM ocorre. Uma das formas de tentar corrigir esse problema é a proposição de um novo modelo, chamado de método da substituição sucessiva acelerado e estabilizado (ASSM). Esse procedimento é implementado para acelerar os cálculos dos valores de K_i, especialmente próximo do ponto crítico onde o método tradicional não é eficiente. No ASSM os seguintes passos são seguidos:

1 - Usa-se a técnica do SSM para iniciar o valor de Ki.

2 - Checam-se os seguintes critérios a cada passo durante as iterações usando o SSM:

$$\frac{\sum_{i=1}^{N_{e}} (Rr_{i}^{new} - 1)^{2}}{\sum_{i=1}^{N_{e}} (Rr_{i}^{old} - 1)^{2}} > 0,8$$
(137)

$$\left|\alpha_{\nu}^{new} - \alpha_{\nu}^{old}\right| < 0,1 \tag{138}$$

$$10^{-5} < \sum_{i=1}^{N_{f}} (Rr_{i}^{new} - 1)^{2} < 10^{-3}$$
(139)

$$0 < \alpha_{\nu}^{new} < 1 \tag{140}$$

Onde o Rr_i é a razão entre a fugacidade do líquido e a fugacidade do vapor para um dado componente i.

$$Rr_i = \frac{f_i^L}{f_i^V} \tag{141}$$

3 - Se todos os critérios acima são satisfeitos, a técnica de iteração é trocada de SSM para ASSM. Se não, SSM é utilizada para fazer a atualização dos valores de K_i. As seguintes expressões são usadas para fazer a atualização dos K_i no modelo ASSM:

$$K_i^{new} = K_i^{old} R r_i^{\lambda_i}$$
(142)

$$\lambda_{i} = \left[\frac{(Rr_{i}^{old} - 1)}{(Rr_{i}^{old} - Rr_{i}^{new})}\right]$$
(143)

4 - Uma vez que todos os critérios do passo 2 são satisfeitos, pula-se esse passo para as próximas iterações e utiliza-se o método ASSM para atualizar os valores de Ki até ocorrer uma convergência.

Sempre que o método ASSM for usado, deve-se observar se os valores calculados estão dentro do esperado fisicamente (como por exemplo, a razão entre as fugacidades estarem próximo a uma unidade). Caso não seja verdadeiro, deve-se rejeitar o método e retornar ao método padrão SSM.

3.3.9 - CRITÉRIO DE ESTABILIDADE

Um dos aspectos mais difíceis de fazer cálculos ELV pode não ser o próprio cálculo de divisão em duas fases, mas saber se uma mistura realmente é dividida em duas (ou mais) fases para uma dada condição de pressão e temperatura.

Michelsen (1982) sugeriu a criação de uma segunda fase dentro de uma determinada mistura para verificar se o tal sistema é estável ou não. O teste deve ser realizado em duas partes, considerando-se duas possibilidades: a segunda fase pode ser tanto vapor ou líquido. O resumo do método é descrito abaixo:

1 - Calcula-se a fugacidade da mistura, f_{zi}, usando a composição global z_i.

2 - Criar uma segunda fase vapor:

• Usar a correlação de Wilson para se obter os valores Ki iniciais

$$K_{i} = \frac{P_{ci}}{P} \exp\left[5.37(1+w_{i})(1-\frac{T_{ci}}{T})\right]$$
(144)

Calcular o número de mols da segunda fase

$$Y_i = z_i K_i \tag{145}$$

Obter a soma do número de mols

$$S_{v} = \sum_{i}^{n} Y_{i} \tag{146}$$

Normalizar o número de mols da segunda fase para se obter as frações molares

$$y_i = \frac{Y_i}{S_y} \tag{147}$$

- Calcular a fugacidade da segunda fase (f_{yi}) usando uma EOS correspondente
- Calcular correções para os valores de Ki

$$R_i = \frac{f_{zi}}{f_{yi}} \frac{1}{S_v} \tag{148}$$

$$K_i^{(n+1)} = K_i^{(n)} R_i$$
 (149)

• Checar se:

A convergência é alcançada:

$$\sum_{i}^{n} (R_{i} - 1)^{2} < 10^{-10}$$
(150)

A solução trivial é alcançada:

$$\sum_{i}^{n} (\ln K_i)^2 < 10^{-4}$$
(151)

Se a solução trivial é alcançada, deve-se parar o procedimento. Se a convergência ainda não foi alcançada, usa-se os novos valores de K_i e reinicia o procedimento.

3 - Cria-se uma segunda fase liquida:

Segue-se o mesmo método anterior, com as seguintes diferenças:

$$Y_i = \frac{z_i}{K_i} \tag{152}$$

$$S_L = \sum_{i=1}^{N_c} Y_i \tag{153}$$

$$x_i = \frac{Y_i}{S_L} \tag{154}$$

$$R_i = \frac{f_{xi}}{f_{zi}} S_L \tag{155}$$

Interpreta-se esse método da seguinte forma:

- A mistura é estável (prevalece a condição de única fase) se:
 - Ambos os testes S < 1 (S_L < 1 e S_V < 1)
 - Ou ambos os testes convergem para a solução trivial
 - Ou um teste converge para a solução trivial e outro gera S < 1

3.3.10 - MODELO BÁSICO DE RESOLUÇÃO DE UM FLASH

Para determinar completamente o sistema em um flash, as seguintes equações devem ser resolvidas:

$$0 = F - V - L \tag{156}$$

$$0 = Fz_i - Vy_i - Lx_i \tag{157}$$

$$0 = K_i x_i - y_i \tag{158}$$

As equações acima são respectivamente o balanço de massa geral, o balanço de componentes em ambas as fases, o balanço energético e as equações de equilíbrio para cada um dos componentes. A resolução destas equações para a resolução de um flash é conhecido como método de Newton para resolução de um sistema flash.

Outros fatos importantes a serem citados sobre flash são os tipos do mesmo que podem existir em virtude dos parâmetros conhecidos:

Tipo de Flash	Especificação	
I	Q, P	
II	Q, T	
III	Q, V	
IV	ν, τ	
v	V, P	
VI	Т, Р	

Tabela 02 - Tipo de flash

Neste trabalho está sendo estudado apenas o tipo VI, ou seja, o flash com especificação de temperatura e pressão conhecidos.

3.4 – COLUNA DE DESTILAÇÃO

É comum para a solução de problemas de separação de múltiplos estágios envolvendo estágios de equilíbrio o uso de métodos gráficos, empíricos e métodos de aproximação. Exceto para casos simples, como uma destilação binaria, esses métodos são úteis apenas para uma avaliação preliminar em estudos de projetos.

Um projeto final de um equipamento de vários estágios para o processamento de um maior número de componentes requer uma determinação rigorosa de temperaturas, pressões, taxas de fluxo de correntes, composição de correntes e taxas de troca de calor em cada um dos estágios envolvidos. E para isso, as propriedades físicas e eficiências dos estágios devem ser bem conhecidas.

A solução é obtida através da resolução de um sistema de equações envolvendo o balanço material, balanço energético e relações de equilíbrio. Podendo existir um grande número de sistemas não lineares, consequentemente a solução torna-se relativamente difícil e tediosa. Entretanto o uso de códigos computacionais para a solução de tais sistemas tornam os cálculos mais rápidos e podendo ser refeitos com modificações de forma rotineira e sem maiores dificuldades. Tal método pode ser aplicado a absorções, *stripping*, destilação e extrações líquido-líquido (SEADER, 2006).

Considerando o processo geral, contínuo, um separador vapor-líquido ou líquido-líquido em estado estacionário constituído de um número de estágios arrumados em uma cascata contracorrente. Assumindo que:

- 1. O equilíbrio de fase é realizado em cada estágio
- 2. Não existem reações químicas
- Arrastamento de gotas de líquido em vapor e oclusão de bolhas de vapor em líquido são desprezíveis.

Um esquema geral da representação de um estágio de equilíbrio j é apresentado na Figura 06 para um separador líquido-vapor, onde os estágio são numerados de baixo para o topo. O mesmo aplica-se para um separador líquido-

líquido se as fases líquidas de alta densidade são representadas por correntes de líquido e a fase de líquido de baixa densidade é representada por correntes de vapor.

Entrando no estágio j um fluxo molar de alimentação F_j, com uma composição molar z_{ij} do componente i, temperatura T_{Fj}, pressão P_{Fj} e entalpia molar h_{Fj}. Assume-se a pressão de alimentação igual ou maior que pressão do estágio P_j. Qualquer excesso na pressão de alimentação (P_F – P_j) é reduzida adiabaticamente a zero através da válvula F. Também entrando no estágio j, existe o líquido do estágio j-1 acima, com um fluxo molar L_{j-1}, com composição molar x_{i,j-1}, entalpia h_{Lj-1}, temperatura T_{j-1} e pressão P_{j-1}, a qual é igual ou menor que a pressão do estágio j. Pressão de líquido do estágio j-1 ácima, com um 1 é aumentada adiabaticamente passando pela L.

Deixando o estágio j existe vapor com propriedades intensivas $y_{i,j}$, h_{Vj} , T_j , e P_j . Essa corrente pode ser dividida em um vapor lateral de fluxo molar W_j e uma corrente entre estágios de fluxo molar V_j para ser enviado para o estágio j-1 ou, se j = 1, para deixar o separador como um produto. Existe também o líquido deixando o estágio j, com propriedades intensivas $x_{i,j}$, h_{Lj} , T_j , e P_j . O líquido que deixa o estágio pode ser dividido em uma corrente lateral de líquido com fluxo molar U_j e uma corrente entre estágios com fluxo molar L_j que será enviada para o estágio j+1. Tal representação pode ser observada na figura 06.

Calor pode ser transferido de um estágio para o outro a uma taxa Q_j, simulando os equipamentos de troca de calor dos estágios.

A equação a ser resolvida para o balanço material de componente em cada estágio é:

$$M_{i,j} = L_{j-1} x_{i,j-1} + V_{j+1} y_{i,j+1} + F_j z_{i,j} - (L_j + U_j) x_{i,j} - (V_j + W_j) y_{i,j} = 0$$
(159)

Para o equilíbrio de fase para cada componente em cada estágio:

$$E_{i,j} = y_{i,j} - K_{i,j} x_{i,j} = 0 \tag{160}$$

A soma das frações molares em cada estágio é dada por:

$$(S_{y})_{j} = \sum_{i=1}^{C} y_{i,j} - 1 = 0$$
(161)

$$(S_x)_j = \sum_{i=1}^C x_{i,j} - 1 = 0$$
(162)

E o balanço energético (onde as energias cinéticas e potenciais são ignoradas):

$$H_{j} = L_{j-1}h_{L_{j-1}} + V_{j+1}h_{V_{j+1}} + F_{j}h_{F_{j}} - (L_{j} + U_{j})h_{L_{j}} - (V_{j} + W_{j})h_{V_{j}} - Q_{j} = 0$$
(163)

Em geral $K_{i,j} = K_{i,j}\{T_j, P_j, x_j, y_j\}, h_j = h_j\{T_j, P_j, x_j \text{ ou } y_j\}$. Um esquema de múltiplos estágios pode ser observado na Figura 07.

Figura 06 - Esquema de um único estágio em uma coluna de destilação. Fonte: (SEADER et al, 2006)

Figura 07 - Esquema de múltiplos estágios em uma coluna de destilação. Fonte: (SEADER et al, 2006)

4.0 - METODOLOGIA

Para alcançar os objetivos deste trabalho foram cumpridas as seguintes etapas:

- Estudo dos modelos a serem implementados.
- Criação do algoritmo e código no Matlab para os modelos de propriedades termodinâmicas e de transporte mencionados. Os códigos serão desenvolvidos utilizando vetores unidimensionais e bidimensionais de forma a tornar os mesmos mais eficientes no processamento (reduzindo o uso de funções de loop, tais como, "for" e "if").
- A metodologia para resolução dos cálculos termodinâmicos e de transporte é apresentada na figura 08.

Figura 08 - Metodologia para implementação dos códigos para cálculo de propriedades de termodinâmicas e de transporte

- Desenvolvimento de um código computacional no Matlab para a resolução de um sistema formado por um vaso de flash e também para uma coluna de destilação. O esquema de desenvolvimento destes códigos pode ser observado na Figura 09.
- Para o caso do método de Newton otimizado, foi usada a função de otimização interna do Matlab "fmincon".

UFCG/BIBLIOTECA/BC

Figura 09 - Metodologia para implementação dos códigos para resolução de flash e coluna de

destilação

 Validação dos modelos implementados comparando os resultados obtidos com os do Aspen Plus[®] de acordo com a Figura 10.

Figura 10 - Metodologia para validação dos resultados obtidos com os códigos implementados

• Todos os códigos desenvolvidos se encontram no apêndice deste trabalho.

5.0 – RESULTADOS E DISCUSSÕES

5.1 - PRESSAO DE PONTO DE BOLHA E DE PONTO DE ORVALHO EM MISTURAS

Primeiramente simularam-se os modelos computacionais desenvolvidos para o cálculo do ponto de bolha e do ponto de orvalho, ambos do subtipo P, o qual se conhece a temperatura e se deseja calcular a pressão de ponto de bolha e de orvalho. Além do cálculo do flash propriamente dito comparou-se com os valores obtidos com o do *Aspen Plus®*. Calculou-se a pressão de bolha para as seguintes misturas apresentadas na tabela 03:

Tabela 03 - Composição das misturas usadas nos cálculos de pressão de ponto de

		Fração Molar	
Componente	Mistura 1	Mistura 2	Mistura 3
Nitrogênio		0,014	
Metano		0,943	0,6436
Etano	0,39842	0,027	0,0752
Propano	0,29313	0,0074	0,0474
n-Butano	0,20006	0,0049	0,0412
n-Pentano	0,07143	0,001	0,0297
n-Hexano	0,03696	0,0027	0,0138
n-Heptano	1911 - 22		0,0303
n-Octano			0,0371
n-Nonano			0,0415
n-Decano			0,0402

bolha e de ponto de orvalho

Para se efetuar o cálculo da pressão de ponto de bolha é necessário se conhecer a temperatura em qual se encontra a mistura, então, foram feitas as seguintes variações de temperatura:

- Mistura 1 Partindo do valor de temperatura de 270 K até 380 K variando com intervalos de 10 K, totalizando 12 casos.
- Mistura 2 Partindo do valor de temperatura de 140 K até 200 K variando com intervalos de 10 K, totalizando 7 casos.
- Mistura 3 Partindo do valor de temperatura de 260 K até 420 K variando com intervalos de 10 K, totalizando 17 casos.

Os valores obtidos para a pressão de ponto bolha e as respectivas iterações da mistura 1 estão apresentados nas tabelas 04 e 05.

Caso	New	ton	Otimizado		
	PB (bar)	iterações	PB (bar)	Iterações	
1	0,9311	15	0,9311	4	
2	1,1737	16	1,1737	4	
3	1,4548	16	1,4548	4	
4	1,7759	16	1,7759	5	
5	2,1376	17	2,1376	4	
6	2,5395	16	2,5395	4	
7	2,9796	15	2,9796	4	
8	3,4539	15	3,4539	4	
9	3,9545	14	3,9545	4	
10	4,4675	16	4,4675	4	
11	4,9666	17	4,9665	4	
12	5,3913	19	5,3913	7	

Tabela 04 - Resultado do cálculo de pressão de ponto de bolha pelos métodos de

Newton e otimizado para a mistura 1

Tabela 05 - Resultado do cálculo de pressão de ponto de bolha pelo método de

Caso	Substituição	o Sucessiva	Substituição Acelei	Sucessiva rada	ASPEN
	PB (bar)	iterações	PB (bar)	iterações	PB (bar)
1	0,9311	7	0,9311	8	0,931142
2	1,1737	8	1,1737	9	1,173743
3	1,4548	9	1,4548	10	1,454832
4	1,7759	10	1,7759	9	1,775867
5	2,1376	11	2,1376	10	2,137510
6	2,5395	12	2,5395	12	2,53934
7	2,9796	13	2,9796	10	2,979423
8	3,4539	13	3,4539	8	3,453582
9	3,9544	17	3,9545	10	3,954136
10	4,4675	25	4,4675	11	4,467208
11	4,9666	41	4,9666	20	4,966563
12	5,3912	130	5,3913	53	5,391629

substituição sucessiva, substituição sucessiva acelerada e Aspen Plus®. para a mistura 1

Os valores obtidos para a pressão de ponto bolha e as respectivas iterações da mistura 2 estão apresentados nas tabelas 06 e 07.

