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Resumo 
A técnica dos modelos de reflexão é um processo de checagem de conformidade entre 

visões arquiteturais modulares e implementação que permite prevenir e remediar o envel

hecimento de software através do combate à deterioração arquitetural. Contudo, o esforço 

manual necessário para aplicar a técnica pode terminar evitando seu uso na prática, espe

cialmente no contexto de evolução de software em processos de desenvolvimento leves. Em 

termos mais específicos, a técnica é custosa para: i) produzir um modelo de alto nível e o ma

peamento entre as entidades do código-fonte e este modelo; ii) manter tanto o modelo como 

o mapeamento atualizados à medida que o software evolui; e Ui) analisar a normalmente 

longa lista de violações arquiteturais no código fonte. 

Este trabalho procura habilitar a checagem de conformidade estática de software em 

evolução através da automação parcial do esforço manual para aplicar a técnica de modelos 

de reflexão. Para fazê-lo, primeiramente é avaliado o potencial de técnicas de agrupamento 

para a geração e manutenção de modelos de alto nívei. Também é proposta e avaliada uma 

técnica de mapeamento incremental entre entidades do código-fonte e modelos de alto nível 

baseada na combinação da recuperação de informação de vocabulário de software com de

pendências estruturais. Por fim, uma técnica de priorização baseada na história do software 

para recomendar as violações arquiteturais no código-fonte mais provavelmente relevantes 

do ponto de vista dos desenvolvedores de software é relatada e avaliada. 

Técnicas de agrupamento são avaliadas através de medidas de acurácia e estabilidade. 

Os resultados para quatro diferentes algoritmos de agrupamento mostram que nenhum de

les consegue o melhor desempenho para todas as medidas, e que todos eles apresentam 

limitações para prover a geração automática de modelos de alto nível. Por outro lado, a 

avaliação sugere que a etapa de mapeamento da técnica de modelos de reflexão pode ser ha

bilitada pela técnica proposta de mapeamento incremental automático que combina estrutura 

e vocabulário. Em dois estudos de caso, esta técnica obteve os maiores valores de medida-

F em mudanças de código-fonte unitárias, pequenas ou grandes. Finalmente, a avaliação 

da técnica de priorização de violações mostra que, de cinco fatores estudados, a duração 

da violação e a co-locação da violação correlacionam bem com a relevância das violações. 

Os resultados sugerem que estes fatores podem ser usados para ordenar as violações mais 
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provavelmente relevantes, com uma melhoria de pelo menos 57% em relação a uma linha-

base de violações selecionadas aleatoriamente. 

A análise dos resultados sugere que a produção de modelos de alto nível para checagem 

estática de conformidade arquitetural pode ser auxi'iada por um processo semi-automático 

de recuperação arquitetural, e, à medida que o software evolui, por técnicas incrementais de 

agrupamento/mapeamento. Por outro lado, a análise dos resultados para a técnica de prior

ização sugere a eficácia de uma abordagem automatizada para a recomendação de violações 

arquiteturais a serem analisadas pelos desenvolvedore: do software. 
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Abstract 
The refíexion model technique is a static conformance checking technique to keep architec

ture module views and implementation conformant. It can either prevent or remedy software 

aging by combating architecture deterioration. However, the amount of manual effort to 

apply the technique may prevent its use in practice, especially in the context of software 

evolution in lightweight development methods. More specifically, it can be time-consuming 

and costly to: i) produce a high-level model and the mapping between source code entities 

and this model; ii) keep both model and mapping up-to-date as software evolves; and Ui) an-

alyze the usual large number of architectural violations in the source code reported by the 

technique. 

This work tries to enable static conformance checking of evolving software by partially 

automating the manual effort to apply the refíexion model technique. To do so, the potential 

of clustering techniques to generate high-level models and keep them up-to-date is evaluated. 

It is also proposed and evaluated an incremental mapping approach between source code 

entities and high-level models based on the combination of information retrieval of software 

vocabulary and structural dependencies. Last, a prioritizing technique based on software 

history to recommend architectural violations in the source code most likely to be relevant 

to software developers is reported and evaluated. 

Clustering techniques are evaluated by measures of accuracy and stability, and results for 

four different clustering algorithms show that none of them performs best for ali measures, 

and that they are limited to provide fully automated generation of high-level models. On the 

other hand, evaluation suggests that the mapping step in the refíexion model technique can be 

enabled by the proposed incremental automated mapping technique that combines structure 

and vocabulary. In two case studies, the combined technique showed the highest F-measure 

values for both singleton, small and large source code changes. Finally, evaluation for the 

prioritizing technique shows that, from five studied factors, violation duration and violation 

co-location correlate well with violation relevance. Results suggest that these factors can be 

used to rank the violations most likely to be relevant, with an improvement of at least 57% 

against a baseline of randomly selected violations. 
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Analysis of the results suggests that the producton of high-level models for static con

formance checking can be aided by a semi-automated architecture recovery process, and, as 

software evolves, by incremental clustering/mapping techniques. On the other hand, anal

ysis of the results for the prioritizing technique suggests the effectiveness of an automated 

approach to recommend architectural violations to bí analyzed by software developers. 
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Chapter 1 

Introdução 

Neste capítulo, uma contextualização desta tese é apresentada ao leitor. O problema central 

da tese é apresentado, assim como um processo é proposto como solução para o problema. 

Em seguida, um sumário da tese é descrito, assim como a organização geral deste trabalho. 

1.1 Contextualização 

Provocadas por novas solicitações de requisitos, mudanças em software são, de modo geral, 

inevitáveis. Como resultado, a maioria dos sistemas de software cresce com o passar do 

tempo [Lehman et al. 1997]. Neste contexto de c/e -.cimento do software, cada mudança 

realizada num sistema pode demandar a análise de mais linhas de código à medida que o 

tempo passa, assim como pode requerer uma maior interação entre os desenvolvedores que 

mantêm o sistema. 

A manutenção de grandes sistemas de software geralmente requer a existência de 

modelos mentais compartilhados pela equipe de desenvolvimento. Tais modelos ajudam os 

desenvolvedores a refletir sobre conceitos do software, a discutir estes conceitos com partes 

interessadas, e a tomar decisões que mudem a estrutura e o comportamento do software. 

Brooks define integridade conceituai como a uniformidade do modelo mental que a equipe 

de desenvolvimento tem sobre o software [Brooks 1995]. 

As equipes envolvidas com software em evolução geralmente têm dificuldade em reter a 

integridade conceituai devido à complexidade e ao amanho destes sistemas. Brooks argu

menta que é melhor ter um conjunto simples e coeso de ideias sobre o design do software do 

1 
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que muitas boas ideias independentes e não-coordenaoas [Brooks 1995]. 

A manutenção da integridade conceituai pela preservação e modificação apropriadas do 

design do software é um desafio em sistemas de software em evolução. Frequentemente, 

quando grandes equipes de software fazem evoluir grandes sistemas de software, os sistemas 

experimentam uma quebra da modularidade, um maior impacto das mudanças no software 

e um aumento no potencial de faltas [Eick et al. 2001], sintomas usuais desta perda de 

integridade. A questão da preservação da integridade conceituai é o tema amplo desta tese, 

sobre o qual tecerei detalhes neste capítulo e ao longo deste trabalho. 

A produção de uma arquitetura de software explícita para um sistema é uma forma de 

materializar a integridade conceituai deste sistema. Arquitetura de software pode ser definida 

de diferentes maneiras. Uma definição popular afirma que ela é "a estrutura dos componentes 

de um programa/sistema, suas interrelações, e os princípios e linhas gerais que governam o 

seu design e sua evolução ao longo do tempo" [Garlan and Perry 1995, p. 269]. Quando 

documentada explicitamente, a arquitetura de software pode ter um impacto positivo em 

várias atividades de desenvolvimento de software (e.g., compreensão, construção, validação 

e reuso), assim como no gerenciamento de sistemas grandes e complexos (e.g., planejamento 

do projeto, alocação de equipes de desenvolvimento) [Garlan 2000]. Os arquitetos de soft

ware procuram desenvolver arquiteturas reutilizáveis e adaptáveis que se mantenham prati

camente intactas quando de mudanças previstas, especialmente em sistemas de domínios 

voláteis tais como o bancário, o de telecomunicações e o de e-business. 

Antes de discutir outros aspectos, é necessário esclarecer uma questão de terminologia. 

Nesta tese, o termo evolução de software se restringe à visão de evolução como fenómeno 

que pode ser observado, conforme expresso por Lehman et al. nas leis de evolução de 

software, e não com a outra visão usual do termo, que lida com métodos, técnicas e atividades 

para controlar a evolução de software [Madhavji et al. 2006]. 

Perry e Wolf cunharam o termo deriva arquitetural para expressar a falta de sensibilidade 

dos desenvolvedores de software em relação à arquitetura de software [Perry and Wolf 1992], 

problema diretamente relacionado à falta de integridaue conceituai. 

Falta de integridade conceituai pode levar a um fenómeno conhecido como envelheci

mento de software [Parnas 1994]. De acordo com Parnas, software envelhecido é caracter

izado pelo aumento na dificuldade de adaptação a novas funcionalidades demandadas pelos 
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clientes, pela sua crescente complexidade, pela redução da confiabilidade causada pela in

trodução de bugs durante a sua manutenção, e pela deterioração gradual da estrutura do 

software. 

Software envelhecido possui alguns sintomas típicos: i) a cada nova versão, torna-se mais 

difícil adicionar novas funcionalidades; ii) o desempenho no tempo ou no uso de memória se 

degrada; Ui) faltas tendem a ser introduzidas em cada mudança; iv) dificuldade em rastrear 

ou reconstruir decisões de design; v) aumento no churn de código e na frequência de faltas 

descobertas [Parnas 1994; Eick et al. 2001; van Gurp and Bosch 2002]. 

A deterioração estrutural de um sistema de software quando de sua evolução já recebeu 

outras denominações tais como erosão arquitetural [Perry and Wolf 1992], erosão de design 

[van Gurp and Bosch 2002], decaimento de código [Eick et al. 2001] ou degeneração ar

quitetural [Hochstein and Lindvall 2003]. Deterioração estrutural pode ou não redundar em 

envelhecimento de software, embora isto tipicamente ocorra [Parnas 1994; Eick et al. 2001; 

van Gurp and Bosch 2002]. Dependerá essencialmente se a estrutura degradada provoca ou 

não o aumento na dificuldade de adaptação a novas fincionalidades. Neste trabalho, eu es

tou preocupado com os cenários onde deterioração estrutural resulta em envelhecimento de 

software, e eu argumentarei que a chave para combater o envelhecimento de software está 

na manutenção adequada da estrutura do software à medida que ele evolui. 

Segundo Parnas, há duas formas de combater o envelhecimento de software: prevenir 

e remediar [Parnas 1994]. Várias práticas preventivas podem retardar o envelhecimento 

do software, mas não são capazes de interrompê-lo, já que a capacidade dos projetistas de 

prever mudanças é limitada pela impossibilidade de prever adequadamente os desejos futuros 

dos clientes. Portanto, com o envelhecimento inevitável, remediá-lo torna-se uma questão 

importante em evolução de software. 

Nesse contexto, surgem as seguintes questões. Como o conhecimento da arquitetura do 

software pode ajudar a prevenir ou remediar o envelhecimento do software? Além disso, 

dado que as várias metodologias leves de desenvolvimento de software usam pouca ou 

nenhuma documentação arquitetural, como a integridade conceituai pode ser reforçada em 

tais processos sem modificar a sua natureza leve? 

Ainda que arquiteturas de software sejam documentadas, há uma lacuna entre o que é 

documentado e o que é, de fato, implementado [Lindvall and Muthig 2008]. Isto é, doeu-
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mentação sozinha não é capaz de garantir integridade conceituai completa. É comum ocorrer 

de a documentação arquitetural não ser atualizada frequentemente, mesmo quando novas de

cisões de design são tomadas. É também frequente que desenvolvedores ignorem regras 

arquiteturais, mesmo com a documentação disponível. Neste cenário, checagem de con

formidade arquitetural pode ajudar a preencher esta lacuna. Com a introdução de checagens 

frequentes entre arquitetura e implementação, a integridade conceituai é mantida, reduzindo 

o ritmo de deterioração arquitetural e, consequentemente, retardando o processo de envel

hecimento de software. 

Checagem de conformidade da arquitetura de software pode ser vista como um caso 

especial de checagem de conformidade entre especificação e implementação, um tema de 

pesquisa extensamente explorado pela comunidade de métodos formais. Pode ser vista ainda 

com uma técnica de avaliação arquitetural tardia, na qual a arquitetura real do software é 

comparada com a arquitetura planejada e os desvios observados conduzem a medidas corre-

tivas [Tvedt et al. 2002]. A pesquisa em checagem de conformidade arquitetural está focada 

principalmente na conformidade de visões modulares estáticas. Visões modulares são dia

gramas arquiteturais estruturais nos quais os módulos são entidades que agregam unidades 

de código conjuntamente responsáveis pela implementação de um conjunto de respons

abilidade, e as relações entre módulos descrevem dependências de código entre módulos 

[Clements et al. 2002]. Checagem de conformidade de visões modulares, portanto, compara 

entidades e relações em uma visão modular planejada com a visão modular real recuperada 

da implementação, e a literatura relacionada é prolífica neste assunto [Murphy et al. 1995; 

Aldrich et al. 2002; Koschke and Simon 2003; Postma 2003; Sangal et al. 2005; Knodel 

and Popescu 2007; Bourquin and Keller 2007; Huynh et al. 2008; Terra and Valente 2009; 

Feilkas etal. 2009]. 

Murphy e colegas tentaram resolver a questão de conformidade entre visões arquite

turais modulares e implementação através da adoção da técnica dos modelos de reflexão 

[Murphy et al. 1995; Murphy et al. 2001]. Modelos de reflexão transformam as difer

enças e similaridades entre uma visão arquitetural modular e a implementação em infor

mação explícita para o desenvolvedor de software. Sucintamente, o engenheiro define um 

modelo de alto nível de interesse, extrai o modelo real do código-fonte, define um ma

peamento entre ambos os modelos e computa uma reflexão para observar onde ambos os 
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modelos concordam ou discordam. Este trabalho abriu uma nova linha de pesquisa em 

verificação de software e, desde então, trabalhos prolíficos em checagem de conformi

dade de arquitetura de software foram publicados. Não só a técnica dos modelos de re

flexão (RM) é um trabalho seminal em checagem de conformidade arquitetural, mas é tam

bém uma técnica popular. Várias aplicações práticas da técnica RM na indústria já foram 

registradas na literatura. Aplicações variam de reengenharia [Murphy and Notkin 1997; 

Knodel et al. 2006], recuperação arquitetural e checagem de conformidade [Murphy et al. 

1995; Murphy et al. 2001; Knodel et al. 2006; Knodel et al. 2008a; Rosik et al. 2008; 

Passos et al. 2010], análise da complexidade arquitetural [Lilienthal 2009], bem como 

de compreensão de sistemas, redocumentação e reuso de software [Knodel et al. 2006]. 

Adicionalmente, a técnica RM já foi estendida para lidar com aspectos adicionais tais 

como modelos hierárquicos [Koschke and Simon 2003], recuperação arquitetural bottom-

up [Le Gear et al. 2005], mapeamentos automáticos [Christl et al. 2005; Christl et al. 2007], 

e linhas de produto de software [Frenzel et al. 2007]. 

Em comparação com outras técnicas de checagem de conformidade, os autores da téc

nica RM argumentam que ela é vantajosa por sua natureza leve, aproximada e escalável 

[Murphy et al. 1995]. Simples diagramas de caixas-e-setas capturam regras arquiteturais, 

sem a necessidade de linguagens de descrição arqu.tetural complexas, ou o uso de portas, 

conectores e interfaces. Estes atributos tornam a técnica particularmente útil em processos 

de desenvolvimento leves, onde é considerado importante evitar linguagens complexas de 

especificação formal e diagramas detalhados em linguagens de modelagem gráficas. 

As aplicações de checagem de conformidade ctedas acima mostram os benefícios da 

introdução desta etapa no processo do software. Ilustrados com exemplos académicos e 

estudos de caso industriais, estes artigos revelam vários cenários de mundo real onde de

senvolvedores aumentam sua integridade conceituai sobre os sistemas de software que estão 

desenvolvendo, após analisar violações tornadas explícitas pelas checagens de conformidade. 

Argumento aqui que checagem de conformidade contribui para a manutenção da integridade 

conceituai bem como para a redução do ritmo de deterioração arquitetural e, consequente

mente, do envelhecimento do software. Argumento ainda que a técnica dos modelos de 

reflexão é uma técnica de checagem de conformidade bem adaptada ao contexto de proces

sos de desenvolvimento leves. Estes argumentos serão discutidos em detalhes ao longo deste 
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trabalho. 

Por outro lado, a técnica original de modelos de reflexão apresenta algumas limitações 

quando aplicada a um contexto de evolução contínua de software em processos de desen

volvimento leves. Ela requer a produção de um modelo arquitetural inicial, o que pode 

ser um desafio, já que, em tais processos, há pouca ou nenhuma documentação arquitetural 

disponível. Um outra tarefa desafiadora na técnica RM é o mapeamento entre entidades de 

código de baixo nível e módulos arquiteturais de alto nível, o que normalmente demanda 

conhecimento do domínio ou de convenções de codificação. Além disso, o mapeamento 

deve ser mantido atualizado quando o software evolui o que impõe uma carga adicional so

bre os desenvolvedores de software. Técnicas automatizadas de mapeamento baseadas em 

dependências estruturais já foram desenvolvidas, mas são relativamente limitadas em cap

turar a semântica do mapeamento. Finalmente, a técnica RM pode produzir listas detalhadas 

de violações arquiteturais, geralmente em torno de centenas de violações, sobrecarregando 

os desenvolvedores de software a cada checagem. Algumas das violações arquiteturais iden

tificadas podem nunca ser resolvidas pois tratam-se de exceções a uma regra geral. Outras 

podem precisar ser resolvidas num curto período de tempo para evitar a erosão de decisões 

arquiteturais importantes. Assim, a identificação de violações arquiteturais relevantes a par

tir das listas de violações é um aspecto desta técnica que requer melhorias. Estas limitaçõess 

são essencialmente relacionadas ao esforço manual gasto pelos desenvolvedores de software 

ao aplicar a técnica. E este esforço envolve custos qu>, podem evitar a adoção de checagens 

frequentes de conformidade. 

1.2 Um Processo de Checagem 

Para enfrentar as limitações acima, concebi um processo de checagem de conformidade 

para reduzir o esforço manual durante a aplicação da técnica RM. Este processo permite 

automatizar parcialmente algumas das etapas para computar os modelos de reflexão. A 

seguir, apresento uma descrição deste processo, o qual foi denominado processo dos modelos 

de reflexão evolucionários (ERM), por manter algumas etapas da técnica RM original bem 

como a sua natureza leve, embora tenha sido adaptado para levar em conta a evolução do 

software. 
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O processo ERM é um processo de checagem de conformidade de visões arquiteturais 

modulares. A intenção é usá-lo no contexto de processos de desenvolvimento leves tais como 

processos ágeis ou processos de desenvolvimento de software de código aberto. Neste con

texto, pode não haver uma visão arquitural modular explícita ou regras que definam a forma 

de interação dos módulos. Portanto, antes de checar conformidade, é necessário recuperar 

uma visão modular e suas regras associadas. Modelos de reflexão evolucionários são então 

produzidos como resultado de um subprocesso menos frequente de recuperação arquitetural 

e um subprocesso mais frequente de checagem de conformidade. 

Recuperação arquitetural é um campo de estudo extensamente estudado. Assim sendo, 

não é intenção desta tese contribuir com novas técnicas de recuperação arquitetural. Ao 

invés disto, pretende-se avaliar algumas técnicas pré-existentes no contexto de evolução de 

software. No processo ERM, a recuperação arquitetural é realizada através da série de etapas 

descritas abaixo: 

Extração de design: entidades de design de baixo nível e suas relações são extraídas do 

código-fonte; 

Levantamento de design: entidades de design e suas relações são levantadas ao nível de 

tipo, onde entidades são classes ou interfaces e relações são as suas dependências; 

Agrupamento de design: tipos são agrupados em módulos através de técnicas de agrupa

mento automáticas; 

Reagrupamento semi-automático: resultados do agrupamento de design são melhorados 

através de técnicas semi-automáticas de reagrupamento; 

Reagrupamento manual: desenvolvedores de software alteram o agrupamento resultante 

para melhorar os resultados automáticos e impor um ponto de vista particular sobre o 

agrupamento; 

Definição da visão modular e das regras arquiteturais: desenvolvedores de software 

nomeiam os módulos e estabelecem relações entre eles de acordo com regras 

arquiteturais estruturais. 

Depois que uma visão arquitetural modular é definida através de recuperação arquitetu

ral, o subprocesso de checagem de conformidade pode ser aplicado durante a evolução do 
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sistema de software. Por exemplo, ele pode ser aplicado antes de enviar o código-fonte para 

o repositório de software. Deste modo, violações podem ser reveladas antes de tornar as mu

danças mais definitivas. As etapas do processo de checagem de conformidade são descritas 

abaixo: 

Mudanças arquiteturais: embora não tão frequentes como mudanças no código-fonte, mu

danças arquiteturais podem ocorrer também. Nesta etapa, os desenvolvedores podem 

modificar a visão arquitetural modular e suas regras associadas; 

Reextração e relevantamento de design: o design é reextraído para atualizar entidades e 

relações que podem ter sido modificadas tanto no design de baixo nível como no design 

no nível de tipos; 

Mapeamento semi-automático: Com o código-fonte modificado, o mapeamento entre en

tidades no nível de tipos e os módulos arquiteturais deve ser atualizado; 

(Re)mapeamento manual: O mapeamento semi-automático pode não ser suficiente para 

contemplar todas as entidades modificadas, e os desenvolvedores podem necessitar 

atualizar manualmente o mapeamento anterior; 

Checagem e registro de violações: a etapa mais importante no processo, e a única obri

gatória, é realizada, computando-se um modelo de reflexão. Os resultados da 

checagem podem ser melhorados a partir do conhecimento do histórico do software, 

por priorização ou por filtragem; 

Resolução de violações: os desenvolvedores resolvem as violações arquiteturais através da 

modificação do código-fonte ou do modelo arquitetural do software. 

Vale a pena ainda mencionar como o processo ERM afeta o desenvolvimento de software. 

Como uma técnica semi-formal leve, o processo impõe uma carga extra sobre os desenvolve

dores. Entretanto, trata-se uma sobrecarga leve, já que a fase de recuperação arquitetural é 

menos frequente, nem todos as etapas precisam ser realizadas cada vez que a checagem é 

executada, e o processo não retira a atenção dos desenvolvedores de suas atividades no mo

mento da codificação. Além do mais, com o proceso ERM, desenvolvedores não precisam 

aprender notações formais para checar conformidade. Modelos de reflexão podem ser ger

ados e checados frequentemente, sejam antes de enviar o código-fonte para o repositório, 
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sejam durante os builds noturnos ou semanais, ao mesmo tempo em que testes de unidade e 

de integração são executados. 

O Apêndice A descreve as etapas do processo FRM em mais detalhe. Durante este 

trabalho, foi desenvolvida uma suite de ferramentas protótipo, chamada de Design Suite, 

para facilitar a automação do processo ERM. O apêndice também descreve detalhes sobre a 

suite de ferramentas, e como ela se encaixa no processo. 

1.3 Sumário 

Nesta tese, tento resolver as limitações da técnica dos modelos de reflexão quando esta é 

aplicada no contexto de evolução de software. Mais especificamente, eu proponho técnicas 

para reduzir a quantidade de esforço manual em etapas específicas da técnica: i) na geração 

dos modelos de alto nível; ii) no mapeamento entre o código-fonte e os modelos de alto 

nível; e Ui) na análise dos resultados das checagens de conformidade. 

Os resultados deste trabalho fazem parte do escopo de um processo leve de checagem de 

conformidade, baseado na técnica RM, que é adaptado ao contexto de evolução de software. 

A avaliação deste processo como um todo é complexa, pois envolve desenvolvedores de soft

ware, um conjunto de ferramentas e um horizonte de tempo mais longo. Por conseguinte, 

o foco deste trabalho é reduzido às três etapas do processo explicitadas acima, aquelas que 

demandariam um grande esforço manual caso a técnica RM original fosse aplicada. As mel

horias obtidas para cada etapa são independentes entre si e podem ser usadas isoladamente 

por desenvolvedores de ferramentas e por pesquisadores de engenharia de software. As con

tribuições desta tese são, portanto, no design e na avaliação de técnicas para dar suporte a 

estas etapas, e são descritas a seguir: 

1. Uma avaliação experimental de algoritmos de agrupamento aplicados na produção de 

visões modulares de alto nível e no contexto de software em evolução; 

2. Design de uma técnica de mapeamento incremental para mapear entidades de código-

fonte em módulos de alto nível baseada na combinação da recuperação de informação 

de vocabulário do software e de dependências estruturais, e uma avaliação quali-

quantitativa de técnicas de mapeamento incremental; 
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3. Investigação de fatores de provável influência relevância de violações arquiteturais 

estáticas descobertas em checagens de conformidade com a técnica RM; 

4. Design e avaliação de um sistema de recomendação e de um filtro para reduzir a so

brecarga dos desenvolvedores de software quando da análise das violações apontadas 

nos resultados das checagens de conformidade; 

5. Desenvolvimento de uma suite de ferramentas protótipo para habilitar a automação 

parcial do processo proposto de checagem de conformidade. 

1.4 Organização 

Este documento é organizado da seguinte maneira. Neste capítulo e no próximo são intro

duzidos o contexto, o problema e um processo proposto como solução para o problema. O 

Capítulo 3 revisa o estado-da-arte em recuperação arquitetural e checagem de conformidade 

de visões arquiteturais modulares. Uma descrição sucinta desta tese é dada no Capítulo 4, 

com a caracterização do problema, questões de pesquisa, critérios de sucesso, hipóteses, 

objetivos de pesquisa e metodologia. Um estudo detalhado de três etapas do processo de 

checagem de conformidade e sua avaliação experimental são apresentados nos próximos três 

capítulos: a produção de modelos de alto nível a partir de técnicas de agrupamento de soft

ware, no Capítulo 5; o mapeamento semi-automático da implementação para modelos de alto 

nível, no Capítulo 6; e a priorização de violações resultantes das checagens de conformidade 

arquitetural, no Capítulo 7. Uma discussão sobre os resultados obtidos e seus desdobramen

tos segue no Capítulo 8. Finalmente, conclusões são apresentadas no Capítulo 9. 



Chapter 2 

Preliminaries 

P R E L I M I N A R E S 

Neste capítulo, o contexto e a motivação desta tese são apresentados ao leitor. O 

problema central da tese é introduzido e um processo é proposto como solução 

para o problema. Em seguida, um sumário da tese é apresentado, assim como 

uma descrição da organização do trabalho. 

In this chapter, I present the context and motivation of this dissertation to the reader. The 

main problem is then presented, and a process is proposed as the solution to the problem. A 

summary of the dissertation follows, as well as a description of the organization of this work. 

2.1 Context and Motivation 

Driven by new feature requests, software changes are inevitable. As a result, most software 

systems grow over time [Lehman et al. 1997]. Each system change performed as time passes 

may end up requiring more lines of code to be analyzed, as well as requiring increased 

interaction with the typically growing number of de^lopers working on the system. These 

facts lead to a progressive growth of maintenance costs along time. 

Maintenance of large software systems usually requires shared mental models. Such 

models help developers to reason and communicate about software concepts, and to perform 

decisions that change software structure and behavior. Brooks defines conceptual integrity 

as the uniformity of a mental model that the software team has about the software [Brooks 

11 
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1995]. 

Teams involved with evolving software usually have difficulty retaining conceptual in

tegrity due to its complexity and size. Brooks argues that it is better to have a simple and 

cohesive set of ideas about the software design than lots of good but independent and unco-

ordinated ideas [Brooks 1995]. 

Maintaining conceptual integrity by appropriately preserving and modifying software 

design is a challenge in evolving software systems. Frequently, when large software teams 

evolve large software systems, the systems experience a breakdown of modularity, an in-

creased span of software changes, and an increased fault potential [Eick et al. 2001], which 

are usual symptoms of this loss of integrity. The issue of preserving conceptual integrity is 

the broad theme of this dissertation, and I elaborate on it in this chapter and throughout this 

work. 

Producing an explicit software architecture for ^ system is one way to help materialize 

the conceptual integrity of a system. Software architecture may be defined in many different 

ways. One popular definition states that it is "the structure of the components of a pro-

gram/system, their interrelationships, and principies and guidelines governing their design 

and evolution over time" [Garlan and Perry 1995, p. 269]. When explictly documented, 

software architecture may have a positive impact on various software development activities 

(e.g., comprehension, construction, validation and reuse) as well as on software management 

(e.g., project planning, allocation of development teams) of large and complex systems [Gar

lan 2000]. Software architects aim to develop reusable and adaptable software architectures 

that remain almost intact in face of anticipated changes, especially in systems in volatile 

domains such as banking, telecommunications and e-business. 

Before going any further, it is important to clarify some terminology. In this dissertation, 

the term software evolution is restricted to the view of evolution as a phenomenon that can 

be observed, as it was expressed by Lehman et al. in the laws of software evolution, and not 

with the other usual view that deals with methods, tools and activities to control software 

evolution [Madhavji et al. 2006]. 

Perry and Wolf coined the term architectural drift, to express the lack of sensitivity of 

software developers to the software architecture [Perry and Wolf 1992], which is related to 

the lack of conceptual integrity. Figure 2.1 shows a scenario of conceptual integrity, with uni-
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form ideas about the software that can be expressed in a software architecture diagram. On 

the other hand, Figure 2.2 shows a scenario of lack of conceptual integrity, where software 

developers have different ideas about the design of a software system. 

Figure 2.1: Conceptual integrity 

Lack of conceptual integrity can lead to a phenomenon known as software aging [Parnas 

1994]. According to Parnas, aged software is characterized by the increased difficulty to 

adapt to new features required by customers due to its growing complexity, by reduced relia-

bility due to introduction of bugs during software maintenance, and by gradual deterioration 

of software structure. 

Aged software has typical symptoms: i) at each version, it becomes difficult to add new 

features; ii) time or memory performance degrades; Ui) faults tend to be introduced together 

with each change; iv) difficulty to track or reconstruct design decisions; v) increase in code 

churn and in the frequency of discovered faults [Parnas 1994; Eick et al. 2001; van Gurp and 

Bosch 2002]. 

The structural deterioration of a software system as it evolves has also been named as 

architectural erosion [Perry and Wolf 1992], design erosion [van Gurp and Bosch 2002], 

code decay [Eick et al. 2001], or architectural degeneration [Hochstein and Lindvall 2003]. 

Structural deterioration may end up or not in software aging, although it typically does [Par-
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Figure 2.2: Lack of conceptual integrity and architectural drift 

nas 1994; Eick et al. 2001; van Gurp and Bosch 2002]. It depends on whether or not the 

degraded structure increases the difficulty to adapt to new features. In this work, I am con-

cerned about the scenarios where structural deterioration results in software aging and I will 

argue that the key to fighting software aging lies in maintaining adequate software structure 

as it evolves. 

According to Parnas, there are two ways to combat software aging: prevention and rem-

edy [Parnas 1994]. Various preventive practices can retard software aging, but are not able 

to stop it, since the designers' capacity of predicting changes is limited by the impossibil-

ity of adequately predicting customers' future wishes. Thus, with inevitable aging, remedy 

becomes an important issue in software evolution. 

In this context, the following questions arise. How can the knowledge of software archi

tecture help to prevent or remedy software aging? How can architectural drift be reduced 

in the process of software evolution in order to slow down software aging? Furthermore, 

given that various lightweight development methods use few or no architectural documen-

tation, how can conceptual integrity be reinforced in such processes without changing their 

lightweight nature? 

Even with documented software architectures, there is a gap between what is documented 
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and what is, in fact, implemented [Lindvall and Muthig 2008]. That is, documentation alone 

is not able to fully guarantee conceptual integrity. It usually happens that architecture doc

umentation is not frequently updated, even when new design decisions are taken. It is also 

frequent that developers do not follow architectural rules, even when documentation is avail-

able. In this scenario, architecture conformance checking may help bridge this gap. With 

the introduction of frequent checks between architecture and implementation, conceptual 

integrity is sustained, which reduces structural deterioiation, and, as a consequence, the pro

cess of software aging is retarded. 

Conformance checking of software architecture can be seen as a special case of checking 

conformity between software specification and implementation, which is a research theme 

thoroughly explored by the formal methods community. It can also be seen as a late soft

ware architecture evaluation technique, in which actual software architecture is compared 

to planned software architecture and observed deviations drive corrective measures [Tvedt 

et al. 2002]. Architecture conformance checking research is mainly focused on conformance 

of static module views. Module views are structural architecture diagrams in which modules 

are entities that aggregate code units that together implement a set of responsibilities, and 

module relations describe code dependencies between modules [Clements et al. 2002]. Con

formance checking of module views, thus, compares entities and relations in a planned mod

ule view with the actual module view recovered from implementation, and the literature is 

prolitíc on this subject [Murphy et al. 1995; Aldrich et al. 2002; Koschke and Simon 2003; 

Postma 2003; Sangal et al. 2005; Knodel and Popescu 2007; Bourquin and Keller 2007; 

Huynh et al. 2008; Terra and Valente 2009; Feilkas et al. 2009]. 

Murphy and colleagues have tried to solve the isrue of conformance between architec

ture module views and implementation with the adoption of the reflexion model technique 

[Murphy et al. 1995; Murphy et al. 2001]. Reflexion models turn the differences and 

similarities between an architecture module view and implementation into explicit infor-

mation to the software developer. In short, the engineer defines a high-level model of in-

terest, extracts the actual model from source code, defines a mapping between those mod

els and computes a reflexion to see where both models agree or disagree. This work has 

opened up a new research path in software verification and prolific work on conformance 

checking of software architectures has since been published. Not only is the reflexion 



2. / Context and Motivation 16 

model (RM) technique a seminal work on architecture conformance checking, but also a 

very popular technique. Practical applications of the RM technique in industry have been 

recorded in the literature. Applications range from reengineering [Murphy and Notkin 1997; 

Knodel et al. 2006], architecture recovery and conformance checking [Murphy et al. 1995; 

Murphy et al. 2001; Knodel et al. 2006; Knodel et al. 2008a; Rosik et al. 2008; 

Passos et al. 2010], architectural complexity analysis [Lilienthal 2009], and system un

derstanding, redocumentation and software reuse [Knodel et al. 2006]. Furthermore, the 

RM technique has been extended to deal with additional issues such as hierarchical models 

[Koschke and Simon 2003], bottom-up architecture recovery [Le Gear et al. 2005], auto

mated mappings [Christl et al. 2005; Christl et al. 2007], and software product lines [Frenzel 

et al. 2007]. 

