

ÁREA DE CONCENTRAÇÃO PROCESSAMENTO E ARMAZENAMENTO DE PRODUTOS AGRÍCOLAS

PROPRIEDADES TERMOFÍSICAS E DESCRIÇÃO DO RESFRIAMENTO DE PRODUTOS AGRÍCOLAS COM GEOMETRIA CILÍNDRICA

AUTORA: Leidjane Matos de Souto

ORIENTADOR: Prof. Dr. Wilton Pereira da Silva

CAMPINA GRANDE, PB AGOSTO DE 2020

PROPRIEDADES TERMOFÍSICAS E DESCRIÇÃO DO RESFRIAMENTO DE PRODUTOS AGRÍCOLAS COM GEOMETRIA CILÍNDRICA

Tese de Doutorado submetida ao Programa de Pós-Graduação em Engenharia Agrícola da Universidade Federal de Campina Grande, como parte dos requisitos necessários para a obtenção do título de Doutor em Engenharia Agrícola.

AUTORA: Leidjane Matos de Souto

ORIENTADOR: Prof. Dr. Wilton Pereira da Silva

CAMPINA GRANDE, PB AGOSTO DE 2020

Propriedades termofísicas e descrição do resfriamento de produtos agrícolas com geometria cilíndrica / Leidjane Matos de Souto. - Campina Grande, 2020. 136 f. : il. Color. Tese (Doutorado em Engenharia Agrícola) - Universidade Federal de Campina Grande, Centro de Tecnologia e Recursos Naturais, 2020. "Orientação: Prof. Dr. Wilton Pereira da Silva. Referências. 1. Coeficiente de Transferência de Calor. 2. Condutividade Térmica. 3. Difusividade Térmica. 4. Calor Específico. 5. Solução Analítica. I. Silva, Wilton Pereira da. II. Título. <u>CDU 536.24(043)</u> FICHA CATALOGRÁFICA ELABORADA PELO BIBLIOTECÁRIO GUSTAVO DINIZ DO NASCIMENTO CRB-15/515

Souto, Leidjane Matos de.

S728p

MINISTÉRIO DA EDUCAÇÃO **UNIVERSIDADE FEDERAL DE CAMPINA GRANDE** POS-GRADUACAO EM ENGENHARIA AGRICOLA Rua Aprígio Veloso, 882, - Bairro Universitário, Campina Grande/PB, CEP 58429-900

PARECER SEI Nº PROCESSO Nº INTERESSADO: 5/2020/PPGEA-PRPG/PRPG 23096.005162/2020-70 LEIDJANE MATOS DE SOUTO

PARECER FINAL DO JULGAMENTO DA TESE

LEIDJANE MATOS DE SOUTO

APROVADA: 03 de agosto de 2020

BANCA EXAMINADORA

Dr. Wilton Pereira da Silva - Orientador - UAF/CCT/UFCG

Dra. Cleide Maria Diniz Pereira da Silva e Silva - Examinadora -UAF/CCT/UFCG

Dr. Aluizio Freire da Silva Junior - Examinador - UAFM/CES/UFCG,

Dra. Josivanda Palmeira Gomes - Examinadora - UAEA/CTRN/UFCG

Dra. Célia Maria Rufino Franco - Examinadora - UAFM/CES/UFCG

Dra. Rossana Maria Feitosa de Figueirêdo - Examinadora - UAEA/CTRN/UFCG

Referência: Processo nº 23096.005162/2020-70

DEDICATÓRIA

Dedico este trabalho:

Ao meu esposo, Marcelo Marques Gouveia Filho, pelo companheirismo, paciência e cumplicidade em todos os momentos.

A minha filha, Maria Beatriz Souto Gouveia, que nasceu em meio ao desenvolvimento deste trabalho, trazendo-me um amor incondicional que só fez fortalecer minha caminhada rumo à conquista.

AGRADECIMENTOS

A Deus, por ter me dado saúde, força, perseverança e proteção.

Ao meu orientador, Prof. Dr. Wilton Pereira da Silva, pela oportunidade, confiança, orientação precisa e enérgica essencial para obtenção dessa conquista. Minha enorme gratidão e admiração.

À Prof^a. Dr^a. Cleide Maria Diniz Pereira da Silva e Silva que desde o início disponibilizou seu precioso tempo na leitura deste trabalho, contribuindo com valiosas sugestões e correções.

Ao Programa de Pós-Graduação em Engenharia Agrícola, por ter me recebido de forma tão acolhedora. Agradeço todo apoio e atenção.

À Universidade Federal de Campina Grande e à Prefeitura Municipal de Campina Grande, por terem me concedido afastamento total das atividades para realização do Doutorado.

Ao meu esposo, Marcelo Marques Gouveia Filho, por todo incentivo e apoio que me foi dado em todas as etapas da realização deste trabalho. Agradeço bastante as ajudas e boas ideias na parte experimental.

A minha filha Maria Beatriz que trouxe tanta alegria e amor pra minha vida, que transforma qualquer cansaço em força e superação.

Aos professores e amigos da UAFM/CES/UFCG, em especial à Prof^a. Dr^a. Célia Maria Rufino Franco, ao Prof. Dr. Fábio Ferreira de Medeiros e à Prof^a. Dr^a. Vera Solange de Oliveira Farias por todo incentivo e apoio.

A toda minha família, que sempre me incentivou para a busca do crescimento acadêmico e profissional. Em especial aos meu pais: Lêda e Jaime, meus irmãos: Erlon e Eduardo, minhas irmãs: Rosângela e Kalina. Agradeço também a minha prima Jorgiane, minha sobrinha Raissa Celine e aos meus sogros: Marcelo Gouveia e Eunaliana, as minhas cunhadas: Soraya, Rakel e Liana e aos meus cunhados: Edu e Ewertinho. Meu muito obrigada por se fazerem presentes em minha vida nos momentos em que preciso. À Banca Examinadora, pela disponibilidade em ler este trabalho, fornecendo correções e contribuições de extrema importância.

Aos meus colegas de Doutorado pela ótima convivência, em especial a Ana Paula, Janaína, Matheus e Elaine.

Agradeço a todos que de alguma forma contribuíram para que esse sonho, tão almejado por mim, fosse realizado.

RESUMO

Por se fazer necessário estender a vida de prateleira de produtos agrícolas após a colheita, diversas são as técnicas disponíveis na literatura para a conservação de alimentos. Antes de se aplicar uma dessas técnicas, algumas vezes esses produtos são submetidos a um processamento mínimo. O processamento mínimo consiste em um conjunto de operações que eliminam as partes não comumente consumidas dos produtos agrícolas, reduzindo-os a porções menores por meio do corte, de modo que figuem prontos para o consumo imediato ou preparo subsequente e, ao mesmo tempo, mantenham suas características sensoriais como em seu estado in natura. Apesar das vantagens inerentes a esta prática, como por exemplo, trazer praticidade ao consumidor e minimizar perdas, esta é responsável pelas primeiras alterações físicas dos tecidos dos alimentos, as quais contribuem para sua perecibilidade e consequente redução da sua vida útil. Entretanto, ao se resfriar o produto após o processamento mínimo, a sua vida de prateleira pode ser significativamente aumentada. Em outros casos, alguns gêneros agrícolas requerem o prolongamento da durabilidade mantendo as características in natura o máximo possível, e nessas situações também pode ser empregado o método do resfriamento. O projeto de equipamentos refrigeradores e o cálculo do custo associado ao resfriamento de produtos agrícolas requer que algumas propriedades termofísicas dos mesmos sejam conhecidas. Isto também possibilita descrever a cinética do resfriamento do ponto menos favorável em seu interior, que é aquele ponto que atinge a temperatura desejada por último. Portanto, objetivouse neste trabalho desenvolver uma metodologia experimental e um programa computacional que possibilitasse a determinação de todos os parâmetros termofísicos necessários à descrição da cinética de resfriamento de produtos com geometria cilíndrica. Especificamente, o programa foi aplicado no estudo do resfriamento de cortes de cenoura (Daucus carota L.), cortes de macaxeira (Manihot esculenta Crantz), bananas (Musa spp) inteiras com casca e pepino (Cucumis sativus L.), com dimensões previamente definidas. Um solver foi desenvolvido para o problema direto, usando a solução analítica da equação de difusão bidimensional para o cilindro finito, com condição de contorno do terceiro tipo. Para o problema inverso, foi utilizado um conjunto de dados experimentais da temperatura ao longo do tempo no centro dos produtos e um software otimizador pronto para uso. O solver também é capaz de prever a distribuição espacial de temperatura em qualquer instante, durante o resfriamento, e estimar o tempo deste processo para produtos cilíndricos com outras dimensões. Além disso, o solver também pode ser utilizado para descrever processos de pasteurização de produtos. Os valores obtidos para o coeficiente de transferência convectivo de calor e a difusividade térmica dos produtos mostraram-se coerentes com os valores obtidos da literatura e a partir da estimativa de Riedel. Este trabalho também propôs uma metodologia experimental para determinação do calor específico da cenoura, utilizando dois ajustes de curvas para a função que descreve a Lei de Resfriamento de Newton, com pequenas extrapolações, obtendo-se o valor médio da grandeza e sua incerteza, por propagação de erros.

Palavras-chave: coeficiente de transferência de calor, condutividade térmica, difusividade térmica, calor específico, incertezas, solução analítica.

ABSTRACT

Because it is necessary to extend the shelf life of agricultural products after harvesting, several techniques are available in the literature for food preservation. Before applying one of these techniques, sometimes these products are submitted to a minimum processing. The minimal processing consists of a set of operations that eliminate the unusually consumed parts of agricultural products, reducing them to smaller portions by cutting so that they are ready for immediate consumption or subsequent preparation, and at the same time maintain their sensory characteristics as in the fresh state. Despite the advantages inherent to this practice, for example, to bring practicality to the consumer and to minimize losses, this is responsible for the first physical alterations of the food tissue, which contribute to its perishability and consequent reduction of its useful life. However, by cooling the product after minimal processing, its shelf life can be significantly increased. In other cases, some agricultural products requires the extension of durability keeping their characteristics fresh as much as possible, and in these situations the method of cooling can also be used. The design of refrigeration equipment and the calculation of the cost associated with the cooling of agricultural products requires that some thermophysical properties of these products be known. This also makes it possible to describe the cooling kinetics of the least favorable point in the interior, which is the point that reaches the desired temperature last. Therefore, the objective of this work is to develop an experimental methodology and a computer program that enables the determination of all thermophysical parameters required to describe the cooling kinetics of products with cylindrical geometry. Specifically, the program was applied in the study of the cooling of carrot (Daucus carota L.) cuts, cassava (Manihot esculenta Crantz) cuts, whole bananas (Musa spp) with peel and cucumber (Cucumis sativus L.), with previously defined dimensions. A solver was developed for the direct problem, using an analytical solution of the two-dimensional diffusion equation for the finite cylinder, with boundary condition of the third kind. For the inverse problem, an experimental dataset of the temperature over time at the center of products; and a ready-to-use optimizer software were used. The solver should also be able to predict spatial temperature distribution at any time during cooling and estimate the time of this process for cylinders with other dimensions. In addition, the solver can also be used to describe product pasteurization processes. The values obtained for the convective heat transfer coefficient and the thermal diffusivity of the products are consistent with the values obtained from the literature and from the Riedel estimate. This work also proposes an experimental methodology to determine the specific heat of carrot, using two curve fittings for the function that describes Newton's law of cooling, with small extrapolations, obtaining the average value of the quantity and its uncertainty; by propagation of errors.

Keywords: heat transfer coefficient, thermal conductivity, thermal diffusivity, specific heat, uncertainties, analytical solution.

SUMÁRIO

RESUMO	viii
ABSTRACT	ix
LISTA DE FIGURAS	xiv
LISTA DE TABELAS	xix
LISTA DE SÍMBOLOS	XX
Capítulo 1 - INTRODUÇÃO	1
1.1 Conservação pós-colheita	1
1.2 Definição do problema – Justificativa	1
1.3 Objetivo geral	6
1.4 Objetivos específicos	6
1.5 Contribuições esperadas	
Capítulo 2 - REVISÃO DE LITERATURA	9
2.1 Métodos de conservação	9
2.1.1 Conservação pelo fornecimento de calor	
2.1.2 Conservação pelo controle de umidade	
2.1.3 Conservação por defumação	
2.1.4 Conservação pela adição de sal	
2.1.5 Conservação por fermentação	14
2.1.6 Conservação pela adição de açúcar	14
2.1.7 Conservação pela adição de outros aditivos	15
2.1.8 Conservação pela radiação	15
2.1.9 Conservação pela remoção de calor	16
2.2 O resfriamento	17
2.3 Descrição da cinética de resfriamento	
2.3.1 Condução de calor: Equação de difusão	21

2.3.1.1 Condições de contorno	
2.3.1.2 Condições iniciais e de equilíbrio	
2.3.2 Solução da equação de difusão: métodos analíticos	
2.3.3 Solução da equação de difusão: métodos numéricos	
2.4 Determinação de propriedades termofísicas	
2.4.1 Densidade do produto	
2.4.2 Calor específico	
2.4.3 Difusividade térmica e coeficiente de transferência convectiva	
2.4.4 Condutividade térmica	
2.4.5 Aquisição de dados	
2.5 Produtos agrícolas utilizados nesta pesquisa	
2.5.1 Aspectos gerais sobre a cenoura	
2.5.2 Aspectos gerais sobre a macaxeira	
2.5.3 Aspectos gerais sobre a banana	
2.5.4 Aspectos gerais sobre o pepino	
2.6 O estado da arte	
Capítulo 3 - MATERIAIS E MÉTODOS	
3.1 Metodologia experimental	
3.1.1 Determinação da densidade: método padrão	
3.1.2 Determinação do calor específico: recipiente diatérmico	
3.1.2.1 Planejamento da experiência	45
3.1.2.2 A Lei de Resfriamento de Newton	47
3.1.2.3 Tratamento dos dados e medidas realizadas	
3.1.2.3.1 Determinação das temperaturas $T_q e T_f$	51
3.1.3 Determinação da difusividade térmica	
3.1.3.1 Confecção das peças de cenoura e macaxeira em cilindros finitos	
3.1.3.2 Customização do frigobar	54

	3.1.3.3 Procedimentos realizados para obtenção da cinética de resfriamento	. 55
	3.1.4 Coeficiente de transferência convectiva: cinética de resfriamento	. 57
	3.1.5 Condutividade térmica: determinação indireta	. 57
	3.1.6 Coeficiente de transferência de calor: determinação indireta	. 57
	3.2 A equação de difusão bidimensional para um cilindro finito	. 57
	3.2.1 A condição de contorno do terceiro tipo	. 58
	3.2.2 Solução analítica da equação de difusão: o problema direto	59
	3.2.3 O método da bisseção	. 61
	3.2.4 Fluxograma da solução analítica da equação de difusão para cilindro finito	. 64
	3.3 Validação do solver com a solução analítica	. 65
	3.4 Modelo proposto	. 70
	3.4.1 Problema direto: Solver	70
	3.4.2 Problema inverso: determinação dos parâmetros	71
С	apítulo 4 - RESULTADOS E DISCUSSÃO	. 77
	4.1 Validação do modelo proposto	. 77
	4.2 Problema inverso: determinação de propriedades térmicas da banana madura con	n
	casca	. 78
	4.3 Problema direto: simulações para banana	78 80
	4.3 Problema direto: simulações para banana	78 80 81
	 casca	78 80 81 . 81
	 4.3 Problema direto: simulações para banana	78 80 81 81 . 88
	 4.3 Problema direto: simulações para banana 4.4 Determinação de propriedades termofísicas da cenoura 4.4.1 Calor específico 4.4.2 Problema inverso: Difusividade térmica 4.5 Problema direto: simulações para cenoura 	78 80 81 81 88 . 90
	 4.3 Problema direto: simulações para banana 4.4 Determinação de propriedades termofísicas da cenoura 4.4.1 Calor específico 4.4.2 Problema inverso: Difusividade térmica 4.5 Problema direto: simulações para cenoura 4.5.1 Problema direto: simulações para cenouras de outras dimensões 	78 80 81 81 88 90 . 91
	 4.3 Problema direto: simulações para banana 4.4 Determinação de propriedades termofísicas da cenoura 4.4.1 Calor específico 4.4.2 Problema inverso: Difusividade térmica 4.5 Problema direto: simulações para cenoura 4.5.1 Problema direto: simulações para cenouras de outras dimensões 4.6 Problema inverso: determinação de propriedades térmicas da macaxeira 	78 80 81 81 88 90 91 . 93
	 4.3 Problema direto: simulações para banana	78 80 81 81 88 90 91 . 93 . 94
	 4.3 Problema direto: simulações para banana 4.4 Determinação de propriedades termofísicas da cenoura 4.4.1 Calor específico 4.4.2 Problema inverso: Difusividade térmica 4.5 Problema direto: simulações para cenoura 4.5.1 Problema direto: simulações para cenouras de outras dimensões 4.6 Problema inverso: determinação de propriedades térmicas da macaxeira 4.7 Problema direto: simulações para macaxeira 4.8 Problema inverso: determinação de propriedades térmicas do pepino 	78 80 81 81 81 91 91 93 . 94 . 96

4.10 Discussão	
Capítulo 5 - CONCLUSÕES E SUGESTÕES PARA FUTUROS	TRABALHOS 104
5.1 Conclusões	
5.2 Sugestões para futuros trabalhos	
REFERÊNCIAS BIBLIOGRÁFICAS	
APÊNDICES	

LISTA DE FIGURAS

Figura 2.1-	Configuração experimental com uso de smartphone
Figura 2.2 -	Esquema de sistema de automatização via plataforma Arduino
Figura 2.3 -	Morfologia da cenoura
Figura 2.4 -	Planta de mandioca
Figura 2.5 -	Morfologia da banana
Figura 2.6 -	Morfologia do pepino
Figura 3.1 -	Balança digital de precisão
Figura 3.2 -	Esboço das dimensões do cilindro 44
Figura 3.3 -	Paquímetro INSIZE 44
Figura 3.4 -	 (a) Termômetro registrador digital (TH-095), (b) Termopares modelo S02k, (c) Cabo USB/RS-232 com CD-Rom com o driver USB-01
Figura 3.5 -	(a) Lata de refrigerante em alumínio, (b) Funil adaptado com aberturas amplas, (c) Cenoura picada
Figura 3.6 -	Lata suspensa no suporte metálico com termopar em seu interior para a captação e registro dos dados pelo termômetro digital TH-095 Instrutherm conectado a um notebook Core i5 via USB-01/RS-232
Figura 3.7 -	Pontos experimentais do resfriamento do sistema antes da imersão dos pedaços de cenoura (Região I) e depois da imersão (Região II)
Figura 3.8 -	Pontos experimentais imediatamente antes e após a imersão dos pedaços de cenoura
Figura 3.9 -	Ferramentas utilizadas na confecção das peças cilíndricas: (a) Molde de aço para confecção do cilindro; (b) Guia metálico para inserção do termopar; (c) Tampa em nylon para demarcar furo central da peça; (d) Delimitador de
	profundidade em alumínio para inserção do guia metálico 52

- Figura 3.13 Termopar acoplado a uma peça de cenoura e conectado ao termômetro...... 55

- Figura 3.16 Interseção de um cilindro infinito e uma parede infinita...... 59
- Figura 3.18 Fluxograma da solução analítica. 64

- Figura 3.23 Caixa de diálogo com informações iniciais para o processo de otimização..... 72
- Figura 3.24 (a) Resultados principais; (b) Cinética de resfriamento e dados experimentais:
 A linha contínua é obtida por simulação usando os valores ótimos dos parâmetros determinados pelo LS Optimizer para calcular a variável dependente nos mesmos valores da variável independente disponível no arquivo "exp.txt".
 73

Figura 3.26 -	Arquivo de texto com os dados experimentais	75
Figura 3.27 -	Tela inicial do software F_C_Third_K_Cooling	75
Figura 3.28 -	Caixa de diálogo para informar a posição axial do círculo em que será apresentada a distribuição de temperatura	76
Figura 4.1 -	Gráficos da simulação da temperatura adimensional no centro geométrico do meio supondo: (a) Solução numérica para a parede infinita e (b) Solução analítica para o cilindro finito.	77
Figura 4.2 -	Gráficos da simulação da temperatura adimensional no centro geométrico do meio com a sobreposição das soluções analítica e numérica	78
Figura 4.3 -	Pontos experimentais da banana madura com casca	79
Figura 4.4 -	Gráfico da cinética de resfriamento para o ponto central (0,0) da banana com casca prevista pelo modelo proposto, utilizando os valores de α e h determinados pela otimização.	80
Figura 4.5 -	Gráfico que simula a cinética de resfriamento de banana com casca prevista pelo modelo proposto para o ponto central (0,0), linha vermelha e na superfície	
	(20.0). linha azul	80
Figura 4.6 -	(20,0), linha azul (a) Cilindro finito (sem escala) com raio $R = 20,0$ mm e comprimento $L = 200,0$ mm representando a banana com casca; (b) Distribuição de temperatura prevista pelo modelo proposto no instante $t = 20,4$ min para áreas circulares	80
Figura 4.6 -	(20,0), linha azul (a) Cilindro finito (sem escala) com raio $R = 20,0$ mm e comprimento $L = 200,0$ mm representando a banana com casca; (b) Distribuição de temperatura prevista pelo modelo proposto no instante $t = 20,4$ min para áreas circulares localizadas de $y = 0,0$ (centro) até $y = 100,0$ mm (extremidade)	80 81
Figura 4.6 - Figura 4.7 -	(20,0), linha azul (a) Cilindro finito (sem escala) com raio $R = 20,0$ mm e comprimento $L = 200,0$ mm representando a banana com casca; (b) Distribuição de temperatura prevista pelo modelo proposto no instante $t = 20,4$ min para áreas circulares localizadas de $y = 0,0$ (centro) até $y = 100,0$ mm (extremidade) Interface do LAB Fit para inserção da função de ajuste	80 81 83
Figura 4.6 - Figura 4.7 - Figura 4.8 -	(20,0), linha azul (a) Cilindro finito (sem escala) com raio $R = 20,0$ mm e comprimento $L = 200,0$ mm representando a banana com casca; (b) Distribuição de temperatura prevista pelo modelo proposto no instante $t = 20,4$ min para áreas circulares localizadas de $y = 0,0$ (centro) até $y = 100,0$ mm (extremidade) Interface do LAB Fit para inserção da função de ajuste Interface do LAB Fit para inserção dos valores iniciais dos parâmetros de ajuste	80 81 83 83
Figura 4.6 - Figura 4.7 - Figura 4.8 - Figura 4.9 -	(20,0), linha azul (a) Cilindro finito (sem escala) com raio $R = 20,0$ mm e comprimento $L = 200,0$ mm representando a banana com casca; (b) Distribuição de temperatura prevista pelo modelo proposto no instante $t = 20,4$ min para áreas circulares localizadas de $y = 0,0$ (centro) até $y = 100,0$ mm (extremidade) Interface do LAB Fit para inserção da função de ajuste Interface do LAB Fit para inserção dos valores iniciais dos parâmetros de ajuste Interface do LAB Fit com o resultado dos parâmetros do ajuste	80 81 83 83 84
Figura 4.6 - Figura 4.7 - Figura 4.8 - Figura 4.9 - Figura 4.10 -	(20,0), linha azul (a) Cilindro finito (sem escala) com raio $R = 20,0$ mm e comprimento $L = 200,0$ mm representando a banana com casca; (b) Distribuição de temperatura prevista pelo modelo proposto no instante $t = 20,4$ min para áreas circulares localizadas de $y = 0,0$ (centro) até $y = 100,0$ mm (extremidade) Interface do LAB Fit para inserção da função de ajuste Interface do LAB Fit para inserção dos valores iniciais dos parâmetros de ajuste Interface do LAB Fit com o resultado dos parâmetros do ajuste Decaimento da temperatura T ao longo do tempo t antes de imersão dos pedaços de cenoura (Região I)	80 81 83 83 84 84
Figura 4.6 - Figura 4.7 - Figura 4.8 - Figura 4.9 - Figura 4.10 - Figura 4.11 -	(20,0), linha azul (a) Cilindro finito (sem escala) com raio $R = 20,0$ mm e comprimento $L = 200,0$ mm representando a banana com casca; (b) Distribuição de temperatura prevista pelo modelo proposto no instante $t = 20,4$ min para áreas circulares localizadas de $y = 0,0$ (centro) até $y = 100,0$ mm (extremidade) Interface do LAB Fit para inserção da função de ajuste Interface do LAB Fit para inserção dos valores iniciais dos parâmetros de ajuste Interface do LAB Fit com o resultado dos parâmetros do ajuste Decaimento da temperatura T ao longo do tempo t antes de imersão dos pedaços de cenoura (Região I) Interface do LAB Fit para fornecer o tempo que se deseja encontrar a temperatura por extrapolação	 80 81 83 83 84 84 85