Caso	New	ton	Otimizado	
	PB (bar)	iterações	PB (bar)	Iterações
1	0,7037	13	0,7037	4
2	1,1056	13	1,1056	3
3	1,6506	14	1,6506	3
4	2,3607	15	2,3607	3
5	3,2522	20	3,2522	3
6	4,3245	36	4,3245	4
7	5,9015	70	5,9015	2

Tabela 06 - Resultado do cálculo de pressão de ponto de bolha pelos métodos de

Newton e otimizado para a mistura 2

Tabela 07 - Resultado do cálculo de pressão de ponto de bolha pelo método de substituição sucessiva, substituição sucessiva acelerada e *Aspen Plus*[®] para a mistura 2

Caso	Substituição	o Sucessiva	Substituição Sucessiva Acelerada		ASPEN
	PB (bar)	iterações	PB (bar)	iterações	PB (bar)
1	0,7037	7	0,7037	7	0,707324
2	1,1056	8	1,1056	8	1,110644
3	1,6506	10	1,6506	8	1,657234
4	2,3607	11	2,3607	8	2,36892
5	3,2522	14	3,2522	6	3,261935
6	4,3245	30	4,3245	15	4,335644
7	5,9018	258	5,9045	59	5,922789

Os valores obtidos para a pressão de ponto bolha e as respectivas iterações da mistura 3 estão apresentados nas tabelas 08 e 09:

Tabela 08 - Resultado do cálculo de pressão de ponto de bolha pelos métodos de

Caso	New	ton	Otimizado		
	PB (bar)	iterações	PB (bar)	Iterações	
1	15,9754	23	15,9754	7	
2	17,2516	22	17,2517	7	
3	18,3751	22	18,3751	3	
4	19,3525	23	19,3525	8	
5	20,1899	22	20,1899	8	
6	20,8926	22	20,8925	8	
7	21,4653	22	21,4653	8	
8	21,9123	22	21,9123	7	
9	22,2367	23	22,2368	7	

Newton e otimizado para a mistura 3

10	22,4417	23	22,4417	7
11	22,5291	23	22,5291	7
12	20,5002	23	20,5001	7
13	21,3553	23	21,3553	8
14	19,0940	23	19,0938	10
15	17,7134	24	17,7134	9
16	21,2105	24	21,2105	8
17	17,5790	35	17,5730	3

Tabela 09 - Resultado do cálculo de pressão de ponto de bolha pelo método de substituição sucessiva, substituição sucessiva acelerada e *Aspen Plus®* para a mistura 3

Caso	Substituição Sucessiva		Substituição Aceler	Substituição Sucessiva Acelerada		
	PB (bar)	iterações	PB (bar)	iterações	PB (bar)	
1	15,9753	85	15,9754	27	15,83721	
2	17,2516	86	17,2516	38	17,11479	
3	18,3751	89	18,3751	30	18,24031	
4	19,3525	93	19,3525	24	19,2203	
5	20,1898	98	20,1899	32	20,06068	
6	20,8925	106	20,8925	28	20,76685	
7	21,4652	116	21,4653	25	21,34307	
8	21,9122	130	21,9122	22	21,79399	
9	22,2367	148	22,2367	25	22,124	
10	22,4416	174	22,4416	23	22,33194	
11	22,5290	211	22,9579	17	22,77739	
12	20,5001	268	20,5001	38	20,85197	
13	21,3552	360	21,3553	27	21,3708	
14	19,0936	528	19,4930	19	19,16648	
15	17,7133	892	17,7136	78	17,91731	
16	21,2101	1989	21,2102	45	21,19555	
17	17,5729	6552	17,5832	496	17,37437	

Utilizando-se da equação do erro relativo percentual e considerando o valor do Aspen Plus® como sendo o teórico:

$$\varepsilon(\%) = \frac{\left|V_e - V_t\right|}{V_t} * 100$$

Onde V_e é o valor dos modelos e V_t é o valor do simulador Aspen Plus[®]. Obtevese os seguintes resultados para cada uma das misturas respectivamente, apresentados nas tabelas 10, 11 e 12:

Caso	Newton	Otimizado	Substituição Sucessiva	Substituição Sucessiva Acelerada
	Erro(%)	Erro(%)	Erro(%)	Erro(%)
1	0,00451	0,00451	0,00451	0,00451
2	0,00366	0,00366	0,00366	0,00366
3	0,00220	0,00220	0,00220	0,00220
4	0,00186	0,00186	0,00186	0,00186
5	0,00421	0,00421	0,00421	0,00421
6	0,00630	0,00630	0,00630	0,00630
7	0,00594	0,00594	0,00594	0,00594
8	0,00921	0,00921	0,00921	0,00921
9	0,00921	0,00921	0,00668	0,00921
10	0,00654	0,00654	0,00654	0,00654
11	0,00074	0,00127	0,00074	0,00074
12	0,00610	0,00610	0,00796	0,00610

Tabela 10 - Erro entre modelos de ponto de bolha e Aspen Plus® para a mistura 1

Tabela 11 - Erro entre modelos de ponto de bolha e Aspen Plus® para a mistura 2

Caso	Newton	Otimizado	Substituição Sucessiva	Substituição Sucessiva Acelerada
- Data i s	Erro(%)	Erro(%)	Erro(%)	Erro(%)
1	0,51235	0,51235	0,51235	0,51235
2	0,45415	0,45415	0,45415	0,45415
3	0,40031	0,40031	0,40031	0,40031
4	0,34699	0,34699	0,34699	0,34699
5	0,29844	0,29844	0,29844	0,29844
6	0,25703	0,25703	0,25703	0,25703
7	0,35944	0,35944	0,35438	0,30879

Tabela 12 - Erro entre modelos de ponto de bolha e Aspen Plus® para a mistura 3

Caso	Newton	Otimizado	Substituição Sucessiva	Substituição Sucessiva Acelerada
	Erro(%)	Erro(%)	Erro(%)	Erro(%)
1	0,87257	0,87257	0,87193	0,87257
2	0,79937	0,79995	0,79937	0,79937
3	0,73897	0,73897	0,73897	0,73897
4	0,68781	0,68781	0,68781	0,68781
5	0,64415	0,64415	0,64365	0,64415

Caso	Newt	on	Otimiz	zado
	PD (bar)	iterações	PD (bar)	Iterações
1	0,0764	12	0,0764	4
2	0,1221	13	0,1221	4
3	0,1878	14	0,1878	4
4	0,2794	15	0,2794	5
5	0,4039	15	0,4039	5
6	0,5695	16	0,5695	5
7	0,7864	17	0,7864	5
8	1,0669	17	1,0669	5
9	1,4270	18	1,4270	5
10	1,8891	20	1,8891	6
11	2,4879	20	2,4879	6
12	3,2920	21	3,2920	6
13	4,5793	22	4,5793	8

Tabela 13 - Resultado do cálculo de pressão de ponto de orvalho pelos métodos de

Newton e otimizado para a mistura 1

Tabela 14 - Resultado do cálculo de pressão de ponto de orvalho pelo método de substituição sucessiva, substituição sucessiva acelerada e *Aspen Plus®* para a mistura 1

Caso	Substituição	o Sucessiva	Substituição Sucessiva Acelerada		Sucessiva Substituição Sucessiva ASI Acelerada		ASPEN
	PD (bar)	iterações	PD (bar)	iterações	PD (bar)		
1	0,0764	6	0,0764	6	0,0768		
2	0,1221	6	0,1221	6	0,1226		
3	0,1878	7	0,1878	6	0,1871		
4	0,2794	8	0,2794	6	0,2799		
5	0,4039	8	0,4039	7	0,4033		
6	0,5695	9	0,5695	7	0,5698		
7	0,7864	11	0,7864	7	0,7855		
8	1,6690	12	1,0669	8	1,0668		
9	1,4270	14	1,4270	8	1,4262		
10	1,8891	17	1,8891	9	1,8871		
11	2,4879	22	2,4879	12	2,4867		
12	3,2921	32	3,2921	15	3,2892		
13	4,5792	86	4,5793	13	4,5737		

Calculando-se o erro, apresentado na tabela 15, relativo dos modelos com relação ao Aspen Plus®:

Caso	Newton	Otimizado	Substituição Sucessiva	Substituição Sucessiva Acelerada
	Erro(%)	Erro(%)	Erro(%)	Erro(%)
1	0,5208	0,5208	0,5208	0,5208
2	0,4078	0,4078	0,4078	0,4078
3	0,3741	0,3741	0,3741	0,3741
4	0,1786	0,1786	0,1786	0,1786
5	0,1488	0,1488	0,1488	0,1488
6	0,0527	0,0527	0,0527	0,0527
7	0,1146	0,1146	0,1146	0,1146
8	0,0094	0,0094	0,0094	0,0094
9	0,0561	0,0561	0,0561	0,0561
10	0,1060	0,1060	0,1060	0,1060
11	0,0483	0,0483	0,0483	0,0483
12	0,0851	0,0851	0,0882	0,0882
13	0,1224	0,1224	0,1203	0,1224

Tabela 15 - Erro entre modelos de ponto de orvalho e Aspen Plus® para a mistura 1

Os valores obtidos para a pressão de ponto orvalho e as respectivas iterações da mistura 2 estão apresentados nas tabelas 16 e 17:

Tabela 16 - Resultado do cálculo de pressão de ponto de orvalho pelos métodos de Newton e otimizado para a mistura 2

Caso	New	ton	Otimizado		
1	PD (bar)	iterações	PD (bar)	Iterações	
1	0,0235	16	0,0236	2	
2	0,0583	15	0,0580	2	
3	0,1333	15	0,1333	5	
4	0,2876	15	0,2876	4	
5	0,6015	13	0,6015	4	
6	1,2891	17	1,2891	5	
7	2,0237	18	2,0236	5	

Caso	Substituição	o Sucessiva	Substituição Sucessiva Acelerada		ASPEN
	PD (bar)	iterações	PD (bar)	iterações	PD (bar)
1	0,0235	4	0,0235	5	0,0237
2	0,0583	5	0,0583	5	0,0586
3	0,1333	6	0,1333	5	0,1341
4	0,2876	6	0,2876	5	0,2892
5	0,6015	7	0,6015	6	0,6045
6	1,2891	13	1,2891	8	1,2956
7	2,0236	22	2,0237	10	2,0355

Tabela 17 - Resultado do cálculo de pressão de ponto de orvalho pelo método de substituição sucessiva, substituição sucessiva acelerada e *Aspen Plus®* para a mistura 2

Calculando-se o erro, apresentado na tabela 18, relativo dos modelos com relação ao Aspen Plus®:

Caso	Newton	Otimizado	Substituição Sucessiva	Substituição Sucessiva Acelerada
	Erro(%)	Erro(%)	Erro(%)	Erro(%)
1	0,8439	0,4219	0,8439	0,8439
2	0,5119	1,0239	0,5119	0,5119
3	0,5966	0,5966	0,5966	0,5966
4	0,5533	0,5533	0,5533	0,5533
5	0,4963	0,4963	0,4963	0,4963
6	0,5017	0,5017	0,5017	0,5017
7	0,5797	0,5846	0,5846	0,5797

Tabela 18 - Erro entre modelos de ponto de orvalho e Aspen Plus® para a mistura 2

Os valores obtidos para a pressão de ponto orvalho e as respectivas iterações da mistura 3 estão apresentados nas tabelas 19 e 20.

Tabela 19 - Resultado do cálculo de pressão de ponto de orvalho pelos métodos de Newton e otimizado para a mistura 3

Caso	Newton		Otimizado	
	PD (bar)	iterações	PD (bar)	Iterações
1	0,1264	11	0,1264	4
2	0,1842	11	0,1842	4
3	0,2631	13	0,2631	4
4	0,3691	14	0,3691	4

5	0.5102	15	0.5102	5
6	0,6965	16	0,6965	5
7	0,9420	16	0,9420	5
8	1,2662	17	1,2662	5
9	1,6987	18	1,6987	5
10	2,2888	18	2,2888	6
11	3,1332	20	3,1332	6
12	4,4926	21	4,4926	6

Tabela 20 - Resultado do cálculo de pressão de ponto de orvalho pelo método de substituição sucessiva, substituição sucessiva acelerada e *Aspen Plus*® para a mistura 3

Caso	Substituição Sucessiva		Substituição Acelei	ASPEN	
	PD (bar)	iterações	PD (bar)	iterações	PD (bar)
1	0,1264	5	0,1264	4	0,1287
2	0,1842	5	0,1842	4	0,1821
3	0,2631	6	0,2631	5	0,2602
4	0,3691	6	0,3691	5	0,3731
5	0,5102	7	0,5102	5	0,5178
6	0,6965	8	0,6965	5	0,6927
7	0,9420	10	0,9420	6	0,938
8	1,2662	11	1,2662	7	1,2605
9	1,6987	14	1,6987	8	1,6899
10	2,2888	17	2,2888	9	2,2811
11	3,1332	23	3,1332	10	3,1402
12	4,4926	39	4,4926	15	4,4847

Calculando-se o erro relativo, apresentado na tabela 21, dos modelos com relação ao Aspen Plus®:

Caso	Newton	Otimizado	Substituição Sucessiva	Substituição Sucessiva Acelerada
	Erro(%)	Erro(%)	Erro(%)	Erro(%)
1	1,7871	1,7871	1,7871	1,7871
2	1,1532	1,1532	1,1532	1,1532
3	1,1145	1,1145	1,1145	1,1145
4	1,0721	1,0721	1,0721	1,0721
5	1,4677	1,4677	1,4677	1,4677
6	0,5486	0,5486	0,5486	0,5486
7	0,4264	0,4264	0,4264	0,4264

Tabela 21 - Erro entre modelos de ponto de orvalho e Aspen Plus® para a mistura 3

and the second se	the product of the second s		and a set of the set o	the second s
12	0,1762	0,1762	0,1762	0,1762
11	0,2229	0,2229	0,2229	0,2229
10	0,3376	0,3376	0,3376	0,3376
9	0,5207	0,5207	0,5207	0,5207
8	0,4522	0,4522	0,4522	0,4522

Observou-se que a grande maioria dos erros ficou abaixo de 1%, apresentando um comportamento aceitável dos modelos implementados. Entretanto, com base nos resultados, pode-se observar que o melhor resultado em decorrência das iterações para se obter os valores finais foi o método de Newton otimizado, desconsiderando o tempo computacional dos cálculos uma vez que todos são baixíssimos, da ordem de milissegundos.