Compared to other conformance checking solutions, the RM technique presents advan-

tages for its lightweight, approximate and scalable nature [Murphy et al. 1995]. Simple 

box-and-arrows diagrams capture architectural rules, without either the need for complex 

architecture description languages or the use of ports, connectors and interfaces. These fea

tures make them particularly useful in lightweight dcdopment processes, where avoidance 

of complex formal specification languages and sparing of detailed diagrams in graphical 

modeling languages are deemed important. 

The applications of conformance checking cited above show the benefits of introducing 

this step in the software process. Illustrated with academic examples and industrial case 

studies, those papers unveil various real-world scenarios where developers increase their 

conceptual integrity about the software systems they are developing after analyzing viola

tions made explicit by conformance checks. I argue that conformance checking contributes 

to maintaining conceptual integrity, and to reducing the pace of architecture deterioration 

and, as a consequence, of software aging as well. I also argue that reflexion models are 

a conformance checking technique well-adapted to the context of lightweight development 

processes. These arguments will be discussed in detah along this work. 

On the other hand, the original reflexion model technique presents some limitations when 

applied to a context of continuous software evolution in lightweight development processes. 

It requires the production of an initial architecture model, which can be challenging, since, 

in such processes, usually there is either no architecture diagrams or very few architectural 
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documentation is available. Another challenging task in the RM technique is the mapping be

tween low-level code entities and high-level architectural modules, which usually demands 

domain knowledge or knowledge of coding conventions. Moreover, the mapping has to be 

kept up-to-date when software evolves and that imposes an extra burden on software devel

opers. Automated mapping techniques based on structural dependencies exist, but are rather 

limited to capture the semantics of mapping. Finally, the RM technique can produce detailed 

lists of architectural violations, usually amounting to hundreds of violations, overloading 

software developers with information at each conformance check. Some of the identified 

architectural violations may never be solved becausc they may be exceptions to a general 

rule. Others may need to be solved in a short period of time to prevent erosion of important 

architectural features. Thus, identifying relevant architectural violations from violation lists 

is an issue in the technique that requires improvement. These limitations are mainly related 

to the manual effort spent by software developers when applying the technique. And this 

effort involves costs that can prevent adoption of frequent conformance checks. 

2.2 A Process for Conformance Checking of Evolving Sys

tems 

To deal with the limitations above, I envisioned a conformance checking process to reduce 

the manual effort when applying the RM technique. To do so, the process tries to partially 

automate some of the steps to compute reflexion mooels. In the following, I present a de-

scription of this process, which I named evolutionary reflexion model (ERM) process, as 

it keeps some steps of the original RM technique, as well as its lightweight nature, but is 

adapted to take software evolution into account. 

The ERM process is a process for the conformance checking of architecture module 

views. It is intended to be used in the context of lightweight development processes such as 

agile processes or open source development processes. In this context, there might not be 

an explicit architecture module view or rules that define the interaction of modules. Thus, 

before checking conformance, it is necessary to recover a module view and its associated 

rules. Evolutionary reflexion models are, then, produced as the result of a less frequent sub

process of architecture recovery and a more frequent subprocess of conformance checking, 
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as illustrated in Figure 2.3. 

Architectural is sues to be fixed 

Architecture 
Conformance 

Checking 

Architectural violations to be corrected 

Figure 2.3: Evolutionary Reflexion Model (ERM) process 

Architecture recovery is a thoroughly explored field of study. As such, it is not the 

intention of this dissertation to contribute on architecture recovery techniques, but, instead, to 

choose from a range of proven useful techniques. In the ERM process, architecture recovery 

is accomplished through a series of steps described below. 

Design extraction: low-level design entities and relations are extracted from source code. 

Typical entities are methods, fields and classes, while typical relations are method 

calls, field accesses and class inheritances. 

Design lifting: design entities and relations are lifted to the type levei, where entities are 

classes or interfaces and relations are their dependencies. For example, each methods 

or field is lifted to its container class, while each method call or field access is lifted to 

its container dependency. 

Design clustering: types are clustered into modules through automated software clustering 

techniques. Examples of actual modules are layers. For instance, an information sys

tem can be split into the graphical user interface layer, the business model layer, and 

the data persistence layer; a clustering technique is successful i f it can recover such 

kinds of abstractions. 
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Semi-automated re-clustering: results from design clustering are improved through semi-

automated re-clustering techniques. For instance, a graphical form class that has been 

incorrectly placed in the business model layer can be replaced into the graphical user 

interface layer by suggestions of an automated re-clustering technique. 

Manual re-clustering: software developers change the resulting clustering to improve au

tomated results and impose a particular point of view on the clustering. As an example, 

developers may wish to split a recovered abstraction of a graphical user interface layer 

into two sublayers: one based on direct manipulation and another based on web forms 

and servlets. 

Definition of a module view and architectural rubs: software developers name modules 

and establish relations between modules according to structural architectural rules. 

For example, developers may establish that the business model cannot depend on the 

graphical user interface. 

The architecture recovery subprocess is illustrated in Figure 2.4. 

After an architecture module view is defined through architecture recovery, the subpro

cess of conformance checking may be applied during the evolution of the software system. 

For instance, it may be applied before committing source code to the software repository. In 

this way, violations may be revealed before making changes more definitive. The steps of 

the conformance checking subprocess follow below. 

Architecture changes: although not so frequent as source code changes, architecture can 

change as well. In this step, software developers may change the architecture mod

ule view and its associated rules. For example, a new module that performs network 

communication can be added to an existing information system, and relations may be 

established that only the business model layer can depend on the network communi

cation module. 

Design re-extraction and re-lifting: design is re-extracted to update entities and relations 

that might have changed both in low-level and in type-level designs. It follows the 

same rationale as the two first steps in the architecture recovery subprocess, but with 

an updated system. 
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Figure 2.4: Architecture recovery subprocess 
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Semi-automated mapping: With the source code changed, mapping between type-level en

tities and modules may have to be updated. For instance, a newly added sockets class 

has to be mapped onto the network commmunication module, while a newly added 

business concept class has to be mapped onto the business model layer. 

Manual (re-)mapping: semi-automated mapping may not be enough to cope with ali 

changed entities and software developers might have to manually update the previous 

mapping. For instance, it may happen that a g/ aphical user interface form class has 

various dependencies to business concepts and is incorrectly mapped onto the business 

model layer. The manual re-mapping solves these issues. 

Checking and violation logging: the most important step in the process and the only com-

pulsory one is accomplished by computing reflexion models. A reflexion model can 

show violations both as a graph and as a list of te.vtual warnings. Results from checking 

can be improved from knowledge of software history, by either prioritization or filter-

ing. For example, exceptions to a general rule may be filtered out from the violation 

list. 

Violation resolution: software developers solve architecture violations by means of either 

changing source code or updating software are h'tecture. 

The conformance checking subprocess is illustrated in Figure 2.5. 

It is worth mentioning how the ERM process affeets software development. As a semi-

formal lightweight technique, it imposes some extra burden to the developers. Nonetheless, 

it is still a lightweight burden, since the architecture recovery phase is less frequent, not ali 

steps need to be accomplished each time the conforrrance checking is run and the process 

does not divert developers from their activities when they are coding. Furthermore, with 

the ERM process, developers do not need to learn formal notations to check conformance. 

Reflexion models can be generated and checked either before committing source code to the 

repository or during nightly/weekly builds, at the same time unit and integration tests are 

run. 

Appendix A describes the steps of the ERM process in more detail. During this work, I 

developed a prototype toolset named Design Suite to facilitate the automation of the ERM 

process. The appendix also describes details about the toolset, and how it fits into the process. 
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Figure 2.5: Conformance checking subprocess 
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2.3 Summary of the Dissertation 

In this dissertation, I try to solve the limitations of the reflexion model technique when it 

is applied in the context of software evolution. More specifically, I propose techniques to 

reduce the amount of manual effort in specific steps of the technique: i) in the generation of 

high-level models; ii) in the mapping between source code and high-level models; and Ui) in 

the analysis of results of conformance checks. 

The results of this work are in the scope of a lightweight conformance checking process, 

based on the RM technique, that is adapted to software evolution. Evaluation of this process 

is complex, since it involves software developers, a set of software tools, and a longer time 

horizon. Hence, I focus instead on the three steps of the process explained above, those 

that would require a large amount of manual effort had the original RM technique been 

applied. Improvements achieved in this work for each step are independent of each other 

and can be used by tool developers and software engineering researchers one at a time. The 

contributions of this dissertation are, thus, in the detailcd design and evaluation of techniques 

to support these steps, and are described below: 

1. An empirical evaluation of clustering algorithms that produce high-level module views 

in the context of software evolution; 

2. Design of an incremental mapping technique to map source code entities onto high-

level modules based on a combination of information retrieval of software vocabulary 

and structural dependencies, and a quali-quantitative evaluation of incremental map

ping techniques; 

3. Investigation of factors that likely influence the relevance of static architectural viola

tions found by conformance checks with the RM technique; 

4. Design and evaluation of a recommender and a filter to reduce the overload of software 

developers when analyzing violations in the results of conformance checks; 

5. Development of a prototype toolset to enable partial automation of the proposed con

formance checking process. 
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2.4 Organization of this Work 

This document is organized as follows. This chapter introduces the context, problem, and a 

conformance checking process as the solution to the problem. Chapter 3 reviews the state-

of-the-art of architecture recovery and conformance checking of architecture module views. 

An outline of the dissertation is given in Chapter 4, with problem characterization, research 

questions, success criteria, hypotheses, research goals and methodology. A detailed study of 

three steps of the conformance checking process and their empirical evaluation is presented 

in the next three chapters: the production of high-level models from software clustering, 

in Chapter 5; the semi-automated mapping of implementation onto high-level models, in 

Chapter 6; and the prioritization of violations from architecture checks, in Chapter 7. A 

discussion on the results and its unfoldings follows in Chapter 8. Finally, conclusions are 

drawn in Chapter 9. 



Chapter 3 

Background 

FUNDAMENTOS 

Neste capítulo, alguns conceitos importantes para a compreensão da tese são 

apresentados ao leitor. O estado-da-arte em recuperação arquitetural e checagem 

de conformidade de visões arquiteturais modulares é revisado e uma avaliação 

crítica dos trabalhos relacionados é realizada. 

In this chapter, some important concepts for this dissertation are introduced to the reader. The 

state-of-the-art of architecture recovery and conformance checking of architecture module 

views is reviewed and a criticai appraisal of related work is performed. 

3.1 Architecture Recovery 

Architecture recovery is a subset of reverse engineering that tries to recover high-level 

architectural information through analysis of a software system [Hochstein and Lind

vall 2005]. As a research theme, it has received considerable attention from the soft

ware engineering community, since the early 1990s. It can be used for a variety of 

purposes such as improving software comprehension, documenting legacy systems, serv-

ing as a starting point for reengineering processes, identifying components for reuse, mi-

grating systems to software product lines, co-evolving architecture and implementation, 

checking compliance between architecture, low-level design and implementation, ana-

lyzing legacy systems and achieving graceful software evolution [Kazman et al. 2001; 

25 
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Pollet et al. 2007]. 

A recent survey recovers prolific work in this area [Pollet et al. 2007]. An older study 

surveys the area of software architecture with focus c n jombating architectural degeneration, 

giving emphasis to architecture and design recovery [Hochstein and Lindvall 2005]. Before 

reviewing the area of architecture recovery, some basic information on software architecture 

is shortly presented in the following. 

3.1.1 Software Architecture 

Most definitions of software architecture take a structural perspective. They consider that 

the architecture is composed of elements and the connections among them. Some other as-

pects are also considered: configuration, constraints, properties, rationale, and requirements 

[Clements et al. 2002]. A popular definition states that "software architecture is the struc

ture or structures of the system, which comprise software components, the externally visible 

properties of those components, and the relationships among them" [Bass et al. 2003, p. 

3]. In the context of software evolution, a simple and useful definition asserts that "software 

architecture is the structure of the components of a program/system, their interrelationships, 

and principies and guidelines governing their design and evolution over time" [Garlan and 

Perry 1995, p. 269]. 

Architecture Documentation 

Software architectures are documented for a variety of purposes. Documentation serves as 

a basis for system analysis, but also as a vehicle of communication among stakeholders, 

besides helping in system understanding. Different aspects need to be emphasized when 

designing an architecture. It would be hard to placj " l i these aspects under the same rep-

resentation. Thus, different views may be used to describe an architecture, depending on 

the analyzed viewpoint. A variety of views has been proposed by researchers and prac-

titioners, depending on the aspect of concern. Clements et al. describe three viewtypes 

(module, component-and-connector and allocation), from which every other view may be 

derived [Clements et al. 2002]. Module views include elements that are code units imple-

menting a set of responsibilities. Component-and-connector views have runtime entities as 
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components and their pathways of interaction as coniketors. Allocation views map elements 

of either module or component-and-connector views onto the environment the software is in 

contact with. 

Software architecture is usually expressed as different architecture views and design 

rules. A combination of module, component-and-connector and allocation viewtypes are 

able to express most architectural concerns in a set of architecture views in terms of software 

entities and relations [Clements et al. 2002]. Textual design rules complement these views 

with design decisions or constraints that may not fit well in graphical diagrams. 

Module Views 

A module is a software unit with a well-defined interface providing a set of services. A 

module can be any aggregation of software units (e.g.: a class, a collection of classes, a 

pluggable component, or a layer). Module views car: describe a variety of styles, such as 

decomposition, dependencies and generalization, which give room to the relations is-part-of, 

depends-on and is-a, respectively. Further relations can be derived from these basic relations. 

Module views can be used as a blueprint for construction, as a basis for analysis and as a 

mechanism for communication. Most software archi:e?ture documentation describes at least 

one module view [Clements et al. 2002]. Finally, module views are also the most popular 

view addressed in research [Hofmeister et al. 2000]. 

Design Rules 

Design rules can be related either to software structure or to the environment where software 

is immersed. Environmental design rules express design decisions that cannot be captured in 

architecture views. On the other hand, structural design rules are special design parameters 

that allow decoupling other parameters by means of stating global rules followed by the 

entire system or subsystem [Sullivan et al. 2001]. The most well-known design rule in 

software systems is a module interface. Structural design rules usually express acceptable 

and unacceptable dependencies between architecture modules [Sangal et al. 2005]. 

Structural design rules can be formally expressed in a variety of ways. Some examples 

are interfaces, ports and connectors of architecture description languages (ADLs) [Medvi-

dovic and Taylor 2000], domain constraint languages [Terra and Valente 2009], cell marks 
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in a design structure matrix [Sangal et al. 2005] or arrows in a box-and-arrows diagram 

[Murphy et al. 1995]. 

3.1.2 Taxonomy 

A large body of research on architecture recovery has been built for more than fifteen years. 

A recent work surveys 146 papers which are either considered influential or propose a spe-

cific approach to the architecture recovery problem [Pollet et al. 2007]. This survey classifies 

previous work in terms of inputs, outputs, techniques, processes and goals. 

Inputs to architecture recovery are varied. Usually, input information is used to recover 

relations between software pieces. Entities from source code can be related using structural 

dependencies, source code vocabulary similarity, dynamic information from software traces, 

physical organization of software files or historical information from software repositories. 

Moreover, human organization, human expertise and documentation can also be used as 

inputs to architecture recovery. 

Architecture recovery techniques may be classiried into quasi-manual, semi-automatic 

or quasi-automatic [Pollet et al. 2007]. In the first, the software architect manually recovers 

abstractions assisted by a tool. The second automates repetitive tasks, instructing the tool 

to recover abstractions. And the last infers architectural knowledge directly from software 

artifacts. 

In this work, I use another classification, that seems to be more common in the litera-

ture: manual, semi-automated and fully automated techniques. Manual techniques may or 

may not use software tools, and are driven solely by human decisions. In semi-automated 

techniques, the process is driven by humans, and either repetitive tasks are automated or 

architecture knowledge is inferred directly from software artifacts. In any case, final deci

sions are taken by humans, who use the generated knowledge as suggestions. Finally, fully 

automated techniques generate abstractions with no human intervention. 

3.1.3 Architecture Module View Recovery Framework 

Architecture recovery typically follows three steps: detailed low-level fact extraction from 

program static and dynamic analysis, abstraction of low-level facts to compose high-level 
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components, and architecture visualization of high-level views [Armstrong and Trudeau 

1998]. When recovering a module view, source code entities and their dependencies are 

usually analyzed statically, although dynamic analysis and other types of information may 

be used as well to enrich fact extraction. Module view recovery benefits, for instance, from 

explicit dependencies between code entities in control- and data-flow graphs. Abstraction 

of architectural modules is generally done through clustering and filtering tools, although 

other techniques are available as well. Finally, a module view is generated through text and 

graphic visualization algorithms to produce a clear and concise high-level description of the 

system. 

Fact Extraction 

The first step to architecture module view recovery is the extraction of the structural and 

modular organization of the source code. The levei of recovery is generally higher than the 

line-of-code levei and depends on the used programming language. Entities that compose 

the source code and their dependency relations are identified and added to a low-level fact 

set. Low-level design entities depend on the type of programming language used. In a 

procedural language, typical entities are global variables, procedures and files, while typical 

relations are global variable uses, procedure calls and include dependencies. In an object-

oriented language, examples of entities are methods, fields and classes, while method calls, 

field accesses, class inheritances, object parameter pa ssing and interface implementations are 

examples of relations. This fact set may be organized as either graphs, relational databases 

or other data models [Armstrong and Trudeau 1998]. 

Fact extractors recover information from software artifacts such as source code, interme-

diate bytecodes or UML design diagrams and export their results in a variety of data formats. 

Holt et al. describe some of these tools and propose a standard for data exchange between 

software reengineering tools [Holt et al. 2006]. 

Abstraction 

To identify architectural modules, one needs to abstnct from the extracted facts. This ab

straction usually consists of grouping a set of low-level entities into internally cohesive and 

externally relatively decoupled clusters. For instance, some procedures in a procedural sys-
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tem may be grouped into an abstract data type; in a drawing object-oriented system, some 

classes that implement geometric figures may be grouped into a geometry module. Fur-

thermore, non-relevant entities may be tíltered out from the fact set to produce a clear and 

concise organization. For instance, uses of j a v a . u t i l library classes in a Java system may 

be ommitted from an architecture recovery process. Abstraction can be either assisted by the 

software architect or automated by techniques such as clustering, concept analysis and graph 

dominance [Wiggerts 1997; Pollet et al. 2007]. 

Visualization 

Visualization is essential to architecture understanding. Architecture module views can be 

graphically described through a variety of visualization layouts. Visualization results must 

be clear and concise, and are usually displayed as views ordinarily used in architecture docu

mentation, such as graph, UML or matrix views. Hierarchical visualization is desired, since 

module views may contain decomposition styles. 

Research on information and software visualization provides insights for ideas on visu

alization layouts. Diehl surveys software visualizaticn techniques and classifies them into 

methods that describe software structure, behavior or evolution [Diehl 2007]. 

3.1.4 Module View Recovery Techniques 

Since module views decompose software into code units implementing a set of responsibil-

ities, it is natural to depart from code units in order *o recover architecture module views. 

Source code is usually the only available artifact in legacy systems, making this input espe-

cially relevant for architecture recovery. As a consequence, a large number of architecture 

recovery techniques is based on source code as input and ends up with some form of module 

view as output. 

Manual and Semi-Automated Recovery Techniques 

AT&T have provided some of the first tools to extract designs from source code. They use 

the framework CIA/Ciao to model concepts in programming languages and extract facts from 

source code, first in C [Chen et al. 1990] and later in C++ and Java [Korn et al. 1999]. And 
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they use the GraphViz tool to visualize graphs [Gansner and North 2000]. These tools have 

been used as input and output to various other design abstraction tools. 

Later developments with the Rigi tool allowed to extract facts from source code into 

graphs that can be queried and edited by a graph editor [Muller et al. 1993]. Quasi-manual 

abstraction helps to filter, group and navigate through software entities. Visualization was 

later improved by SHriMP, which provides hierarchical fish-eye views [Storey and Muller 

1995]. 

Still in the tool domain, University of Waterloo has produced a pipeline of tools for 

architecture recovery named SWAG Kit [Software Architecture Group 2009]. Source code 

can be extracted with tools like cppx and javex, abstraction is done through Tarski relational 

álgebra and scripts with the grok tool and software landscapes can be viewed with Isedit. 

Architecture recovery typically uses static information from the source code in order 

to recover high-level module views. Armstrong and Trudeau describe and compare three 

pioneering environments that extract static information to abstract it into high-level module 

views and show them graphically: Rigi, PBS and Dali [Armstrong and Trudeau 1998]. These 

tools are similar in their way of organizing facts into tuples, of abstracting facts using scripts 

that process these tuples in an assisted process, and of visualizing module views represented 

as box-and-arrow diagrams. These tools also allow manual changes to the views through 

interaction with the graphical views. 

In a different approach, a top-down recovery process known is the reflexion model tech

nique recovers the architecture through two steps. First, an initial description of a graph 

mental model is done by the architect. Then, a regular expression clusterer maps source 

code entities into this model [Murphy et al. 1995]. This process involves conformance 

checking as well, and is later detailed in Section 3.2. 

Gupro is a tool that represents source code facts as graph files and allows sophisti-

cated queries in a graph query language (GreQL) [Ebert et al. 2002]. This representation 

is especially well-suited to huge software systems. The initial file format has evolved to 

a standard exchange format for software reengineering known as GXL [Holt et al. 2000; 

Holt et al. 2006]. 

Bauhaus is a comprehensive research toolset for reverse engineering, with tools ranging 

from dead code finding, clone detection, architecture recovery and compliance, feature detec-
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tion and metrics [Raza et al. 2006]. Facts are extracted from source code and dynamic traces 

into low- and high-level representations. Abstraction is done through a semi-automated in-

teraction framework that combines twelve automatic approaches and user guidance. Visual

ization is done with the Gravis tool. 

Automated Recovery Techniques 

Automated techniques aim to recover high-level abstractions with information available in 

low-level models and very few or no intervention from a reverse engineer. Automated tech

niques are of special interest, since they promise faster recovery just from analyzing existing 

knowledge in software artifacts. They usually take advantage of other techniques like for

mal concept analysis, data clustering and graph dominance in order to discover abstractions. 

Since they use specific criteria or heuristics for recovery, these techniques end up imposing 

software architectures that respect such criteria or heuristics [Anquetil et al. 1999]. For in

stance, i f the heuristic of a clustering algorithm demands high cohesion and low coupling, 

the recovery process ends up producing highly-cohesive and low-coupled decompositions. 

Software clustering is a bottom-up architecture recovery technique that groups lower-

level software entities that are similar in some way [Pollet et al. 2007]. This type of technique 

is further described next, in sub-section 3.1.5. 

Concept analysis uses lattice theory to identify sensible groupings of objeets that have 

common attributes. Siff and Reps use concept analysis to identify software modules [Siff and 

Reps 1997]. The process starts with building a context with code entities as the objeets and 

their attributes derived from static analysis. Then, a concept lattice is built from the context. 

Finally, concept partitions, which are collections of concepts whose extents partition the set 

of objeets, are identified and form the recovered modules. 

Dominance analysis identifies related parts in an application, exploring the concept of 

graph dominance over a program graph extracted from source code by static analysis [Pollet 

et al. 2007]. From a directed program graph, dominance analysis tries to find the dominant 

nodes in it. A node D dominates a node N i f ali paths from a given root to N go through 

D. Identified nodes result in a set of candidate architectural entities. Dominance analysis 

produces good results to identify certain types of components, namely passive components, 

but not sufficient to recover the complete architecture [Lundberg and Lõwe 2003]. A passive 
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component is a set of code entities having a single entity as interface, not using any other 

entity other than the dominant node to communicate to other components. 

3.1.5 Software Clustering Techniques 

Clustering techniques organize a collection of patterns (usually represented as a vector of 

measurements) into clusters, based on some kind of similarity [Jain et al. 1999]. 

Pattern similarity is measured either with distance measures or with association coef-

ficients, and clustering algorithms use this similarity to produce clusters of related entities 

[Wiggerts 1997]. Wiggerts also classifies clustering algorithms as hierarchical, partitional, 

graph-theoretical and construction. Hierarchical clustering algorithms build a hierarchy of 

clusterings in either an agglomerative or a divisive fashion, and a cutoff in the resulting 

dendrogram produces a clustering. As an example, ^uppose that an object-oriented class is 

characterized by a feature vector extracted from its vocabulary in an information retrieval 

approach. Al i classes from a system may be compared using a vocabulary similarity mea

sure and a similarity tree (dendrogram) can be built. Cutting the tree at a given cutoff point 

produces a clustering based on vocabulary similarity. Partitional algorithms, on the other 

hand, take an initial partitioning and iteratively improve it according to some heuristic. For 

instance, one may start with singleton clusters, and clusters may be joined iteratively, pro-

ducing changes to an objective function to be maximized. Using heuristic search, one ends 

up with a suboptimal value of the objective function and a suboptimal clustering. Graph-

theoretical algorithms represent software entities as a graph and try to find subgraphs, which 

will form the clusters, according to a graph-theoretical concept. For example, some graph-

theoretical algorithms try to split connected subgraphs where they have the weakest con-

nection, resulting in clusters of structural-related entities. Finally, construction algorithms 

assign the entities to clusters in one pass. For instance, entities can be placed in clusters 

according to their spatial position in an n-dimensional feature vector space. 

In the context of software reverse engineering, patterns are derived from any relevant 

available information used as input to architecture recovery such as structural dependen

cies, source code vocabulary similarity, dynamic information from software traces, physical 

organization of software files or historical information from software repositories. Software 

clustering techniques usually process input information and group low-level software entities 
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into clusters that represent high-level modules [Wigge-ts 1997]. 

Anquetil and colleagues use agglomerative hierarchical algorithms to automatically clus

ter software, experimenting with different parameters such as how the entities are described, 

how the entities are coupled and which algorithm is used [Anquetil et al. 1999]. Maqbool 

and Babri use hierarchical clustering algorithms to groups entities based on different simi

larity measures [Maqbool and Babri 2004]. They also propose a weighted combined linkage 

algorithm to measure the distance between clusters and aggregate the most similar ones in 

an agglomerative fashion. 

Mancoridis and colleagues have built a software clustering tool named Bunch [Man-

coridis et al. 1998; Mancoridis et al. 1999; Mitchell and Mancoridis 2006]. This tool or

ganizes source-level modules and dependencies in a graph and uses optimization algorithms 

such as hill climbing or genetic algorithms to find clusijrs based on an optimization function. 

This function works as a measure of modularization quality, rewarding partitions of clustered 

modules with high internai cohesion and low externai coupling. 

A design structure matrix (DSM) is a matrix representation of system entities and their 

interactions. It can be used as a means to better organize design activities and layouts, as an 

efficient design visualization technique and as a basis for system abstraction and mathemat-

ical analysis. DSMs have also been used for system clustering, initially in the manufactur-

ing industry [Browning 2001]. Gutierrez-Fernandez represents design modules as a design 

structure matrix (DSM) and proposes an optimization algorithm to partition the design into 

clusters in order to minimize the coordination cost between teams that work on the modules 

[Gutierrez Fernandez 1998]. Later work improves the clustering algorithm [Thebeau 2001]. 

Sangal et al. apply DSMs to analyze software through the use of the Lattix LDM tool [Sangal 

et al. 2005]. Using matrix algorithms, they convert the DSM into a block triangular matrix, 

where blocks represent cohesive clusters. 

3.1.6 Evaluation of Software Clustering Techniques 

The work of Armstrong and Trudeau seems to be the first to evaluate architectural extrac-

tors, but focus is on quasi-manual recovery tools [Armstrong and Trudeau 1998]. The lack 

of benchmarks makes it difficult to compare different architecture recovery techniques in 

general, and software clustering algorithms in particular. Sim et al. propose benchmarks as 
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a challenge to improve software engineering research [Sim et al. 2003]. 

Koschke and Eisenbarth propose a framework for experimental evaluation of clustering 

techniques, which also includes a benchmark for four C procedural systems [Koschke and 

Eisenbarth 2000]. Anquetil et al. study three aspects of the clustering activity: abstract 

entity description, metrics that compute coupling between entities and clustering algorithms 

[Anquetil et al. 1999]. CRAFT is a framework for tvaluating software clustering results in 

the absence of benchmark decompositions [Mitchell and Mancoridis 2001a]. CRAFT builds 

a reference decomposition automatically based on common patterns produced by various 

clustering algorithms. 

To compare decompositions, measures have be:r, proposed to quantify the difference 

between two software partitions. Tzerpos and Holt propose the MoJo distance measure, 

that computes the number of entity moves and joins to transform one partition into another 

[Tzerpos and Holt 1999]. Later, the same authors discuss the notion of stability of software 

clustering algorithms, using MoJo to define a stability measure [Tzerpos and Holt 2000]. 

Mitchell and Mancoridis propose two measures that consider both vértices and edges of 

a partitioned graph when computing the distance between two partitions: the EdgeSim 

measure, that takes into account the intra- and inter-edges common in both partitions, and the 

MeCl measure, based on cluster splitting and merging operations to transform one partition 

into another [Mitchell and Mancoridis 2001b]. In their work, they evaluate four measures: 

precision/recall, MoJo, EdgeSim and MeCl. 

Finally, the work of Wu et al. is, to our knowedge, the first to extensively compare 

different algorithms for software clustering based on three different dimensions relevant to 

software architecture. They have derived three criteria to evaluate aggregations of software 

units: authoritativeness, stability and extremity [Wu et al. 2005]. According to them, a 

good aggregation should resemble one made by an authority who knows well the system. 

Furthermore, small incremental changes should not produce too different clusterings, i.e., it 

should be stable. And finally, clusters should be non-extreme to be meaningful and useful, i . 

e., neither huge nor tiny. 

UFCGÍBIBLIOTECÂ/BC 
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3.1.7 Re-Clustering during Software Evolution 

Most software clustering techniques focus on findin;* a clustering out of no previous ar-

rangement. However, very few research deals with the issue of updating a clustering when 

software evolves [Tzerpos 1997]. Software changes produce the following possible scenarios 

concerning clustering: 1) A new entity is introduced in the system and needs to be clustered; 

2) An entity is removed from the system and has to be removed from clustering; 3) An entity 

changes its dependencies to other entities in the system; 

The issue in scenario 1 is named the orphan adoption problem, also known as incremen

tal clustering [Tzerpos 1997]. Tzerpos proposes a sohnion to this case, by providing criteria 

and an algorithm to adopt an orphan. Criteria involves naming conventions, structural depen

dencies and programming styles. Naming conventions are captured by regular expressions, 

while structural dependencies are used to determine the module that depends most on the 

orphan, which adopts it. Programming styles captuie specific issues such as the difference 

between feature and utility modules. 

While scenario 2 simply leads to removing the entity from its parent cluster, scenario 

3 may sometimes lead to increased communication between software modules that were 

previously low-coupled. Increasing coupling may sometimes suggest the re-clustering of 

an entity that is causing stronger coupling. This problem is named maverick analysis and 

solutions to it try to identify entities that appear to be in the wrong module [Schwanke 1991]. 

Such scenario also arises when poor quality clustenngs are analyzed. Schwanke defines a 

maverick as an entity whose majority of its k nearest neighbors belongs to a module different 

than it does. Neighboring is computed from pattern similarity, as previously defined in sub-

section 3.1.5. Tzerpos considers a maverick as a special type of orphan. In fact, they name 

it a kidnappee, as i f it had been "kidnapped" from it:; parent module. The issue is solved by 

making the appropriate parent module readopt the kidnappee [Tzerpos 1997]. Kidnapping 

uses the same criteria as orphan adoption, but it is avoided when the kidnappee belongs to 

a module with less than three entities or to an utility module, or when the original module 

interface increases with kidnappee removal. 

Later work has produced a solution similar to orphan adoption to map newly added enti

ties to the mapping of code entities onto modules in reflexion models [Christl et al. 2005]. In 

this work, automated clustering techniques are used to create additional candidate mappings 
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based on a previous mapping. Attraction functions based on structural dependencies are used 

to suggest the best candidate module for a given orphan. 

Finally, it is worth mentioning that both automated clustering and re-clustering tech

niques may not produce the modules that the rationale of the software architect would. Thus, 

manual re-clustering is usually a necessary step after using automated architecture recovery. 

3.2 Conformance Checking 

The process of checking conformance between software architecture and implementation has 

been thoroughly studied by the scientific community. A recent work informally describes this 

process as a sequence of six steps [Lindvall and Muthig 2008]: 1) capturing and modeling 

the planned architecture; 2) extracting the actual architecture from source code; 3) mapping 

components in the actual architecture onto those in the planned architecture; 4) automatically 

comparing actual and planned architecture based on the previous mapping; 5) analyzing each 

deviation to determine whether it is criticai; 6) defining a plan to remove violations deemed 

criticai. 

Two surveys extensively review the problem of architectural erosion and their possible 

solutions, including a detailed description of architecture conformance checking techniques 

[Hochstein and Lindvall 2005; de Silva and Balasubramaniam 2012]. Hochstein and Lindvall 

focus on tools and techniques to combat architectural degeneration, and also discuss the 

feasibility of its prevention [Hochstein and Lindvall 2005]. De Silva and Balasubramaniam, 

on the other hand, classify a range of techniques and anproaches to either minimize, prevent 

or repair architectural erosion [de Silva and Balasubramaniam 2012]. They evaluate each 

category in their classification, also discussing their adoption in industry, their efficacy, and 

performing a preliminary cost-benefit analysis. 

