
Universidade Federal de Campina Grande

Centro de Engenharia Elétrica e Informática

Coordenação de Pós-Graduação em Ciência da Computação

Erosão Arquitetural em Perspectiva: Um estudo

sobre regras arquiteturais, suas violações e como os

desenvolvedores lidam com o problema.

João Arthur Brunet Monteiro

Tese submetida à Coordenação do Curso de Pós-Graduação em Ciência

da Computação da Universidade Federal de Campina Grande como parte

dos requisitos necessários para obtenção do grau de Doutor em Ciência

da Computação.

Área de Concentração: Ciência da Computação

Linha de Pesquisa: Engenharia de Software

Dalton Serey (Orientador)

Jorge Figueiredo (Orientador)

Campina Grande, Paraíba. Brasil

©João Arthur Brunet Monteiro, 07/2014

DIGITALIZAÇÃO:

S I S T E M O T E C A - U F C G zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA CENTRAL DA UFCG

M775e Monteiro, João Arthur Brunet.
Erosão arquitetura! em perspectiva : um estudo sobre regras

arquiteturais, suas violações e como os desenvolvedores lidam com o
problema / João Arthur Brunet Monteiro. - Campina Grande, 2014.

94f.: i l .

Tese (Doutorado em Ciência da Computação) Universidade Federal de
Campina Grande, Centro de Engenharia Elétrica e Informática.

"Orientação: Prof. Dr. Dalton Dario Serey Guerrero. Prof. Dr. Jorge
Abrantes de Figueiredo".

Referências.

1. Arquitetura de Software. 2. Estudos Empíricos. 3. Erosão
Arquitetural de Software. I . Guerrero, Dalton Dario Serey. I I . Figueiredo,
Jorge Abrantes. III . Título.

CDU 004.2 (043)

" E R O S Ã O A R Q U I T E T U R A L E M P E R S P E C T I V A : U M E S T U D O S O B R E R E G R A S

A R Q U I T E T U R A I S , S U A S V I O L A Ç Õ E S E C O M O O S D E S E N V O L V E D O R E S L I D A M C O M

O P R O B L E M A "

JOÃO A R T H U R B R U N E T M O N T E I R O

T E S E APROVADA E M 11/07/2014 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

^h^\\cüuá^ SUL
J O R ^ E C E S A R A B R A N T E S D E F I G U E I R E D O , D.Sc, U F C G

Orientador(a)

D A L T O N D A R I O S E R E Y G U E R R E R O , D.Sc, U F C G
/ Orientador(a)

M A R C O TÚLIO D E O L I V E I R A V A L E N T E , Dr., U F M G
Examinador(a)

C L A U D I O N O G U E I R A SANT ANNA, Dr., UFBA
Examinador(a) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

/

'ãÁM/í

J A C Q U E S P H I L I P P E S A U V E , Ph.D, U F C G
Examinador(a)

T I A G O L j M A MASSONI,(Dr., U F C G
Examinador(a)

CAMPINA G R A N D E - PB

Universidade Federal

de Campina Grande

Declaro, para os devidos fins, que participei por videoconferência da

apresentação da defesa da Tese de Doutorado de João Arthur Brunet

Monteiro, e considero o trabalho aprovado.

Data: \ \ /zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA hl 3 0 \ * \

Assinatura do membro externo:

Resumo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Erosão arquitetural é o processo de degradação da estrutura do software à medida em que

se dá a sua evolução. Embora alguns trabalhos nessa área tenham apresentado exemplos de

desvio entre a arquitetura planejada e a implementação do software em um momento es-

pecífico do seu ciclo de vida, pouco se sabe a respeito dessa relação sob uma perspectiva

evolutiva, isto é, como se dá esse distanciamento à medida em que o software evolui. Além

disso, as abordagens propostas para verificação de conformidade apontam que o número de

violações arquiteturais é tipicamente alto. No entanto, não há conhecimento a respeito da

relevância dessas violações arquiteturais e como os desenvolvedores lidam com o problema

durante o desenvolvimento do software. Esta tese apresenta três estudos empíricos cujo obje-

tivo é aumentar o conhecimento sobre erosão arquitetural e como os desenvolvedores lidam

com violações arquiteturais. Como resultado, em um primeiro estudo com quatro sistemas zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

open source, foi possível demonstrar empiricamente o processo de erosão arquitetural em

uma perspectiva evolutiva, além de demonstrar que poucas entidades de design são respon-

sáveis pela maioria das violações arquiteturais. Além disso, através de uma análise quanti-

tativa e qualitativa em 3 sistemas (Eclipse, BeeFS e epol), realizou-se i) uma caracterização

de regras arquiteturais, ii) um estudo sobre a relevância das violações arquiteturais nesses

sistemas e, iii) uma caracterização dos motivos que levam os desenvolvedores a cometerem

violações arquiteturais. Por fim. com o intuito de entender a comunicação sobre aspectos de

design/arquitetura em projetos open source, através da análise de dados de 77 sistemas, foi

identificado que 25% das discussões em projetos mencionam algum aspecto de design e que

poucos desenvolvedores contribuem para um espectro amplo de discussões. Esses poucos

desenvolvedores são os que mais contribuem para o código projeto, isto é, há uma forte

correlação entre commits e a quantidade de discussões que um desenvolvedor participa.

i

Abstract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Architectural erosion is the progressive lack of software structure over time. Previous stud-

ies on this subject concentrate on presenting conformance checking techniques and tools,

and how effective they are in a single version of systems under analysis. However, fitere are

still open research questions regarding the evolutionär)' nature of architectural violations.

Besides that, little is known about the relevance of architectural violations and their impact

on software development activities. This thesis describes three empirical studies performed

to expand the current knowledge about architectural erosion phenomenon and how devel-

opers deal with architectural violations. As a result, in a first exploratory study with four

open source systems, besides providing empirical data that shows the architectural erosion

phenomenon in an evolutionary perspective, it is also demonstrated that few entities are re-

sponsible for the majority of architectural violations. Besides that, through quantitative and

qualitative analysis in three systems (Eclipse. BeeFS and epol). this thesis presents: i j a

characterization of architectural rules used in practice, ii) a study on the relevance of archi-

tectural violations of such systems, and iii) a characterization of the causes of architectural

violations. At last, to provide knowledge on how developers conduct discussions about de-

sign/architectural aspects, this thesis presents an analysis on 77 open source systems which

shows that on average 25% of the discussions in a project mention some design aspect and

that very few developers contribute to a broader range of design discussions.

ii

Contents

1 Introduction 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1.1 Context 1

1.2 The Problem. . 3

1.3 Goal 4

1.4 Summary of the thesis 5

1.4.1 Implications 6

1.5 Outline of the document 7

1.6 Publications 8

2 Background 10

2.1 Software Architecture 10

2.1.1 Module View 12

2.1.2 Architectural Rules and Architectural Violations 13

2.1.3 ArchitecturalViolations 14

2.2 Architecture Conformance Checking 15

2.3 Architectural Erosion 23

2.3.1 Definitions and related terms 23

2.3.2 Evidences of architectural erosion and its harmful effects 25

3 On the Evolutionary Nature of Architectural Violations 30

3.1 Contextualization 30

3.2 Study Design 31

3.2.1 Research Questions 31

3.2.2 Subjects 32

iii

CONTENTSzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA iv zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

3.2.3 Data Collection 32

3.2.4 Procedures and Measures 34

3.2.5 Replication Package 35

3.3 Results 35

3.3.1 Addressing RQ1: How does the gap between code and architecture

evolve over time? 35

3.3.2 Addressing RQ2: Are die violations equally spread over the design

entities or they concentrate on a few ones? 39

3.3.3 Addressing RQ3: Once violations are fixed in a given version, do

they appeal' again in future versions? 42

3.4 Discussion 44

3.4.1 Do not live with broken windows 44

3.4.2 Human factors 45

3.4.3 Critical core first 45

3.4.4 Recurring violations 45

3.5 Threats to Validity 46

3.6 Related Work 47

3.7 Summary 48

4 An Empirical Study of Architectural Rules and Violations 50

4.1 Contextualization 50

4.2 Study Design 51

4.2.1 Subjects 52

4.2.2 Data Collection Procedures and Analysis 53

4.3 Results 58

4.3.1 What kinds of architectural rules are expressed? 58

4.3.2 What kinds of architectural violations occur? 62

4.3.3 Which architectural violations are relevant to developers? 63

4.3.4 Why do developers commit violating code? 67

4.4 Threats to Validity 70

4.5 Discussion 71

CONTENTSzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA V

4.6 Related Work 72

4.7 Summary 74 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5 Do Developers Discuss Design? 75

5.1 Contextualization 75

5.2 Study Design 76

5.2.1 Data Set 77

5.2.2 Methodology 77

5.3 Results 79

5.4 Discussion 81

5.5 Related Work 82

5.6 Summary 83

6 Conclusions 84

6.1 Contributions 8 4

6.2 Future Work 85

List of Figures zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1.1 Example of architectural rules regarding components and their relationships. 2

2.1 Example of architectural rules in module views. Green arrows are allowed

dependencies, while red arrows are forbidden dependencies between modules. 13

2.2 Overview of Architecture Conformance Checking Technique 16

2.3 The Reflexion Model Approach 1.1] 18

2.4 Architectural Model and Reflexion Models for NetBSD Virtual Memory

Subsystem! 1] 19

2.5 SAVE architecture conformance checking example.[2] 20

2.6 Architecture conformance checking with DCL and DCLCheck[3] 21

2.7 DSM for JUnit[4] 22

2.8 DSM Rule View[4] 22

2.9 Mozilla top level view|5l 26

2.10 FindBugs release 0.7.216] 27

2.11 FindBugs release 1.3.5[6] 28

2.12 Snippet of the reflexion model for Excel. Solid arcs are convergences;

dashed arcs are divergences; dotted arcs are absences.[7] 29

3.1 Introduced and Fixed Violations per Version 36

3.2 Architectural debt per version. The line represents die Cumulative Architec-

tural Debt 36

3.3 Quantiles for die architectural debt 39

3.4 Distribution of violations per system. CV = classes with violations and CN

= classes with no violations 39

3.5 Frequency of classes per amount of violations (Version 1) 40

vi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

FCG/BIBLIOTECA/BC

LIST OF FIGURESzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA vii zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

3.6 Distribution of violations per class 40

3.7 Peak of ArgoUML Fixed violations. Classes in the distribution tail were

restructured 46

4.1 Data sources 53

4.2 Amount of violations per Eclipse release over time 64

5.1 Methodology applied to build the design discussion classifier. 77

5.2 Empirical Results 80

List of Tables zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

3.1 Subject Systems 32

3.2 Top-10 data. DC = Number of different classes in Top-10 during the studied

period 41

3.3 Recurring violations data. RV = #Recurring Violations and MDR = The

modal value of the degree of recurrence 43

3.4 Total number of violations in version 19 44

4.1 Subjects 52

4.2 Architectural rules expressed in each system.zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA S, P and O are sets of design

entities which for these systems were packages, classes, interfaces, methods

or fields 59

4.3 Violations per project 62

4.4 Relevance of Violations 64

4.5 Causes of architectural violations 67

viii

. nzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA j i e • zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Introduction

1.1 Context

Software architecture has become a key concern to reach success in software development.

During the last twenty years, specially along the decade of 1990, a number of software

engineering researchers dedicated effort to define this concept [8; 9; 10; 11; 12]. Despite the

fact that these definitions address different perspectives of architecture (e.g.: dynamic, static

or external environments), most of them rely on components and their relationships. In this

context, it is a commonplace to state that '"software architecture is the structure or structures

of the system, which comprise software components, the externally visible properties of

those components, and the relationships between them." 112].

An architecture can be seen as a set of architectural decisions/rules [13]. Since the most

popular mechanism to describe an architectural rule relies on structural properties of compo-

nents [14], structural architectural rules are often used to describe important decisions taken

during design phase. For example, usually, architects decompose the structure of the system

using layers to create a clear separation between p r e s e n t a t i o n , b u s i n e s s l o g i c

and da t a access objects of an application. Figure 1.1 informally illustrates architec-

tural rules related to layered systems. For instance, among other constraints specified,

p r e s e n t a t i o n objects must not directly depend on d a t a access objects.

Most software practitioners regard architectural rules as fundamental concern to develop

software. Good architectures are frequently credited for easy to maintain and evolve soft-

ware systems, and as a sign of internal quality. However, implementations that do not follow

1

/. / Context 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

,' \ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
presentation

business logk zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

f I
data access

^ ,

5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

e zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 1.1: Example of architectural rules regarding components and their relationships.

intended architectural rules are frequent enough to be considered the norm, not the excep-

tion [15; 7].

Several reasons can cause divergences between intended and implemented architecture.

In particular, researchers refer to the lack of awareness about the architectural rules as one

of these root causes [16; 8; 171. Frederick Brooks, for example, coined the term Conceptual

Integrity to express the uniformity of the understanding that the development team has about

the software [17]. Brooks states that it is better to have one good idea tiian a system with-

out conceptual integrity - many uncoordinated and inconsistent architectural rules. In this

scenario, communication is the key concern to achieve, maintain and enhance conceptual

integrity. Architectural rules should often be discussed and spread over the team to avoid

lack of conceptual integrity. However, while performing adaptive maintenance to accom-

modate new features, besides the inherent complexity of adding new code, developers have

to deal with existent complex structure. As as result, as time goes by, systems evolve and

their complexity increase, unless work is done to maintain or reduce it [181. One of the

main reasons that leads to the increasingly complexity of the system is the addition of de-

pendencies between code entities that were not designed to be coupled to each other an

example of architectural violation. In the example aforementioned, an architectural violation

would be a method dependency between classes of p r e s e n t a t i o n module and classes of

data access module.

1.2 The Problem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3

The cumulative growth of architectural violations cause architectural erosion [8], also re-

ferred by the literature as structural degeneration [19], code decay [20], design erosion [21],

and several other terms. Despite this vast terminology and some divergences between die

definitions, all the authors relate the term to the progressive lack of software structure, a

clear manifestation of software aging [221.

Architectural erosion is not an accidental event. The literature indicates several cases,

including popular open source (e.g.: Mozilla, FindBugs and Ant) and proprietary systems

(e.g.: Microsoft Excel and Axis), that eroded over time [5; 6; 23; 7; 21], In this context,

Mozilla is one of the most remarkable cases. First, because it was initially designed to

be the open-source version of Netscape and, for this reason, developers decided to use the

existent source code as basis for Mozilla. However, as the system evolved, due to structural

complexity, developers decided to redevelop Mozilla from scratch. Second, because even

this new re-thinked architecture of Mozilla significantly eroded in its short lifetime [5].

The literature investigates and documents the harmful effects of architectural ero-

sion [24]. The impact of this problem is always associated with maintenance costs. In the

worst case (e.g.: Mozilla and Axis), when architectural erosion is neglected over time, the

system reaches a state in which it demands total redevelopment, because maintaining eroded

architecture is costly and cumbersome. Even when the system does not reach the worst

case, architectural erosion still compromise maintenance activities. It is worth to remember

that Mozilla lost large portion of the browser market due to inability to perform adaptive

maintenance [25J. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1.2 The Problem

Architectural erosion is an important problem that must be understood in order to be

controlled. In this context, architecture conformance checking approaches [1 ; 26; 27;

3] play an important role because they uncover architectural violations, thus, they can detect

architectural erosion over time. Although the state-of-the-art of architecture conformance

checking is advanced, there is still lack of knowledge in some aspects that can leverage the

adoption of this technique, such as, what kinds of rules are expressed by developers and what

is the relevance of architectural violations detected by architectural conformance approaches.

1.3 Goal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 4

Moreover, previous studies on this subject concentrate on presenting conformance checking

techniques and tools, and how effective diey are. by applying them in one single version

of the system under analysis. There is still lack of knowledge on aspects such as lifecycle

and location of architectural violations, and how developers deal with this problem during

software development. When studying architectural erosion, it is important to consider the

time dimension, once the concept requires an evolutionary perspective understanding.

In summary,zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA the knowledge about architectural erosion is limited. In particular, little

is known about the relevance of architectural violations detected by architectural confor-

mance checking approaches, how developers perceive and deal with this problem during

software development, and what are the causes of nonconformances between model and

implementation.

1.3 Goal

The main goal of this thesis is to investigate the architectural erosion phenomenon, its causes,

and how developers perceive and deal with this problem during software development. I

intend to provide a foundation to extend research into architectural conformance checking in

order to leverage the adoption of these approaches during software development.

Our specific goals are described below:

• expand the current knowledge about architectural erosion phenomenon by approaching

it through an evolutionary perspective,

• investigate architectural violations location and lifecycle over time.

• provide a characterization of the rules that developers express and the violations that

occur in practice,

• provide quantitative and qualitative evidences about the relevance of architectural vio-

lations

• investigate tire reasons that lead developers to commit violating code, and

• investigate how developers conduct discussions about architectural aspects.

1.4 Summary of the thesis 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1.4 Summary of the thesis zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

In this thesis, I addressed the lack of knowledge about architectural erosion and how devel-

opers deal with this problem during software development. Due to this fact, the outcome of

this work is a set of empirical studies that raise knowledge on this topic rather than an ap-

proach and its evaluation. I raised empirical evidences from three studies. First. I studied the

evolution of four widely known open-source systems, analyzing the lifecycle of more than

3,000 violations. This analysis led to the following observations: 1) development teams of

all studied projects seem to be aware of the presence of architectural violations in the code

and all of them do perform perfective maintenance aimed at eliminating such violations; 2)

despite all effort, the number of architectural violations, in the long term, is continuously

growing; 3) in all studied systems there is a critical core. i.e.. just a few design entities are

responsible for the majority of violations; and 4) some violations seem to be ''respawning",

i.e., they are eliminated, but are likely to be back in future versions of the system.

After that, I conducted an empirical study to more broadly understand what rules about

architecture developers want to and do express, the ways in which implementation violate

expressed rules and how developers view gaps between the implementation and the archi-

tecture that occur. I analyzed three systems: die open-source Eclipse platform, a proprietary

disuibuted system and a proprietary web-based system. Through this analysis I was able

to provide: i) a characterization of the 880 rules expressed by developers and the 521 vi-

olations that occurred, ii) quantitative and qualitative data on the relevance of architectural

violations and how developers deal with them, and iii) a characterization of the reasons that

lead developers choose to sometimes violate intended architecture.

In a third study, I conducted an initial investigation on the presence of discussions related

to design aspects in 77 open-source projects. I adopted die term design radier than architec-

ture for two reasons. First, to enable interchanging the design term as an activity and as an

artifact. Second, the discussions may contain a broader range of aspects compared to the ar-

chitectural rules and violations that I have been addressing until this study. In this context, I

provide quantitative data that shows that developers address design discussions through com-

ments in commit, issues, and pull requests. To achieve this, I built a discussions' classifier

and automatically labeled 102,12 discussions from 77 projects. Based on this data. I make

1.4 Summary of the thesis zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

four observations about the projects: i) on a average, 25% of the discussions in a project are

about design; ii) on average, 26% of developers contribute to at least one design discussion;

iii) only 1% of the developers contribute to more than 15% of the discussions in a project;

and iv) diese few developers who contribute to a broad range of design discussions are also

die top committers in a project.