5.2 – FRAÇÃO VAPORIZADA (FLASH) EM REFORMADOR CATALÍTICO

Efetuou-se então outro teste com os modelos implementados, dessa vez utilizando dados de uma alimentação de um reformador catalítico da indústria petroquímica. Desta vez foram calculados os valores do ponto de bolha, ponto de orvalho e o cálculo da fração de vapor (flash). Os dados referentes a tal alimentação, para cálculo da pressão de bolha e pressão de orvalho, podem ser observados na tabela 22:

			Vazão Molar	(kmol/h)		
Caso	Temperatura (°C)	Metano	Etano	Propano	Isobutano	N-Butano
1	174,9986	0,00000	5,571871	3,780912	5,044688	51,79667
2	174,9464	3,147607	3,83187	2,73705	2,67902	40,8553
3	175,0222	3,905517	4,881897	2,929138	2,405057	50,70788
4	174,9673	3,560468	4,577744	2,797511	2,529553	33,90473
5	174,9778	3,059791	3,95223	2,9323	1,259145	28,37436
6	174,9728	3,432024	4,476553	2,685932	2,830879	56,57948
7	175,0165	3,304496	4,248638	2,517711	4,087329	56,00171
8	175,1111	2,633467	3,385886	2,131855	4,662263	44,42711
9	175,017	2,99017	3,934434	2,36066	5,629471	58,05677
10	175,0143	2,508349	3,205763	2,369054	2,799596	42,08999

Tabela 22 - Composição e temperatura da mistura de entrada do reformador catalítico

11	174,9992	2,369377	2,895906	1,842849	1,717336	34,50994
12	175,2282	2,990167	3,827414	2,033314	3,570693	29,38553
13	175,0371	3,18167	3,65892	2,227169	5,904727	71,17711
14	175,0015	3,161702	4,311412	2,586847	1,49451	38,96669
15	149,9917	3,392505	3,835006	2,507504	3,989931	68,08136
						and the second
			Vazão Molar (k	mol/h)		
Caso	2-Metil-	N-	Ciclopentano	2,2-	2,3-Dimetil-	2-Metil-
	Butano	Pentano		Dimetil-	Butano	Pentano
				Butano		
1	139,5864	159,2769	0,00000	4,968043	58,93906	217,0132
2	124,5648	145,245	0,00000	3,675494	57,35705	209,7933
3	124,7779	156,8869	0,00000	2,119707	55,11239	209,0802
4	100,1215	127,8869	0,00000	4,504481	52,26898	189,6132
5	101,7443	164,861	0,00000	1,318973	47,40058	180,1222
6	125,3638	157,7469	0,00000	3,51441	58,84127	216,7889
7	124,4653	155,0901	0,00000	3,83578	60,16118	223,4846
8	113,7192	124,5327	0,00000	2,812595	44,64995	182,3792
9	112,0555	123,174	0,00000	5,038465	45,51698	180,36
10	94,7209	108,5848	0,00000	3,739255	40,5865	161,567
11	90,95135	120,6242	0,00000	2,539771	48,65248	183,0222
12	179,2839	60,37397	0,00000	144,4752	59,3963	164,8038
13	118,8312	141,1619	0,00000	4,387669	52,8428	198,2082
14	120,7685	157,9325	0,45536	1,852013	48,52273	191,8685
15	149,9536	185,7597	0,00000	4,738989	61,49664	227,8021
			Vazão Molar (k	mol/h)		
Caso	3-Metil-	N-Hexano	Metilciclopentano	Benzeno	Ciclohexano	N-
	Pentano					Heptano
1	156,4934	191,3826	102,3238	12,45755	58,15693	83,32182
2	139,6688	161,7217	68,53919	14,51346	31,59538	48,33336
3	141,3459	167,3605	58,11247	12,96919	29,89487	39,52851
4	125,1056	151,1976	53,78463	10,87744	23,75923	40,5696
5	117,1413	151,2697	39,08387	7,367169	11,39594	34,31626
6	144,3921	1/4,616	69,61035	18,27966	35,88481	38,86294
7	144,4474	1/3,0139	69,25412	18,48/49	38,14145	39,84938
8	134,653	158,/358	63,09226	10,37626	36,72131	45,28172
9	129,3775	154,6552	58,85211	9,422064	25,53464	29,01229
10	115,7611	138,8198	64,05297	16,07129	34,61891	35,30705
11	121,3534	146,6/18	52,664/8	13,835/1	21,3/4/5	12,11/11
12	98,38035	69,01683	33,06622	0,00000	29,63998	13,88664
13	137,1624	159,8638	79,11555	12,0752	15,82311	8,285834
14	133,8079	176,0338	54,04923	12,9/53	18,20606	10,24/36
15	148,3414	1/3,/99/	78,20801	13,8618/	39,61185	25,30855

Os valores obtidos para a pressão de ponto bolha e as respectivas iterações da alimentação do reformador estão apresentados nas tabelas 23 e 24.

Caso	New	ton	Otimiz	zado
	PB (bar)	iterações	PB (bar)	iterações
1	17,1290	14	17,1289	3
2	18,0220	14	18,0220	4
3	18,7731	14	18,7731	4
4	18,2667	14	18,2667	4
5	18,5921	14	18,5921	4
6	18,5045	14	18,5045	4
7	18,4121	14	18,4121	4
8	18,0675	14	18,0675	4
9	18,9974	14	18,9974	4
10	18,0815	14	18,0815	4
11	17,9755	14	17,9755	4
12	19,4796	14	19,4795	4
13	19,4565	14	19,4565	4
14	18,7479	14	18,7479	4
15	12,9950	14	12,9950	4

Tabela 23 - Resultado do cálculo de pressão de ponto de bolha pelos métodos de Newton e otimizado para a alimentação do reformador catalítico

Tabela 24 - Resultado do cálculo de pressão de ponto de bolha pelo método de substituição sucessiva, substituição sucessiva acelerada e *Aspen Plus®* da alimentação do reformador catalítico

Caso	Substituição	o Sucessiva	Substituição Acelei	Sucessiva rada	ASPEN
	PB (bar)	iterações	PB (bar)	iterações	PB (bar)
1	17,1290	11	17,1290	7	17,0008
2	18,0220	7	17,1154	7	17,89288
3	18,7731	10	17,1352	7	18,63823
4	18,2667	10	17,1209	7	18,13101
5	18,5921	9	17,1236	7	18,45947
6	18,5044	9	17,1223	7	18,36757
7	18,4121	8	17,1337	7	18,27348
8	18,0675	9	17,1584	7	17,93851
9	18,9974	9	17,1338	7	18,86353
10	18,0815	8	17,1331	7	17,94586
11	17,9756	6	17,1292	7	17,84083
12	19,4795	9	17,1890	7	19,3820
13	19,4564	9	17,1391	7	19,31755
14	18,7479	10	17,1298	7	18,62336
15	12,9951	8	11,4584	5	12,90075

Utilizando-se da equação do erro relativo percentual e considerando o valor do Aspen Plus® como sendo o teórico:

$$\varepsilon(\%) = \frac{\left|V_e - V_t\right|}{V_t} * 100$$

Onde V_e é o valor dos modelos e V_t é o valor do simulador Aspen Plus[®]. Obtiveram-se os seguintes resultados, apresentados na tabela 25, para a mistura em estudo:

Caso	Newton	Otimizado	Substituição Sucessiva	Substituição Sucessiva Acelerada
	Erro(%)	Erro(%)	Erro(%)	Erro(%)
1	0,75408	0,75349	0,75408	0,75408
2	0,72163	0,72163	0,72163	4,34519
3	0,72362	0,72362	0,72362	8,06423
4	0,74839	0,74839	0,74839	5,57117
5	0,71849	0,71849	0,71849	7,23677
6	0,74550	0,74550	0,74495	6,77972
7	0,75859	0,75859	0,75859	6,23735
8	0,71907	0,71907	0,71907	4,34880
9	0,70968	0,70968	0,70968	9,16970
10	0,75583	0,75583	0,75583	4,52896
11	0,75484	0,75484	0,75540	3,98877
12	0,50356	0,50304	0,50304	11,31462
13	0,71929	0,71929	0,71878	11,27705
14	0,66873	0,66873	0,66873	8,01982
15	0,73058	0,73058	0,73135	11,18036

Tabela 25 - Erro entre modelos de ponto de bolha e Aspen Plus®para a alimentação do reformador catalítico

Os valores obtidos para a pressão de ponto orvalho e as respectivas iterações da alimentação do reformador estão apresentados nas tabelas 26 e 27.

Caso	New	ton	Otimiz	zado
	PD (bar)	iterações	PD (bar)	iterações
1	14,4352	15	14,4352	4
2	15,0577	15	15,0577	4
3	15,5162	15	15,5162	4
4	15,0859	15	15,0859	4
5	15,6294	15	15,6294	4
6	15,3983	15	15,3983	4
7	15,3527	15	15,3527	4
8	15,0334	15	15,0334	4
9	15,7155	15	15,7155	4
10	14,9962	15	14,9962	4
11	15,3179	14	15,3179	4
12	16,8013	14	16,8013	4
13	16,3488	14	16,3488	4
14	15,9068	14	15,9068	4
15	10,1409	15	10,1409	4

Tabela 26 - Resultado do cálculo de pressão de ponto de orvalho pelos métodos de Newton e otimizado para a alimentação do reformador catalítico

Tabela 27 - Resultado do cálculo de pressão de ponto de orvalho pelo método de substituição sucessiva, substituição sucessiva acelerada e *Aspen Plus*®da alimentação do reformador catalítico

Caso	Substituição	o Sucessiva	Substituição Acelei	Sucessiva rada	ASPEN
	PD (bar)	iterações	PD (bar)	iterações	PD (bar)
1	14,4352	11	14,4352	7	14,28826
2	15,0577	12	15,0577	8	14,91398
3	15,5162	12	15,5162	8	15,37129
4	15,0859	12	15,0859	8	14,94304
5	15,6294	12	15,6294	8	15,49189
6	15,3983	12	15,3983	8	15,25045
7	15,3527	12	15,3527	8	15,20351
8	15,0334	12	15,0334	8	14,88914
9	15,7155	12	15,7155	8	15,57216
10	14,9962	12	14,9962	8	14,84806
11	15,3179	12	15,3179	8	15,17412
12	16,8013	13	16,8013	8	16,65148
13	16,3488	12	16,3488	8	16,20449
14	15,9068	12	15,9068	8	15,77122
15	10,1409	9	10,1409	6	10,03619

Calculando-se o erro relativo, apresentados na tabela 28, dos valores calculados.

Caso	Newton	Otimizado	Substituição Sucessiva	Substituição Sucessiva Acelerada
	Erro(%)	Erro(%)	Erro(%)	Erro(%)
1	1,02840	1,02840	1,02840	1,02840
2	0,96366	0,96366	0,96366	0,96366
3	0,94273	0,94273	0,94273	0,94273
4	0,95603	0,95603	0,95603	0,95603
5	0,88763	0,88763	0,88763	0,88763
6	0,96948	0,96948	0,96948	0,96948
7	0,98129	0,98129	0,98129	0,98129
8	0,96889	0,96889	0,96889	0,96889
9	0,92049	0,92049	0,92049	0,92049
10	0,99771	0,99771	0,99771	0,99771
11	0,94753	0,94753	0,94753	0,94753
12	0,89974	0,89974	0,89974	0,89974
13	0,89056	0,89056	0,89056	0,89056
14	0,85967	0,85967	0,85967	0,85967
15	1,04332	1,04332	1,04332	1,04332

Tabela 28 - Erro entre modelos de ponto de orvalho e Aspen Plus®para a alimentação do reformador catalítico

Em todos os casos em estudo, os erros foram em sua grande parte abaixo de 1%, entretanto o que obteve o melhor resultado com o menor número de iterações foi o método de Newton otimizado.

Para o cálculo da fração vaporizada (flash) da alimentação do reformador é necessário especificar mais uma característica da corrente de alimentação, no caso vamos especificar a pressão, que pode ser observada para cada caso em estudo na Tabela 30. No entanto, para a ocorrência de uma fração vaporizada na mistura, foi acrescentada a alimentação uma vazão de hidrogênio, observada na Tabela 29:

Caso	Pressão (bar)	Vazão Molar H2 (kmol/h)
1	32,9256	181,4838
2	32,9252	125,7674
3	33,0626	126,2319
4	33,1616	114,4436
5	32,9470	116,1446
6	33,0713	137,1317
7	33,0899	145,7125
8	33,0603	115,9979
9	32,7087	146,5183
10	32,9969	130,1754
11	33,1001	123,4709
12	33,1384	109,5597
13	33,0173	148,7431
14	32,9915	84,5995
15	32,9257	136,1427

Tabela 29 - Pressão e vazão molar de hidrogênio para cada caso do reformador catalítico

Com base nesta informação adicional (pressão), calculou-se o flash PT e se obteve os seguintes valores para a fração vaporizada, apresentados na tabela 30 e 31.

Tabela 30 - Resultado do cálculo da fração vaporizada (flash) pelos métodos de Newton e otimizado para a alimentação do reformador catalítico

Caso	Newt	on	Otimiz	ado
	Fração	iterações	Fração	iterações
	Vaporizada		vaporizada	
1	0,2630	4	0,2630	3
2	0,2184	4	0,2184	3
3	0,2315	4	0,2315	3
4	0,2276	4	0,2276	3
5	0,2576	4	0,2576	3
6	0,2375	4	0,2375	3
7	0,252	4	0,252	3
8	0,2183	4	0,2183	3
9	0,3316	4	0,3316	3
10	0,2894	4	0,2894	3
11	0,2716	4	0,2716	3
12	0,2664	4	0,2664	3
13	0,3233	4	0,3233	3
14	0,1484	4	0,1484	3
15	0,1277	4	0,1277	3
Tabela 31 - Resultado do cálculo da fração vaporizada (flash) pelo método de substituição sucessiva, substituição sucessiva acelerada e *Aspen Plus®* para a alimentação do reformador catalítico

Caso	Substituição	Sucessiva	Substituição Acelera	Sucessiva ada	ASPEN
	Fração	Iterações	Fração	iterações	Fração
	Vaporizada	1.1.1	Vaporizada	1000	Vaporizada
1	0,2630	12	0,2630	7	0,266906
2	0,2184	12	0,2184	8	0,227200
3	0,2315	13	0,2315	8	0,238317
4	0,2276	13	0,2276	8	0,234216
5	0,2576	13	0,2576	8	0,262414
6	0,2375	12	0,2375	8	0,243887
7	0,2520	12	0,2520	8	0,258003
8	0,2183	12	0,2183	8	0,226821
9	0,3316	12	0,3316	8	0,329083
10	0,2894	12	0,2894	8	0,291243
11	0,2716	13	0,2716	8	0,274314
12	0,2664	13	0,2664	8	0,269866
13	0,3233	12	0,3233	8	0,323084
14	0,1484	13	0,1484	8	0,1512
15	0,1277	11	0,1277	7	0,1304

Calculando-se o erro relativo dos valores calculados, tem-se:

Tabela 32 - Erro entre os modelos de fração vaporizada (flash) e Aspen Plus® para a alimentação do reformador catalítico

Caso	Newton	Otimizado	Substituição Sucessiva	Substituição Sucessiva Acelerada
	Erro(%)	Erro(%)	Erro(%)	Erro(%)
1	1,46344	1,46344	1,46344	1,46344
2	3,87324	3,87324	3,87324	3,87324
3	2,86048	2,86048	2,86048	2,86048
4	2,82474	2,82474	2,82474	2,82474
5	1,83451	1,83451	1,83451	1,83451
6	2,61884	2,61884	2,61884	2,61884
7	2,32672	2,32672	2,32672	2,32672
8	3,75671	3,75671	3,75671	3,75671
9	0,76485	0,76485	0,76485	0,76485
10	0,63280	0,63280	0,63280	0,63280
11	0,98938	0,98938	0,98938	0,98938

12	1,28434	1,28434	1,28434	1,28434
13	0,06686	0,06686	0,06686	0,06686
14	1,85185	1,85185	1,85185	1,85185
15	2,07055	2,07055	2,07055	2,07055

De forma semelhante aos valores de pressão do ponto de bolha e de orvalho, os erros para o cálculo do flash usando os modelos de Newton, Newton otimizado, substituição sucessiva e substituição sucessiva acelerada foram de níveis aceitáveis quando comparados aos valores calculados no simulador *Aspen Plus®*, podendo ser apontado como os que tiveram melhor desempenho, os métodos de Newton e Newton otimizado devido ao menor número de iterações para resolução do sistema, considerando que o tempo computacional é desprezível.

5.3 – PRORPIEDADES TERMODINÂMICAS E DE TRANSPORTE EM UM FLASH

Após implementados os modelos para se efetuar os cálculos do ponto de bolha, ponto de orvalho e flash, utilizou-se os valores calculados no flash por meio do método de substituição sucessiva para validar os resultados dos códigos computacionais para cálculos de propriedades termodinâmicas e de transporte.