Figura 4.13 - Decaimento da temperatura T ao longo do tempo t após a imersão dos pedaços	
de cenoura (Região II)	6
Figura 4.14 - Interface do LAB Fit para cálculo de expressão com propagação de erro $_8$	7
Figura 4.15 - Interface do LAB Fit com o resultado da expressão do cálculo do calor específico	8
Figura 4.16 - Pontos experimentais da cenoura	9
Figura 4.17 - Gráfico da cinética de resfriamento para o ponto central (0,0) da cenoura prevista pelo modelo proposto, utilizando os valores de α e h determinados pela otimização	0
Figura 4.18 - Gráfico que simula a cinética de resfriamento da cenoura prevista pelo modelo	
proposto para o ponto central (0,0), linha vermelha e na superfície (22,0), linha	
azul	0
Figura 4.19 - (a) Cilindro finito (sem escala) com raio $R = 22,0$ mm e comprimento $L = 40,0$ mm representando a cenoura; (b) Distribuição de temperatura prevista pelo modelo proposto no instante $t = 12,5$ min para áreas circulares localizadas de y = 0,0 (centro) até $y = 20,0$ mm (extremidade)	1
Figura 4.20 - Gráfico da simulação da cinética de resfriamento para o ponto central (0,0) da cenoura com raio $R = 18,0$ mm e comprimento $L = 10,0$ mm (linha vermelha), comparado ao gráfico da cinética da peça de cenoura utilizada experimentalmente (linha magenta) de dimensões: $R = 22,0$ mm e comprimento $L = 40,0$ mm	2
Figura 4.21 - Gráfico da simulação da cinética de resfriamento para o ponto central (0,0) da cenoura com raio $R = 25,0$ mm e comprimento $L = 60,0$ mm (linha vermelha), comparado ao gráfico da cinética da peça de cenoura utilizada experimentalmente (linha magenta) de dimensões: $R = 22,0$ mm e comprimento $L = 40,0$ mm	2
Figura 4.22 - Pontos experimentais da macaxeira9	3
Figura 4.23 - Gráfico da cinética de resfriamento para o ponto central (0,0) da macaxeira prevista pelo modelo proposto, utilizando os valores de α e h determinados pela otimização	5

Figura 4.24 -	Gráfico que simula a cinética de resfriamento de macaxeira pelo modelo	
	proposto para o ponto central (0,0), linha vermelha e na superfície (28,0), linha	
	azul	95

Figura 4.25 - (a) Cilindro finito (sem escala) com raio $R = 28,0$ mm e comprimento $L = 52,0$
mm representando a macaxeira; (b) Distribuição de temperatura prevista pelo
modelo proposto no instante $t = 17,6$ min para áreas circulares localizadas de
y = 0.0 (centro) até $y = 26.0$ mm (extremidade)

LISTA DE TABELAS

Tabela 2.1 - Composição centesimal da parte comestível da cenoura crua. 32
Tabela 2.2 - Composição centesimal da parte comestível da macaxeira crua
Tabela 2.3 - Composição centesimal da parte comestível da banana (Musa cavendish)37
Tabela 2.4 - Composição centesimal da parte comestível do pepino (Cucumis sativus L)39
Tabela 4.1 - Propriedades térmicas da banana determinadas pelo modelo proposto e simplificado
Tabela 4.2 - Valores das medidas do experimento do calor específico com suas incertezas82
Tabela 4.3 - Propriedades térmicas determinadas para cenoura
Tabela 4.4 - Propriedades térmicas determinadas para macaxeira.
Tabela 4.5 - Propriedades térmicas determinadas pelo modelo proposto neste trabalho e porSilva et al. (2012a)
Tabela B 1 - Dados experimentais do resfriamento da banana madura com casca128
Tabela B 2 - Dados experimentais do resfriamento da cenoura. 129
Tabela B 3 - Dados experimentais do resfriamento da macaxeira. 130
Tabela B 4 - Dados experimentais do resfriamento do pepino
Tabela B 5 - Calor específico: pontos experimentais coletados a cada 2 s
Tabela B 6 - Calor específico: pontos experimentais a cada 40 s

LISTA DE SÍMBOLOS

Letras Latinas

A - Coeficiente dos termos da solução analítica	[-]
$A_{p_{e}} A_{w_{e}} A_{e}$ - Coeficientes da equação de difusão discretizada	[-]
<i>Bi</i> - Número de Biot	[-]
<i>Bi</i> _c - Número de Biot para um cilindro infinito	[-]
Bis - Número de Biot para uma parede infinita	[-]
c_p - Calor específico	[J kg ⁻¹ K ⁻¹]
<i>E</i> , <i>W</i> , <i>P</i> - Pontos nodais	[-]
h - Coeficiente de transferência de calor convectiva	[m s ⁻¹]
$h_{\!_H}$ - Coeficiente de transferência de calor	$[W m^{-2} K^{-1}]$
J_0 , J_1 - Funções de Bessel de primeira espécie de ordem zero e um	[-]
<i>k</i> - Condutividade térmica	$[W m^{-1} K^{-1}]$
L - Comprimento	[m]
R - Raio	[m]
r - Posição radial	[m]
T - Temperatura	[K]
T_0 - Temperatura inicial	[K]
T_{eq} - Temperatura de resfriamento	[K]
y - Posição axial	[m]
S - Termo fonte da equação de difusão	[-]

Letras Gregas

α - Difusividade térmica	$[m^2 s^{-1}]$
μ - Raízes da equação característica	[-]
Φ - Variável dependente no fenômeno de transporte	[-]
${\cal P}_{_\infty}$ - Variável de transporte para fluido no contorno	[-]
$\Phi_{_{P}}, \Phi_{_{E}}, \Phi_{_{W}}$ - Variáveis dependentes em equação discretizada	[-]
Φ_p^0 - Valor da variável no ponto nodal P avaliada no início do intervalo de tempo	[-]
$\varPhi_{_e}, \varPhi_{_w}$ - Valores da grandeza de interesse nos contornos leste e oeste	[-]
$\phi_{e}^{"}, \phi_{w}^{"}$ - Fluxo de Φ por unidade de área no contorno leste e oeste	[-]
λ - Coeficiente de transporte	[-]
Γ^{ϕ} - Coeficiente de transporte	[-]
Γ_e^{ϕ} - Coeficiente de transporte na interface "P" e "E"	[-]
Γ_E^{ϕ} - Coeficiente de transporte do ponto nodal E	[-]
Γ_P^{ϕ} - Coeficiente de transporte do ponto nodal P	[-]
Γ^{ϕ}_{w} - Coeficiente de transporte na interface entre "w" e "P"	[-]
ρ - Densidade	[kg m ⁻³]
μ_{n1}, μ_{m2} - Raízes de equações característica	[-]
σ - Desvio padrão	[-]
χ^2 - Qui-quadrado	[-]
∇ - Gradiente	[-]
∇ Divergente	[-]

CAPÍTULO 1 - INTRODUÇÃO

1.1 Conservação pós-colheita

Conforme se sabe, após a colheita, produtos agrícolas tem um tempo de vida de prateleira que, muitas vezes, duram apenas alguns dias ou umas poucas semanas. Para aumentar esse tempo de vida dos produtos, alguns métodos estão disponíveis na literatura e, entre eles, podem ser citados a desidratação osmótica (SILVA et al., 2013a; SILVA et al., 2015), a secagem (SILVA et al., 2013b; SILVA et al., 2014a; MONTEIRO et al., 2015; SILVA et al., 2016), a pasteurização (SILVA et al., 2011a; SILVA et al., 2014b; XU et al., 2015; ABBASNEZHAD et al., 2016; HONG et al., 2016; SILVA et al., 2018), o cozimento (MARCOTTE et al., 2008; RINALDI et al., 2011) e o resfriamento (SILVA et al., 2010; SILVA et al., 2011b,c; SILVA et al., 2012a; REINHEIMER et al., 2013; ERDOGDU et al., 2014; DAVEY, 2015; REDDING et al., 2016). Muitas vezes, antes que qualquer método de prolongamento da vida de prateleira seja aplicado, o produto é submetido a um processamento mínimo. Em outras situações, é desejável prolongar a vida das frutas frescas, mantendo as suas características *in natura* o máximo possível.

1.2 Definição do problema – Justificativa

O processamento mínimo de uma fruta ou legume resulta da sua alteração física, a partir das operações de seleção, lavagem, classificação, corte/fatiamento, sanitização, enxágue,

drenagem, embalagem e refrigeração realizados de modo a obter-se um produto fresco, pronto para o consumo ou preparo subsequente (PUSCHMANN et al., 2006; MORETTI, 2007). Desse modo, o processamento mínimo torna mais prática e conveniente a vida do consumidor, principalmente nos dias atuais, com a disponibilidade de tempo cada vez menor para o preparo de refeições.

O processamento mínimo de vários produtos pode consistir em um método que preserva as características de tal produto, inteiro e/ou fresco. Esta opção oferece vantagens, tais como: eliminar os inconvenientes das operações de seleção, descascamento e de corte pelos consumidores. Embora torne o produto prático e conveniente, as operações envolvidas no processamento mínimo são responsáveis pelas imediatas e subsequentes respostas físicas (perda de água e de suco celular, alteração na difusão de gases, exposição a microrganismos) e fisiológicas (aumento da taxa respiratória) e bioquímicas (reações oxidativas, indução na atividade enzimática) tanto nas regiões das células injuriadas, como nas adjacentes, contribuindo na redução da vida útil do produto (CANTWELL, 1992; SALTVEIT, 1998). Entretanto, quando o processamento mínimo é seguido por um resfriamento do produto, a vida útil pode ser aumentada, muitas vezes, de dias para semanas.

Os produtos que irão ser utilizados neste trabalho de pesquisa na sua forma minimamente processada serão: a cenoura e a macaxeira. A primeira é uma das hortaliças mais difundidas na forma minimamente processada, dado as diferentes possibilidades de uso, bem como as diferentes formas de apresentação, em que podem ser raladas em diversos tamanhos ou cortadas em fatias, cubos, palitos ou ainda na forma de mini cenoura "baby-carrot" (RESENDE et al., 2004).

Devido à elevada perecibilidade e do aspecto visual pouco atrativo das raízes de macaxeira, existe uma diminuição crescente da oferta da macaxeira *in natura* em supermercados e hipermercados de grandes centros consumidores. Com isso, surge um aumento da disponibilidade da sua forma minimamente processada, a exemplos, a macaxeira descascada/congelada ou ainda descascada/resfriada, embalada a vácuo, envasada embalada com água, pré-cozida e em forma de "chips", facilitando seu preparo e consumo (RINALDI et al., 2015).

Normalmente, os métodos de conservação pós-colheita mudam de forma significativa as características do produto *in natura*. A pasteurização, no caso de frutas, geralmente é realizada apenas para a polpa colocada em um recipiente, mas não para a fruta inteira. A secagem, por exemplo de bananas, resulta em um delicioso produto conhecido como banana seca, às vezes chamada de "banana-passa". Outra forma de estender o tempo para o consumo de banana é a produção de farinha (TRIBESS et al., 2009). No entanto, as características de farinha e banana-passa são diferentes daquelas do produto fresco.

Em muitas situações, é desejável prolongar a vida das frutas frescas, mantendo suas características o máximo possível. Uma dessas situações ocorre durante o transporte de bananas inteiras em contêineres por longos períodos, desde a região produtora até a região consumidora. Em geral, no destino final, as bananas devem ser disponibilizadas como um produto fresco. Para isso, geralmente as bananas verdes são colocadas em sacos plásticos com atmosfera controlada (com O₂ reduzido para 3% e o CO₂ aumentado para 4,5%), e o produto é resfriado da temperatura ambiente até 13 °C (JEDERMANN et al., 2013). De acordo com esses autores, uma temperatura mais baixa não é aconselhável, pois pode danificar a fruta por lesões pelo frio. Além disso, uma temperatura mais alta poderia iniciar um processo de amadurecimento indesejado. Por outro lado, a determinação do custo para a implementação dessas condições de transporte requer o cálculo da energia consumida durante a transferência de calor e, portanto, os parâmetros termofísicos do produto devem ser conhecidos (UKRAINCZYK, 2009; KIZILTAS et al., 2010; ERDOGDU et al., 2014; SILVA et al., 2018).

Da mesma forma, a vida útil das bananas maduras com casca pode ser prolongada através de condições de resfriamento adequadas (da temperatura ambiente até 13 °C). Também nesse caso, o custo de resfriamento depende do conhecimento dos parâmetros termofísicos. No entanto, os dados disponíveis na literatura para esses parâmetros geralmente se referem à polpa da banana (ASHRAE, 1993; FRICKE e BECKER, 2001; BART-PLANGE et al., 2012).

Uma outra situação, ainda objeto de estudo deste trabalho, de necessidade de prolongar o tempo de vida de prateleira de um produto fresco, em condições adequadas de resfriamento, foi a análise do correto resfriamento de pepinos. O pepino é um fruto com alto percentual de umidade (cerca de 97% de água) sendo assim, susceptível a sofrer perda de água, bem como a danos causados pela injúria do resfriamento (recomenda-se que seu resfriamento não ocorra em temperaturas menores que 7 °C) (CARVALHO et al., 2013).

A predição exata da distribuição de temperatura em produtos hortícolas, a duração do processo e o consumo de energia durante o resfriamento são parâmetros de extrema importância nos projetos de sistemas de refrigeração, para estimar o custo efetivo de operação e para garantir a segurança e qualidade apropriada do produto (FIKIIN, 1996).

Um dos fenômenos físicos estudados na produção e conservação de alimentos é a transferência de calor. A fim de calcular o custo dessas operações envolvendo transferência de calor, alguns parâmetros termofísicos do produto têm que ser conhecidos. Como observado por Erdogdu (2008) a condutividade térmica, calor específico e densidade são parâmetros importantes no cálculo do calor removido ou transferido para o produto. Sob certas circunstâncias, esses três parâmetros podem ser combinados para expressar um único, denominado difusividade térmica (α). Outro parâmetro que deve ser conhecido para descrever um processo envolvendo transferência de calor é o coeficiente de transferência convectiva (h). Para um dado produto, o conhecimento de α e h possibilita simular o processo de transferência de calor que ocorre entre o produto e o meio. Devido a esse fato, existem vários trabalhos na literatura com o objetivo de determinar α e h. Como a descrição da transferência de calor em estado transiente envolve a equação de difusão, é oportuno mencionar que, basicamente, dois grupos de métodos são usados para resolver esta equação: os métodos analíticos e os numéricos. Em geral, soluções numéricas são preferidas se os parâmetros termofísicos e/ou as dimensões do produto são variáveis durante o processo. Nesse caso, a solução deve ser acoplada a um otimizador, normalmente baseado no método inverso (PLAZL et al., 2006; HUANG, 2007; BETTA et al., 2009; SILVA et al., 2011a,b,c).

Especificamente no caso de resfriamento, na maior parte dos casos, a variação de temperatura não é muito grande durante o processo, e os parâmetros termofísicos, bem como as dimensões do produto podem ser considerados constantes (ERDOGDU et al., 2014). Então, se a geometria do produto não for complexa, a equação de difusão pode ser resolvida analiticamente. Alguns trabalhos disponíveis na literatura apresentam soluções analíticas da equação de difusão e, entre estes, Luikov (1968) e Crank (1992) podem ser citados. Geralmente, para o estado transiente, essas soluções são dadas através de séries infinitas e, para a determinação de α e h, normalmente estas séries são representadas por apenas o seu primeiro termo, o que pode levar a significativos erros de truncamento (DINCER, 1996; MARKOWSKI et al., 2004; GLAVINA et al., 2006; BAIRI et al., 2007; KUMAR et al., 2008; MERCALI et al., 2011). Em Silva et al. (2012b) é exposto que erros significativos são acarretados como consequência do uso de poucos termos da série na qual representa a solução analítica e, mais especificamente, é mostrado que quanto maior o número de Biot maior o erro gerado. Em geral este único termo é ajustado a dados experimentais da temperatura versus tempo, em que a temperatura é medida com um termopar colocado em uma posição conhecida do produto. Desse modo, é possível estimar α e h, apesar dos erros de truncamento mencionados.

Um algoritmo baseado na remoção ótima de pontos experimentais para minimizar erros na determinação de α e *h*, foi apresentado em Silva et al. (2012a). O algoritmo foi validado para diversas situações físicas, e aplicado no resfriamento do pepino. Em Silva et al. (2014b) foi apresentado um algoritmo baseado na remoção ideal de pontos experimentais para minimizar erros na determinação de α de produtos enlatados, em que a condição de contorno apropriada para equação de condução de calor é a de primeiro tipo.

Em muitos trabalhos disponíveis na literatura os valores das propriedades térmicas são determinados sem que sejam conhecidas suas incertezas, bem como a covariância entre esses valores. Assim, o uso dos valores dessas propriedades para simular pasteurização, resfriamento e congelamento fica comprometido devido à falta de informações sobre a precisão dos resultados obtidos.

Le Niliot e Lefèvre (2004) e Mariani et al. (2009), a fim de determinar as incertezas das propriedades térmicas, propuseram-se a realizar 100 simulações numéricas nas quais as medidas são interrompidas com 100 distribuições gaussianas diferentes (com média zero e desvio padrão obtidos na simulação usando os parâmetros originalmente determinados). Dessa forma, as incertezas foram obtidas realizando o tratamento estatístico dos 100 valores para cada parâmetro. Da Silva e Silva (2014) também utilizaram esse método para determinar a matriz de covariância relacionada à difusividade térmica e ao coeficiente de transferência de calor convectiva durante o resfriamento do pepino. No entanto, esse método, apesar de ser capaz de determinar as incertezas dos parâmetros e a matriz de covariância, é muito lento devido ao número de simulações necessárias. Outras técnicas para determinar parâmetros da equação diferencial (e suas incertezas) usando o conjunto de dados experimentais também foram encontradas na literatura nos últimos anos (MARIANI et al., 2008; UKRAINCZYK, 2009; MURAMATSU et al., 2017). No entanto, os códigos necessários para isso (como OptiPa, SBtoolbox2 e AMIGO2) geralmente são disponibilizados (ou desenvolvidos) para o ambiente MATLAB. No ano de 2017, foi desenvolvido o otimizador LS Optimizer (SILVA e SILVA, 2017), para ser instalado diretamente na Plataforma Windows. Este software livre, baseado no algoritmo de Levenberg-Marquardt (LEVENBERG, 1944; MARQUARDT, 1963; SILVA et al., 2006), é muito rápido para determinar parâmetros de uma equação diferencial usando dados experimentais. Assim, esse software possibilita o uso de modelos bidimensionais e tridimensionais para determinar propriedades térmicas durante um estado transiente, sem a necessidade de um ambiente computacional específico.

No presente trabalho, foram desenvolvidas técnicas que possibilitaram usar uma solução analítica da equação de difusão, bem como utilizou-se um *software* de otimização para descrever de forma precisa e rápida o processo de transferência de calor em produtos agrícolas com geometria cilíndrica. A solução analítica da equação de difusão, proveniente da literatura, foi obtida por separação de variáveis. O processo de otimização foi realizado com um *software* pronto para usar, o LS *Optimizer*.

Conjuntamente, foi realizado um experimento de baixo custo para determinação da grandeza do calor específico de um dos produtos objeto de estudo desta tese. Portanto, foi possível determinar o calor específico da cenoura com uma razoável precisão no resultado. Esse experimento, que utiliza a Lei de Resfriamento de Newton na análise dos dados experimentais, possui a vantagem de agregar a incerteza ao valor obtido.

O correto resfriamento de um produto deve levar em consideração a cinética desse processo no ponto menos favorável do produto, isto é, aquele ponto que atinge a temperatura desejada por último, o que garante que todos os outros pontos já atingiram tal temperatura. Para a descrição desta cinética, é necessário que sejam determinadas as propriedades termofísicas. Nesse sentido, os objetivos deste trabalho serão definidos a seguir.

1.3 Objetivo geral

Criar uma metodologia em que sejam desenvolvidos experimentos sobre transferência de calor; e que sejam propostas soluções para as equações que descrevam tais experimentos, através de um programa de computador, de forma a determinar as propriedades termofísicas necessárias para que a precisa descrição da remoção (ou fornecimento) de calor de um produto seja realizada.