1.4.1 Imp l i ca t i ons

Through the quantification and characterization of aspects diat have not been addressed be-

fore, diis work contributes to better understand the architectural erosion phenomenon and

how developers deal with it in practice. The knowledge raised in this thesis have some im-

plications for current practice in both: i) expressing and checking architectural rules against

implementation; and ii) support refactoring activities to fix architectural violations. For ex-

ample, I found that the majority of architectural violations reported are either exceptions to

the rules or irrelevant in the sense that developers do not address or deal with them during

software development. This scenario empirically support die idea that not only the code but.

also architecture evolves over time and rules have to be kept up-to-date in order to reflect the

decisions taken. In this vein, researchers could focus effort to provide mechanisms to auto-

mate exceptions detection. By doing this, it would be possible to advance in both activities:

architectural changes recommendation and classification, and prioritization of architectural

violations reported according to its severity, as static analysis tools such as FindBugs [28]

achieve. Moreover, although there are several irrelevant violations, I also found that devel-

opers consider some of the violations relevant and perform refactoring activities to fix them.

This observation have some implications for further research on refactoring suggestions to

fix architectural violations. Terra et al. [29] took a step towards this direction by suggesting,

for example, the application of die move method refactoring. However, this is a fertile field

that could be further investigated.

Also, researches in this area often credit the design/architectural erosion problem to the

lack of awareness about design decisions [16; 17], which leads developers to commit code

without concerning design aspects. To support such argument, researchers usually perform

study cases in a small sample of subjects by conducting interviews to qualitative raise knowl-

edge about how developers discuss design. However, the state-of-the-art falls short in quan-

1.5 Outline of the document 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

titatively demonstrating how and which developers drive design discussions in a project. In

particular, for open-source projects, design concerns are spread over discussions in commits,

issues, and pull requests. To the best of our knowledge, diere is no study that approaches

such information to understand how developers drive design discussions in such environ-

ment. Although related research works provide great qualitative contributions in this field, a

broader quantitative study can improve die foundation to extend research into design prac-

tice. As a consequence of better understanding how developers drive discussions, such study

may enable practices to mitigate architectural erosion, for example. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1.5 Outline of the document

I organized the remainder of this document as follows:

• Chapter 2 reviews the core concepts and studies related to this thesis,

• Chapter 3 describes die study design, results and analysis of an empirical study con-

ducted to assess architectural erosion over time, answering the following research

questions:

- How does the gap between code and architecture evolve over time?

- Are the violations equally spread over the design entities or they concentrate on

a few ones?

- Once violations are solved in a given version, do they appear again in future

versions?

• Chapter 4 presents an empirical study of architectural rules, including a categoriza-

tion of rules, data on the relevance of architectural violations and a categorization of

causes that lead developers to commit violating code, answering die following research

questions:

- What kinds of architectural rules are expressed?

- What kinds of violations occur?

- Which violations are relevant to developers?

] .6 Publications zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

- Why do developers commit violating code? zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

• Chapter 5 presents an initial study to investigate the following questions:

- To what extent do developers discuss design in open-source projects?

- Which developers discuss design?

• Chapter 6 presents the final remarks as well as the future work related to this diesis.

1.6 Publications

As a result of this thesis, I have published or submitted for publication the following papers:

• Brunet, J.; Bittencourt, R. A.; Guerrero, D.; Figueiredo, J. On the Evolutionary Nature

of Architectural Violations. In Proceedings of the 19th International Conference on

Reverse Engineering (WCRE 2012). Kingston, Canada. October 2012.

• Five years of SoftH'are Architecture Checking: A Case Study of Eclipse. Brunet, J;

Murphy, G. C ; Serey, D; Figueiredo, J. Minor review (06/17/2010) at IEEE Software.

• Bittencourt, R. A.; Brunet, I . ; Murphy, G. C ; Guerrero, D.; Figueiredo, J. Using

Software History to Prioritize Violation Warnings from Software Architecture Confor-

mance Checkers. Under review at Journal of Software and Systems (JSS). Submission

date: April, 22nd.

• Brunet, J.: Murphy, G. C ; Terra, R.; Figueiredo. J.; Serey: D. Do developers discuss

design? In Proceedings of the 11th Working Conference on Mining Software Reposi-

tories (MSR). Challenge Track, 2014.

• Melo, I . , Brunet. J., Guerrero, D.. Figueiredo, J. Verificação de Conformidade Ar-

quitetural com Testes de Design - Um Estudo de Caso. I Workshop Brasileiro de

Visualização, Evolução e Manutenção de Software (VEM - CBSoft), 2013.

Although not directly related to this thesis, I have also published the following papers

during my PhD studies:

1.6 Publications zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

• Brunet, J.; Serey, D., and Figueiredo, J. Structural Conformance Checking with De-

sign Tests: An Evaluation of Usability and Scalability. Proceedings of the 27th In-

ternational Conference on Software Maintenance (ICSM 2011), Williamsburg, USA,

September 2011.

• Terra, R.. Brunet, J.. Miranda, L. F., Valente, M . T.. Serey, D., Castilho, D., and

Bigonha, R. S. Measuring the structural similarity between source code entities. In

25th International Conference on Software Engineering and Knowledge Engineering

(SEKE), pages 753-758.

Chapter 2

Background zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

In this chapter. I establish a background on the concepts required to enable the understanding

of this thesis. First, I introduce a discussion regarding the definition of software architecture,

architectural rales and architectural violations. After that, I provide an overview of archi-

tecture conformance checking approach and discuss the most important works on this area.

Then. I discuss architectural erosion definitions and describe works that have empirically

demonstrated this problem and its effects on software evolution.

2.1 Software Architecture

Due to its importance in industry and academy, the concept of software architecture has

become a major discipline in software engineering. During the last 20 years, several attempts

to define software architecture has been proposed. It is hard to find a unique and precise

definition of this term, but both researchers and practitioners agree on the importance of this

concept.

In the beginning of the decade of 90, Perry and Wolf presented a seminal work in which

they proposed concepts' definitions and directions to this field [8]. Among odier concerns,

they were interested in distinguishing software architecture from software design. According

to Perry and Wolf, software architecture is concerned about defining architectural elements,

their interactions and the constraints involved in these interactions, while software design

includes the detailed definition of interfaces of design elements, their algorithms and proce-

dures, and data types.

10

2.1 Software Architecture zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Budgen has taken a similar approach to differentiate software design from software archi-

tecture [9]. The author discusses the existence of a high level design (architectural design)

and a low level design (detailed design). Similarly to Perry and Wolf, Budgen states that

the architectural design is concerned about components and their interactions, while detailed

design describes algorithms and procedures, and detailed interfaces of low level abstractions.

A well known definition of software architecture is based on the concept of components

and connectors [10], This definition explores a runtime perspective of the software elements.

Tn this context, components regard to the principal processing units and data storage, while

connectors are related to interaction mechanisms between the components, which includes

communication links and protocols, data flow, and access to shared data.

Garlan and Perry [11] define software architecture as a die structure of the components of

a system, their relationships, and principles and guidelines governing their design evolution

over time. By the same token. Perry and Wolf use a building architecture metaphor to state

that software architecture is a set of architectural elements that interacts to each other and

have a particular form [8]. The authors also state that the rationale for the choices made in

defining an architecture is an important aspect to define this concept.

As we can see, the aforementioned definitions rely on the concept of components, their

relationships and some other aspects related to the decisions taken during design phase. Al -

though some of the perspectives of software architecture might be related to dynamic aspects

and non-functional requirements, in fact, a typical approach to define software architecture

relies on the structural properties of the software. For example. Bass et al. [12] coined a

popular definition of software architecture that relies on structural properties. According

to them, "software architecture is the structure or structures of the system, which comprise

software components, die externally visible properties of tiiose components, and the rela-

tionships between them." Still, Clements et al. [10] explores a similar definition which states

that a software architecture is "the set of structures needed to reason about the system, which

comprise software elements, relationships between them, and properties of both."

Software architecture is related to a number of definitions, artifacts, decisions and strate-

gies. Therefore, it is complex to express its documentation in one single view. One of die

main reasons to document an architecture is to improve the communication and knowledge

transfer among stakeholders. In this context, the more complex is the document describing

2.7zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA Software Architecture 12

the architecture, the more difficult is to spread the knowledge among the team. For this rea-

son, Clements et al.[10] defined three different views (module, component-and-connector

and allocation) that are suitable for different communication purposes. In the module view,

the elements are modules, which are units of implementations (e. g. components, packages

and classes). Documents of this view describe structural properties of these modules, their

responsibility and interactions between them. On the otiier hand, component-and-connector

view relies on components' runtime properties, including for example, the communication

protocols between them. It aims at describing, for instance, the major executing compo-

nents and how they interact. The allocation view aims at describing the relationship between

software components and external environments in which they are created and executed.

For example, in this view, one can express the type of processor that an element will be

executed on. In summary, module view expresses structural properties of implementation

units, component-and-connectors view expresses their runtime properties, and allocation

view express the relationship between software components and external environments, usu-

ally computation units. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2.1.1 Module View

As said before, a typical architectural description relies on structural information about com-

ponents and their relationships. For this reason, the module view is one of the most used

views to describe an architecture [14]. This is due to the fact that it includes styles to describe

a number of relations suitable to express dependencies between object-oriented components.

These styles are the following:

• Decomposition style: Allows architects to describe modules (e. g., a set of classes)

and relate diem by the "is a submodule of" relation:

• Uses style: Allows architects to describe dependencies of a specific module;

• Layers style: Useful to express a particular scenario of "uses" styles in which modules

that compose layer N are only allowed to use services of layer N - 1;

• Generalization: This style supports the "inherits-from" or "is-an-instanceof" relation

between two modules.

2.1 Software Architecture zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA13

2.1.2 Architectural Rules and Architectural Violations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Software architecture can be described by a set of architectural rales and decisions [13].

Rules often rely on structural properties of the source code, which makes the module view

the most popular mechanism to describe the rales [30]. In a module view, stakeholders

specify modules and dependency consu-aints between them. For example, stakeholders may

decompose die structure of the system using layers to create a clear separation between

presentation, business logic and data access objects of an application. Figure 2.1 informally

illustrates architectural rules that may apply to a layered system. In this example, among

other specified rales, the presentation module must not depend on the data access module. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

presentation

t i
buslnoss logic

f *
<i»ia access zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

»
8

Figure 2.1: Example of architectural rales in module views. Green arrows are allowed de-

pendencies, while red arrows are forbidden dependencies between modules.

In this thesis, I formally define an architectural rale as:

e n t i t y jzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA <modifier> <type of dependency> e n t i t y 2 (2.1)

I define each of these terms in turn:

entity can be a module, type or code element. A module is a set of types. Typical examples

of modules are packages or subsystems, while classes and interfaces are examples of

types. Code elements are entities from source code enclosed by a type (e.g., methods,

fields, inner classes).

Modifier is one of the self-explanatory terms must or nmst-not.

2.1 Software Architecture zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA14

Type of DependencyzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA encompasses the common low-level dependencies between source

code entities. Typical types of dependency in object-oriented languages are: method

call, object creation, field access, generalization, realization, catched exception,

thrown exception, returned type and received parameter. When stakeholders refer to

the general concept of dependency between high-level entities, I use the general term

depends on. For instance, the rule "presentation must not depend on data access"

establishes diat there must not be any low-level dependency between presentation and

data access.

2.1.3 Architectural Violations

One of the main contributors to increasing system complexity is adding dependencies be-

tween code entities originally designed not to be coupled - an instance of architectural viola-

tion. For die architecture described in Figure 2.1, Code 1 illustrates an architectural violation,

since a method from the presentation layerzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA (presentat ion . MainWindòw. s t a r t ())

calls a method from the data access layer (data . access . Data . get I n f o ()).

Código 1 Example of Architectural Violation

1 package p r e s e n t a t i o n ;

2 p u b l i c class MainWindow {

3

4 p u b l i c v o i d start(data.access.Data data) {

5

6 da t a . g e t I n f o () ;

7

8 }

9)

In the context of this work, the definitions are strictly related to code-level violations.

1 have been using an informal concept of violation throughout this work, but, for the sake

of clarity. I shall define three levels of violations: code-level, type-level and module-level

violations.

Code-level violation: A code-level violation is an unexpected dependency (namely, a di-

2.2 Architecture Conformance Checking zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA15

vergence in the reflexion model terminology [I]) between two source code elements

(e.g., method, field, or class). It is uniquely defined by two participating code elements

causing the violation and die violation type (e.g., field access, method call). A set of

code-level violations between each two types compose a type-level violation. In the

example illustrated by Code 1, the code-level violation is:

presentation.MairiW'indow.start{) calls data.access.Data.getlnfoQ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Type-level violation: A type-level violation is an unexpected dependency (namely, a di-

vergence) between two types (e.g., class, interface). It is uniquely defined by two

participating types causing the violation. A set of type-level violations between each

two modules composes a module-level violation. In the example illustrated by Code 1,

the type-level violation is:

presentation. AlainWindow depends on data.access.Data

Module-level violation: A module-level violation is an unexpected dependency (i.e., a di-

vergence) between two modules defined in the high-level model. It is uniquely defined

by two participating modules. One or more code-level violations are lifted to a module-

level violation, through the mapping provided between source code and the high-level

model (such as in the reflexion model technique). When it is an absence, it only exists

in this level. When it is a divergence, it is made of one or more lower-level violations.

In the example illustrated by Code 1. die module-level violation is:

presentation depends on data.access

2.2 Architecture Conformance Checking

The IEEE's Software Engineering Body of Knowledge [31] defines software verification as

an activity which main goal is to assure that the internal properties of the software has been

developed as intended. While software validation focuses on what has been implemented,

software verification focuses on how the software has been implemented.

Both static and dynamic analysis are used to apply software verification. According to

the IEEE's Software Engineering Body of Knowledge, static analysis collects information

2.2 Architecture Conformance Checking zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA16 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(usually from source code) about the application under analysis widiout requiring its exe-

cution. On die other hand, dynamic analysis collects information by monitoring the system

under execution.

Software verification is a key activity to guarantee software quality. Even though it is not

directly related to functional requirements, assuring that a software is being implemented

following architectural rules is a step towards to develop the right product.

Architecture conformance checking is die software verification technique diat detects

architectural violations. Several research works have been dedicating effort to apply archi-

tecture conformance checking, that is, verifying whether an implementation follows or not

its architectural rules. In a nutshell, this activity is based on the comparison between a set of

architectural rules and the implementation of the software. Figure 2.2 illustrates the overview

of this activity.

Figure 2.2: Overview of Architecture Conformance Checking Technique.

Basically, there are three categories to group die relations between these two arti-

• Convergence: Indicates compliance between architectural rules and implementation.

That is, the dependencies detected in the implementation are allowed to happen or

were implemented as intended;

• Divergence: Indicates a not allowed relationship between two or more components in

the implementation of the software;

• Absence: Indicates that the code does not implement a planned relationship.

X

facts [32]:

2.2 Architecture Conformance Checking zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL7

Architecture conformance checking might be automated or not. For example, it is com-

mon to apply manual code inspections [331 and Design Review [341 in order to detect differ-

ences between planned and implemented architecture. In the context of agile methodologies

such as XP [35] and SCRUM [36], pair programming and code review activities are used to

verify a number of various software defects, including functional and non-functional speci-

fication's deviation.

In contrast to manual verifications techniques, there are a number of approaches that aims

at automating architecture conformance checking. In the next subsections, I will discuss

some of tiiese approaches. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Reflexion Models

Murphy et al. [1] proposed one of die most known approach to bridge the gap between

source code and high-level models - Reflexion Models. Figure 2,3 illustrates the approach.

In a nutshell, in order to detect convergences, divergences, and absences, it is necessary

to conduct the following activities. First, it is required to define the planned architecture.

Second, the implemented architecture must to be extracted from the implementation. After

that, elements of the planned architecture must to be mapped onto elements of implemented

architecture. Then, one can check the compliance between architecture and implementation.

Figure 2.4 shows an example of reflexion model of the NetBSD Virtual Memory Sub-

system. The architectural model (high level model) is on the left, while the reflexion model

describing convergences, divergences and absences is on the light. The weight of edges in-

dicates the number of low level relationships between two modules. The mapping of this

example is illustrated by Code 2. Each line of die mapping associates entities in the archi-

tectural model with entities in the implementation.

By analyzing high-level models and mappings, one might ask whether reflexion models

approach is feasible to be adopted in large projects. First, reflexion models approach is

partial. That is to say, the approach does not require architects to specify all the modules and

constraints of the architecture. This feature enables architects and developers to focus on

the most relevant architectural rules to be verified. Besides that, to enable reflexion models

adoption. Murphy et al. developed techniques to simplify engineer's task of defining planned

architecture and mappings. Still, they developed tools to automate implemented architecture

2.2 Architecture Conformance Checking zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis

Defines

Figure 2.3: The Reflexion Model Approach! 1]

extraction and compliance checking. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Codigo 2 Mapping of the NetBSD Virtual Memory Subsystem example! 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 [f i l e = . * p a g e r . * mapTo=Pager]

2 [file=mn-xnap.* mapTo=VirtAddressMaint]

3 [f i l e = v m _ f a u l t \ . c mapTo=KernelFaultHdler]

4 [d i r = [u n] f s mapTo=FileSystem]

5 [dir=sparc/mem.* mapTo=Memory]

6 [file=pmap.* mapTo=HardwareTrans]

7 [file=vm_pageout\.c mapTo=VMPolicy]

2.2 Architecture Conformance Checking zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

fa) High-tewl Model (b) Reflexion Model

Figure 2.4: Architectural Model and Reflexion Models for NetBSD Virtual Memory

Subsystem! 1].

SAVE

SAVE (Software Architecture Visualization and Evaluation) is an Eclipse plug-in for eval-

uation of software architectures [2]. The tool allows architects to graphically express com-

ponents and relationship between them and to assure compliance of existing systems with

their architecture expressed. Figure 2.5 illustrates an example of architecture conformance

checking using SAVE. The audiors designed decoration items to express convergences (green

check mark), divergences (yellow exclamation mark) and absences (red cross) in order to

improve results* visualization. In addition, a blue question mark is used when two modules

2.2 Architecture Conformance Checking zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2»

have more than one type of these relations.

Figure 2.5: SAVE architecture conformance checking example.[2]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

DCL Check

Instead of graphically expressing architectural rales. Terra and Valente [3] proposed an ap-

proach to apply architecture conformance checking by means of using a domain-specific de-

pendency constraint language (DCL). DCL is a declarative language that provides a number

of statements to define modules and constraints between them. Code 3 shows an example

of architectural rale expressed using DCL. As we can see, modules and mappings are ex-

pressed by the module statement, while the dependency constraint between die modules is

expressed by the o n l y . . . can-access statement.

Código 3 DCL architectural rale specification example. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 module GUI: or g . f o o . g u i . *

2 module C o n t r o l l e r : o r g . f o o . c o n t r o l l e r . *

3 module BusinessLogic : org. f o o . b l . *

4 only C o n t r o l l e rzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA can-access BusinessLogic

The approach also includes a conformance checking tool, named d c l c h e c k , that auto-

matically check architectural rules expressed in DCL language against lava implementations.

Figure 2.6 shows an overview of the activities performed to achieve architecture confor-

mance checking using die approach. First, using DCL. an architect expresses architectural

rules based on the implementation of the system and some architectural model. Second,

2.2 Architecture Conformance Checking zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA21 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

d c l c h e c k applies static analysis to verify the implementation against the specified rules.

Then, the architectural violations detected are reported as architectural drifts.

SOMM p»dk

Figure 2.6: Architecture conformance checking with DCL and DCLCheck[.3.I.

Archjava

ArchJava [26] is an extension of Java programming language whose main goal is to ensure

that the implementation conforms to architectural decisions. In the same way that Terra

and Valente [3] provide means to programmatically specify architectural rules, ArchJava

expands the Java programming language to support the concepts of components and ports.

However, ArchJava performs dynamic analysis to verify architectural rules. In particular,

the author address the problem of assuring a consistency property called communication

integrity [37], which establishes that, during execution, implementation components should

only communicate directly with the components diey are connected to in die architecture.