This section intends to establish a background on architecture conformance, starting 

from its concepts, passing by conformance of architecture module views, techniques for ar

chitecture conformance checking, reflexion models, applications of conformance checking, 

low-level design versus architecture conformance, architecture conformance checking dur

ing software evolution, and concluding with warning prioritization in conformance checking 

tools. 
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3.2.1 Definitions 

The concept of architecture conformance checking is not yet a consensus in the scientific 

community. Various terms are used to name similar things: compliance, conformance, 

conformity and consistency sometimes have the same meaning, at times they slightly di

verge. Moreover, the terms checking and verificado, < may represent either similar concepts 

or strongly different ones, according to each academic sub-community that refers to them. 

To some in the formal methods community, checking is considered as a semi-formal method, 

while verification is understood as a formal method with proofs of correctness of an imple

mentation respecting a specification. I shall use these terms indistinctly, although different 

definitions may exist in the literature. 

The Open Group is a consortium of organizations that aims to reach open standards 

and global interoperability in software development. They define a framework for software 

architecture named TOGAF (The Open Group Architecture Framework). In this frame

work, a specific chapter on architecture conformance defines the following leveis of archi

tecture conformance: irrelevant, consistem, compliant, conformant, fully conformant and 

non-conformant [The Open Group 2008]. 

Figure 3.1 depicts these leveis, showing to what extent architecture specification and im

plementation agree. When architectural specification and implementation have no features in 

common, the issue of conformance is irrelevant. Architecture and implementation are con

sistem when they share some features and such features are implemented according to the 

specification, although there might be non-implemented specified features as well as imple

mented features not covered by specification. Implementation is compliant to the architec

tural specification when ali implemented features are covered and in accordance with speci

fication, even though there might be non-implemented specified features. On the other hand, 

implementation is conformant to the architectural specification when ali specified features 

are implemented, despite the existence of some additional implemented features not covered 

by specification, i.e., implementation is sound regarchng architecture. The strongest levei of 

conformance is when specification and implementation are fully conformant, i.e., there is full 

correspondence between specification and implementation. A fully conformant implemen

tation is both sound and complete regarding the architecture. Finally, the non-conformant 

levei happens when, in any of the previous scenarios, some features are implemented not in 
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accordance with architectural specification. 
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Figure 3.1: Architecture conformance leveis 

The concept of conformance that is used throughout this work is based on the conformant 

levei, i.e., ali features specified in the architecture are implemented according to the spec

ification, although additional features not covered by specification may be implemented. 

Soundness, and not completeness of specification, thus, is the main issue for conformance as 

I will refer in this work. 

In a different way, Knodel and Popescu define architecture compliance as a measure 

to which degree an architecture implemented in soarce code conforms to the planned ar

chitecture [Knodel and Popescu 2007]. Hence, 100% compliance means that there are no 

architecture violations, while 0% compliance means that ali imposed architecture restric-

tions are violated. Compared to figure 3.1, violations to architecture compliance move an 

implementation from the conformant to the non-conformant levei. 
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3.2.2 Conformance of Module Views 

The architecture module view is available in most architectural frameworks and is usually 

present in most architecture documentation [Clements et al. 2002], while also being the 

most popular view addressed in research [Hofmeister et al. 2000]. Furthermore, it is also 

important as a design-time representation to commun.cate software structure between soft

ware developers. Given its relevance, the module view is a strong candidate to aid in the 

maintenance of conceptual integrity inside the development team. For such reasons, I focus 

this work on the conformance of architecture module views. 

The reader may refer to sub-section 3.1.1 for additional background on architecture mod

ule views. 

3.2.3 The Reflexion Model (RM) Technique 

The original paper on reflexion models is a seminal work on architecture conformance check

ing [Murphy et al. 1995; Murphy et al. 2001]. It provides the original definition of an archi

tecture checking process, the one used to define the term conformance checking in the start 

of this section. It also defines the concepts of convergences, divergences and absences for 

structural module views (named high-level models in the original work), as detailed next. 

The reflexion model (RM) technique is also a top-down approach to architecture recovery. 

The process to compute reflexion models is shown in Figure 3.2. Starting from a high-level 

model proposed by the software engineer according to his or her comprehension of the sys

tem, a source-level model is extracted from source code and their entities are mapped onto 

high-level model entities. From this mapping, low-level relations are lifted to high-level 

implemented relations, which can be compared against high-level planned relations for con

formance goals. From this conformance checking, it is possible to either refine the high-level 

model or perform reengineering activities to improve conformance between the high-level 

model and implementation. 

In the context of architecture conformance of module views, the simplest static confor

mance check compares the existence of an implemented module against a planned module. 

Three cases may arise: 

a) Convergence: a module exists both in planned architecture and in implementation; 
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b) Divergence: a non-planned module exists in implementation; 

c) Absence: a planned module does not exist in implementation. 

Although module checking is important, most existing work on static architecture check

ing, including the RM technique, focuses on the conformance of relations between modules, 

since imposed architectural constraints are typically expressed as relations between modules. 

Three cases may arise during conformance checking of relations between each two planned 

modules and their equivalent implemented modules: 

a) Convergence: a relation between two modules is implemented as planned, showing 

that implementation conforms to the planned architecture; 

b) Divergence: a relation between two modules is not allowed but it is nonetheless im

plemented, showing non-conformance to the planned architecture; 

c) Absence: a relation between two modules is planned but it is not implemented, show

ing non-conformance due to an absence in the implementation. 

Figure 3.3 shows an example of reflexion model of the gcc compiler. On the left, the high 

levei model shows compiler modules and expected deFendencies. On the right, the reflexion 

model shows convergences, divergences and absences. Convergences are shown as solid 

ares; divergences, as dashed ares; and absences, as dotted ares. The numbers for each arrow 

account for the number of source code relations associated to the high-level conformance 

relation. 

The three main features of the RM technique are its lightweight, approximate and scal-

able nature. The technique is lightweight because it requires low effort from the software 

engineer to apply the technique. It is approximate, because the model can be iteratively re-

fined, starting from a coarse mapping. And it is scalable because it can be applied either 

to small systems or to million lines-of-code systems [Murphy et al. 2001]. Its simplicity, 

not requiring to formally define module interfaces, ports or architecture connectors, make it 

adequate to lightweight development processes. 

One of the most interesting case studies of reflexion models is the reengineering of 1.2 

million lines-of-code Microsoft Excel [Murphy and Notkin 1997]. The engineer designs 

an initial high-level model with 13 modules and 19 relations. After an iterative process of 
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Figure 3.3: Convergences, divergences and absences in reflexion models [Murphy 1996] 

computing reflexion models, he ends up with a high-level model with 16 modules and 114 

relations, a source-level model with 131,042 relatiors ind a map with 1,425 entries. It takes 

him one day to design and extract the initial models and four weeks are spent to iteratively 

refine the reflexion model. The engineer reports that the technique helps in: i) refining a 

system's architectural view; íi) investigating the connection between architecture and code; 

Ui) reasoning about the reengineering activity; iv) automating parts of the reengineering 

activity; v) better understanding the code base; and vi) avoiding reasoning in terms of a 

high-level model alone. Additional case studies with reflexion models are performed to 

help with design conformance of three systems: a layered architectural design of a program 

restructuring tool, the SPIN operating system and an industrial C++ subsystem [Murphy 

etal. 2001]. 

Reflexion models may, thus, be used in a variety of software engineering activities: in 

architecture recovery with a top-down approach, in reengineering tasks as it has been done 

with Excel, in architecture conformance activities and in system understanding, among other 

activities. 
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3.2.4 Extensions to the RM Technique 

Koschke and Simon extend Murphy's RM technique to account for hierarchical module 

views, motivated by practitioners' complaints that the lack of hierarchies was a shortcoming 

for the practical use of the technique [Koschke and Simon 2003]. In a hierarchical model, 

one needs to redefine reflexion relations and mappings, given the existence of container en

tities in the levei of planned architecture. Since lower-level relations are more specific than 

higher-level ones, one can define that the former override the latter. A reasonable interpre-

tation of this definition is that lower-level rules are exceptions to higher-level rules. With 

container entities in the planned architecture, one also needs to define "lifted" relations: a 

container entity A references another entity B i f at least one of A parts references B or at 

least one of B parts. In other words, reference relations are lifted from the part to the whole. 

With the existence of container entities and the definition of lifted relations, one can rede

fine, for hierarchical reflexion models, the checking rc'ations convergences, divergences and 

absences. 

Another limitation of the RM technique is that it demands the software engineer to know 

the mapping between source code entities and planned architectural modules. Even though 

one may count, in some cases, with conventions based on directory hierarchies and file 

names, the mapping process still demands great manual effort. To our knowledge, the first 

attempt of performing automated mapping in the RM technique uses set-based flow algo

rithms to provide a basis for refining an initial partial high-level model and an initial partial 

mapping [Zhang et al. 2004]. Improvements to the mapping step in the RM technique are 

proposed in a semi-automated mapping technique that uses automated clustering techniques 

[Christl et al. 2005; Christl et al. 2007]. The rationale behind the technique is that semi-

automated mapping does not replace manual mapping, but, instead, it assists the engineer to 

reach a correct mapping faster. With the use of structural dependencies, they define a similar

ity function (attraction function) that determines the closeness of low-level concrete entities 

to high-level planned modules. With the attraction value given for every pair of concrete 

entities and planned modules, mapping can be performed either fully automatically or by the 

software engineer using a rank of attraction values from an entity to the candidate modules. 

In this dissertation, I use information retrieval techniques to improve mapping accuracy. 

An extension of the RM technique is proposed to consolidate software variants into prod-
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uct lines [Frenzel et al. 2007]. In this case, three leveis of models are used: the implemented 

model, the single product architecture and the product line architecture. The process starts 

with computing a reflexion model for a single product. Then, mapping between already an-

alyzed products and an additional product is aided by clone detection techniques that find 

their commonalities and variabilities. This mapping process is repeated for other additional 

products. Mappings and module views are completed ibr each product. Then, a similar pro

cess is done to map each variant onto the product line architecture. Mappings are validated 

and completed for each product with variabilities accommodated in the product line module 

view. 

In the RM technique, to produce the initial high-level module view of a system with an 

unknown architecture, the software engineer may review artifacts, interview experts or look 

at similar architectures [Murphy and Notkin 1997]. Together with the mapping of source 

entities onto modules, deriving the initial high-level model is one of the most challenging 

steps of the RM technique. Using software reverse engineering techniques is a natural choice 

to aid in this derivation. This is what is proposed in the Reconn-exion method [Le Gear 

et al. 2005], which is a combination of software reconnaissance technique with reflexion 

models. Software reconnaissance is a feature detection technique based on dynamic analysis. 

Reconn-exion uses its results to find the reuse perspective of a system, which is the set of 

software elements shared between two or more distinct features, taken for ali the features 

of interest in a feature set. The authors assert that the reuse perspective is part of the core 

modules of a system architecture and, as such, might be a good start to begin the process of 

defining the high-level planned module view of a reflexion model. After that, the original 

RM technique is iteratively applied until a refined reflexion model is found. 

3.2.5 Alternatives to Reflexion Models 

The most traditional alternative to the RM technique for architecture conformance check

ing is the use of architecture description languages (ADLs). ADLs allow specifying archi

tectural models by means of a formal language, where an architectural model is an arti-

fact that captures some or ali of the design decisions that make up an architecture [Med-

vidovic et al. 2007]. Various ADLs have been proposed since software architecture has 

become a major concern in software development processes [Medvidovic and Taylor 2000; 
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Medvidovic et al. 2007]. In their latest survey on ADLs, Medvidovic et al. assert that one 

trouble with most ADLs is that, although they allow characteristics of architecture descrip-

tions be verified using analysis tools, there is usually no way to ensure conformance be

tween architecture and implementation. One solutior. \o the issue of lack of conformance of 

ADL descriptions and implementation is embedding the ADL in the programming language, 

which is the approach taken in ArchJava [Aldrich et al. 2002]. ArchJava is an extension of 

the Java language aimed at providing integration between architecture and implementation. 

It adds to Java the concepts of component, port and connector. Components are instances 

of special component classes. Ports represent a logical channel of communication between 

components and declare provided, required and broadcast interfaces. Connectors join two 

components by means of their compatible ports. Tne language tries to enforce communi

cation integrity, a consistency property that asserts that direct communication between im

plemented components shall only happen when the respective architectural components are 

also connected. 

Instead of using a full ADL for architecture desci ;ption and conformance, one can use 

domain-specific constraint languages suited to the needs of architecture conformance. In-

spired by other logical constraint languages and the RM technique, Terra and Valente pro

pose a dependency constraint language, called DCL, to provide architecture conformance 

by construction, using a static and declarative constraint language [Terra and Valente 2009]. 

The language specifies modules as sets of classes, ar.c1 relations between modules with con-

straints like o n l y A can-* B, A cannot-* E, and A must-* B, where * shall be 

replaced by the appropriate source-level relation (e.g.: access, extend, c r e a t e and so 

on). In addition to DCL, they have developed the dclcheck prototype tool, which interprets 

declared modules and constraints and checks whether the implementation conforms to the 

constraints. 

In another track, Sullivan et al. first apply the notion of design structure matrix (DSM) to 

the study of modularity of software designs. They represent software entities as the matrix 

design parameters (represented both as rows and columns in a square matrix) and relations 

between entities as matrix dependencies expressed as marks in matrix cells [Sullivan et al. 

2001 ]. Figure 3.4 shows an example of DSM, where entity B depends on entity A, and both 

B and C depend on each other. 

U F C G / B I B L I O T E C A / B C 
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A B c 

A 

B X X 

C X 

Figure 3.4: A design structure matrix (DSM) 

DSMs have been later applied to manage the architecture of software systems using de

pendencies in the DSM with the Lattix Dependency Manager (LDM) tool [Sangal et al. 

2005]. In that work, structural architecture views are expressed as hierarchical DSMs, based 

on package or directory structure decompositions, as can be seen in figure 3.5. Design rules 

are defined as allowed or not allowed dependencies between design parameters and come in 

two forms: A can-use B or A cannot-use B. Extracted dependencies from source 

code form a dependency matrix that is checked against the design rules in the architecture 

view. Design rule violations are shown in the DSM as small triangles in the matrix cells 

where violations arise. 
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Figure 3.5: Lattix LDM tool [Lrttix, Inc. 2008] 

The tool above, LDM, is limited by the existence of package or directory structure de

compositions that reflect the conceptual view. Either this may not always be possible or 
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there can be more than one structural view of interest. Mapping the source-level DSM onto 

an arbitrary architecture-level DSM is an issue that another work tries to solve [Huynh et al. 

2008]. It uses a genetic-algorithm-based clustering tool named Giusta to map, in an auto

mated fashion, a source DSM onto an architecture DSM using various heuristics. In Giusta, 

both DSMs are represented as directed graphs and the enetic algorithm fitness function finds 

solutions that minimize the edit distance between the architecture graph and a clustered ver-

sion of the source graph. The fitness function also penalizes empty mappings between both 

graphs, and rewards mappings based on directory groupings and name patterns in source 

code. This work, thus, tries to solve a problem similar to the previously described work of 

Christl et al. [Christl et al. 2005]. Besides that, it models design rules as a formal logi

cal constraint network named augmented constrain network (ACN), which is then converted 

into dependencies in the architecture DSM. 

Conformance between an specified module architecture (SMA) and an implicit module 

architecture (IMA) derived from source code is the aim of another work [Postma 2003]. In 

it, software architects and system documentation help derive and formalize a specified archi

tecture view and architecture rules, and produce a nic.pping between code and architecture 

elements. Formalization of rules is done by means of a relation partition álgebra (RPA) [van 

Ommering et al. 2001]. The IMA is extracted from source code, abstracted by means of the 

previous mapping and verified against architecture rules. Architecture-level violations are 

concretized, and both architecture- and code-level violations are presented in a visualization 

tool. The work is similar to Murphy's [Murphy et al. 1995], although verifying architecture 

rules by means of RPA is more generic than verifying specific relations in reflexion models, 

since architecture rules may express conditions on multiple relations at once. 

Component access rules are another architecture checking approach, inspired by ADL 

ports [Medvidovic and Taylor 2000] and OSGi exported packages [OSGi 2008]. They allow 

specifying simple ports for components, which other components may access [Knodel and 

Popescu 2007]. They help to increase component infoimation hiding to a levei not supported 

by current implementation languages. Different from most previous checking approaches, 

where rules specify allowed or forbidden relations between modules, a component access 

rule concerns only one component. 

Comparative studies between different conformance checking techniques have also been 
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pursued [Knodel and Popescu 2007; Passos et al. 2010]. Knodel and Popescu compare three 

different techniques, namely, reflexion models, component access rules, and relation confor

mance rules expressed in RPA [Knodel and Popescu 2007]. By means of a case study, they 

qualitatively compare the techniques in thirteen different dimensions. Then they recommend 

a goal-driven selection approach based on the these dimensions to decide which technique to 

apply in a given scenario. Passos and colleagues, on the other hand, compare design struc

ture matrices, source code query languages and reflexion models [Passos et al. 2010]. A 

source code query language adopts an SQL-like syntax that includes features aimed at im-

proving expressiveness of queries over source code. They also offer an illustrative overview 

of the techniques with a working example, and symhesize the lessons learned by compar-

ing the techniques in terms of four dimensions: expressiveness, abstraction levei, ease of 

application and architecture reasoning and discovery. 

3.2.6 Applications of Conformance Checking 

Architecture conformance checking has been applied with different goals, as reported in the 

literature. Beyond the case studies reported by the authors of the RM technique [Murphy 

et al. 1995; Murphy and Notkin 1997; Murphy et al. 2001], previously discussed in subsec-

tion 3.2.3, additional applications are described below. 

Lilienthal describes 24 case studies of architecture evaluation of industrial object-

oriented systems developed in Java, with size ranging from 25 KLOC to 14 MLOC [Lilien

thal 2009]. Three aspects of architectural complexity are analyzed: modularity, ordering and 

pattern conformity. The last aspect is analyzed by statically checking conformance of the 

implemented architecture against architectural styles and the intended architecture, using a 

commercial tool named Sotograph. 

Knodel et al. perform nine case studies (5 industrial and 4 academic cases) to show 

how architecture conformance checking contributes to further development and evolution 

of architectures [Knodel et al. 2006]. The static architecture evaluations performed in the 

case studies with the help of the SAVE tool aim at ten different purposes: assessing the 

potential of building a product line from existing products, determining the alignment of 

a product to a product line architecture, assessing the reuse potential of a component or 

architectural fragment, measuring the internai qualitv of a component, achieving better pro-
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gram comprehension by comparing a mental model o f a software against its implementa

tion, assessing the consistency of architectural documentation with its implementation, de-

tecting non-documented architecture elements to improve completeness of documentation, 

re-documenting a software system or product line, monitoring the evolution of a software 

system, and assessing the structural decomposition of a software system or product line. 

The authors assert that "static evaluations of software architectures are a sound instrument to 

control, learn and assess architectural aspects and implementations of architectures" [Knodel 

etal. 2006, p. 293]. 

Another work describes the successful experience of transferring architecture confor

mance checking technology from the Fraunhofer IESE to industry [Knodel et al. 2008a]. 

With the use of the SAVE conformance checking tool, fifteen different instances from a 

product line are regularly checked at a partner con^.any (Testo AG) over a two-year pe-

riod. Starting with offline conformance checks offered as a service by Fraunhofer IESE, 

Testo architects later independently check architecture conformance of their products with 

the SAVE tool. At the end of the period, conformance checks are integrated into their regular 

development process. 

A long-term qualitative case study over a two-year period in the context of forward en

gineering of a single software component is performed with the use of an adapted version of 

reflexion models [Rosik et al. 2008] to a context of forward engineering. The product is an 

IBM commercial product named Domino Application Portlet (DAP). The existing product 

is reengineered in a two-year period with regular architecture conformance checks every 4-5 

months. The main findings reveals that the approach is successful in identifying architectural 

violations previously unnoticed by developers. However, several other violations are hidden 

by the technique and are only found by thoroughly examining convergences in the reflexion 

models. They believe that this evidence should be used to refine the approach and integrate 

it into the software development process. 

In a study about the loss of architectural knowledge during software evolution, three 

industrial projects have their evolution analyzed to quantify: Í) the degree of conformance 

between architecture documentation and source code; /'/') the discrepancies between intended 

and documented architecture; and Ui) the amount of architectural decay [Feilkas et al. 2009]. 

They also investigate the causes of nonconformance. To answer these questions, they use a 
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technique similar to the reflexion model technique. Their results show that between 70 and 

90% of nonconformances are caused by documentation liaws and between 10 and 30% of 

them are architectural violations in the source code. They mention one main lesson learned: 

the intended architecture has to be made explicit, and conformance has to be continuously 

checked to minimize the loss of architectural knowledge. 

Finally, architecture violations from conformance checks may also drive high-impact 

architectural refactorings [Bourquin and Keller 2007]. A case study on a mid-sized telecom-

munications software system uses architecture violations derived from reflexion models to 

identify high-impact refactoring opportunities. Finding "bad smells" in parts of the software 

with most violations helps choose the refactorings with more likely higher impact. This 

technique does not replace refactoring techniques. Instead, it complements them by focus-

ing developer work on architectural issues. 

3.2.7 Low-level Design Conformance Checking 

Although it is not the intention of this dissertation to piovide conformance checking between 

detailed design and implementation, work on this topic has trends similar to architecture con

formance checking, and it also provides insights about solutions to the higher-level problem. 

Fiutem and Antoniol check static conformance between class diagrams in the OMT no-

tation and implementation in C++ object-oriented programs [Fiutem and Antoniol 1998; 

Antoniol et al. 1999]. Both design and implementation are converted into abstract object 

language (AOL) descriptions, which are parsed into abstract syntax trees (ASTs). Entities 

are matched in the ASTs using structural properties and name comparisons based on an 

edit distance algorithm and in regular expressions. Results are visualized in a graph format, 

using different colors for convergences, divergences and absences. Different from architec

ture conformance checking, there is no need to map low-level entities onto modules, since 

extracted code and design entities are at the same levei. 

Design Wizard is a tool and an API that allows expressing and checking design rules by 

means of design tests in a unit testing framework [Brunet et al. 2009]. Design tests differ 

from functional tests in that they do not test what a software should do, but, instead, how the 

software was built. Design tests are automated tests expressed in the same language as the 

implementation and check design rules expressed as an algorithm. Design Wizard is instan-
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tiated for the Java language and the tests are written as automated JUnit tests. From some 

case studies, authors conclude that the API is easy to learn and that designers and program-

mers appreciate the use of design tests as executable design documentation. Performance is 

evaluated and results show that the technique scales well for large software systems [Brunet 

et al. 2011]. 

Pires et al. propose a model-driven architecture (MDA) approach to automatically gen-

erate design tests to check conformance between UML class diagrams and Java programs 

[Pires et al. 2008]. From an UML class diagram, design tests are generated for the Design 

Wizard API by means of a model-driven transformation, based on MDA models and meta-

models. Tests are generated to check conformance of class, field and method signatures, and 

relations of association and generalization. Test generation is fully automated, as well as test 

execution. 

3.2.8 Conformance Checking during Software Evolution 

Maintaining software architecture and implementation conformant with the use of the pre

vious techniques is a challenging task, especially in the context of software evolution. Both 

documentation and implementation evolve and add another dimension to the problem of con

formance checking. The use of software configuration management (SCM) tools may help 

to deal with the time dimension. However, these tools have not been designed to work with 

conformance between software artifacts. Some solulions adapt conformance checking tech

niques to the context of software evolution, making use of SCM tools. Other solutions use 

online tools to provide conformance by construction. 

ArchEvol provides a scenario with sequential steps to perform conformance checking of 

evolving software [Nistor et al. 2005]. Through language extensions, plug-ins and guidelines 

to manage the relationship between architecture and implementation, they provide a solution 

adapted to software evolution. In ArchEvol, architecture diagrams are written in xADL 2.0 

with ArchStudio and implementation is written in Java with Eclipse. With Subversion, a pop

ular SCM tool, both architecture diagrams and implementation files are stored as versions in 

a software repository. A scenario of architectural-driven development and evolution with se

quential steps is devised to provide interactions between tools to keep artifacts conformant. 

A complementary approach based on the ArchTrace tool works to keep traceability links 
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between architecture and implementation up-to-date [Murta et al. 2006]. ArchTrace imple-

ments a set of policies to keep traceability links between xADL 2.0 architecture diagrams 

and source code stored in Subversion. 

Lighthouse is a tool that focuses on low-level emerging design coordination, but also 

works as a conformance checking tool [van der Westhuizen et al. 2006; da Silva et al. 2006]. 

It helps to coordinate developers on the same projec , .o detect design decay and to manage 

the status of the software project. An emerging class diagram is generated from source code, 

but it is extended with evolution actions, developer ownership of changes and visual hints 

of conformance between conceptual design and implementation. Conformance is shown in 

Lighthouse as different colors in the diagram. 

With the advances in modern IDEs, conformance checking may be applied during soft

ware development, providing conformance by construction. LogEn, a logic domain-specific 

language based on Datalog has been proposed, together with a visual notation for compre-

hensive specification of architectural dependencies (VisEn), and an Eclipse plug-in has been 

developed to incrementally check architectural properties in source code developed in Java. 

The plug-in shows violations to architectural rules in the developer's screen. The language 

enables various leveis of granularity, from intra-class dependencies to architectural building 

blocks [Eichberg et al. 2008]. One disadvantage is that it requires learning a logic domain-

specific language (LogEn) to express design rules. 

Finally, an experiment to demonstrate support to constructive conformance checking has 

been conducted with the use of the SAVE tool [Knodel et al. 2008b]. The Eclipse client-

server plug-in named SAVE LiFe was developed to ext~nd SAVE with the ability to automati-

cally check conformance during software development. The architect client allows to define 

the structural view and the mapping between high- and source-level entities, while the devel

oper client triggers automatic fact extraction and conformance checking on the server side. 

Violations to architecture are presented to developers as highlighted source code statements 

and a tabular list of violations. The experiment performed with university students shows 

that the experimental group produces 60% less violations than the control group. 

The solution proposed in this dissertation is meant to be used together with regular soft

ware quality assurance (SQA) activities, such code reviews or testing, while constructive 

conformance checking produces immediate results from online tools. Despite being good 
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for revealing violations upfront, such an immediate focus on violations may limit designs 

to emerge from coding, which seems inadequate for lightweight development processes. It 

seems better to delay the focus on architectural violations to the SQA phase, where software 

engineers work on a different mode, looking for inconsistencies. 

3.2.9 Prioritizing Warnings in Checking Tools 

Conformance checking tools can produce large lists of violation warnings, usually amount-

ing to hundreds of violations [Terra and Valente 2009; Feilkas et al. 2009]. Such lists point 

where, in the source code, the architectural models a e violated. In this context, focusing the 

developers' attention to the most relevant warnings is an appropriate way to avoid overload-

ing developers with tool results. Thus, prioritizing warnings from conformance checking 

tools seems to be an important research topic that has not been explored. 

Instead, existing work on prioritizing warnings has been directed at bug finding tools 

as they usually produce long lists of bug warnings with a large amount of false posi

tives [Kremenek and Engler 2003]. Most of this work is devoted to predicting the warn

ings most likely to be real bugs, usually by means of assigning priorities to warnings 

based on software analysis [Kremenek and Engler 2003; Williams and Hollingsworth 2005; 

Boogerd and Moonen 2006; Kim and Ernst 2007b; Ruthruff et al. 2008]. 

Kremenek and Engler use the co-location of bug warnings (i.e., warnings clustered in the 

same code region) and developer feedback about fahures to distinguish true bugs from false 

positives [Kremenek and Engler 2003]. Williams and Hollingsworth mine data from source 

code repositories to improve static analysis results for a single bug pattern of return value 

checking [Williams and Hollingsworth 2005]. Boogerd and Moonen compute the execution 

likelihood of a warning location to assign the priority of a bug warning [Boogerd and Moonen 

2006]. Kim and Ernst have developed a machine lef-ning approach to assign priorities to 

bug warnings based on software history [Kim and Ernst 2007b]. They change the default 

priorities of warning categories based on the warning-fix history recorded in the software 

repository. They also show that warning duration plays an important role in determining 

warning priority [Kim and Ernst 2007a]. Finally, Ruthruff et al. perform a logistic regression 

analysis to predict the relevance of warnings from bug finding tools [Ruthruff et al. 20081. 

They use fix information from the bug tracking system and a list of 33 factors of potential 
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impact to bug relevance: from both tool warning descriptors, in-house warning descriptors, 

file features, warning history in source code, source code factors, and chum factors. They 

end up with a model to predict actionable defects from bug warnings from a reduced list of 

15 factors. 



Chapter 4 

Outline of the Dissertation 

L I N H A S G E R A I S DA T E S E 

Neste capítulo, o problema tratado nesta tese é melhor caracterizado, com uma 

descrição das limitações da técnica dos modelos de reflexão. Questões de 

pesquisa são então levantadas e critérios de sucesso para resolvê-las são de

talhados. Em seguida, as hipóteses centrais e os objetivos de pesquisa desta tese 

são estabelecidos. Finalmente, a metodologia usada para executar este trabalho 

é apresentada. 

In this chapter, the problem treated in this dissertation is better characterized, with a descrip-

tion of limitations of the reflexion model technique. Research questions are then raised and 

success criteria to solve them are detailed. Then, funoamental hypotheses and the research 

goals of the dissertation are stated, followed by the methodology used to execute this work. 

4.1 Problem Characterization 

As previously stated in Chapter 3, the reflexion model (RM) technique can be used in various 

software engineering activities such as architecture recovery, reengineering, program com-

prehension and conformance checking because of its lightweight, approximate and scalable 

features. Nevertheless, the original technique poses some challenges for developers applying 

it. 

Two challenges developers face in providing inputs to the RM technique are the produc-

56 
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tion of a high-level model, and the mapping between code entities and high-level modules. 

That is because they require knowledge both in the software domain and in software decom-

position techniques [Koschke and Simon 2003]. Regardless of the increased design quality 

that can be achieved with the RM technique, there are costs associated to the time spent on 

producing models and mappings. And, in the context of software evolution, both high-level 

models and mappings must be kept up-to-date, which adds extra costs to the process. 

A challenging issue for a software developer with respect to the output of the RM tech

nique is the large number of source code violations tnat can be reported by the technique, 

which may overload software developers with excessive information. 

4.1.1 Input to the RM Technique 

Composing software into its architectural modules is an issue for architecture recovery tech

niques, which have been discussed in detail in Sectic n 3.1. The RM technique helps recover 

modules using previous knowledge from a software engineer. One interesting question is 

whether this process may be improved with the aid of (semi-)automated architecture recov

ery techniques. As software evolves, high-level models used in the RM technique must also 

be evolved. Most existing architecture recovery techniques [Pollet et al. 2007] that can 

be used to produce a high-level model have not been evaluated in the context of evolution, 

especially as to whether these recovered models remain both accurate and stable. 

One of the limitations of the RM technique lies in the mapping between code entities 

and high-level modules. Either the process of mapping is completely manual or it is based 

on directory structures and naming conventions captured by regular expressions, which are 

not able to fully capture ali software modular properties. This issue is worsened by soft

ware evolution, where source code changes demand updating the mapping. Mapping, thus, 

can slow down and add errors to the conformance checking process. Partial automation 

of the mapping process is a possible solution that has been pursued [Christl et al. 2005; 

Christl et al. 2007]. Nonetheless, the solution proposed was based only on the use of struc

tural dependencies to map new entities onto existing modules, resulting in low inter-module 

coupling. However, structure alone can not fully captve desirable module properties such as 

cohesion. Cohesion has various dimensions such as logical, temporal, procedural, commu-

nicational, sequential and functional, and any of these may be wished by software architects. 
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Software structure cannot capture ali these dimensions, since each of them may lead to dif

ferent modular mappings. Thus, additional informauon other than structural dependencies 

should be investigated if one wishes to automate the mapping step in reflexion models. 

4.1.2 Output from the RM Technique 

The RM technique generates both graphical and textual results as output. While the former 

give an overview of architectural violations, the latter provide information of where viola

tions arise in the source code, usually as detailed violation lists. Such lists usually amount 

to hundreds of source code violations in each conformance check, which can overwhelm 

software developers with excessive information. When the list of violations is long, it can be 

difficult for a developer to find the violations that reaily matter, since the degree of relevance 

of these violations to a developer varies. Some architectural rules may be stricter then others, 

some rules may be more important to a team member than to others. In addition, the fact that 

architecture changes as software evolves can also change the relevance of each violation. 

4.2 Research Questions 

4.2.1 Main Research Question 

The main research question that this dissertation investigates is: 

• How can we reduce the manual effort to apply the reflexion model technique in the con

text of evolving, sparsely documented software? A guiding principie in investigating 

this central question is keeping the conformance checking provided by the reflexion 

model technique lightweight and scalable. 

4.2.2 Complementary Research Questions 

In particular, three questions were investigated as part of the research conducted into the 

central question. 

1. How can semi-automated architecture recovery techniques enable the generation of 

high-level models in the context of software evolution and how can we evaluate the 
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techniques in terms of accuracy and stability? 

2. What additional information from source code can be used to improve the automated 

mapping provided by techniques based on structural dependencies and how much im-

provement this information can bring? 

3. How can the outputs of the reflexion technique be prioritized in order to reduce infor

mation overload to software developers? 

4.3 Hypotheses 

From the problem characterization and research questions stated above, I derive the follow-

ing hypotheses to solve the research questions. 

• Software clustering techniques can enable the semi-automated generation of high-level 

static models for the reflexion technique. In addition, it is possible to identify one or 

more clustering techniques most adapted to the context of software evolution, gener-

ating both accurate and stable models. 

• Information from source code vocabulary can help to partially automate the mapping 

process, turning the RM technique more lightweight in the context of software evo

lution. Both structural dependencies and the vocabulary of source code can be used 

to detect likely mappings between newly added entities and high-level modules, and a 

combination of them can increase accuracy in a semi-automated mapping step. 

• It is possible to correlate the relevance of violations discovered by reflexion mod

els with a combination of measures extracted from the history of software artifacts. 