1.4 Objetivos específicos

Para atingir o objetivo geral delineado, os seguintes objetivos específicos são propostos nesta pesquisa, para produtos agrícolas com formato cilíndrico (cilindro finito), a serem caracterizados com os produtos distintos em diferentes teores de umidade:

- Propor um experimento para a determinação do calor específico dos produtos usando um recipiente com paredes diatérmicas, considerando as perdas de calor do sistema ao longo do tempo;
- Medir a densidade das fatias/cortes em formato cilíndrico para diferentes teores de umidade dos produtos a serem resfriados;
- Realizar experimentos relativos à cinética de resfriamento do ponto menos favorável das fatias/cortes em formato cilíndrico, no qual será colocado um termopar;
- Criar um *solver* usando a solução analítica da equação de difusão bidimensional para um cilindro finito, obtida por separação de variáveis. Esse *solver* foi criado em linguagem FORTRAN (FORmula TRANslation), desenvolvido no estúdio Compaq Visual Fortran (CVF) Professional Studio, edição V.6.6.0, com opção de programação QuickWin Application;
- Comparar a solução analítica utilizada com a quantidade adequada de termos da série que representa tal solução, através do uso de uma solução numérica conhecida para a geometria parede infinita;
- Determinar, através de um *software* de otimização, a difusividade térmica e o coeficiente de transferência convectiva de calor usando os dados experimentais obtidos;
- Simular a cinética de resfriamento para várias condições experimentais e dimensões das fatias/cortes e produtos inteiros em formato cilíndrico usando as propriedades termofísicas determinadas;
- Analisar a distribuição de temperatura para instantes previamente definidos usando as soluções e os valores obtidos para as propriedades termofísicas;
- Determinar, através de medição indireta, a condutividade térmica dos produtos para os diferentes teores de umidade dos vários produtos.

Os objetivos específicos anteriormente delineados, que compõem a metodologia experimental e computacional proposta, foram aplicados especificamente no estudo do resfriamento de cortes de cenoura e de macaxeira, além de bananas inteiras com casca e pepino.

1.5 Contribuições esperadas

Desenvolvimento de um *software* computacional para a determinação dos parâmetros termofísicos necessários para a descrição precisa da transferência de calor em produtos na forma de cilindros finitos. Em adição, o *software* deve possibilitar o cálculo do tempo de processo através de simples simulações para cilindros de dimensões diferentes daquelas usadas nos experimentos. Apesar de ser destinado ao estudo de resfriamento de produtos, o *software* poderá ser usado, também, na descrição de pasteurização de produtos pastosos acondicionados em recipientes cilíndricos.

CAPÍTULO 2 - REVISÃO DE LITERATURA

2.1 Métodos de conservação

A conservação dos alimentos surgiu com a civilização humana. O homem pré-histórico já utilizava o fogo para defumação, o sal na conservação de alimentos e os condimentos para melhorar a palatabilidade e realizar fermentações de produtos de origem animal e vegetal. Nessa época, já havia uma compreensão da necessidade de se guardar as sobras dos alimentos dos dias de fartura para os tempos de escassez. Portanto, devido à necessidade da sobrevivência, o homem durante todo desenrolar da história tem exercido a prática de conservação de alimentos (VASCONCELOS e MELO FILHO, 2010). A importância dessa prática deve-se ao fato da maior parte dos alimentos de origem vegetal e animal terem como característica a facilidade de se deteriorar. A deterioração começa imediatamente após a colheita do vegetal ou abate do animal (GAVA, 2009).

Com os gregos e romanos, surgiu a rotação de cultivo, técnicas de avaliação do solo e uso dos fertilizantes. Com a idade do ferro (1500 a.C) surgiu o comércio em grande escala por mar e terra, melhorando as ferramentas na lavoura e possibilitando que vários alimentos fossem espalhados pelo mundo (ATAÍDE, 2014).

No decorrer dos séculos, sempre existiu uma técnica empírica de preservação de alimentos. As necessidades surgiram levando às descobertas e ao desenvolvimento de novas técnicas. Foi só a partir do século XIX que apareceu a técnica moderna de conservação de alimentos. A embalagem e o acondicionamento tiveram um papel de destaque nessa evolução

(GAVA, 2009). Para que o alimento não cause nenhum dano à saúde da população consumidora, centros de pesquisas e universidades estão empenhados em descobertas de novas metodologias de otimização da economia dos processos e da qualidade do produto (ATAÍDE, 2014).

Com o objetivo de aumentar a vida útil dos alimentos, mantendo seus nutrientes e características sensoriais (aroma, sabor e textura), evitando assim alterações microbianas, enzimáticas e físicas, diversos são os métodos de conservação dos alimentos. Pode-se citar, como exemplos: a secagem, defumação, salga, fermentação, congelamento, desidratação osmótica, resfriamento e a ação do calor (VASCONCELOS e MELO FILHO, 2010).

Esses processos de conservação são baseados na eliminação total ou parcial dos agentes que alteram os produtos ou na modificação ou supressão de um ou mais fatores essenciais, de modo que o meio fique menos propício a qualquer manifestação vital ou atividade bioquímica. Isso ainda pode ser conseguido pela adição de substâncias em quantidade e qualidade que impeçam o desenvolvimento dos microrganismos. De modo geral, os melhores processos são aqueles que, garantindo uma satisfatória conservação, alteram menos as condições naturais dos produtos (GAVA, 2009).

2.1.1 Conservação pelo fornecimento de calor

Os métodos de conservação por calor agem diretamente, destruindo ou inativando total ou parcialmente a flora microbiana. A escolha da temperatura e do tempo a serem usados no tratamento do alimento dependerá do efeito que o calor exercerá sobre o mesmo, como também dos outros métodos que serão empregados conjuntamente (GAVA, 2009).

A conservação pelo calor tem como princípio básico a morte térmica dos microrganismos que se dá por coagulação de suas proteínas e de seus sistemas enzimáticos. No entanto, a eficácia do tratamento térmico depende do tipo de microrganismo, a forma como ele se encontra (célula vegetativa ou esporo) e o ambiente de aquecimento. As formas mais resistentes dos microrganismos são os esporos, através deles os microrganismos sobrevivem em condições adversas ao meio ambiente. Em condições adequadas, os esporos podem germinar e a forma vegetativa pode produzir toxinas (OETTERER et al., 2006).

Apesar do objetivo principal da conservação pelo calor ser a destruição dos microrganismos prejudiciais e retardar ou prevenir o desenvolvimento dos que conseguiram

sobreviver ao tratamento, deve-se ter o cuidado para que o alimento não sofra alteração com relação ao seu valor nutritivo e não modifique a sua natureza histológica, física e química, reduzindo as suas qualidades sensoriais e nutricionais; não se prestando ao consumo humano fazendo o alimento ter o seu valor comercial reduzido. Esse processo de conservação pelo calor precisa de um rigoroso controle, sob pena de destruir o alimento ao invés de conservá-lo (ATAÍDE, 2014).

Os métodos de conservação de alimentos pelo calor mais utilizados são: pasteurização, tindalização, esterilização e branqueamento. A seguir são fornecidas algumas informações sobre cada um destes métodos.

- Pasteurização: a pasteurização térmica é um processo físico tradicional de descontaminação de alimentos que ainda é comumente utilizado (SILVA e GIBBS, 2012). Utiliza temperaturas de até 100 °C. Pode ser utilizado por pequenas unidades de processamento, para prolongar a vida útil de alimentos. É um tratamento térmico capaz de conservar polpas de frutas por inativação enzimática e destruição de microrganismos termosensíveis, provocando alterações mínimas sobre o valor nutritivo e características sensoriais dos produtos (GAVA, 2009; FELLOWS, 2006). Existem três tipos de pasteurização: a pasteurização lenta e temperatura baixa, a LTLT (*low temperature long time*), em torno de 63 °C, por 30 min; a pasteurização rápida e temperatura alta, a HTST (*high temperature short time*), em torno de 72 °C, por 15 s; e a UHT (*ultrahigh-temperature*), a temperatura atinge 135 °C, por pelo menos 1 s.
- Tindalização: é assim conhecido por sua vinculação ao físico inglês John Tindall. As temperaturas utilizadas variam de 60 a 90 °C em recipiente fechado por alguns minutos e, após o resfriamento, a operação é repetida, de 3 a 12 vezes, até a obtenção da esterilização completa. Apesar de ser um processo de maior custo e demorado, os alimentos conservam seus nutrientes e características sensoriais (GAVA, 2009).
- Esterilização: a esterilização é a operação unitária na qual o alimento é aquecido a uma temperatura alta o suficiente por um tempo longo para destruir a atividade microbiana e enzimática. Os alimentos esterilizados alcançam uma vida de prateleira maior que seis meses em temperatura ambiente. O pH do alimento, o seu estado físico e o tamanho do recipiente, são alguns fatores que influenciam o tempo de esterilização do alimento (FELLOWS, 2006).

Branqueamento: processo térmico de curto tempo de aplicação que utiliza temperaturas entre 70 e 100 °C, e tempos que variam de 1 a 5 min, seguido de resfriamento como forma de brecar a exposição do produto à temperaturas elevadas, evitando, assim, o seu cozimento (VASCONCELOS e MELO FILHO, 2010). É empregado para inativar enzimas contidas nas frutas e hortaliças antes de serem submetidas ao congelamento ou desidratação. Realizadas por água quente, quando se mergulha o alimento em banho de água quente por determinado tempo; e a vapor, em que o produto fica submetido temporariamente à atmosfera de vapor saturado, resultando em uma maior retenção de nutrientes, desde que o resfriamento seja também por corrente de ar frio (FELLOWS, 2006).

2.1.2 Conservação pelo controle de umidade

Segundo Okada et al. (2002) entende-se por secagem a remoção de água ou de qualquer outro líquido de um material sólido na forma de vapor, para uma fase gasosa insaturada, através de um mecanismo de vaporização térmica, numa temperatura inferior à de ebulição.

A secagem é um processo combinado de transferência de calor e massa, em que uma boa parte da água é eliminada, reduzindo, consequentemente, a sua atividade de água (Aw) que afeta o crescimento microbiano, reações enzimáticas e outras reações de origem química e física (GAVA, 2009).

Quanto aos métodos empregados no processo de secagem, esses podem ser realizados de forma natural ou artificial. Como exemplo de secagem natural, tem-se a situação em que os cereais e outros vegetais são secados no próprio campo de cultivo, nesse caso, o ar que seca o produto é proveniente dos ventos e a energia utilizada emana do sol (SILVA, C., 2012). Esse método possui as vantagens de ser de baixo custo e de não precisar de mão de obra qualificada. Contudo, tem como desvantagens: o seu uso está sujeito às condições climáticas; o campo de plantio fica em longo período de ocupação, sujeito à infecção por fungos e à interferência de pássaros e roedores. Esse não é um método ideal ao processamento de grandes volumes de grãos (SILVA, C., 2012).

A secagem artificial, apesar de ter um custo mais alto, é amplamente utilizada em grandes produções, sendo possível reduzir rapidamente o teor de umidade dos produtos recém-

colhidos, e assim, evitar alterações metabólicas e minimizar a ação de fungos e insetos (SILVA, C., 2012).

Durante a secagem o alimento perde naturalmente sua umidade, com a consequente elevação da concentração dos nutrientes por unidade de peso, quando comparado com o produto fresco (ATAÍDE, 2014).

2.1.3 Conservação por defumação

A defumação das carnes já era utilizada desde o ano de 1000 a.C. É um processo no qual, as carnes, embutidos e queijos são impregnados pela fumaça oriunda da combustão incompleta de madeira, serragem ou carvão. O efeito combinado da salga, cozimento, secagem e de certas substâncias químicas encontradas na fumaça contribui para a ação conservadora dos produtos defumados (GAVA, 2009).

Já foram isolados e identificados na fumaça mais de trezentas substâncias químicas diferentes. A fumaça é um produto complexo, sendo constituída de substâncias orgânicas como fenóis, ácidos aldeídos, cetonas, álcoois, hidrocarbonetos, compostos de anel aromático, gases (CO₂, SO₂, N₂, O₂, etc.) e alcatrão. O carvalho, elmo e mogno são excelentes madeiras para defumação, mas, por razões de disponibilidade e economia, no Brasil usa-se o eucalipto e o jacaré (GAVA, 2009).

As características do processo de defumação são importantes para obtenção de produtos de alta qualidade e com boa aceitação. As condições meteorológicas, a temperatura, os níveis de cloreto de sódio, a secagem, o tempo de aplicação da fumaça e o tipo de serragem são fatores que contribuem para o sucesso do processo. Existem vários métodos de defumação: o processo de defumação de forma tradicional, a quente ou a frio; a defumação eletrostática e a defumação líquida (FRANCO et al., 2010).

2.1.4 Conservação pela adição de sal

Desde os tempos mais remotos que o uso do sal (cloreto de sódio) é utilizado para conservar carnes, pescados e algumas hortaliças. Através da observação dos povos primitivos foi constatado que alguns produtos podiam ser conservados usando a salmoura ou sal por via seca, seguido da secagem ao sol e/ou exposição ao fogo (GAVA, 2009).

O efeito inibitório ou letal das soluções salinas sobre os microrganismos resulta inicialmente de uma redução da atividade de água do produto como na desidratação, mas por um mecanismo diferente. Com a incorporação de certa quantidade de sal ao alimento, a solução externa é hipertônica, movimentando a água do interior para o exterior da célula com a consequente plasmólise e provável destruição da célula microbiana (GAVA, 2009).

Segundo Lessi (1995), outros efeitos ocorrem como: os cátions de sódio combinam-se com os ânions do protoplasma das células das bactérias, tendo algum efeito tóxico; o cloreto de sódio altera o sistema enzimático das células microbianas, abaixando ou inibindo as atividades das enzimas proteolíticas; a salga com salmoura impede a ação do oxigênio junto à carne e os microrganismos, reduzindo a oxidação dos lipídios e dificultando a multiplicação dos aeróbios; a ação sinergista do cloreto de sódio torna os microrganismos mais sensíveis à ação de substâncias antimicrobianas como gás carbônico, conservantes e pH baixo dos ambientes salgados.

2.1.5 Conservação por fermentação

Do ponto de vista bioquímico, dá-se o nome de fermentações as trocas ou composições químicas produzidas nos substratos orgânicos mediante a atividade de microrganismos vivos. Assim, há várias classes de fermentações, dependendo dos tipos de microrganismos e dos substratos (GAVA, 2009).

A fermentação dos alimentos pode ser alcoólica, acética ou láctica. Em qualquer um dos casos é um processo que utiliza o crescimento controlado de microrganismos selecionados capazes de modificar a sua textura, sabor e aroma, como também suas propriedades nutricionais (ATAÍDE, 2014).

2.1.6 Conservação pela adição de açúcar

O açúcar é um bom agente de conservação de produtos alimentícios, principalmente quando em conjunto a um processamento térmico. A pressão osmótica causada no substrato faz reduzir a atividade aquosa, impedindo o crescimento e reprodução da maioria das espécies de bactérias, leveduras e bolores. Por existir alguns microrganismos osmofílicos, que conseguem viver em condições de baixo teor de umidade, alguns alimentos conservados pelo uso de açúcar devem receber um tratamento complementar para sua conservação (GAVA, 2009).

2.1.7 Conservação pela adição de outros aditivos

O consumo crescente de produtos industrializados intensificou o uso de aditivos alimentares, tais como: corantes, conservadores, antioxidantes artificiais, entre outros. Por princípio, os aditivos devem ocasionar um benefício na qualidade do alimento, da fonte de produção à mesa do consumidor. Entretanto, esses aditivos devem ser rigorosamente avaliados por um órgão responsável que determina quais produtos são permitidos e o limite máximo a ser utilizado.

Gava (2009) menciona que o uso de aditivo como vantagem para o consumidor pode ser tecnologicamente justificado desde que sirva a um dos seguintes propósitos: aumentar a sua conservação ou estabilidade, com resultante redução nas perdas de alimentos; manter ou melhorar o valor nutritivo; tornar o alimento mais atrativo ao consumidor, porém sem levá-lo a uma confusão e fornecer condições essenciais ao processamento do alimento. E ainda menciona que seu uso não é justificável e nem permitido quando houver suspeitas do aditivo possuir toxidade real; interferir sensível ou desfavoravelmente no valor nutritivo do alimento; servir para encobrir falhas no processamento e nas técnicas de manipulação dos alimentos; quando encobrir alteração na matéria prima do produto já elaborado; induzir o consumidor a erro, engano ou confusão; não satisfizer a legislação de aditivos em alimentos.

2.1.8 Conservação pela radiação

O uso da radiação, um processo físico na conservação de alimentos é de origem recente, possuindo adeptos por ser um processo rápido que não deixa resíduos e eleva de forma mínima a temperatura interna do produto. No entanto, ainda há aspectos controversos que impedem a aprovação geral, em que o público consumidor sempre apresenta receio diante do tema radiação (GAVA, 2009).

Em 1896, a radioatividade dos sais de urânio foi descoberta por Antoine Henri Becquerel e ficou esclarecido que as radiações ionizantes afetam os sistemas biológicos prejudicando os tecidos, podendo destruir os organismos vivos. As irradiações ionizantes são usados em tratamento médico (GAVA, 2009).

Em 1963, o governo norte-americano aprovou a irradiação do trigo, farinha de trigo e toucinho. Em 1964, estendeu o uso em batata e cebola para evitar germinação. Durante os anos
80 a 90 vários países regulamentaram o uso de alimentos irradiados, inclusive o Brasil, após a recomendação de uso da OMS, FAO e Agência de Energia Atômica Internacional, em 1977 (GAVA, 2009).

Existem dois tipos de radiações: a calórica e a ionizante. As radiações calóricas tem por base o movimento eletrônico e molecular para originar o calor, apresentam pouca eficiência na conservação dos alimentos. As radiações ionizantes são mais eficazes na conservação dos alimentos pois são de alta frequência. Para penetrar nos alimentos dependem da natureza dos mesmos e das características que elas apresentam, podem remover elétrons dos substratos cujo efeitos podem ser diretos e indiretos (SILVA, 2000).

Devido ao seu baixo poder de penetração, são empregados radiações da faixa ultravioleta na superfície dos alimentos para inativar microrganismos. Das radiações ionizantes as utilizadas na conservação dos alimentos são os raios gama e as partículas beta. As radiações com alta energia não devem ser utilizadas, pois podem tornar os alimentos radioativos (FELLOWS, 2006).

2.1.9 Conservação pela remoção de calor

A diminuição da temperatura como método de preservação dos alimentos é de grande importância, pois, pode-se por meio dela, retardar as reações químicas e enzimáticas, decaindo assim o ritmo de crescimento de microrganismos e velocidade das reações químicas (OETTERER et al., 2006).

No entanto, é importante destacar que para utilizar o método de conservação pelo frio, alguns princípios devem ser seguidos: o alimento deve ser sadio, pois o frio não restitui a qualidade perdida; a aplicação do frio deve ser feita o mais rápido possível após a colheita ou o preparo dos alimentos; os produtos devem ser conservados em temperatura constante; e o processo de conservação pelo frio não pode ser interrompido (OETTERER et al., 2006).

O uso do frio associado a outras técnicas de conservação, é largamente utilizado por causa da manutenção da qualidade do produto a ser conservado. Trata-se de um processo caro pois o produto deve ser mantido a baixas temperaturas, desde a sua produção até o consumo, para isso requerendo instalações especiais constituindo a chamada "cadeia do frio" (GAVA, 2009).

Conforme a temperatura utilizada, a conservação do alimento pelo frio pode ser feita pelo resfriamento e pelo congelamento. A refrigeração é usada na conservação de alimentos por pequenos períodos de tempo, sendo aplicada para os intervalos de comercialização e estocagem doméstica, na qual utiliza-se temperaturas um pouco acima do ponto de congelamento (GAVA, 2009).

Cada alimento reage à sua maneira, sendo que alguns são adversamente afetados, como banana, abacate e tomate, os quais sofrem a chamada lesão pelo frio (*chilling injury*). Nesses, os padrões metabólicos são afetados, promovendo escurecimento da casca, redução do amadurecimento normal ou estímulo da atividade imprópria de certas enzimas (POTTER, 1986).

No congelamento as temperaturas são mais baixas do que na refrigeração. Quanto menor a temperatura de armazenamento, mais lenta será as atividades enzimáticas até um determinado ponto onde ocorrerá uma paralisação total (SILVA, 2000).

Há uma variedade de métodos para congelamento disponíveis no mercado, e a escolha de um deles depende das variantes: custo, composição do alimento, tempo de preservação e finalidade do processo. Os métodos comumente usados utilizam os princípios físicos de transmissão de calor por condução (quando se resfria um alimento sólido ou pastoso) e por convecção (congelamento de alimentos líquidos) (OETTERER et al., 2006).

O tempo de congelamento depende da geometria do produto, da sua condutividade térmica, temperatura do meio de congelação, embalagem e de outros aspectos. O congelamento de frutas exige que essas estejam maduras, uma vez que nesse estágio, apresentam sabor e odor característicos, além de textura macia. As hortaliças são colhidas no estágio de crescimento ou no início do amadurecimento (OETTERER et al., 2006).

2.2 O resfriamento

No processamento pós-colheita de alimentos vegetais, o resfriamento rápido geralmente é necessário para prolongar a sua vida útil e reduzir as perdas (ERDOGDU et al., 2014). Nesse sentido, as técnicas de resfriamento foram amplamente estudadas por vários pesquisadores (WIJEWARDANE e GULERIA, 2011; BASEDIYA et al., 2011; SAMIRA et al., 2011; RAVAL et al., 2011). De acordo com Brosnan e Sun (2001) é necessário que o produto seja resfriado logo após a colheita. O resfriamento consiste de uma operação unitária que tem por objetivo diminuir as taxas de variações biológicas e microbiológicas, prolongando a vida de prateleira de alimentos frescos e processados, causando mudanças mínimas nas características sensoriais e nas propriedades nutricionais dos alimentos (FELLOWS, 2006).

A principal preocupação do ponto de vista microbiológico com alimentos resfriados está relacionada a quantidade de patógenos que podem crescer durante longas armazenagens refrigeradas abaixo de 5 °C ou como resultado de qualquer aumento na temperatura, causando o envenenamento do alimento. Portanto, é essencial que as boas práticas de fabricação sejam utilizadas durante a produção de alimentos resfriados (FELLOWS, 2006).

Alguns aspectos determinam a vida de prateleira de alimentos processados, como por exemplo: o tipo de alimento; o grau de destruição microbiana ou inativação enzimática obtido pelo processamento; o controle da higiene durante o processamento e embalagem; as propriedades de barreira da embalagem; e as temperaturas durante o processamento, distribuição e armazenagem (FELLOWS, 2006).

O fator ambiental mais importante para a determinação da vida pós-colheita de um produto é a temperatura. Para cada 10 °C diminuídos, a velocidade de respiração reduz de 2 a 3 vezes (ORDÓÑEZ, 2005). As temperaturas baixas produzem grande efeito para o aumento da vida útil de vários produtos (FENNEMA et al., 2010).