O flash implementado recebe como alimentação uma mistura de propano, nbutano, n-pentano e n-hexano com a seguinte composição respectivamente: 0,1, 0,2, 0,3 e 0,4. Tal equipamento opera a uma temperatura de 95°C e a uma pressão de 7 bar. Tal projeto pode ser observado na Figura 11.

Figura 11 - Tanque flash para separação de uma mistura contendo propano, n-butano, n-pentano e n-hexano implementada no Aspen Plus.

Primeiramente utilizando-se as equações de estado (EOS) Peng-Robinson, Redlich-Kwong e Soave-Redlich-Kwong, e o modelo matemático para cálculo do flash, determinou-se a fração vaporizada da alimentação bem como as composições das fases líquida e gasosa (fundo e topo do tanque respectivamente). Os resultados podem ser observados nas tabelas 33 a 36. O erro relativo entre os valores continuam sendo efetuados da mesma forma, considerando o valor do simulador *Aspen Plus*[®] como sendo o teórico.

Tabela 33 - Fração de Vapor calculada para cada EOS

1	Fração de Vapor	MATLAB	ASPEN	Erro(%)
	PR	0,16050	0,160529	0,01807
	RK	0,16190	0,164232	1,41994
	SRK	0,18430	0,193592	4,79979

Tabela 34 - Composições da fase líquida e vapor para a EOS-PR

	MA	TLAB	ASI	PEN	ERR	0(%)
Composição (PR)	LIQ	VAP	LIQ	VAP	LIQ	VAP
Propano	0,066561	0,274861	0,066562	0,274863	0,00150	0,00073
N-butano	0,178339	0,313288	0,178336	0,313289	0,00168	0,00032
N-Pentano	0,30962	0,249667	0,309625	0,249669	0,00161	0,00080
N-Hexano	0,44547	0,162176	0,445478	0,162179	0,00180	0,00185
Soma	1	1	1	1		

	MAT	TLAB	ASI	PEN	ERRC	0(%)
Composição (RK)	LIQ	VAP	LIQ	VAP	LIQ	VAP
Propano	0,068227	0,276657	0,066102	0,272506	3,21473	1,52327
N-Butano	0,18068	0,320988	0,177856	0,312687	1,58780	2,65473
N-Pentano	0,326892	0,26998	0,309327	0,252536	5,67846	6,90753
N-Hexano	0,424202	0,152375	0,446715	0,162271	5,03968	6,09844
Soma	1	1	1	1		

Tabela 35 - Composições da fase líquida e vapor para a EOS-RK

Tabela 36 - Composições da fase líquida e vapor para a EOS-SRK

	MAT	TLAB	ASI	PEN	ERRC)(%)
Composição (SRK)	LIQ	VAP	LIQ	VAP	LIQ	VAP
Propano	0,064836	0,270623	0,063553	0,251822	2,01879	7,46599
N-Butano	0,176539	0,313837	0,169238	0,328139	4,31404	4,35852
N-Pentano	0,309931	0,251814	0,31132	0,252847	0,44616	0,40855
N-Hexano	0,448695	0,163726	0,455889	0,167193	1,57802	2,07365
Soma	1	1	1	1		

Observa-se que os valores obtidos para a fração de vapor (calculadas pelos modelos no Matlab[®]) do flash para as três equações de estado utilizadas possuem um erro menor que 5% quando comparado ao valor do Aspen Plus[®]. Sendo o que possui o melhor comportamento foi a equação de Peng-Robinson, a qual o erro entre os valores foi de 0,01%. Para as composições da fase vapor e líquido os resultados ficaram também em sua grande maioria abaixo dos 5%. Lembrando que os parâmetros k_{ij} utilizados foram estimados pela seguinte equação que leva em consideração os volumes críticos das substâncias (equação de Chueh e Prausnitz):

$$k_{ij} = 1 - \left(\frac{2(V_{ci}V_{cj})^{\frac{1}{6}}}{V_{ci}^{\frac{1}{3}} + V_{cj}^{\frac{1}{3}}}\right)^3$$

Para a validação dos parâmetros termodinâmicos e de transportes utilizou-se os cálculos obtidos via a EOS Peng-Robinson, pois foi a que obteve os melhores resultados. Calculou-se então a capacidade calorifica de gás ideal para os componentes puros, o volume molar de líquido para os componentes puros, o volume molar da mistura, a tensão superficial da mistura, a pressão de vapor para os componentes puros na mistura, viscosidade da mistura, e o coeficiente de atividade dos componentes pelo método NRTL e Wilson. Os valores calculados podem ser observados nas tabelas 37 a 44.

COMPONENTE	MATLAB	ASPEN	ERRO(%)
	Capacidade Calorifica de Gás Ideal (J/mol.K)	Capacidade Calorifica de Gás Ideal (J/mol.K)	
Propano	20,82460	20,82450	0,00048
N-Butano	27,71230	27,71220	0,00036
N-Pentano	34,17780	34,17760	0,00059
N-Hexano	40,34080	40,34060	0,00050

Tabela 37 - Capacidade Calorifica dos componentes puros na mistura

Tabela 38 - Volume molar de líquido dos componentes puros na mistura

COMPONENTE	MATLAB	ASPEN	ERRO(%)
	Volume Molar de Líquido (cm ³ /mol)	Volume Molar de Líquido (cm ³ /mol)	
Propano	20,8246	20,8243	0,00144
N-Butano	27,7123	27,7122	0,00036
N-Pentano	34,1778	34,1776	0,00059
N-Hexano	40,3408	40,3409	0,00025

Tabela 39 - Volume molar de líquido da Mistura

	Volume Molar de líquido da Mistura (cm ³ /mol)
Matlab [®]	130,1302
ASPEN®	130,1581
Erro(%)	0,02144

Tabela 40 - Tensão superficial da Mistura

	Tensão Superficial da Mistura (dyn/cm)
Matlab®	6,6366
ASPEN [®]	6,6368
Erro(%)	0,00301

Tabela 41 - Viscosidade da Mistura

	Viscosidade da Mistura (Micropoise)		
Matlab®	1241,45		
ASPEN®	1232,25		
Erro(%)	0,74660		

Tabela 42 - Pressão de vapor dos componentes puros na mistura

COMPONENTE	MATLAB	ASPEN	ERRO(%)
	Pressão de Vapor (Pa)	Pressão de Vapor (Pa)	
Propano	4117000	4120000	0,07282
N-Butano	1385000	1390000	0,35971
N-Pentano	548000	546000	0,36630
N-Hexano	657000	655000	0,30534

Tabela 43 - Coeficiente de atividade dos componentes na mistura calculados pelo método NRTL

COMPONENTE	MATLAB	ASPEN	ERRO(%)
	Coeficiente de Atividade (NRTL)	Coeficiente de Atividade (NRTL)	
Propano	1,1418	1,090245	4,72875
N-Butano	1,0963	1,088703	0,69780
N-Pentano	1,0616	1,028826	3,18557
N-Hexano	0,985	0,981632	0,34310

Tabela 44 - Coeficiente de atividade dos componentes na mistura calculados pelo método de WILSON

COMPONENTE	MATLAB	ASPEN	ERRO(%)
	Coeficiente de Atividade (Wilson)	Coeficiente de Atividade (Wilson)	
Propano	0,89245	0,926337	3,65817
N-Butano	1,035412	1,018479	1,66258
N-Pentano	1,010214	0,999327	1,08943
N-Hexano	0,965781	0,983756	1,82718

Observa-se que todos os valores calculados possuem um pequeno desvio (erro) de menos de 5% quando comparado aos valores utilizados para validação coletados dos Aspen Plus®. Mostrando uma aproximação aceitável dos códigos implementados.

5.4 – COLUNA DE DESTILAÇÃO

Uma coluna de destilação que nada mais é que uma cascata de operações flash foi projetada no *Aspen Plus®* para se validar os resultados obtidos nos códigos computacionais. A coluna escolhida para tal validação foi retirada de um exemplo do livro Separation Process Principles – Second Edition.

A coluna implementada possui duas alimentações contendo etano, propano, nbutano, n-pentano e n-hexano, com as vazões, temperaturas e pressões especificadas na Figura 12. As saídas da coluna também estão especificadas e recebem indicações pelas letras V, D, L, S e B no projeto feito no *Aspen Plus®* de acordo com a Figura 13.

Primeiramente utilizando-se a equação de estado (EOS) Peng-Robinson e o modelo matemático para cálculo da coluna, determinou-se a temperatura, e a vazão molar de láquido e vapor entre os estágios, os valores obtidos foram comparados aos coletados do simulador *Aspen Plus®*. Os resultados podem ser observados nas tabelas 45 e 46.

Stage	т	emperature (K	()
	MATLAB	ASPEN	ERRO(%)
1	315,6902	315,70903	0,00596
2	322,0870	322,08731	0,00010
3	327,6914	327,68828	0,00095
4	335,1388	335,13785	0,00028
5	344,2568	344,26426	0,00217
6	353,8512	353,95043	0,02803
7	362,4479	362,49101	0,01189
8	370,4730	370,49380	0,00561
9	379,0107	379,02205	0,00299
10	382,6293	382,63563	0,00165
11	385,7914	385,79532	0,00102
12	389,0795	389,08138	0,00048
13	393,2979	393,29807	0,00004
14	398,4859	398,48460	0,00033
15	405,0608	405,05804	0,00068
16	413,1051	413,05754	0,01151

Tabela 45 - Temperatura em cada estágio da coluna de destilação

Tabela 46 - Vazão molar de vapor e líquido em cada estágio da coluna de destilação

Stage	Vazão Mo	olar de Líquido	(kmol/h)	Vazão Molar de Vapor (kmol/h)		
	MATLAB	ASPEN	ERRO(%)	MATLAB	ASPEN	ERRO(%)
1	68,0013	68,03886	0,05520	6,8032	6,803886	0,01008
2	67,1355	67,15545	0,02971	77,0724	77,1107	0,04967
3	78,0724	78,09832	0,03319	76,2066	76,2273	0,02716
4	74,2600	74,29451	0,04645	88,5045	88,53095	0,02988
5	71,0857	71,11771	0,04501	84,6922	84,72713	0,04123
6	88,3385	88,42585	0,09878	81,5179	80,73954	0,96404
7	87,9791	88,03223	0,06035	80,1736	80,26118	0,10912
8	86,8889	86,92728	0,04415	79,8143	79,86756	0,06669
9	117,0958	117,1145	0,01597	78,7241	78,76262	0,04891
10	118,4988	118,5033	0,00380	82,1689	82,18789	0,02311
11	119,2098	119,2068	0,00252	83,5719	83,57672	0,00577
12	119,0820	119,0816	0,00034	84,2830	84,28016	0,00337
13	117,9943	117,9911	0,00271	84,1551	84,15501	0,00011
14	116,3378	116,3333	0,00387	99,8505	99,84744	0,00306
15	114,5797	114,591	0,00986	98,1940	98,1896	0,00448
16	18,1438	18,14369	0,00061	96,4359	96,44731	0,01183

A composição de cada componente (na fase líquida e vapor) em cada estágio da coluna também foi calculada por meio do modelo matemático e comparada com os valores obtidos na simulação do *Aspen Plus®*. Ambos os resultados são apresentados nas tabelas 47 a 52.

Stage	Composição líquido (%)			Composição líquido (%)		
		ETANO			PROPANO	
	MATLAB	ASPEN	ERRO(%)	MATLAB	ASPEN	ERRO(%)
1	0,07368404	0,07386500	0,24499	0,88054309	0,88038500	0,01796
2	0,03330875	0,03348800	0,53527	0,86478586	0,86465300	0,01537
3	0,01785782	0,01798400	0,70162	0,78387422	0,78381000	0,00819
4	0,01097648	0,01106000	0,75515	0,64664794	0,64661200	0,00556
5	0,00832249	0,00838200	0,70997	0,48559839	0,48552400	0,01532
6	0,00688714	0,00676900	1,74531	0,34145292	0,34136300	0,02634
7	0,00304702	0,00293000	3,99386	0,23734301	0,23715700	0,07843
8	0,00167784	0,00165100	1,62568	0,15655057	0,15640100	0,09563
9	0,00122283	0,00122200	0,06792	0,09982117	0,09972800	0,09342
10	0,00044224	0,00044400	0,39640	0,06569168	0,06562400	0,10313
11	0,00015537	0,00015700	1,03822	0,04101050	0,04096700	0,10618
12	0,00005181	0,00005260	1,50190	0,02385488	0,02383000	0,10441
13	0,00001498	0,00001530	2,09150	0,01230725	0,01229400	0,10778
14	0,00000424	0,00000436	2,75229	0,00603983	0,00603400	0,09662
15	0,00000116	0,00000120	3,33333	0,00277583	0,00277300	0,10206
16	0,0000030	0,0000031	3,22581	0,00116584	0,00116400	0,15808

Tabela 47 - Composição de cada componente (fase líquida) em cada estágio da coluna.

Tabela 48 - Composição de cada componente (fase líquida) em cada estágio da coluna de destilação

Stage	Comp	osição líquido	(%)	Composição líquido (%)		
		N-BUTANO			N-PENTANO	
	MATLAB	ASPEN	ERRO(%)	MATLAB	ASPEN	ERRO(%)
1	0,04554358	0,04551900	0,05400	0,00022919	0,00023100	0,78355
2	0,10093688	0,10088200	0,05440	0,00096731	0,00097500	0,78872
3	0,19475415	0,19466300	0,04682	0,00350200	0,00353000	0,79320
4	0,33114881	0,33100800	0,04254	0,01112850	0,01121900	0,80667
5	0,47599167	0,47575100	0,05059	0,02944128	0,02968200	0,81100
6	0,58239235	0,58287800	0,08332	0,06557576	0,06559900	0,03543
7	0,65795973	0,65823600	0,04197	0,09714225	0,09716900	0,02753
8	0,67884360	0,67899900	0,02289	0,15400735	0,15402800	0,01341
9	0,62799476	0,62809100	0,01532	0,24627442	0,24627400	0,00017
10	0,64814473	0,64820400	0,00914	0,26074024	0,26074600	0,00221
11	0,64874989	0,64878800	0,00587	0,28439483	0,28439800	0,00111

 10	0,26063255	0,26061800	0,00558	0,62428186	0,62429700	0,00243
10	0 20002255	0.00001000	0.00550	0.00100100		
15	0,37201649	0,37206900	0,01411	0,55779415	0,55776400	0,00541
14	0,47822732	0,47827100	0,00913	0,47222356	0,47219400	0,00626
13	0,56478458	0,56481900	0,00609	0,39048097	0,39046200	0,00486
12	0,62400451	0,62403700	0,00521	0,32457938	0,32457200	0,00227

Tabela 49 - Composição de cada componente (fase líquida) em cada estágio da coluna de destilação

Stage	Composição líquido (%)							
		N-HEXANO						
	MATLAB	ASPEN	ERRO(%)					
1	0,000001026	0,0000001050	2,28571					
2	0,0000012056	0,0000012300	1,98374					
3	0,00001181	0,00001210	2,39669					
4	0,00009827	0,00010000	1,73000					
5	0,00064617	0,00066000	2,09545					
6	0,00339183	0,00339000	0,05398					
7	0,00450798	0,00450800	0,00044					
8	0,00892064	0,00892100	0,00404					
9	0,02468681	0,02468500	0,00733					
10	0,02498111	0,02498100	0,00044					
11	0,02568941	0,02569000	0,00230					
12	0,02750943	0,02750900	0,00156					
13	0,03241221	0,03241000	0,00682					
14	0,04350505	0,04349700	0,01851					
15	0,06741237	0,06739300	0,02874					
16	0,11391945	0,11392100	0,00136					

Tabela 50 - Composição de cada componente (fase vapor) em cada estágio da coluna de destilação