Dependency Structure Matrix

Dependency Structure Matrix (DSM) is a square matrix that allows architects to describe

dependencies between modules of a system [38]. In this representation, row and columns

are used to denote modules, while a cross mark in a row A and column B denote that module

B depends on module A. In some cases, architects may also use a number instead of a cross

to indicate the strength of the dependency.

The idea to perform architecture conformance checking using DSM relies on die com-

parison between the the DSM extracted from code and the one expressed by architects. In

this context, Lattix Inc's Dependency Manager [4] is one of die most popular tools to achieve

U F C G / B I B L I O T E C A / B C

2.2 Architecture Conformance Checking zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA22 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

this. Figure 2.7 shows an example of DSM extracted from JUnit framework [39] binaries.

The DSM shows, for example, that JUnit clearly separates user interface layers from the

business logic, oncezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA awtui, swingui and t e x t u i modules do not depend on the other

modules.

in cn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

a -
c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
M

Q - awtui 1 a -
c
M

|+J™ swingui 2

a -
c
M

[+]-textui 3

a -
c
M

]"+]•-extensions 4 1 •

a -
c
M

("•}- runner 5 3 8 4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA•

a -
c
M

[t]-framework 6 7 i 6 s .

Figure 2.7: DSM for JUnit[4].

• • • • • • • zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- i

M

E But sfsiaml 1 I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/
CD • Suh system? 11 1 r

5T
MB

gj

B} Sub systsm3 3 Y

0~8ub system4 4
p—<

1 T f

Figure 2.8: DSM Rule View[4].

To specify architectural rules, Lattix provides two options: i) a declarative language

similar to DCL [3] and; ii) a graphical environment. Figure 2.8 illustrates an example of

graphical architectural rales specification using the tool. Allowed and not allowed depen-

dencies are denoted by green marks and black marks, respectively. A red triangle indicates

an architectural violation.

Design Fragments

Fairbanks et al. [40] coined the term "design fragment" to refer to a pattern of how a program

interacts with a framework to accomplish a goal. Through die Design Fragment Language,

2.3 Architectural Erosion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA23

architects are allowed to express the expected structure and behavior of developers' code

and the expected structure and behavior of frameworks' code, including the existence of

classes, mediods. and attributes, and method calls between them. Then, by comparing design

fragments and real implementations, one can verify whether the code is in conformance with

framework design/architectural rules. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2.3 Architectural Erosion

This section is divided in two parts. First, I discuss architectural erosion definitions and

related terms. Later, I discuss works that have demonstrated architectural erosion and its

harmful effects on software structure.

2.3.1 Definitions and related terms

Lehman et al. have built an initial body of knowledge on software evolution establishing,

among odier concepts, the so called Lehman's laws [18]. One of these laws states that,

as time goes by, software evolution and maintenance become increasingly hard and complex

activities, unless the team dedicate effort to cope with this problem. This growing complexity

inhibits developers to change die code in a proper manner, which leads to die lack of software

structure [22],

Frederick Brooks was one of the first authors to explore software structural problems

in detail as software evolves [17]. In his book, entitled The Mythical Man Month, Brooks

discusses structural problems based on his own experience while developing a batch pro-

cessing operation system called OS/360. According to him, software structure brittleness

is a property that increases as software evolves and leads to the resistance to change, or at

least to properly change the system. The main reason that leads to this scenario is the lack

of conceptual integrity, a system property coined by Brooks to refer to the consistency and

coherence of architectural decisions. The architecture of a system without conceptual in-

tegrity has an structural problem, named architectural drift |8]. which is a state that a project

reaches when the team lose control of die architecture. Architectural drift is closely related

to die lack of conceptual integrity, once it is due to insensitivity of developers about the

architecture.

2.3 Architectural Erosion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 24 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Insensitivity is also referred as lack "architectural awareness" [16]. This term refers to

several important aspects regarding the behavior of the team while evolving the software.

In summary, a developer is aware of the architecture when she makes changes to a module

respecting the architectural rules. The study performed by Unphon and Dittrich reinforces

Brooks observations. By analyzing data of 15 semi-structured interviews, they could find

that, due to lack of properly communication, developers tend to forget about the architectural

decisions taken during design phase.

Insensitivity and lack of architectural awareness lead developers to introduce architec-

tural violations in the code, which contributes to the increasing brittleness of a system [8],

The cumulative growth of architectural violations, thus, causes software structural deterio-

ration -zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA architectural erosion. Several terms are related to architectural erosion. Among

them, code decay [20]. design erosion [211, and architectural degeneration [19]. In a nut-

shell, all these concepts capture die notion of structural architectural problems related to die

increasingly difficulty to maintain and evolve software.

Eick et al. used a medical metaphor to define and explore code decay [20]. In this

context, code decay is seen as a disease, which has been caused by some reason and affects

the system's health. A code is decayed i f it is '"more difficult to change that it should be". Due

to the terminology, one might think that code decay relates only to low-level implementation

issues. However, the study shows evidences of correlation between effort to implement

changes and structural problems, once it negatively affects die coupling and modularity of a

system. Similarly to Perry and Wolf, who stated that architectural erosion are cause due to

architectural violations, Eick et al. identified that violations of the original design principles

cause code decay.

Structural problems are also regarded as design erosion [21]. Based on industrial case

studies, Gurp and Bosch identified a number of causes for this structural problem. Among

diem, they highlight that design decisions are difficult to track, due to the notations used

to express them. However, unlike Parnas [22], who assume that, through hard work and

cooperation, structural problems might disappear, Gurp and Bosh argue that design erosion

is inevitable and can only be delayed. Still, they reinforce the necessity to address the causes

of design erosion, not only focusing on its symptoms.

Architectural degeneration is also to refer to structural problems [19]. Again, the focus

2.3 Architectural Erosion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 25 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

remains on problems, causes and effects of structural degeneration during software lifecycle.

As we can see, despite the fact that the literature adopts different terminology to refer to

structural problems (from now I will use the term architectural erosion), researches on this

area agree on the causes, effects and activities to delay or even stop structural problems. In

summary, architectural erosion is due to architectural violations. The reason that lead devel-

opers to introduce architectural violations is insensitivity about architectural decisions/rules

due to ineffective communication. Researchers also point that, i f it is applied during software

development, architectural conformance checking might be useful to early detect architec-

tural violations and enhance sensitivity and awareness about architectural rules. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2.3.2 Evidences of architectural erosion and its harmful effects

A number of studies illustrate examples of systems that eroded over time. In this context,

the web browser Mozilla [41] is one of the most popular cases in which architectural viola-

tions compromised its structure [5]. Mozilla was idealized to be the open-source version of

Netscape project. When the development team decided to build it. die idea was to use the

existent Netscape source code as basis for Mozilla. However, over time, developers realized

that the code had structural problems that were making evolution harder that it should be. As

a result, Mozilla was redeveloped from scratch, which demanded a lot of effort to be done.

One can imagine diat the new version of Mozilla was free of structural problems after the

redevelopment of the system. However, Godfrey and Lee carried out an in-depth analysis of

Mozilla and concluded diat its architecture significantly eroded in its short lifetime. Among

the reasons that caused this scenario, the coupling between unrelated modifies of Mozilla

increased the complexity of its structure. Figure 2.9 illustrates the top level view of the ex-

tracted architecture of Mozilla. In diis figure it is possible to identify undesirable couplings

between unrelated components. In particular, functional dependencies between the image

processing library and the network and tools subsystems reveals architectural dependencies

that should not occur - architectural violations.

The literature also describes die typical case in which developers have to implement a

number of new features in short period and. thus, compromise software's structure [42].

This scenario is illustrated by the Axis system, which is a server printer that, in the begining

of its usage, only had to support one client device. However, as the system became popular.

2.3 Architectural Erosion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA26 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 2.9: Mozilla top level view!5]

developers had to implement a series of new drivers to support a number of other client de-

vices. Similarly to Mozilla, the development team decided to build the system from scratch,

while maintaining the old software, until release die new one. As Gurp and Bosch reported,

after few years of success using die new architecture, developers were developing a third

new version of the system based on new architectural decisions. That is, despite the effort to

cope with structural problems, due to architectural erosion, this system had to be redesigned

two times in a short period.

Others widely used open source projects, such as FindBugs [28], Ant [43] and Linux

Kernel [44] suffered architectural erosion over time. FindBugs, for example, in a period of

approximately 4 years of development, evolved to an architecture with a number of cyclic

dependencies between modules. Figure 2.10 and Figure 2.11 show the summary of this evo-

lution. As we can see, in the beginning, the architecture had a few components and no cyclic

dependencies between them. However, modules became interdependent over time. As a

result, the architecture became a "tangle"' of 20 modules connected to each other, compro-

mising architecture understanding, evolution and maintenance [6],

2.3 Architectural Erosion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA27 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 findbugs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

/180 \
- - ' 4 8 ' « V

«visitclass Q f b a \ V

\81

graph
3 *
'LU

Figure 2.10: FindBugs release 0.7.2[6]

Regarding Ant project, by comparing two distinct versions (1.4.1 and 1.6.1) of this

project, Dalgarno [23] could identify that the architecture became large and complex to be

understood due to massive coupling between unrelated components. As he reported, in ver-

sion 1.4.1, Ant had well defined and separated layers - taskdefs, ant, and utils. However,

over time, these layers became complex and, mainly, interconnected to each odier without

respecting layers communication constraints. In particular, dependency from die lower-level

ant layer to the top-level taskdefs layer had been introduced.

Linux kernel is another example of system that had to be redesigned due to architec-

tural erosion. The version 2.4 of the kernel took almost two years to be released because

the previous version (2.2) demanded a massive restructuring to enhance performance and

accommodate new features [21].

Murphy and Notkin describe a case study in which a Microsoft engineer applies Re-

flexion Models technique to reengineer Excel project |7|. Although the authors focus on

demonstrating the feasibility of die approach in die context of large real-world systems, it is

also possible to note structural problems in die Excel project, once results of reflexion models

computation indicates a large number of divergences (83) between the high level model and

the implementation. As it had occurred in odier examples, divergences regard to unexpected

calls between two unrelated components. In the case of Excel project, 34 violations are due

to dependencies between Sheet and File components, as Figure 2.12 illustrates.

Feikas et al. [15] also conducted an assessment in an industrial case studies to evaluate,

among other aspects, architectural erosion and its causes. By analyzing the architectural

conformance checking results in three case studies, they identified that between 9% and 19%

2.3 Architectural ErosionzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 28

mzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA IN ** « W *~

Figure 2.11: FindBugs release 1.3.5(61

of all the dependencies are architectural violations, in the sense drat diey did not conform to

the architectural rules. That is to say, the systems analyzed meaningfully diverged from

the intended architecture. However, the authors found an interesting observation regarding

these violations. A meaningful portion of them are due to deficiencies in the documentation.

Based on this fact, the authors reinforce the need to continuously evolve die architectural

model based on the ongoing decisions.

Architectural erosion was also identified by Rosik et al. during the de novo, in vivo de-

velopment of a commercial system, named DAP [45]. The authors describe their experience

in applying conformance checking during software evolution and developers' acfions in face

of the feedback given by the process of architectural conformance checking. As a result, they

identified that the analyzed system diverged from the intended architecture and that devel-

opers tend to keep a number of violations unsolved. According to the authors, in most cases

this is due to the risk of the changes, which comprise a number of restructuring activities.

2.3 Architectural Erosion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 y

FigurezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 2.12: Snippet of the reflexion model for Excel. Solid arcs are convergences; dashed

arcs are divergences; dotted arcs are absences.[7]

Chapter 3

On the Evolutionary Nature of

Architectural Violations1

3.1 Contextualization zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

While there are techniques and tools to detect violations and check whether an implemen-

tation conforms to a given architectural reference model, many violations go totally un-

observed by development teams — sometimes even unsuspected. In fact, major releases of

large and relevant software products have meaningful amounts of architectural violations [47;

7].

Previous studies on dris subject concenttate on presenting conformance checking tech-

niques and tools, and how effective they are. In tins study, I take a different approach. I focus

on architectural violations lifecycle and location over time rather than on identifying them in

a single version of the software. In order to do so, I have performed a longitudinal and ex-

ploratory study on the evolutionary nature of the architectural violations of four open source

systems. The main goal is to better understand how violations unfold as time passes and

to build empirical knowledge regarding their temporal behavior. I use the reflexion model

technique [48] as an example of static architecture checking technique, due to the easiness of

deriving its required high-level module views from existing documentation of open source

'Parts of this chapter appeared in the Proceedings of the 2012 Working Conference on Reverse Engineering

(WCRE) [46], In addition, an extension of this work is currently under review at the Journal of Software and

Systems (submission date: Apr, 22nd).

30

3.2 Study DesignzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 31 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

systems.

In this chapter, I present the results of the aforementioned study as a first contribution to

a body of knowledge of architectural erosion. The remainder of diis chapter is organized as

follows. Section 3.2 describes the study design. In Section 3.3, I present the experimental

results. After that, in Section 3.4 and Section 3.5, I discuss results and threats to validity,

respectively. In Section 3.6 I discuss related work, and finally, Section 3.7 concludes the

chapter with final remarks.

3.2 Study Design

This section describes the experimental design conceived to guide the exploratory study.

First. I present the research questions. Then. I introduce the subjects. After that, I describe

the data collection. Finally, I present the applied experimental procedures and provide infor-

mation about the replicability of diis study. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

3.2.1 Research Questions

To investigate how architectural violations evolve over time, their location, and how the

development teams deal with diem, I have formulated the following research questions: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

• RQ1: How does the gap between code and architecture evolve over time?

I investigated the number of introduced and fixed architectural violations over time.
t
i

• RQ2: Are the violations equally spread over the design entities or they concentrate

on a few ones?

I investigated the ratio between classes with violations and the total of classes, the

distribution of violations per class and the classes with most violations.

• RQ3: Once violations are fixed in a given version, do they appear again in future

versions?

I investigated die presence of recurring violations - violations that are fixed, but reap-

pear from time to time.

3.2 Study Design 52 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

3.2.2 Subjects zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

The subjects of the study comprise four Java systems. Table 3.1 shows, for each system, the

studied period, their size (KLOC) and frequency of commits. A n t 2 is a popular Java-based

build automation tool. ArgoUML 3 is an open source UML modeling tool. Lucene 4 is a text

search engine library written entirely in Java. And, SweetHomeSD 5 is an interior design

application that allows placing furniture in 2D plants with 3D previews.

Table 3.1: Subject Systems
Subject Studied period (first / last! Revisions (first / last) Size (K L O O (miu / max) # Monthly Commits itnin / mac)

Am J,ui-2O07 / Ocl-2007 500.752 / 584,500 232 / 239 22/164

ArgoUML Feb-2007 •' Nov-2007 12,103/13,713 397/813 120/286

Lucene Jun-20l«/Feb- 20 H 978,784/1,075.001 247 / 336 58/173

SwcaHome3D Jun-2009 / Feb-2010 2,069 / 2.382 7 5 / ' » 6/99

The requirements for the subjects were: systems from medium to large size that contained

architectural documentation; systems with frequent short-term commits; commits should

happen on a daily or short-term basis to allow die generation of meaningful bi-weekly data:

software versions should be available from software repositories using version control sys-

tems. In addition, there should be an adequate time frame for extracting empirical data (I

used a nine-month development period for adequate longitudinal observation). Finally, sys-

tem had to have compilable source code in Java due to die design extraction tool used, which

reports facts from the bytecodes of Java systems [27].

3.2.3 Data Collection

To analyze architectural violations, some choices and assumptions were made about the

experimental design, software versions and evolution period.

Assuming that an architectural module view remains stable for a longer period (e.g., some

mondis between software releases), and that source code changes very frequently, sometimes

more than once a day, I mined source code from software repositories at different time in-

stants (bi-weekly), and computed architecture checks for each of these instants. Sampling

should not be too frequent (commits) neither too sparse (releases). Too frequent sampling

2ant.apache.org

•'argouml.tigris.org
4lucene.apache.org
5ww\v.swee thome3d.com

http://apache.org

3.2 Study Design zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 33 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

leads to noise because they are more likely to be unstable changes. On the other hand, too

sparse sampling implies very few data points to analyze. Furthermore, analyzing releases

could raise another threat. The longer the period the more likely for the architecture refer-

ence model to change. Thus I produced bi-weekly violation lists for each bi-weekly source

code version. In this study, I extracted 20 bi-weekly versions for each subject system in a

period of nine months. The first version is used as a reference, and the other 19 versions

have their violations analyzed, i.e., when diey first appear and whether they are fixed, i f diat

happens.

The violation lists were produced by applying the Reflexion Model technique [48J. In a

nutshell, this technique consists in extracting high-level models, mapping die implementa-

tion entities onto these models and comparing the two artifacts, i . e., die high level models

and the implemented design, checking where they agree and where they disagree. In this

study, the high-level models were extracted from system documentation. SweetHome3D

had design tests in the JDepend tool with packages as modules and assertions as die al-

lowed dependencies between modules. Ant had a module view based on packages in the

Lattix LDM tool. Lucene had a layered view diagram and I (in collaboration with other

researchers) have performed the mapping, using die package names as the basis for module

attribution. Finally, ArgolIML had the most detailed design documentation: a set of module

views and the packages that made up each module. The high-level models represent relevant

features of the systems, but they are not intended to be complete. Thus, some features can

be missing in the models. The mapping for die four systems was performed through regular

expressions based on the names of packages that made up those modules.

In order to better understand the quantitative data collected from violation lists, I also

collected data from other sources. This activity was performed following two strategies:

i) using SVN visual diff tool to compare subsequent versions of die software repositories

and ii) manual inspection of the developers' public mailing list by date of interest. The

former provided the code changes between two subsequent versions, which were used to

explain some quantitative data. The latter provided data about architectural discussions and

decisions of the development team, which were used to confirm some of the findings.

3.2 Study Design zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 34 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

3.2.4 Procedures and Measures zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Because the goal was to analyze the evolutionary nature of violations. I had to compute their

lifetime. To accomplish this, Iuniquely identified a violation through an id. This id is a tuple

that contains the following information:

• caller: fully qualified name of the source code entity that violates the architectural

rule;

• callee: fully qualified name of the source code entity used by the caller:

• type: violation dependency type. I considered the following types of dependency:

medtod calls, field access, generalization, realization, catched and thrown exceptions,

returned types and received parameters.

For die sake of clarity, let us analyze an example of an architectural violation:

• caller: main. ConditionTask. execute ()

• callee: gui .ConditionBase. count Cond ()

• type: c a l l s

This violation means that the execute () method from die ConditionTask class

calls die countCond() method from the ConditionBase class. Given that this vio-

lation was detected in version /. it is trivial to find out whether it was fixed or not in the

following versions (i+1, i+2 . . .). This allows us to compute a violation's lifecycle. For

example, consider the following lifecycle for a hypothetical violation P:

Analyzing the violations' lifecycle for all die studied versions, I were able to compute:

• introduced violations per version;

• fixed violations per version;

• architectural debt - die difference between introduced and fixed violations per version;

P's lifecycle: v l v2 v9 vlO v l l

3.3 Results zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 35 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

• amount of recurring violations;

• degree of recurrence - the amount of times that a violation reappears in the system.

As we can see, the violation i d also allows us to identify not only the method that causes

the violation, but also its class, package and module, once this hierarchy is defined in the

high-level module view. Using this information, I also measured:

• the amount of classes with violations;

• the amount of violations per class.

3.2.5 Replication Package

The architecture module views for Ant, ArgoUML, Lucene and SweetHome3D were

obtained from Bittencourt's Ph.D. dissertation [491. I provide these models, raw and

processed data, and the scripts used to obtain the results of this study in the URL:

http://code.google.coiii/p/on-the-nature-dataset/wiki/ReplicabilityOfTheStudy.