Janick (1986) definiu o pré-resfriamento ou resfriamento rápido como sendo a remoção do calor do campo de produtos recém-colhidos, a fim de retardar o metabolismo e reduzir a deterioração prévia antes do transporte ou armazenagem. Essa técnica diminui de imediato a transpiração do produto colhido, resultando na manutenção da qualidade do produto a ser comercializado (BROSNAN e SUN, 2001).

Teruel (2000) afirmou que o método de resfriamento deve ser escolhido levando-se em conta a perecibilidade, instalações e equipamentos disponíveis, adequada compatibilidade com o método usado e embalagem, temperatura do produto após a colheita, entre outros.

Alguns fatores devem ser considerados no armazenamento por refrigeração, para a adequada conservação dos alimentos, tais como: temperatura do armazenamento, umidade relativa, circulação do ar e a atmosfera do armazenamento (GAVA, 2009).

2.2.1 Métodos de resfriamento

A escolha do método de resfriamento deve ser feita levando-se em consideração vários fatores, tais como: velocidade do resfriamento, requisitos do produto, custo, portabilidade, etc. Portanto, com o objetivo de identificar os riscos potenciais associados a cada técnica e a necessidade de se selecionar o procedimento mais adequado para cada produto, é importante conhecer o princípio de cada método (CENCI, 2006; FENNEMA et al., 2010).

2.2.1.1 Resfriamento por ar

São sistemas que utilizam o ar como meio refrigerante, sendo assim mais baratos, devido ao ar ser gratuito e de fácil movimentação. Entretanto, devido à baixa capacidade térmica e a condutividade do ar, o resfriamento pode ser mais demorado. São conhecidos dois tipos de resfriamento por ar: as câmaras frias e o resfriamento com ar forçado (FENNEMA et al., 2010).

A câmara fria envolve a colocação do produto dentro de uma câmara refrigerada fazendo com que ele seja resfriado pelo movimento passivo do ar frio por dentro de si mesmo. Esse método utiliza menos capacidade de refrigeração, pois a remoção de calor ocorre em maiores períodos de tempo. O produto também pode ser estocado neste local. Essa é a técnica de resfriamento mais lenta (FENNEMA et al., 2010). Esse método pode ser eficiente no resfriamento de produtos tais como: maçã, frutos cítricos e peras (CHITARRA e CHITARRA, 2005).

O resfriamento por ar forçado envolve movimentação ativa de ar frio sobre o produto por meio do uso de um gradiente de pressão para forçar o ar pelos interstícios do produto. Esse é um método mais apropriado para diferentes produtos, sendo mais rápido que a câmara fria, o produto pode ser entregue mais rápido, ocupando menos área, no entanto, essa técnica requer maior capacidade de refrigeração para que se lide com o pico de remoção de calor (FENNEMA et al., 2010). Esse método é aplicado para frutas e hortaliças em geral, sobretudo para morangos, uvas, tomates, melões, pepinos, pimentões e couve-flor (CHITARRA e CHITARRA, 2005).

2.2.1.2 Hidroresfriamento

O hidroresfriamento tem-se mostrado eficiente no aumento do tempo de vida de prateleira de muitas frutas e hortaliças, tais como: pêssego, cereja, melão, milho verde, ervilhas, lichia, feijão verde, aspargo, rabanete, alface e salsa (BECKER e FRICKE, 2002).

Por ter uma elevada capacidade térmica, a água é um meio eficiente para o resfriamento de produtos. Pode-se prevenir a perda d'água durante o resfriamento. Entretanto, os produtos e seus recipientes devem tolerar água livre e qualquer produto químico (por exemplo, sanitizantes) da água.

Os hidroresfriadores geralmente resfriam o produto por banho em água fria ou por imersão dele em água fria. Em alguns locais, o bom resfriamento da água pode ser usado para resfriamento inicial do produto. Os hidroresfriadores não costumam funcionar bem em produtos que flutuam ou tem grandes espaços intercelulares que promovem a captura da solução durante o resfriamento (FENNEMA et al., 2010).

Sendo a água um bom vetor para organismos patogênicos, deve-se fazer manutenção de uma boa sanitização dela. O sistema de recirculação da água deve ser tratado com cloro ou outro sanitizante e a água deve ser trocada regularmente para diminuir seus níveis patogênicos (FENNEMA et al., 2010).

2.2.1.3 Resfriamento por gelo

O gelo é um dos métodos mais eficientes do resfriamento devido ao seu elevado calor de fusão que absorve 80 cal/g de calor quando derrete. Torna-se difícil obter-se o contato entre o gelo e o produto, o que resulta em um resfriamento assimétrico.

Existem técnicas que aumentam o contato do produto com o gelo que eleva a velocidade do resfriamento (por exemplo, o uso de pequenas peças de gelo, alternando camadas de gelo e produto, gelo líquido, entre outros). Como no hidroresfriamento, é necessário boa sanitização da água. Outros problemas incluem a necessidade de transportar massa adicional (gelo), insuficiência (questão sanitária) de liberação de água conforme o gelo derrete dos recipientes e a necessidade de renovação periódica de gelo nos recipientes (FENNEMA et al., 2010).

Chitarra e Chitarra (2005) afirmaram que o processo de pré-resfriamento com gelo é eficiente em produtos que não se danificam pelo contato direto com o gelo como brócolis, couve, espinafre, rabanete, cebolinha, couve-de-bruxelas, melão e cenoura.

2.2.1.4 Resfriamento a vácuo

O resfriamento a vácuo é o único meio que não usa recirculação do meio de resfriamento (água ou ar) para refrigerar o produto. No resfriamento a vácuo o produto é colocado em câmaras grandes, herméticas, sendo aplicado vácuo ao conteúdo. A cerca de 5 mm de mercúrio, a água entra em ebulição a aproximadamente 0 °C e conforme ela evapora, o calor latente de vaporização da água remove em torno de 580 cal/g do produto (FENNEMA et al., 2010).

De acordo com Chitarra e Chitarra (2005), esse método sob pressão reduzida é utilizado comercialmente em alface, aspargo, brócolis, couve-flor, repolho, aipo e milho doce.

2.3 Descrição da cinética de resfriamento

2.3.1 Condução de calor: Equação de difusão

A Equação de difusão (2.1) é obtida a partir da equação geral de transporte (equação da conservação). A depender do problema, pode ser denominada de Lei de Fick (difusão mássica) ou Lei de Fourier (difusão de calor). Pode ser usada para descrever vários processos difusivos, a exemplo, resfriamento ou aquecimento, alguns tipos de congelamento, absorção de água por produtos e secagem.

$$\frac{\partial(\lambda\Phi)}{\partial t} = \nabla \left(\Gamma^{\Phi} \nabla \Phi\right) + S.$$
(2.1)

Na Equação (2.1) Φ é a variável dependente de interesse, em que $\lambda e \Gamma^{\Phi}$ são coeficientes de transporte e *S* é o termo fonte. Impondo-se $\lambda = \rho c_p (\rho \, \epsilon \, a \, \text{densidade e} \, c_p \, \epsilon \, o \, \text{calor específico}),$ $\Gamma^{\Phi} = k \, (\text{condutividade térmica}), \, \Phi = T \, (\text{temperatura}), \, a \, \text{Equação} \, (2.1) \, \text{torna-se a equação de condução de calor:}$

$$\frac{\partial(\rho c_p T)}{\partial t} = \nabla (k \nabla T) + S.$$
(2.2)

A solução da equação de difusão necessita basicamente das informações sobre as condições iniciais e de equilíbrio, e também da escolha das condições de contorno mais adequadas, além da definição da geometria. As condições de contorno são enunciados matemáticos que especificam a variável dependente ou sua derivada, nos limites ou fronteiras

do domínio do problema. De forma fundamental, a análise de qualquer situação física dispõe de três maneiras para resolver o problema relacionado à situação estudada: soluções analíticas, soluções numéricas e experimentação em laboratório (MALISKA, 2004; FARIAS, 2011).

2.3.1.1 Condições de contorno

Para determinar a distribuição de temperaturas em um meio, é necessário resolver a forma apropriada da equação do calor. No entanto, tal solução depende das condições físicas existentes nas fronteiras ou contorno do meio, e se a situação variar com o tempo, a solução também depende das condições existentes no meio em algum instante inicial.

Os três tipos de condições de contorno, frequentemente encontrados na transferência de calor são:

- Condição de contorno de Dirichlet ou condição de contorno do primeiro tipo: corresponde à situação na qual o valor da grandeza genérica Φ é conhecido na superfície do sólido. Nesse caso tem-se o valor de Φ prescrito, em que a grandeza assume instantaneamente o seu valor de equilíbrio Φ_{eq} na superfície do corpo.
- Condição de contorno de Neumann ou condição de contorno de segundo tipo: corresponde à existência de um fluxo térmico conhecido na superfície do produto. Esse fluxo térmico está relacionado ao gradiente de temperatura na superfície pela Lei de Fourier.
- A condição de contorno de terceiro tipo corresponde à existência, na superfície, de um fluxo por convecção sendo obtida a partir de um balanço de energia e/ou massa na superfície.

2.3.1.2 Condições iniciais e de equilíbrio

As condições iniciais definem o valor da variável de interesse em cada ponto do domínio em t = 0; e são fatores determinantes para se obter uma solução correta da equação de difusão. Normalmente, em processos como resfriamento, o produto é colocado em repouso por um determinado período para entrar em equilíbrio com o meio, antes de ser submetido ao processamento. Sendo assim, o produto é resfriado a partir de uma temperatura inicial, comum a todos os pontos, que normalmente é a temperatura ambiente, até a temperatura de equilíbrio, cujo valor depende do produto.

Para o acompanhamento do processo bem como sua descrição, deve-se assegurar que, no início, todos os pontos devem ter a grandeza de interesse com valor conhecido. Para garantir que o produto entre em equilíbrio térmico, na temperatura desejada para cada produto, deve-se monitorar a grandeza de interesse, através de um termopar, posicionado no centro do produto, ou seja, naquele ponto que atinge a temperatura desejada por último, garantindo que os demais pontos possam atingir tal temperatura. No caso do resfriamento, o tempo mínimo do processo transiente é estabelecido de forma a garantir que o ponto mais quente possa entrar em equilíbrio térmico com todos os outros pontos do produto.

2.3.2 Solução da equação de difusão: métodos analíticos

O método analítico é um dos métodos teóricos que tem por objetivo resolver as equações diferenciais que descrevem o modelo matemático. A aplicação desse método para solucionar a equação de difusão, possibilita conhecer a variável de interesse em qualquer ponto do domínio, em qualquer instante de tempo. Entretanto, seu uso implica em estabelecer hipóteses simplificadoras, por exemplo: volume e difusividade constantes, geometrias simples, distribuição de umidade inicial uniforme, meio homogêneo e isotrópico, dentre outras.

Obviamente, as soluções analíticas não devem ser descartadas, e uma das suas importantes aplicações é, exatamente, para validar casos limites de modelos numéricos e auxiliar no desenvolvimento de método numéricos mais robustos. Uma vantagem significativa é a obtenção da solução em forma fechada, em que é possível calcular os valores das variáveis dependentes para um número infinito de pontos, requerendo para isso, baixíssimos tempos de computação.

Segundo Maliska (2004), se um método analítico for suficiente para resolver o problema de interesse, dentro dos níveis de precisão e exigências necessários, ele deve ser preferido, pois uma regra básica a ser sempre observada em engenharia é o uso da ferramenta adequada ao tamanho do problema que se quer resolver.

Na literatura são encontrados vários livros-texto propondo soluções analíticas para a equação de difusão, usando, principalmente, o método de separação de variáveis (LUIKOV, 1968; CRANK, 1992; FIOREZE, 2004). Ainda é possível encontrar trabalhos de pesquisa

propondo soluções analíticas da equação de difusão para geometrias mais complexas, usando o método de Galerkin (FARIAS, 2002; LIMA et al., 2004; HACIHAFIZOGLU et al., 2008; SILVA et al., 2009).

2.3.3 Solução da equação de difusão: métodos numéricos

Os métodos numéricos praticamente não apresentam restrições, podendo resolver problemas complexos com condições de contorno gerais, definidos em geometrias também complexas e apresentando resultados com uma rapidez muito grande. O aumento da capacidade de processamento e armazenamento dos computadores, permitiu aos pesquisadores, com maior frequência, a utilização das técnicas numéricas na solução de problemas complexos nas mais diversas áreas de interesse (FARIAS, 2011; SILVA, L., 2012).

Na solução numérica um domínio contínuo é substituído por um domínio discreto, e a equação diferencial parcial é substituída por equações algébricas, uma para cada volume de controle (MALISKA, 2004; FARIAS, 2011).

Existem diversos métodos para solucionar a equação de difusão. Esses tem por objetivo trazer um método de aproximar as equações diferenciais em um sistema de equações algébricas com o intuito de que as variáveis do problema sejam obtidas em localizações discretas no espaço e no tempo.

Dentre os métodos mais utilizados na solução numérica de equações diferenciais, citamse:

- Método dos Elementos Finitos (MEF): baseia-se numa "integral" da equação e fazse a aproximação da solução por uma função definida num subdomínio resultante da discretização do domínio. As equações utilizadas no Método dos Elementos Finitos são multiplicadas por uma função peso antes de serem integradas sobre todo o domínio, permitindo lidar com geometrias arbitrárias. As malhas são facilmente refinadas em regiões de interesse, tornando relativamente fácil a análise matemática.
- Método das Diferenças Finitas (MDF): possui implementação computacional simples, sendo resolvida na forma diferencial com a aproximação numérica dos operadores. Pode ser aplicado a qualquer tipo de malha, entretanto, esse método tem sido aplicado a malhas estruturadas no qual se torna muito simples e eficaz. As

desvantagens desse método é o fato da conservação não ser inerente ao mesmo, com algumas exceções. Outra desvantagem refere-se às geometrias simples quando se tem problemas complexos.

Método dos Volumes Finitos (MVF): método mais utilizado na discretização de equações diferenciais parciais, pelo fato de não apresentar problemas de instabilidade ou convergência, garantindo que em cada volume discretizado, a propriedade em questão obedeça à lei da conservação, dando uma característica conservativa. Como se trabalha com volumes de controle, há conservação no nível de volumes finitos. Esse método é largamente utilizado na resolução de problemas envolvendo transferência de calor e/ou massa, e em mecânica de fluídos.

2.4 Determinação de propriedades termofísicas

2.4.1 Densidade do produto

Conforme observado na Equação (2.2), a difusão de calor depende da densidade do produto (ρ), do seu calor específico (c_p) e da condutividade térmica (k).

A densidade de um produto é igual a sua massa dividida por seu volume, e sua unidade é kg m⁻³ (IBARZ e BARBOSA-CÁNOVAS, 1999; FELLOWS, 2006).

A densidade dos produtos não é constante e altera-se com a temperatura (temperaturas mais elevadas reduzem a densidade dos materiais) e com a pressão. Isso é particularmente importante para fluídos (principalmente gases), nos quais diferença na densidade causam correntes de convecção (FELLOWS, 2006).

A densidade de líquidos é uma medida direta da relação massa/volume sob uma temperatura determinada, porém para sólidos particulados e pós existem duas formas de densidade: a densidade das partículas individuais e a densidade do conjunto do material, que também inclui os espaços de ar entre as partículas. Essa última medida é denominada densidade aparente sendo a massa de sólidos pelo volume bruto. A densidade aparente do material depende da densidade do sólido e da geometria, do tamanho e das propriedades superficiais das partículas individuais (FELLOWS, 2006).

2.4.2 Calor específico

O calor específico de um material pode ser definido como a quantidade de energia térmica (J) necessária para elevar a sua temperatura em 1 °C por unidade de massa. Quanto menor o calor específico de uma substância, mais facilmente essa pode sofrer variações em sua temperatura. É uma propriedade que depende da substância e não da quantidade total de massa (INCROPERA et al., 2013).

Muitos trabalhos na literatura propõem a determinação do calor específico de sólido sem o uso do calorímetro, como em Mattos e Gaspar (2003), Sias e Ribeiro-Teixeira (2006), Silva et al. (2003) e Corrallo et al. (2018). Uma das justificativas para esse não uso diz respeito a percepção da imensa dificuldade em se determinar a temperatura de equilíbrio entre o sólido e o líquido contidos no calorímetro (MATTOS e GASPAR, 2003). Portanto, o uso de outros experimentos se torna interessante uma vez que essa temperatura de equilíbrio pode ser determinada por modelagem e ajuste de curvas (CORRALLO et al., 2018).

Silva et al. (2003) mencionaram duas técnicas para medir o calor específico de produtos agrícolas. A primeira utiliza um calorímetro (considerado como um recipiente de paredes quase adiabáticas) contendo água numa temperatura conhecida, nesse sistema é introduzido numa dada temperatura, um corpo feito da substância cujo calor específico se deseja medir. Após a medição da temperatura de equilíbrio do sistema, um balanço nas transferências de calor possibilita determinar o calor específico da substância do corpo imerso. Esse método descrito em praticamente todos os livros de termodinâmica básica, obtém o calor específico utilizandose a equação que dá o balanço de calor: "o calor absorvido é igual ao calor cedido". Em alguns desses livros, é observado que parte do calor disponível é transferido para o meio ambiente, acarretando erros experimentais. Mas, uma vez que se conhece uma estimativa razoável do calor específico, mesmo com os erros, o experimento poderia ser refeito estabelecendo-se a condição de que o sistema água/calorímetro tenham uma temperatura previamente determinada, abaixo da temperatura ambiente, de forma a compensar perdas da parte final do processo.

A segunda técnica mencionada por Silva et al. (2003) não usa calorímetro, e leva em consideração o fato de que o sistema perde calor continuamente para o meio ambiente. Para usar essa técnica é necessário conhecer como o sistema perde calor para o meio ambiente, antes e após a imersão do corpo investigado, o que é possível através da "lei de resfriamento (ou esfriamento) de Newton". A ideia consiste basicamente em usar um recipiente com água numa dada temperatura e, em seguida, colocar o corpo na água com sua temperatura previamente

medida. Posteriormente, a temperatura do sistema deve ser medida em intervalos de tempo regulares. A forma experimental de se obter o calor específico pela lei de resfriamento abordada em Silva et al. (2003) é feita pela medição da temperatura do sistema imediatamente antes da imersão do corpo, e também a temperatura do sistema logo após a migração interna de calor devido a imersão. Essa forma parte do pressuposto que o arranjo experimental seja tal que as migrações internas de calor devido à imersão possam ser consideradas suficientemente rápidas, de tal forma a se identificar uma "temperatura final de equilíbrio". Identificada essa temperatura, a equação de balanço de calor pode ser utilizada para a determinação do calor específico.

2.4.3 Difusividade térmica e coeficiente de transferência convectiva

A difusividade térmica (α) é importante na determinação da evolução de sistemas que sofrem processos de aquecimento ou de resfriamento. Ela mede a capacidade do material de conduzir energia térmica em relação à sua capacidade de armazená-la.

Essa propriedade permite predizer a velocidade da penetração de calor no interior do alimento, sendo assim de fundamental importância para o projeto de equipamentos e para o cálculo do processamento térmico. Além disso, a previsão de alterações nutricionais e microbianas que ocorrem nos alimentos durante o processamento térmico requer o conhecimento da difusividade térmica dos alimentos (MURAMATSU et al., 2017). Materiais com elevados α responderão rapidamente a mudanças nas condições térmicas a eles impostas, enquanto materiais com reduzidos α responderão mais lentamente, levando mais tempo para atingir uma nova condição de equilíbrio (INCROPERA et al., 2013).

Os métodos de medição da difusividade térmica são classificados em medição direta e indireta. A difusividade térmica pode ser obtida a partir dos valores experimentalmente determinados de condutividade térmica, calor específico e densidade, na medição indireta. Essa medida indireta requer muito tempo e experimentação (MURAMATSU et al., 2017).

A difusividade térmica está relacionada com: a condutividade térmica (k), calor específico (c_p) e densidade (ρ) pela Equação (2.3).

$$\alpha = \frac{k}{\rho c_p} \tag{2.3}$$

27

Segundo Carbonera et al. (2003), a determinação experimental da difusividade térmica (α) de produtos agrícolas tem recebido especial atenção de pesquisadores da área de alimentos desde o trabalho de Dickerson (1965), o qual propôs um dispositivo para a determinação da condutividade térmica de alimentos a partir de dados da evolução temporal de temperaturas medidas no interior da amostra.

Alguns métodos de medição direta precisam de dispositivos caros e/ou especiais. Além disso, é frequentemente necessário fazer os procedimentos de cálculo complicados para determinar a difusividade térmica sob métodos de medição direta. Diante disso, Muramatsu et al. (2017) desenvolveram um novo método, mais simples, barato e razoavelmente rápido, que não necessita de equipamentos especiais. Essa nova técnica de determinação não-isotérmica e não-linear da difusividade térmica foi utilizado para medir a difusividade térmica de alimentos de baixo teor de umidade.

O coeficiente de transferência de calor (h_H) é outro parâmetro importante e depende das características do produto alimentício (forma e dimensões), mudanças na temperatura e rugosidade da superfície e características do escoamento (velocidade e turbulência) em torno do próprio produto (ERDOGDU et al., 1998).

O coeficiente de transferência de calor convectivo (*h*) é a taxa de transferência de calor para cada grau de diferença de temperatura através da interface sólido-fluido por unidade de área da superfície do material sólido. Essa propriedade está relacionada com o coeficiente de transferência de calor (*h_H*), calor específico (c_p) e densidade (ρ) pela Equação (2.4):

$$h = \frac{h_H}{\rho c_p} \tag{2.4}$$

Teruel (2000), em suas pesquisas sobre o coeficiente de transferência convectiva, concluiu que, em geral, durante o resfriamento de produtos agrícolas, o coeficiente de transferência convectiva é bem maior quando comparado com a condutividade térmica, o que implica dizer que a temperatura na superfície de um produto muda mais rapidamente que a temperatura no interior do corpo. Sendo assim, gera-se um gradiente de temperatura, cumprindo assim, a Lei de Fourier.

2.4.4 Condutividade térmica

De acordo com Incropera et al. (2013), a condutividade térmica define a quantidade de calor que é transmitida por unidade de tempo entre duas superfícies através de uma unidade de área, devido a um gradiente de temperatura. Sendo classificada como uma propriedade de transporte e fornece uma indicação da taxa na qual a energia é transferida pelo processo de difusão. Essa propriedade depende da estrutura física da matéria, atômica e molecular, que está relacionada ao estado da matéria. Este parâmetro diminui com o decréscimo do conteúdo de água (RAHMAN et al., 1997; MAROULIS et al., 2002).

A Equação (2.5) define a condutividade térmica associada à condução de calor na direção *x*, e sua unidade é (W m⁻¹ K⁻¹). Porém, para um material isotrópico a condutividade térmica é independente da direção de transferência, $k_x = k_y = k_z \equiv k$.

$$k_x = \frac{q_x''}{\partial \Gamma / \partial x} \quad , \tag{2.5}$$

em que:

 k_x é a condutividade térmica associada à condução na direção x;

 q_x'' é o fluxo de calor na direção x;

T é a temperatura.