Moreover, such correlation based on past history can be used to prioritize violations 

in present architecture checks, reducing the overload on software developers when 

analyzing the outputs of the reflexion technique. 
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4.4 Success Criteria 

To objectively evaluate the hypotheses raised in this work, we need success criteria against 

which these hypotheses can be tested. Criteria can be either quantitative or qualitative, as 

long as it is possible to objectively measure them by empirical observation. The reduction 

of manual effort to apply the reflexion model technique, which is the main research question 

that drives the hypotheses, is indirectly measured through specific success criteria for each 

of the hypotheses. 

In this work, I evaluate software clustering techniques to recover software architecture 

views in terms of accuracy and stability. Building on the work of Wu and colleagues [Wu 

et al. 2005], I use their evaluation measures, two of them for accuracy and one for stability: 

• authoritativeness: the degree to which a software partition found by clustering resem-

bles a partition suggested by an authority; 

• non-extremity: the ratio of software entities clustered in non-extreme (neither tiny nor 

huge) modules over the total of software entities, 

• stability: the degree of similarity of two software partitions found by clustering two 

different software versions. 

Establishing absolute values for the measures above to state success is complex, since 

they depend on a time series analysis of the measures over the evolving software system. In 

Chapter 5, I describe a relative measure called HML that aggregates data points of a time 

series of one measure. When more than 80% of the data points fali above a high-level thresh-

old, I classify the technique as having a high value for the measure. Objectively, success of 

a clustering technique is clear when the relative HML measures of both authoritativeness, 

non-extremity and stability have a high value. Other than that, success is relative. It is also 

important to compare the techniques against each other, and, in the same chapter, I describe 

another relative measure called Above that compares two or more data series. Success of a 

clustering technique against the other competing clustering techniques is given by the values 

of Above for authoritativeness, non-extremity and stability. 

Regarding the issue of automated or semi-auton ated mapping in reflexion models, two 

important measures that allow to objectively evaluate the quality of the mapping functions 
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are: 

• precision: metric that evidences the soundness of a mapping approach, measuring the 

ratio of correctly found mappings over the total of mappings found by the approach; 

• recall: metric that evidences the completeness of a mapping approach, measuring the 

ratio of correctly found mappings over the total of correct mappings. 

Stating success for a mapping technique in terms of absolute values of precision and 

recall is also complex, since there are no previous baselines to compare with. Precision has 

to be at least 50% to be better than a random mapping, and this is a bottom baseline. Recall, 

on the other hand, has no bottom baseline, but their values cannot be very low (e.g., below 

50%), or the technique would be useless to reduce manual effort. To account for both, I 

combine these measures in F-measure, the harmonir mean of precision and recall. Thus, a 

minimum value of F-measure to state success against a bottom baseline would be any value 

above 50%. As a rule of thumb, I establish an F-measure value between 60 and 75% to 

state médium success, and a value between 75 and 100% to state high success. On the other 

hand, given that a mapping technique is above the bott jm baseline, it seems more important 

to compare it against other competing mapping techniques. Thus, a relative comparison 

between F-measure values for the evaluated mapping techniques helps to state their relative 

success against each other. 

Finally, to evaluate the prioritizing of outputs in the reflexion technique, relevant viola

tions must be distinguished from irrelevant violations, and the technique must prioritize the 

relevant ones. Three complementary information retrieval measures can be used: 

• specificity: the ratio between violations correctly classified as irrelevant and the num-

ber of irrelevant violations found by the technique; 

• sensitivity: the ratio between violations correctly classified as relevant and the number 

of relevant violations in the population; 

• precision: the ratio between violations correctly classified as relevant and the number 

of violations found relevant by the technique. 

There are two scenarios for the analysis of prioritizing violation, as later detailed in 

Chapter 7: the first, a top-A- violation ranker, and the second, a violation filter. In the violation 
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ranker, precision is the only important measure, and success is stated from a comparison of 

precision values against a baseline of a random selection of K violations. If there is a relative 

improvement in precision by using the ranker, the t^chnique is successful. On the other 

hand, filtering violations has a more complex success analysis. Discarding truly irrelevant 

violations is the main goal of a screening procedure with a violation filter. Thus, specificity 

is the most important measure. Nonetheless, the filter has to be sensitive and precise as well, 

although not as much as it is required to be specific, otherwise it would be useless to reduce 

manual effort. For success analysis, I establish a rule of thumb of 75% as the minimum 

accepted specificity, and 50% as the minimum values for both sensitivity and precision, 

since there are no known baselines for violation filters. 

4.5 Research Goals 

4.5.1 General Goal 

The main goal of this work is to investigate and improve a conformance checking process 

between architecture module views and implementation adapted to lightweight development 

processes and to a context of software evolution. 

4.5.2 Specific Goals 

With the main goal in mind, specific goals are derived in order to reach the success criteria 

established in section 4.4. These goals are described below: 

• Developing a set of tools to facilitate and partially automate the designed process of 

conformance checking of module views; 

• Identifying a software clustering technique to enable the semi-automated generation 

of accurate and stable high-level models from evolving source code; 

• Improving figures of recall and precision in the semi-automated incremental mapping 

of newly added software entities based on the use of source code vocabulary as an 

alternative or as a complement to the existing napping techniques based on structural 

dependencies; 
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• Investigating how a set of factors extracted from the history of software artifacts cor

relates with the relevance of architectural violations identified in conformance checks; 

• Prioritizing the results of architecture conformance checks by means of a recommender 

system based on software history; 

• Enabling the filtering of conformance checking results to focus developer's attention 

to an accurate set of relevant architectural violations. 

4.6 Methodology 

This work intends to investigate and improve a conformance checking process to be contin-

uously applied during software evolution in lightweijht development processes. Since it is a 

process, the scientific methodology used is based on an analytical approach, in which indi

vidual steps of the process are analyzed and improvements considered. Individual steps lead 

to software tools and techniques that can be independently developed and evaluated. Hence, 

this approach led to the following methodology. 

1. Literature review was performed on the fields of architecture recovery and confor

mance checking to identify the state-of-the-art on the dissertation theme. Here, related 

work was reviewed and open research questions were identified. 

2. A conformance checking process based on an existing conformance checking tech-

nique was envisioned. The improved process was named the evolutionary reflexion 

model (ERM) process and it is presented in Section 2.2. From open research ques

tions, hypotheses were stated about the ERM process. From these hypotheses, the 

process was then detailed (see Appendix A). 

3. Investigation was accomplished by analyzing individual steps of the ERM process. 

The most challenging steps led to specific research questions, which were investigated 

by the design and construction of tools, and later evaluation. The evaluation of the 

the proposed solutions to the research questions was performed by means of empirical 

research: 
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(a) The step of design clustering was implemented in the Design Abstractor tool, 

whose main purpose was to cluster low-level design entities into high-level mod

ules. Different clustering techniques implemented in the tool were evaluated with 

a quantitative case study [Bittencourt and Guerrero 2009]. This work is discussed 

in detail in Chapter 5. 

(b) Visualization of recovered architecture module views was implemented on the 

Design Viewer tool. The tool was evaluated with a qualitative proof of concept 

[Bittencourt et al. 2009]. 

(c) Partial automation of the step of mapping from low-level code entities onto high-

level modules was implemented in the Design Mapper tool, using mapping tech

niques based on structural dependencies and information retrieval. Evaluation 

of the tool was performed against criteria of precision and recall by means of 

two quantitative case studies [Bittencourt et al. 2010]. This work is thoroughly 

described in Chapter 6. 

(d) Prioritizing and filtering results from the checking and logging step were im

plemented in the Design Miner tool. Relevant factors were identified by means 

of correlation with violation relevance, which was possible by analyzing against 

the history of existing projects. Results generated by the filter and recommender 

were evaluated against criteria of precision, specificity and sensitivity in retro-

spective quantitative experiments [Bittencourt et al. 2012]. This work is pre-

sented in detail in Chapter 7. 

4. Previous work, proposed solutions, empirical results, a criticai discussion and conclu-

sions were synthesized in this dissertation. 



Chapter 5 

Empirical Studies of Clustering 

Algorithms for Architecture Module 

View Recovery 

E S T U D O S E X P E R I M E N T A I S D E A L G O R I T M O S 

D E A G R U P A M E N T O P A R A R E C U P E R A Ç Ã O D E 

V I S Õ E S A R Q U I T E T U R A I S M O D U L A R E S 

Neste capítulo, é realizada uma avaliação experimental de quatro algoritmos 

de agrupamento aplicados na recuperação de visões arquiteturais modulares 

de software no contexto de evolução de software. 

In this chapter, an empirical evaluation of four clustering algorithms to recover soft

ware architecture module views in the context of software evolution is performed. 

5.1 Introduction 

Support for checking conformance on an evolutionary setting requires up-to-date high-

level models. Producing and updating such models requires manual effort by the soft

ware developers, but this work can be eased using reverse engineering techniques. 

Automated reverse engineering techniques based on software clustering have been 

65 
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proposed as a means to facilitate the generation of static high-level models [Wiggerts 

1997]. Although research has been prolific in finding algorithms for automated clus

tering [Pollet et al. 2007], little information concerning their empirical evaluation is 

presently available in the literature, especially in the context of software evolution. 

In this chapter, I evaluate four clustering algorithms for the production of architecture 

module views. The first algorithm is a traditional algorithm used to cluster patterns: 

K-means clustering (km). The second is an algorithm used in the domain of social 

networks to cluster graphs based on their edge betweenness (eò). Finally, heuristics 

specific to software engineering are also used to find good software clusterings, and 

two algorithms that use such heuristics are evaluated: modularization quality cluster

ing (mq) and design structure matrix clustering ?dsm). 

Wu et al. have previously derived three criteria to evaluate software aggregations: 

authoritativeness, stability and non-extremity [Wu et al. 2005]. A good aggregation 

should resemble one made by an authority who knows well the system. Furthermore, 

small incremental changes should not produce too different clusterings, i.e., it should 

be stable. And finally, clusters should be non-extreme to be meaningful and useful, i . 

e., neither huge nor tiny. These criteria were used to evaluate the clustering algorithms 

in this work. 

By means of a case study, I analyze consecutive released versions of four open source 

systems. Results show that no algorithm performs best for ali criteria. Furthermore, 

relative measures also point to poor results: médium values of non-extremity for km, 

and low values for the other three algorithms; low values of authoritativeness for eò, 

and médium values for the remaining three; and low stability for ali algorithms, but eò, 

that was highly stable. These results show a limitation of these clustering algorithms 

to fully automate the production of high-level models. 

5.2 Clustering Algorithms 

Ali four clustering algorithms are described in detail below. 
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5.2.1 -means Clustering 

Á'-means is a popular algorithm in the pattern recognition community that clusters en

tities into a specified number of clusters, based on their proximity in a d-dimensional 

space. It takes as input M entities, represented as d-dimensional feature vectors, and 

a number K of clusters, and classifies each entity into the cluster with the nearest cen-

troid, in an iterative fashion [Hartigan and Wong 1979] Entity feature vectors can be 

either binary vectors of structural dependencies or real vectors with information ex-

tracted from source code vocabulary, using an information retrieval technique [Man-

ning et al. 2008]. In the latter case, vectors are compared against cluster centroids 

using Euclidean distance, while in the former car.e, comparison is made using the Jac-

card distance [Anquetil et al. 1999]. 

In this work, a software entity to be clustered with X-means is a Java object-oriented 

type, which can be either a class or an interface. Dependency relations between types 

are extracted through static analysis, and are liftcd from source code dependencies, as 

explained in Appendix A. Each type is characterized by a binary feature vector. There 

is one dimension in the feature vector for each existing type, and each component has 

value 1 if the given type depends on the type referred by that dimension. and 0 if it 

is not related to that type. Similarity between vectors is computed with the Jaccard 

distance, which is higher if both vectors share more dependencies with existing types. 

With this setup, K-means ends up producing clusters of structurally-related types. 

5.2.2 Edge Betweenness Clustering 

This algorithm clusters graphs based on edge betweenness. The betweenness of an 

edge is the extent to which that edge lies alctng shortest paths between ali pairs of 

nodes. Edges which are least central to clusters are progressively removed until the 

clusters are separated. This algorithm is based on the notion of community structure, 

rather common in complex networks [Girvan and Newman 2002]. Communities, in 

the context of software design, are the modules that join structurally related design 

entities. 
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In this work, with object-oriented types as entities (e.g., Java classes or interfaces), a 

system graph is produced with the existing types as the graph nodes, and with existing 

dependencies between types as the graph edges (see Appendix A. Thus, a type tends to 

be connected to other types that share structural dependencies with it. With this setup, 

one expects edge betweenness clustering to produce structure-based clusterings. 

5.2.3 Modularization Quality Clustering 

Clustering algorithms based on optimization start from an initial partition and improve 

it according to some heuristic [Wiggerts 1997]. Modularization quality clustering finds 

clusters through optimization of a function that maximizes structural cohesion and 

minimizes structural coupling [Mancoridis et al. 1998; Mitchell and Mancoridis 2006]. 

Starting from an initial random partition, neighboring partitions are explored in order 

to find the one that reduces the optimization function the most. Using hill climbing or 

genetic algorithms, one ends up with a sub-optimal solution to the clustering problem. 

Figure 5.1 shows an example of partitioning of a software system represented as a 

program graph: the partition on the left shows better modularization quality than the 

partition on the right. 

Good Partition! 

Figure 5.1: Modularization quality clustering [Doval et al. 1999] 

Similar to edge betweenness, a system graph is made up of types as nodes and type 

dependencies as edges. Using the optimization function, one expects the initial random 

partition to change to neighboring partitions that are structurally more cohesive and 
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less coupled, and to converge to a partition that is, in terms of structure, strongly 

cohesive and weakly coupled. 

5.2.4 Design Structure Matrix Clustering 

Design structure matrix clustering is another optimization algorithm that can be used 

for design clustering. It uses an optimization function that minimizes the coordination 

cost between design entities. Design entities are represented in a square matrix, with 

dependencies between entities filling the matrix cells. The optimization function takes 

into account the internai cost of coordination between entities inside a module and 

the externai cost of coordination between modules. Starting from singleton clusters, 

entities are joined in larger clusters through bids that minimize the coordination cost 

[Gutierrez Fernandez 1998; Thebeau 2001]. 

A system graph such as the one used in the two previous algorithms can also be rep

resented as a square design structure matrix. With this representation, there will be 

one row and one column for each existing type in the system. I f type A on the third 

row depends on type B on the fifth column, a value different from zero fills the matrix 

cell intersecting row 3 and column 5. The cell value depends on the strength of the 

type dependency between A and B. The design structure matrix algorithm starts with 

singleton partitions and joins types into the same module when this minimizes the co

ordination cost, which penalizes communication between modules. With this setup, 

one expects strongly cohesive and weakly coupled clusterings, in terms of structure, 

similar to the modularization quality clustering algorithm. 

5.3 Evaluation Criteria 

Before defining evaluation criteria, some concepts must be discussed. Architecture 

recovery can be achieved through clustering of lower-level software entities, which 

are usually source files, classes or any other design-level entities. 

A software clustering may be formally defined as the partitioning of a set of design-

level entities. Although it is possible to deal with software decompositions that are 
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not partitions (e.g.: an entity that belongs to more than one cluster or an entity that 

belongs to no cluster), most automatic clustering algorithms allocate each entity into 

one and only one cluster. Similarity between oartitions expresses how close they are 

to each other. The lesser the number of operations required to transform one partition 

into another, the more similar they are. 

Tzerpos and Holt have defined a measure of dissimilarity called MoJo [Tzerpos and 

Holt 1999]. Given two partitions A and B, MoJo(A, B) is the number of entity moves 

plus the number of cluster joins needed to transform A into B. To measure similarity, 

one derived relative quality measure could be: 

where n is the number of entities to be clustered. In this work, I used an existing 

algorithm to compute MoJo(A, B) [Wen and Tzerpos 2003]. 

Figure 5.2 shows an example of the MoJo measure, computed between partitions A 

and B. Since there was the move of type í4 from cluster M l in partition A onto cluster 

M2 in partition B, and the clusters M l and M3 in partition A were joined in partition 

B, MoJo(A, B) = 2. Computing the associated similarity measure for the example, 

MoJoSim{A, B) = 0.8. 

MoJoSim{A, B) = 1 
MoJo(A, B) 

(5.1) 
ii 

(A) (B) 

Figure 5.2: a) Original Partition A; b) Partition B, with 1 move and 1 join from A. 
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5.3.1 Authoritativeness 

Probably the most important measure of the u':il ity of a software clustering algorithm 

is how close its resulting partition resembles one created by an expert. This expert au-

thority is usually an experienced software engineer or architect who produces a module 

view of the system, usually a view of high-level components and its dependencies. 

Neverfheless, it is often hard to find an authori;a'.ive partition of a software system due 

to lack of documentation. Furthermore, even if this partition is available, it may not 

accurately reflect the software architecture as the system evolves. A partial solution 

to this issue that was adopted in this work is using the development view (from an 

allocation viewtype) as the authoritative partition. For instance, joining ali classes 

that belong to the same package in a cluster usually aggregates architecturally-related 

entities. While it may not accurately express the module view, it is well known that 

both views share a considerable amount of arcnicectural decisions. 

To compare a partition P generated by a clustering algorithm to an authoritative par

tition PA, MoJoSim(P, PA) was measured. The closer it is to 1, the better the 

algorithm is considered from an authoritative perspective. 

5.3.2 Stability 

Another important criterion to compare clustering algorithms is stability. Informally, 

small incremental changes in the system should not produce too different clusters. 

Good algorithms should be stable enough to produce similar clusters when small 

changes happen, but still produce different clusters when architectural changes hap-

pen. Clearly, this balance makes it hard to measure the quality of an algorithm regard-

ing stability because one has to be able to distinguish minor changes from architectural 

ones. Nonetheless, avoiding high stability as well as high instability is, in fact, a rele

vant quality of a clustering algorithm. 

Algorithm stability was measured through the similarity between two partitions P; and 

Pi+i generated by the same algorithm in two consecutive versions of a system. Mea-

suring MoJoSim(Pi,Pi+i) allows finding the stability of an algorithm. To make it 
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fair, this measure has to discard both added and removed entities during software evo-

lution, and the comparison is made only between entities existing in both versions. 

Moreover, a better sense of stability should be noticeable in the behavior of this mea

sure along the software evolution axis. 

5.3.3 Non-Extremity of Cluster Distribution 

Another desirable property of an architectural clustering is that a cluster should re-

semble architectural components. Usually, these components are formed by a set of 

design-level entities. Neither huge clusters nor singletons are usual in architectural 

components. Thus, one measure of clustering quality could be the non-extremity of 

the generated clusters. Wu et al. have proposed a measure called non-extreme distri

bution (NED) [Wu et al. 2005]. NED can be defined as: 

k 

YL Ui 

•y- j j / not ex t r eme « ^ 

n 

where k is the number of clusters in the partition, rii is the size of cluster i and n is the 

number of entities to be clustered. 

Obviously, the limits of non-extremity depend on system size. Usually clusters with 

less than 5 entities are considered extreme (dusi clouds), while the upper limit, from 

which clusters are considered black holes, may vary depending on the system. In this 

work, 20 was chosen as the upper limit, both because some of the systems were not 

very large and because reducing one order of magnitude, instead of two orders, seemed 

an appropriate choice for abstracting modules from lower-level code. 

For example, a clustering of a Java system wiú 100 classes (entities) that produces 

1 extreme cluster with size 50, 3 non-extreme clusters with size 10, and 20 extreme 

clusters of size 1, has a non-extremity of 30%, because only 30% of the classes fali 

into non-extreme clusters. 

One important concern regarding cluster average size is that a good clustering algo

rithm should reduce the order of magnitude of system complexity so that it is easier to 
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understand. Supposing hierarchical clustering, it could be defined, as a rule of thumb, 

that reducing one order of magnitude in each clustering application should be a rea-

sonable expectation for a good clustering algorithm. 

5.4 Experimental Design 

The experimental procedures followed four steps: fact extraction, design abstraction, 

software clustering and comparison. 

The first three steps were performed with the Design Suite toolset, presented in Ap-

pendix A. In the last step, clustering algorithms were compared in terms of the criteria 

described in sub-section 5.3: authoritativeness, stability and non-extremity. For each 

criterion, curves were plotted for better comprehension and relatives measures were 

derived so that algorithms could be ordered according to their results. 

The process is illustrated in figure 5.3 and detailed below. For this experimental design, 

a case study based on evolving software versions was used. 

Software 
Systems 

(Jar) 

Fact Design Design 
Clustering 

Algorithm 
Extraction Abstraction 

Design 
Clustering Comparison 

Low-Level 
Designs 

Class-Level 
Designs 

Recovered 
Module 
Views 

Absolute and 
Relative 

Measures 

Figure 5.3: Experimental design layout 

5.4.1 Choice of Subject Systems 

Since the aim of this work is providing empirical evidence about the power of auto

mated clustering algorithms, applying them in real-world publicly available systems 

was a straighforward idea. The evaluation was accomplished with software available 

from SourceForge, an open source software repository [SourceForge 2010]. The re-

quirements for choosing the systems for the case study were: popular systems with a 
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Table 5.1: Subject systems 
System #of Size Design # ( f iiodes #of Edges Graph Size 

Versions versions ( K L O C ) Levei (KB) 
JUnit 14 1.4-9.5 code 368-2464 935-7017 254-1860 

2.0-4.5 design 20-133 51-507 16-134 
EasyMock 13 1.3-5.8 code 407-831 1204-2128 311-589 

1.0-2.4 design 20-63 63-192 18-55 
JEdit 21 36.1-140.7 code 225-7931 556-34095 156-8145 

2.3-4.2 design 10-312 20-1938 7-443 
JabRef 35 17.8-110.0 code 2524-11259 7270-33990 1885-8702 
1.0-2.4b design 91-461 394-2598 100-613 

large number of downloads, source code in Java, and availability of at least ten differ

ent released versions. Their Jar files were input to design extraction after removing 

third-party libraries. Table 5.1 shows a summary of the four systems, with data about 

the evolution of their source code and designs. 

Consecutive versions of the four systems were input to the experiment. The research 

question was: how do the different clustering algorithms behave during software evo

lution in terms of stability, authoritativeness and non-extremity? 

5.4.2 Validity Evaluation 

Results from the case study cannot be generalized to contexts different from the chosen 

systems. Nevertheless, I tried to reduce externai validity threats by choosing popular 

systems from a well-known open source repository (SourceForge), by using systems 

developed in an industrial language (Java), and by choosing systems with a large evo

lution period. 

The construct validity is threatened by lack of consensus in the community about the 

most appropriate measures to evaluate clusterings. Authoritativeness and stability are 

relevant concerns for evaluation, but the MoJo measure may not appropriately cap

ture the differences between two clusterings, since it does not take relations between 

entities into account [Mitchell and Mancoridis 2001a]. In addition, using package 

clusterings as an oracle for authoritative clusterings is limited, since this type of aggre-

gation is only one of the different views software developers are interested in. How-

ever, since evaluations like this work are not common in the literature, the empirical 



5.5 Results 75 

results found here, together with the related literature [Koschke and Eisenbarth 2000; 

Anquetil et al. 1999; Mitchell and Mancoridis 2001a; Wu et al. 2005], may help cat-

alyze a discussion about appropriate measures to evaluate software clusterings. The 

construct may be threatened as well by the impiementation of the algorithms, which 

were coded according the the specification available in the literature. This threat was 

mitigated by the use of unit and integration tests, an attempt to assure the correct im

piementation of the algorithms. 

Typical internai validity threats are not present in this retrospective study, since ali 

measures are taken from previous history ext :a:ted from software repositories. The 

factor studied is the clustering algorithm, and ali clustering algorithms are applied to 

the same subject systems, and the measures are taken in a retrospective fashion. De-

velopers were not aware of these measures during development time, thus, mitigating 

most internai validity threats. 

Since this is a case study based on the selection of four typical cases, and not a random-

ized experiment, the issue of conclusion validity is not important. The use of statistical 

tests would make sense in a different experimental setting, but not in this context. 

5.5 Results 

Results are shown below. Charts were plotted for authoritativeness, non-extremity and 

stability. Relative measures were derived to better position each algorithm in relation 

to the others. 

5.5.1 Relative Measures 

To compare data series, Wu et al. defined ordinal measures to rank two or more data 

series [Wuet al. 2005]. 

For two series D Si and DSj, the relative measure Above is defined as: 

Atavas,,DS,) = \MOS,jnl >_OSM l < n < | f l S | } | ( J 3 ) 

\í-'Oi | 
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Table 5.2: Relative non-extremity scores 

Algorithm 
System 

Algorithm JUnit EasyMock JEdit JabRef 
eb 0.27 0.14 0.36 0.00 
km 3.00 2.64 2.84 2.94 
mq 0.80 1.00 1.44 1.34 
dsm 1.87 2.14 1.24 1.71 

For k data series, the relative measure for a particular series £>S, in relation to ali the 

other k series is defined as: 

Above(DSi) = ^Above{DSi,DSj) (5.4) 

Another relative measure useful to classify data series into high, médium and low 

regions is the HML measure, defined as: 

HML(DSi) = < 

H i f Above(DSi, hm) > 0.8 

M else if Above(DSi, ml) > 0.8 

L otherwise 

(5.5) 

where hm and ml are constant-valued series that respectively divide the high and 

médium regions and the médium and low regions. The exact values of hm and ml 

will depend on the specific comparison. 

5.5.2 Non-extremity of cluster distribution 

The non-extreme distribution (NED) measuie was calculated for the case study, as 

defined in 5.3.3. Figure 5.4 shows the NED data series for each algorithm for 35 

versions of JabRef. The other NED series, omitted here for the sake of brevity, are 

shown in Appendix B. 

Table 5.2 shows the relative non-extremity measure Above and Table 5.3, the non-

extremity HML values, for each algorithm. T',ie hm and ml thresholds were set to 

0.75 and 0.50, respectively. 

The results suggest that km clustering performs best in terms of non-extremity, foi-
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version 

—•—dsm » eb —*— km - * — mq 

Figure 5.4: NED scores for JabRef 

Table 5.3: HML non-extremity scores 

Algorithm 
System 

Algorithm JUnit EasyMock JEdit JabRef 
eb L L L L 
km H L L M 
mq L L L L 
dsm L L L L 
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lowed by dsm and mq, and eb performs worst. The number of clusters in km is pa-

rameterized to 10% of the number of entities, thus, easily forming non-extreme clus

ters. Furthermore, most clusterers produce low NED values (below 0.5), except for 

km, that produces, on average, médium NED values. Looking closely at the clusters 

formed, one can see that dsm and mq form some non-extreme clusters and many small 

clusters, while eb usually forms one huge cluster and many singletons. 

5.5.3 Authoritativeness 

For each version of the four systems in the case study, the similarity between the 

partition P formed by the four studied algorithms and the authoritative partition PA 

formed by the package decomposition was computed, using the MoJoSim(P, PA) 

measure, as defined in 5.3.1. Figure 5.5 shows the MoJoSim data series for each 

algorithm for 35 versions of JabRef. The other MoJoSim series are omitted here, but 

are available in Appendix B. 

0 2 

0 1 

- d s m -m— e b —*— k m - m q 

Figure 5.5: MoJoSim authoritativeness scores for JabRef versions 

Table 5.4 shows the relative authoritativeness measure Above and Table 5.5, the HML 

authoritativeness values, for each algorithm. The hm and ml thresholds were set to 
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Table 5.4: Relative authoritativeness scores 
System 

Algorithm .11 nit EasyMock JEdit JabRef 
eb 0.00 0.92 0.52 0.63 
km 1.73 2.50 2.76 2.05 
mq 1.87 1.00 1.28 1.08 
dsm 1.93 1.07 1.32 2.14 

Table 5.5: HML authoritati veness scores 
System 

Algorithm .11 nit EasyMock JEdit JabRef 
eb L M L L 
km M M M M 
mq M M M L 
dsm M M L M 

0.80 and 0.50, respectively. 

The results point that km and dsm compete for best authoritativeness, with some ad-

vantage for km, being followed by mq. Algorithm eb ranks worst. HML scores show 

that, on average, ali algorithms but eb rank médium authoritativeness, while eb ranks 

produces low scores. 

5.5.4 Stability 

Finally, clustering stability for the four systems was measured. To do such, the similar

ity between partitions of consecutive versions of each system was measured, using the 

measure MoJoSim(Pi, P+ i ) , as described in 5.3.2. Figures 5.6 and 5.7 respectively 

show MoJoSim stability data series for each ilgorithm for JUnit and JabRef. The 

other charts are omitted here for brevity, but are shown in Appendix B. 

For the evolving versions of the four systems, Table 5.6 shows the relative stability 

measure Above and Table 5.7, the HML stability values, for each algorithm. The hm 

and ml thresholds were set to 0.90 and 0.70, respectively. 

From the figures and tables, it is easy to notice t^at eb is too stable, producing similar 

clusters (black holes and dust clouds) along ali versions. The algorithm mq is more 

stable than dsm and km is the least stable. Except for eb, ali the other algorithms 

present, on average, low stability, as can be seen from the HML scores. 
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Figure 5.7: MojoSim stability scores for JabRef 
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Table 5.6: Relative stability scores 
Syst? m 

Algorithm JUnit EasyMock JEdit JabRef 
eb 3.00 2.62 2.5S 3.00 
km 0.36 0.31 0.33 0.15 
mq 1.79 1.85 1.46 1.26 
dsm 0.71 0.61 0.83 1.59 

Table 5.7: HML stability scores 
System 

Algorithm JUnit EasyMock JEdit JabRef 
eb H H H 11 
km L L L L 
mq L M L L 
dsm L L L L 

5.5.5 Summary of Results 

The three studied dimensions for each algorithm are summarized in Table 5.8. 

5.6 Analysis 

Edge betweenness clustering (eb): although this algorithm is useful to discover com-

munities in social networks, it does not perforn. well for software clustering. It typi-

cally generates a huge cluster and many tiny clusters. Its authoritativeness is also low, 

usually below 0.40, especially for larger systems. It is also too stable, showing no 

capacity to reflect architecture changes during software evolution. 

K-means clustering (km): this typical algorithm for pattern recognition, combined 

with a distance better adapted to graph clustering (Jaccard distance) performs médium 

in terms of non-extremity and authority. Adjusting the number of clusters to 10% of 

the number of vértices allows reducing one order of magnitude in system complex-

Table 5.8: Evaluation summary 

Algorithm 
Measure 

Algorithm Non-extremity Authoritativeness Stability 
eb Low L j w High 
km Médium Médium Low 
mq Low Médium Low 
dsm Low Médium Low 
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ity for each clustering application, making K-means especially suited to hierarchical 

clustering. Its authoritativeness ranges from 0.40 to 0.80, although the higher values 

are more usual. It is the less stable algorithm, with stability usually ranging from 0.35 

to 0.60, which may be an issue when studying module view changes during software 

evolution. 

Modularization quality clustering (mq): this algorithm was based on the steepest as-

cent hill climbing, using a modularization quality optimization function, as suggested 

in the papers about the Bunch tool [Mancoridis et al. 1998; Mancoridis et al. 1999]. 

From the three useful algorithms (since eb only produced useless clusters), it pro-

vides the highest stability, being especially useful for software evolution studies. On 

the other hand, it produces clusterings with médium authoritativeness, usually a little 

worse than dsm and km, with values ranging fiom 0.30 to 0.70. Non-extremity is only 

less worse than eb, with non-extreme cluster distribution ranging from 0.1 to 0.5. 

Design structure matrix clustering (dsm): this algorithm behavior is, in a way, sim

ilar to mq, due to its non-deterministic behavior related to the optimization process, 

but shows better figures for non-extremity anu authoritativeness. Its NED typically 

varies from 0.2 to 0.7 and its authoritativeness typically ranges from 0.35 to 0.75. A l 

though worse, on average, than km, it outperforms this algorithm in authoritativeness 

for system versions of JUnit and JabRef. In terms of stability, it is worse than mq and 

better than km. 

Results were also compared with the work of vVu and colleagues [Wu et al. 2005]. 

Measures were kept the same as defined by Wu et al., for both authoritativeness and 

stability. Although their absolute measures were computed from dissimilarity, relative 

measures were equivalent, with the same thresholds kept. On the other hand. for non-

extremity, the NED measure was changed, so that clusters with more than 20 entities 

were considered extreme, instead of 100. That was because the rationale was that 

each clustering application in an hierarchical clustering context should reduce only 

one order of magnitude, on average, in system complexity. Besides that, one additional 

difference is that the studied software in this work is object-oriented Java code, while 

theirs seems to be procedural C code. 
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Results show that eb falis in the same category of the least useful algorithms of single 

linkage in their work. The results of mq agree with their results of the similar algo

rithm in the Bunch tool in terms of stability, but disagree in terms of authoritativeness 

(mq performs médium while Bunch performs low) and non-extremity (mq performs 

low while Bunch performs high). This divergence, thus, points to the need of addi-

tional studies for this algorithm. Probably, that is because Bunch uses some additional 

heuristics to avoid dust clouds that commonly happen in mq [Mitchell and Mancoridis 

2006]. Finally, in this study, km, mq and dsm ali present médium authoritativeness, 

while ali their algorithms perform low in this dimension. Whether that is due to pack-

age decomposition in Java OO software reflecting better the modular architecture than 

directory decomposition in procedural C software remains an issue to be studied. 

One additional evaluation dimension not previously discussed here is efficiency. Al i 

the studied algorithms perform well with small designs (e.g.: less than 500 classes). 

However, when designs grow to more than 1000 classes, the algorithms mq and dsm 

take significantly longer to converge to good clusterings. Although the complexity 

of these algorithms is polynomial, with much larger designs they may become un-

feasible. Thus, additional work to optimize the calculations involved in mq and dsm 

optimization functions may prove relevant for larger software. For instance, in the 

implementation in this work, time was traded for space to improve dsm performance. 

5.7 Discussion 

Unfortunately, the results show that ali the studied algorithms are incapable of deriv-

ing fully automatic architecture decompositions, since they still generate many tiny 

clusters that do not correspond to real architectural modules, if-means clustering, that 

produces less tiny clusters, has a drawback, requiring a predefined number of clusters, 

which can be hard to determine in advance in most cases. These results point to the 

need for additional processing after clustering: either manual adjustments to better 

position misplaced entities or automated techniques such as orphan adoption [Tzerpos 

1997] that could reduce the number of tiny c.usters. Thus, with this additional pro-
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cessing, automated clustering techniques may show its value as an important step in 

architecture recovery. 