3.3 Results

in this section, I present and analyze the results of the experiment in face of the questions

raised during the experimental design. I address each question separately in both quantita-

tive and qualitative perspectives. The quantitative analysis is based on the interpretation of

the collected data whereas the qualitative analysis is derived from manual inspection of the

repositories and the developers' public mailing list.

3.3.1 Addressing RQ1: How does the gap between code and architec-

ture evolve over time?

In order to answerzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA RQ1, the first step was to identify and count the amount introduced and

fixed violations per version. Figure 3.1 shows die data collected for the four selected subjects.

Each point in die figure represents either die number of introduced violations or the number

of fixed violations (vertical axis) for a given version (horizontal axis).

http://code.google.coiii/p/on-the-nature-dataset/wiki/ReplicabilityOfTheStudy

3.3 Results zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 36 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

o 80
> 60 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n Sv, ee He rne S D

0 Inlroducec zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
() zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

° A Solvec -

J L 1 f f 1

i L

1 1) 1 1
i

— I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA'zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA <

i

oo j

AA
1

s p
1 I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi i i i i i i i i i 5 !

a < i a Ao a ^A v

i i i i i

i : <
" T " zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

> zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 3 5 7 9 11 13 15 17 19 1 3 5 7 9 11 13 15 17 19 1 3 5 7 9 11 13 15 17 19 1 3 5 7 9 11 13 15 17 19

Versions

Figure 3.1: Introduced and Fixed Violations per Version

SweetHorriE 3D

1 — I i % r n 1 - - ~ l ,,,, m r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- I 1 1 1 i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

| zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
\/

— — ~ s 1 |

V

,,

^-1—1 i— r n i i 1 - ~1 •™i i ... 1
1 3 5 7 9 11 13 15 17 19 1 3 5 7 9 11 13 15 17 19 1 3 5 7 9 11 13 15 17 19 1 3 5 7 9 11 13 15 17 19

Versions

Figure 3.2: Architectural debt per version. The line represents die Cumulative Architectural

Debt.

The second step was to observe how the architectural debt behaves over time. Given a

software version, I define architectural debt as the difference between the amount of fixed

and introduced violations. Figure 3.2 shows, as vertical bars, die architectural debt for each

version. In addition, the line represents the cumulative architectural debt as software evolves.

Considering the amount of introduced violations per version shown in Figure 3.1. we can

observe, in most versions, that few violations were introduced. The same occurs with the

amount of fixed violations. It is worth noting that both for Ant and ArgoUML. the data col-

lected shows that only a few versions introduce and solve a large number of violations. One

can also notice that this occurs in consecutive versions, meaning that violations introduced

in one version are usually fixed in the following version. As a consequence, the cumulative

architectural debt increases in one version followed by a reduction in the following version

(see versions 11, 12, and 13 for Ant. and versions 5 and 6 for ArgoUML in Figure 3.2).

3.3 Results zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 37 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Analysis

To conduct the qualitative analysis, I performed a manual inspection focused on adjacent

versions in the repository. I conducted a more detailed inspection in versions with a large

number of introduced and removed violations. For instance, versions 11, 12, and 13 for Ant.

versions 5 and 6 for ArgoUML, and version 13 for both Lucene and SweetHome3D.

In fact, the qualitative analysis revealed a major restructuring period in Ant and Ar-

goUML. In ArgoUML, the analysis of the discussions between die developers during this

period was quite enlightening. First, I detected that one developer performed a major change

and communicated it to the rest of the development team, as we can see by his transcribed

message: ''Yesterday I removed the old directoryzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA (org. argouml. uml. p r o f i l e) and

modified Argo code to use the code in the new directory (org . argouml . p r o f i l e) . " This

important change in die code introduced several violations since new classes with forbidden

relationships were added into the (org. argouml . prof i le) package.

As Figure 3.1 shows, a significant number of architectural violations were fixed in version

6 of ArgoUML. The qualitative analysis revealed that two major changes in the code were

responsible for this. Again, analyzing the mailing list and the commit messages (revision

12,455). I first found that one developer moved a class to its correct module, as can be seen

by his transcribed message: "PwgressMonitor does not belong in the GUI subsystem...Move

the Progress-Monitor into its own subsystem." This change, combined with the removal of

a cyclic dependence between two modules of ArgoUML (revision 12,407), decreased the

cumulative architectural debt.

At last, I found a message from an important ArgoUML developer that summarizes die

whole period of restructuring: "7 think it is time to start planning a 0.25.4 release to get all

this together. I hope you agree."

Looking at Ant data shown in Figure 3.1 I identified a major restructuring period during

versions 11, 12, and 13. An interesting fact that first caught attention is that the number

of fixed violations in version 12 is identical to the introduced in version 11 (its previous

version). Analyzing the repository and performing the diff between versions 10, 11, 12, and

13, I could visualize and understand what happened during this period. The restructuring

was conducted as follows:

3.3 Results zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 38

• 10 - 11: ClasszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA F i l e U t i l s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$ 3 was added to the project. This explains the large

number of violations introduced.

• 11-12: The same class (F i l e U t i l s $ 3) was removed from the project and its code

was moved to another class. This explains the identical number of introduced and fixed

violations between these two consecutive versions and the large number of introduced

violations as well.

• 12-13: Class Pro jectHelper was restructured. The change comprised splitting

its code in six other classes, which explains the large number of introduced and fixed

violations.

Considering Lucene, various classes were added to the system in version 13 (revision

1,048,879). To be more precise, 26 classes were added to u t i l . automaton. f st pack-

age, which is part of the u t i l module. These classes have forbidden method calls to the

store module. As a result, 42 architectural violations were introduced in the system.

Finally, in SweetHome3D, three classes were removed and their code were moved to

AppletAppl icationClass, which explains the number of introduced and fixed viola-

tions in version 13 (revision 2,210).

Anodier important aspect to point out is that, for all systems, developers usually perform

perfective maintenance that aims to solve architectural violations. Moreover, when I analyze

in each version the difference between fixed and introduced violations, the numbers suggest

that, in most cases, die problem of architectural deviation is feasible to solve. Figure 3.3

shows the boxplot of the absolute value of the difference between the number of fixed and

introduced violations per version. As we can see, in all systems, tackling up to the third

quartile of violations seems to be feasible in a period of two weeks. However, as software

evolves and the problem is not properly faced, the cumulative architectural debt, shown by

the line in Figure 3.2, grows and the code tends to increasingly diverge from the intended

architecture.'1

6 I t is important to say that, due to the few restructuring moments, this function is not monotonically de-

creasing.

3.3 Results zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA*1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Ant Argoumf Lucene SweetHome3D

Figure 3.3: Quantiles for the architectural debt

- i i 1 1 — 1

Ant ArgoUML Lucene SweetHomeSD

Figure 3.4: Distribution of violations per system. CV = classes with violations and CN =

classes with no violations. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

3.3.2 Addressing RQ2: Are the violations equally spread over the de-

sign entities or they concentrate on a few ones?

To answerzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA RQ2, I collected data considering different relations between classes and viola-

tions. First, I investigated the ratio between classes with violations and the total of classes.

Figure 3.4 shows die amount of classes with and without violations per system in version

1. It is important to mention that, in the experiment, I also looked at die other versions and

found that the mean of classes with violations over time is 11%, 9%, 6% and 5% for Ant,

ArgoUML, Lucene and SweetHome3D, respectively. Second, I analyzed the distribution

of violations per class. Figure 3.5 shows the histogram of classes per violation. In each

plot, the horizontal axis represents the amount of violations whereas the vertical axis stands

for die frequency of classes. As we can see, few classes have many violations, while most

classes contain very few violations. Again, these data regard only version 1 of each system.

However, I have considered all the versions and found no significant variation among them.

The histograms suggest that the classes in the distribution tail are responsible for most of

the violations. Figure 3.6 shows the cumulative proportion of violations per class, ordered by

3.3 Results zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 40 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

"i—i—i—i—r
10 20 30 40 50 60 70 80 90 0

1—i—I—i—i—i—In—i—i—i—i—i—l—r -r
10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90 0

#Violations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i — i — i — r

10 20 30 40 50 60 70 80 90 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 3.5: Frequency of classes per amount of violations (Version 1)

50 100 150 10 50 100 150 10 50 100 150 10 50 100 150
Top classes

Figure 3.6: Distribution of violations per class

classes with most violations. Each curve in each plot represents one version. Figure 3.6 con-

firms the idea that few classes are responsible for most violations. Moreover, this behavior

repeats in time, since the curves are very close to each other.

One last important aspect analyzed to answerzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA RQ2 is shown in Table 3.2. For each

system, the table presents: i) die mean proportion of violations caused by the Top-10 classes;

ii) the number of different classes drat appeared at least once in the Top-10 classes in the

studied period (DC): iii) the mean ratio between DC and the total number of classes.

Analysis

The distribution of violations among classes revealed different issues. First, analysis of

Figure 3.4 suggests that a small proportion of the whole system is responsible for the archi-

tectural violations. In fact, in the worst scenario (ArgoUML), at most 11 % of the classes

contain forbidden architectural relationships. Still, this proportion means, in dris case, diat

3.3 Results zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 41

Table 3.2: Top-10 data. DC = Number of different classes in Top-10 during the studied

period. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Subject Top-10 proportion DC DC / Total

Ant 54% 12 1.8%

ArgoUML 40% 17 2.7%

Lucene 45% 16 6.2%

SweetHome3D 66% 12 2.9%

186 classes are responsible for architectural violations, which leads us to believe that such

a large number of classes inhibits developers to cope with the problem. For this reason it is

important to analyze the distribution of violations inside the classes with violations. Analysis

reveals that very few classes contain a large number of violations (Figure 3.5). Therefore,

the analysis of the violations inside the classes suggests the existence of a small number of

classes responsible for a large proportion of the violations, since few classes in the distribu-

tion tail are responsible for a large proportion of the violations (Figure 3.6).

One important concern during the experiment was to restrict the analysis to a smaller

group of Top-10 violating classes. If the Top-10 classes do not vary much in time, main-

taining conformance might be easier, since the scope of architectural problems would be

confined to a small number of classes. Confirming my intuition, Table 3.2 shows that the

number of different classes (DC) that appear- at least once in die Top-10 group is small.

Moreover, it represents a rather small proportion of the total number of classes. In summary,

die critical core comprises a small number of classes and does not change much in time.

Results from the qualitative analysis point that a core of classes is critical not only for

the large number of violations that they contain, but also for two aspects: i) their role in the

architecture; and ii) how restructuring changes in the core have a high impact on the amount

of fixed relations.

In diis context, regarding the role of the critical core, I found, for ArgoUML and Sweet-

Home3D, that classes inside diezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA gui and swing modules correspond to the majority of

Top-10 classes. For example, I found that six classes in ArgoUML Top-10 group are re-

sponsible for the graphical interface. In fact, the class with most violations in ArgoUML is

ProjectBrowser, which is part of die gui component. The large number of violations

l J F C G i r « « C

3.3 Results 42 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

occurs becausezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA Pro jectBrowser is a presentation class and therefore needs informa-

tion about various business logic objects, which leads to non-allowed coupling with various

classes.

Another valuable information that reinforces my observation about the critical core is

that, although I have analyzed ArgoUML data for 2007, since 2002 the Pro jectBrowser

class is an architectural concern to the development team, as the discussion below shows:

1. Developer A: " I just refactored Pro jectBrowser to take out the construction of die

Menubar. Are there any objections against this?" (2002-10-10)

2. Developer B: "Take out the references to the project. Let the project be managed by

another singleton class. Decouple Main and Pro jectBrowser." (2002-10-12)

3. Developer C: "Refactor suggestion for Pro jectBrowser: Take out anything to do

with current themes and place this in its own singleton class." (2002-10-12)

Due to their application domain, Lucene and Ant do not have graphical interface mod-

ules. However, analyzing violations in these two projects, I found that the u t i l module of

both applications is critical. That happens because an util abstraction receives objects from

many different classes to perform its actions.

Regarding changes in the critical core, I first hypothesized that the number of fixed rela-

tions is highly impacted by corrective changes in the Top-10 classes. Then, I analyzed peaks

of fixed violations and identified these changed classes. Not surprisingly, for all die systems,

peaks of fixed violations were caused by changes in the classes on the distribution tail. In

other words, by changes in the critical core. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

3.3.3 Addressing RQ3: Once violations are fixed in a given version, do

they appear again in future versions?

In order to answer RQ3,1 identified the number of recurring violations (RV) and their pro-

portion over the total of fixed violations (RV / fixed). Besides that. I counted the amount of

times that a violation reappears in the system (degree of recurrence). After that, I identified

the statistical modal value of die degree of recurrence (MDR) considering the recurring vio-

3.3 Results zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 4 3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

lations. I use the modal value instead of mean or median because it is the most representative

descriptive statistic of the data. Table 3.3 summarizes die data collected for each system.

Table 3.3: Recurring violations data. RV = #Reeurring Violations and MDR = The modal

value of the degree of recurrence. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Subject RV Total Fixed RYVFixed MDR

Ant 343 366 94% 1

ArgoUML 44 400 11% 1

Lucene 21 107 20% 1

SweetHome3D 37 162 23% 4

Analysis

The quantitative analysis revealed that all the systems have recurring violations. The high

number of recurring violations for Ant is explained by the rollback occurred during versions

11 and 12, as I have previously identified. Yet, recurring violations represent a meaningful

number when compared to the total of fixed violations.

For all systems, analyzing the recurring violations' lifecycle, I found that a small number

of violations were not definitely fixed during the studied period. For example, for Ant, 9 of

the 343 violations were not fixed. It is worth saying that, due to die limitation in the timeline,

I cannot assure that these violations were definitely removed from the system.

It is worth noting that, except for SweetHome3D, the modal value of degree of recurrence

(MDR) is 1. It means that most of the recurring violations were fixed and appeared only once

again.

One common approach to regard a problem as relevant is to identify whether it was ad-

dressed by the development team in earlier versions [50; 51]. What is clear when analyzing

recurring data is that a meaningful proportion of architectural violations tiiat were fixed ear-

lier, i.e., relevant violations, are likely to reappear in the future.

It is not simple to assert why violations reappear over time. For example, analyzing Ant

data, I observed that one of the factors that might cause this is a mistaken restructuring activ-

ity followed by a series of correction steps. Besides that, another aspect to take into account

is the degree of knowledge of a developer in a specific area of the code. Unfortunately, due

3.4 Discussion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 44 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

to limitation of the data, it is not possible to identify the authors who were responsible for

the introduced violations.

In summary, the number of recurring violations suggests that the problem exists and it

cannot be ignored during the software evolution. This kind of behavior may indicate, for

example, mistaken restructuring changes and the lack of architectural awareness by some

developers [16].

3.4 Discussion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

3.4.1 Do not live with broken windows

Through this exploratory study, I could gather some interesting insights about architectural

drift. In particular, although the data does not empirically demonstrate such a conclusion,

I believe that architectural drift seems to be related to the "Do not live with broken win-

dows" [52] principle. Hunt and Thomas used tiiis metaphor to highlight the importance of

not letting small problems unrepaired in the code. In die context of architectural debt, die

results suggest that the gap between code and architecture is tractable when violations are

checked and then fixed in a short period (e.g., bi-weekly). However, as software evolves and

small problems are not properly faced, tackling architectural drift can become unfeasible, as

can be seen in Table 3.4. The table shows the total number of violations in version 19. This

number regards the violations introduced and not fixed during all the systems" lifecycle. That

is to say, it represents the overall gap, not only die one observed during die studied timeline.

Table 3.4: Total number of violations in version 19

Subject #Violations

Ant 637

ArgoUML 641

Lucene 305

SweetHome3D 429

3.4 Discussion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 45 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

3.4.2 Human factors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Qualitative analysis performed in this study revealed valuable information about: i) how

developers deal with architectural issues; and ii) how changes in the code impact architectural

drift. Although quantitative analysis reveals important facts about architecture erosion, 1

found that other sources of information improve the understanding about it. For example,

developers' mailing list records gave detailed descriptions of architectural discussions and

decisions. In summary, analyzing architectural issues involves observing not only source

code and models, but also die human factors involved.

3.4.3 Critical core first

Changes in the critical core can produce great impact on architectural debt. For instance,

Figure 3.7 shows one of the peaks of fixed violations in ArgoUML. As we can see, the

number of violations of the classes in the distribution tail (critical core) had significantly

decreased, i.e., they were moved to the left in the distribution.

Based on the results, it is possible to state that by addressing the critical core, developers

can concentrate on the largest part of die violations, while having to deal with a small number

of entities. However, it is important to make clear that this does not imply that less work has

to be done.

3.4.4 Recurring violations

In the study, I also found tiiat some violations are fixed, but reappear in future versions of

the system. Analyzing this issue helps to reveal recurring architecture problems. These

problems may be caused by several reasons, of which I highlight two: lack of architectural

awareness [16] and lack of conceptual integrity [17]. In a nutshell, the former refers to the

awareness of a developer about several aspects, including architectural decisions, while the

latter refers to the uniformity of a mental model that the developers have about the architec-

ture. I put these two terms in perspective because, i f the recurrence was caused by the same

developer that fixed it earlier, it may suggest that this developer is losing architectural aware-

ness over time. On the other hand, i f its recurrence was caused by a different developer, it

may suggest lack of conceptual integrity.

3.5 Threats to Validity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA46 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Q 1 ,BJj zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIk zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

M M H zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi t a t JO « • « n H

Figure 3.7: Peak of ArgoUML Fixed violations. Classes in the distribution tail were restruc-

tured.

It important to state some aspects that might influence the observations. In this context,

the main threat is the architecture module views that I have extracted from the subjects.

Despite the fact that they were based on systems' architectural documentation, I still have to

validate diem with the architects and developers. However, in the qualitative analysis of the

peaks of introduced and fixed violations, I manually inspected two sources of information

to support the quantitative data: the connnits and discussions in the developers' mailing list.

Through this analysis, I did not find inconsistencies between the observations and what really

happened in the systems, which leads us to believe that the architectural module views seem

to be consistent.

Another important aspect regarding the architecture module views is that I assume that

the architectural decisions remain stable during the studied period. This might affect the

observations because a change in the module view of a system during the period of the

experiment could generate different results. Nevertheless, as far as I could observe, the

architectural decisions remained stable for all the studied systems.

It is also worth mentioning the renaming problem, i.e.. given that a violation id is based

on entity names, i f tiiis name changes. I consider the violation as fixed. I performed a quali-

tative analysis of the amount of renamed entities and found tiiat, in only one of the subjects,

namely ArgoUML, one of the top ten classes was renamed. Regardless of this exception,

the approach was still correct in considering the violation fixed, because the renaming was

caused by moving die class to its appropriate package. Nonetiieless, I do realize diat this is

a particular case. Hence. I understand that further analysis is required, to account for name

3.5 Threats to Validity

3.6 Related Work zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA47 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

changes.

Finally, results cannot be generalized to contexts different from die subject systems. I

tried to reduce external validity direats, though, by choosing popular and long-life systems

in an industrial-strength language (Java). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

3.6 Related Work

Lehman have built an initial body of knowledge on software evolution establishing, among

other concepts, the so called Lehman's laws 1181. In this context, several studies have been

performed to analyze software in an evolutionary perspective. Godfrey and Tu [53], for

example, investigated the growth of the Linux operating system kernel over time. The au-

thors examined 96 kernel versions measuring their size in terms of the distribution pack-

age, LOC, number of functions, variables and Macros. As an important observation, die

authors found that all measures revealed that development releases grow at a super-linear

rate over time, contrasting Lehman's hypothesis of an inverse square growth rate [54;

55]. Gall et al. [56] performed a similar work on a large telecom switching system (TSS).