Da Equação (2.5) tem-se que, para um dado gradiente de temperatura, o fluxo térmico por condução aumenta com o aumento da condutividade térmica.

A condutividade térmica é considerada uma das mais importantes propriedades térmicas de alimentos, sendo utilizada na análise de processos que envolvem transferência de calor, como secagem e o resfriamento (RAHMAN, 1997).

2.4.5 Aquisição de dados

Os dados necessários para a determinação dos parâmetros termofísicos podem ser coletados de forma manual, pela leitura direta e registro manuscrito obtidos através da observação experimental, ou automática, usando equipamentos eletrônicos, tais como *tablets*, *smartphones*, *notebooks*, etc. Em Martín-Ramos et al. (2017), para a determinação do calor

específico a partir do estudo da Lei de Resfriamento de Newton, foi utilizada uma abordagem em que um instrumento analógico é rapidamente transformado em um dispositivo digital, pelo qual se analisa o movimento do mercúrio com um rastreador de vídeo. Assim, usando-se material de laboratório muito simples e os *smartphones* ou *tablets*, há a possibilidade de se observar o comportamento de decaimento da temperatura de um líquido posto para esfriar em temperatura ambiente. Para o experimento foi utilizado um aquecedor de água, um becker, um termômetro e um *smartphone*, dispostos conforme a Figura 2.1, usando suportes e braçadeiras de laboratório.

Figura 2.1- Configuração experimental com uso de *smartphone*. Fonte: Martín-Ramos et al. (2017).

Dois aplicativos gratuitos foram instalados: um para permitir a gravação de vídeos com lapso de tempo e simplificar as configurações e controles manuais da câmera e outro para rastrear a posição do mercúrio no termômetro. Para isso, foi necessário a configuração de um sistema de eixos e uma escala de comprimento, para que, posteriormente, o usuário iniciasse o rastreamento da posição do mercúrio através da tela, selecionando quadro a quadro para geração de gráfico de posição versus tempo. Após o processamento de todos os quadros, o aplicativo mostrou vários gráficos e permitiu a exportação de dados para arquivo csv.

Corrallo et al. (2018) utilizaram a plataforma Arduino para obtenção do calor específico a partir da automação experimental. A mesma opera com uma camada simples de *software* implementado numa placa microcontroladora, com inúmeras bibliotecas disponíveis na internet que permitem conectar sensores e periféricos ao Arduino. Essa plataforma, por se tratar de uma interface entre o microcomputador e os sensores de coleta de dados ou elementos como LED, LDR (*Light Dependent Resistor*), resistores entre outros, requer conhecimento básico de eletrônica.

Dessa forma, propuseram um esquema de montagem utilizando um becker como suporte para o líquido e o sólido (no caso foi utilizado um bloco cilíndrico de alumínio), balança, aquecedor e o sensor de temperatura (LM35) conectado ao Arduino. Na Figura 2.2, temos o esquema de montagem do sistema de automatização de coleta dos dados em que há a presença do Arduino conectado, via *protoboard*, ao sensor de temperatura LM35 e ao módulo WiFi ESP8266.

Figura 2.2 - Esquema de sistema de automatização via plataforma Arduino. Fonte: Corrallo et al. (2018).

Durante a realização dos experimentos, a água foi até 60 °C, aproximadamente. Com o sensor de temperatura LM35 imerso em água e devidamente impermeabilizado, inseriram o bloco de alumínio, e continuaram a leitura da temperatura durante alguns minutos, de acordo com a sugestão de Mattos e Gaspar (2003). Após a coleta dos dados realizada pelo processo de automatização, essas informações foram salvos em um arquivo de texto simples em ASCII, com duas colunas separadas por tabulação.

2.5 Produtos agrícolas utilizados nesta pesquisa

Nesta pesquisa foram estudados aspectos de resfriamento relativos aos seguintes produtos agrícolas: banana madura com casca, cenoura, macaxeira e pepino. A seguir, tais produtos serão apresentados junto com seus aspectos principais.

2.5.1 Aspectos gerais sobre a cenoura

A *Daucus carota* L tem sua origem um pouco indefinida, sendo provável que tenha surgido no oeste da Ásia, e cultivada em regiões do Afeganistão até a Índia por volta de 900 anos d.C. No final da era medieval, a cenoura se espalhou por toda Europa com referências a espécies de cores vermelha escura e amarelo quase laranja. No século XIV, a mesma também chega na Holanda, com a variedade amarela com mais popularidade. Só no século XVI, surgiria o cultivo da cenoura moderna de cor laranja (VERGAUWEN e SMET, 2016).

A cenoura tem grande importância nutricional, sendo uma fonte de origem vegetal rica em carotenoides pró-vitamínicos A, como o α e o β -caroteno, que são convertidos em moléculas de vitamina A no organismo humano. Esses carotenoides estão associados à pigmentação laranja da raiz. Nessa hortaliça ainda está presente altos teores de potássio, magnésio, cobre, cálcio, fósforo e vitaminas do complexo B. Ainda se destaca por ser uma grande fonte de fibra dietética e de antioxidantes (PASSOS et al., 2017). Na Tabela 2.1 têm-se os dados relativos aos valores de vitaminas, água, proteínas, gorduras, carboidratos e minerais em 100 g de cenoura crua.

Nutriente	Composição em 100g de cenoura
Calorias	34 kcal
Umidade	90%
Carboidratos	7,7 g
Proteínas	1,3 g
Gorduras totais	0,2 g
Fibra alimentar	3,2 g
Cálcio	23 mg
Sódio	3 mg
Potássio	315 mg
Fósforo	27 mg
Magnésio	11 mg
Vitamina C	5,1 mg

Tabela 2.1 - Composição centesimal da parte comestível da cenoura crua.

Fonte: TACO (2011).

A cenoura é conhecida por sua relevância socioeconômica, pela extensão de área plantada, por sua grande produção e consumo mundial. É considerada a principal hortaliça da família apiáceas cultivada no mundo. Num ranking internacional, o país líder em produção de cenoura é a China, produzindo em 2016 mais de 15 milhões de toneladas, ficando assim, responsável por cerca de 31% da produção mundial. Em segundo lugar, a Rússia com cerca de 2 milhões de toneladas e, na terceira posição, os Estados Unidos, com 1,5 milhões de toneladas. Em 2015, o Brasil ocupa o quinto lugar com uma produção anual de aproximadamente 760 mil toneladas em uma área de 24 mil hectares. No país, a cenoura é responsável por um volume importante da produção hortícola, com uma área média de 30 mil hectares e uma produtividade de 30 t/ha em 2016 (FUCHS e DOSSA, 2017).

A cenoura é morfologicamente constituída de caule, colo, ombro, lenticelas e ápice, contendo em seu interior o córtex e o coração, como mostra a Figura 2.3.

Figura 2.3 - Morfologia da cenoura. Fonte: Araújo (2010).

No Brasil, ocupa a quinta posição dentre as mais cultivadas, numa área que abrange cerca de 28 mil hectares/ano nas diferentes regiões, com grande emprego na indústria de alimentos podendo ser processada para conserva enlatada, em mistura com outras hortaliças ou na forma desidratada (GUIMARÃES et al., 2016).

2.5.2 Aspectos gerais sobre a macaxeira

A *Manihot esculenta* Crantz é comumente classificada em mandioca brava e mandioca mansa, isso em função da quantidade de ácido cianídrico (HCN) presente em ambas, em que a mandioca brava possui alto teor de HCN, enquanto a mandioca mansa, também conhecida como macaxeira ou aipim, contêm teores inferiores, mais precisamente abaixo do limite de segurança,

sendo de 100 mg kg⁻¹ de polpa nas raízes frescas, o que a torna propícia para o consumo (COUTO, 2013). A denominação macaxeira é o termo predominantemente utilizado na região Nordeste, especificamente no estado da Paraíba.

A cultura da macaxeira é bastante difundida pelo território brasileiro, de modo que se estende desde a região norte até o sul do país, tanto em áreas mais a leste, percorrendo faixas litorâneas, quanto em regiões mais ocidentais (ALBUQUERQUE et al., 2012).

As raízes de macaxeira são utilizadas, principalmente, para o consumo humano, alimentação animal e extração de amido. As plantas da macaxeira tem grande capacidade de adaptação à ambientes com estresses bióticos ou abióticos, como por exemplo, solos com escassez de água onde outras culturas não seriam viáveis (VEIGA et al., 2016).

No Nordeste, uma das causas para ampla abrangência da cultura desse tubérculo, é a viabilidade para a produção em áreas com diferentes índices pluviométricos, pois tanto em locais de clima semi-árido, onde as precipitações anuais não ultrapassam 800 mm, quanto em lugares de clima tropical sub-úmido com chuvas alcançando entre 800 e 1500 mm ao ano, é possível cultivá-lo (SANTOS et al., 2009).

A parte aérea da planta consiste em ramos grossos e finos, pecíolos e folhas, e a parte subterrânea é constituída por raízes e cepas, como ilustrado na Figura 2.4. As plantas são reproduzidas assexuadamente a partir do corte de suas cepas em seções de aproximadamente 200 mm de comprimento (VEIGA et al., 2016).

Figura 2.4 - Planta de mandioca.

Fonte: Veiga et al. (2016).

O processo de colheita consiste, geralmente, em poda das ramas, remoção da planta do solo e extração das raízes. A operação através de implementos mecanizados só é possível para as duas primeiras operações, enquanto a operação de separação de cepas e raízes é realizada de forma manual, pois não há equipamentos mecânicos eficientes para realizar tal operação (VEIGA et al., 2016).

A mandioca é a quinta cultura básica mais importante do mundo, com uma produção de cerca de 285 milhões de toneladas/ano de raízes não processadas. No cenário mundial, o Brasil é o segundo maior produtor da cultura da macaxeira, com 10% da produção mundial, atrás apenas da Nigéria e, juntamente com a Indonésia e Tailândia, formam os quatro maiores produtores mundiais. No Brasil, predomina a cultura da mandioca por pequenos agricultores em que a produção é tradicionalmente voltada para a alimentação humana, tanto na forma *in natura*, amido e seus derivados, quanto como farinha (VEIGA et al., 2016).

Na Tabela 2.2 são destacados alguns valores nutricionais da macaxeira, para 100 g de parte comestível por amostra.

Composição em 100 g de macaxeira
151 kcal
61,8%
36,2 g
1,1 g
0,3 g
1,9 g
15 mg
2 mg
208 mg
29 mg
44 mg
16,5 mg

Tabela 2.2 - Composição centesimal da parte comestível da macaxeira crua.

Fonte: TACO (2011).

2.5.3 Aspectos gerais sobre a banana

As bananas são originárias das terras tropicais do sudeste Asiático e Melanésia e foram domesticadas há cerca de 7000 anos atrás, por seleção de esterilidade e partenocarpia. Os cultivares de banana comestíveis originaram-se, especialmente, de duas espécies selvagens: *Musa acuminata* e *Musa balbisiana* (ISRAELI e LAHAV, 2017).

É a fruta mais consumida em todo o mundo, com uma produção anual em 2013 de 145 milhões de toneladas, com um consumo de 85% na África, Ásia e América Latina, e exportada principalmente pela América Latina, África e Filipinas (ISRAELI e LAHAV, 2017).

O Brasil, por possuir condições favoráveis, tem o cultivo da banana na maioria dos seus estados e, no cenário mundial, é produtor de aproximadamente sete milhões de toneladas, em uma área de 489.937 ha (ANDRADE et al., 2017).

A banana é um fruto simples, carnoso, do tipo baga alongada e trilocular conforme visto na Figura 2.5 (PBMH e PIF, 2006).

Figura 2.5 - Morfologia da banana. Fonte: PBMH e PIF (2006). As bananas são frutos climatéricos, ou seja, atingem o grau de maturação mesmo quando colhidas verdes. Essas possuem alta perda quantitativa e qualitativa em virtude de sua perecibilidade, em que cerca de 40 a 50% das bananas colhidas chegam de fato a mesa dos consumidores (ANDRADE et al., 2017). Somado a isso, há a falta de conhecimento de alguns produtores acerca de medidas adequadas para evitar danos físicos e consequentes perdas (SILVA, C., 2012). Com isso, evidencia-se que em muitas situações é desejável e necessário prolongar a vida dessas frutas, mantendo suas características o máximo possível.

É um fruto bastante nutritivo, como visto na Tabela 2.3, rico em carboidratos e sais minerais, como sódio, cálcio, magnésio, fósforo e potássio, médio teor em açúcares e vitaminas A e C; e também as vitaminas B1, B2 e B6, contendo pouca gordura e proteína (SILVA, C., 2012).

Nutriente	Composição em 100 g de banana nanica
Calorias	92 kcal
Umidade	73,8%
Carboidratos	23,8 g
Proteínas	1,4 g
Gorduras totais	0,1 g
Fibra alimentar	1,9 g
Cálcio	3 mg
Sódio	Traços
Potássio	376 mg
Fósforo	27 mg
Magnésio	28 mg
Vitamina C	5,9 mg

Tabela 2.3 - Composição centesimal da parte comestível da banana (Musa cavendish).

Fonte: TACO (2011).

2.5.4 Aspectos gerais sobre o pepino

O pepino (*Cucumis sativus* L.), pertencente à família *Cucurbitaceae*, é um fruto que possui 97% de água em sua composição, de baixo valor calórico e reduzido teor de açúcar, mas

tem um alto valor nutricional e assumindo um papel de destaque nas dietas (HENRIQUES, 2012). Originou-se inicialmente na Índia, sendo posteriormente levado para a China, Filipinas e as Ilhas Formosas (CARVALHO et al., 2014). É comumente cultivado em regiões de clima tropical, onde se prevalece em áreas de temperatura mais elevadas, podendo ser cultivado em regiões mais amenas em que não ocorram frio e geada (PBMH, 2003).

O pepino é comumente utilizado no preparo de saladas, sobretudo quando frescos, mas também é muito difundido na sua forma em conserva, como, em conservas ácidas (picles). Outro fim alimentício para o pepino se dá pela extração de óleo contido em suas sementes (HENRIQUES, 2012). Além disso, é bastante conhecido pelo seu importante papel na área de aplicações dermatológicas e de cosméticos, atuando como um agente amaciador e de limpeza de pele. Na forma de creme ou pomada, é conhecido por prover efeitos benéficos para o tratamento de doenças da pele, como no caso de irritações, acnes, assaduras, etc. Ainda no âmbito medicinal, o pepino pode ser empregado para combater cólicas intestinais e como agente diurético, auxiliando na eliminação de sódio do organismo e por conseguinte, atuando no controle da hipertensão arterial, insuficiência cardíaca e renal (HENRIQUES, 2012).

Após colhido a durabilidade do pepino pode chegar no máximo 7 dias em condições de prateleira. No entanto, se resfriado adequadamente, essa durabilidade pode atingir o dobro do tempo, ou seja, o fruto pode durar por cerca de 14 dias em ambiente refrigerado (CARVALHO et al., 2013). Por possuir uma porcentagem alta de água, cerca de 97%, o pepino é bastante susceptível a murchar devido à perda de água, bem como é propenso a danos causados pelo frio, sendo, portanto, recomendado que o seu resfriamento não ocorra com temperaturas inferiores a 7 °C. Temperaturas abaixo dessa acarretam em injúrias ao fruto, por isso, ao serem acondicionados em geladeira, os frutos devem ser colocados em sacolas plásticas perfuradas e postos na seção inferior do aparelho refrigerador (CARVALHO et al., 2013).

As variedades de pepino mais comumente encontradas são: aodai, com frutos verdeescuros e casca lisa; caipira, com frutos verde-claros, estrias brancas e casca lisa; e japonês, com frutos verde-escuros brilhantes, mais finos e alongados que os anteriores, com reentrâncias na casca. Para o tipo picles, a indústria utiliza variedades próprias para conserva (CARVALHO et al., 2014).

Morfologicamente, o pepino é constituído pela base, ápice e epicarpo ou casca, contendo em seu interior o septo, as sementes, a placenta, o endocarpo e o mesocarpo, como mostra a Figura 2.6.

Figura 2.6 - Morfologia do pepino. Fonte: PBMH (2003).

O pepino é um fruto de baixo valor calórico, porém, bastante nutritivo como visto na Tabela 2.4. É rico em betacaroteno, folacina, cálcio, magnésio, potássio, fósforo e selênio, com pequena quantidade de vitaminas A, C, B1, B2, e sais minerais (CARVALHO et al., 2013).

Nutriente	Composição em 100g de pepino	
Calorias	10 kcal	
Umidade	96,8%	
Carboidratos	2 g	
Proteínas	0,9 g	
Gorduras totais	Traços	
Fibra alimentar	1,1 g	
Cálcio	10 mg	
Sódio	Traços	
Potássio	154 mg	
Fósforo	12 mg	
Magnésio	9 mg	
Vitamina C	5 mg	

Tabela 2.4 - Composição centesimal da parte comestível do pepino (Cucumis sativus L).

Fonte: TACO (2011).

2.6 O estado da arte

Na literatura, a análise das propriedades físicas relacionados à transferência de calor são estudadas em diferentes métodos de resfriamento. Em Teruel et al. (2004) foi utilizado o hidroresfriamento para analisar o tempo de resfriamento de frutas e hortaliças de diferentes dimensões, estabelecendo a relação entre tempo e volume dos produtos, com o objetivo de fornecer índices práticos a serem usados para estimar o tempo de resfriamento de produtos com características semelhantes. Foi observado que esse tempo varia proporcionalmente com o volume dos frutos.

Leite (2005) estudou a cinética de resfriamento da manga da variedade Tommy Atkins, sendo realizada em câmara de refrigeração convencional. Utilizou-se a solução analítica da Equação de Fourier em coordenadas esféricas. Foram determinadas medidas físicas e parâmetros de transferência de calor, nas quais se concluiu que a condutividade e a difusividade térmica não apresentam relação direta com a temperatura e o fator de atraso aumenta a redução de temperatura na faixa estudada.

Pessôa (2010) objetivou simular o resfriamento de sólidos com forma arbitrária, com particular referência à banana prata, laranja valência, limão Taiti e morango camarosa. Para descrever o processo, apresentou a solução analítica da equação de condução de calor usando o método integral baseado em Galerkin, considerando condições de contorno de Dirichlet e propriedades termofísicas constantes. Foram mostrados e analisados os resultados das cinéticas de resfriamento e distribuição de temperatura no interior das frutas. Verificou-se que o morango resfriou mais rapidamente que as demais frutas, apresentando uma distribuição de temperatura que variou fortemente nas direções longitudinal e radial.

Silva et al. (2012a) propuseram um modelo unidimensional no qual as propriedades térmicas são determinadas pelo ajuste apenas do primeiro termo da série que representa a solução analítica da equação de difusão unidimensional. Devido a essa proposta, os primeiros pontos experimentais foram desconsiderados para realizar o ajuste de curva. Em seguida, os autores propuseram um algoritmo para determinar o número de remoção ideal dos pontos experimentais, a fim de manter o máximo de informação estatística possível. Esse modelo foi aplicado ao resfriamento do pepino sob convecção natural e, no presente trabalho, para fins de comparação, foi utilizado o mesmo conjunto de dados experimental.

Alguns trabalhos na literatura fornecem valores dos parâmetros termofísicos para as bananas com casca, por exemplo, Erdogdu et al. (2014). Esses autores determinaram o coeficiente de transferência de calor através de correlações empíricas, com base no número de Nusselt. Os autores também mediram a temperatura do ponto central de uma banana com casca ao longo do tempo, durante o seu resfriamento. Assim, para determinar a difusividade térmica, os autores propuseram um algoritmo que usasse apenas o primeiro termo da solução da equação de condução de calor para um cilindro infinito e dados experimentais. O algoritmo envolveu a aplicação do logaritmo à temperatura adimensional ao longo do tempo, identificando a porção linear. No entanto, Erdogdu et al. (2014) observaram que esse procedimento envolve uma falha devido a não saber exatamente onde, em um gráfico, o número de Fourier se torna mais de 0,2 (porção linear).

Korese et al. (2016) investigaram como as diferentes velocidades e temperaturas do ar afetam a taxa e o tempo de resfriamento e aquecimento das raízes de batata doce. Foi utilizado um modelo de simulação de processos transientes para estimar o tempo de resfriamento e aquecimento no centro das raízes de batata doce. O modelo foi preparado para receber parâmetros termofísicos de raízes de batata doce, bem como propriedades de ar circundantes, sendo comparado com dados experimentais de temperatura transiente, concluindo-se que, o tempo de resfriamento e aquecimento é significativamente afetado pela alta velocidade do ar e tamanho das raízes de batata doce.

Queiroz (2016) fez um estudo sobre o resfriamento de leito de frutas não climatéricas com ar forçado, com particular referência a laranja valência. Foi feita uma modelagem matemática para descrever as trocas de massa e energia entre o ar e o produto durante o processo, com uma solução numérica das equações governantes usando o método dos volumes finitos e função de interpolação *upwind*. Nesse, foi observado uma forte influência do coeficiente de transferência convectiva na cinética de resfriamento do leito de laranja, sendo que, quanto maior o valor deste parâmetro, maiores os gradientes de temperatura do leito e mais rápido o resfriamento.

Cuesta e Alvarez (2017) propuseram equações aproximadas como modelo para prever tempos de resfriamento de frutos com caroço na interface polpa-caroço e para medir a difusividade térmica da polpa e o coeficiente de transferência de calor externo. O modelo baseiou-se em uma solução em séries de Fourier para a condução de calor em esferas com núcleo interno esférico concêntrico e isolante, como modelo de condução de calor em frutos com caroço. Neste trabalho, um modelo bidimensional é proposto para descrever a condução de calor dentro de um cilindro finito, representando uma banana madura com casca, pepino, cortes de cenoura e de macaxeira, durante seus resfriamentos. O modelo usa os primeiros 200 termos da série que representa a solução analítica da equação de difusão, com condição de contorno do terceiro tipo. Além disso, um *software* otimizador, o LS *Optimizer*, baseado no algoritmo de Levenberg-Marquardt, foi utilizado para determinar, a partir da solução analítica e dados experimentais, tanto a difusividade térmica como o coeficiente de transferência convectiva de calor. Esse modelo, além de fornecer os valores médios dessas propriedades térmicas, também é capaz de fornecer as suas incertezas e a matriz de covariância referente a esses parâmetros durante seu resfriamento.

CAPÍTULO 3 - MATERIAIS E MÉTODOS

A metodologia proposta nesta pesquisa para descrição do resfriamento de produtos cilíndricos é subdivida em três partes: experimental, solução da equação de difusão e técnica de otimização para a determinação de parâmetros termofísicos.