On the other hand, the use of quantitative measures to evaluate architecture decompo-

sitions has some inherent limitations. Real authoritativeness depends on expert decom-

positions made by architects, which are not always available, especially in the context 

of software evolution. The adopted solution of package decompositions as an authori

tative partition can only approximate expert decompositions. Non-extremity of cluster 

distribution has the limitation of ignoring some exceptions in architecture decompo

sitions such as singleton modules with architectural meaning (e.g.: façade). Finally, 

stability is relative: sometimes, one needs stability because small changes with no ar

chitectural impact should not disturb automatic decompositions, but, at times, changes 

may be significam and affect the architecture. 

One final remark is that the software architecture of a system has to express design 

rules that satisfy the authority of a specific architect. Automated clustering usually 

produces generic decompositions that may prove useful for documentation and com-

prehension, but may not express the decomposition that the actual system architect 

wished, the way he or she understands the system. Current research focus has been 

on finding a one-size-fits-all solution, based on algorithms that use general clustering 

heuristics. However, it seems appropriate to move the focus to decomposition tech

niques that abide by design rules expressed by an architect. 

Thus, the results found and the limitation of the measures used point to the need of ad

ditional research that combines quantitative and qualitative methods. Both subjective 

analysis of recovered views and authoritativeness-oriented decomposition techniques 

should be pursued. It is also important to improve existing metrics and developing 

new benchmarks of authoritative decompositions, since the available ones are typi

cally targeted at procedural C software. Last but not least, there is still room for further 

empirical investigation with other clustering algorithms. 
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5.8 Summary 

This empirical evaluation compared four graph clustering algorithms in the context 

of software architecture module view recovery. The domain of investigation was re-

stricted to open source object-oriented Java software available in public repositories. 

A case study analyzed consecutive released versions of four systems. Evaluation di-

mensions were non-extremity of cluster distribution, authoritativeness of generated de

compositions and stability of decompositions during software evolution. Algorithms 

were compared through relative measures derived from data series for each algorithm 

and for each dimension. 

Results showed that K-meam clustering (km) performs best in terms of non-extremity 

and authoritativeness, followed by design structure matrix clustering (dsm) and modu

larization clustering (mq). Edge betweenness clustering (eb) performs worst, generat-

ing meaningless decompositions. For stability during software evolution, the analysis 

showed that mq performs best, followed by dsm, and that km is the least stable al

gorithm. Edge betweenness ranked highest in stability, but its results were irrelevant 

since the decompositions were meaningless. 

Finally, relative measures showed that km ranks médium in non-extremity while the 

others rank low, that eb ranks low in authoritativeness while the others rank médium, 

and that eb ranks high in stability while the others rank low. These results add to the 

body of empirical knowledge regarding comparison of software clustering algorithms, 

especially in the recovery of static software architecture module views. 

This study tried to answer the question of whether architecture recovery techniques 

based on software clustering can enable the generation of high-level models in the 

context of software evolution. Results based on quantitative criteria show that the 

studied techniques are limited to automate the generation of high-level models. On the 

other hand, collected empirical evidence suggests that further studies based on more 

solid benchmarks, which should be more consensual in the academic community, are 

needed to evaluate the power of these techniques to recover high-level models. 

In terms of the main research question (reducing manual effort to apply a confor-
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mance checking technique in the context of evolving, sparsely documented software), 

I found no strong empirical evidence that clustering algorithms can reduce the effort 

in the generation of high-level models. This is the answer, at least, for the studied 

algorithms applied to the evolving versions of the subject systems. Nonetheless, this 

study provides insights based on empirical evidence of how to better evaluate software 

clustering techniques in order to find valid answers to the research question. Further 

discussion on this matter and on the use of clustering algorithms to generate and update 

high-level models in the context of the ERM process is presented in Chapter 8. 



Chapter 6 

Automated Incremental Mapping 

Techniques 

T É C N I C A S A U T O M Á T I C A S D E M A P E A M E N T O 

I N C R E M E N T A L 

Neste capítulo, é apresentada uma técnica de mapeamento incremental de 

entidades de design de baixo nível para módulos arquiteturais baseada na 

recuperação de informação do vocabulário do software, assim como a com

binação desta técnica com outras baseadas em dependências estruturais. Em 

seguida, uma avaliação experimental de diversas técnicas de mapeamento é 

realizada. 

In this chapter, I present an incremental mapping technique from low-level design 

entities onto architectural modules based on information retrieval of software vocabu-

lary. A combination of this technique with other structure-based mapping techniques 

is also presented, followed by an empirical evaluation of various automated mapping 

techniques. 

87 
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6.1 lntroduction 

As previously stated elsewhere in this work, a limitation of the reflexion model tech

nique is that it depends on a given mapping be'ween code entities and high-level mod

ules. In its original definition, the mapping was stated manually by a developer, with 

regular expressions used to describe mappings of multiple parts of the implementation 

at a time. 

Figure 6.1 shows an example of a mapping for a Java system that consists of three 

main architectural modules (business, communication and ui), and a library module 

(named rest). It consists of rather simple regular expressions that map Java classes and 

interfaces onto the modules, since it is based on the package structure. 

However, when the implementation of a system comprises many entities or the naming 

of the entities does not follow patterns, specifying the mapping manually with regular 

expressions can be cumbersome and time-con3;.ming. I f conformance checking is to 

be applied frequently to the system, specifying the mapping manually can become 

even more cumbersome as the mapping must be maintained as the system evolves. 

To ease the effort required to apply the reflexion model technique, approaches have 

been proposed to automatically produce a mapping [Christl et al. 2005; Christl et al. 

2007]. Given a partial mapping, these approaches rely on structural dependencies 

between implementation entities and on heuristics of structural cohesion and coupling 

to map implementation entities onto design entities. These approaches can help reduce 

the effort required to use the reflexion model approach to check incremental changes 

during software evolution tasks. 

In this chapter, I propose automated mapping techniques based on information re-

trieval (IR) to map implementation entities onto design entities based on the similarity 

MODULE 
business 
communication 
ui 
rest 

business\. 
communication\. 
ui\. 
A(?!.*(business\. |communication\. | ui\.)).*$ 

REGULAR EXPRESSION 

Figure 6.1: Example of a mapping with regular expressions. 
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of vocabulary between the implementation and the design. Similar to the existing auto

mated mapping techniques, the IR-based techniques I introduce are meant to improve 

an initial mapping to accomodate incremental changes. I also consider whether com-

bining the IR-based techniques with previous structural-based techniques can improve 

the accuracy of automated mapping. Through experimentation across four systems, I 

show that the nature of the design model used when applying reflexion model affects 

which automated mapping technique performs best. I also show that the best results are 

achieved by combining structural-based and information retrieval-based techniques; a 

combination of the techniques generally increases recall, while keeping precision sim

ilar as the best approach used in isolation. 

6.2 Mapping Techniques 

The high-level model used in the reflexion model technique is typically small, on the 

order of ten to fifty entities. The source-level model is large, on the order of tens or 

hundreds of thousands entities, but is typically extracted automatically. Scalability 

of the technique depends upon the ease by which a developer can specify the needed 

mapping. I f conformance checking is to be done on a regular basis, the need for the 

mapping to be easily stated and updated becomes even more important. I describe the 

existing approaches to ease the specification of the mapping before introducing the 

IR-based approach. 

6.2.1 Manual Mapping Techniques 

In the original definition of the reflexion moael technique, regular expressions were 

used to enable a software developer to more easily specify a mapping. This process 

works well when naming conventions are present and the hierarchical structure of the 

software can be used to map many implementation entities with one regular expression 

rule. Others have proposed using tools to heíp specify the mapping manually. For 

instance, in the SAVE tool, the software designer may either use list boxes and buttons 
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to select entities to be mapped or load a manual mapping from a file [Knodel and 

Popescu 2007]. 

6.2.2 Automated Mapping Techniques 

Automated mapping techniques help incorporate new or changed implementation en

tities automatically into an existing mapping; for simplicity, I will often refer to the 

existing mapping as a pre-mapping. The new or changed implementation entities to 

incorporate are called orphans. One way of mapping orphans is by using an attraction 

function, which produces a value for an orphan and design entity pair to represem how 

likely it is that the orphan should be mapped to lhe design entity. 

Structural Mapping Functions 

Christl and colleagues investigated whether the mapping could be automatically cre-

ated by using a structural attraction function [Christl et al. 2005]. They proposed 

two attraction functions: countAttract and MQAttract. The former relies solely 

on structural coupling; the value of the function is calculated from the dependencies 

between the orphan and the implementation entities pre-mapped to the entity in the de

sign model. The latter defines a modularization quality function that takes into account 

module structural cohesion and inter-module structural coupling. 

The function countAttract increases with the structural coupling between the orphan 

Oi and the design entity (module) m under scrutiny. Equation 6.1 describes the func

tion with Wij representing the coupling between implementation entities and o,-, 

where coupling is usually computed as the cardinality of the set of implementation 

dependencies between o, to Oj. 

In comparison, the second function, MQAttract, increases when the structural mod

ularization quality improves because an orphan is adopted by a particular module. In 

countAttract (o*, m) (6.1) 
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this function, the attraction is higher for the orphan mapping that produces higher mod

ule cohesion and lower inter-module coupling. Equation 6.2 describes the function 

\NM\ 

MQAttract (o*, m) = > J CFk and maps-to(oj) = m (6.2) 
k=l 

with Nm as the number of modules and the cluster factor CFk given by 

CFk = l 

0 ak = 0 

r^ 4 otherwise 
\NM\ 

2lik+ 22 iekj + tjk) 
j=l 
jjtk 

Parameter uk is the structural intra-module coupling of module fc, while ekj accounts 

for the inter-module coupling from module k to module j , and tjk works the other way 

around. 

Evaluation results of Christl and colleagues are limited by the use of a filtering func

tion to reduce the number of orphans submitted to automated mapping. Only orphans 

with a given ratio of dependencies to mapped entities over the total of the orphan's 

dependencies were input to the mapping technique [Christl et al. 2007]. Such filtering 

can mask the effective power of a mapping function, especially when comparing it to 

functions not based on structural dependencies. 

Information Retrieval Mapping Functions 

Mapping may be seen as an instance of a classification problem. Given an oracle map

ping produced by software developers that prov;des an assignment of each orphan to 

a module, a mapping technique classifies correctly when it maps an orphan to the ex-

pected module in the oracle mapping, classifies incorrectly when it performs a wrong 

mapping, or does not classify at ali when it does not suggest a mapping. Since the 

vocabulary of implementation entities (e.g., identifiers and comments) frequently cap

tures what each entity semantically represents, it seems natural to use source code 

vocabulary as feature inputs to the classification problem. Using this idea, I introduce 
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and investigate two variants of a new automated mapping technique based on informa

tion retrieval to map orphan implementation entities onto architecture modules based 

on the similarity of their vocabularies. 

To apply information retrieval (IR) techniques to the mapping problem, I had to adapt 

IR concepts to the context of software reverse engineering. I consider a software entity 

as a document and consider that the document text is made up of the entity's identifier 

as well as any identifiers enclosed in the entity. For example, given an entity that is a 

Java class, I consider the class document to contain the vocabulary of the class name 

plus the names of its methods and fields. I consider a module document (representing a 

design entity) to contain the vocabulary of the module name, plus the vocabulary of the 

mapped implementation entities. Terms in the vocabulary are stored after tokenizing 

identifiers, removing stop words and stemming fokens. 

One can then use a vector space model to represent the implementation and design 

entity modules as vectors. Each term from the vocabulary represents one vector di

mension. The whole corpus is usually represented as a term-document matrix. Various 

schemes for computing each vector component in a document have been developed, 

such as absolute or relative term counts and tf-idf weights [Salton et al. 1975]. After a 

preliminary evaluation, I decided to use relative term counts, which have produced the 

best classification results among the various schemes. 

In the IR-based mapping technique, I use the vector space model to compute the at

traction between an orphan and its most similar module in terms of source code vo

cabulary. Specitícally, I define IRAttract as the cosine similarity measure between 

document vectors. Equation 6.3 defines the IRAttract function: 

IRAttract (o,, m) = cos 9 = T.—rrj.—- (6.3) 
l l m l l 

where o, and m are, respectively, the feature vectors of the orphan o, and of the module 

m, extracted from source code vocabulary by an information retrieval technique. 

Latent semantic indexing (LSI) is a technique that produces a low-rank approximation 

to the term-document matrix by means of a singular value decomposition [Deerwester 

et al. 1990]. LSI reduces the vector space by grouping terms into concepts, which 
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solves the issues of synomymy and polysemy that appear in the basic vector space 

model. It usually produces better precision and recall during classification. Here, I 

also investigate the utility of an attraction function based on LSI, called LSIAttract, 

that is based on a reduced vector space with one hundred dimensions. 

6.2.3 Mapping Algorithm 

An attraction function must be used within an algorithm to produce a mapping given 

a set of orphans, a set of design entities and a pre-mapping. The algorithm I used 

was established in the candidate detection technique [Christl et al. 2005]. Given an 

orphan, this technique generates a candidate set of design entities formed by choosing 

those with an attraction value that exceeds a threshold. When there is only one design 

entity in the candidate set, the orphan is considered to be automatically mapped to that 

design entity. 

Choosing the value for the theshold is hard, since attraction values are both system-

and function-dependent. To allow comparison to previous work [Christl et al. 2005], 

I chose a threshold equal to the average attraction of an orphan to the design entities 

plus its standard deviation. When this threshold generates an empty candidate set, the 

threshold is lowered to the average attraction. This choice assures there always will be 

at least one candidate module. 

The mapping algorithm above is the same as the one implemented in [Christl et al. 

2005], except that entities with few or no relations to existing modules are not filtered 

out from the mapping process. This choice allows to more evenly compare ali the 

mapping functions. 

I also envisaged a variant of the mapping algorithm to take advantage of both struc

tural dependencies and information retrieval functions. In this variant, mapping is first 

performed using a given mapping function. Then, mapping is performed once more 

over the remaining unmapped entities using a different mapping function. Changing 

the order of the mapping functions may change classification results and we decided 

to investigate this issue as well. 
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6.3 Evaluation Design 

Optimally, an automated mapping technique 'veuld correctly assign each implemen

tation entity to the appropriate module, where correct assignment is judged by the 

software developer applying the technique. There are many variables that could affect 

the accuracy of an automated mapping technique: the number of modules in the de

sign, the size of the system, the meaning of design modules, whether there is a correct 

mapping for part of the system available, and the age of the system, amongst others. 

To determine which of the automated mapping techniques performs best in terms of 

correct classification, I conducted two case studies: one in which the design model 

is an abstract structural view of the system, such as a layered view, and a second in 

which the design model is a physical break-down of the structure of the system, such 

as the directory structure of the code. For each case study, I considered four systems 

and had available an oracle mapping that was produced with the help of the systenfs 

developers. Classes were the basic implementation entities used in this evaluation. I 

took the same approach for each case study, as explained in Figure 6.2. I removed a 

fraction of the entries from the oracle mapping and placed the implementation entities 

from these entries into a set of orphans. Using the remaining oracle mapping, I applied 

six different techniques, four described in the p-?vious section plus two combinations 

of them, to map each oracle, and compared the resulting mappings of the orphans to 

the oracle mapping. The choices of the fraction of mapping entries to remove were 

driven by different scenarios that occur during a system's evolution. 



Figure 6.2: Illustrating evaluation design with an example: a) Oracle mapping; b) Orphans removed from mapping; c) Orphans mapped after 
applying automated mapping technique; d) Measures computed for the automated mapping technique under evaluation (in the example, C01 
is incorrectly mapped, C05 in correctly mapped, and CIO is not mapped). 
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Table 6.1: Systems under study 
ID System Version Size Jar Size #of 

Date ( K L O C ) (KB) classes 
DW Design Wizard 17-May-2010 7.0 75 37 
DS Design Suite 20-Apr-2010 24.2 429 234 
OG OurGrid 20-Apr-2010 '19.0 3135 1685 
ML Mylyn l-Jun-2010 695.8 7671 1412 

I describe the evaluation design in further detail before presenting the results. 

6.3.1 Target Systems and Designs 

I used four systems of varying size and purpose for the evaluation. Des i g n Wi zard, 
a tool to extract and query designs, is a research prototype1 that represents a small 

system (37 classes). Design S u i t e , a toolset to abstract designs through lifting, 

clustering, filtering and mapping operations, and to visualize abstractions in different 

layouts, is a research prototype2 that represents a medium-sized system (234 classes). 

OurGrid, an open source middleware3 that eiiúbles the creation of peer-to-peer com-

putational grids, represents a large distributed system (1685 classes). Finally, Mylyn, 
an open source Eclipse plugin4 that provides a task-focused interface to Eclipse IDE 

to reduce information overload, represents a large system (1412 classes). Table 6.1 

provides an overview of each system. Al i systems were developed in Java. 

For CaseStudyi, I gathered a high-level design model from architects and personnel 

associated with each system. The OurGrid architect provided two high-level design 

models: one based on the layers in the system's architecture and the second providing 

a run-time view. For CaseStudy2, I gathered more detailed design models, which I 

will refer to as low-level models. Table 6.2 describes the design models used for each 

system and each case study. Module view diagrams and oracle mappings can be found 

in Appendix C. Provided oracle mappings were either based on the project directory 

structure (Mylyn and OurGrid) or on a manual architecture recovery step performed 

by developers (Design Wizard and Design S u i t e ) , 
'www.designwizard.org 
2www.gmf.ufcg.edu.br/~roberto/papers/paperWMSWM2009.pdf 
3www.ourgrid.org 
4www.eclipse.org/mylyn 

http://www.designwizard.org
http://www.gmf.ufcg.edu.br/~roberto/papers/paperWMSWM2009.pdf
http://www.ourgrid.org
http://www.eclipse.org/mylyn
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Table 6.2: Module views 
System View Description Size 

DW 
Abstract high-level modules 5 DW 
Detailed structural decomposition 7 

DS 
Independem standalone components 
Standalone components split into their building blocks 

6 
17 

Layered architecture 4 
OG Main run-time components: broker, pcer, worker and others 

Layers split into building blocks 
6 
8 

M L 
Abstract high-level components 
Physical breakdown of system structure into directories 

9 
27 

6.3.2 Scenarios 

Conformance checking is performed after changes to a software system. Previous 

studies on software changes have shown that changes typically follow a power-law 

long tail distribution, with most changes touching very few classes and few changes 

touching many classes [Hattori and Lanza 20081. Given this distribution for the size 

of changes, I consider three different scenarios for the use of an automated mapping 

technique: singleton changes, small changes (two up to six classes) and large changes 

(greater than six classes). In the following scenarios, I used classes as the basic imple

mentation entities to be submitted to a mapping procedure. 

Scenario 1: Singleton Changes Singleton changes account for roughly half or more 

of software changes [Hattori and Lanza 2008]. In the evaluation, I modelled these 

singleton changes by removing each class from the oracle mapping in turn and applied 

the automated mapping technique to produce a mapping for the class. This scenario 

models small changes, such as bug fixes, and small increments that might occur in 

systems with frequent commits. 

Scenario 2: Small Changes Changes involving from two to six classes account for 

around 20 to 40% of commits in a rough estimate extracted from a study of three large 

open source systems.5 For the evaluation, I modelled small changes as the addition of 

a small number of classes. I produced small changes by randomly removing a number 

of classes from the oracle mapping and adding them to an orphan set. For sizes of 

'Personal communication with Neil Thomas. June 5, 2010. 
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Table 6.3: Mapping techniques 
Name Description of Mapping Technique 
count Uses countAttract function 

mq Uses MQAttract function 
ir Uses IRAttract function 
Isi Uses LSI Attract function 

lsi_count Uses LSI Attract function followed by countAttract function 
count_lsi Uses countAttract function followed by LSI Attract function 

small changes between two and six classes, I produced 100 random removais of each 

size, resulting in 500 trials. To make the randomly produced changes more realistic, 

only the first removed entity was chosen in a fully random fashion. The following 

entities in the change were randomly selected either from the first entity's neighbors 

(with 50% probability) or from neighbors of the other removed entities (also with 

50% probability). This process tried to model incremental changes, which can be both 

broad, with changes localized around an entity, and deep, with changes crosscutting 

the software modules. 

Scenario 3: Large Changes I modelled large changes as the addition of a large 

fraction of new classes. I chose changes ranging in size from 10 to 100 classes in 

increments of ten. For each change size, I produced 50 random removais, resulting 

in 500 trials. Different from the previous scenario, ali removais were fully random. 

This case study tried to resemble large changes, such as major features additions or 

restructurings that affect the whole code. 

6.3.3 Mapping Techniques 

I evaluated six different mapping techniques (Table 6.3). Four techniques were ob-

tained by combining the attraction functions described in Section 6.2 with the algo

rithm in Section 6.2.3. The other two techniques were obtained by first using the 

mapping algorithm to map the orphans with one mapping function and then applying 

the algorithm once more with a different function to map the remaining orphans. For 

these two functions, we chose the combinations with the best average precision in a 

preliminary assessment. 
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6.3.4 Measures 

Correct classification is given by an oracle mapping suppiied by the software archi-

tects. For the automated mapping evaluation, I n.;ed to identify the subset of the oracle 

mapping that will form the orphans to be mapped. This subset is given by the relation 

CM = { (o i , cmi), (02, c m 2 ) , . . . , (o„ c, c m „ J } , where Oj stands for each orphan entity 

i in a software change c with size nc and cm,i stands for the correct module to map ou 

1 < i < nc. 

For each trial in each scenario, I apply the mapping technique k and obtain the rela

tion M f c = {(e>i, mifc), (o 2, m 2 fc) , . . . , (oUck, m„ c f e )} . It may happen that one or more 

orphans is not mapped by the technique, reducing the cardinality of the Mk relation in 

comparison to the CM relation. 

By comparing each technique's mapping M * to the oracle mapping CM, I was able to 

compute standard classification measures such as precision, recall and F-measure. 

Random effects are taken into account by means of replicating trials within each sce

nario. Average measures are, thus, good candidates for dependent variables. Three 

measures were taken as the dependent variables in the case studies: 

(a) average precision: the ratio of the technique's correct mappings (tem) over 

its mappings(ím), given by Equation 6.4, averaged over a number of software 

(b) average recall: the ratio of the technique's correct mappings (tem) over the ex-

pected oracle mappings (cm), given by Equation 6.5, averaged over a number of 

software changes; 

(c) average F-measure: the harmonic mean of precision and recall, given by Equa

tion 6.6, averaged over a number of software changes. 

changes; 

tem (6.4) precision = tm 

(6.5) 
cm 
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_ 2 • precision • recall 
F-measure = — — (6.6) 

precision + recall 

6.3.5 Validity Evaluation 

This study is limited in the ability to generalize results to other systems — externai 

validity — because the evaluation considered arJy four systems and ali systems were 

developed in Java. The range of sizes and purposes of the systems considered does 

help to mitigate this concern to some extent. 

The construct validity of the findings is also threatened because the way in which 

I model incremental changes may not necessarily represent real changes. In prac-

tice, changes usually consist of simultaneous ?dditions, removais and changes both 

in the implementation entities and in their relations, whereas the evaluation considers 

only purely additive changes. Similarly, the model for large changes, which randomly 

spreads changes over ali modules, may not reflect actual large changes. 

Typical internai validity threats are not present in this study, since ali measures are 

retrospective and taken from existing software systems. The factor studied is the map

ping algorithm, and ali mapping algorithms are applied to the same subject systems. 

Furthermore, measures are taken retrospectively. Developers were not aware of these 

measures during development time, thus, mitigating most internai validity threats. 

Finally, the conclusion validity of the results in this study is limited due to the absence 

of statistical tests. Nonetheless, results are averaged over a large number of trials. 

There are 100 trials for each change size for the scenarios of small and large changes. 

And in the scenario of singleton changes, the whole population of possible class addi-

tions is used. Although statistical tests could improve the confidence in the results, I 

argue that it is more important to present a descriptive behavior of the algorithms for 

the three scenarios as it is done in this work, than to use statistical tests. Statistical tests 

would produce results valid only for the four :,tr.died systems in the case studies, and 

not for a larger population of, for instance, the set of ali open source systems available 

in repositories such as SourceForge. 
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6.4 Results 

Below I describe how the mapping techniques performed across the four systems and 

the different kinds of models. For brevity and clarity, I show only the most relevant 

results in this chapter. Readers are referred to Appendix D for the complete evaluation 

results. 

6.4.1 CaseStudyi Results 

I first consider the results when the mapping techniques are used for the high-level 

design models. 

Scenario 1: Singleton Changes Table 6.4 displays the average F-measure for each 

mapping technique applied to singleton changes in high-level models. Results show 

that automated mapping onto high-level views seems a promising approach for the 

most common kind of software changes. Larg; values of F-measure (between 0.78 

and 0.92) were found for each system for more than one technique, which shows that 

full automation may correctly solve a large part of the mapping problem. For the map

ping functions, countAttract provides the best attraction values with the exception 

of the OurGrid layered view. The lower values for OurGrid layered view may be 

due to the fact that entities inside a layer may not be as strongly connected to each 

other. MQAttract shows no regular pattern: it does not discriminate for OurGrid, 
but gives good answers for Design S u i t e and Mylyn. Information retrieval func

tions perform worse than countAttract, with the exception for OurGrid layered 

view. LSI Attract generally gives better results than IRAttract. The combination 

of countAttract and LSI Attract in a double mapping technique also improves the 

F-measure, which shows that structural depenaencies and information retrieval may 

be complementary. The improvement is usually maximized when the most precise 

function is used in the first mapping, with the exception for the Design Wizard 
view. 

Figure 6.3 captures another perspective of the mapping techniques: the ratio of cor-
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Table 6.4: F-measure for singleton changes: high-level views 
Mapping Module View 

Technique DW DS Mylyn OG1 OG2 
count 0.76 0.89 0.155 0.59 0.81 

mq 0.54 0.87 0.79 0.14 0.08 
ir 0.68 0.75 0.57 0.70 0.54 
Isi 0.62 0.82 0.63 0.72 0.58 

lsi_count 0.78 0.88 0.81 0.79 0.68 
count_lsi 0.76 0.92 0.88 0.73 0.84 

rectly mapped, incorrectly mapped and unmapped classes over the total of mappings 

done for the scenario of singleton changes for Mv l y n and OurGrid high-level views. 

The results show that 78 to 92% of the changes are correctly mapped fully automati

cally, significantly reducing the work left to the developer. Very few entities—between 

1 and 6% for the best performing techniques—are left unmapped. On the other hand, 

incorrectly mapped classes account for between 6 and 16% in the best results, which 

suggests that it is important that developers to review mappings soon after performed 

to fix potential misclassifications. 

Mylyn high-level view 

• correct unmapped • incorrect 

OurGrid high-level layered view 

Figure 6.3: Classification distribution for singleton changes in two high-level views 
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Figure 6.4: F-measure for small changes: Mylyn high-level view 

Scenario 2: Small Changes Figures 6.4 and 6.5 show the average F-measure for 

each mapping technique applied to small changes in two representative high-level 

views.There seems to be no visible trend for each technique when the change size 

increases from 2 to 6. Large values of F-measure, between 0.7 and 0.9, are found for 

the best performing techniques. In isolation, CountAttract performs generally bet

ter for OurGrid component view, Design Wizard and Mylyn, and LSI Attract 

performs better for OurGrid layered view and Design S u i t e . Combined tech

niques almost always outperform isolated techniques, and maximization is achieved 

when the most precise function is used in the first mapping. 

Scenario 3: Large Changes Although graphs for large changes (from 10 up to 100 

classes, except for Design Wizard, where the maximum change size was of 30 

classes) are not shown here for the sake of brevity, results were similar to the ones 

in small changes. A decreasing trend is observed in the F-measure for Design 
S u i t e and Design Wizard, since larger changes mean a significantly smaller 

pre-mapping for these systems. For Mylyn and OurGrid, there is no observable 

decreasing trend, which is explained by the fact that changes with 100 classes account 

for less than 10% of the system size. Other than that, results were similar, with com

bined techniques performing best, with values between 0.75 and 0.92. 
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Figure 6.5: F-measure for small changes: OurGrid high-level view 

6.4.2 CaseStudy2 Results 

Scenario 1: Singleton Changes Table 6.5 displays the average F-measure for each 

mapping technique applied to singleton changes in low-level views. Results show that 

médium values of F-measure were obtained, with the best values between 0.49 and 

0.79. Looking at the functions in isolation, countAttract was generally better than 

the others, except for OurGrid. MQAttract was irregular at classifying, performing 

médium for Design Wizard and Design S u i t e , but performing very low on 

the large systems. LSI Attract was better than IRAttract, which performed null on 

Mylyn. LSI Attract performed well on OurGrid, médium on Design Wizard, 
and low on Design S u i t e and Mylyn. Combining functions in a double map

ping procedure improved values for F-measure, reaching the best results in ali cases. 

Performing structural mapping before LSI mapping was generally better, except for 

OurGrid view, which was formed by layers decomposed into building blocks. In 

that case, starting with LSI gave better results. One point worth mentioning was the 

difficulty to correctly map to the Mylyn view, whatever the chosen mapping tech

nique. 

Figure 6.6 shows the ratio of correctly mapped, incorrectly mapped and unmapped im

plementation entities over the total of mappings for the scenario of singleton changes 
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Table 6.5: F-measure for singleton changes: low-level views 
Mapping 

Technique 
Module View Mapping 

Technique DW DS Mylyn O G 
count 0.64 0.59 0.43 0.57 

mq 0.42 0.54 0.11 0.09 
ir 0.61 0.21 0.00 0.67 
Isi 0.53 0.36 0.11 0.70 

lsi_count 0.67 0.69 0.49 0.79 
countJsi 0.69 0.69 0.49 0.72 

for Mylyn and OurGrid low-level views. Results are not as good as in CaseStudyu 

49 to 79% of the changes are correctly mappeu fully automatically. Between 3 and 

44% for the best performing techniques are left unmapped and must be handled by 

a developer. Two systems had a large ratio of unmapped classes: Design S u i t e 
and Mylyn. A number of classes were also incorrectly mapped, accounting for be

tween 7 and 28% in the best results. The other two systems, Design Wizard and 

OurGrid, had a large ratio of incorrect mappings, which suggests that, as with high-

level views, it is also important to fix eventual misclassifications by reviewing map

pings right after performed. 

OurGrid low-level layered view 

l correct unmapped «incorrect 

Figure 6.6: Classification distribution for singleton changes in two low-level views 
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Scenario 2: Small Changes Figures 6.7 and 6.8 show the average F-measure for 

each mapping technique applied to small changes in two representative low-level 

views. Small changes showed no perceivable trend when change size grows from 2 

to 6 classes. Looking each function in isolation, countAttract performed best for 

three systems, except for OurGrid, where LSI Attract was best. Information re

trieval functions performed very low on Mylyn, but, in general, LSI Attract was 

better than IRAttract. As in the singleton changes, MQAttract performed low on 

the large systems, and médium, on the smaller. Combined mapping performed best in 

ali cases, with figures between 0.48 and 0.8, starting with LSI Attract for OurGrid 
and starting with countAttract for the other three systems. 

0.6 
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3 
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^ 
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mq 
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countjsi 
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Figure 6.7: F-measure for small changes: Mylyn low-level view 

Scenario 3: Large Changes Large changes (from 10 to 100 classes) were not dif

ferent from small changes. A decreasing trend in F-measure values was noticed in 

Design Wizard for ali techniques, probably due to the smaller pre-mapping. For 

Design S u i t e , a slightly decreasing trend was noticed in the structural techniques, 

while no trend was observed for Mylyn and OurGrid. The comparison between 

techniques was similar to the small changes, with values of F-measure slightly better 

than in that scenario, but the relative order of the results was mostly the same, with 

combined techniques performing between 0.6 and 0.8. 

| UFCGIBIBUOTECAree] 



6.5 Discussion 107 

0.7 * 

0.6 • 

<u 
5 0.5 
IA ro oi 
S 0.4 
u. 

0.3 

0.2 

0.1 

X 

•count 

• mq 

ir 

Xlsi 

— Xlsi_count 

count Isi 

6 # classes 

Figure 6.8: F-measure for small changes: OurGrid low-level view 

6.5 Discussion 

Discriminating power From the results, I observed that mapping techniques show 

less discriminating power for low-level views (CaseStudy2) than for high-level views 

(CaseStudyi), although values of F-measure between 0.5 and 0.75 are still achieved 

for low-level views by the automated techniques. On the one hand, such results might 

seem strange, since one would probably expect that design concepts closer to source 

code should result in better mapping accuracy. On the other hand, low-level views 

usually add more categories of concepts to be recognized, which makes the pattern 

recognition issue implicit in the mapping problem more complex to be solved. 

Qualitative evaluation Besides the case studies, I also conducted a qualitative eval

uation of the four attraction functions and their candidate sets. I randomly selected 

27 trials from ali modeled changes, 3 for each available module view, and thoroughly 

looked at each generated ranking, candidate set, and classification performed. 

Regarding candidate sets, evaluation showed that: 

• countAttract usually generates sets of size 1 (most dependencies to only one 

module), 2 (orphan in the border between two modules) or a large set whose size 

is the number of modules (happens when there are no dependencies to mapped 
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entities); 

• MQAttract usually produces very large non-discriminating sets for large sys

tems, since, in this context, an orphan mapping changes the modularization qual

ity function very little; 

• IRAttract and LSI Attract usually produce candidate sets with size between 1 

and 3; 

• in general, LSI Attract reduces the noise of IRAttract, making one candidate 

"stand out" from the others. 

Regarding the type of classification performed, nualitative data suggests that: 

• countAttract better maps orphans in structural decompositions, where they are 

strongly connected to one module only, but usually misplaces entities that are on 

module borders (e.g.: facade); 

• MQAttract performs better in mapping orphan hubs, i.e., entities with strong de

pendencies to various modules, where a wrong mapping could strongly increase 

inter-module coupling; 

• IRAttract and LSI Attract usually adequately map orphans from libraries or 

general modules, orphans bordering two modules, and orphans in functional de

compositions , but do not perform so we'l as CountAttract for strongly con

nected orphans, and make some erroneous classifications for modules that par-

tially share a common vocabulary but have no relation at ali, neither functional 

nor structural. 