As a major result, the authors found divergences between die whole system growth and its

subsystems.

Some of the works in the software evolution area specifically focus on the architectural

evolution over time. For example, van Gurp et al. [211 analyzed two case studies in order to

investigate die common causes for design erosion, how the stakeholders identify this scenario

and what are the common activities performed to address design erosion.

Hassaine et al. [57] proposed a quantitative approach to study the evolution of the archi-

tecture of object-oriented systems. The authors conceived a representation of an architecture

based on classes and their relationships and used this representation to measure architectural

decay by comparing with a subsequent program architecture. Hassaine and colleagues use

the term architectural decay to refer to the deviation of the actual architecture from the origi-

nal design. This study is related to this thesis because I both analyze architectural decay/drift

over the time. However, instead of assuming that die first version of a system is the intended

architecture, T use explicit architectural models extracted from the systems' documentation,

which reveals that the inconsistencies are in fact architectural violations.

3.7 Summary' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA -18 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Another work closely related is a case study performed by Rosik et al. [45]. The re-

searchers assessed the architectural drift during die de novo, in vivo development of a com-

mercial system, named DAR The authors describe tiieir experience in applying conformance

checking during software evolution and developers' actions in face of the feedback given by

the process of conformance checking. As a result, they identified that the analyzed system

diverged from the intended architecture and that developers tend to keep a number of viola-

tions unfixed. According to die authors, in most cases this is due to the risk of die changes,

which comprise a number of restructuring activities. The work of Rosik et al. is similar

in the sense that it aims to analyze the evolution of the gap between code and architecture.

However, it is important to clarify some differences. First. I have analyzed four mature and

architecturally stable systems, while they performed architectural conformance checking in

one system since the beginning of its development. Moreover, my focus was not restricted

only to architectural drift, but I also observed the location of the architectural violations and

their lifecycle to respectively identify critical cores and recurring architectural problems. On

the other hand, the results of this thesis corroborate with theirs in that implementation of a

system tends to diverge from its intended architecture.

Wermelinger et al. [581 proposed an architectural evolution assessment framework based

on quality metrics, laws, principles, and guidelines to address important questions about die

architecture behavior over time. They focus on assessing architecture by analyzing quality

principles, such as the Acyclic Dependency Principle and the Open Close Principle. We,

however, did not evaluate the architecture through quality metrics. I were more concerned

on how far it is from the intended one. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

3.7 Summary

This chapter addressed the lack of knowledge on the evolutionary nature of architectural

violations. I focused my effort on investigating the architectural drift over time, the location

of the violations and their lifecycle. In particular, I addressed diree main research questions:

• How does the gap between code and architecture evolve over time?

• Are the violations equally spread over die design entities or they concentrate on a few

3.7zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA Summary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 4 «) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

ones?

• Once violations are fixed in a given version, do they appear again in future versions?

In order to provide answers to the aforementioned questions, I conducted a longitudinal

and exploratory study. I performed conformance checking on four widely known open-

source systems for which I have architectural models. In total, I analyzed more than 3,000

violations. From die quantitative and qualitative analysis. I observed that, in face of the

questions raised during the study design: i) the number of architectural violations, in the

long term, is continuously growing; ii) in all studied systems there is a critical core and tiiis

core does not change much over time: and iii) some violations are fixed, but reappear over

time.

Chapter 4

An Empirical Study of Architectural

Rules and Violations1

4.1 Contextualization zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Developers, designers, architects and other stakeholders often invest significant effort to-

wards creating (and maintaining) good software architecture for their products. These invest-

ments are meant to pay-off over the lifetime of a software product through improved reusabil-

ity, better adaptability for new features, and other benefits [59; 60]. However, should devel-

opment deviate from the architecture, the long term pay-offs can be diminished, replaced

with technical debts instead. To help ensure intended characteristics of a software architec-

ture are carried into implementation, practitioners and researchers have developed a number

of approaches and tools to help implementations retain consistency with their architectures.

ArchJava [61], Domain Specific Languages (DSL) [62:63:64], and consistency checkers [1 ;

651 are but some tools and approaches that address this architecture deviation problem.

Although these kinds of approaches have been available for many years, little is still

known about how the approaches work in practice. The studies that have been conducted

have focused on checking architectural rules that are limited to expressing statements about

how modules should or should not access each other (e.g., [66; 7; 461). Furthermore, little is

know about the relevance of the violations reported by conformance checking approaches.

In fins chapter, I report on an empirical study conducted to more broadly understand

'The content of this chapter is under revision (minor revision) at IEEE Software.

50

4.2 Study Design zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 51

what rules about architecture developers want to and do express, the ways in which im-

plementations violate expressed rides and how developers view gaps that occur between an

implementation and its intended architecture. In contrast to earlier studies, die cases I con-

sider include a broader set of rules, going beyond rules just about access (e.g., module A

must not access module B) to also include rules about type hierarchies (e.g., class C may not

be subclassed) and about object instantiation (e.g., class D must not be instantiated).

The empirical study involved three subject software systems: the open-source Eclipse

integrated development environment.2 a closed-source distributed file system called

BeeFS [67], and a closed-source web inquiry management system for the Federal Police

of Brazil called e-Pol. For 5 years, the developers of Eclipse have expressed architectural

rules about constraints on Eclipse plugins. I analyzed existing official releases reports of vi-

olations of these rales that have occurred over 19 versions of Eclipse. For BeeFS and e-Pol,

I interviewed developers to collect, express and verify rules. For each system, I quantified

and analyzed the rules expressed and interviewed developers about the use of such rules.

This chapter presents the following contributions:

• a characterization of architectural rules and their violations that occur in practice,

• a quantitative and qualitative data on the relevance of architectural violations and how

developers deal with differences between an implementation and its intended architec-

ture, and

• a characterization of reasons diat lead developers to commit violating code.

I begin by detailing the design of the study (Section 4.2) before presenting (Section 4.3)

and discussing the results (Section 4.5). Then, I present the tiireats to validity (Section 4.4).

After diat, I continue by reviewing existing work in expressing and checking architectural

rules (Section 4.6). Finnaly, I conclude with summary of the chapter (Section 4.7). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4.2 Study Design

Four research questions drove die quantitative and qualitative investigations into the practice

of using architectural rules: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2www. ec l i p s e . org, verified 7/9/13.

4.2 Study Design zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 52 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Tab] e 4.1: Subjects
Project #Packages #Classes #LOC

Eclipse Release 4.3 546 8909 4.4 MLOC

BeeFS 51 258 25 KLOC

e-Pol 41 599 57 KLOC zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

RQ'l : What kinds of architectural rules are expressed?

RQ2 : What kinds of architectural violations occur?

RQ3 : Which architectural violations are relevant to developers?

RQ4 : Why do developers commit violating code?

4.2.1 Subjects

To help answer these questions, I investigated the three Java systems: Eclipse. BeeFS and

e-Pol.

Eclipse is an open-source platform and development environment whose architecture

relies on the concept of plug-ins. The Eclipse developers have automated an approach to

structural architectural rale checking. For the last 5 years, Eclipse included 48 plugins in

its architectural rule conformance checking process. 32 of these 48 plug-ins do not appear

in all releases. In this study, I focus on the 16 plug-ins that were included in every release

over these 5 years and provide valuable historical information about the Eclipse platform

plug-ins. As we can see in Table 4.1, these 16 plug-ins represent 4.4 million LOC organized

in 546 packages and 8909 classes. I analyzed information from different versions of Eclipse;

as information is discussed I specify the particular versions considered.

BeeFS is an closed-source distributed file system that harnesses the free disk space of

machines already deployed in a local network. The system uses a hybrid architecture that

follows a client-server approach for serving metadata and managing file replicas, and a peer-

to-peer architecture for serving data. The project has been under development for 2 years by

9 developers and contains 25 KLOC organized in 51 packages and 258 classes (Table 4.1).

The version of the software is dated June 5, 2013.

e-Pol is a closed-source web-based system which main goal is to automate tasks per-

formed by Brazilian Federal Police, such as managing data on police investigations. The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

UfCG/BlUOTECAIBC

4.2 Study Design zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA53 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

project has been under development for 4 years by 12 developers and contains 57 KLOC

organized in 41 packages and 599 classes (Table 4.1). The version of the software is dated

April 6, 2013.

In addition to having access to the source code of each of diese systems and the results of

architectural rule checks, I also interacted with 24 developers, each of whom was involved

with one of these three projects. Seven of die developers (29%) were associated with the

Eclipse project; these developers had worked with the Eclipse project for between 4 and 12

years. Five of these developers have been committers since the beginning of the Eclipse

project and three are part of the Eclipse Architecture Council, which is responsible for the

development and maintenance of the Eclipse Platform architecture. Seven of the 24 (29%)

developers were associated with the BeeFS project and had between one and two years ex-

perience with the project. Ten of the 24 developers (42%) were associated with the e-Pol

project, each had between one and four years experience with die project.

4.2.2 Data Collection Procedures and Analysis

Figure 4.1 provides an overview of the data I collected and analyzed.3 Next, I describe the

data collected and analysis procedures used for each of die four research questions in turn. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

API Tool annotations
19 Official API Tools Verification
Report
Discussions on developers' mailing
lists
Bug Reports and Commits

Conformance Checking Approach
Semi-structured interviews with
developers and architects

Figure 4.1: Data sources

Due to die projects heterogeneity. I applied mixed methods approach [68], collecting data

from different sources for triangulation (Figure 4.1). Based on die research questions, I was

mainly interested in data on architectural rules, architectural violations, the relevance

and the causes of architectural violations. Next I describe how I gathered data from these

different sources and how I analyzed this data to answer the research questions.

3 A l l study data is available at www. dsc . u f e g . e d u . b r / - j a r t h u r / i c s e 2 0 1 4

e l i p s e

http://edu.br/-

4.2 Study Design zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 54 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Architectural Rules

In the case of Eclipse, the developers had implemented an approach for checking archi-

tectural rules and had been expressing and checking such rules for 5 years independent of

this study. For the other two systems, BeeFS and e-Pol, I interviewed developers to collect

architectural rules.

Eclipse. In the Eclipse development, an API consists of public and well-documented

packages, interfaces, classes, methods and fields. Every API is documented to express what

it is supposed to do and how it is intended to be used. As part of expressing how an Eclipse

APIs is intended to be used, the developers of Eclipse use the Plugin Development environ-

ment (PDE) / API Tool, a mechanism that provides Java annotations to restrict access to an

API. 4 Using this tool. Eclipse developers can express structural architectural rules diat re-

strict extension of a class (@noextend), that restrict implementation of an interface (@noim-

plement). that restrict object creation (@noinstantiate), that restrict overriding of a method

(@nooverride). and that ensure no use (@noreference). Besides these five restrictions, the

PDE/API tool also ensures no references from external clients to a package with "internal"

in its name, because they are not API elements and, for this reason, they are likely to change

without official support to existing clients.

I was able to leverage these existing annotations in the code as die architectural rules for

the Eclipse plug-ins included in the study.

BeeFS and e-Pol. Neither BeeFS or e-Pol were using an approach to express or check ar-

chitectural rales. However, both systems were willing to participate in the study. To seed the

architectural rules for each of these systems, I performed on-site interviews widi one to two

software developers from each project at dieir respective workplaces. Since the beginning of

their projects, these developers are responsible for the architectural decisions involving the

structure of the code to be implemented. I started these interviews by discussing the concept

of structural architectural rales and asking each developer to describe instances of these rales

in the context of their project. For BeeFS, I carried out two sessions of approximately one

hour with two of its developers. For e-Pol. T conducted a one hour and thirty minute session

to collect the rales. During the sessions, architectural rules were described informally using

text, and box and arrow diagrams so that the language for explicitly expressing the architec-zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4 h t t p : / /www. e c l i p s e . org/pde/pde-api-tools/, verified 8/9/13

4.2 Study Design zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA55 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

tural rules would not be an obstacle. An example of rule that was declared is: " M O D E L must

not depend on SESSION". The second step was to map die design entities involved in die

rules to the source-code entities, such as mapping MODEL to the EPOL.MODEL package.

For each project, after I collected the rules and mapped the design entities involved, I

applied a technique called member checking [69] to gather feedback on the collected archi-

tectural rides. I achieved this by transcribing the rules from the whiteboard to a collaborative

editing document and asking the developers to validate them. During this activity, there were

only updates to the mappings.

To perform automatic conformance checking. I expressed the collected architectural rules

as Design Tests [70.1, which automatically checks whether an implementation conforms to

an architectural rule. Design tests can be written to express a wide variety of structural

architectural rules including all of diose expressible by the Eclipse PDE / API tool.

Architectural Violations

In addition to gathering data about the structural architectural rules, I also gathered data

about how the architectural rules were violated within the implementations of the software

projects.

Eclipse. I collected Eclipse architectural violations from the official PDE / API Tools'

Verification Reports available in the public web sites for each release. Reports detailing ar-

chitectural violations for die last 19 Eclipse releases (from 3.4 to 4.3) were available, totaling

5 years of historical data. Here is an example of a violation from a report: JAVASOURCE-

V I E W E R illegally extends PROJECTIONVIEWER.

BeeFS and e-Pol. Once I composed die design tests to express BeeFS and e-Pol rules,

I collected architectural violations for these two projects by executing the design tests on

the last version of each system. The checker provided similar output to the Eclipse PDE

/ API tool output, for example: M A I N . C O N D I T I O N T A S K . E X E C U T E () illegally references

G U I . C O N D I T I O N B A S E . C O U N T C O N D () .

Architectural Violations' Relevance

To study how developers perceive architectural violations that occurred, I gathered bodi

quantitative and qualitative data.

4.2zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA Study Design 56 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

To study the relevance of an information, Schamber et al. [71] state that a study should

go further than quantitative evaluation. It is a fact that relevance of an information involves

how developers perceive it during software development. It is also a fact that qualitative re-

search is suitable to answer and raise knowledge on questions of that nature. For this reason,

besides quantitative evaluation, I applied qualitative research methods to better understand

the relevance of architectural violations and to provide strong and reliable observations of

development teams' behavior regarding architectural issues. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Eclipse. In the case of Eclipse, I had multi-version data about architectural violations.

The first step to gather data about the relevance of Eclipse's architectural violations was to

determine when violations that were introduced were fixed.

For each violation, I computed the violations' lifecycle. For example, let us suppose that

a violation dv is present in the release 3 . 4 and 3 . 4 . 1 , but not in the subsequent releases.

Then, the lifecycle of this violation is:

dv's lifecycle: 3 . 4 3 . 4 . 1

Given a violation's lifecycle, it is trivial to determine

whether and when it was fixed. In the example above, the violation was fixed in re-

lease 3 . 4 . 2 . Hence, through the analysis of violations' lifecycle for ali the studied

releases, I was able to compute tlie amount of fixed violations per release.

To get more in-depth infonnation about the violations, I selected two moments of the

Eclipse development history in which several violations were fixed: 3.5 and 4.3 releases.

I then conducted a qualitative analysis on each one of these violations by performing the

following steps:

• inspecting bug reports and commit messages related to the design entities involved in

the violation in order to uncover changes and discussions regarding these entities,

• inspecting the source code repository to understand the changes performed to fix the

violations, and

• initiating discussions on the developers' mailing lists to uncover the reasons for fixing

some and not other violations.

4.2 Study Design zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA57 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

These steps provided not only the code changes between releases, which were used to

explain some quantitative data, but also provided data about architectural discussions and

decisions of the development team, which were used to confirm some of tlie findings.

BeeFS and e-PoI. For these two systems. I presented the detected architectural violations

to the software developers and asked them to classify each violation into an exception to the

rale or actual violation. Whenever a developer classified a violation, I asked the following

questions:

• Exceptions

- Why is this violation an exception to the rale?

• Actual violations

- Is this violation criticai?

- Would you fix it? Why? When?

By following these steps, I was able to quantify the amount of architectural violations

that are exceptions, actual violations and criticai violations. Moreover, I could collect

qualitative data to explain why an architectural violation is an exception or criticai.

Causes of Architectural Violations

To understand what development actions might lead to violations occurring, I collected data

from:zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA i) semi-stractured interviews performed with developers; and ii) discussions that we

conducted on developers' mailing lists. To do focus these interviews and duscussions, I

selected particular architectural violations and, for each one, I asked: "In your opinion, what

are the reasons that led the developer to introduce this particular inconsistency?"

I collected responses for 10 violations for Eclipse, 13 for BeeFS and 8 for e-Pol. For

Eclipse. I did not have sufficient access to the developers to collect data about ali violations.

For this reason, I randomly selected violations that were intentionally fixed during Eclipse

source-code evolution and gradually presented the architectural violations in order to discuss

them.

For BeeFS and e-Pol, I selected architectural violations that were considered criticai by

the developers. I selected 13 and 8 architectural violations for BeeFS and ePol because this is

4.3 Results zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 58 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

a representative amount that covers the spectrum of classes that are involved in the violations.

For example, if there are 10 illegal access between class A and B, I randomly chose only one

of these violations. In both cases, participants were allowed to inspect the code to provide

more accurate information on the causes of architectural violations.

I coded the text collected from semi-structured interviews and discussionsl72l. This

process involves extracting from the responses small phrases or sentences that can be or-

ganized into categories. Categories were defined based on the vocabulary of the responses

and previous knowledge and experience achieved through tlie related works. This coding

resulted in five categories: Unawareness, which includes responses that mention develop-

ers' unawareness about the architectural rules; Ease. which includes responses that express

that committing an architectural violation is easier than the other alternatives to implement

a feature; Misplaced design entity, which is related to design entities that are placed in the

wrong modules or packages; Copy and paste programming. which includes responses that

relate the causes to reusing violating code; and Time constrains, which includes responses

that relate the causes to deadlines and time pressure.

4.3 Results

I present the results in terms of the four research questions.

4.3.1 What kinds of architectural rules are expressed?

Across the snapshots of the three projects, I found 880 architectural rules. The vast majority

of these rules were expressed by the developers for Eclipse (838 rules or 95% of the total)

while developers for BeeFS and e-Pol specified 18 (2%) and 24 rules (3%). respectively.

Based on the vocabulary used in a architectural rule and the purpose of the rule, I classi-

fied the 880 identified rules into three categories: general restriction, hierarchy and object

instantiation mies. Table 4.2 shows tlie breakdown of the rules into these three categories

across the projects. I use the general restriction category for mies that express some restric-

tion of reference or use between two design entities without specifying a particular kind of

dependency. For example, Eclipse and BeeFS developers wrote mies such as the following:

"externai clients must not depena on I N T E R N A L package". This mie means that any kind

4.3 Results zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Table 4 . 2 : Architectural rules expressed in each system,zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA S, P and O are sets of design entities

which for these systems were packages, classes, interfaces, methods or fields

Rules Eclipse (Release 4.3) BeeFS e-Pol

General restriction rules

S must not depend on P, except for O

S can only depend on P

226 10 21

3 2

Hierarchical mies

Class or interface C must not be extended

Interface / must not be implemented

Classes that extend C can only be referenced by S

Method Aí must not be overridden

392

156 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

26

Object instantiation

Class C must not be instantiated, except for S 38

Total (880) 838 18 24

of dependency (generalization, realization, method calls, field access etc) among externai

clients and classes within I N T E R N A L package is not allowed. 2 7 % (2 2 6 of 8 3 8) of the rules

for Eclipse, 7 2 % (1 3 of 1 8) of the rules for BeeFS and 9 6 % (2 3 of 2 4) of the mies for e-Pol

fali into the general restriction category. Table 2 further breaks this category dowti into mies

of the form "must not depend on" and "can only depend on". In general, the former form

was preferred. BeeFS and e-Pol developers opted for "can only depend on" rules because it

was easier for them to describe the few allowed dependencies rather than a number of restric-

tions. I use tlie hierarchy category for mies that refer to resUictions on the use of the type

hierarchy. For example, BeeFS developers expressed the following mie "Classes that extend

B A S I C H A N D L E R can only be referenced by class H O N E Y C O M B " . 6 8 % (5 7 4 of 8 3 8) of the

mies for Eclipse fali into this category whereas a much smaller percentage of the mies in the

other two projects were of this form: 1 1 % (2 of 1 8) for BeeFS and 4 % (1 of 2 4) for e-Pol.