3.1 Metodologia experimental

3.1.1 Determinação da densidade: método padrão

As densidades dos produtos foram determinadas pelo método padrão, pela razão entre a massa das peças cilíndricas e seus volumes. Para medição da massa das peças de cada produto em formato cilíndrico, foi utilizado uma balança de precisão da marca RADWAG (Figura 3.1), com resolução de 0,001 g e capacidade máxima de 510 g.

Figura 3.1 - Balança digital de precisão.

A expressão utilizada para obtenção dos volumes das peças em formato cilíndrico (Figura 3.2), é dado como segue:

$$V = \pi \left(\frac{D}{2}\right)^2 L \; ,$$

em que:

V é o volume da peça,

D é o diâmetro da peça,

L é o comprimento da peça.

Figura 3.2 - Esboço das dimensões do cilindro.

Para a medição dos diâmetros e dos comprimentos das peças, foi utilizado um paquímetro (Figura 3.3), marca INSIZE, com faixa de medição de 0 a 150 mm e precisão de 0,01 mm.

Figura 3.3 - Paquímetro INSIZE.

3.1.2 Determinação do calor específico: recipiente diatérmico

Para determinação do calor específico da cenoura foi seguida, com algumas adaptações necessárias, a metodologia proposta por Silva et al. (2003). Essa metodologia dispensa o uso

de calorímetro e sugere um experimento de baixo custo assegurando-se a necessária condição de bons resultados.

Para os demais produtos, ou seja, para a banana, a macaxeira e o pepino, o calor específico foi estimado a partir da equação de Riedel (valores estimados sem as incertezas), dada por:

$$c_n = 1.381 + 2.930X, \tag{3.1}$$

em que X é o teor de umidade, em base úmida (decimal) e c_{p} é obtido em J Kg⁻¹ K⁻¹.

3.1.2.1 Planejamento da experiência

Os materiais necessários para o procedimento da determinação do calor específico foram: água; cenoura picada; uma lata de refrigerante em alumínio com capacidade para conter 350 ml de volume sem o tampo e com alças em fios de alumínio; um suporte metálico; um funil adaptado; uma balança de precisão da marca RADWAG (Figura 3.1); um termômetro digital TH-095 Instrutherm; um termopar tipo K; um cabo USB-01 com porta serial RS-232; um notebook Core i5 com máquina Virtual com Windows XP.

A Figura 3.4(a-c) mostra o termômetro digital (TH-095), termopares tipo K e o cabo USB-01 utilizado para conectar o termômetro digital com a porta serial RS-232, enquanto a Figura 3.5(a-c) mostra a lata de refrigerante, o funil adaptado para o rápido despejo da cenoura, e a cenoura picada.

Figura 3.4 - (a) Termômetro registrador digital (TH-095), (b) Termopares modelo S02k, (c) Cabo USB/RS-232 com CD-Rom com o driver USB-01.

Figura 3.5 - (a) Lata de refrigerante em alumínio, (b) Funil adaptado com aberturas amplas, (c) Cenoura picada.

Conjuntamente, fez-se necessário o uso do LAB Fit *Curve Fitting Software*, V 7.2.50 (SILVA e SILVA, 2009). Esse *software* informa não só os valores médios e os desvios dos parâmetros, mas também as covariâncias entre tais parâmetros, dadas através de uma matriz M, chamada de matriz de covariâncias. O conhecimento dessa matriz possibilita fazer extrapolações obtendo não só o valor médio da função ajustada, mas também o desvio padrão desse valor médio, o que envolve propagação de erros.

Seguindo as recomendações propostas por Silva et al. (2003), o experimento foi realizado num horário em que a temperatura ambiente não variasse significativamente ao longo da coleta de dados. Inicialmente, a cenoura, em temperatura ambiente, foi picada em pedaços pequenos (Figura 3.5(c)), tal cuidado em relação ao tamanho dos fragmentos do legume não pode ser dispensado, visto que o experimento requer o equilíbrio térmico da mistura instantaneamente, portanto, ao se picar a cenoura em pedacinhos bem pequenos, aumentou-se a área de contato e garantiu-se que o equilíbrio térmico fosse alcançado quase que instantaneamente. Em seguida, a lata com a água aquecida a uma determinada temperatura foi pesada, do valor obtido foi subtraído o valor da massa da lata aferido anteriormente, a partir disso obteve-se a massa da água. Devido à necessidade de que o sistema interagisse apenas com o ar, a lata com a água foi colocada suspensa no suporte metálico, no qual o termopar já estava fixado e posicionado de modo a situar-se próximo do centro do recipiente e por conseguinte sem encostar nas superfícies internas da lata, bem como imerso no conteúdo. Nesse momento a captação e registro dos dados referente à perda de calor para o ambiente iniciou-se e sendo possível pela utilização do termômetro digital TH-095 da Instrutherm, o qual captou as informações a cada dois segundos por meio de aquisição automática de dados. O TH-095 estava conectado a um notebook Core i5 via USB-01/RS-232 que, com um *software* instalado numa máquina Virtual com Windows XP, realizou o acompanhamento e armazenamento, em tempo real, dos dados de temperatura (Figura 3.6).

Figura 3.6 - Lata suspensa no suporte metálico com termopar em seu interior para a captação e registro dos dados pelo termômetro digital TH-095 Instrutherm conectado a um notebook Core i5 via USB-01/RS-232.

Decorridos cerca de 15 min em que o sistema (água e lata) perdia calor para o ambiente, com o emprego do funil adaptado que proporcionou o rápido despejo de toda a porção de cenoura picada, foram inseridos na lata, em poucos segundos, e imediatamente imersos no líquido a uma determinada temperatura, uma porção de cenoura cortada em pequenas frações, e a partir desse momento passou-se 20 min e a coleta de dados foi cessada.

3.1.2.2 A Lei de Resfriamento de Newton

Essa técnica investiga como o corpo e o sistema perdem calor para o meio ambiente antes e após a imersão do corpo em questão, aplicando a Lei de Resfriamento de Newton na análise dos dados experimentais obtidos.

Portanto, seja um sistema em que se possa admitir a mesma temperatura T em todos os seus pontos e, supondo que esse sistema esteja em um ambiente cuja temperatura seja T_a (com $T_a < T$), haverá um fluxo de calor do mais quente para o mais frio. A partir de observações experimentais, é possível admitir que a corrente térmica estabelecida, isto é, a quantidade de calor transferida do mais quente para o mais frio por unidade de tempo, dQ/dt, é proporcional à diferença de temperaturas ($T - T_a$) entre o sistema e o ambiente, como visto na Equação (3.2) a seguir.

$$\frac{dQ}{dt} = hA(T - T_a), \tag{3.2}$$

em que h é uma constante característica de cada sistema e A é a área de contato entre o sistema e o meio.

Na situação em que se considera o sistema como um "reservatório finito" de calor e o ambiente um "reservatório infinito", a temperatura T do sistema varia com o tempo mas a temperatura T_a do ambiente não. Portanto, a transferência de uma quantidade infinitesimal de calor dQ do sistema ao ambiente é igual a - CdT, em que C é a capacidade calorífica de tal sistema e dT é a sua variação infinitesimal de temperatura devido à transferência. Assim, a Equação (3.2) pode ser reescrita da seguinte forma:

$$\frac{dT}{(T-T_a)} = -(1/\tau)dt, \qquad (3.3)$$

em que $\tau = C/(hA)$. Na Equação (3.3) tem-se uma equação diferencial em que a variável do primeiro membro é a temperatura *T* do sistema enquanto que a do segundo membro é o tempo *t* de resfriamento. Admitindo que no instante $t = t_0$ a temperatura do sistema seja T_0 , e integrando o primeiro membro da Equação (3.3), obtém-se a Equação (3.4):

$$T = T_a + (T_0 - T_a)e^{-(t - t_0)/\tau}.$$
(3.4)

A Equação (3.4) descreve a forma como uma reservatório finito de calor (sistema) é resfriado perdendo calor para um reservatório infinito (meio ambiente), ao longo do tempo (SILVA et al., 2003).

De acordo com Silva et al. (2003), o experimento deve ser planejado de forma que as migrações internas de calor, após a imersão da substância estudada, ocorram praticamente instantaneamente, por isso a cenoura foi cortada em fragmentos muito pequenos, pois esse procedimento provê uma grande área de contato entre as substâncias envolvidas, favorecendo a efetivação desse requisito. Caso haja demora para que o equilíbrio se estabeleça, a troca de calor que ocorre continuamente entre o sistema e o meio ambiente, implica na inaplicabilidade dessa técnica. Assim, durante o curto período de introdução dos pequenos pedaços de cenoura, estimado em poucos segundos, pode-se considerar que não houve perda significativa de calor do sistema para o meio ambiente.

A partir dessa conjuntura, a fórmula usada foi $Q_c = Q_r$, ou seja, o calor cedido pelo objeto quente será igual ao calor recebido pelo meio. Então, tem-se uma massa M_{al} da lata de alumínio e uma massa M_{dg} de água em uma temperatura T_q . Uma massa M_{ce} de cenoura (cortada em pequenos pedaços) em temperatura ambiente T_a é introduzida no sistema e, após as trocas internas de calor, a temperatura do sistema passa a ser T_f . Simbolizando o calor específico da água por c_{ag} e o calor específico da cenoura por c_{ce} , tem-se a Equação (3.5) a seguir.

$$M_{ag}c_{ag}(T_q - T_f) + M_{al}c_{al}(T_q - T_f) = M_{ce}c_{ce}(T_f - T_a).$$
(3.5)

Reescrevendo a Equação (3.5), tem-se a expressão para o calor específico da cenoura como mostra a Equação (3.6) a seguir:

$$c_{ce} = \frac{(M_{al}c_{al} + M_{\dot{a}g}c_{\dot{a}g})(T_q - T_f)}{M_{ce}(T_f - T_a)}.$$
(3.6)

3.1.2.3 Tratamento dos dados e medidas realizadas

O arquivo com os dados experimentais do resfriamento do sistema antes da imersão da cenoura e depois da imersão, coletados a cada 2 s (aquisição automática de dados), foi diminuído para que o número de dados fosse para cada 40 s. Para se ter uma ideia concreta sobre as duas fases distintas basta observar o esboço do gráfico $T \times t$ com todos os pontos experimentais em um único sistema de eixos, conforme mostra a Figura 3.7.

Figura 3.7 - Pontos experimentais do resfriamento do sistema antes da imersão dos pedaços de cenoura (Região I) e depois da imersão (Região II).

Nas Tabela B5 e B6 do Apêndice encontram-se os dados experimentais coletados a cada 2 s e a cada 40 s, respectivamente.

As medidas das massas foram realizadas considerando a incerteza de 2% associada ao valor final. A temperatura ambiente T_a foi medida no início e no fim do experimento, não havendo diferença detectável nos valores obtidos.

Com o uso do LAB Fit, visto na Figura 3.8, é possível visualizar além do gráfico com as regiões de resfriamento já mencionadas acima na Figura (3.7), também analisar os dados e identificar o último ponto registrado imediatamente antes da inserção dos pedaços de cenoura, que corresponde ao último ponto da Região I, e o primeiro ponto da Região II.

a LAB	
File Curve fit Treatment of data Tools Help	
TREATMENT OF EXPERIMENTAL DATA	
Current data fit: GråficoTemperaturaReduzicoCP.txt Correlation coefficient: Rxy = .949017E+00 (Unweighted)	
File	🗐 dadosr.dad - Bloco de Notas
	Arquivo Editar Formatar Exibir Ajuda
0.623E+02	0.1400000E+04 0.5200000E+02 < x(36) , y(36)
	0.1440000E+04 0.5170000E+02 < x(37) , y(37)
	0.1480000E+04 0.5150000E+02 < x(38) , y(38)
	0.1520000E+04 0.5130000E+02 < x(39) , y(39)
Tead	0.1560000E+04 0.5100000E+02 < x(40) , y(40)
Degião II	0.1600000E+04 0.5080000E+02 < x(41) , y(41)
Reglao II	0.1640000E+04 0.5060000E+02 < x(42) , y(42)
.000E+00 0.240E	+ 0.1720000E+04 0.3830000E+02 < x(43) , y(43)
LAB FIL	0.1760000E+04 0.3810000E+02 < x(44) , y(44)
	0.1800000E+04 0.3790000E+02 < x(45) , y(45)
	0.1840000E+04 0.3770000E+02 < x(46) , y(46)
	0.1880000E+04 0.3750000E+02 < x(47) , y(47)

Figura 3.8 – Pontos experimentais imediatamente antes e após a imersão dos pedaços de cenoura.

Para identificar o tempo em que se deu o equilíbrio térmico foi necessário usar o arquivo contendo os pontos experimentais coletados a cada 2 s (Tabela B5 do Apêndice), no qual foi encontrado o momento exato do início da inserção da cenoura. A esse tempo devem ser somados os poucos segundos que foram necessários para inserção de toda porção de cenoura picada, sendo portanto, essa soma, o valor do tempo em que o equilíbrio térmico ocorreu.

Entretanto, devido às oscilações do termômetro digital por conta da mudança brusca de temperatura, não é possível obter de forma direta a temperatura no tempo de equilíbrio térmico. Contudo, é possível ajustar uma função aos pontos experimentais das duas regiões e fazer uma pequena extrapolação para proceder com a determinação de tal temperatura, essa extrapolação

é necessária pois o tempo do equilíbrio térmico está fora da curva observada na Figura 3.7 e 3.8. Para isso foi necessário dividir o arquivo com os dados experimentais da Figura 3.7 em dois, a partir dos quais foram gerados dois gráficos. Assim, as temperaturas T_q (antes da imersão dos pedaços de cenoura) e T_f (imediatamente após à imersão dos pedaços de cenoura) foram obtidos por ajustes através das duas curvas experimentais de resfriamento.

3.1.2.3.1 Determinação das temperaturas $T_q e T_f$

A determinação da temperatura do sistema imediatamente antes da imersão dos pedaços de cenoura e logo após as migrações internas de calor foi feita ajustando a própria função que descreve a lei de resfriamento (não linear nos parâmetros) aos dados experimentais. Esse procedimento possibilitou fazer uma comparação dos parâmetros obtidos experimentalmente com aqueles previstos pela teoria, o que constituiu um dos indicadores da consistência do experimento realizado.

A determinação da temperatura T_q do sistema (imediatamente antes da imersão) e T_f (imediatamente após a imersão) foi feita reescrevendo a Equação (3.4) na forma da Equação (3.7) a seguir.

$$T = A + Be^{C(t-t_0)},$$
(3.7)

e ajustando essa função não-linear nos parâmetros aos dados dos arquivos contendo os pontos da Região I e II da Figura 3.7, observando-se que na Região I tem-se $t_0 = 0$. O software empregado foi o LAB Fit, pois tal software informa, além dos valores médios e os desvios dos parâmetros, as covariâncias entre tais parâmetros, que são dadas por uma matriz M, a qual é chamada de matriz de covariâncias, sendo essa relevante, porque torna viável realizar extrapolações e obter não apenas o valor médio da função ajustada, mas também o desvio padrão deste valor médio, o que envolve propagação de erros.

3.1.3 Determinação da difusividade térmica

Cenouras e macaxeiras inteiras sem danos físicos foram adquiridas no comércio local e transportadas para o Laboratório de Transferência de Calor e Massa da Unidade Acadêmica de Física da Universidade Federal de Campina Grande. As cenouras e as macaxeiras foram
selecionadas para apresentar um tamanho uniforme e, em seguida, lavadas em água corrente. Após a secagem, as cenouras e macaxeiras foram descascadas e posteriormente cortadas em formato cilíndrico. Os pontos experimentais para a cinética de resfriamento no centro da banana foram obtidos pela digitalização do gráfico disponível em Erdogdu et al. (2014), usando-se o *xyExtract Graph Digitizer* (SILVA e SILVA, 2011). Para o pepino, os pontos experimentais foram obtidos de dados da literatura disponível em Silva et al. (2012a).

Foi possível estimar, por meio da correlação de Riedel (DINCER, 1995), a difusividade térmica α dada por:

$$\alpha = 8.8 \times 10^{-8} + 6.0 \times 10^{-8} X , \qquad (3.8)$$

em que X é o teor de umidade, em base úmida (decimal) e α é obtido em m² s⁻¹.

3.1.3.1 Confecção das peças de cenoura e macaxeira em cilindros finitos

Para proceder o corte nas peças de cenoura e macaxeira e determinar a forma geométrica de um cilindro finito, bem como suas dimensões que são, para a cenoura: 40 mm de diâmetro e 40 mm de comprimento, e para a macaxeira: 50 mm de diâmetro e 50 mm de comprimento, utilizou-se moldes de aço (Figura 3.9(a)) com furos e comprimentos medindo as dimensões desejadas para as peças, nos quais, em uma de suas extremidades existe um bisel, conferindo-lhes poder de corte.

Figura 3.9 - Ferramentas utilizadas na confecção das peças cilíndricas: (a) Molde de aço para confecção do cilindro; (b) Guia metálico para inserção do termopar; (c) Tampa em nylon para demarcar furo central da peça; (d) Delimitador de profundidade em alumínio para inserção do guia metálico.

As peças foram inseridas no interior do furo dos moldes e após o emprego de força os excessos laterais foram clivados, determinando assim o formato da superfície lateral uniforme e com diâmetro definido (Figura 3.10). Em seguida, ainda com as peças no interior do molde metálico, utilizou-se uma faca de aço inoxidável e procedeu-se cortes tangenciais às extremidades do molde, de modo que as bases das peças também dispuseram de superfícies uniformes e o comprimento das mesmas foram determinados (Figura 3.10).

Figura 3.10 - Remoção dos excessos laterais e definição das bases do cilindro.

Devido à dificuldade para inserção do termopar no centro das peças, em consequência da rigidez dessa região, fez-se necessário perfurá-las previamente, utilizando-se de um guia metálico (Figura 3.9(b)), o qual foi confeccionado com medidas adequadas para que o termopar ao ser introduzido, atingisse o ponto desejado sem se desviar do eixo y e, ao mesmo tempo, garantindo que o mesmo ficasse ajustado ao centro da peça sem folgas. Tal guia metálico foi inserido com o auxílio de uma tampa confeccionada em nylon (Figura 3.9(c)), a qual encaixase no molde metálico, demarcando com seu furo central o centro das peças em uma de suas bases e, em razão de sua espessura, garantindo que o guia fosse introduzido perpendicularmente à superfície da base e, consequentemente, ao longo da trajetória do eixo y (Figura 3.11(a-b)).

Se fez necessário utilizar um delimitador de profundidade (Figura 3.9(d)), confeccionado a partir de tubo de alumínio para garantir a demarcação do ponto máximo de inserção do guia metálico e consequente sítio onde o termopar aloja-se, assegurando que o mesmo estivesse posicionado no ponto central entre as duas bases das peças.

Figura 3.11 - Utilização do guia para posterior inserção do termopar: (a) Visão superior das peças (molde de aço, guia metálico, tampa em nylon e delimitador de alumínio) encaixadas;
(b) Visão interna das peças (molde de aço, guia metálico, tampa em nylon e delimitador de profundidade) encaixadas.

3.1.3.2 Customização do frigobar

Houve a necessidade de customizar o frigobar (Figura 3.12(a-d)) devido às alterações de temperatura em seu interior que ocorria em consequência da abertura de sua porta ao manipular a inserção do conjunto de utensílios experimentais (termopares e peça). Para isso, as paredes internas do frigobar foram revestidas com placas de isopor observando o devido cuidado para que não atrapalhasse o normal fluxo de ar interno de funcionamento do equipamento, bem como foi confeccionada e afixada uma tampa de isopor rente à porta com apenas duas pequenas aberturas de acesso, uma para inserção e remoção de termopares e peças e outra para manipular o termostato que regula a temperatura de resfriamento.

Figura 3.12 - Frigobar customizado: (a) Paredes internas do frigobar revestidas com placas de isopor; (b) Tampa de isopor rente à porta com apenas duas pequenas aberturas de acesso; (c)
Acesso da tampa de isopor para inserção das peças cilíndricas; (d) Tampa de isopor rente à porta com suas aberturas de acesso fechadas.

Além disso, como pode ser visto na Figura 3.12(c), se fez necessário preencher o espaço interno do frigobar com recipientes plásticos contendo água, visto que o calor específico da água é maior que o do ar, além de que, estando o espaço interno ocupado e, em conjunto com a tampa afixada evita-se em maiores proporções a entrada de ar externo.

3.1.3.3 Procedimentos realizados para obtenção da cinética de resfriamento

Após as etapas anteriores, as peças foram levadas até a balança analítica onde se aferiu sua massa para posterior cálculo da sua densidade. Em seguida o termopar foi introduzido no centro geométrico de cada peça cilíndrica, como já mencionado anteriormente, inicialmente a temperatura ambiente (Figura 3.13). O termopar foi acoplado a um termômetro de dois canais que, por sua vez, foi conectado a um sistema de aquisição automática de dados, para coletar informações da temperatura do ponto central de cada peça a cada segundo do processo de resfriamento.

Figura 3.13 - Termopar acoplado a uma peça de cenoura e conectado ao termômetro.

As peças de cenoura e macaxeira com o termopar, em temperatura ambiente, foram acondicionadas suspensas em um frigobar, com a temperatura interna de 3,5 °C para cenoura e 2 °C para a macaxeira (Figura 3.14), e o resfriamento foi considerado encerrado quando o ponto central de cada peça atingiu a temperatura de equilíbrio. Para isso foi necessário um segundo termopar, o qual registrou a temperatura interna do frigobar. O processo de resfriamento ocorreu sob condições naturais de convecção do ar.

Figura 3.14 - Peça de macaxeira suspensa no interior do frigobar para resfriamento.

Para acompanhar a distribuição de calor, os dois termopares tipo K foram conectados a um termômetro digital TH-095 da Instrutherm que captou as informações por meio de aquisição automática de dados. O TH-095 foi conectado a um notebook Core i5 via USB-01/RS-232 que, através de um *software* instalado numa máquina Virtual com Windows XP, fez o monitoramento e o armazenamento, em tempo real, dos dados de temperatura. Os mesmos itens do termômetro digital utilizados para aquisição de dados no experimento do calor específico, foram utilizados nessa etapa (Figura 3.4(a-c))

Ao final, as peças foram cortadas ao meio e, com a utilização de um paquímetro, foi conferido o real posicionamento do termopar no ponto central com relação aos eixos axial e radial (Figura 3.15). A determinação da difusividade térmica α foi realizada usando o *software* LS *Optimizer* e dados experimentais da curva de resfriamento obtida experimentalmente.

Figura 3.15 – Peça de macaxeira cortada ao meio no sentido longitudinal: o corte possibilita aferir a real posição do termopar.