Decision threshold The mapping algorithm influences the results of each function. 

The threshold chosen for creating candidate sets is variable and depends on an average 

computed over a small number of entities. This limited average may negatively influ-

ence the classification decision. An adequate value for such threshold remains an open 

issue. 

Feasibility Executed case studies strongly suggest the feasibility of the automated 

and semi-automated mapping in evolutionary reflexion models, since figures show 
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that it is possible to correctly map around four out of each five changes. These results 

suggest that the overhead for the software developer in an evolutionary setting will 

be reduced. However, special care must be taken with inappropriate mappings and 

unmapped orphans. Adequate tool support is needed to review and correct wrong 

mappings and to support semi-automated mappings by means of a recommendation 

system based on an attraction ranking. 

6.6 Summary 

This chapter contributes an automated mapping technique for evolutionary reflex

ion models based on information retrieval (IR). The technique captures a more 

semantically-oriented form of cohesion in dergn model entities, a concept that is 

lacking in other automated mapping techniques. Another contribution is the combi-

nation of different mapping techniques based on both IR and structural dependencies, 

which generally increases mapping recall, while keeping precision figures. Finally, a 

last contribution is an empirical evaluation of mapping techniques in the context of 

incremental development by means of two case studies. 

Results show that automated mapping performs best when information retrieval is used 

in combination with structural dependencies in a two-step mapping technique. Dif

ferent combinations of the mapping functions could have been tried in order to take 

advantage of the best of each mapping function. The approach considered provides a 

good starting point that actually produced better results than when the functions were 

used in isolation. 

A variety of cases, scenarios, systems and V Í . Í W S was used in this work. Such vari-

ety resulted in different performance numbers for each mapping technique, suggesting 

that no technique is capable of outperforming the others in ali possible situations. 

Views with structural decompositions seem to be better mapped with structural-based 

techniques, while views describing functional decompositions seem to better mapped 

by IR-based techniques. Nonetheless, that remains an speculation to be further re-

searched, as case studies cannot be generalized to every possible context. 
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This study tried to answer the question of whether additional information from source 

code can be used to improve automated mappings produced by techniques based on 

structural dependencies. Results are positive and show that using information from 

software vocabulary in combination with structural dependencies produces mappings 

with high figures of both precision and recall. High values of F-measure were obtained 

in both singleton, small and large changes, showing the feasibility of an automated 

mapping technique. On the other hand, results w ere better for mappings with coarser-

grained models than with finer-grained models. 

In terms of the main research question, of reducing the manual effort to apply the re

flexion model technique in the context of software evolution, this chapter gives empir

ical evidence that suggests the feasibility of this reduction. Although I do not quantify 

such reduction in this chapter, it is clear that incrementally automating the mapping 

step frees the developers from fixing mappings at each conformance check, which 

they would have to do in order to apply the RM technique in an evolving context. 

Furthermore, even if the developers cannot count with a perfect mapping technique, it 

is possible, with the high values of F-measure obtained, to use the provided mapping 

technique as a sound advice to developers in a semi-automated mapping procedure. 

An additional discussion on the use of mapping techniques in the context of the ERM 

process is presented in Chapter 8. 



Chapter 7 

Prioritizing Warnings Using Software 

History 

P R I O R I Z A Ç Ã O D E A V I S O S A P A R T I R D O 

H I S T Ó R I C O D O S O F T W A R E 

Neste capítulo, é realizado um estudo de fatores de potencial influência na 

relevância de violações arquiteturais. Em seguida, são apresentadas técni

cas de priorização e de filtragem de violações, ambas baseadas no histórico 

do software, assim como uma avaliação experimental destas técnicas. 

In this chapter, I perform a study of factors of likely influence in the relevance of archi

tectural violations. Then, I present techniques for prioritizing and filtering violations, 

both based on software history. Finally, I perform an empirical evaluation of these 

techniques. 

7.1 lntroduction 

The reflexion model (RM) technique affords the production of detailed violation lists 

of where source code does not conform to the architecture [Knodel and Popescu 2007]. 

When the RM technique is applied to a moderate or large system, the number of diver-

gences reported as violations can amount to hundreds of warnings per check [Terra and 

111 
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Valente 2009; Feilkas et al. 2009]. Figure 7.1 shows an example of a list of violations 

between two modules in ArgoUML, a system later described in this chapter. The list 

focuses on the types (either classes or interfaces^ in the user interface (ui) module that 

depend (but should not) on types in the application module. This list amounts to more 

than one hundred violations, and these are just between these two modules. Had the 

list been shown for ali modules and at a finer-grained levei (e.g., methods and fields), 

it would amount to several hundreds of violations. 

The degree of relevance of these violations to a developer varies. Some divergences 

may never be solved because the violations may be seen as exceptions to a general 

rule. Others may need to be attended to in a short period of time to prevent erosion of 

important architectural features. When the list of violations is long, it can be difficult 

for a developer to find the violations that really matter. To help a developer cope with 

the long list of violations typically produced, I propose to prioritize the violations using 

information about the software, its evolution a,id the people who developed it. 

To determine which factors might be of use in automatically prioritizing violations, I 

ran a study on four open source systems in which I investigated which of these fac

tors (Section 7.2.1) correlated to which architectural violations were solved during the 

development of the system (Section 7.3). Through this study, I found that measures 

based on violation duration, with correlation values between 37 and 71% for three 

systems, violation co-location, between 20 and 42% for four systems, and, in a minor 

scale, the developer's degree-of-authorship, with values between 14 and 28% for three 

systems, play an important role in predicting violation relevance. 

I then considered whether the influential factors determined in this study could be 

used with a machine learning approach to assign priorities to violations. I evaluated 

this approach with an experiment with four different systems. Precision of a top-A" 

ranking varied from 62 to 99%, and the improvement, when compared to the baseline, 

ranged from 57 to 214%, which suggests the feasibility of an automated approach to 

prioritizing violation warnings in architecture checkers. 
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Finally, I adapted the machine learning system to work as a classifier so that viola

tions likely to be irrelevant could be filtered out. The classifier reduced the amount 

of violation information to be investigated between 51.7 to 91.2% for the four studied 

systems, while still keeping good filtering qujlity, in terms of specificity, sensitivity 

and precision. 

The findings suggest an inherent difference from previous work on prioritizing bug 

predicting approaches. While unstable source code is usually accompanied by in-

creased bug density [Nagappan and Ball 2005], the same can not be said regarding 

architectural violations. And, while co-locateu bug warnings usually point to false 

positives in bug finding tools [Kremenek and Engler 2003], increasing co-located ar

chitectural warnings typically increases their relevance. 

7.2 Driving Hypotheses 

Violations about conformance to a stated architecture can represent unwanted cou

pling between modules from an architectural point of view. To perform this study, I 

postulated five hypotheses based on the literature about software development. 

H l : Developer Centrality Developers new to a system may not appropriately un-

derstand the software architecture and as a result, may introduce undesired coupling. 

One indirect measure of a developer's experience with the code for a system is how 

much code he or she has shared with other developers. The more code shared, the 

more central a developer is to the project [Bird et al. 2006]. I hypothesize that a low 

value of developer centrality influences the addition of relevant violations in the source 

code. 

H2: Degree-of-authorship A lack of appropriate knowledge of the source code, 

APIs and module interfaces by a developer may also result in the introduction of vi

olations. The degree-of-authorship is a measure that quantifies the ebb and flow of 

source code knowledge by a software developer as a software evolves [Fritz et al. 
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2010]. I hypothesize that the lower the degree-of-authorship, the higher the number of 

violations that indicate unwanted coupling is expected. 

H3: Code churn Source code instabilities usually result in software bugs [Nagap-

pan and Ball 2005]. Similarly, unstable code may also affect architectural stability, 

producing architectural violations. I hypothesize that the higher the churn of the code, 

the more architectural violations that will result. 

H4: Violation co-location A high frequency of co-located bug warnings has been 

used to predict false positives [Kremenek and Engler 2003]. Similarly, I hypothe

size that violations happening in isolation are more important than violations strongly 

co-located with others. Co-location, in this case, means that a source code violation 

happens inside the same container (e.g., either a file, an object-oriented type or an ar

chitectural module) as other source code violaticns. The premise here is that a greater 

number of co-located violations means either an architectural rule that is thoroughly 

disregarded or a change in architectural decisions not reflected in the high-level model, 

and, as such, these violations are less important. 

H5: Violation duration Previous research on bug warnings showed that bug warn

ings fixed quickly were important while warnings that were not removed for a long 

time were neglectable [Kim and Ernst 2007a]. The temporal history of an architec

tural violation may also reflect its importance. I believe that harsh static architectural 

violations are solved fast so that non-functional requirements such as maintainabil-

ity are not undermined. And minor violations survive longer, provided they do not 

strongly affect such requirements. Thus, I hypothesize that short-term violations are 

more relevant than long-term ones. 

7.2.1 Definitions 

To support the investigation of these hypotheses on open source systems, several terms 

need to be defined. As described in the next section, this investigation focuses on Java 
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systems and thus the definitions are described in terms of Java. These definitions may 

easily be adapted to the context of other programming languages. 

Version: A software version is the source code and documentation of a software ex-

tracted from a software repository from a certain moment in time. The superscript 

i will be used throughout this text to impl 3 a version extracted at a discrete mo

ment in time. The time difference between a given version i and its subsequent 

version i + 1 is given in time units, e.g., hours, days, weeks or months. 

Code element: A code element à of a software version i is an entity that is found in 

the source code of version i. In Java, a code element can be a field, a routine 

(method, constructor or static initializer) OÍ a basic type (abstract class, concrete 

class, interface or enumeration). 

Type: A type tl of a software version i is an outer container of code elements in 

version i. In Java, types enclose fields, routines or basic inner types. In the 

following, a type will be regarded simply as a set of code elements. 

Module: A module m1 of a software version í is an architectural element of a module 

view in the documentation of version i. A module m 1 conceptually encloses a set 

of types. Thus, a module will simply be considered a set of types. 

Code relation: A code relation crl

Cx<Cy of a software version i is a dependency existing 

in the source code of version i from code element cl

x to code element cl

y. Code 

relations in Java can be any one of the following relation types: method call, field 

access, parameter received, parameter returned, type thrown, type catched, is-a, 

contains, extends or implements. 

Code-level violation: A code-level violation is an unexpected dependency (namely, 

a divergence in reflexion model terminology) between two code elements. It is 

uniquely defined by two participating source code entities that cause the violation 

and the violation type (e.g., field access, method call). More specifically, a code-

level violation vi „ „, is a set of one or more code relations cri „ of the same 

relation type rt that should not exist in the implementation. 
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For each code-level violation, I need to define the concepts of violating file and vio

lating developer. Although an object-oriented type is more important in our context 

of architectural violations, I also formally define files and violating files because most 

operations over source code repositories (e.g., diffs, commits) are performed over files. 

File: A file / ' of a software version í is defined here as a container of types in version 

i. In Java, each file encloses one or more types. 

Violating file: The violating file /„< is the file / ' involved in a code-level violation 
v%c*,cy,rt ( o r simply vl). Although a violation involves both a source file and a 

target file, the term violating file refers tr> the source file, since the unwanted 

dependency is created in the source file. 

Violating developer: The violating developer dv, is the developer d that originally 

caused the code-level violation v\ i.e., the developer that committed a file change, 

which, in turn, caused the appearance of a violation. 

Given the definitions above, I can now define each of the investigated factors possibly 

involved in a code-level violation. 

Developer centrality: The centrality C<j 4 of a violating developer dvi is a parame

ter extracted from the social network of oevelopers that deliver changes to the 

software repository. Nodes in this network are made of developers, while edges 

between developers arise when they deliver changes to the same files during a 

pre-defined time interval. For different common files, a different edge is added 

between two developers, resulting in a multigraph. I define violating developer 

centrality as the degree of his/her node, i.e., the sum of the number of edges be

tween the violating developer and ali the other developers in the network [Lopez-

Fernandez et al. 2004]. 

Degree-of-authorship: The degree-of-authorship DoAt^^ of a violating file /„> by 

a violating developer dv, is defined by equation 7.1 [Fritz et al. 2010]. FA, 

the first authorship, is a binary value ÚW is one when the violating developer 

created the violating file, and zero otherwise, DL is the number of deliveries of 
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the violating file by the violating developer, AC is the number of acceptances of 

other developers' commits by the violating developer, and the constants are the 

same as in the original work that defined degree-of-authorship. Both DL and AC 

are considered over a time window of previous committed revisions. This time 

window can be fixed (e.g., three months as it was fixed in this work) or variable 

(e.g., the whole period since the first revision up to the present version). 

DoA = 1.098 • FA + 0.164 • DL - 0.321 • ln (1 + AC) (7.1) 

Code churn: The code churn CCf t of a violating file is defined as the relative amount 

of change between version vl and version T / - 1 in the source code of a file [Na-

gappan and Ball 2005]. In this work, I compute it as the number of added and 

deleted lines of code over the number of lines of code of the file. 

Violation co-location: Module co-location MCLmjmkVi of a code-level violation 

vl is the number of code-level violations that happen between its source Con

tainer module rrij and its target container module m*. Similarly, type co-location 

TCLtltmVi of a code-level violation vl is the number of code-level violations that 

happen between its source container type t< and its target container type tm. 

Violation duration: The duration durv, of a violation vl is the time interval between 

the appearance of the violation and the analysis time. More specifically, given 

that a violation lasts for k software versions i — (k — ! ) , • • • ,i — 1,t, and each 

version is delayed to its consecutive version by fixed tu time units, durví = 

tu-(k- 1). 

7.3 Investigation of Factors 

In this section, I describe the research question, experimental design, choice of subject 

systems, measures for evaluation, and experirrent results. 
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7.3.1 Research Question 

The research question I wanted to answer in this investigation was: how do the factors 

defined in 7.2.1, isolated orjointly, correlate to the relevance of code-level violations 

in reflexion models? Answering this question helps to quantify the influence of each 

factor in predicting the relevance of architectural violations during software evolution. 

7.3.2 Experimental Design 

In order to analyze architectural violations, some choices and assumptions about ex

perimental design, software versions, evolution oeriod, correlation, and architectural 

violations must be laid out. 

First of ali, the factors described in 7.2.1 are the independem variables, while the 

relevance of architectural violations is the dependent variable. I am interested in how 

violations change over time. As a result, I use an experimental design based on mining 

repositories that store information about a project's software development history. 

The granularity of changes in each software revision may be too small for architecture 

checks. Instead of looking at each revision, I decided instead to focus on weekly 

versions. To account for a large portion of a project's evolution, I take into account 

a large development timeline, such as the time between major releases. Since most 

open source systems release versions between every three or six months, I choose six 

months as the minimum amount of time to accumulate historical information. 

Correlation between independem variables and a dependent variable can usually be 

derived by means of fitting the data to a multidimensional function and, later, com-

puting the correlation coefficient between the data and the function estimates. Various 

machine learning techniques are available for data fitting. Support vector machine 

(SVM) is a popular machine learning technique that has previously given good results 

in software engineering research [Anvik et al. 7.006]. In this work, I use SVMs to learn 

which factors affect the removal of architectural violations. 

Starting with a major release, I use a three-month time slot for machine learning train-

ing and an additional three-month slot for testing the correlation between factors and 
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violation relevance. I also add a past time slot to accumulate data on authorship and 

collaboration, and a future time slot to estimate violation relevance (see subsection 

7.3.2), both slots of three-month duration. Figure 7.2 shows the timeline for this cor

relation study. 

Weekly 
Version 

Time (week) 

Figure 7.2: Timeline for experimental design 

Degree-of-authorship and developer centrality are computed from accumulated data in 

a three-month period, while code churn is computed between versions one week apart. 

Determining Violation Relevance 

I need an oracle to assign values of violation relevance to evaluate the investigation 

of the research question. Doing such is complex since the assignment depends on 

subjective aspects from the software design. One might think of using a binary variable 

(either a violation is relevant or not), an ordinal variable (discrete relevance leveis) or 

even a real variable (real values computed according to some measure). Whatever 

choice is made, an additional problem arises in how to automate the assignment of 

relevance values for each violation. In practice, the availability of software repository 

history can help to determine these values. I solve this problem by using an intuition 

similar to the one by Kim and Ernst in a study of static analysis tools [Kim and Ernst 

2007b]. Their approach consists of assigning as relevant ali bug warnings later solved 

by fix-changes. Adopting a similar approach in this work, I assign as relevant the static 

architectural violations that are later solved in the software history, and as irrelevant 

otherwise. Obviously, such approach focuses only on architectural violations that are 

usually solved by developers. I argue that these violations are the most important, 
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given that software developers perform periodic perfective maintenance, such as in 

code refactorings. 

7.3.3 Choice of Subject Systems 

Some of the requirements for the experimenta' subjects were driven by the problem 

itself. Others were constraints of the technologies used. I chose systems from médium 

to large size, since architecture module views become more important when system 

size grows. I also chose systems with adequate commit policies, for the granularity 

of independem variables is important for meaningful cause-effect analysis. Commits 

should happen on a daily or short-term basis to allow the generation of meaningful 

weekly data. Software versions should be available from software repositories, ei

ther from CVS1, SVN2 or GIT3, version control systems. In addition, there should be 

an adequate time frame for extracting empirical data, for some independem variables 

require accumulating past data, while estimating the dependent variable requires the 

knowledge of future violation data. Moreover, source code had to be in Java and 

software versions should be compilable, because Design Wizard, the chosen design 

extraction tool, extracts basic design facts from the bytecodes of Java systems [Brunet 

et al. 2011]. Furthermore, high-level models should also be available, since reflexion 

models require the definition of a high-level model to check conformance of the source 

code against it. Finally, I chose systems representative of real open source systems, ex-

tracted from different repositories such as SourceForge, Apache Software Foundation 

or other repositories. 

Table 7.1 shows the chosen systems along with some of their features. SweetHome3D 

is an interior design application that allows placing furniture in 2D plants with 3D pre-

views.4 Ant is a popular Java-based build automation tool. 5 Lucene is a text search 

engine library written entirely in Java.6 And ArgoUML is an open source UML mod-

'www.nongnu.org/cvs 
2 s u b v e r s i o n . a p a c h e . o r g 
3git-scm.com 
4www.sweethome3d.com 
5ant.apache.org 
6 l u c e n e . a p a c h e . o r g 

http://www.nongnu.org/cvs
http://www.sweethome3d.com
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eling tool. 7 High-level models for these systems were extracted from system docu

mentation and their size is also shown in Table 7.1. SweetHome3D had design tests in 

the JDepend tool with packages as modules and assertions as the allowed dependen

cies. Ant had a module view based on packages in the Lattix LDM tool. Lucene had a 

layered view diagram and I performed the mapping myself, using the package names 

as the basis for module attribution. Finally, ArgoUML had the most detailed design 

documentation: a set of module views and the packages that made up each module. 

The high-level models represent relevant features of the systems, but they are not in-

tended to be complete. Thus, some features can be missing in the models. Models and 

mapping for the four systems are available in Appendix E. 

Table 7.1: Subject systems 
System Version Timeframe Size # Mnn*hly # Monthly High-Level Models 

(KLOC) Committers Commits 
first / last min-max min-max min-max # Modules # Edges 

SweetHome3D 2009-03-08/2010-02-28 75-96 1 6-99 9 29 
Ant 2006-10-29 / 2007-10-21 232-239 4-9 22-164 16 92 

Lucene 2010-03-21 /2011-03-13 247-336 7-9 58-173 7 16 
A r g o U M L 2006-11-19/2007-11-11 397-813 5-15 120-286 19 79 

In Table 7.2,1 describe some statistics for the architectural violations for each chosen 

system, for a testing period of three months. Relevant violations were found using 

the heuristics explained in 7.3.2. Weekly violations are also shown, amounting to 

hundreds for each system. These systems are good candidates for the experiments for 

two reasons: first, because there is a large percentage of positives for ali systems (at 

least 27.5%), allowing for a good fitting procedure; second, because there is a large 

number of weekly violations, amounting to hundreds for each system, what results in 

large training and testing sets for the SVMs. 

Table 7.2: Violations in the testing set 
System Violations in the Testing Period # of Weekly Violations System 

Total # Relevant % Relevant Minimum Average Maximum 
SweetHome3D 5224 3164 60.6 390 401.8 414 

Ant 8657 2383 27.5 623 665.9 688 
Lucene 3192 885 27.7 233 245.5 268 

ArgoUML 7692 2419 31.4 563 591.7 623 

7 a r g o u m l . t i g r i s . o r g 
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7.3.4 Experimental Procedures and Evaluation 

To better understand the relation between independem variables and violation rele

vance, I devised a simple scheme of data fitting, using SVMs trained with a three-

month training set of violations. Then I computed regression with independent vari

ables over a three-month violation testing set. 

First, I computed regression with each of the factors individually. I also performed 

multiple regression with one of the factors, namely co-location, that was made of two 

components. Finally, I computed multiple regression with the factors altogether. 

An informal measure of the effect of the independent variables on relevance would be 

the correlation between the variables. The higher the correlation, the higher the effect 

of the independent variable(s) on the dependent variable. 

Correlation between the data values and the fit function values may be computed us

ing the Pearson's correlation coefficient (r), which provides a measure of how well a 

dependent variable can be predicted from the scores of a set of independent variables. 

I used Cohen's values to report low (r = 0.1), médium (r = 0.3) and high (r = 0.5) 

correlation [Cohen 1988]. 

7.3.5 Results 

Table 7.3 shows the results of using SVMs for data fitting. Values for Pearson's corre

lation coefficient are shown for individual factors, module and type co-location com

bined, and the factors altogether. 

Table 7.3: Pearson's correlation coefficient between studied factors and relevance 

Factor 
Systems 

Factor SweetHome3D Ant Lucene ArgoUML 
Developer Centrality 0.0000 0.0000 0.3130 0.0000 
Degree-of-Authorship 0.2806 -0.0216 0.1357 0.1697 
Code Churn -0.0767 0.0882 -0.0211 0.0080 
Type Co-Location 0.2647 0.1918 0.1398 0.2557 
Module Co-Location 0.1348 0.2046 0.4467 0.1315 
Module & Type Co-Location 0.3458 0.2017 0.4201 0.2086 
Violation Duration 0.7070 0.0000 0.3728 0.6277 
Ali Factors 0.7070 0.2030 0.4705 0.6331 
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From the results, we noticed that the highest correlation coefficient was found when 

ali the factors were used in the fitting, with its value amounting to between 20 and 

71%. In isolation, the factors that best correlated were violation duration for Sweet-

Home3D (71%) and ArgoUML (63%), and violation module co-location for Ant (20%) 

and Lucene (45%). 

Looking at each factor for the four systems as a whole, the following results were 

found. The measure of developer centrality we used showed zero correlation with rel

evance but for the case of Lucene, which suggests that either the measure we used is 

not adequate or the developer centrality alone does not influence the violations. The 

degree-of-authorship showed weak correlatioi for three out of four systems. Code 

churn showed very weak correlation with the dependent variable, which suggests that 

this factor does not play an important role on architectural violations. Type co-location 

showed weak to médium correlation for ali systems, while module co-location showed 

weak to médium correlation for three systems and médium to high correlation for a 

fourth system. Combining both co-location measures either gave similar correlation 

values to the best isolated measure or improved the results, as in the case of Sweet-

Home3D. Finally, violation duration showed zero correlation with one system, médium 

correlation with another system and high correlation with the other two systems. 

Thus, results suggest that three out of the five studied factors, namely violation co-

location (both module and type), violation duration, and degree-of-authorship, seem to 

play an important role in predicting the relevance of architectural violations. Nonethe-

less, the relative contribution of each factor to the correlation with violation relevance 

depends on each system, and no factor can be taken as the most influential for every 

case. Last, taking ali the factors together does not improve the correlation results when 

compared with the best of the isolated factors, which suggests that the interaction be

tween independent variables does not influence the results. 
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7.4 A Recommender for Prioritizing Violations 

The predictive power of some of the factors investigated in Section 7.3 led me to 

conceive a recommender system for prioritizing static architecture violations. More 

specifically, I devised a system that produces a top-A" priority ranking of violations 

so that developer's actions regarding violated static architectural rules are focused to 

those most needing attention. For this work, I set the value of K as 10, because it is 

a small number of elements that developers can deal with, only a bit larger than the 

capacity of a person's short-term memory, of 7 ± 2 elements [Miller 1956]. 

To evaluate this recommender, I kept the same experimental design, assumptions, and 

subject systems from the experiment to investigate the factors in 7.3, but with a differ

ent research question, and different experimental procedures and evaluation, as stated 

below. 

7.4.1 Research Question 

The second research question was: is itfeasible to direct developer's focus in archi

tectural checking results to a top-K rank of the most relevant violations? I f one or 

more of the investigated factors correlates to vioiation relevance, one can design a rec

ommender system that uses the historical information from such factors to prioritize 

present violations to be analyzed. 

7.4.2 Experimental Procedures and Evaluation 

I first developed a recommender system to be used in the experiments. More specif

ically, a system that lists a top-A- priority ranking of violations to direct software de

velopers actions regarding violated static architecture rules. To do such, I trained an 

SVM with a three-month training set with ali the independent variables. Then I pro

duced a top-K ranking, with K set as 10, of weekly violations using the SVM as a 

regression machine and taking the regression vaiue as the ranking priority. 

A success measure of such a system would be that a large proportion of the top-A" 
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shown violations be, in fact, relevant violations. That is, the ranking must be very pre

cise to direct software developers to actual staic architecture issues, issues that really 

should be analyzed by developers to maintain design conformance. Thus, precision is 

the measure that matters in this scenario. 

Formally, precision is the positive predicted value, i.e., the ratio between violations 

correctly classified as relevant and the number of violations found relevant by the 

technique. It is described by equation 7.2, where TP stands for true positives, and 

FP, for false positives. 

Precision = 
TP 

TP + FP 
(7.2) 

7.4.3 Results 

Table 7.4 shows the results of the ranking based on an SVM that takes ali factors into 

account. Regression with the SVM was computed and only the top-A" violations were 

considered. For this work, I set A" as 10. Average precision of the top-A ranking is 

shown in the third column, and its results are compared against a baseline of selecting 

A" random violations from the full set of weekly violations (second column). The 

improvement given by the ranking, when compared to the baseline, is shown in the 

fourth column. 

Table 7.4: Precision improvement with top-K ranking (K = 10) 
Avg. Precision Avg. Precision 

System selecting K Random in Top-K Improvement 
Violations (baseline) Ranking from baseline 

(%) (%) (%) 
SweetHome3D 60.4 94.6 56.5 

Ant 25.1 62.3 148.4 
Lucene 27.7 78.5 184.1 

ArgoUML 31.4 98.5 213.6 

Results show a high precision levei for the four subject systems, ranging from 62.3 to 

98.5%. Moreover, the improvement against the baseline varies from 56.5 to 213.6%. 

As fixing violations can require higher-level architectural or refactoring work, I believe 
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conformance checks are more likely to be performed after longer development periods 

(e.g., weekly or monthly). To simulate this scenario, I consider the performance of the 

recommender when it is applied weekly. Table 7.5 shows precision statistics per week, 

in terms of minimum, average and maximum values. 

Table 7.5: Weekly precision results foi top-iv" ranking (K = 10) 
Precision (%) 

System Minimum Average Maximum 
SweetHome3D 40 94.6 100 

Ant 0 62.3 90 
Lucene 60 78.5 90 

ArgoUML 90 98.5 100 

Results show some dispersion for the weekly ranking precision, especially for Sweet-

Home3D and Ant, although the average precision values are very high, ranging from 

62.3 to 98.5% for the four studied systems. These precision values suggest the value of 

warning prioritizing, which can bring a productivity gain in the analysis of the results 

of conformance checks. 

7.5 Filtering Irrelevant Violations 

Support vector machines are commonly used as classifiers. An SVM used to clas-

sify violations into relevant or irrelevant based on software history information is an 

interesting scenario to be analyzed. Such a system can be used in order to filter out 

irrelevant violations, reducing the amount of data to be analyzed by a software team. 

Keeping the same experimental design, assumptions, and subject systems from the 

investigation of factors in 7.3, but, once again, with a different research question, dif

ferent experimental procedures and evaluation, I ran an evaluation of a classifier of 

architectural violations. 

7.5.1 Research Question 

The third research question in this study was: is it possible to accurately filter out irrel

evant violations from architectural checking results from regular architecture checks? 
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I f so, it is possible to reduce the amount of data to be analyzed by software developers 

in architecture checking tools, thus, facilitatinjj tool adoption. 

7.5.2 Experimental Procedures and Evaluation 

I first developed a classifier of violations to be used in the experiments. More specif-

ically, a system that filters out violations deemed irrelevant. To do such, I trained 

an SVM with a three-month training set with ali the independent variables. Then I 

classified a three-month testing set of weekly violations, using the SVM as a classifier. 

Statistical measures are normally used to evaluate classifiers. The importance of each 

measure, however, depends on the context the classifier is being used. Below, I lay 

out the important measures for the context of this work. In the following, TP stands 

for true positives, FP, for false positives, TN, for true negatives, and FN, for false 

negatives. 

Filtering is similar to a screening medicai procedure. One wants to discard violations 

that are in fact irrelevant, and this goal is more important than keeping a very precise 

set of relevant violations. Thus, the measure of specificity was the most important 

measure in this scenario, since I wanted to filter out violations that were really true 

negatives. 

Specificity: Specificity is the true negative rate, i.e., the ratio between violations cor

rectly classified as irrelevant and the number of irrelevant violations in the popu

lation. It is described by equation 7.3. 

Sensitivity or recall is another measure used in classifiers that is complementary to 

specificity. It suffices to say that very low sensitivity values would make a very specific 

classifier useless, because most violations would be tested as negatives. 

Sensitivity: Sensitivity is the true positive rate, i.e., the ratio between violations cor

rectly classified as relevant and the number of relevant violations in the popula

tion. It is described by equation 7.4. 

Speci ficity = 
TN 

TN + FP 
(7.3) 
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Sensitivity = -— 
TP 

TP + FN (7.4) 

As in the recommender described in section 7.4, most violations found by the classifier 

should actually be relevant. Although filtering is the main concern here, the classifier 

must also be precise to direct developers to actual static architecture issues. Thus, 

precision is a complementary measure in the filtering scenario, and its definition is 

restated here. 

Precision: Precision is the positive predicted value, i.e., the ratio between violations 

correctly classified as relevant and the number of violations found relevant by the 

technique. It is described by equation 7.5. 

7.5.3 Results 

Filtering can be evaluated first by the amount of information reduction that it achieves. 

Table 7.6 shows the amount of filtered violations that the developer will be able to 

ignore for a classifier based on an SVM that takes ali independent variables into ac

count. Results are compared to the relative number of irrelevant violations found in 

each system. Obviously, nonetheless, the filtering quality is even more important than 

the amount of information reduction it brings. Table 7.7 shows the filtering quality, 

in terms of specificity, sensitivity and precision for the same classifier. The very high 

values of specificity, with ratios larger than or equal to 87.5%, suggests a small number 

of false positives, and good screening power for the filter. The remaining violations 

to be analyzed after filtering have good values of precision, with ali systems giving 

values of at least 62.4%; and the completeness of the positive detection is good for 

three systems (sensitivity between 59.8 and 80.9%), and bad for Ant, with sensitivity 

Precision = 
TP 

TP + FP 
(7.5) 

of 20%. 

7.6 Discussion 



7.6 Discussion 130 

Table 7.6: Tested and actual irrelevant violations. 
System Filtered Irrelevant 

Violations Violations 
(%) (%) 

SweetHome3D 51.7 39.4 
Ant 91.7 72.5 

Lucene 74.4 72.3 
ArgoUML 66.4 68.6 

Table 7.7: Specificity, sensitivity and precision results for filtering. 
Specificity Sensitivity Precision 

System (%) (%) (%) 
SweetHome3D 96.4 77.4 97.1 

Ant 95.4 20.0 62.4 
Lucene 87.5 59.8 64.7 

ArgoUML 88.1 80.9 75.7 

Bugs versus Architectural Violations I was surprised to find that some of my hy

potheses about the factors that contribute to the importance of architectural violations, 

that were based on intuition and interpretation of the literature, did not hold in the 

conducted experiment. The assumptions of H2 on degree-of-authorship and H4 on 

co-location that were maybe valid for bug warnings did not follow the same pattern 

for architectural violations. Direct correlation between degree-of-authorship and rele

vance may suggest that the most important violations are made by people who know 

more about the code and not the ones who know less. The same is valid for module 

co-location and type co-location, where positive correlation leads to think that isolated 

violations are less important than accumulated co-located violations, the opposite of 

bug warnings. Below, I consider each hypothesis in more detail. 

H l : Developer Centrality The measure of developer centrality did not show cor

relation with violation relevance. I suspect that one cause is that committers are not 

necessarily the violation authors. The reduced number of committers in the analyzed 

systems suggests that the information about developer collaboration is somehow lost 

since one committer might aggregate data from various authors. The popularization of 

newer version control systems that inform both authors and committers in the commit 

metadata (e.g.: GIT) would help to provide more reliable data for developer centrality. 
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H2: Degree-of-authorship Direct correlatfcn between degree-of-authorship and 

relevance suggests that the most important violations are made by people who know 

more about the code. This may be because even the most central developers some-

times need to disregard architectural rules, even though such violations are later fixed. 

Another hypothesis is that violations made by less experienced developers could go 

unnoticed for a longer time. Whatever the cause is, the existence of weak correlation 

between degree-of-authorship and violation relevance may be a reason for using this 

variable in a recommender system that ranks violations, given that the cost to compute 

it is not prohibitive for a weekly task of software quality assurance. 

H3: Code churn From the results, I realized that code churn does not seem to play 

a role in violation relevance as it does in bug v, a; ning relevance [Ruthruff et al. 2008]. 

To explain this, I hypothesize that architectural violations can survive longer than bugs. 

Unstable code usually produces bugs, but bugs usually need to be fixed fast, thus, gen-

erating more churn. Architectural violations, on the other hand, may survive longer, 

since they worsen the design but do not prevent the system to compile and run cor

rectly. 

H4: Violation co-location An important experimental result was that the high unex-

pected coupling expressed by high module or type co-location revealed an important 

factor to predict violation relevance, which agrees with the heuristics of increased 

coupling causing increased design deterioration. That seems to be true at least for the 

subject systems in the experiments, where I found from weak to médium correlation 

values. 