The Eclipse rules expressed referred to more specific aspects of the type hierarchy, includ-

4.3 Results zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Ml zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

ing restrictions on 392 classes and interfaces that must not be extended, 156 interfaces that

must not be implemented and 26 methods that must not be overridden. The rules expressed

for BeeFS and e-Pol restricted access to classes that are part of a given type hierarchy. For

instance, e-Pol developer expressed the following rule: "Classes that extends A C T I O N can

only be referenced by V I E W " .

By interviewing stakeholders I found two motivations to declare type hierarchy rules.

First, an experienced Eclipse developer [Eclipse developer #1] explained that the rules of

type @noextend, @noimplement and @nooverride are used to protect APIs from semantic

changes, namely changes that override services. The Eclipse developers wanted to avoid

changes that might affect several clients and changes that might cause misunderstandings

about the functionality provided by a part of tlie API. Second, for the other two projects, the

rules expressed related to hierarchy were about the conceptual model the developers were

trying to maintain in the code. For instance, e-Pol classes that are responsible for managing

the concept "actions" are classes that extend A C T I O N . One might argue that these classes

could be ali located in the same package and the rule could be expressed referencing the

package instead of the hierarchy. However, the e-Pol developer mentioned that the package

A C T I O N S contains other classes tliat are not related to tlie concept of action. Hence. he opted

for the rule: "Classes that extends A C T I O N can only be referenced by V I E W " . I saw similar

rales for BeeFS.

The third category, object instantiation, refers to rules that restrict which classes can in-

stantiate particular objects. This was the only type of rule not found across ali three projects.

4.5% (38 of 838) of the Eclipse rales were of this form and 16% (3 of 18) of the BeeFS rales

were of this form. An example of this form of rale can be found in the BeeFS project: "Class

R E P L I C A T I O N G R O U P must not be instantiated, except for R E P L I C A T I O N G R O U P F A C T O R Y " .

In general, object instantiation rules were used by the developers to restrict the instantiation

of objects to factory classes.

It is somewhat surprising the large percentage of hierarchy rales for Eclipse as much

of the literature on architectural rale checking focuses on rales of the general restriction

category. The analysis of the rales expressed leads us to the first observation about the use

of stractural architectural rales:

4.3 Results zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 6 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Observation 1. Restricting ali types ofdependency is sometimes too strongfor developers.

In some scenarios, they allow usage, but control tlie extension of type hierarchy and, to a

lesser degree, the instantiation of objects.

Through the interviews with the developers and analysis of Javadoc and mailing list infor-

mation, I found the developers wanted to express structural architectural rules to define the

proper way of using a design entity. For example. one rule in Eclipse states: " T R E E V I E W E R

[class] must not be exte.nded\ One developer stated:

"As a past maintainer of that code, I can say that the intended way of using

T R E E V I E W E R is to just use the class as is, without subclassing. There are many

other supported ways through which its hehavior can be customized. Subclass-

ing is definitely not a supported way of using T R E E V I E W E R . " [Eclipse developer

#2j

Eclipse rules that restricts object instantiation also rein-

force this observation. For example. besides the rule

" R E N A M E R E S O U R C E D E S C R I P T O R is not intended to be. instantiated by clients", the

Javadoc documentation explains tlie proper way of acquiring an instance of this class: "An

instance of this refactoring descriptor may be obtained by calling R E F A C T O R I N G C O N -

T R I B U T I O N . C R E A T E D E S C R I P T O R () . In the same way, BeeFS and e-Pol developers also

described restriction rales to enforce a proper way using a design entity. For example, the

two object instantiation BeeFS rules were expressed to guide developers instantiate objects

through the proper factory classes.

These comments lead us to a second observation:

Observation 2. Rules are not created to blame but to guide developers.

One Eclipse developer's reinforced this idea. saying:

"The rules are made for those developers who are not aware of what they are

doing". [Eclipse developer #1]

4.3 Results zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 62 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Table 4.3: Violations per project
Project General Hierarchy Instantiation Total

Eclipse 60 (45%) 70 (53%) 3 (2%) 133

BeeFS 137 (96%) 5 (4%) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 142

e-Pol 245 (99.5%) 1 (0.5%) - 246

4.3.2 What kinds of architectural violations occur?

Table 4.3 shows tlie number of violations that occurred for each system by category. Inter-

estingly. Eclipse has the lowest ratio of violations to expressed rules of 133 : 838. The ratio

of violations to expressed rules is much higher for the other two projects: 142 : 18 for BeeFS

and 246 : 24 for e-Pol.

Consistem with other studies (e.g., [66], [73]) that have looked at the general restriction

category of architectural rule violations, large percentages of the violations in the systems

1 studied are of this general form. The occurrence of these violations is not surprising for

two reasons. First, the rules are often stated broadly, such as in the case of Eclipse where

a rule states that no externai packages are to reference an I N T E R N A L package. Second, as

is this case with the example just given, the rules are often stated between high-level design

entities, such as packages. If a class violates the rule, then ali of the methods that violate the

rule are often cited as violations as well. For example, continuing the same Eclipse exam-

ple mentioned above, the average number of classes and interfaces within the 16 plugins we

analyzed is 427. creating lots of opportunities for violations. Ali but one rule in BeeFS and

e-Pol is of this very general form; the one specific mie in BeeFS refers to communication

between two classes: R E P L I C A must not depend on G R O U P . Violations of hierarchy mies

occurred much more often in Eclipse than in the other two projects. Of the 70 hierarchy

violations that occurred in Eclipse (see Table 4.3), 54 of the violations were because a class

illegally extended another class and 16 violations were due to a class illegally implementing

an interface. There were no violations for rules describing constraints on overriding meth-

ods. The higher percentage of violations of hierarchy rules for Eclipse is likely due to two

factors. First, many more hierarchy mies were specified for Eclipse (574 mies) than for the

other two systems (3 mies between the two systems). Second, the parts of Eclipse I an-

alyzed contained classes that provide core functionality, such as the JFace UI toolkit, that

are used by many other client plugins. Discussions with an Eclipse developer affirmed that

4.3 Results zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 6 3

the plugins analyzed provide core features used by several clients. Very few, only 2% of

Eclipse violations and no violations for BeeFS and e-Pol, were due to object instantiation

rules. The three Eclipse violations were due to illegal instantiations of three classes: R E -

N A M E P L U G I N P R O C E S S O R , M O D E L C H A N G E D E V E N T , and A S S E R T I O N F A I L E D E X C E P -

T I O N . I investigated these violations through discussions with developers from the Eclipse

project. According to developer who committed code leading to the violation related to

R E N A M E P L U G I N P R O C E S S O R ,

"Most likely the API was not available when the PDE refactoring code was

createdV [Eclipse developer #3]

I confirmed this hypothesis by investigating the history of the code. I was unable to con-

tact the committers of the other two violations, but discussions with other developers of

Eclipse indicated that the A S S E R T I O N F A I L E D E X C E P T I O N ' case is acceptable as it is per-

formed in a private method for logging purposes. Regarding to the violation related to

M O D E L C H A N G E D E V E N T a developer said:

"[the instantiation] It is an attempt to trick the system...the framework should

create these events, not this class." [Eclipse developer #1]

The analysis of the kinds of violations that occur leads to the following observation: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Observation 3. The most common kinds of violations to occur were those related to rules

about general restrictions of access, even when those rules were not the most plentiful ofthe

rules expressed.

4.3.3 Which architectural violations are relevant to developers?

In previous work, others have considered an architectural violation as relevant if tlie

violation is addressed by the development team in a later version of the system [50;

74], I use this approach to classify the relevance of violations for two different snapshots

of Eclipse: violations reported for version 3.42 and violations reported for 4.2.2. As Fig-

ure 4.2 shows, these are two points at which many violations were subsequently fixed, in

the 3.5 and 4.3 releases respectively. Figure 4.2 shows tlie number of violations in the last

4.3 Results zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 64 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Table 4.4: Relevance of Violations

Project Detected Exceptions or Not addressed Actual Criticai

Eclipse 3.4.2 - 3.5 372 238 (64%) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 134(36%)

Eclipse 4.2.2 - 4.3 229 226 (99%) - 3(1%)

BeeFS 142 101 (71%) 41 13 (9%)

e-Pol 246 167 (68%) 79 46(19%) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

#Violations over time

Figure 4.2: Amount of violations per Eclipse release over time

19 offlcial releases of Eclipse. For the other two projects. BeeFS and e-Pol, I was able to

investigate the relevance of violations directly with each system's respective developers.

Table 4.4 shows a classification of detected violations for tlie two snapshots of Eclipse

development. BeeFS and e-Pol. The exceptions column in tlie table refers to violations

the developers accept as exceptions to the rules or were not addressed by the development

team (Eclipse); these are cases where the rule expressed is too general. The actual column

represents violations the developers consider as relevant. I did not have sufâcient access to

the Eclipse developers to review each violation as to whether it was actual with them and

so have left those cells blank in the table. For BeeFS and e-Pol, the criticai column is the

number of actual violations the developers stated compromise the structure of the code and

which must be addressed as soon as possible. For Eclipse, I categorized as criticai those

violations that were deliberately removed by a refactoring activity.

As we can see on Table 4.4, over half of ali violations are exceptions to the structural

architectural rule. This leads us to the following observation:

Observation 4. The majority of architectural violations detected are not relevant. Either

4.3 Results zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 65

they are included as exceptions to the rules or not addressed during software development. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

By considering how violations were addressed by developers through analysis of histori-

cal data about the project (in the case of Eclipse) and through interviews with the developers

(in the cases of BeeFS and e-Pol), it is possible to gain insight into the situations where vi-

olations lead to action and situations where violations are accepted. Tlie insights I describe

below are based on analysis of each violation in each system. I draw out specific examples

to characterize the trends found through the analysis.

As stated above. most violations in the general restrictions category are addressed by

adding exceptions to tlie rules to allow particular code to violate a general rule. 53 (35%) of

the 151 general restriction violations were fixed for Eclipse 3.5 through the addition of ex-

ceptions to three rules. Through discussion of the rule exceptions on the developers' mailing

list, I found the main reason to use exceptions in the PDE / AP1 tool is when closely related

plugins must interact to implement desired functionality. One sénior developer commented

as follows:

"There are often internai clients ofthe API, even within the some plugin, which

are willing to update when the API changes and therefore can afford to extend

or reference APIs in illegal ways." [Eclipse developer #4]

Ali of the cases I analyzed that involved adding exceptions to tlie rules involve commits

that changes the apifilters file - a configuration file to add exceptions to the rules. I found

similar actions taken in the BeeFS and e-Pol projects. However, the reasons for using excep-

tions to take action differed from the Eclipse project. In tlie BeeFS project. one half of the

violations in this category (53 of 101) were considered exceptions because a logging class

was invoking methods in an internai package. The developers determined the logging class

required special access to the classes in the internai package. Similarly, in e-Pol, 81 ofthe

violations were related to test classes that needed special access to the classes under test.

A second case of using exceptions in e-Pol was due to coupling between M O D E L and U T I L

packages; this case was deemed acceptable by the developers as the classes in the M O D E L

package required the U T I L functionality.

When violations ofthe general restriction category are not considered exceptional, action

was taken by developers to eliminate the unwanted dependencies. I found three cases in

4.3 Results zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 6(>

Eclipse 4.3 where violating dependencies were removed due to subsequent changes to tire

code. The BeeFS developers classified 13 of 41 (32%) actual general restriction violations as

criticai requiring action to correct the violation. ín describing one of these criticai changes,

the developer noted there was a FIXME tag in the code that needed to be addressed and that

a branch to refactor the code had been created. When discussing the 46 criticai (of 79 or

58%) violations in e-Pol, tlie developer explained he would be discussing it with the teani

as soon as possible as the violations were impacting separation of concerns between model.

action and data objects. In fact, developers performed a major refactoring activity after tlie

discussion. According to e-Pol developer, the development team spent 183 hours to solve

the problem.

tnterestingly, the majority of violations related to hierarchy (ali in the two versions of

Eclipse), were fixed by changing the code or the mies ratlier than adding exceptions. Of

the 133 hierarchy violations detected in the version leading up to Eclipse 3.5, 77 (58%)

were addressed by the development team. Of these 77 addressed hierarchy violations, 45

(58%) were fixed due to deliberate refactoring activities, 24 (31%) were addressed through

exceptions to rules and 3 (4%) were addressed by removing a mie. I could not determine

what happened to the 5 (7%) remaining violations because the classes involved were renamed

or removed from the code.

As an example of refactoring, bug #1935295 describes a change to tlie code to move a

method that was being accessed by subclassing to a new class to avoid violating a stated

architectural rule. As an example of exceptions to tlie rules, exceptions were added to allow

plugins to have friend status, as in "SWT API *Listener types are allowed to extend non-API

type SWTEVENTLlSTENER". A S an example of removing a mie, I found in the documenta-

tion of an involved class a statement that " ' S E L E C T M A R K E R R U L E A C T I O N is allowed to be

subclassed since 3.5".

Intentional development activities to deal with violations related to instantiation mies

were only found for the version Eclipse 3.5. Of the 88 violations detected in the version

leading up to Eclipse 3.5, 84 were fixed in version 3.5. 83 of these 88 violations were solved

through a similar refactoring, changing ali violating classes to delegate the instantiation to

a factory instead of directly calling the consUuctor of the restricted class. The remaining

5 h t t p s : / / b u g s . e c l i p s e . o r g / b u g s / s h o w _ b u g . c g i ? i d = l 9 3 5 2 9 , veritied09/11/2013.

4.3 Results zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 67

violation was also fixed intentionally in the code. I did not find any evidence of the remova!

of rules or the use of exceptions for instantiation related violations.

This analysis leads to a fifth observation: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Observation 5. Despite many violations remain unfixed. developers consider some viola-

tions to be relevant and fix them by either evolving rules or refactoring the code to reflect

intended architecture.

4.3.4 Why do developers commit violating code?

To better understand why violations might occur. I interacted with developers on each

project. For Eclipse. I presented architectural violations on mailing lists relevant to the devel-

opers and asked for details on what development actions might lead to violations occurring.

For BeeFS and e-Pol. 1 interviewed 9 and 10 developers respectively.

I gathered 137 responses from interviews and discussion snippets regarding reasons that

lead developers to commit violating code. Iteratively, I coded [72] these responses to develop

categories to explain the reasons. Through this process. I developed five categories: Ease,

Lack of Awareness, Time Constraints, Code Misplacement, and Copy and Paste Program-

ming. Table 4.5 shows the occurrences of each category in the collected data regarding ali

the systems. Some responses provide data that can be coded to more than one category. For

example, one developer explained: ''Pwbably the developer didn't know about this [rule]

and was easierfor him or herjust access the exception instead of make some refactoring.'"

Table 4.5: Causes of architectural violations

Category Occurrcnccs

Ease 68

Unawareness 25

Time constrains 23

Misplaced design entity

Copy and paste prograrnming

18

14

4.3 Results zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Ease zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

For ali systems, the ease of implementation was tire main cause of violating code. One

comment from a BeeFS developer summarizes this situation:

" We were adding afeature and thisfeature asked for a modification in F I L E S Y S -

T E M interface. However, It was not easy to come up with this modification so

that we addeda coupling with the concrete class."

Through the Eclipse developers' mailing list, I discussed a similar case in which there

were 1 4 illegal uses of subclassing the T R E E V I E W E R class; this class is meant to be used

through delegation. One of the Eclipse developers explained why developers were using

inheritance:

"Cases where the API is not sufficiently flexible, and the only way to get the

degree of customization required is via illegal APIzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA MS<?."[Eclipse developer # 4]

In other words, subclassing made it easier to get control of some aspects of the API.

The same developer pointed out that violations "may point to problematic API that needs

more flexibility". However, evolving an API is not straightforward. As a BeeFS developer

said, "it is not easy to come up with an API change " or, in Eclipse case, "// could also be that

these "illegal" subclasses are themselves exposed as API to clients, in which case it might

be impossible to get rid of the subclass relationship without potentially breaking clients".

[Eclipse developer #2]

Lack of Awareness

Símilarly to the Ease category. developers mentioned lack of awareness about the rules as

an explanation for mismatches between intended and implemented architecture. Lack of

awareness can occur because rules are not automatically checked. When presented with one

of the architectural violations. a developer on Eclipse said the violating code was committed

before checking was performed with the API tool [Eclipse developer #5], Before the tool,

the restrictions were just comments in the Javadoc. Similarly, with BeeFS, before this study,

the rules were discussed but not automatically checked. According to a BeeFS developer,

one of the mies was not discussed with developers as much as others and as a result, he was

4.3 Results zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 6«i

not surprised to see violations of the rule in the code. The e-Pol developers, after seeing the

benefits of checking the rules suggested it would be helpful to restrict commits to only code

tliat is in conformance with the rules. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Time Constraints

Only for the BeeFS and e-Pol projects were there responses mentioning deadlines pressure

as the cause of violating code. One e-Pol developer explained that due to changes in the

requirements of clients dose to a deadline, the project had to change a frarnework used to

manage graphical interface and, for this reason, developers "were not really concerned about

architectural issues. [we] needed to get things done'\ Similarly, when I presented a violation

to BeeFS developer he explained: "This is criticai. By the way, this code was produced right

after a deadline."

Misplaced Code

According to developers, in the same way that several violations may indicate changes to the

architectural rales, they are also symptoms that design entities should be re-located. In other

words, when analyzing violations, I found cases in which developers argue that the coupling

considered illegal should exist, but one of the design entities involved are misplaced. This

was particularly expressed by BeeFS and e-Pol developers. For example, 7 e-Pol developers

agreed on tlie fact that the access to T A S K class is only illegal because the class is misplaced,

not because the coupling should not exist. Moreover, e-Pol developer commented: "This is

a violation because the class T A S K is in the wrong package. It should be in M O D E L . T A S K

package".

Copy and paste programming

Developers of the three studied systems refer to copy and paste as a cause of architectural

violations. By copy and paste, they mean not only literally reproducing the code from other

classes, but also writing new code following tlie ideas of a violating one. For example, one

e-Pol developer used the following words to explain the causes of a violation: "Because

of the frarnework change, we were just following what an experienced developer produced

4.4 Threats to Validity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
70

before".zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA Similarly, one BeeFS developer reinforced that once a project has code with vi-

olation, it is likely to have more similar violations because developers usually base their

implementation in existing code. When analyzing a violation in a class that. according to

the team, has a lot of architectural issues, the developer commented: " Q U E E N B E E has a lot

ofproblems. I think the developer had seen old code doing the some inconsistency". In this

same vein, an Eclipse developer comment summarizes explanations given into this category

"It's azyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA coinmon pattern to have UI bundles reference internais of Core bundles in the same

namespace ". [Eclipse developer #6]

4.4zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA Threats to Validity

A number of the choices I made in the study could affect the results. I review these choices

below.