Stage	Com	posição vapor	(%)	Composição vapor (%)		
		ETANO		PROPANO		
	MATLAB	ASPEN	ERRO(%)	MATLAB	ASPEN	ERRO(%)
1	0,17173016	0,17162800	0,05952	0,81107354	0,81117600	0,01263
2	0,08233856	0,08249100	0,18480	0,87441102	0,87427800	0,01521
3	0,04686762	0,04702000	0,32407	0,86045977	0,86034800	0,01299
4	0,03111628	0,03122400	0,34499	0,78844219	0,78838700	0,00700
5	0,02567938	0,02574700	0,26263	0,66832472	0,66828800	0,00549
6	0,02393757	0,02244600	6,64515	0,52872945	0,52914000	0,07759
7	0,01073504	0,01027000	4,52814	0,40406086	0,40390000	0,03983
8	0,00618737	0,00605600	2,16925	0,28958263	0,28934900	0,08074
9	0,00471967	0,00468800	0,67555	0,20113427	0,20095300	0,09021

-	20 mil				the second s	and the second state of th	and the second se
	10	0,00173008	0,00172800	0,12037	0,13628848	0,13615300	0,09951
	11	0,00061474	0,00061700	0,36629	0,08728320	0,08719300	0,10345
	12	0,00020753	0,00021000	1,17619	0,05219200	0,05213700	0,10549
	13	0,00006106	0,00006200	1,51613	0,02793328	0,02790400	0,10493
	14	0,00001765	0,00001800	1,94444	0,01433176	0,01431700	0,10309
	15	0,00000497	0,00000510	2,54902	0,00694042	0,00693300	0,10702
	16	0,00000132	0,00000137	3,64964	0,00307874	0,00307600	0,08908
-				The second s	The second design of the second se	a februari de restante en la februari de la constante da la constant	

Tabela 51 - Composição de cada componente (fase vapor) em cada estágio da coluna de destilação

Stage	Composição vapor (%)			Composição vapor (%)		
		N-BUTANO			N-PENTANO	
	MATLAB	ASPEN	ERRO(%)	MATLAB	ASPEN	ERRO(%)
1	0,01715299	0,01715300	0,00006	0,00004331	0,00004370	0,89245
2	0,04303754	0,04301600	0,05007	0,00021278	0,00021400	0,57009
3	0,09180870	0,09176200	0,05089	0,00086285	0,00087000	0,82184
4	0,17727866	0,17720000	0,04439	0,00315227	0,00317800	0,80963
5	0,29608593	0,29597200	0,03849	0,00982361	0,00990400	0,81169
6	0,42102728	0,42204500	0,24114	0,02574202	0,02580400	0,24020
7	0,54025954	0,54083500	0,10640	0,04403587	0,04408500	0,11144
8	0,62336760	0,62369000	0,05169	0,07873456	0,07877600	0,05260
9	0,64593839	0,64612000	0,02811	0,14124248	0,14127100	0,02019
10	0,69658654	0,69670200	0,01657	0,15781571	0,15783600	0,01286
11	0,72400616	0,72408000	0,01020	0,17981221	0,17982500	0,00711
12	0,72422210	0,72427300	0,00703	0,21395199	0,21395300	0,00047
13	0,68932133	0,68936200	0,00590	0,27070727	0,27069600	0,00416
14	0,62005204	0,62009600	0,00709	0,34799702	0,34797100	0,00748
15	0,51843346	0,51848900	0,01071	0,44412694	0,44408800	0,00877
16	0,39297270	0,39303500	0,01585	0,54528489	0,54524800	0,00677

Tabela 52 - Composição de cada componente (fase vapor) em cada estágio da coluna de destilação

Stage	Comp	osição vapor (%)	
	N-HEXANO			
	MATLAB	ASPEN	ERRO(%)	
1	0,000000066	0,000000068	2,94118	
2	0,000000942	0,000000962	2,07900	
3	0,00000107	0,00000109	1,83486	
4	0,00001060	0,00001080	1,85185	
5	0,00008636	0,00008830	2,19706	
6	0,00056368	0,00056500	0,23363	
7	0,00090868	0,00091000	0,14505	

8	0,00212783	0,00212900	0,05496
9	0,00696519	0,00696700	0,02598
10	0,00757920	0,00758000	0,01055
11	0,00828370	0,00828500	0,01569
12	0,00942639	0,00942700	0,00647
13	0,01197705	0,01197600	0,00877
14	0,01760153	0,01759800	0,02006
15	0,03049421	0,03048400	0,03349
16	0,05866234	0,05864100	0,03639
	the second se		An address of the Annual State and Annual

A grande maioria dos valores calculados para a solução da coluna de destilação em estudo foram obtidos de forma satisfatória tendo em vista que os erros (desvio entre as respostas obtidas no modelo matemático implementado no *Matlab®* e o simulador *Aspen Plus®* foram menores que 1%. Os erros que ficaram acima deste valor (entre 1 e 6%), que foram casos isolados, se devem principalmente a erros cascateados do método de resolução da EOS-PR devido ao uso de aproximações para os parâmetros k_{ij}.

6.0 – CONCLUSÕES

A implementação dos métodos de resolução dos equipamentos flash e colunas de destilação multicomponentes foram implementados e os resultados obtidos possuem desvio com relação ao simulador comercial inferior a 1%, mesmo sabendo que o método de cálculos usado pelo mesmo é diferente (mais robusto) do utilizado nos códigos, podendo tais métodos serem aplicados em estudos de casos da engenharia química que envolvem hidrocarbonetos de forma simples e rápida, tendo em vista que tais cálculos feitos sem o auxilio de códigos computacionais são trabalhosos e qualquer falta de atenção pode acarretar em erros difíceis de identificar após concluído.

Também é importante informar que o método de resolução dos sistemas flash e coluna de destilação usados pelo Aspen Plus® não é nenhum dos métodos implementados, tal software utiliza o método conhecido como Inside-out, que é um modelo mais robusto para resolução de tais sistemas, justificando-se mais uma vez a pequena diferença entre os valores modelados.

Os códigos computacionais para cálculos das propriedades termodinâmicas e de transporte foram desenvolvidos e os valores obtidos foram validados de forma satisfatória com os resultados de um simulador comercial (Aspen Plus). A maioria dos erros ficou abaixo de 5% quando comparado ao simulador, valendo salientar que os que apresentaram maiores erros foram em decorrência dos parâmetros interativos que em sua maioria foram estimados mediante uso de equações (diferentemente do software comercial que possui um banco de dados interno).

A discrepância em alguns valores para cálculo das propriedades termodinâmicas e de transporte também se dão ao fato de que alguns parâmetros das substancias puras, como no caso dos cálculos para os coeficientes de atividade, foram retirados de artigos que são mais antigos que os do banco de dados interno do *Aspen Plus®*, tal software utiliza internamente dados do laboratório alemão DECHEMA que são atualizados de forma periódica.

7.0 - TRABALHOS FUTUROS

A seguir são apresentadas algumas sugestões para trabalhos futuros que complementariam o trabalho feito nessa dissertação ou que podem vir a melhorar o desempenho dos códigos, são elas:

- Realizar simulações com outros tipos de substâncias tais como álcoois, ácidos carboxílicos e cetonas e observar se os resultados obtidos são satisfatórios, tendo em vista que todas as simulações foram feitas apenas com hidrocarbonetos puros.
- Desenvolver uma interface mais "amigável" para uso dos códigos desenvolvidos, podendo ser desenvolvida uma interface gráfica com caixas de seleção (facilitando a vida do usuário).
- Desenvolver um banco de dados de substâncias a ser utilizado em conjunto com a interface facilitando a seleção de substancias a serem utilizadas nas simulações.
- 4. Estudar modelos diferentes a serem usados nos mesmos cálculos das propriedades e fazer comparações de resultados.
- Transcodificar os códigos para outras linguagens de acesso mais populares a fim de maior difusão dos resultados.

8.0 - REFERÊNCIAS BIBLIOGRAFICAS

ADEWUMI, M.; Vapor-liquid Equilibrium via EOS. E-Education. Disponível em <u>https://www.e-education.psu.edu/png520/m17.html</u>. Acesso em: 19 mar. 2014.

BIRD, R.B., STEWART, W.E. AND LIGHTFOOT, E.N., Transport Phenomena (Revised Second Edition ed.), John Wiley & Sons, (2007).

BOSTON, J. F., BRITT H. I.; "A radically different formulation and solution of the single-stage flash problem", Computers Chemical Engineering, Vol. 2, (1978), pp. 109 – 122.

MEHRA, R. K., HEIDEMANN, R. A., AZIZ, K.; "An accelerated successive substitution algorithm", The Canadian Journal of Chemical Engineering, Vol. 61, (1983), pp. 590 – 596.

MICHELSEN, M. L.; "Simplified flash calculations for cubic equations of state", Ind. Eng. Chem. Des. Dev., Vol. 25, (1986), pp. 184 – 188.

MICHELSEN, M. L.; "Saturation point calculations", Fluid Phase Equilibria, Vol. 23, (1985), pp. 181 - 192.

MICHELSEN, M. L.; "Phase equilibrium calculations. What is easy and what is difficult?", Computers Chemical Engineering, Vol. 17, (1993), pp. 431 – 439.

NAJI, H. S.; "Conventional and rapid flash calculations for the Soave-Redlich-Kwong and Peng-Robinson equations of state", Emirates Journal for Engineering Research, Vol. 13, (2008), pp. 81–91.

PENG, D.; "Accelerated successive substitution schemes for bubble-ponit and dew-point calculations", The Canadian Journal of Chemical Engineering, Vol. 69, (1991), pp. 978 – 985.

PENG, D.Y. AND ROBINSON, D.B., "A New Two-Constant Equation-of-state," Ind.Eng. Chem. Fundam., Vol. 15, (1976), pp. 59–64.

POLING, E. B.; PRAUSNITZ, J. M.; O'CONNELL J. P. The Properties of Gases and Liquids, 5^ª Ed, McGRAW-HILL, (2000).

RACKETT, H.G., J. Chem, Eng. Data., Vol. 15, (1970), p. 514.

REDLICH, O. AND KWONG, J.N.S., "On the Thermodynamics of Solutions V. An Equation-ofstate. Fugacities of Gaseous Solutions," Chem. Rev., Vol. 44,(1949), pp. 233 – 244.

REID, PRAUSNITZ, AND POLING, The Properties of Gases and Liquids, 4th ed., McGraw-Hill, New York, (1987).

RENON, H. AND PRAUSNITZ, J.M., "Local Compositions in Thermodynamic Excess Functions for Liquid Mixtures," AIChE J., Vol. 14, No. 1, (1968), pp. 135–144.

SEADER J. D.; HENLEY J. E.; Separation Process Principles, 2ªEd, John Wiley & Sons, United States of America, 2006.

SMITH, J. M.; VAN NESS, H. C.; ABBOTT M. M. Introdução à Termodinâmica da Engenharia Quimica, 7ª Ed, LTC, Rio de Janeiro, (2007).

SOAVE, G., "Equilibrium Constants for Modified Redlich-Kwong Equation-ofstate,"Chem. Eng. Sci., Vol. 27, (1972), pp. 1196 – 1203.

WILSON, G.M., J. Am. Chem. Soc., Vol. 86, (1964), p. 127.

APÊNDICE

Para se utilizar os códigos desenvolvidos devem se utilizar como parâmetros de entrada para as funções de viscosidade, tensão superficial, volume molar de líquidos, coeficiente de atividade, capacidade calorifica de gás ideal e pressão de vapor, deve-se entrar com os seguintes parâmetros em vetores para se efetuar a simulação:

Modelo	Parâmetros
	V – volume molar da mistura
	Nc – número de componentes
	Tc – temperatura critica dos componentes
	Vc – volume critico dos componentes
Viscosidade	w – fator acêntrico dos componentes
	mup – momento dipolo dos componentes
	MW – peso molecular dos componentes
	T – temperatura do sistema
	z – composição da mistura
	Tc – temperatura critica dos componentes
	pc – pressão critica dos componentes
Tensão Superficial	tn – temperatura de ebulição dos componentes
	T – temperatura do sistema
	z – composição da mistura
	R – Constante universal dos gases ideais
	Tc – temperatura critica dos componentes
	Nc – número de componentes
	Vc – volume critico dos componentes
Volume molar de líquidos	pc – pressão critica dos componentes
	T – temperatura do sistema
	Zra – fator de compressibilidade de rackett
	z – composição da mistura
	T – temperatura do sistema
Coeficiente de atividade - Wilson	z – composição da mistura
	par – matriz contendo parâmetros a,b,c,d,e da equação
	de Wilson de cada componente
	T – temperatura do sistema
Coeficiente de atividade – NRTL	z – composição da mistura
	par – matriz contendo parâmetros a,b,c,d,e da equação
	NRTL de cada componente
	T – temperatura do sistema
Capacidade calorifica de gás ideal	z – composição da mistura
	par – matriz contendo parâmetros C1 a C5 do modelo
	implementado para cada componente
	T – temperatura do sistema
Pressão de vapor	z – composição da mistura
	par – matriz contendo parâmetros C1 a C7 do modelo
	implementado para cada componente

Para a resolução dos sistema flash e coluna de destilação o arquivo parameters deve ser preenchido de acordo com as características e componentes da mistura em estudo (explicado dentro do proprio código).

CODIGOS PARA VISCOSIDADE

%Chung et al. High Pressure Vapor Viscosity %Equações de Referencia - Aspen Physical Property System (Physical Propety % Models) - APPM; Reid 4Ed.

function Nm = ChungHighPressVapLiqVisco(V,nc,Tc,Vc,w,mup,MW,T,z)

```
rho = 1/V; %mol/cm^3
```

%=====================================
%=====================================
%=====================================

```
aux1 = zeros(nc);
for i=1:nc
    for j=1:nc
    aux1(i,j) = MW(1,j);
    end
end
MiMj = aux1 + aux1';
```

```
Mij = ((2*(MW'*MW))./MiMj).^(1/2);
```

```
aux2 = zeros(nc);
for i=1:nc
    for j=1:nc
    aux2(i,j) = w(1,j);
    end
end
wiwj = aux2 + aux2';
```

wij = (wiwj)./2;

Tcij = (Tc'*Tc).^(1/2); Vcij = (Vc'*Vc).^(1/2);

```
Vcm = z'*Vcij*z;
Tcm = (z'*(Tcij.*Vcij)*z)/Vcm;
```

```
mup4 = (z'*(((mup.^2)'*(mup.^2)).*Vcm)*z)/Vcm;
mupr = (131.3*(mup4^(1/4)))/((Vcm*Tcm)^(1/2));
wm = (z'*(wij.*Vcij)*z)/Vcm;
Mm = ((z'*(Tcij.*(Vcij.^(2/3)).*Mij)*z)/(Tcm*Vcm^(2/3)))^2;
```

%====	:±⇒=====≈≈≈≈≈====≈≈≈≈≈≈≈===≈≈≈≈≈≈≈≈≈≈≈≈≈
%====	======= Metodo Equações - Reid 4Ed Pag. 426 - 427 ===================================
%====	

ł

%Eq. 9-4.10

ų,

 $Fcm = 1 - 0.2756*wm + 0.059035*mupr^{(4)};$

%Eq. 9-4.8

Tmest = 1.2593*(T/Tcm);

%Eq. 9-4.3

Omegavaux1 = (1.16145*Tmest^(-0.14874)); Omegavaux2 = 0.52487*(exp(-0.77320*Tmest)); Omegavaux3 = 2.16178*(exp(-2.43787*Tmest)); Omegav = Omegavaux1 + Omegavaux2 + Omegavaux3;

%Eq. 9-6.18 e 9-6.19

y = rho*Vcm/6; G1 = (1 - 0.5*y)/((1-y)^3);

%Parametros Ei

kapa = 0;

a = [6.324 1.210e-3 5.283 6.623 19.745 -1.9 24.275 0.7972 -0.2382 0.06863]; b = {50.412 -1.154e-3 254.209 38.096 7.630 -12.537 3.450 1.117 0.06770 0.3479]; c = [-51.680 -6.257e-3 -168.48 -8.464 -14.354 4.985 -11.291 0.01235 -0.8163 0.5926]; d = [1189.0 0.03928 3898 31.42 31.53 -18.15 69.35 -4.117 4.025 -0.727];