3.1.4 Coeficiente de transferência convectiva: cinética de resfriamento

A determinação do coeficiente de transferência convectiva de calor (*h*) foi feita por otimização através da mesma curva de resfriamento obtida experimentalmente no item anterior, e de forma simultânea com a determinação da difusividade térmica.

3.1.5 Condutividade térmica: determinação indireta

A condutividade térmica dos produtos foi determinada de forma indireta, uma vez que foram determinados a densidade (item 3.1.1), o calor específico (item 3.1.2) e a difusividade térmica (item 3.1.3).

3.1.6 Coeficiente de transferência de calor: determinação indireta

O coeficiente de transferência de calor (h_H) foi determinado de forma indireta, uma vez que foram determinados a densidade (item 3.1.1), o calor específico (item 3.1.2) e o coeficiente de transferência convectiva de calor (item 3.1.4).

3.2 A equação de difusão bidimensional para um cilindro finito

Para a geometria de um cilindro finito, a equação de difusão bidimensional aplicada à difusão de calor pode ser escrita, a partir da Equação (2.2) em coordenadas cilíndricas, da seguinte forma:

$$\frac{\partial \rho c_p T}{\partial t} = \frac{1}{r} \frac{\partial}{\partial r} \left(r k \frac{\partial T}{\partial r} \right) + \frac{\partial}{\partial y} \left(k \frac{\partial T}{\partial y} \right), \tag{3.9}$$

em que *T* é a temperatura; ρ é a densidade, c_p é o calor específico e *k* é a condutividade térmica. Na Equação (3.9), *r* é a posição radial definida em relação ao eixo central do cilindro finito e, juntamente com a posição axial *y* (direção do eixo central), define a localização de um ponto no interior do sólido a ser estudado. Se o produto ρc_p pode ser considerado constante, como no caso do resfriamento, a equação de difusão ainda pode ser escrita como:

$$\frac{\partial T}{\partial t} = \frac{1}{r} \frac{\partial}{\partial r} \left(r \alpha \frac{\partial T}{\partial r} \right) + \frac{\partial}{\partial y} \left(\alpha \frac{\partial T}{\partial y} \right), \tag{3.10}$$

em que α é a difusividade térmica ($\alpha = k/(\rho c_p)$).

3.2.1 A condição de contorno do terceiro tipo

A condição de contorno é expressa através da imposição de igualdade entre o fluxo interno (difusivo) na superfície do cilindro finito e o fluxo externo (convectivo) nas vizinhanças dessa superfície.

Considerando o fluxo de calor radial, a condição de contorno do terceiro tipo é expressa, para o cilindro como:

$$-k\frac{\partial T(r,y,t)}{\partial r}\Big|_{r=R} = h_H \left[T(r,y,t) \Big|_{r=R} - T_{eq} \right], \qquad (3.11a)$$

em que *R* é o raio do cilindro, h_H é o coeficiente de transferência de calor (W m⁻² K⁻¹), T_R é a temperatura (K) no limite localizado na posição $r = R e T_{eq}$ é a temperatura do ar de resfriamento (K). Se a Equação (3.11a) for dividida por ρc_p , uma nova equação pode ser escrita para a condição de contorno do terceiro tipo:

$$-\alpha \frac{\partial T(r, y, t)}{\partial r}\Big|_{r=R} = h\Big[T(r, y, t)\Big|_{r=R} - T_{eq}\Big], \qquad (3.11b)$$

em que $h = h_H / (\rho c_p)$ é o coeficiente de transferência de calor convectivo (m s⁻¹).

Da mesma forma para o fluxo axial, a condição de contorno do terceiro tipo para a parede infinita é dada por:

$$-k\frac{\partial T(r, y, t)}{\partial y}\Big|_{y=\pm C/2} = h_H \left[T(r, y, t) \Big|_{y=\pm C/2} - T_{eq} \right], \qquad (3.12a)$$

em que C é o comprimento do cilindro, $T(r, y, t)|_{y=\pm C/2}$ (K) é a temperatura nos limites circulares localizados nas posições y = ±C/2. A Equação (3.12a) dividida pelo fator ρc_p , é obtida:

$$-\alpha \frac{\partial T(r, y, t)}{\partial y}\Big|_{y=\pm C/2} = h\Big[T(r, y, t)\Big|_{y=\pm C/2} - T_{eq}\Big], \qquad (3.12b)$$

Impondo o mesmo *h* para todas as superfícies, tais equações são válidas para um cilindro homogêneo e isotrópico, de raio *R* e comprimento *C*, com temperatura inicial uniforme T_0 e temperatura de equilíbrio T_{eq} .

3.2.2 Solução analítica da equação de difusão: o problema direto

A solução T(r,y,t) da Equação (3.10), para as condições de contorno definidas pelas Equações (3.11b) e (3.12b), é obtida por separação de variáveis (LUIKOV, 1968; CRANK, 1992) resultando em:

$$T(r, y, t) = T_{eq} + \left(T_0 - T_{eq}\right) \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} A_{n,l} A_{m,2} J_0\left(\mu_{n,l} \frac{r}{R}\right) cos\left(\mu_{m,2} \frac{y}{C/2}\right) \times exp\left[-\left(\frac{\mu_{n,l}^2}{R^2} + \frac{\mu_{m,2}^2}{(C/2)^2}\right) \alpha t\right].$$
(3.13)

Nessa solução apresentada está implícita a ideia de que um cilindro finito pode ser obtido pela interseção de dois sólidos ainda mais simples: um cilindro infinito de raio R e uma parede infinita de espessura C, conforme a Figura 3.16.

Figura 3.16 - Interseção de um cilindro infinito e uma parede infinita.

Fonte: Silva, C. (2012).

Retornando à Equação (3.13), deve ser observado que T(r,y,t) é a temperatura numa posição (r,y) do cilindro num instante t, e α é a difusividade térmica. Ainda com relação à Equação (3.13), os coeficientes $A_{n,1}$ e $A_{m,2}$ são definidos como segue:

$$A_{n,I} = \frac{2Bi_I}{J_0(\mu_{n,I})(Bi_I^2 + \mu_{n,I}^2)},$$
(3.14)

e

$$A_{m,2} = \left(-1\right)^{m+1} \frac{2Bi_2 \left(Bi_2^2 + \mu_{m,2}^2\right)^{l/2}}{\mu_{m,2} \left(Bi_2^2 + Bi_2 + \mu_{m,2}^2\right)}.$$
(3.15)

Na Equação (3.14), Bi_1 é o número de Biot para a transferência de calor em um cilindro infinito, sendo dado por:

$$Bi_1 = \frac{hR}{D}.$$
(3.16)

Na Equação (3.15), Bi_2 é o número de Biot para transferência de calor referente à parede infinita, sendo dada pela expressão

$$Bi_2 = \frac{hC/2}{D} \tag{3.17}$$

Nas Equações (3.11b), (3.12b), (3.16) e (3.17), h é o coeficiente de transferência convectiva de calor e, na solução apresentada, foi imposto o mesmo valor de h para todas as superfícies do cilindro.

Nas Equações (3.13) e (3.14), $\mu_{n,I}$ são as raízes da equação característica para o cilindro infinito, e são calculadas através da seguinte equação transcendental:

$$\frac{J_{0}(\mu_{n,l})}{J_{l}(\mu_{n,l})} = \frac{\mu_{n,l}}{Bi_{l}} , \qquad (3.18)$$

sendo J_0 e J_1 as funções de Bessel de primeiro tipo de ordens 0 e 1, respectivamente.

Nas Equações (3.13) e (3.15), $\mu_{m,2}$ são as raízes da equação característica para a parede infinita, e são calculadas através da seguinte equação transcendental:

$$\cot \mu_{m,2} = \frac{\mu_{m,2}}{Bi_2} \quad . \tag{3.19}$$

Nessa solução, para valores especificados de $Bi_1 e Bi_2$, 200 raízes $\mu_{n,1} e \mu_{m,2}$ serão calculadas através do método da bisseção, apresentado a seguir. Portanto, para solução da Equação (3.13) foram utilizados 200 termos para cada somatório, o que foi possível a partir da utilização do método da bisseção para cálculo das raízes. O código A1, apresentado em apêndice, mostra como encontrar as raízes de uma equação usando o método da bisseção.

3.2.3 O método da bisseção

O método da bisseção, também chamado de truncamento binário, divisão do intervalo na metade ou método de Bolzano, é uma solução alternativa à solução analítica para o cálculo de raízes de funções. Esse método se torna viável quando o método analítico, para determinação de raízes, se torna difícil ou não pode ser aplicado, como no caso das Equações (3.18) e (3.19).

É um método de busca de raízes, do tipo incremental, que consiste em: dado um intervalo [a,b], se nele existir somente uma raiz da função, então o produto do valor da função, nos extremos do intervalo é um número negativo, ou seja, $f(a) \cdot f(b) < 0$. Verificado a existência de uma única raiz no intervalo, divide-se o intervalo ao meio, transformando-o em dois, cuja amplitude é a metade do primeiro. Se uma função muda de sinal em um intervalo, calcula-se o valor da função em seu ponto médio, c = (a + b) / 2. A posição da raiz é determinada como sendo o ponto médio do subintervalo no qual a mudança de sinal ocorre, ou seja, ou [a,c] se f(a)

f(c) < 0 ou [c,b] se f(c). f(b) < 0. Esse processo é repetido para obter estimativas refinadas e a raiz é obtida a partir de um critério de tolerância (CHAPRA e CANALE, 2008).

Na primeira iteração se reduz a amplitude do intervalo, onde se encontra a raiz, à metade do intervalo inicial. O processo deve ser repetido n vezes. E, após a n-ésima iteração, a amplitude do intervalo encontrado será 2^n vezes menor do que a amplitude do intervalo inicial. Ao final dessas iterações, os intervalos estarão tão pequenos, que o módulo da função nos extremos e no ponto médio será praticamente iguais entre si e muito próximo a zero. A próxima raiz será determinada deslocando-se o intervalo inicial de um valor próximo ao período da função, que, para grandes raízes, tende para π . O algoritmo utilizado consiste, basicamente, dos seguintes passos:

- Seja y = f(x) uma função contínua em um intervalo [a,b] que contém uma, e só uma, raiz, ξ, da equação f(x) = 0, esse método consiste em dividir o intervalo [a,b], de forma iterativa, ao meio;
- Verifica se a raiz está contida na primeira ou na segunda metade do intervalo inicial. O intervalo no qual se encontra a raiz da função é aquele cujo produto da função nos extremos for menor do que zero;
- Em seguida, o processo é repetido para aquela metade que contém a raiz de f(x) = 0, ou seja, aquela em que a função, y = f(x), tem valores numéricos com sinais opostos nos seus extremos;
- 4. Dada uma precisão ξ (tolerância), o processo iterativo é finalizado quando o erro na obtenção da raiz for menor do que um determinado valor, |f(x)|<ξ, isto é, quando se obtém um intervalo cujo tamanho é menor ou igual a ξ, então qualquer ponto nele contido pode ser tomado como uma estimativa para a raiz; ou quando for atingido um número máximo de iterações.</p>

Usando-se o método da bisseção, foi possível determinar as 200 primeiras raízes da Equação (3.18) e também da Equação (3.19). Essas raízes foram calculadas considerando uma tolerância de 10^{-10} e serão usadas para se obter a solução analítica da temperatura tanto no centro do cilindro finito T(0,0,t) quanto em outras posições T(r,y.t). A Figura 3.17 esboça o fluxograma do algoritmo aqui exposto:

3.2.4 Fluxograma da solução analítica da equação de difusão para cilindro finito

A Figura 3.18 mostra o fluxo da rotina da solução analítica para encontrar T(r,y,t) da Equação (3.13). Essa solução, apresentada em apêndice em código A2, foi aprimorada posteriormente para obtenção da cinética de resfriamento do ponto central das peças de cenoura e macaxeira, dando origem ao *solver*, desenvolvido em linguagem FORTRAN. Nessa solução, os parâmetro iniciais são fornecidos:

- A posição axial (y) e radial (x) de onde está sendo obtida a temperatura;
- A temperatura inicial T_0 da peça a ser resfriada;
- A temperatura de equilíbrio T_{eq} ;
- O raio do cilindro homogêneo e isotrópico *R*;
- O comprimento do cilindro homogêneo e isotrópico *L*;
- A difusividade térmica *α*;
- O coeficiente de transferência convectivo de calor *h*;
- Obtenção por meio de arquivo das raízes para cilindro infinito;
- Obtenção por meio de arquivo das raízes para parede infinita;
- O tempo para cálculo da temperatura.

Figura 3.18 - Fluxograma da solução analítica.

3.3 Validação do solver com a solução analítica

Para validar o código computacional proposto para a solução analítica, utilizou-se uma parede infinita hipotética, com as seguintes características: $\alpha = 1,4 \times 10^{-7} \text{ m}^2 \text{ s}^{-1}$, $h = 1,0 \times 10^{-5}$ m s⁻¹ e L = 0,10 m (espessura). A temperatura adimensional no centro da parede ($T^* = (T - T_{eq})$ / ($T_0 - T_{eq}$)) foi simulada ao longo do tempo através de uma solução numérica da equação de difusão unidimensional para parede infinita, Equação (3.20), usando o Método dos Volumes Finitos (MVF), com uma formulação totalmente implícita (PATANKAR, 1980).

$$\frac{\partial(\lambda\Phi)}{\partial t} = \frac{\partial}{\partial x} \left(\Gamma^{\phi} \frac{\partial\Phi}{\partial x} \right) + S .$$
(3.20)

Para comparar os resultados, realizou-se uma simulação com a solução analítica do modelo proposto para a temperatura adimensional no ponto central do seguinte cilindro finito: comprimento L = 0,10 m e raio R = 2,0 m. Devido aos valores de L e R, esperam-se resultados equivalentes para as duas simulações (parede infinita e cilindro finito), pois o $R >> 10 \times L/2$.

Ao se utilizar o conceito de volumes finitos considera-se que uma região contínua será aproximada por um domínio discreto e se utilizará um conjunto de equações algébricas definidas sob um número finito de subdomínios. Cada subdomínio é chamado de volume de controle e seus pontos nodais são chamados de centroides do volume de controle. No método dos volumes finitos, as equações governantes do fenômeno são discretizadas pela integração sob volumes elementares e no tempo. Donde se obtém um sistema de equações algébricas, resolvidas por técnicas específicas.

Portanto, usando o método dos volumes finitos com uma formulação totalmente implícita para integrar a Equação (3.20) no espaço (Δx) e no tempo (Δt), obtém-se o seguinte resultado para um volume de controle P, interno:

$$\left(\frac{\lambda_p \Phi_p - \lambda_p^0 \Phi_p^0}{\Delta t}\right) \Delta x = \Gamma_e^{\phi} \left. \frac{\partial \Phi}{\partial x} \right|_e - \Gamma_w^{\phi} \left. \frac{\partial \Phi}{\partial x} \right|_w + S(\Phi_p) \Delta x \,.$$
(3.21)

Na Figura 3.19 tem-se uma parede infinita, no qual é considerado o volume de controle interno de ponto nodal P e seus vizinhos, a leste e a oeste.

Figura 3.19 - Parede infinita: volume de controle interno.

Por meio de um inspeção da Figura 3.19 podem-se definir as derivadas da Equação (3.21) do seguinte modo:

$$\left. \frac{\partial \Phi}{\partial x} \right|_{e} = \frac{\Phi_{E} - \Phi_{P}}{\Delta x_{e}}, \tag{3.22}$$

e

$$\left. \frac{\partial \Phi}{\partial x} \right|_{w} = \frac{\Phi_{p} - \Phi_{w}}{\Delta x_{w}}.$$
(3.23)

Substituindo-se as Equações (3.22) e (3.23) na Equação (3.21), uma nova equação pode ser escrita:

$$\left(\lambda_{P}\frac{\Delta x}{\Delta t} + \frac{\Gamma_{e}^{\phi}}{\Delta x_{e}} + \frac{\Gamma_{w}^{\phi}}{\Delta x_{w}}\right) \Phi_{P} = \frac{\Gamma_{w}^{\phi}}{\Delta x_{w}} \Phi_{W} + \frac{\Gamma_{e}^{\phi}}{\Delta x_{e}} \Phi_{E} + \lambda_{P}^{0} \Phi_{P}^{0} \frac{\Delta x}{\Delta t} + S(\Phi_{P})\Delta x .$$
(3.24)

Organizando os termos de forma apropriada, é obtida a seguinte equação algébrica para o volume de controle interno:

$$A_p \Phi_p = A_w \Phi_W + A_e \Phi_E + B, \qquad (3.25)$$

em que:

$$A_{p} = \lambda_{p} \frac{\Delta x}{\Delta t} + \frac{\Gamma_{e}^{\phi}}{\Delta x_{e}} + \frac{\Gamma_{w}^{\phi}}{\Delta x_{w}}$$
(3.26)

$$A_w = \frac{\Gamma_w^{\phi}}{\Delta x_w} \tag{3.27}$$

66

$$A_e = \frac{\Gamma_e^{\phi}}{\Delta x_e} \tag{3.28}$$

$$B = \lambda_P^0 \Phi_P^0 \frac{\Delta x}{\Delta t} + S(\Phi_P) \Delta x .$$
(3.29)

Na fronteira oeste, o volume de controle está em contato com o meio externo e com o vizinho a leste, como pode ser visto na Figura 3.20.

Figura 3.20 - Parede infinita: volume de controle número 1.

Para o volume de controle 1, a equação de difusão é:

$$\left(\frac{\lambda_p \Phi_p - \lambda_p^0 \Phi_p^0}{\Delta t}\right) \Delta x = \Gamma_e^{\phi} \frac{\Phi_E - \Phi_p}{\Delta x_e} - \Gamma_w^{\phi} \frac{\Phi_p - \Phi_w}{\Delta x_w/2} + S(\Phi_p) \Delta x.$$
(3.30)

Uma vez que a condição de contorno estabelecida para a discretização é a de terceiro tipo, tem-se a imposição de igualdade entre o fluxo interno (difusivo) no contorno da parede infinita e o fluxo externo (convectivo) nas vizinhanças deste contorno. Desse modo, o fluxo difusivo à oeste é dado por:

$$\phi_w'' = -\Gamma_w^{\phi} \frac{\phi_P - \phi_w}{\Delta x_w/2} \,. \tag{3.31}$$

Por outro lado, o fluxo convectivo a oeste é dado por:

$$\phi_{w}^{"} = h_{w} \left(\Phi_{\infty,w} - \Phi_{w} \right). \tag{3.32}$$

Igualando a Equação (3.31) à Equação (3.32) e isolando Φ_w , tem-se:

$$\Phi_{w} = \frac{\frac{2\Gamma_{w}^{\Phi}}{\Delta x_{w}} \Phi_{p} + h_{w} \Phi_{\infty,w}}{\frac{2\Gamma_{w}^{\Phi}}{\Delta x_{w}} + h_{w}}.$$
(3.33)

Substituindo a Equação (3.33) na Equação (3.30), encontra-se:

$$\left(\frac{\lambda_{p}\Delta x}{\Delta t} + \frac{\Gamma_{e}^{\phi}}{\Delta x_{e}} + \frac{\Gamma_{w}^{\phi}}{\frac{\Gamma_{w}^{\phi}}{h_{w}} + \frac{\Delta x_{w}}{2}}\right) \Phi_{p} = \frac{\Gamma_{e}^{\phi}}{\Delta x_{e}} \Phi_{E} + \frac{\lambda_{p}^{0}\Phi_{p}^{0}\Delta x}{\Delta t} + \frac{\Gamma_{w}^{\phi}}{\frac{\Gamma_{w}^{\phi}}{h_{w}} + \frac{\Delta x_{w}}{2}} \Phi_{\infty,w} + S(\Phi_{p})$$

$$(3.34)$$

Então, organizando os termos, a Equação (3.34) pode ser escrita sob a forma:

$$A_p \Phi_p = A_e \Phi_E + B, \qquad (3.35)$$

em que:

$$A_{P} = \lambda_{P} \frac{\Delta x}{\Delta t} + \frac{\Gamma_{e}^{\phi}}{\Delta x_{e}} + \frac{\Gamma_{w}^{\phi}}{\frac{\Gamma_{w}^{\phi}}{h_{w}} + \frac{\Delta x_{w}}{2}}$$
(3.36)

$$A_e = \frac{\Gamma_e^{\phi}}{\Delta x_e} \tag{3.37}$$

$$B = \frac{\Gamma_w^{\Phi}}{\frac{\Gamma_w^{\Phi}}{h_w} + \frac{\Delta x_w}{2}} \Phi_{\infty,w} + \frac{\lambda_p^0 \Phi_p^0 \Delta x}{\Delta t} + S(\Phi_p) \Delta x.$$
(3.38)

Na fronteira leste, o volume de controle está em contato com o meio externo e com o vizinho a oeste, como pode ser visto na Figura 3.21.