Externai Validity. I gathered and analyzed data from three diverse systems. This diver-

sity helps to improve the likelihood that the results may characterize a broad set of projects

and systems but given the small sample size there is a risk that the results are specific to

the situations considered. I believe the in-depth characterizations I report provide an em-

pirical basís for formulating more specific hypotheses that can be tested on a wider range

of systems. As an example. the data I present suggests type hierarchy rules are relevant to

developers; a hypotheses could be formed to test across a broader set of systems related to

these specific rule forms.

Internai Validity. The kinds of rules expressed by the developers for BeeFS and e-Pol

might have been influenced by the fact that I have introduced the concept of conformance

checking and gathered the rules through interviews with developers. I tried to mitigate the

effects of the first threat by discussing only general aspects about structural rules, instead

of giving concrete examples of mies. I tried to mitigate the effects of the second threat by

not inteifering while the developers were describing the mies. The inclusion in the study of

the Eclipse case also helps to balance any effects of the introduction of conformance check-

ing to the other two projects as the Eclipse developers had been expressing and checking

architectural mies for that last five years independent of this study.

Another threat to the data I collected is the selection of developers to interview. One

4.5zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA Discussion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
71 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

might argue that interviewing seven developers from a project as large as Eclipse is far too

small of a sample. By interviewing developers that have been with the project for at least four

years and who, in several cases, serve on the Eclipse Architecture Council.zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA I believe 1 have

found developers who are highly vested in the issue of benefiting from architecture. Simi-

larly, for BeeFS and e-Pol, I interviewed only developers with at least one year of experience

with their respective projects.

Construct Validity. For BeeFS and e-Pol, I implemented the architectural rules ex-

pressed by developers as design tests. It is possible that I díd not faithfully implement the

architects intention. To address this possibility. I had the architects check each violation de-

tected; this checking would likely have identified possible problems in rule expression. The

architects did not report any such problems.

The observations could also be affected by relying on rules that consider only part ofthe

architecture, that is the architectural rules do not describe the whole software architecture of

the studied projects. However. I believe that I mitigate this threat due to the sample's size of

architectural rules (880) collected for the three projects.

4.5 Discussion

The tools used to check architectural rules in this study limited the mies that could be ex-

pressed. I also wanted to investigate what developers wanted to express but could not. From

interviews with the BeeFS and e-Pol developers and investigations of documentation in the

Eclipse code, it appears it could be helpful to express patterns of intended use of design en-

tities. For example, two of the BeeFS and e-Pol developers mentioned it would be helpful to

check whether developers were following intended design patterns based on the use of de-

sign entities. In Eclipse. I found documentation in classes explaining how the classes should

be used. As an example, C O N T E N T V I E W E R includes documentation ofthe form:

"Implernenting a concrete viewer typically involves the following steps: i) cre-

ate SWT controlsfor viewer (in constructor) (optional), and ii) initialite SWT

contrais from input (inputChanged)..."

The architectural rules used. particular in tlie Eclipse project. focused on restricting cou-

pling amongst entities. However, there is also the possibility of expressing mandatory cou-

4.6 Related Work 72 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

pling between entities. For example, the documentation for the Eclipse class T R E E V I E W E R

states that, "Content providers for tree viewers must implement ITreeContentProvider in-

terface". Extensions to architectural rule languages should consider this alternate form of

expressing rules.

4.6zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA Related Work

There are two basic choices to try to ensure up-front architecture is carried through into the

implementation of a system. One choice is to use development technologies that enforce

constraints while implementation is occurring. An example of this approach can be found

in ArchJava [61], which extends Java to express communication restrictions directly in the

code, preventing architectural erosion. Alternatively, one can use an approach of period-

ically, and perhaps frequently, checking whether the implementation matches rules stated

about the architecture. An example of this approach can be found in Software Reflexion

Models that allows structural architectural models of a system to be compared against struc-

ture extracted from the implementation of the system [1].

In this study, I focus on the second approach in which architectural rules are stated and

conformance of the implementation is checked against those rules. At least three existing

studies consider the use of architectural rule conformance checking in practice. Murphy and

Notkin report on the application of Software Reflexion Models to an experimental reengi-

neering of Excel. This report provides one abstracted description of how structural architec-

tural rales that capture access between modules was applied to an industrial scale system [7].

Knodel and colleagues describe their experience in regularly applying structural architectural

rule conformance checking to 15 different projects over a two year period. Similar to the Ex-

cel case study, Knodel and colleagues study focused on structural architectural rules about

access between modules. In the work presented in Chapter III, I also focused on structural ar-

chitectural rales about access between modules but in an evolutionary perspective, providing

quantitative evidences that implementation tends to diverge from tlie intended architecture

and that few design are entities are responsible for most of the violations over the software

history. In this study, I investigate the use of a broader set of architectural rules in which

developers could also express rules about the type hierarchy being used and how objects in

4.6 Related Work zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 73

the system were instantiated. To the best of my knowledge, tíiere is no existing reports about

this broader set of architectural rules.

Others have considered how the developers view tlie result of conformance checks or

architectural erosion in general. Rosik and colleagues describe developers' actions when

presented with the results of checking structural architectural rules [451. The conformance

checking they considered was also limited to access rules between modules. They found that

developers tend to keep a number of violations unsolved, largely due to the risk of making

changes to the code. The results echo this finding but the study also analyzes which kinds

of violations were found to be acceptable to developers, which were criticai and why the

violations occurred in the first place.

Studies have also been undertaken to understand more generally how developers view ar-

chitecture and why implementations deviate from architecture. Feilkas et al. [75] conducted

a case study focusing on how outdated documentation is in comparison with software imple-

mentation. They observed that between 70% and 90% of deviations are caused by outdated

documentation. The authors also explore why deviations between the intended architecture

and code occur, finding that copy and paste programming is a typical reason of a violation.

Also regarding the causes of architectural violations, Unphon and Dittrich also considered

the causes of architectural violations [16]. They interviewed 15 developers to understand

architecture practices in software organizations. Amongst other results, the authors found

that due to lack of properly communication, developers tend to forget about the architectural

decisions. Gurp et al. [76] conducted two qualitative study cases in which they investigated

how developers identify and address architectural erosion. Besides lack of awareness. Guip

and colleagues also point to deadline pressure as a possible cause of architectural violation.

Putting these related works in perspective, besides a categorization of the architectural

rules expressed. I not only measure the aniount of architectural violations, but 1 also provide

quantitative and qualitative data on their relevance. I also present results on how developers

deal with architectural violations. Furthermore, this study confirms some of the causes of ar-

chitectural violations explored by previous work and go further by providing a categorization

ofthe reasons that lead developers to commit violating code.

4.7zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA Summary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 74 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4.7 Summary

For any given problem, there are typically multiple ways to express a solution to the problem

in code. To try to ensure qualities related to flexibility. testability, maintainability and others,

developers spend time on design. This time pays off if tlie implementation respects the

intended architecture.

In this study, I investigated the use of architectural mies to express intended architecture

and the use of checkers against implemented code to detect violations where the implemen-

tation varies from the intended architecture. The study involved two open-source systems.

Eclipse and BeeFS, and one closed-source system, e-Pol. AU of these systems have been

under development for multiple years and involve multiple developers. By investigating the

rules expressed and the violations that occurred through analysis of architectural checking

reports, bug reports, code, and interviews and discussions with developers on the projects,

I found that developers are concerned with checking the access to modules in the code, the

use of the type hierarchy, and to a lesser extent, object instantiation. I found that developers

do take action in response to violations but that the violations that persist as irrelevant tend

to be related to access. The number of violations that persist are far fewer than the number

of rules checked. The long use of a checker on Eclipse suggests that developers find value in

the matching of implementation to intended architecture.

Chapter 5

Do Developers Discuss Design?

5.1 Contextualization zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Open source developers share the majority of the information in a project in written form.

Despite a plethora of mailing list archives, issues, commit information, and other resources

associated with an open-source project, it is not usual to find a design document in project's

archives. For example, I inspectedzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA does folder, wiki pages, and main web sites of the top 90

popular- projects in GitHub[77] and could not find any design documentation in 61 (68%) of

them. Even considering those projects that have some documentation about their design, I

could only find explicit technical artifaets (e.g. UML diagrams) in 7 (9%) projects.

Although no specific artifaets related to design can be detected in open-source projects,

the other media used for communication, such as issues. commits' comments, and pull re-

quests may include design concerns and discussions. To understand if design information is

discussed and shared in these other forms in open source projects, I conducted an empirical

study on 77 of tlie top popular projects in GitHub to provide quantitative evidence on how

developers drive design discussions. Because developers usually approach structural aspeets

of design [14], such as communication constraints among classes, I focus this study on such

aspeets. In this context, I seek to investigate two questions:

• RQ1: To what extent do developers discuss design in open-source projects?

'Parts of this chapter appeared in the Proceedings of the Working Conference on Mining Software Reposi-

tories (MSR 2014) - Mining Challenge Track.

75

5.2 Study Design 76 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

• RQ2: Which developers discuss design?

To answer these questions, I developed the first contribution of this study - the devel-

opment and evaluation of a prototype based on machine learning technique to automatically

identify design discussions. Then, using this prototype, I provide quantitative evidence that,

on average, 25% of the discussions in a project mention some design aspect and 26% of

developers contribute to design discussions. In addition, I found that very few developers

contribute to a broader range of design discussions in a project. I found a strong correlation

(74%) between commits and design discussions contributions. suggesting that developers

who contribute with more commits tend to discuss more about tlie design of the system.

These two contributions may be useful for several purposes. For instance, one could use this

information about which developers are involved in design discussions to drive structural

refactorings to this small group of developers responsible for design. As another example,

researchers can use the tool support to automatically uncover design rules.

This chapter is organized as follows. Section 5.2 describes the experimental design,

including definitions about design discussions, dataset, and tlie procedures and measures

employed. Section 5.3 shows results for the classifier and early results on analyzing design

discussions. Section 5.4 discusses some important points related to the results as well as

the relevance of this study. Section 5.5 briefly discusses related work, while Section 5.6

summarizes this chapter.

5.2zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA Study Design

In this study, I consider a discussion to be a set of comments on pull requests, commits. or

issues. Because I was interested in discussions, I analyzed those pull requests, commits, and

issues with more than one comment. Also, I consider a discussion to be about design if it

contains at least one comment referring to some design concern. As said before, tlie study

focuses on structural characteristics of a software design. As an example of such structural

characteristic, developers usually discuss about avoiding coupling among unrelated classes

or applying a specific design partem to solve a design issue.

Hence. based on the literature in this area [30], the classification of design discussions in

this work focuses on some particular topics, such as:

5.2 Study Design zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 77

• coupling restrictions among design entities (e.g., "you should not extend this class"),

• decisions to expose or not an API (e.g., "we should not expose this method to clients"),

• structural refactoring (e.g., "move this class to package presentation"), and

• structural design patterns (e.g., "Implement a factoty to create messages for an option-

ally provided"). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5.2.1 Data Set

Of the 90 projects present in tlie GHTorrent data set [77], I discarded 13 projects with less

than 50 discussions. I chose the 77 projects with more than 50 discussions to work with a

reasonable amount of data. The more discussions present in the projects, the more likely

they have design discussions. Due to the fact that the interest was in the degree of design

discussions, I made such decision. In addition, to simplify the analysis, I treated projects and

their forks as one single project. In summary, the data set includes 77 projects and 102.122

discussions.

5.2.2 Methodology zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Training data ML
Algorithms

102.122 1,000 N agreed Classrfied
discussions discussions discussions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Test data

GHTorrent dataset

Figure 5.1: Methodology applied to build the design discussion classifier.

Building the Classifier

Figure 5.1 shows the steps conducted to build the design discussions classifier:

Step 1. I randomly selected 5 of the 77 projects. They are: BitCoin, Akka, OpenFrame-

works, Mono, and Twitter-Finagle. Then, I randomly selected 200 discussions from each of

these 5 projects, totaling 1,000 discussions.

5.2 Study Design zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I H zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Step 2.zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA We (a collaborator in this work and I) classified the same set of] .000 discussions

separately. We tagged the discussions as design discussions or not. To avoid bias, before the

classification, we did not specified or discussed any specific rules to classify the discussions.

However, we stated that we would focus on structural design aspeets. After the manual

classification, we selected for training only the 967 discussions in which both classifications

matched. 226 (23%) of these discussions refer to some design aspect, while 741 (77%) refer

to other concerns related to software development.

Step 3. I used 10-fold cross validation methodology to train (steps 3.1 and 3.2) and

evaluate (step 3.3) the classifier. That is. I randomly partitioned discussions into 10 equal

size sets (96 discussions). Then. I used nine of these sets as training data and one of them

as test data. 1 repeated the cross-validation process 10 times, using each one of the sets

exactly once as test data. I use the mean of the 10 executions to produce an estimation of

the classifier's aceuracy. Using this method. I evaluated Naive Bayes and Decision Tree

classifiers. I removed words from an English stoplist of common short words. As feature

selectors to these classifiers. I used a combination of word frequency and bigrams. Besides

the standard usage of word frequency. I also used bigrams because researchers have shown

that these methods can significantly improve tlie results of text classification [78; 79]. For

instance, in the context of this work, tlie bigram "exposes API" is more representative than

the word "exposes" isolated or combined to other non-related word.

Answering Research Questions

After I have built confidence in the classifier, I rely on it to label ali 102,122 discussions in

the data set. Then, I analyzed the design discussions to answer the research questions. For

the first question, I simply measured, for each project, the proportion of design discussions

over ali discussions. For the second question, I investigated design discussions and commits

to determine:

• tire ratio between tlie number of developers that contribute to design discussions and

the number of committers in a project;

• the proportion of ali design discussions in a project to which a developer has con-

tributed. which 1 namezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA Coverage. For instance, if a project has 10 design discussions

5.3 Results zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 7 9

and a developer eontributes to 5 of these discussions, the developer has 0.5 of coverage. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5.3 Results

After executing the 10-fold cross validation, the results show that Decision Tree outperforms

the Naive Bay es method. The fonner achieved 94 ± 1% accuracy2, while the latter achieved

86 ± 3%. For this reason, I decided to use the Decision Tree classifier to automatically label

the remaining discussions.

RQ1: To what extent do developers discuss design? Ofthe 102,122 discussions, tlie

classifier labeled 25,123 (25%) as design discussions. As examples, it labeled as design con-

cerns the following comments: "l'd be surpriseciifthis is the way tozyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA create RoutedActorRefs"

and "We have the dependency issue that ActorSystem need to know about ali extensions".

Comments such as "See code style guide. We use underscore style for variable names." were

not labeled as design.

Figure 5.2(a) shows the proportions of design discussions per project. Following the

overall proportion, 25zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA ± 6% of discussions within a project refer to some design aspect. As

we can see by the flattened boxplot, this is a common pattem among projects. Also, this

result reinforces the confidence in the classifier. once it is similar to the training data, which

shows a proportion of 23% of design discussions.

RQ2: Which developers discuss design? In total, I analyzed data regarding 22.789

developers from the 77 studied projects. 8207 (36%) of these developers contribute to at least

one design discussion, while 14.582 (64%) do not. The first step to answer this question was

to investigate the proportion of developers that contribute to design discussions in a project.

Figure 5.2(b) shows these results considering each project. A mean of 26 ± 7% of developers

per project contribute to at least one comment regarding a design aspect. I inspected the

projects with proportion above 30%' (e.g., Bitcoin, Django, Rails, Symfony). These projects

have a large number of committers and they are well known and established open source

communities, which may explain the fact that more developers contribute to their design.

In a second step, to further investigate developers' contribution, I measured the coverage

of each developer. Figure 5.2(c) shows the coverage of developer per project. Each point

2The standard metric to evaluate classifiers, which stands for the percentage of instances correctly labeled.

5.3 Results zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 8 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(a) Proportion of de

sign discussions per

project.

(b) Proportion of de-

sign discussions con-

tributors.

(c) Developers' design

discussions coverage.

(d) Developers' cover-

age and commits

Figure 5.2: Empirical Results

in the graph represents a developer of a project in y axis. As we can see, the majority of

developers contribute to less than 10% of design discussions. In fact, 99% of developers

contribute to less than 15% of ali design discussions in their respective projects. This re-

sults lead us to conclude that very few developers contribute to a broader range of design

discussions, while most of the developers contribute to few design discussions.

Several factors might lead to the scenario in which very few developers contribute to a

broad range of design discussions. This scenario suggests that these developers play a cen-

tral role in their projects. I took a step forward to investigate one of the factors that might be

correlated to developer's ability to discuss design in a broad range. To do so, I measured the

relationship between the proportion of developers' commits and their respective coverage.

Figure 5.2(d) plots the coverage against the percentage of commits of ali developers studied.

5.4 Discussion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA x i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

The line represente the best fit for the data with 95% of confidence interval.zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA I used Spear-

man's method and found a strong correlation (74%) between these two variables. As we can

see, the developers with high levei of Coverage are also the developers responsible for a high

percentage of commits in their respective projects.

5.4 Discussion

Walking architecture. The results show that a very small number of developers have high

leveis of design discussions coverage. This result is aligned to a previous work that name this

small set of developers as "walking architecture" [80], The term refers to central developers

who evaluate changes to code that affects design while at the same time update knowledge

about design decisions. I argue that further work should invest in driving design issues to

central developers. Through tlie classifier, researchers may use information about design

discussions to build mechanisms to improve communication among developers. When de-

velopers discuss design often, they update their knowledge about the system and may achieve

Conceptual Integrity — the uniformity of tlie understanding that tlie development team has

about the software [17].

Developers' role. The high correlation between commits and design discussion cover-

age reveals that there is no clear separation between designers and developers role in these

projects. Developers that discuss design in a broad range are tlie ones who most contribute

to the code of the studied systems. The possible simple explanation for this scenario is the

cumulative knowledge of code and design that these developers gain overtime. As time goes

by, naturally these developers are responsible for the discussions, once they have a deeper

knowledge about the system than the other committers.

Classifiers Performance. One possible drawback of using Decision Tree classifier is

the performance issue. While the Naive Bayes 10-fold cross validation took only 9 seconds

to finish, the Decision Tree validation took approximately 4 hours. This happens in the tree

construction step of the algorithm, which takes a meaningful amount of time to build the

branches and rules of the tree. since the combination of words and bigrams generates several

tree nodes. However. it is only necessary to execute this process once, which pays-off its cost

over time. For this reason, I decided to use Decision Tree classifier to label the remaining

5.5zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA Related Work zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA82 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

discussions of the study.

Threats. Two threats might infiuence the results of the classifier. First. I trained the

classifier with approximately 1% of ali discussions analyzed. Second, only two researchers

manually classified tlie discussions. Ideally. it would be better to have a broader range of re-

searchers and practitioners classifying more discussions. However, I believe that we achieved

a reasonable and reliable amount of training data. In addition, because the focus is on struc-

tural properties of design, the classifier may have missed discussions about other aspeets

related to design, such as dynamic and deployment concems.

5.5 Related Work

To the best of my knowledge, this is the first work that quantitatively raises knowledge about

design discussions in open-source projects and their distribution among developers. How-

ever, other researchers have investigated how developers deal with design and architecture

concems. Lange and Chaudron [81] interviewed 80 architects and observed that 66% of them

employ UML diagrams to perform design activities. Chembini et al. identified that develop-

ers usually externalize design decisions in temporary drawings that are lost over time [821.

Unphon and Dittrich conducted 15 interviews to qualitatively understand how developers

drive architecture and design concems in software companies [80]. Two of their results are

closely related to this work. First, they observed the "'walking architecture" phenomenon,

whose existence seems to be empirically supported by the data I analyzed. Second, they

observed that design/architecture documentation might not be used during software devel-

opment due to the usage of other media. In this work, the data support that, for open-source

projects, such media can be discussions in issues, pull requests. and commits. This last result

is in conformance with Guzzi et al., which found that developers' mailing list is not the main

player in OSS project communication, as it also includes other channels such as tlie issue

repository [83].