 $E = a + b.*wm + c.*(mupr^4) + d.*kapa;$

%Eq. 9-6.20 e 9-6.21

 $G2 = (E(1)^*((1-\exp(-E(4)^*y))/y) + E(2)^*G1^*\exp(E(5)^*y) + E(3)^*G1)/(E(1)^*E(4) + E(2) + E(3));$ nestest = E(7)*y^2*G2*exp(E(8) + E(9)*(Tmest)^(-1) + E(10)*(Tmest)^(-2));

%Eq. 9-6.17

nest = ((Tmest^(1/2))/Omegav)*(Fcm*((G2^(-1) + E(6)*y))) + nestest;

%Eq. 9-6.16

Nm = nest*((36.3444*(Mm*Tcm)^(1/2))/(Vcm^(2/3))); %MicroPoise

I I

ł

CODIGOS PARA TENSÃO SUPERFICIAL

%Liquid Mixture Surface Tension %Equações de Referencia - Aspen Physical Property System (Physical Propety % Models) - APPM.

function SigmaMI = LiquidMST(T,Tc,pc,tn,z)

z = z(:); % z is always a column vector

Tri = T./Tc; Tbri = tn./Tc;

Sigmail = (pc.^(2/3)).*(Tc.^(1/3)).*Q.*((1-Tri).^(11/9));

SigmaMI = z'*Sigmail';

CODIGOS PARA VOLUME MOLAR DE LIQUIDO (MISTURA)

%Modified Rackett Liquid Molar Volume %Equações de Referencia - Aspen Physical Property System (Physical Propety % Models) - APPM.

function Vml = ModRLMV(R,T,nc,Tc,Vc,pc,Zra,z)

z = z(:); % z is always a column vector

Tc = Tc'; Vc = Vc'; pc = pc';

%PARAMETROS DE INTERAÇÃO

kij = zeros(nc); kaux1 = 8*(sqrt(Vc*Vc')); kaux2 = repmat(Vc',nc,1);

ViVj = ((kaux2).^(1/3) + (kaux2').^(1/3)).^3;

kij = (kaux1./ViVj);

ļ

Tcij = (kij).*((Tc*Tc').^(1/2)); fii = (z.*Vc)./(z'*Vc); Tcm = fii'*Tcij*fii; ZmRA = z'*Zra'; Tr = T/Tcm;

aux1 = z'*(Tc./pc); Vml = (R * aux1 * (ZmRA^(1+(1-Tr)^(2/7))));

CODIGOS PARA COEFICIENTE DE ATIVIDADE (NRTL)

% NRTL computation and property calculations

function gama = nrtl(x,T,par)

x = x(:); % x is always a column vector

Tref = 273.15 + 25; % K R = 8.314; % m3 Pa/(mol K) = kJ/kmol-K

% Activity coefficients (gamma) tau = par.a + par.b/T + par.e*log(T) + par.f*T; alp = par.c + par.d*(T - Tref); G = exp(-alp.*tau); A = ((tau'.*G')*x)./(G'*x); B = ((tau.*G)./repmat((G'*x)',par.nc,1))*x; C = (G.*repmat((((tau'.*G')*x)./(G'*x).^2)',par.nc,1))*x; gama = exp(A + B - C);

CODIGOS PARA COEFICIENTE DE ATIVIDADE (WILSON)

%Wilson Activity Coefficient Model %Equações de Referencia - Aspen Physical Property System (Physical Propety % Models) - APPM.

function Gamma = Wilson(T,z,par)

Aij = exp(par.aij + par.bij./T + par.cij.*log(T) + par.dij.*T + par.eij./(T^2));

termo1 = 1; termo2 = log(Aij*z); aux1 = Aij*z; termo3 = (Aij'*z)./aux1;

Gamma = exp(termo1-termo2-termo3);

CODIGOS PARA CAPACIDADE CALORIFICA DE GÁS IDEAL

%General Pure Component Ideal Gas Heat Capacity %Equações de Referencia - Aspen Physical Property System (Physical Propety % Models) - APPM.

function CPig = PureIdealGasHeatCapac(T,par)

termo1 = par.C1; termo2 = par.C2.*(((par.C3./T)./sinh((par.C3./T))).^2); termo3 = par.C4.*(((par.C5./T)./cosh((par.C5./T))).^2);

CPig = (termo1 + termo2 + termo3)';

CODIGOS PARA PRESSÃO DE VAPOR

%General Pure Component Vapor Pressure %Equações de Referencia - Aspen Physical Property System (Physical Propety % Models) - APPM.

function VP = PureVaporPress(T,par)

termo1 = par.C1; termo2 = par.C2./(T+par.C3); termo3 = T*par.C4; termo4 = log(T)*par.C5; termo5 = par.C6.*(T.^par.C7);

VP = (exp(termo1+termo2+termo3+termo4+termo5))';

CODIGOS PARA PONTO DE BOLHA

```
function [PB,niter] = bubblePASS(z,TF,par)
\$ Bubble point calculation with given T via successive substitution (based
on an adaptation of the algorithm of Peng, D-Y.; An accelerated successive
substitution schemes for bubble-point and dew-point calculations,
% The Canadian Journal of Chemical Engineering, 69, 978-985, 1991)
% Parameters
Thermo = par.Thermo;
рc
       = par.pc;
Тc
       = par.Tc;
       = par.w;
W
k
       = par.k;
       = z(:); % z is always a column vector
z
       = z; % bubble point requirement
х
       = length(z);
nc
% Initial guess for pressure and vapor composition
       = pc.*exp(5.373*(1 + w).*(1 - Tc/(TF + 273.15))); % Pa
PS
ΡI
       = PS;
       = Tc < (TF+273.15);
İ
       = (PS(j).*pc(j)).^(0.5);
PI(j)
       = x'*PI; % Pa
ΡB
       = PS/PB; % first estimated K-values from Wilson's correlation
ĸ
lambda = 1;
       = ones(nc,1);
q1
       = 1;
summ
niter = 0;
while summ > 1e-10
            = (z.*K)/(z'*K);
    v
    [~,~,phiL] = prsrk(x,PB,TF+273.15,pc,Tc,w,k,'L',Thermo);
    [~,~,phiV] = prsrk(y,PB,TF+273.15,pc,Tc,w,k,'V',Thermo);
            = x.*phiL*PB; fL(fL==0) = 1;
    fL
    fV
            = y.*phiV*PB; fV(fV==0) = 1;
    g2
            = log(fV./fL);
    lambda
            = (q1'*(q1 - q2)/((q1 - q2)'*(q1 - q2)))*lambda;
    lambda
            = abs(lambda);
            = (y./x).*((fL./fV).^{lambda}); % in the paper by Peng (1991)
    Κ
this update is K = (y./x).*(fL./fV).^{lambda}
    K(z==0) = 1;
    PB
            = PB*(2 - 1/(z'*K));
    summ
            = q2'*q2;
    q1
            = q2;
    niter
            = niter + 1;
end
```

97

```
% Bubble point computation
clear all; clc;
% data2.dat matches parameters.m, and data3.dat matches parameters1.m
load data2 % data = [T(C) P(kgf/cm2) Fz(mole flow)]
parameters
% Disturbances
TF = data(:,1); \& C
Fz = data(:,3:end); % mole flow, tonmole/day
Fz(:,1) = 0;  % no hydrogen in feed
F = sum(Fz,2); % total flow, tonmole/day
nc = size(Fz, 2);
nf = length(F);
z = Fz./repmat(F,1,nc); % mole fraction
for i = 1:nf
     [PB(i,1),niter(i)] = bubblePSS(z(i,:),TF(i),par); % successive
substitution (improved update od K-values: Knew = Kold*(fL/fV)^lambda, with
lambda = 1)
      [PB(i,1),niter(i)] = bubblePASS(z(1,:),TF(i),par); % accelerated
움
successive substitution (improved update od K-values: Knew =
Kold*(fL/fV) ^lambda, with lambda = 1)
8
      [PB(i,1),niter(i)] = bubblePNewton(z(i,:),TF(i),par); % Newton's
method
     [PB(i,1),niter(i)] = bubblePOPT(z(i,:),TF(i),par); % Optimization
routines
end
PB = PB/1e5;
function [PB,niter] = bubblePOPT(z,TF,par)
% Two-phase flash calculation via Newton's method
        = z(:);
Z
options = optimset('Display','iter','MaxFunEvals',50000,'MaxIter',5000);
рÇ
      = par.pc;
Τc
      = par.Tc;
w
      = par.w;
      = z; % bubble point requirement
х
      = 0; % bubble point requirement
psi
% Initial guess for pressure and vapor composition
      = pc.*exp(5.373*(1 + w).*(1 - Tc/(TF + 273.15))); % Pa
PS
ΡI
      = PS;
      = Tc < (TF+273.15);
i
PI(j) = (PS(j).*pc(j)).*(0.5);
ΡB
      = x'*PI; % Pa
      = PS/PB; % first estimated K-values from Wilson's correlation
Κ
      = (z.*K)/sum(z.*K); % inital guess
v
      = zeros(2*length(z)+1,1);
1b
[r,~,~,output] = fmincon('1',[x; y;
PB],[],[],[],[],lb,[],@g,options,z,TF,psi,par);
PB
     = r(end);
niter = output.iterations;
```

```
function [c, ceq] = g(x0, z, TF, psi, par)
% Parameters
Thermo = par.Thermo;
      = par.pc;
рс
Τc
       = par.Tc;
       = par.w;
w
k
       = par.k;
nc = length(z); % z comprises all nc components
x = x0(1:nc);
y = x0(nc+1:end-1);
P = x0(end);
[~,~,phiL] = prsrk(x,P,TF+273.15,pc,Tc,w,k,'L',Thermo);
[~,~,phiV] = prsrk(y,P,TF+273.15,pc,Tc,w,k,'V',Thermo);
K = phiL./phiV;
ceq = [z - (psi*y + (1 - psi)*x); y - K.*x; sum(y) - sum(x)];
  = [];
C
function [PB,niter] = bubblePSS(z,TF,par)
8 Bubble point calculation with given T via successive substitution (based
on an adaptation of the algorithm of Peng, D-Y.; An accelerated successive
substitution schemes for bubble-point and dew-point calculations,
% The Canadian Journal of Chemical Engineering, 69, 978-985, 1991)
% Parameters
Thermo = par.Thermo;
       = par.pc;
рс
       ≃ par.Tc;
Τc
       = par.w;
w
k
       = par.k;
       = z(:); % z is always a column vector
z
       = z; % bubble point requirement
х
% Initial guess for pressure and vapor composition
       = pc.*exp(5.373*(1 + w).*(1 - Tc/(TF + 273.15))); % Pa
PS
ΡI
       = PS;
       = Tc < (TF+273.15);
Ϋ́.
      = (PS(j).*pc(j)).^{(0.5)};
PI(j)
PB
       = x'*PI; % Pa
       = PS/PB; % first estimated K-values from Wilson's correlation
Κ
lambda = 1;
summ = 1;
niter = 0;
while summ > 1e-10
            = (z.*K)/(z'*K);
    У
    [~,~,phiL] = prsrk(x,PB,TF+273.15,pc,Tc,w,k,'L',Thermo);
    [~,~,phiV] = prsrk(y,PB,TF+273.15,pc,Tc,w,k,'V',Thermo);
            = x.*phiL*PB; fL(fL==0) = 1;
    fL
            = y.*phiV*PB; fV(fV==0) = 1;
    fV
            = (y./x).*((fL./fV).^{lambda}); % in the paper by Peng (1991)
    Κ
this update is K = (y./x).*(fL./fV).^{lambda}
    K(z==0) = 1;
```

i.

99

ſ

```
PB
            = PB^{*}(2 - 1/(z^{*}K));
            = \log(fV./fL);
    a
            = q'*q;
    summ
            = niter + 1;
    niter
end
% Bubble point computation
clear all; clc;
% data2.dat matches parameters.m, and data3.dat matches parameters1.m
load data2 % data = [T(C) P(kgf/cm2) Fz(mole flow)]
parameters
% Disturbances
TF = data(:,1); % C
Fz = data(:,3:end); % mole flow, tonmole/day
Fz(:,1) = 0; % no hydrogen in feed
F = sum(Fz,2); % total flow, tonmole/day
nc = size(Fz, 2);
nf = length(F);
z = Fz./repmat(F,1,nc); % mole fraction
for i = 1:nf
     [PB(i,1),niter(i)] = bubblePSS(z(i,:),TF(i),par); % successive
ક્ર
substitution (improved update od K-values: Knew = Kold*(fL/fV)^lambda, with
lambda = 1
      [PB(i,1),niter(i)] = bubblePASS(z(1,:),TF(i),par); % accelerated
융
successive substitution (improved update od K-values: Knew =
Kold*(fL/fV)^{lambda}, with lambda = 1)
ક્ર
      [PB(i,1),niter(i)] = bubblePNewton(z(i,:),TF(i),par); % Newton's
method
     [PB(i,1),niter(i)] = bubblePOPT(z(i,:),TF(i),par); % Optimization
routines
end
PB = PB/1e5;
```