H5: Violation duration Finally, another important result was the médium to high 

positive correlation of violation duration with relevance in three out of four systems. 

This shows that violation correction in time usmlly follows a pattern, and that pattern 

deserves a more thorough investigation. 
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A Simple Recommender The fact that violation duration and co-location were to-

gether responsible for most of the correlation in the four studied systems suggests a 

very simple design for a recommender system for prioritizing architectural violations. 

This design would take into account only violation co-location and violation duration, 

which would simplify priority computation, since violations would be the only data to 

be gathered, discarding the computation of indirect factors like degree-of-authorship, 

code churn and developer centrality. 

Top-Af Ranking The results of the experimentation with a recommender suggest that 

violation prioritizing seems to be not only feasibie, but also successful. High precision 

values, between 62 and 99%, strongly suggest that a recommender system would be 

helpful to direct developer's attention to architectural violations. When ones compares 

to the baseline of selecting K random violations from the full set of weekly violations, 

results are clearer, showing an improvement ranging from 57 to 214%. Focusing devel

opers attention to a much smaller list of violations may thus help to increase adoption 

of static architecture checking tools, since the time devoted to analyzing violations 

could be better used, and not wasted in analyzing false positives. 

Insertion of prioritized architecture checks in the software development process by 

means of weekly procedures is lightweight and it can easily be added to the typical 

weekly cleanup that developers do after adding features to a software system. 

Filtering Usually, the amount of irrelevant violations is a large fraction of the total 

amount of violations found by the architecture checking technique. For the analyzed 

systems, it ranges between 72.3 to 74.5% for three of them, and it is smaller only for 

SweetHome3D, with 39.4% irrelevant violations. Such numbers offer an opportunity 

for a filtering procedure that can reduce the ímount of violations to be analyzed by 

the developer. In Table 7.6, one can see that the classifier developed in this study 

showed an amount of information reduction between 51.7 to 91.2%. The classifier 

also discarded a small fraction of relevant violations, but kept good filtering quality in 

general, as can be inferred from the results in Table 7.7 for specificity (between 87.5 

and 96.4%), sensitivity (between 59.8 and 80.9% for three out of four systems) and 
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precision (between 62.4 and 97.1%), with bad results only for sensitivity in one of the 

systems, Ant, with 20%. Thus, I argue that there is value in an automated filtering 

procedure for violations. I f developers want a more complete screening procedure for 

violations instead of a priority top-A' ranking, a classifier may help them to focus on 

the violations more likely to be relevant, reducing their amount of work in more than 

half, while keeping acceptable filtering quality. 

Validity Evaluation The results cannot be g_*neralized to contexts other than the 

studied systems. However, I did try to reduce externai validity threats by choosing typ-

ical systems from different software repositories (e.g., SourceForge, Apache Software 

Foundation, and Tigris). I also chose systems from médium to large size with existing 

high-level models, which are the typical candidates for architecture checks. Another 

issue on generalization is the focus on one architectural checker, reflexion models. I 

argue that most architecture checkers also output long violation lists, since few high-

level architectural rules usually convert to lots oí code-level checks, due to the detailed 

data and control dependencies between elements in source code. Long lists of viola

tions have been reported in case studies of conformance checking [Feilkas et al. 2009; 

Terra and Valente 2009]. 

The construct validity is threatened by several assumptions. First, violation relevance 

is indirectly determined by heuristics based on violation solving, which might not nec-

essarily match the relevance expressed by externai input from experts on the software 

systems. I argue, however, that these heuristics are pragmatic and related to the actions 

performed by software developers during software evolution. Second, the high-level 

models and mappings were derived from the analysis of system documentation by the 

author of this work, and not from the developers themselves. To mitigate this threat, I 

tried to be as faithful as possible to the existing architectural documentation of these 

systems. Another issue on the construct is the lack of knowledge of the full software 

history, which prevents me from assigning some of the violations to their authors. 

However, I believe that the multivariate machine learning is robust enough to deal 

with missing values for some of the variables. Finally, violation duration is computed 

relative to the start of the training period, which masks some of the values for the 
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duration factor. 

Most internai validity threats are tackled by experiment automation. Al i measures are 

taken from previous history in software repositories. Developers, at development time, 

were not aware of these measures, thus, mitigating most internai validity threats. 

7.7 Summary 

This chapter describes an approach to reduce information overload in static architec

ture checks. Code-level violations to static architecture rules can amount to hundreds 

or more for each architecture check. By means of software repository mining experi-

ments, I investigated how five independent vaiíables extracted from software artifacts 

correlate with the relevance of these violations. Results suggest that violation duration 

and violation co-location are the most important factors to correlate with relevance, but 

no factor seems to be the most relevant for every system. Furthermore, fitting data with 

ali five factors does not add much in terms of better correlation when compared to the 

best variable alone. Finally, degree-of-aufhorcHp may also play a role in predicting 

violation relevance with smaller correlation values, while code churn and developer 

centrality do not seem to play an important role for most of the studied systems. 

Results from the experiments suggest an inherent difference between bugs and archi

tectural violations. Unstable source code usually points to potential bugs [Nagappan 

and Ball 2005], while the same was not true to architectural violations in our study. 

Determining relevance of bug warnings also seems to be very different of doing such 

with architectural violation warnings. While accumulated bug warnings in the same 

code area usually point to a false positive [Kremenek and Engler 2003], accumulated 

architectural warnings between two modules pointed to more relevance in this study, 

suggesting that increased unwanted coupling reveals architectural deterioration. 

In this study, I introduced a machine learning system based on support vector machines 

to recommend the most important violations o be analyzed by software developers. 

Through the experiments, I found empirical evidence that automated recommendation 

of violations is not only feasible, but successful. I found that producing a ranking 
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with the top-A violations directs developers to a very reduced and precise list of vio

lations. In order to achieve more completeness in a violation screening procedure, I 

also used the machine learning system as a ciassifier that filters irrelevant violations 

from the whole violation set. This ciassifier n-duced the amount of work to analyzed 

violations in more than half for the analyzed systems, while still keeping good filtering 

quality. Such results are encouraging and might allow for an easier adoption of static 

architecture checks in the software development process. 

This study tried to answer the question of how the outputs of the reflexion model 

technique can be prioritized in order to reducs information overload to software de

velopers. Results show that measures extracted from software history in fact allow 

this prioritizing to happen with high precision values. By means of a Top-A" priori-

tizer, architectural violations can be recommended to developers. Thus, their work on 

checking and fixing architectural violations is directed to more relevant issues. 

Referring to the main research question of this work (reducing manual effort when 

applying the reflexion model technique in a context of evolving, sparsely documented 

software), this chapter effectively shows the feasibility of such reduction in the step of 

violation logging. Although I did not quantify the amount of effort reduction, I showed 

empirical evidence that supports this claim. Focusing on a shorter set of likely relevant 

architectural violations reduces the manual effort by avoiding wasting time on a larger 

set of violations that would not matter to software developers. 

A discussion on prioritizing architectural warr ings in the context of the ERM process 

is presented in Chapter 8. 



Chapter 8 

Discussion 

D I S C U S S Ã O 

Neste capítulo, é realizada uma discussão dos principais resultados desta 

tese, bem como de sugestões de trabalhos futuros. 

In this chapter, a discussion of the main results of this dissertation is performed, to-

gether with suggestions for future work. 

8.1 Clustering Algorithms 

Analysis of four clustering algorithms in this dissertation showed that they are limited 

in their capacity of generating fully automated and meaningful software decompo-

sitions. In most cases, these algorithms produced very few large clusters and lots of 

singleton clusters. This result is a drawback for a fully automated architecture recovery 

process, since decompositions manually made by software developers usually show a 

different pattern, with lots of medium-sized clusters. The best performing algorithm 

in terms of non-extremity of cluster distribution, K-means, is limited by the need to 

define the number of clusters as an input parameter. When discovering modular con-

cepts in architecture recovery, often there is no previous knowledge of the number of 

modules. 

136 



8.1 Clustering Algorithms 137 

On the other hand, it is also important to state the limitation of a measure of non-

extremity. Some real architectural modules are in fact extreme. For instance, archi

tectural styles such as a mediator or a façade define modules that are singletons. It 

seems more accurate to analyze whether clusterings produced by algorithms resemble 

real architectural modules. In this context, related work has shown empirical evidence 

that type-level or file-level software networks follow a scale-free, heavy-tailed degree 

distribution [Myers 2003]. Myers has suggested that the modular design of software 

systems may be responsible for such distribution. I f this hypothesis is further investi-

gated for static architecture views, it may be that they follow a similar distribution. 

One important issue was that stable clustering algorithms did not produce meaningful 

clusters in terms of non-extremity. The only algorithm found stable in this work, based 

on edge betweenness, did not produce meaningful clusterings at ali. The other three 

had low values of stability. In addition, these results agree with the results of Wu and 

colleagues for other clustering algorithms [Wu et al. 2005]. Such results show an 

important drawback of clustering algorithms for architecture recovery in the context 

of software evolution. Applying a clustering algorithm from scratch to recover a static 

software architecture view at different time instants does not produce similar results. 

Thus, a different approach to architecture recovery must be pursued in the context of 

evolution. I believe that using knowledge from a previous architecture recovery step is 

the solution, in what might be called a process of incremental clustering. This belief 

is supported by the results of the incremental mapping evaluation shown in Chapter 

6, further discussed below. Thus, clustering algorithms may be just a first step in 

discovering modular concepts. This step must necessarily be followed by a validation 

phase of manual recovery by a software designer. Only then, with a validated module 

view, one can count on automated incremental clustering techniques to provide stable 

clusters with architectural meaning. 

For the first step described above, either moduíarization quality clustering or design 

structure matrix clustering would be recomrr.ended, due to their values of médium 

authoritativeness being the best found in this work. K-means clustering would be dis-

carded in most cases, since it requires the knowledge of the number of modules as 

input. It is worth mentioning, however, that results of authoritativeness both from this 
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work as well as from Wu et al.'s [Wu et al. 2005] are limited by the lack of adequate 

benchmarks for architectural decomposition. In both cases, the used heuristics of low-

level package decomposition as the oracle of authoritative clustering are limited; this 

oracle may not always approximate the intended architecture of most software sys

tems. Hence, it seems adequate to follow the path suggested by Sim et al., of produc-

ing benchmarks as a means to better evaluate software engineering techniques [Sim 

et al. 2003]. This seems to be especially appropriate to evaluate architecture recovery 

techniques, an important research topic that has produced a large number of techniques 

and tools [Pollet et al. 2007]. 

When analyzing the mapping step of the reflexion model technique, I found that an 

appropriate combination of structural depende k ies and software vocabulary allows to 

achieve automated mapping results with high accuracy, as it can be seen in the high 

F-measure values found. In the evaluation, the proposed incremental automated map

ping technique that combines structure and vocabulary showed the highest F-measure 

values for both singleton, small and large source code changes. However, high accu

racy still does not prevent some wrong mappinçs. That is why I believe that a semi-

automated approach for incremental mapping seems to be the most appropriate, with 

an automated step reviewed by software developers. This approach takes advantage 

of the knowledge existent in software artifacts extracted by the mapping techniques, 

while it also gives the final decision to developers. 

The mapping approach in the original reflexion model technique is based on regular 

expressions [Murphy et al. 1995]. Whenever directory structure, package organization 

or naming conventions do not capture an architectural decomposition, both automated 

and semi-automated mapping techniques can be useful and effective. Thus, in a con

text of undocumented software, where module views are recovered from, e.g., cluster

ing techniques, regular expressions may not be the solution to mapping code elements 

onto high-level modules. Moreover, architecturai drift also happens when architectural 

8.2 Incremental Mapping Techniques 
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knowledge is lost. Initial package or directory decompositions usually reflect architec

tural decisions, but with architectural drift, code elements are added to the system that 

do not respect previous architectural decisions iSutton 2008]. Incremental mapping 

techniques such as the ones discussed in this work can help to recover this knowledge, 

mapping elements to their appropriate modules according to their structure and/or to 

the concepts expressed in their vocabulary. 

Christl et al. evaluate their results of automateo structural mapping [Christl et al. 2005; 

Christl et al. 2007] in a similar fashion as in this dissertation. However, I avoid the 

use of any filtering functions as they do. Filtering functions reduce the number of 

orphans submitted to automated mapping, and that can mask the accuracy of the map

ping technique. In their work, they only map orphans with a high ratio of dependencies 

to mapped code entities, which leaves weakly c^nnected entities out of the evaluation. 

Apart from this issue, their mapping function based on structural dependencies still 

shows, most of the time, better results than my technique purely based on information 

retrieval of software vocabulary, as it was shown by the F-measure values in the case 

studies. On the other hand, a combination of structural dependencies and information 

retrieval in a mapping algorithm based on two mapping steps gave the best results in 

terms of F-measure, which shows that the two different types of information can be 

complementary and improve the accuracy of the isolated mapping techniques. 

Although incremental mapping techniques were mostly discussed in this work to im

prove the mapping step in the reflexion model technique, they can also be used in a 

context of incremental clustering, since this step might be beneficiai to the architec

ture recovery phase, as discussed in the previous section. Incremental mapping may 

possibly improve results of techniques both for orphan adoption [Tzerpos 1997] and 

for maverick analysis [Schwanke 1991], although additional research needs to be per-

formed to validate this claim. As in the orphan adoption technique of Tzerpos [Tzerpos 

1997], the solution I presented uses more than one type of information to improve the 

accuracy of incremental mapping (or incremerU' clustering, as they name it). While I 

compute a mapping function to find the most likely module to map a code entity, they 

use structural and naming criteria in decision conditions of a flowchart in order to per-

form the mapping. They also add additional knowledge, such as a stylistic criterion, 
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e.g., if the orphan is either being mapped to a library or to a high-cohesion module. 

8.3 Prioritizing Architectural Warnings 

Observations from a variety of different software systems in which static architec

tural violations can amount to hundreds of w x k l y discrepancies led me to design a 

technique to prioritize the most relevant violations. I pursued this approach in this 

work, investigating some factors likely to correlate to violation relevance. Such ap

proach is novel in this context, although similar work has been reported in the domain 

of bug finding tools [Kim and Ernst 2007b]. tnspiration of factors to be analyzed 

also carne from related work [Kremenek and Engler 2003; Nagappan and Ball 2005; 

Bird et al. 2006; Ruthruff et al. 2008; Fritz et al. 2010], that I used as a first informed 

hint on what factors to investigate, even though the hypotheses raised on violation rel

evance did not reveal straight as predicted. However, two factors, namely violation 

duration and violation co-location, proved impolant to determine violation relevance. 

Other additional factors are worth analyzing, and this dissertation can be seen as a first 

step towards a more thorough investigation of static architectural violations. 

In terms of practical tools for software developers, I showed the feasibility of a vi

olation recommender that focuses developers' attention to a reduced and precise set 

of violations. Furfhemore, I also showed the feasibility of filtering violations when a 

more complete procedure of static architecture analysis is needed. Filtering, however, 

still produces a non-neglectful amount of false negatives, and more research might 

likely help to improve its accuracy. 

Results from the investigation of factors suggest that bug warnings are similar to ar

chitectural warnings in that each warning is related to a specific static dependency, 

and in that the duration of each warning can be determined from checking whether 

the same dependency occurs as the software evolves [Kim et al. 2006]. On the other 

hand, co-location of architecture warnings refers to a relationship between either two 

modules or two types, usually at a higher levei than the co-location of bug warnings, 

which are computed at the lower levei of methods/procedures [Kremenek and Engler 
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2003]. Similar to bug warnings, I looked at source code instabilities using measures of 

code churn [Nagappan and Ball 2005], and tried to understand how they affected ar

chitectural violations. However, I also looked jX concepts that have not been analyzed 

on studies of prioritizing bug warnings. Such concepts are more related to people and 

their relationships to artifacts (e.g., a developer's knowledge about the source code) 

and to themselves (e.g., a developer's centrality in a social network of source code 

committers). 

8.4 The ERM Process 

This dissertation focused on the steps of a static conformance checking process that 

require intensive manual effort by software developers, such as producing a high-level 

model, mapping code entities onto high-level nodules, and prioritizing results from 

checking. The solution, named the evolutionary reflexion model process, changes the 

original RM technique, introducing a partial automation of the aforementioned steps. 

Clearly, results were more promising for mapping and prioritizing than they were for 

producing a high-level model, as I inferred from the quantitative measures in the em-

pirical evaluations. 

Returning to Figures 2.3, 2.4 and 2.5 in Chapter 2, we can look at the impact of the 

developed techniques in the whole ERM process. 

Had the empirical results been good for any of the four clustering algorithms evaluated 

in Chapter 5, in terms of accuracy and stability, there would have been an impact on 

the design clustering step shown in Figure 2.4. Instead, what I found out is that the 

abstracting power of these algorithms is limited in the context of software evolution. 

On the other hand, I argue that there are likely more promising results in using the 

incremental mapping techniques developed in Chapter 6 in the semi-automated design 

re-clustering step shown in the same figure. In this case, there is still a large manual 

effort to recover an initial architecture, but the effort to keep it up-to-date is reduced, 

thanks to incremental mapping/re-clustering teciiniques. 

From another standpoint, I found substantially more promising results in the steps of 
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the conformance checking subprocess shown in Figure 2.5. Results of this work can 

effectively reduce the manual effort in the step of semi-automated design mapping. 

In Chapter 6, I found that the proposed incremental automated mapping technique 

that combines structural dependencies and source code vocabulary gets the highest 

F-measure values for both singleton, small and large source code changes. Since 

lightweight development processes usually work with incremental changes, and the 

design mapping has to be revised each time changes are applied to the source code, 

one can infer that manual effort shall be reduced when applying semi-automated de

sign mapping to the conformance checking process. 

As another positive outcome in the conformance checking subprocess, the step of vio

lation logging in Figure 2.5 benefits from the techniques developed in Chapter 7. By 

focusing developers' attention to a reduced and precise set of violations found by a 

violation recommender based on software history, it is possible to reduce their manual 

effort to analyze results from conformance checks. Empirical results with a top-10 

violation recommender showed an improvement in precision of at least 57% for four 

subject systems, when compared to the baseline of selecting K random violations from 

the full set of weekly violations. Knowing that íime constraints might prevent devel

opers' adopting a conformance checking process, especially when tool results show 

irrelevant information, results as the ones found in this work may contribute to the 

adoption of conformance checking techniques. 

8.5 General Issues 

Beyond the specific results for the ERM process steps, empirical results also brought 

scientific insights on the nature of software development and evolution. For instance, 

case studies on mapping showed differences between the nature of modularization 

that mapping techniques achieve, when comparing structural-based versus information 

retrieval techniques. Empirical investigation of factors likely to influence violation 

relevance suggested that architectural violations are very different from software bugs. 

Finally, it seems important to return to the main research question in this dissertation: 
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how the manual effort to apply the reflexion model technique could be reduced in the 

context ofevolving, sparselely documented software. I tried to answer this question by 

showing empirical evidence that the adoption of the ERM process can reduce this ef

fort. Using specific software tools, partial auton.ation of the manual effort is possible. 

This was shown in this work, especially in Chapters 6 and 7, that respectively deal with 

the steps of mapping and violation logging. The hypothesis of finding a both accurate 

and stable clustering technique to produce high-level models could not be supported by 

empirical evidence. However, I found empirical evidence that supports the hypothesis 

that combining structural dependencies and information from source code can indeed 

partially automate the mapping step in the RM technique, with improvement against 

existing techniques. I also found empirical evidence that correlation between viola

tion relevance and variables from software history can be used to prioritize violations 

resulting from conformance checks, with improved precision against a baseline of a 

random selection of violations. 

Last but not least, it is worth mentioning that existing commercial tools can benefit 

from the results of this dissertation, especially the ones devoted to static architecture 

analysis. Reduced manual effort when using such tools can improve the productivity 

of software developers performing tasks of architecture evaluation. 

8.6 Future Work 

Future work is discussed below, both on the main threads of this dissertation and on 

additional issues. 

8.6.1 Evaluation of Architecture Recovery Techniques 

Results found both in this work and in related literature [Wu et al. 2005] point to the 

limitation of existing quantitative measures to evaluate clustering algorithms. Combin

ing quantitative measures with qualitative evaluation seems to be the most appropriate 

way to analyze architecture recovery techniques, especially when it regards to the use-

fulness of these techniques to software developers. 
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Another research path on quantitative evaluation is the use of synthetic models of 

software modularization and evolution. Clustering algorithms can be evaluated using 

a framework of complex networks and random graphs. Initial work has been pursued 

in this area by Souza et al. [Souza et al. 2010]. They suggest the use of synthetic 

software networks as a means of evaluating clustering algorithms, and propose a model 

for generating synthetic networks that follow architectural constraints. This evaluation 

approach might capture the complex nature ú software decompositions that is not 

done by a measure of non-extremity, as it was explored in this dissertation. Adding the 

dimension of evolution to these models shall allow the generation of evolving models 

that could be used to evaluate architecture recovery techniques in a context of software 

evolution. 

Benchmarks are needed in order to improve evaluation in software engineering re

search, as it has been pointed by Sim and colleagues [Sim et al. 2003]. The use 

of benchmarks to evaluate architecture recovery techniques has been previously pro-

posed, and a benchmark for systems developed in C has been produced [Koschke and 

Simon 2003]. Adding systems to this benchmark would be appropriate, and the Java 

systems studied in this dissertation can be a good starting point. The dimension of 

evolution shall be incorporated to this type of benchmark. 

The evaluation of clustering techniques performed in this work was targeted on pub-

lished software releases of open source software. Using finer-grained changes such as 

weekly or monthly versions, or even atomic revisions commited to a software reposi-

tory might reveal important issues on stability of the techniques, although the amount 

of information to be analyzed might be much larger. 

Last, but not least, once there is some basic consensus on the research community 

on how evaluation should be done, on what metrics to use on quantitative evaluation, 

on what subjective aspects must be taken into account on qualitative evaluation of 

these techniques, there is room for further empirical investigation of a larger range of 

architecture recovery techniques, especially the ones focused on automated recovery. 
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8.6.2 Incremental Mapping/Clustering 

The use of software repository mining to evaluate incremental mapping is a natural 

follow-up of the work performed in this dissertation. Using real changes as the input 

to mapping techniques will help to improve the validity of this study. Changes both 

on a fine-grained (e.g., atomic changes) and on a coarse-grained levei (e.g., weekly or 

monthly changes) can be input to these techniques, since the frequency of conformance 

checks may vary in different projects. 

A study of semi-automated mapping seems relevant, using a mapping tool as a rec

ommender, instead of fully automated approach as it was discussed here. Both quan

titative and qualitative analysis of semi-automated mapping would be appropriate for 

evaluation, focusing on solutions to limit the size of generated candidate sets, and on 

the classification accuracy of the candidate sets. 

8.6.3 Recommenders for Architectural Warnings 

Both in the investigation of factors related to violation relevance and in the recom-

mending and filtering tools proposed in this dissertation, I used automated heuristics 

to assign the value of the dependent variable, i.e., violation relevance. The use of 

human oracles to assign relevance values can improve the validity of the evaluations 

performed, albeit the amount of information required to classify hundreds or thousands 

of violations of systems subject to evaluation. 

An interesting experiment is to repeat this study in proprietary systems. A larger num

ber of committers might be available in such systems, what would also improve the 

analysis of factors such as degree-of-authorship and developer centrality. 

Another interesting analysis that can be performed is the use of multivariate statistical 

regression techniques to investigate the factors that correlate with violation relevance, 

such as in a previous work on bug warnings [Ruthruff et al. 2008]. 

And last, but not least, the analysis of additional factors that might correlate with 

violation relevance and that have not been studied here is a natural complement to this 
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work. Typical candidate factors would be module or type complexity, and cohesion 

metrics for modules or types. 

8.6.4 Additional Issues 

Prioritizing warnings from software tools is an active field of research. It has been 

strongly focused on bug warning tools, but it can be extended to other tools that warn 

developers of software issues. The same way it was done here for architecture check-

ers, it can be done for other tools such as compilers, testing frameworks, and low-level 

design checkers. 

Architectural violations are important to reveal discrepancies between intended and 

implemented design. Work that focuses on pointing issues in the intended design and 

suggesting changes in high-level models seems an important research topic. Suggest-

ing architectural changes from the analysis of module coupling and cohesion, or from 

other measures that relate to violation relevance is in the scope of a broader research 

topic of recommender systems for software engineering. 

This work focused on a specific architecture checking technique, namely the reflexion 

model technique. Additional research shall integrate results of this work with anal

ysis of other architecture checking techniques and tools. This might provide more 

generality to the results found here. 

Finally, empirical evaluation of an architecture conformance checking process, as the 

one discussed in this work, is an important topic that also deserves attention from the 

research community. User studies of architecture checking tools and how these tools 

fit into the software development process seen an appropriate evaluation approach for 

this topic. 



Chapter 9 

Conclusions 

C O N C L U S Õ E S 

Neste capítulo, as conclusões desta tese ião elencadas, assim como as con

tribuições deste trabalho de pesquisa, e alguns comentários tinais. 

In this chapter, conclusions are drawn, followed by a summary of contributions of this 

dissertation and some final remarks. 

My thesis has been that it is possible to enable static architectural conformance check

ing of evolving software, reducing the manual effort in this process by using informa

tion available in software artifacts. I have focused on specific steps of a conformance 

checking process based on the reflexion model technique, namely: i) the generation of 

high-level module views of undocumented software; ii) the mapping between source 

code and high-level modules; and iii) the analysis of results produced by architecture 

checks. The results have been particularly ene mraging in the last two steps. 

Enabling the generation of high-level models has been well-explored by the research 

community, and I evaluated specific existing software clustering techniques to generate 

a high-level model. The evaluation was based on measures of accuracy and stability. I 

measured accuracy using metrics of non-extrermty of cluster distribution and authori

tativeness of generated partitions, and I measured stability between generated models 

for two software versions. Empirical results from a case study with four subject sys

tems were derived for four different clustering algorithms. Analysis of the results 
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showed that no algorithm performs best for ali measures, and that they are limited in 

providing fully automated module view recovery. Instead, I argued that such clustering 

algorithms can be a first step in a process guided by software developers to produce 

high-level models, and that this step can be fo'1owed, during software evolution, by 

incremental clustering techniques. 

The reflexion model technique requires a mapping between source code entities and 

the modules in the high-level architectural model. I showed that this mapping can be 

enabled by the use of automated mapping techniques. To do such, I proposed a map

ping technique based on information retrieval of software vocabulary, and combined it 

with an existing mapping technique based on structural dependencies. This combina-

tion led to the best results of precision and recall in an empirical study that compared 

mapping techniques based only on structural dependencies, only on information re

trieval, and on both. The empirical study was made of two case studies with four 

subject systems, nine high-level models and three different scenarios of source code 

changes. Results also pointed that, for the studied systems, the proposed technique 

showed the highest F-measure values for both singleton, small and large source code 

changes. Such results suggest that the mapping step in the conformance checking pro

cess can be enabled by automated techniques. However, results still need to be revised 

by software developers, which suggests a semi-automated approach for mapping. 

Finally, I showed that the production of results from the checking step in the confor

mance checking process can be enabled by the use of a recommending tool based on 

software history. In order to do this, I first investigated five different factors extracted 

from software history that could likely correlate with the architectural violations gener

ated by the checking step. Correlation with violation relevance was stronger with vio

lation duration and violation co-location and weaker with degree-of-authorship, while 

no correlation was found with code churn and developer centrality. Then, I showed 

that prioritizing resulting violations is feasible by producing a prototype recommender 

based on support vector machines. Subsequently, I evaluated the recommender by 

retrospective experiments on four open source software systems. Results from a pri-

oritizer that focused developer's attention to the top-10 most relevant architectural vi

olations showed an improvement in precisior of at least 57%, when compared to a 
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baseline of randomly-selected violations. Changing the prioritizer into a ciassifier al-

lowed to analyze a different scenario: filtering irrelevant violations. This scenario was 

evaluated by experiments, where the ciassifier reduced the amount of work to analyze 

violations in more than half for the analyzed systems, while still keeping good filtering 

quality, measured in terms of specificity, sensiíivity and precision. 

9.1 Contributions 

This dissertation adds to the body of knowledge on static architecture conformance 

checking of evolving software. More specifically, the contributions of this work are: 

(a) An empirical evaluation of clustering algorithms in the context of software evo

lution that shows their limitation to recove." static architecture module views in a 

fully automated scale; 

(b) An incremental technique to map source code entities onto modules in high-level 

models based on information retrieval of software vocabulary, and its combina-

tion with a structural-based mapping technique; 

(c) An empirical evaluation of incremental mapping techniques in terms of both pre

cision and recall; 

(d) An investigation of static architectural violations of evolving software systems, 

and of some of the factors that could correlate to the relevance of violations; 

(e) Design and prototyping of a recommender system that prioritizes the iop-K vio

lations based on learning from previous ío ftware history; 

(f) Evaluation of the recommender system above in terms of precision of the recom-

mendations; 

(g) Design and prototyping of a filter that removes irrelevant violations from check

ing results; 

(h) Evaluation of the violation filter in terms ot information retrieval criteria of speci

ficity, sensitivity and precision; 
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(i) Development of a prototype toolset to enable partial automation of a lightweight 

static conformance checking process. 

9.2 Final Remarks 

Adding the dimension of software evolution to the analysis of software engineering 

techniques, as it was done in this work with static architecture conformance check

ing, requires different evaluation approaches. It is possible to both model software 

changes as well as mine changes from software repositories. Different granularities 

may be used for the time variable, from atomic changes to a repository, weekly ver-

sions or even software releases. Evaluation criteria must deal with the dimension of 

evolution, and even new criteria may be derivt-d from this dimension. Studies such as 

the ones performed in this dissertation can bring new insights to the scientific process 

of understanding software evolution as well as to the design of tools, techniques and 

approaches to keep software evolution and complexity under control by the software 

team. 



Appendix A 

Design Suite: A Toolset for the 

Evolutionary Reflexion Model Process 

Design Suite: U M A S U Í T E D E F E R R A M E N 

T A S PARA o P R O C E S S O D E M O D E L O S D E R E 

F L E X Ã O E V O L U C I O N Á R I O S 

JVa Seção 2.2, foi descrito um processo de checagem de conformidade intit

ulado processo de modelos de reflexão evolucionários (ERM). Para tomar o 

processo ERM factível e facilitar o seu uso em um ambiente de pesquisa, foi 

projetada uma suíte de ferramentas chamada Design Suite. Neste Apêndice, 

esta suíte é descrita, assim como os detalhes de cada etapa do processo 

ERM, e como estas etapas são implementadas na suíte. 

In Section 2.2, I described a conformance checking process named the evolutionary 

reflexion model (ERM) process. To make the ERM process feasible and to facilitate 

its use in a research enviroment, I designed a toolset named Design Suite. In this Ap

pendix, I describe this toolset and provide detí ils about each step of the ERM process 

and how these steps are implemented in the toolset. 

The toolset is made of the following tools: 

Design Wizard: Previously existing low-level conformance tool [Brunet et al. 2011] 

that was adapted to extract designs into a GXL file; 
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Design Model: Stores a multi-level design in main memory; 

Design Abstractor: Lifts, filters and clusters designs; 

Design Viewer: Visualizes designs in different layouts and allows online interaction 

with the other tools; 

Design Mapper: Maps lower-level entities onto higher-level modules; 

Design Checker: Allows to define high-level models and check them by producing 

reflexion models; 

Design Miner: Improves results of checking by means of either prioritizing or filter

ing architectural violations. 

A diagram showing the data flow in the tools follows a similar flow as the ERM process 

and is shown in Figure A . l . It can be seen vhat the Design Viewer tool provides a 

platform to interact with and to visualize results from the other tools. 

s y s t e m b y t e c o d e s 

Design Wizard 

c o d e - l e v e l d e s i g n f i l e 

Design Model 

s o u r c e m x i ' 

Design Abstractor 

s o u r c e m o d e l 

Manual Architecture 
Definitions 

Design Mapper 

mapping 

Design Checker 

d e f i n e d 
- ' h i g h - l e v e j 

m o d e l 

v i o l a t i o n s 

Design Miner 
s y s t e m h i s t o r y 

Figure A. 1: Dataflow view for the Design Suite toolset 

An architecture module view of the toolset is shown in Figure A.2. Static dependencies 

between components and tools are shown as directed edges. 
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Figure A.2: Architecture module view for the Design Suite toolset 

A.l Architecture recovery 

Different from the original reflexion technique, where a top-down process for archi

tecture recovery is pursued, I propose a bottom-up process instead. Starting from a 

source code version retrieved from the software repository, design is extracted, lifted 

and clustered into a high-level design in an automated fashion. Semi-automated and 

manual steps allow to re-cluster the high-level design into a meaningful representa-

tion in terms of a module view, which is completed with the definition of structural 

architectural rules. 

A . l . l Design Extraction 

The extraction of software design implemented in this work is limited to object-

oriented code implemented in Java. Compiled bytecodes from a Java software are 

retrieved from the software repository. Then, facts are extracted by the Design Wizard 

f UFCG/BIBUOTECA/BCI 
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tool 1, which recovers entities and relations into a low-level design model. Extracted 

entities and relations are presented in Table A. 1. 

Entities and relations are extracted from the abstract syntax tree (AST) and only the 

relevant information is kept in the design model. In the extracted entities, information 

is limited to packages, types and members of Java types. Code statements are not 

kept in the design model, but are used to recover relations between entities. Relations 

include containment relations, inheritance between types and additional dependencies 

between types such as method calls and field sccesses. 

Table A . l : Entities and relations extracted by Design Wizard 

Entity Relation 

package package contains class 

package contains interface 

interface interface contains field 

interface contains method 

interface extends interface 

class class contains field 

class contains method 

class contains class 

class extends class 

class implements interface 

field field is-a class 

method method calls method 

method accesses field 

method receives field 

method returns field 

method throws class 

method catches class 

Extracted design from Design Wizard is exported to a graph representation in an X M L 

format named GXL, a format designed for data sharing between reengineering tools 

[Holt et al. 2006]. The result is a typed, attributed and directed multigraph. 
1 http://wwww.designwizard.org 

http://wwww.designwizard.org
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A.1.2 Design Lifting 

Although software clustering could be applied to low-level entities like methods and 

fields, Java object-oriented data types provida a better abstraction levei to start the 

clustering step. In order to work with types, one first has to encapsulate lower-level 

entities such as fields, methods and inner classes in their containing types and lift 

lower-level relations to the levei of type dependencies. This step is known as design 

lifting and is performed using the Design Abstractor tool, which was developed to 

support this work. 