5.6zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA Summary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 83

5.6 Summary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Developers need to maintain, verify, and discuss design during software development. In this

chapter, I presented quantitative results indicating that developers address design through

discussions in commits, issues and pull requests. I first built an automated classifier that

employs machine learning to label discussions as design or not. I evaluated such classifier

using 10-fold cross validation. achieving 94 ± 1% of accuracy. Then, using the classifier, 1

automatically labeled 102.122 discussions. The main observations about these discussions

are: i) 25% of discussions in a project are about design; ii) 26% of developers contribute

at least to one design discussion; iii) few developers contribute to a broad range of design

discussions. In fact, 99% of developers contribute to less than 15% of design discussions;

and iv) tlie very few developers who contribute to a broad range of design discussions are

also the top committers in a project (correlation 74%).

Chapter 6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Conclusions

This thesis deals with the lack of knowledge about architectural erosion problem. In order

to do so, I conducted three studies: i) a longitudinal and exploratory study on the nature of

architectural violations (Chapter 3), ii) a study on tlie causes and relevance of architectural

violations (Chapter 4), and iii) a study on design discussions in open-source projects (Chap-

ter 5). This chapter summarizes my contributions to a body of knowledge of architectural

erosion and includes future work that can be performed to increase even more this body of

knowledge in order to help future researchers and practitioners in this area.

6.1 Contributions

In summary, the main results described in this thesis are:

Architectural erosion. One of the main contributions of this thesis is to approach the

architectural erosion problem in a quantitative and evolutionary perspective. I have defined a

metric (architectural debt) to capture the notion of architectural erosion taking into account

the time dimension of software lifecycle.

Violations' location. Through an empirical study, this thesis shows that violations tend to

be concentrated in a few design entities. For the studied projects, the top ten classes with

more violations concentrate more than 40% of the violations.

84

6.2 Future Work zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA S 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Violations' lifecycle. The results also inclicate that a meaningful amount of violations tend

to be intermittent, which means that they are fixed and reappear in future versions of the

software.

Architectural Rules. I also have shown that developers not only are concenied to general

dependencies among entities, but they also express rules to control hierarchy and instantia-

tion of objects.

Architectural violations relevance. Most of the violations are not relevant. However,

I have shown that developers do perform architectural conformance checking and. more

importantly, they consider some violations important to be fixed and perform refactorings to

achieve this.

Causes of Architectural violations. Among other reasons, this thesis shows that viola-

tions are due to unawareness, time constraints, misplaced design entities, copy and paste

programrning, and the difficulties involved in following the architectural rules.

Design Discussions. An initial investigation on the presence of design discussions in open-

source projects and the contributions of developers in such discussions. I found that on

average 25% of the discussions in a project mention some design aspect. Moreover. 26% of

the developers in a project contribute to design discussions. However. very few developers

contribute to a broader range of design discussions. These few developers are also the top

committers of the project.

These results contribute to provide a foundation to extend research into architectural

conformance checking and provide a basis for more specific hypotheses about architectural

rule expressibility and checking to be considered in future empirical studies.

6.2 Future Work

As future work. I intend to use the initial body of knowledge produced in this work to im-

prove architectural maintenance and evolution tasks. For example, future work in this area

includes the automated identification of criticai cores. This will enable developers to focus

6.2 Future WorkzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 86 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

their efforts in the paits of tlie system that contains more violations. This could increase the

number of fixed violations per maintenance activity.

Many of the violations detected for a system are eitlier considered exceptions to a rule

or are considered irrelevant by the developers in the sense that action is not taken to remove

the violation. The use of exceptions to architectural rules suggests that 1) the language

used to express rules may be insufficient in some ways, 2) the rules are for the majority

of the cases but not ali, 3) there is not sufficient time or motivation to fix a violation or

4) the architecture has changed and yet the rules have not evolved. From interviews with

the developers, we did hear that the architectural rules are more of a guide than an absolute

lending weight to the second suggested reason above. Further study should investigate which

of the other cases might be valid reasons. If architectural rales need to be evolved, it might

be that automated support to suggest when a rale is no longer valid might help with the

use of checkers in practice. Similarly, automation to help detect when exceptions should be

applied, perhaps through recogiiizing patterns of exceptions, might help ensure architectural

rules can be stated simply and yet violations that are reported are ones on which action should

be taken. Automation to suggest refactorings to bring code in-line with architectural rales

might also be beneficiai (e.g., 129]).

Anotlier research track is to perform statistical studies in order to correlate the amount

of introduced and solved violations widi a number of other variables. For example, we are

interested in finding out whether peaks of solved violations cause a positive impact in metrics

such as coupling, cohesion. number of fixed bugs. and instability.

In this work, I did not organize design discussions in categories. As a main future work,

I intend to achieve this. As we could observe, tlie subject of design discussions varies. For

instance. some discussions are related to constraints involving classes and interfaces usage,

while others to the suitability of design patterns to solve particular design issues. After

this categorization, I intend to identify which design aspeets attraets more attention from

developers. This will require to analyze tlie distribution of developers per design discussion

and identify the topic of such discussions. In a nutshell, I believe that such outcomes might

assist in the prioritization of design issues. for example.

Bibliography zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

[1] G. Murphy, D. Notkin, and K. Sullivan, '"Software reflexion models: bridging the gap

between source and high-level models," inzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA Proceedings ofthe 3 rd ACM SIGSOFT sym-

posium on Foundations of software engineering, pp. 18-28, ACM, 1995.

[2] S. Duszynski, J. Knodel, and M. Lindvall, "'Save: Software architecture visualization

and evaluation," in Proceedings ofl3th European Conference on Software Maintenance

and Reengineering (CSMR), pp. 323-324, IEEE, 2009.

[3] R. Terra and M. Valente, "A dependency constraint language to manage object-oriented

software architectures," Software: Practice and Experience, vol. 39, no. 12, pp. 1073

1094, 2009.

[4] N. Sangal, E. Jordan, V. Sinha, and D. Jackson, "Using dependency models to manage

complex software architecture,"zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA SIGPLAN Not., 2005.

[5] M. Godfrey and E. Lee, "Secrets from the monster: Extracting mozilla's software archi-

tecture," in Proceedings of Second Symposium on Constructing Software Engineering

Tools (CoSETOO), 2000.

[6] I. S. http://smicturel01.conVblog/2008/ll/softwai-e-erosion-findbugs /, "Last access

in," Nov.2012.

171 G. Murphy and D. Notkin. "Reengineering with reflexion models: A case study." Com-

puter, vol. 30, no. 8. pp. 29-36, 1997.

[8] D. Perry and A. Wolf, "Foundations for the study of software architecture," ACM SIG-

SOFT Software Engineering Notes, vol. 17, pp. 40-52. 1992.

[9] D. Budgen, Software design. Addison Wesley. 2003.

http://smicturel01.conVblog/2008/ll/softwai-e-erosion-findbugs

BIBLIOGRAPHY m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

[10] P. Clements, D. Garlan, R. Little, R. Nord, and J. Stafford, "Documenting software

architectures: views and beyond," in Proceedings ofthe 25th International Conference

on Software Engineering, pp. 740-741, IEEE, 2003.

[11] D. Garlan and D. E. Perry, "Introduction to the special issue on software architecture,"

IEEE Trans. Softw. Eng., 1995.

[12] L. Bass, P. Clements, and R. Kazman, Software architecture in practice. Addison-

Wesley Professional, 2003.

[13] A. Jansen and J. Bosch, "Software architecture as a set of architectural design de-

císions," in Proceedings of the Sth Working Conference on Software Architecture,

pp. 109-120, IEEE, 2005.

[14] C. Hofmeister, R. Nord, and D. Soni, Applied software architecture. Addison-Wesley

Professional, 2000.

[15] M. Feilkas, D. Ratiu, and E. Jurgens, "The loss of architectural knowledge during sys-

tem evolution: An industrial case study," in Program Comprehension. 2009. ICPC '09.

IEEE 17th International Conference on, 2009.

[161 H . Unphon and Y. Dittrich, "Software architecture awareness in long-term software

product evolution," Journal of Systems and Software, 2010.

[17] F. Brooks. The mythical man-month, vol. 79. Addison-Wesley Reading, Mass. 1975.

[18] M. Lehman, "Laws of software evolution revisited," Software process technology,

1996.

[19] L. Hochstein and M. Lindvall, "Combating architectural degeneration: a survey," In-

formation and SoftM'are Technology, vol. 47, no. 10, pp. 643-656, 2005.

[20] S. Eick, T. Graves, A. Karr, J. Marron, and A. Mockus. "Does code decay? assessing

the evidence from change management data," Software Engineering, IEEE Transac-

tions on, 2001.

[21] J. Van Gurp and J. Bosch, "Design erosion: problems and causes,'* Journal of systems

and software, 2002.

BIBLIOGRAPHY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 89

[22] D. Partias, "'Software aging," in Proceedings of the lóth international conference on

Software engineering, pp. 279-287, IEEE Computer Society Press, 1994.

[23] M. Dalgarno. "When good architecture goes bad," METHODS & TOOLS, p. 27. 2009.

[24] L. de Silva and D. Balasubramaniam, "Controlling software architecture erosion: A

survey," Journal of Systems and Software. 2012.

[25] J. van Gurp, S. Brinkkemper, and J. Bosch, "Design preservation over subsequent re-

leases of a software product: a case study of baan erp: Practice articles," / . Softw.

Maint. Evoi, 2005.

[26] J. Aldrich, C. Chambers, and D. Notkin, "Archjava: connecting software architecture to

implementation," in Software Engineering, 2002. ICSE 2002. Proceedings ofthe 24rd

International Conference on. IEEE, 2002.

[27] J. Brunet, D. Serey, and J. Figueiredo, "Structural conformance checking with design

tests: An evaluation of usability and scalability," in 27th International Conference on

Software Maíntenance, pp. 143-152, IEEE, 2011.

[28] D. Hovemeyer and W. Pugh, "'Finding bugs is easy," ACM Sigplan Notices, 2004.

[29] R. Terra, M. T. Valente, K. Czarnecki, and R. S. Bigonha, "A recommendation system

for repairing violations detected by static architecture conformance checking," Soft-

ware: Practice and Experience, pp. 1-36, 2013.

[30] C. Hoffmeister. Applied software architecture. Addison-Wesley Professional, 2000.

[31] P. Bourque, R. Dupuis, A. Abran, J. Moore, and L. Tripp, "The Guide to the Software

Engineering Body of Knowledge," IEEE SOFTWARE, pp. 35-44, 1999.

[32] J. Knodel and D. Popescu, "A comparison of static architecture compliance checking

approaches." in Proceedings ofthe Sixth Working IEEE/IFIP Conference on Software

Architecture (WICSA'07), IEEE Computer Society, S. vol. 12. 2007.

[33] M. Fagan, "Design and code inspections to reduce errors in program development,"

IBM Journal of Research and Development. 1976.

BIBLIOGRA PUY mi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

[34] D. L. Parnas and D. M. Weiss, "Active design reviews: principies and practices," in

Proceedings ofthe Sth international conference on Software Engineering, 1985.

[35] K. Beck, "Embracing change with extreme programming," Computer, vol. 32, no. 10.

pp. 70-77. 1999.

[36] K. Schwaber and M. Beedle. Agile software development with Scrum, vol. 18. Prentice

Hall PTR Upper Saddle River" eNJ NJ, 2002.

[37] M. Moriconi. X. Qian, and R. Riemenschneider, "Correct architecture refinement,"

Software Engineering, IEEE Transactions on, 1995.

[38] C. Baldwin and K. Clark, Design rules, Volume I: Thepower ofmodularíty, vol. 1. mlt

Press, 2000.

[39] E. Gamma and K. Beck, "Junit," 2006.

[40] G. Fairbanks, D. Garlan, and W. Scherlis. "Design fragments make using frameworks

easier," ACM SIGPLAN Notices, 2006.

[41] M. Baker, "The mozilla project: past and future.'" Open sources, vol. 2, pp. 3-20, 2005.

[42] J. Bosch and M. Svahnberg, "Characterizing evolution in product line architectures,"

1999.

[43] A. Ant. "The apache ant project," 2010.

[44] D. Bovet and M. Cesati, Understanding the Lima kemel. 0'Reilly Media. Incorpo-

rated, 2005.

[45] J. Rosik, A. Le Gear, J. Buckley. M. Babar, and D. Connolly, "Assessing architectural

drift in commercial software development: a case study," Software: Practice and Ex-

perience. 2011.

[46] J. Brunet, R. A. Bittencourt, D. Serey, and J. Figueiredo, "On the evolutionary nature of

architectural violations," in Proceedings of Working Conference on Reverse Engineer-

ing (WCRE). 2012.

BIBLIOGRA PHY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
91 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

[47] M. Feilkas, D. Ratiu, and E. Jurgens. "The loss of architectural knowledge during sys-

tem evolution: An industrial case study," in Proceedings ofICPC'09, IEEE, 2009.

[48] G. Murphy, D. Notkin, and K. Sullivan, "Software reflexion models: Bridging the gap

between source and high-level models," ACM SIGSOFT Software Engineering Notes,

vol. 20, no. 4. pp. 18-28, 1995.

[49] R. A. Bittencourt, Enabling Static Architecture Conformance Checking of Evolving

Software. PhD thesis, 2012.

[50] S. Kim and M. Ernst, "Which wamings should i fix first?," in Proceedings ofthe the 6th

joint meeting ofthe European software engineering conference and the ACM SIGSOFT

symposium on The foundations of software engineering, ACM, 2007.

[51] J. Araujo, S. Souza, and M. Valente, "Study on the relevance of the warnings reported

by java bug-finding tools," Software. IET, 2011.

[52] A. Hunt and D. Thomas, The pragmatic programmer: from journeyman to master.

Addison-Wesley Professional, 2000.

[531 M. Godfrey and Q. Tu, "Evolution in open source software: a case study," in Software

Maintenance, International Conference on, 2000.

[54] M. Lehman, D. Perry, and J. Ramil, "Implications of evolution metrics on software

maintenance," in Software Maintenance. International Conference on, 1998.

[55] W. Turski, "Reference model for smooth growth of software systems," IEEE Transac-

tions on Software Engineering, 1996.

[56] H. Gall, M. Jazayeri, R. Klosch, and G. Trausmuth, "Software evolution observations

based on product release history," in Software Maintenance, International Conference

on, IEEE, 1997.

[57] S. Hassaine, Y. Guéhéneuc, S. Hamel, and G. Antoniol, "ADvISE: Architectural decay

in software evolution," in Proceeding of the I6th European Conference on Software

Maintenance and Reengineering, 2012.

BIBLIOGRA PH Y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
92 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

[58] M. Wermelinger, Y. Yu, A. Lozano, and A. Capiluppi, ''Assessing architectural evolu-

tion: a case study," Empirical Software Engineering, pp. 1-44, 2011.

[59] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. "Design patterns: Elements of

object-oriented software architecture," Addison-Wesley, vol. 9, p. 12, 1994.

[60] P. Wolfgang, Design patterns for object-oriented software development. Reading.

Mass.: Addison-Wesley, 1994.

[61] J. Aldrich, C. Chambers, and D. Notkin, "ArchJava: connecting software architecture

to implementation," in Proceedings ofthe 24th International Conference on Software

Engineering, pp. 187-197, ACM New York, NY. USA, 2002.

[62] R. Terra and M. T. Valente, "A dependency constraint language to manage object-

oriented software architectures," Softw. Pract. Exper., vol. 39, no. 12, pp. 1073-1094,

2009.

[63] D. Hou and H. J. Hoover. "Using scl to specify and check design intent in source code."

IEEE Transactions on Soft. Engineering, pp. 404-423, 2006.

[64] M. Eichberg, S. Kloppenburg, K. Klose, and M. Mezini, "Defining and continuous

checking of structural program dependencies." in Proc. oflnt. Conf. on Soft. engineer-

ing, pp. 391 400, 2008.

[65] J. Brunet, D. Serey, and J. Figueiredo. "Structural conformance checking with design

tests: An evaluation of usability and scalability," in Proc. oflnt. Conf. on Soft. Mainte-

nance, pp. 143-152, 2011.

[66] J. Knodel, D. Muthig, U. Haury, and G. Meier, "Architecture compliance checking-

experiences from successful technology transfer to indusUy," in Proc. of European

Conf. on Soft. Maintenance and Reengineering, pp. 43-52, 2008.

[67] T. E. Pereira, A. Soares, J. Silva, and F. Brasileiro, "Beefs: A cheaper and naturally

scalable distributed file system for corporate environments," tech. rep., Technical re-

port, LSD-UFCG, 2010.

BIBLIOGRA PUY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
93 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

[68] J. W. Creswell, Research design: Qualitative, quantitative, and mixed methods ap-

proaches. Sage. 2009.

[69] F. Shull, J. Singer, and D. I. Sjoberg, Guide to advanced empirical software engineer-

ing. Springer, 2008.

[70] J. Brunet, D. Guerrero, and J. Figueiredo, "Design tests: An approach to programmati-

cally check your code against design mies," in Proc. oflnt. Conf. on Soft. Engineering

- NIER, pp. 255-258, 2009.

[71] L. Schamber, M. B. Eisenberg. and M. S. Nilan, "A re-examination of relevance: toward

a dynarnic. situational definítion," Information processing <£ management, pp. 755-

776, 1990.

[72] R. L. Gorden, "Basic interviewing skills," 2006.

[73] J. Brunet. R. Bittencourt, D. Serey, and J. Figueiredo, "On the evolutionary nature of

architectural violations," in Proc. of Working Conf. on Reverse Engineering, pp. 257-

266, 2012.

[74] J. E. M. Araújo, S. Souza, and M. T. Valente, "Study on the relevance of the wamings

reported by java bug-finding tools." IET software, pp. 366-374. 2011.

[75] M. Feilkas. D. Ratiu, and E. Jurgens, "The loss of architectural knowledge during sys-

tem evolution: An industrial case study," in Proc. of Int. Conf. on Program Compre-

hension,pp. 188-197, 2009.

[76] J. van Gutp. S. Brinkkemper, and J. Bosch, "Design preservation over subsequent re-

leases of a software product: a case study of baan erp," Journal of Soft. Maintenance

and Evolution: Research and Practice, pp. 277-306, 2005.

[77] G. Gousios, "The GHTorrent dataset and tool suite," in Proc. of Working Conference

on Mining Soft. Repositories, MSR'13, pp. 233-236, 2013.

[78] J. Fiirnkranz, "A study using n-gram features for text categorization," Austrian Re-

search Institute for Artifical Intelligence, pp. 1-10, 1998.

BIBLIOGRA PHY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 94

[79] W. B. Cavnar, J. M. Trenkle, et al, "N-gram-based text categorization,*' Ann Arbor Ml,

pp. 161-175, 1994.

[80] H. Unphon and Y. Dittrich, "'Software architecture awareness in long-term software

product evolution," Journal of Systems and Soft., pp. 2211-2226. 2010.

[81] C. Lange, M. R. V. Chaudron. and J. Muskens, "In practice: Uml software architecture

and design descripdon," IEEE Soft., pp. 40-46, 2006.

[82] M. Cherubini, G. Venolia. R. DeLine, and A. J. Ko, "Let's go to the whiteboard: how

and why software developers use drawings," in Proc. of SIGCHI conference on Human

factors in computing systems, pp. 557-566, 2007.

[83] A. Guzzi, A. Bacchelli, M. Lanza, M. Pinzger, and A. v. Deursen, "Communication in

open source software development mailing lists," in Proc. of International Workshop

on Mining Software Repositories, pp. 277-286, 2013.