100

CODIGOS PARA PONTO DE ORVALHO

```
function [PD,niter] = dewPASS(z,TF,par)
8 Bubble point calculation with given T via successive substitution (based
on the algorithm of Peng, D-Y.; An accelerated successive substitution
schemes for bubble-point and dew-point calculations,
% The Canadian Journal of Chemical Engineering, 69, 978-985, 1991)
% Parameters
Thermo = par.Thermo;
рс
      = par.pc;
       = par.Tc;
Τc
       = par.w;
w
       = par.k;
k
       = z(:); \vartheta z is always a column vector
z
       = z; % dew point requirement
У
       = length(z);
nc
% Initial guess for pressure and vapor composition
       = pc.*exp(5.373*(1 + w).*(1 - Tc/(TF + 273.15))); % Pa
PS
ΡI
       = PS;
       = Tc < (TF+273.15);
ή.
PI(j)
      = (PS(j).*pc(j)).^{(0.5)};
PD
       = y'*(1./PI) + 1/prod(PI.^y);
       = 1/PD;  % Pa
PD
       = PS/PD; % first estimated K-values from Wilson's correlation
ĸ
lambda = 1;
g1
   = ones(nc,1);
summ = 1;
niter = 0;
while summ > 1e-10
    х
           = (z./K) / sum (z./K);
    [~,~,phiL] = prsrk(x,PD,TF+273.15,pc,Tc,w,k,'L',Thermo);
    [~,~,phiV] = prsrk(y,PD,TF+273.15,pc,Tc,w,k,'V',Thermo);
            = x.*phiL*PD; fL(fL==0) = 1e5;
    fL
    fV
            = y.*phiV*PD; fV(fV==0) = 1e5;
            = \log(fV./fL);
    g2
    lambda = (g1'*(g1 - g2)/((g1 - g2)'*(g1 - g2)))*lambda;
    lambda = abs(lambda);
            = (y./x).*((fL./fV).^{lambda}); % in the paper by Peng (1991)
    К
this update is K = (y./x).*(fL./fV). lambda
    K(z==0) = 1;
            = PD/sum(z./K);
    PD
    summ
          = q2'*q2;
    g1
            ≕ g2;
            = niter + 1;
    niter
end
```

```
function [PD, niter] = dewPNewton(z, TF, par)
% Two-phase flash calculation via Newton's method
      = z(:);
7.
options = optimset('Display','iter','MaxFunEvals',50000,'MaxIter',5000);
pc
    = par.pc;
TC
    = par.Tc;
     = par.w;
W
     = z; % bubble point requirement
V
    = 1; % bubble point requirement
psi
% Initial guess for pressure and vapor composition
PS
    = pc.*exp(5.373*(1 + w).*(1 - Tc/(TF + 273.15))); % Pa
PI
     = PS;
     = Tc < (TF+273.15);
j
PI(j) = (PS(j).*pc(j)).^{(0.5)};
    = y' * (1./PI) + 1/prod(PI.^y);
PD
PD
    = 1/PD; % Pa
K
     = PS/PD; % first estimated K-values from Wilson's correlation
     = (z./K)/sum(z./K); % inital guess
Х
[r,~,~,output] = fsolve(@q,[x; y; PD],options,z,TF,psi,par);
PD
   = r(end);
niter = output.iterations;
function f = g(x0, z, TF, psi, par)
% Parameters
Thermo = par.Thermo;
pc
      = par.pc;
      = par.Tc;
TC
W
      = par.w;
k
      = par.k;
nc = length(z); % z comprises all nc components
x = x0(1:nc);
y = x0(nc+1:end-1);
P = x0 (end);
[~,~,phiL] = prsrk(x,P,TF+273.15,pc,Tc,w,k,'L',Thermo);
[~,~,phiV] = prsrk(y,P,TF+273.15,pc,Tc,w,k,'V',Thermo);
K = phiL./phiV;
f = [z - (psi*y + (1 - psi)*x); y - K.*x; sum(y) - sum(x)];
```



```
function [PD,niter] = dewPOPT(z,TF,par)
% Two-phase flash calculation via Newton's method
7.
        = z(:);
options = optimset('Display','iter','MaxFunEvals',50000,'MaxIter',5000);
рс
     = par.pc;
     = par.Tc;
Tc
     = par.w;
w
     = z; % bubble point requirement
Y
     = 1; % bubble point requirement
psi
% Initial guess for pressure and vapor composition
PS
      = pc.*exp(5.373*(1 + w).*(1 - Tc/(TF + 273.15))); % Pa
ΡI
      = PS;
      = Tc < (TF+273.15);
Ċ
PI(j) = (PS(j).*pc(j)).^{(0.5)};
     = y'*(1./PI) + 1/prod(PI.^y);
PD
PD
     = 1/PD; % Pa
К
      = PS/PD; % first estimated K-values from Wilson's correlation
      = (z./K)/sum(z./K); % inital guess
х
lb
     = zeros(2*length(z)+1,1);
[r,~,~,output] = fmincon('1',[x; y;
PD],[],[],[],lb,[],@g,options,z,TF,psi,par);
PD
    = r(end);
niter = output.iterations;
function [c, ceq] = g(x0, z, TF, psi, par)
% Parameters
Thermo = par.Thermo;
       = par.pc;
рс
Τс
       = par.Tc;
       = par.w;
w
k
       = par.k;
nc = length(z); % z comprises all nc components
x = x0(1:nc);
y = x0(nc+1:end-1);
P = x0 (end);
[~,~,phiL] = prsrk(x,P,TF+273.15,pc,Tc,w,k,'L',Thermo);
[~,~,phiV] = prsrk(y,P,TF+273.15,pc,Tc,w,k,'V',Thermo);
K = phiL./phiV;
ceq = [z - (psi*y + (1 - psi)*x); y - K.*x; sum(y) - sum(x)];
c = [];
```

```
function [PD,niter] = dewPSS(z,TF,par)
8 Bubble point calculation with given T via successive substitution (based
on the algorithm of Peng, D-Y.; An accelerated successive substitution
schemes for bubble-point and dew-point calculations,
8 The Canadian Journal of Chemical Engineering, 69, 978-985, 1991)
% Parameters
Thermo = par.Thermo;
pc
       = par.pc;
Τс
      = par.Tc;
       = par.w;
พ
k
       = par.k;
z
       = z(:);  \% z is always a column vector
       = z; % dew point requirement
Y
% Initial guess for pressure and vapor composition
PS
       = pc.*exp(5.373*(1 + w).*(1 - Tc/(TF + 273.15)));  Pa
ΡI
       = PS;
       = Tc < (TF+273.15);
i
PI(j)
       = (PS(j).*pc(j)).^{(0.5)};
       = y' * (1./PI) + 1/prod(PI.^y);
PD
РD
       = 1/PD;  % Pa
       = PS/PD; % first estimated K-values from Wilson's correlation
Κ
lambda = 1;
summ = 1;
niter = 0;
while summ > 1e-10
    x = (z./K) / sum (z./K);
    [~,~,phiL] = prsrk(x,PD,TF+273.15,pc,Tc,w,k,'L',Thermo);
    [~,~,phiV] = prsrk(y,PD,TF+273.15,pc,Tc,w,k,'V',Thermo);
           = x.*phiL*PD; fL(fL==0) = 1e5;
    fL
    fV
            = y.*phiV*PD; fV(fV==0) = 1e5;
            = (y./x).*((fL./fV).^{lambda}); % in the paper by Peng (1991)
    κ
this update is K = (y./x).*(fL./fV).^{lambda}
    K(z==0) = 1;
    PD
           = PD/sum(z./K);
            = \log(fV./fL);
    g
         = g'*g;
    summ
    niter = niter + 1;
end
```

÷

ł.

```
% Dew point computation
clear all; clc;
% data2.dat matches parameters.m, and data3.dat matches parameters1.m
load data2 % data = [T(C) P(kgf/cm2) Fz(mole flow)]
parameters
% Disturbances
TF = data(:,1); % C
Fz = data(:,3:end); % mole flow, tonmole/day
Fz(:,1) = 0; % no hydrogen in feed
F = sum(Fz,2); % total flow, tonmole/day
nc = size(Fz, 2);
nf = length(F);
z = Fz./repmat(F,1,nc); % mole fraction
for i = 1:nf
   [PD(i,1),niter(i)] = dewPSS(z(i,:),TF(i),par); % successive substitution
(improved update od K-values: Knew = Kold*(fL/fV)^lambda, with lambda = 1)
웅
       [PD(i,1),niter(i)] = dewPASS(z(i,:),TF(i),par); % accelerated
successive substitution (improved update od K-values: Knew =
Kold*(fL/fV)^{lambda}, with lambda = 1)
욹
      [PD(i,1),niter(i)] = dewPNewton(z(i,:),TF(i),par); % Newton's method
ዮ
      [PD(i,1),niter(i)] = dewPOPT(z(i,:),TF(i),par); % Optimization
routines
end
PD = PD/1e5;
```

CODIGOS PARA CALCULO DO FLASH

```
function [psi,niter] = flashASS(z,TF,PF,par)
% Two-phase flash calculation via accelerated successive substitution
(based on algorithm 2 of Mehra, R. K. et al.; An accelerated successive
substitution algorithm, The Canadian Journal of Chemical Engineering, 61,
590-596, 1983)
% Parameters
Thermo = par.Thermo;
      = par.pc;
pc
\mathbf{T}\mathbf{C}
      = par.Tc;
       = par.w;
w
k
       = par.k;
       = z(:); % z is always a column vector
z
       = length(z);
nc
       = @(psi,K,z) (z.*(K - 1))'*(1./(1 + psi*(K - 1))); % Rachford-Rice
gF
equation for psi
      = (pc/(PF*1e5)).*exp(5.37*(1 + w).*(1 - Tc/(TF + 273.15))); % first
К
estimated K-values from Wilson's correlation
     = fsolve(gF,0.5,[],K,z); % first estimated vapor molar fraction
psi
lambda = 1;
     = ones(nc,1);
gl
summ
      = 1;
niter = 0;
while summ > 1e-10
            = z.*(1./(1 + psi*(K - 1)));
    х
            = (z.*K).*(1./(1 + psi*(K - 1)));
    У
    [~,~,phiL] = prsrk(x,PF*1e5,TF+273.15,pc,Tc,w,k,'L',Thermo);
    [~,~,phiV] = prsrk(y,PF*1e5,TF+273.15,pc,Tc,w,k,'V',Thermo);
            = x.*phiL*(PF*1e5); fL(fL==0) = 1;
    fL
    fV
            = y.*phiV*(PF*1e5); fV(fV==0) = 1;
            = \log(fV./fL);
    α2
    lambda = (g1'*(g1 - g2)/((g1 - g2)'*(g1 - g2)))*lambda;
    lambda = abs(lambda);
            = (y./x).*((fL./fV).^{lambda}); % in the paper by Mehra (1991)
    Κ
this update is K = (y./x).*(fL./fV).^{lambda}
    K(z==0) = 1;
           = fsolve(gF,psi,[],K,z);
    psi
           = g2'*g2;
    summ
    q1
            = q2;
    niter
           = niter + 1;
end
```

```
function [psi,niter] = flashNewton(z,TF,PF,par)
% Two-phase flash calculation via Newton's method
z
        = z(:);
options = optimset('Display','iter','MaxFunEvals',50000,'MaxIter',5000);
рс
      = par.pc;
Τс
      = par.Tc;
w
      = par.w;
\$ Initial guess for x, y, and psi
gF = @(psi,K,z) (z.*(K - 1))'*(1./(1 + psi*(K - 1))); % Rachford-Rice
equation for psi
      = (pc/(PF*1e5)).*exp(5.37*(1 + w).*(1 - Tc/(TF + 273.15))); % first
ĸ
estimated K-values from Wilson's correlation
     = fsolve(gF,0.5,[],K,z); % first estimated vapor molar fraction
psi
      = z.*(1./(1 + psi*(K - 1))); % inital guess
х
      = (z.*K).*(1./(1 + psi*(K - 1))); % inital guess
У
[r,~,~,output] = fsolve(@g,[x; y; psi],options,z,TF,PF,par);
psi = r(end);
niter = output.iterations;
function f = g(x0, z, TF, PF, par)
% Parameters
Thermo = par.Thermo;
      = par.pc;
рC
      = par.Tc;
Τc
      = par.w;
w
k
       = par.k;
nc = length(z); % z comprises all nc components
    = x0(1:nc);
х
   = x0(nc+1:end-1);
У
psi = x0(end);
[~,~,phiL] = prsrk(x,PF*1e5,TF+273.15,pc,Tc,w,k,'L',Thermo);
[~,~,phiV] = prsrk(y,PF*1e5,TF+273.15,pc,Tc,w,k,'V',Thermo);
K = phiL./phiV;
f = [z - (psi*y + (1 - psi)*x); y - K.*x; sum(y) - sum(x)];
```

107

1

i.
```
function [psi,niter] = flashOPT(z,TF,PF,par)
% Two-phase flash calculation via optimization routines
        = z(:);
Z
options = optimset('Display','iter','Algorithm','active-
set', 'MaxFunEvals', 50000, 'MaxIter', 5000);
pc
     = par.pc;
Tc = par.Tc;
     = par.w;
w
% Initial guess for x, y, and psi
    = @(psi,K,z) (z.*(K - 1))'*(1./(1 + psi*(K - 1))); % Rachford-Rice
qF
equation for psi
     = (pc/(PF*1e5)).*exp(5.37*(1 + w).*(1 - Tc/(TF + 273.15))); % first
K
estimated K-values from Wilson's correlation
psi = fsolve(gF,0.5,[],K,z); % first estimated vapor molar fraction
     = z.*(1./(1 + psi*(K - 1))); % inital guess
x
     = (z.*K).*(1./(1 + psi*(K - 1))); % inital guess
V
lb
    = zeros(2*length(z)+1,1);
[r,~,~,output] = fmincon('1',[x; y;
psi],[],[],[],[],lb,[],@g,options,z,TF,PF,par);
psi = r(end);
niter = output.iterations;
function [c, ceq] = g(x0, z, TF, PF, par)
% Parameters
Thermo = par.Thermo;
      = par.pc;
DC
Tc
      = par.Tc;
W
      = par.w;
k
      = par.k;
nc = length(z); % z comprises all nc components
  = x0(1:nc);
Х
  = x0(nc+1:end-1);
V
psi = x0(end);
[~,~,phiL] = prsrk(x,PF*1e5,TF+273.15,pc,Tc,w,k,'L',Thermo);
[~,~,phiV] = prsrk(y, PF*1e5, TF+273.15, pc, Tc, w, k, 'V', Thermo);
K = phiL./phiV;
ceq = [z - (psi*y + (1 - psi)*x); y - K.*x; sum(y) - sum(x)];
c = [];
```

108

UFCG/BIRLIOTECA/BC

```
function [psi,niter] = flashSS(z,TF,PF,par)
8 Two-phase flash calculation via successive substitution (based on the
algorithm of Mehra, R. K. et al.; An accelerated successive substitution
algorithm, The Canadian Journal of Chemical Engineering, 61, 590-596, 1983)
% Parameters
Thermo = par.Thermo;
рс
      = par.pc;
Τс
       = par.Tc;
       = par.w;
W
k
       = par.k;
       = z(:); % z is always a column vector
z
qF
       = @(psi,K,z) (z.*(K - 1))'*(1./(1 + psi*(K - 1))); % Rachford-Rice
equation for psi
       = (pc/(PF*1e5)).*exp(5.37*(1 + w).*(1 - Tc/(TF + 273.15))); % first
Κ
estimated K-values from Wilson's correlation
psi
      = fsolve(gF,0.5,[],K,z); % first estimated vapor molar fraction
lambda = 1;
summ = 1;
niter = 0;
while summ > 1e-10
            = z.*(1./(1 + psi*(K - 1)));
    х
            = (z.*K).*(1./(1 + psi*(K - 1)));
    У
    [~,~,phiL] = prsrk(x,PF*1e5,TF+273.15,pc,Tc,w,k,'L',Thermo);
    [~,~,phiV] = prsrk(y,PF*1e5,TF+273.15,pc,Tc,w,k,'V',Thermo);
            = x.*phiL*(PF*1e5); fL(fL==0) = 1;
    f L
            = y.*phiV*(PF*1e5); fV(fV==0) = 1;
    fV
            = (y./x).*((fL./fV).^lambda); % in the paper by Mehra (1991)
    Κ
this update is K = (y./x).*(fL./fV).^{lambda}
    K(z==0) = 1;
            = fsolve(gF,psi,[],K,z);
    psi
            = \log(fV./fL);
    g
            = g'*g;
    summ
            = niter + 1;
    niter
```

```
end
```

```
% Two-phase VLE
clear all; clc;
% data2.dat matches parameters.m, and data3.dat matches parameters1.m
load data2 % data = [T(C) P(kgf/cm2) z(mole flow)]
parameters
% Disturbances
TF = data(:,1);  % C
PF = data(:,2)*0.980665; % bar
Fz = data(:,3:end); % mole flow, tonmole/day
F = sum(Fz,2); % total flow, tonmole/day
nc = size(Fz,2);
nf = length(F);
z = Fz./repmat(F,1,nc); % mole fraction
for i = 1:nf
    [psi(i,1),niter(i)] = flashSS(z(i,:),TF(i),PF(i),par); % successive
substitution (improved update od K-values: Knew = Kold*(fL/fV)^lambda, with
lambda = 1)
      [psi(i,1),niter(i)] = flashASS(z(i,:),TF(i),PF(i),par); % accelerated
8
successive substitution (improved update od K-values: Knew =
Kold*(fL/fV)^lambda, with lambda = algorithm 2 in Mehra et al. 1983)
용
      [psi(i,1),niter(i)] = flashNewton(z(i,:),TF(i),PF(i),par); % Newton's
method
웅
      [psi(i,1),niter(i)] = flashOPT(z(i,:),TF(i),PF(i),par); %
Optimization routines
end
psi
```