A special graph results from the lifting step: a typed, attributed, directed, hierarchi-

cal multigraph. It can either be stored in memory to allow for further processing or 

exported to other tools as a graph file in GXL. 

A. 1.3 Design Clustering 

Clustering was chosen as the architecture recovery technique to abstract types into 

modules because of the variety of available algorithms for software clustering as well 

as the variety of information that clustering can take as input (e.g.: structural depen

dencies, source code vocabulary). 

Five previously existing algorithms for software clustering were implemented in the 

Design Abstractor tool in order to give software developers a variety of architecture 

recovery techniques. Two of them are algorithms typically used in the pattern recog-

nition community: k-means clustering and hierarchical clustering. They both take a 

feature vector as input. In the context of this work, a feature vector may either be a 

vector of structural dependencies or a vector with information extracted from source 

code vocabulary. Two other algorithms are modularization quality clustering, design 

structure matrix clustering, both optimization algorithms. They only take structural 

dependencies as input and use them to partitioii the software into structurally cohe-

sive and loosely coupled clusters. The last algorithm is edge betweenness clustering, 

which uses heuristics from social networks to discover communities in a graph. These 

algorithms are further explained in chapter 5. 
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Clustering operations may either be done through an API supplied by Design Abstrac

tor or through a GUI for design visualization named Design Viewer, also developed to 

support this work. 

A.1.4 Semi-Automated Design Re-Clustering 

An adaption of the orphan adoption technique [Tzerpos 1997] is used in order to im

prove the clusterings produced by design clustering algorithms. An attraction function 

is calculated between an orphan entity in a singleton cluster (or even in a small cluster) 

and another existing cluster. Clusters with higher function value will attract orphan en

tities into them, improving the non-extremity of the clustering [Bittencourt and Guer

rero 2009]. This process may be fully automated or semi-automated. In the former 

case, orphan entities are adopted by the module with highest attraction, provided that 

this attraction value exceeds a threshold. In the latter case, software developers choose 

among a set of clusters, ranked by the attraction function value. 

A.1.5 Manual Re-Clustering 

Clustering and orphan adoption techniques impose a clustering based on the heuris

tics used in each algorithm. Since the software clustering must reflect the develop

ers' view of the software, these automated ana semi-automated techniques work as 

a first approximation to the final module view. Manual re-clustering allows develop

ers to change and improve the design clustering according to their own heuristics and 

knowledge of the system. Three operations of manual re-clustering were implemented 

on Design Abstractor. entity moves, module splits and module joins. Executing these 

operations are facilitated by a graphical interface to the re-clustering process, imple

mented as a command in the Design Viewer tool. 

A. 1.6 Definition of Module Views and Architectural Rules 

After discovering the modules that compose the software system, software developers 

have to name these modules for better understanding and to facilitate communication 
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among stakeholders. Design Viewer can be used to change names given by automated 

or semi-automated techniques. 

In addition, developers also need to establish relations between modules. These are the 

structural architectural rules used to impose constraints over the development process 

to enforce architectural decisions. Rules are written in a plain text file, which is later 

input to the Design Checker tool. 

As previously mentioned in this chapter and elsewhere in this text, the envisioned 

scenario for use of these rules is in lightweight development processes. In such a 

scenario, architectural rule checking should not impose a large burden. Instead, it 

might be appropriate to insert the conformance checking process into existing activities 

of quality assurance. 

Design Checker also allows to generate architecture module view graphs based on the 

established rules in the textfile. By doing this, it is possible to view the list of recovered 

modules and the architecture constraints as either a graph diagram or another type of 

visualization layout in the Design Viewer tool. 

A.2 Conformance Checking 

The subprocess of architecture recovery ends up with an architecture module view and 

architectural rules. It might naturally be followed by checking architectural rules and 

that can be done straight after architecture recovery finishes. Nevertheless, as software 

evolves, checking must be done against a different source code. Source code enti

ties may have been added, removed or changed. Even software architecture may have 

changed, although not so frequently as source cede. Thus, updating representations of 

architecture and implementation may be needed in the conformance checking subpro

cess. Choosing when to update them, whether daily, weekly or arbitrarily is another 

research issue out of the scope of this work, since this update adds a burden to software 

developers. 

The envisioned subprocess starts with repeating design extraction and lifting steps as 

in architecture recovery. Since clustering has previously produced a mapping from 
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type-level entities to modules, the next step here is keeping this mapping up-to-date, 

instead of doing clustering from scratch. Mapping is incrementally updated in a semi-

automated fashion by exploring information from source code. It may happen that 

semi-automated mapping techniques follow heuristics that do not fit to developers' 

rationale and a manual re-mapping step may be needed. After updating mapping, de

velopers may focus on the designed architecture. Although not so frequent as source 

code changes, architecture changes may be needed in order to allow flexibility in de

sign and adapt to a changing context. Finally, with up-to-date representations of de

signed architecture and implementation, one may proceed to check conformance of 

architectural rules. Producing reflexion models with the Design Checker API allows 

to uncover eventual rule violations. Design Checker also logs rule violations, allowing 

for later analysis. Violation logs are also used in the Design Miner tool, together with 

additional measures based on software history, to improve the results of architectural 

checks. This improvement is be done by Design Miner either by filtering irrelevant 

violations or by producing a priority list of violations. Solving violations requires de

velopers to either correct source code to abide hy architectural rules, which might be 

the usual action, or fix architectural rules, which might be unusual but might also be 

relevant for not sacrificing design flexibility in a lightweight development process. 

The steps of the conformance checking subprocess are described in detail in the fol-

lowing. 

A.2.1 Architecture Changes 

Software changes may sometimes have a negative impact on software internai quality. 

Architecture erosion may arise and one needs to be able to refactor software archi

tecture the very same way source code can be refactored. Architecture module view 

changes may happen to either modules or dependencies. Module changes may either 

be module additions, removais, joins or splits. And dependency changes may be con-

straint additions, constraint removais and constraint exceptions. This step produces an 

up-to-date architecture module view and its associated rules that allow the following 

steps to be performed. 
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A.2.2 Design Re-Extraction and Re-Lifting 

Design is re-extracted and re-lifted to update entities and relations that might have 

changed both in low-level and in type-level de ;ign. Both extraction and lifting happen 

in the same way as previously described in the section on architecture recovery. 

A.2.3 (Semi-)Automated Mapping 

Updating the mapping from type-level entities to modules is essential to compute re

flexion models that take into account source code changes. Removed type-level entities 

are simply removed from mapping. On the other hand, newly added type-level entities 

should be mapped just like previously existing entities, if they are to be considered in 

architectural rule checking. Moreover, architecture changes may also drive mapping 

changes. 

Adding new type-level entities to modules is solved by means of orphan adoption 

techniques. A new entity is called an orphan and information from source code may 

be used as a heuristic to compute the most likely module that should adopt the or

phan. Mapping is done by means of attraction functions. An attraction function 

should rank modules according to their likelihood to adopt the orphan. Information 

from source code to compute the ranking is deiived either from structural dependen

cies, from source code vocabulary or from a combination of both. Three attraction 

functions were implemented: countAttract, MQAttract and IRAttract. The two 

first ones are based on structure and the last one on vocabulary. 

Mapping is performed in Design Mapper either as a fully automated step or a semi-

automated one. Fully automated mapping allows adopting orphans by modules whose 

attraction value is the highest and, besides that, detached from other modules' attrac

tion values. Semi-automated mapping, instead, shows a list of modules ranked by 

attraction value and the developers themselves decide which module should adopt the 

orphan. 
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A.2.4 Manual (Re-)Mapping 

As in manual re-clustering, manual re-mapping may be needed to map newly added 

entities to modules according to software developers' rationale, which may not be cap-

tured by semi-automated mapping heuristics. Part of manual re-mapping is similar to 

design re-clustering and it uses Design Viewer as an interface to move entities between 

modules. The remaining part of re-mapping consists of manually mapping orphan 

entities not mapped in the semi-automated mapping step. 

A.2.5 Checking and Violation Logging 

This is the most important step from the conformance checking process. It should be 

performed frequently, both in the pre-commit phase and in nightly or weekly builds. 

It simply means computing reflexion models betweeen the lifted source model and the 

high-level model, by using the Design Checker tool. 

Checking during pre-commit changes allows developers to perceive violations before 

they are made permanent. It can become part of the development process just like 

running unit tests has. 

During nightly or weekly builds, checking can be performed together with software 

quality assurance procedures. Architectural rule violations are logged, providing de-

tails about each violation, i.e.: 

• which architectural rule is violated and which modules are involved; 

• which type-level entities are involved in the violation and what is the associated 

dependency that causes it; 

• which low-level source code entities are involved in the violation and what is the 

associated dependency in the source code that causes it. 

The Design Miner tool flattens the hierarchicil architectural violation logs into low-

level violation logs. With these flattened violation logs, and from extracting additional 

measures from the history of software artifacts, it is possible to either filter irrelevant 
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violations or produce a priority list of violations to focus developer's attention to the 

most important architectural rule violations. 

A.2.6 Violation Resolution 

With details from violations from either graphical reflexion models or textual violation 

logs, developers may fix the problems by either changing source code or changing the 

architecture module view and rules. 



Appendix B 

Results of the Study of Clustering 

Algorithms 

R E S U L T A D O S D O E S T U D O D E A L G O R I T M O S D E 

A G R U P A M E N T O 

No Capítulo 5, foi apresentado o design experimental, alguns resultados 

e uma discussão de uma avaliação experimental de algoritmos de agrupa

mento. Aqui, eu apresento gráficos completos para as medidas absolutas de 

não-extremidade da distribuição dos clusitrs, autoridade e estabilidade. 

In Chapter 5, I presented the experimental design, some results and a discussion of 

an empirical evaluation of clustering algorithms. Here, I present the complete graphs 

for the absolute measures of non-extremity of clustering distribution, authoritativeness 

and stability. 
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B.l Non-Extremity of Cluster Distribution 

Figure B.2: NED scores for EasyMock 
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Figure B.4: NED scores for JabRef 
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B.2 Authoritativeness 
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Figure B.5: MoJoSim authoritativeness scores for JUnit 
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Figure B.6: MoJoSim authoritativeness scores for EasyMock 



B.2 Authoritativeness 166 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 2 3 2 4 2 5 

v e r s i o n 

Figure B.7: MoJoSim authoritativeness scores for JEdit 
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Figure B.8: MoJoSim authoritativeness scores for JabRef 
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Figure B.10: MoJoSim stability scores for EasyMock 
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Figure B. l 1: MoJoSim stability scores for JEdit 

Figure B.l2: MoJoSim stability scores for JabRef 



Appendix C 

Models and Mapping for the Study of 

Mapping Techniques 

M O D E L O S E M A P E A M E N T O S P A R A O E S T U D O 

D E T É C N I C A S D E M A P E A M E N T O 

Neste Apêndice, os modelos de alto nível, modelos de código-fonte e ma-

peamento são disponibilizados na forma de links para um web site com os 

dados brutos. 

System data for high-level models, source code and mapping is available in a directory 

of a web site.1 

This directory with raw data contains: 

• files with a graphical representation of nine module views for the four subject 

systems; 

• files with a graph representation (in GXL) of the source code entities for the four 

subject systems, extracted by the Design Wizard tool; and 

• files with the mapping from source code entities for ali four subject systems onto 

the high-level modules in their respective module views. 

Files can be found at www. gmf. u f c g . edu . b r / ~ r o b e r t o / d a t a / w c r e 2 0 1 0 / 
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The mapping files only contain the ids for each mapped source code entity. The id tag 

uniquely defines each entity and is represented as a node in the GXL file for the source 

code entities. The name of each entity is available in this same, under the label tag for 

each node. Files for each subject system are described next. 
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C l Design Wizard (DW) 

High-Level Module View: 

D e s i g n W i z a r d _ h i g h . p d f 

Low-Level Module View: 

D e s i g n W i z a r d _ l o w . p d f 

Source Code Entities: 

d w _ l l . g x l 

Mapping onto High-Level Module View: 

d w _ m a p p i n g _ h i g h . t x t 

Mapping onto Low-Level Module View: 

d w _ m a p p i n g _ l o w . t x t 

1 \ Í F C G I B 1 B U 0 T « 
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C.2 Design Suite (DS) 

High-Level Module View: 

D e s i g n S u i t e _ h i g h . p d f 

Low-Level Module View: 

D e s i g n S u i t e _ l o w . p d f 

Source Code Entities: 

s u i t e _ l l . g x l 

Mapping onto High-Level Module View: 

s u i t e _ m a p p i n g _ h i g h . t x t 

Mapping onto Low-Level Module View: 

s u i t e _ m a p p i n g _ l o w . t x t 
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C.3 OurGrid (OG) 

High-Level Module View 1 (layers): 

O u r G r i d _ h i g h _ a n d _ l o w . j p g 

High-Level Module View 2 (components): 

O u r G r i d _ c o m p . p d f 

Low-Level Module View: 

O u r G r i d _ h i g h _ a n d _ l o w . j p g 

Source Code Entities: 

o u r g r i d _ l l . g x l 

Mapping onto High-Level Module View 1: 

o u r g r i d _ m a p p i n g _ h i g h . t x t 

Mapping onto High-Level Module View 2: 

o u r g r i d _ m a p p i n g _ c o m p . t x t 

Mapping onto Low-Level Module View: 

o u r g r i d _ m a p p i n g _ l o w . t x t 
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C.4 Mylyn (ML) 

High-Level Module View: 

M y l y n _ h i g h _ a n d _ l o w . p d f 

Low-Level Module View: 

M y l y n _ h i g h _ a n d _ l o w . p d f 

Source Code Entities: 

m y l y n _ l l . g x l 

Mapping onto High-Level Module View: 

m y l y n _ m a p p i n g _ h i g h . t x t 

Mapping onto Low-Level Module View: 

m y l y n _ m a p p i n g _ l o w . t x t 



Appendix D 

Results of the Study of Mapping 

Techniques 

R E S U L T A D O S D O E S T U D O D E T É C N I C A S D E 

M A P E A M E N T O 

No Capítulo 6, for apresentado o design experimental, algubns resultados e 

uma avaliação de técnicas automáticas de mapeamento incremental. Aqui, 

são apresentados os resultados completos da avaliação quantitativa. 

In Chapter 6,1 presented the experimental design, some results and a discussion of an 

evaluation of incremental automated mapping techniques. Here, I present the complete 

results of the quantitative evaluation. 
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D.l Case Study 1: Mapping o ato High-Level Views 

ir Isi Isi count c o u n t j s i 

• correct unmapped * incorrect 

Figure D. I : Mass function for singleton changes: Design Wizard high-level view 

count mq ir Isi ls i _count c o u n t j s i 

a correct u n m a p p e d a incorrect 

Figure D.2: Mass function for singleton changes: Design Suite high-level view 
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count m q ir Isi ls i _count c o u n t j s i 

• correct • unmapped tt incorrect 

Figure D.3: Mass function for singleton changes: Mylyn high-level view 

count m q ir Isi ls i_count c o u n t j s i 

• correct • unmapped «incorrect 

Figure D.4: Mass function for singleton changes: OurGrid high-level layered view 

count m q ir -st ls i _count c o u n t j s i 

• correct :s unmapped »incorrect 

Figure D.5: Mass function for singleton changes: OurGrid high-level component view 
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D.2 Case Study 2: Mapping onto Low-Level Views 
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Figure D. 16: Mass function for singleton changes: Design Wizard low-level view 
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Figure D. 17: Mass function for singleton changes: Design Suite low-level view 
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Figure D. 18: Mass function for singleton changes: Mylyn low-level view 

Figure D. 19: Mass function for singleton changes: OurGrid low-level view 
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Appendix E 

Models and Mapping for the Study on 

Prioritizing Violations 

M O D E L O S E M A P E A M E N T O S P A R A O E S T U D O 

D E P R I O R I Z A Ç Ã O D E V I O L A Ç Õ E S 

Neste Apêndice, as visões modulares de alto nível e o mapeamento das 

entidades de código-fonte para os módulos nestas visões são detalhados. 

Para cada sistema, os módulos são descritos, seguidos pelo mapeamento na 

forma de expressões regulares. Finalmente, as relações autorizadas entre 

módulos são expressas como relações binárias entre os módulos fonte e 

destino. 

The high-level module views and the mapping f rom source code entities onto the mod

ules in these views are detailed in the following pages. For each system, modules are 

first described. Then, a mapping from source code entities onto the modules is de-

scribed by regular expressions. Finally, the authorized relations between modules are 

expressed as binary relations between a source module and a target module. 

189 
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E . l SweetHome3D 
# m o d u l e s 
s w e e t H o m e 3 D M o d e l 
s w e e t H o m e 3 D T o o l s 
s w e e t H o m e 3 D P l u g i n 
s w e e t H o m e 3 D V i e w C o n t r o l l e r 
s w e e t H o m e 3 D S w i n g 
s w e e t H o m e 3 D J a v a 3 D 
s w e e t H o m e 3 D I O 
s w e e t H o m e 3 D A p p l e t 
s w e e t H o m e 3 D A p p l i c a t i o n 

# m a p p i n g 
# < h i g h _ l e v e l _ m o d - j l e > < r e g u l a r _ e x p r e s s i o n > 
s w e e t H o m e 3 D M o d e I c o m . e t e k s . s w e e t h o m e 3 d . m o d e l . « 
s w e e t H o m e 3 D T o o l s com. e t e k s . s w e e t h o m e 3 d . t o o l s . * 
s w e e t H o m e 3 D P l u g i n c o m . e t e k s . s w e e t h o m e 3 d . p l u g i n . * 
s w e e t H o m e 3 D V i e w C o n t r o l I e r c o m . e t e k s . s w e e t h o m e 3 d . v i e w c o n t r o l l e r . * 
s w e e t H o m e 3 D S w i n g c o m . e t e k s . s w e e t h o m e 3 d . s w i n g . * 
s w e e t H o m e 3 D J a v a 3 D c o m . e t e k s . s w e e t h o m e 3 d . j 3 d . -
5 w e e t H o m e 3 D I O c o m . e t e k s . s w e e t h o m e 3 d . i o . * 
s w e e t H o m e 3 D A p p l e t c o m . e t e k s . s w e e t h o m e 3 d . a p p l e t . * 
s w e e t H o m e 3 D A p p l i c a t i o n c o m . e t e k s . s w e e t h o m e 3 d ( ? ! ( . m o d e l I . t o o l s t . p l u g i n | . v i e w c o n t r o l l e r i . j 3 d I . i o I - a p p l e t ) ) . * 

# r e l a t i o n s 
# < s o u r c e _ m o d u l e > < t a r g e t _ m o d u i e > 
s w e e t H o m e 3 D T o o l s sweetHome3DModel 
s w e e t H o m e 3 D P i u g i n s w e e t H o m e 3 D M o d e l 
s w e e t H o m e 3 D P l u g i n s w e e t H o m e 3 D T o o l s 
s w e e t H o m e 3 D V i e w C o n t r o l l e r s w e e t H o m e 3 D M o d e l 
s w e e t H o m e 3 D V i e w C o n t r o l l e r s w e e t H o m e 3 D T o o l s 
s w e e t H o m e 3 D V i e w C o n t r o l l e r s w e e t H o m e 3 D P l u g i n 
s w e e t H o m e 3 D J a v a 3 D s w e e t H o m e 3 D M o d e l 
s w e e t H o m e 3 D J a v a 3 D s w e e t H o m e 3 C T o o l s 
s w e e t H o m e 3 D S w i n g s w e e t H o m e 3 D M o d e l 
s w e e t H o m e 3 D S w i n g s w e e t H o m e 3 D T o o l s 
s w e e t H o m e 3 D S w i n g s w e e t H o m e 3 D P l u g i n 
s w e e t H o m e 3 D S w i n g s w e e t H o m e 3 D V i e w C o n t r o l l e r 
s w e e t H o m e 3 D S w i n g s w e e t H o m e 3 D J a v a 3 D 
s w e e t H o m e 3 D I 0 s w e e t H o m e 3 D M o d e l 
s w e e t H o m e 3 D I O s w e e t H o m e 3 D T o o l s 
s w e e t H o m e 3 D A p p l e t s w e e t H o m e 3 D M o d e l 
s w e e t H o m e 3 D A p p l e t s w e e t H o m e 3 D T o o l s 
s w e e t H o m e 3 D A p p l e t s w e e t H o m e 3 D P l u g i n 
s w e e t H o m e 3 D A p p l e t s w e e t H o m e 3 D V i e w C o n t r o l l e r 
s w e e t H o m e 3 D A p p l e t s w e e t H o m e 3 D J a v a 3 D 
s w e e t H o m e 3 D A p p l e t s w e e t H o m e 3 D S w i n g 
s w e e t H o m e 3 D A p p l e t s w e e t H o m e 3 D I O 
s w e e t H o m e 3 D A p p l i c a t i o n s w e e t H o m e 3 D M o d e l 
s w e e t H o m e 3 D A p p l i c a t i o n s w e e t H o m e 3 D T o o l s 
s w e e t H o m e 3 D A p p l i c a t i o n s w e e t H o m e 3 D P l u g i n 
s w e e t H o m e 3 D A p p l i c a t i o n s w e e t H o m e 3 D V i e w C o n t r o l i e r 
s w e e t H o m e 3 D A p p l i c a t i o n s w e e t H o m e 3 D J a v a 3 D 
s w e e t H o m e 3 D A p p l i c a t i o n s w e e t H o m e 3 D S w i n g 
s w e e t H o m e 3 D A p p l i c a t i o n s w e etHome3D10 
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E.2 Ant 
* n o d j - e s 
o p t i o n a l 
c o m p i l e r s 
c o n d i t i o n 
r r a i c 
c v s l i b 
ema 11 

r e p o s i t o r y 
t a s k d e f s 
l i s t e n e r 
t y p e s 
a n t 
a n t . u t i l 
z i p 
t a r 
m a i l 
b z i P 2 

# m a p p i n g 
# < h i g h _ l e v e l _ m o d ' J l e > < r e g u l a r _ e x p r e s s i o n > 
o p t i o n a l o r g . a p a c h e . t o o l s . a n t . t a s k d e f s . o p t i o n a l . • 
c o m p i l e r s o r g . a p a c h e . t o o l s . a n t . t a s k d e f s . c o m p i l e r s . * 
c o n d i t i o n o r g . a p a c h e . t o o l s . a n t . t a s k d e f s . c o n d i t i o n . -
r m i c o r g . a p a c h e . t o o l s . a n t . t a s k d e f s . r r n i c . * 
c v s l i b o r g . a p a c h e . t o o l s . a n t . t a s k d e f s . c v s l i b . * 
e m a i l o r g . a p a c h e . t o o l s . a n t . t a s k d e f s . e m a i l . « 
r e p o s i t o r y o r g . a p a c h e . t o o l s . a n t . t a s k d e f 5 . r e p o s i t o r y . * 
t a s k d e f s o r g . a p a c h e . t o o l s . a n t . t a s k d e f s ( ? ! { . o p t i o n a l I . c o m p i l e r s | . c o n d i t i o n i . r m i c I . c v s l i b i . e m a i l I . r e p o s i t o r y ) ) . * 
l i s t e n e r o r g . a p a c h e . t o o l s . a n t . l i s t e n e r . » 
t y p e s o r g . a p a c h e . t o o l s . a n t . t y p e s . • 
a n t o r g . a p a c h e . t o o l s . a n t ( ? ! { . t a s k d e f s . l i s t e n e r ; . t y p e s I . u t i l I . f i l t e r s l . h e l p e r | . i n p u t | . l a u n c h l . l o a d e r \ . d i s p a t c h | . p r o p e r t y ) ) . * 
a n t . u t i l o r g . a p a c h e . t o o l s . a n t . u t i l . • 
z i p o r g . a p a c h e . t o o l s . z i p . » 
t a r o r g . a p a c h e . t o o l s . t a r . « 
m a i l o r g . a p a c h e . t o o l s . m a i l . * 
b z i p 2 o r g . a p a c h e . t o o l s . b z i p 2 . * 

# r e l a t i o n s 
# < s o u r c e _ m o d u l e > < t a r g e t _ m o d u ! e > 
o p t i o n a l t a s k d e f s 
o p t i o n a l l i s t e n e r 
o p t i o n a l t y p e s 
o p t i o n a l a n t 
o p t i o n a l a n t . u t i l 
o p t i o n a l z i p 
o p t i o n a l t a r 
o p t i o n a l m a i l 
o p t i o n a l b z i p 2 
c o m p i l e r s t a s k d e f s 
c o m p i l e r s l i s t e n e r 
c o m p i l e r s t y p e s 
c o m p i l e r s a n t 
c o m p i l e r s a n t . u t i l 
c o m p i l e r s z i p 
c o m p i l e r s t a r 
c o m p i l e r s m a i l 
c o m p i l e r s b z i p 2 
c o n d i t i o n t a s k d e f s 
c o n d i t i o n l i s t e n e r 
c o n d i t i o n t y p e s 
c o n d i t i o n a n t 

c o n d i t i o n a n t . u t i l 
c o n d i t i o n z i p 
c o n d i t i o n t a r 
c o n d i t i o n m a i l 
c o n d i t i o n b z i p 2 
r m i c t a s k d e f s 
r m i c l i s t e n e r 
r m i c t y p e s 
r m i c a n t 
r m i c a n t . u t i l 
r m i c z i p 
r m i c t a r 
r m i c m a i l 
r m i c b z i p 2 
c v s l i b t a s k d e f s 
c v s l i b l i s t e n e r 
c v s l i b t y p e s 
c v s l i b a n t 
c v s l i b a n t . u t i l 
c v s l i b z i p 
c v s l i b t a r 
c v s l i b m a i l 
c v s l i b b z i p 2 
e m a i l t a s k d e f s 
e m a i l l i s t e n e r 
e m a i l t y p e s 
e m a i l a n t 
e m a i l a n t . u t i l 
e m a i l z i p 
e m a i l t a r 
e m a i l m a i l 
e m a i l b z i p 2 
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r e p o s i t o r y t a s k d e f s 
r e p o s i t o r y l i s t e n e r 
r e p o s i t o r y t y p e s 
r e p o s i t o r y a n t 
r e p o s i t o r y a n t . u t i l 
r e p o s i t o r y z i p 
r e p o s i t o r y t a r 
r e p o s i t o r y m a i l 
r e p o s i t o r y b z i p 2 
t a s k d e f s l i s t e n e r 
t a s k d e f s t y p e s 
t a s k d e f s a n t 
t a s k d e f s a n t . u t i l 
t a s k d e f s z i p 
t a s k d e f s t a r 
t a s k d e f s m a i l 
t a s k d e f s b z i p 2 
l i s t e n e r a n t 
l i s t e n e r a n t . u t i l 
l i s t e n e r z i p 
l i s t e n e r t a r 
l i s t e n e r m a i l 
l i s t e n e r b z i p 2 
t y p e s a n t 
t y p e s a n t . u t i l 
t y p e s z i p 
t y p e s t a r 
t y p e s m a i l 
t y p e s b z i p 2 
a n t z i p 
a n t t a r 
a n t m a i l 
a n t b z i p 2 
a n t . u t i l z i p 
a n t . u t i l t a r 
a n t . u t i l m a i l 
a n t . u t i l b z i p 2 
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E.3 Lucene 
# m o d u l e s 
q u e r y p a r s e r 
s e a r c h 
i n d e x 
s t o r e 
a n a l y s i s 
u t i l 

d o c u m e n t 

t m a p p i n g 
# < h i g h _ i e v e i _ m o d u i e > < r e g u l a r _ e x p r e s s i o n > 
q u e r y p a r s e r o r g . a p a c h e . l u c e n e . q u e r y P a r s e r . -
s e a r c h o r g . a p a c h e . l u c e n e . s e a r c h . * 
í n d e x o r g . a p a c h e . l u c e n e . i n d e x . -
s t o r e o r g . a p a c h e . l u c e n e . s t o r e . * 
a n a l y s i s o r g . a p a c h e . l u c e n e . ( a n a l y s i s I c o l l a t i o n ) . * 
u t i l o r g . a p a c h e . l u c e n e . ( u t i l i m e s s a g e ) . * 
d o c u m e n t o r g . a p a c h e . l u c e n e . d o c u m e n t . * 
# r e l a t i o n s 
# < s o u r c e _ m o d u l e > < t a r g e t _ m o d u l e > 
q u e r y p a r s e r s e a r c h 
q u e r y p a r s e r i n d e x 
q u e r y p a r s e r d o c u m e n t 
q u e r y p a r s e r u t i l 
s e a r c h i n d e x 
s e a r c h a n a l y s i s 
s e a r c h d o c u m e n t 
s e a r c h u t i l 
i n d e x s t o r e 
i n d e x a n a l y s i s 
i n d e x d o c u m e n t 
i n d e x u t i l 
a n a l y s i s d o c u m e n t 
a n a l y s i s u t i l 
d o c u m e n t u t i l 
u t i l d o c u m e n t 
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E.4 ArgoUML 
# modules 
a p p l i c a t i o n 
diagrams 
no t a t i o n 
e x p l o r e r 
codeGeneration 
r e v e r s e E n g i n e e r i n g 
p e r s i s t e n c e 
p r o f i l e 
help 
moduleLoader 
gui 
model 
i n t e r n a t i o n a l i z a t i o n 
taskManagement 
co n f i g u r a t i o n 
swingExtensions 
o c l 
c r i t i c s 
javaCodeGeneration 

# mapping 
# <high_level_module> <regular_expression> 
a p p l i c a t i o n org.argouml.application.* 
diagrams org.argouml.uml.diagram.* 
notation org.argouml.notation.* 
exp l o r e r org.argouml.ui.explorer.* 
codeGeneration org.argouml.language.* 
revers e E n g i n e e r i n g org.argouml.uml.reveng.* 
p e r s i s t e n c e org.argouml.persistence.* 
p r o f i l e org.argouml.profile.* 
help org.argouml.help.* 
moduleLoader org.argouml.moduieloader\org.argouml.application.modules|org.argouml.application.api 
gui org.argouml.ui.* 
model org.argouml.model.* 
i n t e r n a t i o n a l i z a t i o n org.argouml.Í18n.* 
taskManagement org.argouml.taskmgmt.* 
c o n f i g u r a i i o n org.argouml.configuraiion.* 
swingExtensions org.argouml.swingext.* 
o c l org.argouml.ocl.* 
c r i t i c s org.argounl.cognitive.* 
javaCodeGeneration org.argouml.language.java.* 

# r e l a t i o n s 
# <source_module> <target_module> 
a p p l i c a t i o n diagrams 
a p p l i c a t i o n notation 
a p p l i c a t i o n explorer 
a p p l i c a t i o n codeGeneration 
a p p l i c a t i o n reverseEngineering 
a p p l i c a t i o n p e r s i s t e n c e 
a p p l i c a t i o n p r o f i l e 
a p p l i c a t i o n help 
a p p l i c a t i o n moduleLoader 
a p p l i c a t i o n gui 
a p p l i c a t i o n model 
a p p l i c a t i o n i n t e r n a t i o n a l i z a t i o n 
a p p l i c a t i o n taskManagement 
a p p l i c a t i o n c o n f i g u r a t i o n 
a p p l i c a t i o n swingExtensions 
a p p l i c a t i o n o c l 
a p p l i c a t i o n c r i t i c s 
a p p l i c a t i o n javaCodeGeneration 
diagrams notation 
diagrams gui 
diagrams model 
diagrams i n t e r n a t i o n a l i z a t i o n 
diagrams taskManagement 
diagrams c o n f i g u r a t i o n 
diagrams swingExtensions 
notation model 
nota t i o n i n t e r n a t i o n a l i z a t i o n 
n o t a t i o n taskManagement 
nota t i o n c o n f i g u r a t i o n 
n o t a t i o n swingExtensions 
e x p l o r e r gui 
e x p l o r e r model 
expl o r e r i n t e r n a t i o n a l i z a t i o n 
e x p l o r e r taskManagement 
expl o r e r c o n f i g u r a t i o n 
e x p l o r e r swingExtensions 
codeGeneration moduleLoader 
codeGeneration model 
codeGeneration i n t e r n a t i o n a l i z a t i o n 
codeGeneration taskManagement 
codeGeneration c o n f i g u r a t i o n 
codeGeneration swingExtensions 
revers e E n g i n e e r i n g model 
reverse E n g i n e e r i n g i n t e r n a t i o n a l i z a t i o n 
r e v e r s e E n g i n e e r i n g taskManagement 
reverse E n g i n e e r i n g c o n f i g u r a t i o n 
r e v e r s e E n g i n e e r i n g swingExtensions 



E.4 ArgoUML 195 

p e r s i s t e n c e modei 
p e r s i s t e n c e i n t e r n a t i o n a l i z a t i o n 
p e r s i s t e n c e taskManaqement 
p e r s i s t e n c e c o n f i g u r a t i o n 
p e r s i s t e n c e swingExtensions 
p r o f i l e model 
p r o f i l e i n t e r n a t i o n a l i z a t ion 
p r o f i l e taskManagement 
p r o f i l e c o n f i g u r a t i o n 
p r o f i l e swingExtensions 
help model 
help i n t e r n a t i o n a l i z a t i o n 
help taskManagement 
help c o n f i g u r a t i o n 
help swingExtensions 
moduleLoader model 
moduleLoader i n t e r n a t i o n a l i z a t i o n 
moduleLoader taskManagement 
moduleLoader c o n f i g u r a t i o n 
moduleLoader swingExtensions 
gui i n t e r n a t i o n a l i z a t ion 
gui taskManagement 
gui c o n f i g u r a t i o n 
gui swingExtensions 
javaCodeGeneration codeGeneration 
javaCodeGeneration reverseEngineering 
javaCodeGeneration moduleLoader 
javaCodeGeneration model 
o c l moduleLoader 
o c l model 
c r i t i c s moduleLoader 
c r i t i c s model 
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