CODIGOS PARA EOS

1

```
% EoS computation and property calculations
% The (generalized) equation of state is of the form:
p = RT/(V - b) - a(T)/[(V + epsi*b)*(V + sigm*b)]
% Inputs:
δz
       = number of moles of all species (n x 1 column vector) [mol]
ξр
      = pressure [Pa]
      = temperature [K]
8 T
% pc
     = critical pressure of all components (n x 1 column vector)[Pa]
8 Tc
     = critical temperature of all components (n x 1 column vector)[K]
      = acentric factor of all components (n x 1 column vector)
8 W
      = binary parameters (n x n symmetric matrix)
8 k
% ph = phase ('L' or 'V')
% flag = chosen EoS ('PR', 'SRK', or 'RK')
% Outputs:
% rho = molar density [mol/m3]
<del>8</del> Z
      = compressibility factor
% phi = fugacity coefficient
function [rho,Z,phi] = prsrk(z,p,T,pc,Tc,w,k,ph,flag)
     = z(:); % z is always a column vector
7.
R
     = 8.314; % m3 Pa/(mol K) = J/mol-K
switch upper(flag)
    case{'PR'}
        epsi = 1 - sqrt(2);
        sigm = 1 + sqrt(2);
        omeg = 0.07780;
        psi = 0.45724;
             = [0.37464 \ 1.54226 \ 0.26992];
        mi
             = [ones(length(w),1) w -w.^2]*mi';
        m
    case{'SRK'}
        epsi = 0;
        sigm = 1;
        omeg = 0.08664;
        psi = 0.42748;
        mi
             = [0.480 \ 1.574 \ 0.176];
            = [ones(length(w),1) w -w.^2]*mi';
        m
    case{'RK'}
        epsi = 0;
        sigm = 1;
        omeg = 0.08664;
        psi = 0.42748;
           = ((T./Tc).^{(-1/4)} - 1)./(1 - (T./Tc).^{0.5});
        m
end
alfa = (1 + m.*(1 - (T./Tc).^{0.5})).^{2};
    = psi*(R^2)*(Tc.^2)./pc.*alfa;
ai
       omeg*R*Tc./pc;
bi
     -
        ((ai*ai').^0.5).*(1 - k);
     =
Q
        z'*Q*z;
а
     -----
        z'*bi;
     ____
b
```

% Coefficients of the EoS model equation

Ł

```
c(1) = 1; % c(1) *x^3
       (epsi + sigm - 1)*b - R*T/p; % c(2)*x^2
c(2) =
c(3) =
       (epsi*siqm - (epsi + siqm))*b^2 - R*T*(epsi + siqm)/p*b + a/p; %
c(3)*x
c(4) = -epsi*sigm*b^3 - R*T*epsi*sigm/p*b^2 - a*b/p; % c(4)
8 Roots
r = myroots(c);
ir = abs(imag(r)); r(and(ir>0,ir<=1e-8)) = real(r(and(ir>0,ir<=1e-8))); %</pre>
In case Matlab assigns tiny values for imaginary parts.
for i = 1:length(r), index(i) = isreal(r(i)); end
r = r(index);
if upper(ph) == 'L'
   V = min(r);
else
   V = max(r);
end
rho = 1/V;
   = p*V/(R*T);
abar = (2*z'*Q - a*ones(1, length(z)))'; bbar = bi;
phi = \exp((Z - 1)*bbar/b - \log((V - b)*Z/V) + (a/(b*R*T))/(epsi - C)
sigm \log((V + sigm*b)/(V + epsi*b))*(1 + abar/a - bbar/b));
```

PARÂMETROS SUBSTANCIAS (EOS)

% Parameters

ī.

```
par.Thermo = 'pr'; % Thermodynamic package = {'PR', 'SRK', 'RK'}
% Physical parameters
pc = [13 46 48.8 42.5 36.5 38 32.9 33.7 45.1 30.8 31.3 30.1 31.2 29.7 37.9
48.9 40.7 27.4]'; % atm
par.pc = (pc*1.01325)*1e5; % Pa
```

Tc = [-239.95 -82.55 32.25 96.65 134.95 152.05 187.25 196.45 238.45 215.55 226.75 224.35 231.25 234.25 259.55 288.95 280.25 267.05]'; % C par.Tc = Tc + 273.15; % K

par.w = [-0.216 0.011 0.099 0.153 0.183 0.199 0.227 0.251 0.196 0.232 0.247 0.278 0.27 0.299 0.231 0.21 0.21 0.349]';

```
nc = length(pc);
k = zeros(nc,nc);
                   k(1,3) = -0.0667; k(1,4) = -0.0833;
                                                          k(1,6) = -
k(1,2) = 0.0156;
         k(1,14) = -0.03; k(1,18) = -0.1167; k(2,3) = -0.0026;
0.397;
                                                     k(2,8) = 0.023;
k(2,4) = 0.014; k(2,6) = 0.0133; k(2,5) = 0.0256;
                                                         k(2, 17) =
k(2,7) = -0.0056; k(2,14) = 0.0422;
                                     k(2,16) = 0.0363;
                                                k(3,6) = 0.0096;
         k(2,18) = 0.0352;
                            k(3,4) = 0.0011;
0.0389;
                                      k(3,14) = -0.01;
                   k(3,8) = 0.0078;
                                                         k(3, 16) =
k(3,5) = -0.0067;
                                               k(4,6) = 0.0033;
                           k(3, 18) = 0.0067;
         k(3, 17) = 0.0178;
0.0322;
                                      k(4,7) = 0.0111;
                                                         k(4, 14) =
k(4,5) = -0.0078;
                 k(4,8) = 0.0267;
                                              k(6,5) = -0.0004;
                            k(4,18) = 0.0056;
         k(4, 16) = 0.0233;
0.0007;
k(6,8) = 0.0174; k(6,7) = 0.00292; k(6,14) = -0.0056; k(6,18) =
0.0033; k(8,7) = 0; k(8,16) = 0.0174; k(8,17) = 0.0037; k(8,18) =
```

0.0074; k(14,16) = 0.0093; k(14,17) = -0.003; k(14,18) = -0.0078;k(16, 18) = 0.0011;k(2,1) = 0.0156;k(3,1) = -0.0667; k(4,1) = -0.0833; k(6,1) = k(14,1) = -0.03; k(18,1) = -0.1167; k(3,2) = -0.0026;0.397; k(4,2) = 0.014; k(6,2) = 0.0133; k(5,2) = 0.0256;k(8,2) = 0.023;k(7,2) = -0.0056; k(14,2) = 0.0422; k(16,2) = 0.0363; k(17,2) =0.0389; k(18,2) = 0.0352;k(4,3) = 0.0011; k(6,3) = 0.0096;k(5,3) = -0.0067; k(8,3) = 0.0078;k(14,3) = -0.01;k(16,3) =0.0322; k(17,3) = 0.0178;k(18,3) = 0.0067; k(6,4) = 0.0033;k(5,4) = -0.0078; k(8,4) = 0.0267;k(7,4) = 0.0111; k(14,4) =0.0007; k(16,4) = 0.0233;k(18,4) = 0.0056; k(5,6) = -0.0004;k(8,6) = 0.0174; k(7,6) = 0.00292; k(14,6) = -0.0056; k(18,6) =0.0033; k(7,8) = 0; k(16,8) = 0.0174; k(17,8) = 0.0037; k(18,8) k(16,14) = 0.0093; k(17,14) = -0.003; k(18,14) = -0.0078;0.0074; k(18, 16) = 0.0011;par.k = k;

113

CODIGOS PARA CALCULO DA COLUNA DE DESTILAÇÃO

ī

```
% This is the numerical solution of the system depicted in Fig. 15.6 (pp.
568) of
% Henley, E. J. and Seader, J. D., "Equilibrium-Stage Separation Operations
% in Chemical Engineering", 1981, John Wiley & Sons.
clear all; clc; format compact
load x0 \% x0 = [x y L V T]
parameters dist
N = 16; C = 5;
% States
% x = 0.25*ones(N,C);
y = 0.25 \times ones(N,C);
L = 100 \times \text{ones}(N, 1);
V = 100 \times ones(N, 1);
T = 150 \times (N, 1);
\$ x0 = [x y L V T];
% Manipulations
        = 238; % psia
P(1)
        = P(1) + 2;
P(2)
P(3:N-1) = P(2) + DP*(3-2:N-1-2);
       = P(N-1) + 0.4;
P(N)
         = P/14.5038;  8 bar
P
         = zeros(N,1); % kmole/h (from Aspen Plus simulation)
U(1:N)
         = 2.268;
U(1)
U(3)
         = 1.361;
         = zeros(N,1); % kmole/h (from Aspen Plus simulation)
W(1:N)
W(13)
        = 16.783;
Q(1:N)
         = zeros(N,1); % Btu/h
Q(1)
         = 900274.3;
Q(3)
         = 200000.0;
Q(N)
         = -1566538.18;
         = Q/9.47831e-4/1e3; % kJ/h
Q
         = [P U W Q]';
u
% Disturbances
       = zeros(N,C);
z
z(6,:) = [2.5 \ 14.0 \ 19.0 \ 5.0 \ 0.5]/sum([2.5 \ 14.0 \ 19.0 \ 5.0 \ 0.5]);
z(9,:) = [0.5 \ 6.0 \ 18.0 \ 30.0 \ 4.5]/sum([0.5 \ 6.0 \ 18.0 \ 30.0 \ 4.5]);
       = zeros(N,1); % kmole/h (from Aspen Plus simulation)
F
       = 18.597;
F(6)
       = 26.762;
F(9)
       = zeros(N,1); % psia
PF
PF(6) = 300;
       = 275;
PF(9)
       = PF/14.5038; % bar
PF
       = zeros(N,1); % F
TF
       = 170;
TF(6)
TF(9) = 230;
ΤF
       = 1/1.8*(TF - 32); % C
```

ł

```
ΗF
       = \operatorname{zeros}(N, 1);
[HF(6),psi_feed1,x_feed1,y_feed1,PB_feed1,yB_feed1,PD_feed1,xD_feed1] =
feed dist(z(6,:),TF(6),PF(6));
[HF(9),psi_feed2,x_feed2,y_feed2,PB_feed2,yB_feed2,PD_feed2,xD_feed2] =
feed dist(z(9,:), TF(9), PF(\overline{9}));
d
       = [z F HF];
options =
optimset('Display','iter','Diagnostics','on','Algorithm','interior-point');
r = fmincon('1',x0,[],[],[],[],[],[],[],[]nonlcon dist,options,u,d,N,C); % r =
[X Y L V T]
% Steady-state rigorous distillation model
% Parameters
Thermo = par.Thermo;
       = par.pc;
pc
Τc
       = par.Tc;
       = par.w;
W
k
       = par.k;
cpiq
       = par.cpig;
DHf
       = par.DHf;
DGf
       = par.DGf;
% Thermodynamic calculations
HL = zeros(N, 1); HV = HL; K = zeros(N, C);
for j = 1:N
    [~,~,phiL,~,~,HL(j),~,~] =
prsrk(x(j,:),P(j)*1e5,T(j)+273.15,pc,Tc,w,k,cpig,DHf,DGf,'L',Thermo);
    [\sim, \sim, \text{phiV}, \sim, \sim, \text{HV}(j), \sim, \sim] =
prsrk(y(j,:),P(j)*1e5,T(j)+273.15,pc,Tc,w,k,cpig,DHf,DGf,'V',Thermo);
    K(j,:) = phiL./phiV;
end
% Material balances (N*C)
           M(j,:) = V(j+1)*Y(j+1,:) + F(j)*Z(j,:) - (L(j) + U(j))*X(j,:) -
j = 1;
(V(j) + W(j))*y(j,:);
j = 2:N-1; M(j,:) = diag(L(j-1))*x(j-1,:) + diag(V(j+1))*y(j+1,:) +
diag(F(j))*z(j,:) - diag((L(j) +U(j)))*x(j,:) - diag((V(j) + W(j)))*y(j,:);
          M(j,:) = L(j-1)*x(j-1,:) + F(j)*z(j,:) - (L(j) + U(j))*x(j,:) -
j = N;
(V(j) + W(j))*y(j,:);
% Equilibrium relations (N*C)
E = y - K.*x;
% Mole fraction summations (2*N)
Sx = sum(x, 2) - 1;
Sy = sum(y, 2) - 1;
% Energy balances (N)
          H(j) = V(j+1) + HV(j+1) + F(j) + HF(j) - (L(j) + U(j)) + HL(j) - (V(j))
j = 1;
+ W(j) + HV(j) - Q(j);
```

Ы

```
115
```

```
j = 2:N-1; H(j) = L(j-1).*HL(j-1) + V(j+1).*HV(j+1) + F(j).*HF(j) - (L(j) + V(j+1)).*HF(j) + F(j).*HF(j) - (L(j)) + V(j+1).*HV(j+1) + F(j).*HF(j) + V(j) + V(j+1).*HV(j+1) + F(j).*HF(j) + V(j+1).*HV(j+1) + F(j).*HV(j+1) + F(j)) + F(j).*HV(j+1) + F(j)) + F(j).*HV(j+1) + F(
U(j)).*HL(j) ~ (V(j) + W(j)).*HV(j) - Q(j);
                       H(j) = L(j-1) + HL(j-1) + F(j) + HF(j) - (L(j) + U(j)) + HL(j) - (V(j))
i = N
+ W(j) + HV(j) - Q(j);
function [HF,psi,x,y,PB,yB,PD,xD] = feed dist(z,TF,PF)
parameters dist
z = z(:);  % always a column vector
% Bubble point calculation
[PB,yB,~] = bubblePSS(z,TF,par); % successive substitution (improved update
of K-values: Knew = (y./x) old*(fL/fV) old^lambda, with lambda = 1)
PB = PB/1e5; % bar
% Dew point calculation
[PD,xD,~] = dewPSS(z,TF,par); % successive substitution (improved update od
K-values: Knew = (y./x)_old*(fL/fV)_old^lambda, with lambda = 1)
PD = PD/1e5; % bar
if PF >= PB % Bubble point calculation
        psi = 0;
        x = z;
                = yB;
         У
         [~,~,~,~,~,~,HF,~,~] =
prsrk(x, PF*1e5, TF+273.15, pc, Tc, w, k, cpiq, DHf, DGf, 'L', Thermo);
elseif PF <= PD % Dew point calculation
        psi = 1;
        x = xD;
         У
                 = z;
         [~,~,~,~,HF,~,~] =
prsrk(y, PF*1e5, TF+273.15, pc, Tc, w, k, cpig, DHf, DGf, 'V', Thermo);
else % Two-phase calculation
         [psi,x,y,~] = flashSS(z,TF,PF,par); % successive substitution (improved)
update od K-values: Knew = (y./x) old*(fL/fV) old^lambda, with lambda = 1)
         [~,~,~,~,HL,~,~] =
prsrk(x,PF*1e5,TF+273.15,pc,Tc,w,k,cpig,DHf,DGf,'L',Thermo);
         [~,~,~,~,~,~,HV,~,~] =
prsrk(y, PF*1e5, TF+273.15, pc, Tc, w, k, cpig, DHf, DGf, 'V', Thermo);
        HF = psi*HV + (1 - psi)*HL;
end
% Parameters
Thermo = 'PR'; % Thermodynamic package = { 'PR', 'SRK', 'RK' }
DP = 0.2; % Pressure drop from stage 2 to N-1
% Physical parameters
               = [709.8 616.410385 550.70829 487.326798 436.56359]'; % psia
pc
рс
               = pc*le5/14.5038; % Pa
               = [89.906 206.006002 305.618002 385.412001 453.47]'; % F
Τc
Τc
               = (Tc - 32)/1.8 + 273.15; % K
```

```
116
```

ļ

l

 $= [0.1064 \ 0.152 \ 0.201 \ 0.254 \ 0.301]';$ W k(1,1) = 0;k(1,2) = 1.1e-3;k(1,3) = 9.6e-3;k(1,4) = 7.8e-3;k(1,5) = -0.01;k(2,2) = 0;k(2,3) = 3.3e-3;k(2,4) = 0.0267;k(2,5) = 7.0e-4;k(3,3) = 0;k(3,4) = 0.0174;k(3,5) = -5.6e-3;k(4,4) = 0;k(4,5) = 0;k(5,5) = 0;= k + k';k cpig = [40.33 51.92 71.34 88.05 104.40; 134.22 192.45 243.00 301.10 352.30; 1655.50 1626.50 1630.00 1650.20 1694.60; 73.22 116.80 150.33 189.20 236.90; 752.87 723.60 730.42 747.60 761.60]'; % J/mol-K DHf = [-8.3820e+4 -1.0468e+5 -1.2579e+5 -1.4676e+5 ~1.6694e+5]'; % J/mol DGf = [-3.1920e+4 -2.4290e+4 -1.6570e+4 -0.8650e+4 +0.0150e+4]'; % J/mol par.Thermo = Thermo; par.pc = pc; par.Tc = Tc; par.w = w; = k; par.k par.cpig = cpig; par.DHf = DHf;par.DGf = DGf;

Т