Para o volume de controle N, a equação de difusão é:

$$\left(\frac{\lambda_p \Phi_p - \lambda_p^0 \Phi_p^0}{\Delta t}\right) \Delta x = \Gamma_e^{\Phi} \frac{\Phi_e - \Phi_p}{\Delta x_e/2} - \Gamma_w^{\Phi} \frac{\Phi_p - \Phi_w}{\Delta x_w} + S(\Phi_p) \Delta x.$$
(3.39)

Uma vez que a condição de contorno estabelecida para a discretização é a de terceiro tipo, tem-se a imposição de igualdade entre o fluxo interno (difusivo) no contorno da parede infinita e o fluxo externo (convectivo) nas vizinhanças deste contorno. Deste modo, o fluxo difusivo à leste é dado por:

$$\phi_e^{''} = -\Gamma_e^{\phi} \frac{\Phi_e - \Phi_P}{\Delta x_e/2} \,. \tag{3.40}$$

Por outro lado, o fluxo convectivo a leste é dado por:

$$\phi_e^{''} = h_e \left(\Phi_e - \Phi_{\infty, e} \right). \tag{3.41}$$

Igualando a Equação (3.40) à Equação (3.41) e isolando Φ_e , tem-se:

$$\Phi_e = \frac{\frac{2\Gamma_e^{\phi}}{\Delta x_e}}{\frac{2\Gamma_e^{\phi}}{\Delta x_e} + h_e} \Phi_{\infty,e}}.$$
(3.42)

Substituindo a Equação (3.42) na Equação (3.39), encontra-se:

$$\left(\frac{\lambda_{p}\Delta x}{\Delta t} + \frac{\Gamma_{w}^{\phi}}{\Delta x_{w}} + \frac{\Gamma_{e}^{\phi}}{\frac{\Gamma_{e}^{\phi}}{h_{e}} + \frac{\Delta x_{e}}{2}}\right) \Phi_{p} = \frac{\Gamma_{w}^{\phi}}{\Delta x_{w}} \Phi_{w} + \frac{\lambda_{p}^{0}\Phi_{p}^{0}\Delta x}{\Delta t} + \frac{\Gamma_{e}^{\phi}}{\frac{\Gamma_{e}^{\phi}}{h_{e}} + \frac{\Delta x_{e}}{2}} \Phi_{\infty,e} + S(\Phi_{p}).$$
(3.43)

Então, organizando os termos, a Equação (3.43) pode ser escrita sob a forma:

$$A_p \Phi_p = A_w \Phi_W + B, \qquad (3.44)$$

em que:

$$A_{P} = \lambda_{P} \frac{\Delta x}{\Delta t} + \frac{\Gamma_{w}^{\phi}}{\Delta x_{w}} + \frac{\Gamma_{e}^{\phi}}{\frac{\Gamma_{e}^{\phi}}{h_{e}} + \frac{\Delta x_{e}}{2}}$$
(3.45)

$$A_{w} = \frac{\Gamma_{w}^{\phi}}{\Delta x_{w}}$$
(3.46)

$$B = \frac{\Gamma_e^{\phi}}{\frac{\Gamma_e^{\phi}}{h} + \frac{\Delta x_e}{2}} \Phi_{\infty,e} + \frac{\lambda_p^0 \Phi_p^0 \Delta x}{\Delta t} + S(\Phi_p) \Delta x.$$
(3.47)

3.4 Modelo proposto

3.4.1 Problema direto: Solver

A Equação (3.13) pode ser utilizada para determinar T(r,y,t) para valores previamente definidos de *h* e α . Para tanto, os números de Biot devem ser calculados pelas Equações (3.16) e (3.17); e as raízes das equações características devem ser calculadas através das Equações (3.18) e (3.19). Neste trabalho, as primeiras 200 raízes da Equação (3.18) e também da Equação (3.19) foram calculadas pelo método da bisseção com uma tolerância de 10⁻¹⁰. Isso permitiu determinar os primeiros 200 coeficientes $A_{n, 1}$ e $A_{m,2}$ que são dados pelas Equações (3.14) e (3.15), respectivamente. Assim, para o problema direto, um *solver* que permite a simulação da cinética de resfriamento de um ponto previamente especificado dentro do cilindro finito foi criado em FORTRAN. O *software* desenvolvido foi criado no Compaq Visual Fortran Professional Studio, Edição V. 6.6.0, usando uma opção de linguagem de programação chamada QuickWin Application.

3.4.2 Problema inverso: determinação dos parâmetros

Para determinar os valores ótimos para $h e \alpha$ usando o *solver* desenvolvido e um conjunto de dados experimental, o processo de otimização foi realizado com o *software* LS *Optimizer*. O LS *Optimizer* é um *software* pronto para uso que determina parâmetros de uma equação diferencial ordinária ou parcial (e também funções) através de dados experimentais conhecidos, usando o algoritmo de Levenberg-Marquardt (LEVENBERG, 1944; MARQUARDT, 1963; SILVA et al., 2006). Como é fornecido um *solver* para equação diferencial parcial para a solução do problema direto, esse *software* de otimização executa o *solver* para obter as informações necessárias para a determinação dos parâmetros. Assim, partindo dos valores iniciais $h_0 e \alpha_0$, o otimizador LS fornece os valores ótimos para $h e \alpha$, suas incertezas e a matriz de covariância entre eles.

O solver a ser manipulado pelo LS Optimizer pode ser escrito em qualquer linguagem de programação e deve ser capaz de ler um arquivo "exp.txt", que contém três colunas: a primeira com os dados da variável independente (tempo), a segunda com os valores medidos para a variável dependente (temperatura) e a terceira coluna com o valor do peso estatístico para cada valor da variável dependente. O solver deve ainda ser capaz de ler um arquivo "parameters.txt" gerado pelo LS Optimizer com as seguintes dados: o primeiro será uma variável inteira chamada informação (0, 1, 2, 3, 4) que definirá o nome do arquivo, respectivamente: unsteady.txt, unsteady_a1.txt, unsteady_a2.txt, unsteady_a3.txt, unsteady_a4.txt; onde o solver deve armazenar os resultados da simulação (variável independente e variável dependente), em duas colunas; o segundo será uma variável inteira chamada "N Param" que indica o número de parâmetros envolvidos na solução da equação diferencial e, por fim, a terceira informação com os valores estabelecidos pelo LS Optimizer para os parâmetros inicias (a1, a2, a3 e a4). Portanto, o solver deverá calcular a variável dependente para os mesmos valores da variável independente especificada no conjunto de dados experimental ("exp.txt") e, em seguida, escrever nos arquivos mencionados acima. Esses arquivos serão usados pelo LS Optimizer para calcular os chi-quadrados e sensibilidades relacionadas a cada parâmetro de ajuste (a1, a2, a3 e a4).

Portanto, após ser fornecido ao LS *Optimizer* os arquivos "solver.exe" e "exp.txt", é possível iniciar a execução da otimização, a partir de uma interface gráfica, clicando na opção do item de menu "Determine Parameters: Optimize" (Figura 3.22).

V L	S_Optimizer		
File	Information		
	Open Directory with Last Results		
	Place "Solver.exe" Within the Directory		
	Place "Exp.txt" Within the Directory		
	Determine Parameters: Optimize		
	My Experiments (Storage)		
	My Solvers (Storage)		
	Finish Optimization as Quick as Possible		
	Exit		

Figura 3.22 - Menu File do LS Optimizer.

Quando um clique é dado no item de menu "Determine Parameters: Optimize", o usuário recebe um aviso de que os últimos resultados serão perdidos. Após isso, uma caixa de diálogo é exibida, conforme mostrado na Figura 3.23, em que são fornecidos pelo usuário o número de parâmetros de ajuste, os valores inicias da difusividade e do coeficiente de transferência convectivo de calor e o número de subdivisões.

L	S Optimizer - General information
	- Information
	Number of Fitting Parameters = 2 (1, 2, 3 or 4)
	Initial Values of the Parameters: $a10 = 1.0d-05$ $a20 = 1.0d-04$ $a30 = a40 $
	Power = Split First Corrections into 40 part(s)
	(If initial values are good, do Power = 1. If not, do Power = 40, 100, 200, 400,, 5000)
	✓ Draw graph after optimization
	Try to improve the graph quality
	Cancel

Figura 3.23 - Caixa de diálogo com informações iniciais para o processo de otimização.

Uma vez que o conjunto de dados experimentais para a cinética de resfriamento da banana madura inteira com casca foi obtido com o tempo dado em minutos, os valores iniciais foram estabelecidos como $h_0 = 1 \times 10^{-4}$ m min⁻¹ e $\alpha_0 = 1 \times 10^{-5}$ m² min⁻¹. Para a cinética de resfriamento da cenoura e da macaxeira os valores iniciais foram: $h_0 = 1 \times 10^{-7}$ m s⁻¹ e $\alpha_0 = 1 \times 10^{-6}$ m² s⁻¹; e para o pepino, os valores iniciais foram: $h_0 = 1 \times 10^{-6}$ m s⁻¹ e $\alpha_0 = 1 \times 10^{-7}$ m ² s⁻¹.

Após cada informação ser fornecida na caixa de diálogo, o processo de otimização é iniciado após um clique no botão "OK". Logo depois de alguns minutos e 37 iterações (no caso da otimização dos dados da banana madura com casca), os resultados são apresentados através de cinco arquivos. O primeiro arquivo é chamado de "Results.txt", nesse é exibido o histórico do processo de otimização, valores dos parâmetros, incertezas e a matriz de covariância, entre outros resultados. Os arquivos "Graph.bmp" e "Main results.bmp" são mostrados na Figura 3.24(a-b).

O arquivo "Residuals.txt" mostra a diferença entre os valores calculados pelo modelo analítico (simulados) e os experimentais; por fim, o arquivo "Simulation.txt" mostra os valores preditos obtidos pelo modelo analítico utilizado. Para acessar os arquivos gerados pelo LS *Optimizer*, bastar clicar em "File" e em seguida no item de menu "Open Directory With Last Results" (Figura 3.22).

Além do *solver*, sem interface gráfica e com propósito de otimização, também foi criado um programa com interface gráfica, o $F_C_Third_K_Cooling$, para estudar vários outros aspectos das simulações, tais como: a cinética de resfriamento dos produtos com geometria cilíndrica tanto na região central como na sua superfície; a diferença máxima de temperatura entre o centro e a superfície do produto e em que instante esta diferença ocorre; valores das raízes obtidas pelo método da bisseção tanto para parede infinita quanto para o cilindro infinito; valores da temperatura num determinado instante em posição radial. Para execução inicial desse, se faz necessário que o usuário forneça dois arquivos de texto: "Dados.txt" e "Exp.txt". Em "Dados.txt" (Figura 3.25) tem-se as informações concernentes aos dados de dimensões do cilindro finito (raio e comprimento), temperatura inicial e de equilíbrio, a fração de tempo em que será apresentada a distribuição de temperatura, valores ótimos dos parâmetros da difusividade e do coeficiente de transferência convectivo de calor, a posição radial e axial do sensor de temperatura no cilindro finito. O arquivo "Exp.txt", mostrado na Figura 3.26, possui os valores experimentais.

📕 Data.txt - Bloco de notas		
Arquivo Editar Formatar Exibir A	ijuda	
B.885115270472580E-006	!Difusividade térmica	~
1.299835535403763E-004	Coeficiente de transferência convectivo de calor!	
20.00d-03	!Raio do cilindro	
200.00d-03	!Comprimento do cilindro	
0.20d+00	!Fração de tempo em que será apresentada a distribuição de 1	г
22.00d+00	!Temperatura inicial	
8.000d+00	!Temperatura de equilíbrio	
0.00d+00	!Posição r do sensor. Obs: O raio foi definido antes	
0.00d+00	!Posição y do sensor. Do meio (0.0) até a extremidade: E / Z	2

Figura 3.25 - Arquivo de texto com os dados iniciais.

Exp.txt - Bloco de notas	
uivo Editar Formatar Exibir Ajuda	
000000E+00 0.220102E+02 .000000E+00 0.220102E+02 .389189E+01 0.210102E+02 .389189E+01 0.219466E+02 .562162E+01 0.218193E+02 .735135E+01 0.216285E+02 .908108E+01 0.216780E+02 .112432E+02 0.201654E+02 .12432E+02 0.201654E+02 .12432E+02 0.201654E+02 .12432E+02 0.201654E+02 .126216E+02 0.195293E+02 .255135E+02 0.189567E+02 .255135E+02 0.189567E+02 .302703E+02 0.143766E+02 .691892E+02 0.143766E+02 .143766E+02 1.9593E+02 .108108E+03 0.119593E+02 .118466E+03 0.119593E+02 .118466E+03 0.106234E+02 .118466E+03 0.106234E+02 .1187676E+03 0.907644E+01 .187676E+03 0.903308E+01	8
22/02/E+03 0.89694/E+01 1 .240000E+03 0.877863E+01 1	

Figura 3.26 - Arquivo de texto com os dados experimentais.

Ao executar o *software* $F_C_Third_K_Cooling$, é fornecido ao usuário uma tela com dados referentes aos valores da difusividade (Figura 3.27), o coeficiente de transferência convectivo de calor, os números de Biot para parede infinita e cilindro infinito, os valores estatísticos do qui-quadrado e do coeficiente de determinação, a máxima diferença de temperatura entre o centro e a superfície e o tempo em que esta ocorre. Simultaneamente surge uma caixa de diálogo em que o usuário pode optar por visualizar os gráficos da cinética de resfriamento.

F_C_Third_K_Cooling			
File			
🗖 Analytical Finite Cylinder - Third Kind			
D = 8.885115270472580E-006			
h = 1.299835535403763E-004			
Biot number: Cylinder = 0.292587208119502			
Biot number: Slab = 1.46293604059751			
chi-square = 4.455388849368592E-002			
Determination Coefficient = 0.999938356158785			
Center and Boundary: Maximum temperature difference = 1.6821509502577 Attention			
This value occurs at instant t = 9.69696969696970 Do you want to analyse the graphs?			
Execution time = 4.156000			

Figura 3.27 - Tela inicial do software F_C_Third_K_Cooling.

O software $F_C_Third_K_Cooling$ ainda permite que o usuário forneça, a partir da caixa de diálogo mostrada na Figura 3.28, a posição axial em que será possível visualizar a distribuição de temperatura na área circular do cilindro finito. No presente trabalho são apresentados gráficos de distribuição de cores tendo em vista descrever a distribuição de temperatura no interior dos cilindros finitos (Figura 4.6(b)). Para isso, utilizou-se o software Contour Cylinder (SILVA, C., 2012). Desse modo, o software $F_C_Third_K_Cooling$ desenvolvido, foi programado para gerar os arquivos de dados necessários à criação dos gráficos de distribuição de cores, os quais ficam armazenados no arquivo de texto: "Radial distribution at the specified position y.txt". Portanto, após a escolha ou não pela análise dos gráficos, é aberta outra caixa de diálogo onde o usuário deve informar a posição axial da região circular para a qual pretende gerar os dados para o software Contour Cylinder (Figura 3.28).

F_C_Third_K_Cooling	8
File	
Analytical Finite Cyl	inder - Third Kind
	Position y
	Temperature distribution in the circle at:
	y = 0.0000000000000000000000000000000000
	Cancel

Figura 3.28 - Caixa de diálogo para informar a posição axial do círculo em que será apresentada a distribuição de temperatura.

CAPÍTULO 4 - RESULTADOS E DISCUSSÃO

4.1 Validação do modelo proposto

Simulando o processo de resfriamento para a geometria da parede infinita hipotética com as seguintes características: $\alpha = 1.4 \times 10^{-7} \text{ m}^2 \text{ s}^{-1}$, $h = 1.0 \times 10^{-5} \text{ m} \text{ s}^{-1}$ e L = 0.10 m(espessura), com a solução numérica, obteve-se o resultado apresentado na Figura 4.1(a). Por outro lado, usando a solução analítica para o modelo proposto para simular o mesmo problema, utilizando um cilindro finito de comprimento L = 0.10 m e raio R = 2.0 m, a cinética de resfriamento é dada pela Figura 4.1(b). A sobreposição dos dois gráficos é mostrada na Figura 4.2.

Figura 4.1 - Gráficos da simulação da temperatura adimensional no centro geométrico do meio supondo: (a) Solução numérica para a parede infinita e (b) Solução analítica para o cilindro finito.

Figura 4.2 - Gráficos da simulação da temperatura adimensional no centro geométrico do meio com a sobreposição das soluções analítica e numérica.

A sobreposição observada na Figura 4.2 mostra a semelhança dos resultados obtidos com a solução analítica para o cilindro finito com a solução numérica para a parede infinita, evidenciando que a solução proposta dada a partir do *solver* desenvolvido fornece resultados corretos para um problema direto.

4.2 Problema inverso: determinação de propriedades térmicas da banana madura com casca

A fim de comparar dois métodos para determinar as propriedades térmicas de bananas maduras com casca, os mesmos dados experimentais obtidos por Erdogdu et al. (2014) foram utilizados. Assim, para bananas maduras com casca, o teor de umidade inicial foi 76% (base úmida); a densidade de 985 kg m⁻³ e o calor específico de 2.290 J Kg⁻¹ K⁻¹. O raio médio da banana foi R = 20 mm, e seu comprimento médio foi estimado como L = 200 mm. A temperatura inicial do produto foi de 22 °C e a temperatura de resfriamento da câmara foi de 8 °C (com a observação que Erdogdu et al. (2014) ressaltam que apesar do uso dessa temperatura de resfriamento, recomenda-se uma temperatura de resfriamento de 13 °C, evitando perdas e lesões de resfriamento que possam ser observadas em valores inferiores a essa temperatura).

Os pontos experimentais (Figura 4.3) da temperatura ao longo do tempo no centro da banana, utilizados para cinética de resfriamento, foram obtidos na literatura em Erdogdu et al. (2014) a partir da digitalização do gráfico disponibilizado, usando o *xyExtract Graph Digitizer* (SILVA e SILVA, 2011). Na Tabela B1 do Apêndice encontram-se os dados experimentais do tempo e da temperatura para as dimensões anteriormente descritas.

Figura 4.3 - Pontos experimentais da banana madura com casca.

Os resultados obtidos para a banana madura com casca através do modelo proposto, bem como os obtidos pelo modelo simplificado (ERDOGDU et al., 2014) foram apresentados na Tabela 4.1.

Na Tabela 4.1, α e *h* foram determinados por otimização pelo modelo proposto, usando o LS *Optimizer* considerando 40 subdivisões. Esses parâmetros foram multiplicados por (ρc_p) para obter *k* (Equação (2.3)) e *h_H*(Equação (2.4)), respectivamente. As incertezas originalmente fornecidas pelo LS *Optimizer* para α e *h* foram multiplicadas pelo fator 2,07, o qual foi recomendado pelo *software* de otimização para garantir um intervalo de confiança de 95,4%; e os resultados finais são os apresentados na Tabela 4.1.

Propriedade térmica	Modelo proposto	Modelo simplificado	Discrepância (%)
α (m ² s ⁻¹)	$(1,45\pm0,06)\times10^{-7}$	$1,50 imes 10^{-7}$	3,0
$k (W m^{-1} K^{-1})$	$(0,328 \pm 0,014)$	0,338	3,0
$h (m s^{-1})$	$(2,186 \pm 0,021) \times 10^{-6}$	-	-
$h_{H} (\mathrm{W} \mathrm{m}^{-2} \mathrm{K}^{-1})$	$(4,93 \pm 0,05)$	5	1,4
Bi _c	0,301	-	-
Bis	1,504	-	-

Tabela 4.1 - Propriedades térmicas da banana determinadas pelo modelo proposto e simplificado.

4.3 Problema direto: simulações para banana

Com os resultados obtidos para α e *h*, foi possível apresentar a cinética de resfriamento para o ponto central da banana com casca, conforme mostra a Figura 4.4.

Figura 4.4 - Gráfico da cinética de resfriamento para o ponto central (0,0) da banana com casca prevista pelo modelo proposto, utilizando os valores de α e *h* determinados pela otimização.

Uma inspeção visual da Figura 4.4 permite observar a compatibilidade entre os pontos experimentais e a linha simulada, com um desvio padrão (σ) de apenas 0,036 °C para o modelo proposto. Por outro lado, a determinação dos valores ótimos para α e *h* permite simular não só a cinética de resfriamento no centro da banana, de coordenadas (0,0), mas também na sua fronteira, no ponto de coordenadas (20,0). Um gráfico que mostra essas duas simulações é apresentado na Figura 4.5.

Figura 4.5 - Gráfico que simula a cinética de resfriamento de banana com casca prevista pelo modelo proposto para o ponto central (0,0), linha vermelha e na superfície (20,0), linha azul.

As cinéticas de resfriamento no centro da banana e em sua superfície, vistas na Figura 4.5 foram obtidas através do uso do *software* $F_C_Third_K_Cooling$ a partir da Equação (3.13) com valores de raio R = 0 mm e R = 20 mm respectivamente, considerando os primeiros 200 termos da série.

O *solver* desenvolvido para o modelo proposto permite prever a distribuição de temperatura em um círculo em determinada posição axial (coordenada y) dentro do cilindro finito que representa a banana com casca mostrada na Figura 4.6(a). Tais distribuições são vistas na Figura 4.6(b) para círculos em várias posições, no tempo t = 20,4 min; e deve-se lembrar que o meio foi considerado homogêneo.

Figura 4.6 - (a) Cilindro finito (sem escala) com raio R = 20,0 mm e comprimento L = 200,0mm representando a banana com casca; (b) Distribuição de temperatura prevista pelo modelo proposto no instante t = 20,4 min para áreas circulares localizadas de y = 0,0 (centro) até y = 100,0 mm (extremidade).

4.4 Determinação de propriedades termofísicas da cenoura

4.4.1 Calor específico

Os dados para o cálculo do calor específico da cenoura, utilizando a metodologia descrita no item 3.1.2, foram: temperatura ambiente de 24,1 °C, água aquecida a 62,3 °C, lata cuja massa foi de 11,553 g e massa da água de 180,271 g. O tempo de despejo de toda porção de cenoura (151,926 g) foi de 4 s, nesse instante, a temperatura da água estava a 50,5 °C. Os

valores das medidas do experimento, considerando a incerteza de 2% associada ao valor final podem ser vistos na Tabela 4.2 a seguir.

Medidas	Valor com a incerteza
Massa da água <i>M</i> _a	(180,217 ± 3,6) g
Massa da lata M_{al}	(11,553 ± 0,23) g
Massa da cenoura M_{ce}	(151,926 ± 3,0) g
Temperatura ambiente T_a	(24,1 ± 0,5) °C

Tabela 4.2 - Valores das medidas do experimento do calor específico com suas incertezas.

O último ponto registrado imediatamente antes da inserção dos pedaços de cenoura, que corresponde ao último ponto da Região I da Figura 3.7, ocorre em t = 1640 s em que a temperatura é de 50,6 °C. E o primeiro ponto da Região II, ocorre no tempo t = 1720 s cuja temperatura é de 38,3 °C.

Para identificar o tempo em que se deu o equilíbrio térmico foi necessário usar o arquivo contendo os pontos experimentais coletados a cada 2 s (Tabela B5 do Apêndice), no qual foi encontrado o momento exato do início da inserção da cenoura, que foi no tempo de t = 1648 s. Estimando que a duração dessa inserção foi de t = 4 s, então o momento que a inserção se encerrou foi t = 1652 s, ou seja, foi no tempo t = 1652 s que se estima ter ocorrido o equilíbrio térmico.

Para proceder com a determinação da temperatura em que ocorreu o equilíbrio térmico, o arquivo com os dados experimentais da Figura 3.7 foi dividido em dois, a partir dos quais foram gerados dois gráficos. O primeiro arquivo, nomeado ResfriamentoSuperior.txt, contém os pontos que vão do primeiro registro até o ponto em que t = 1640 s. Já o segundo arquivo, ResfriamentoInferior.txt, se inicia no ponto em que t = 1720 s, e finda no ponto em que t = 2320 s.

Assim, as temperaturas T_q (antes da imersão dos pedaços de cenoura) e T_f (imediatamente após à imersão dos pedaços de cenoura) foram obtidos por ajustes através das duas curvas experimentais de resfriamento contidas respectivamente nos arquivos ResfriamentoSuperior.txt e ResfriamentoInferior.txt.

Utilizando o *software* LAB Fit para obter o valor da temperatura T_q por ajuste de curva, foi aberto o arquivo ResfriamentoSuperior.txt e, em seguida, após clicar no botão "User",

procedeu-se com a digitação da função de ajuste: Y = A+B*EXP(C*X), em que X é o tempo e Y é a temperatura (Figura 4.7). Isso para determinar os valores dos 3 parâmetros de ajuste (A, B e C).

Figura 4.7 - Interface do LAB Fit para inserção da função de ajuste.

Após clicar no botão "OK", foi fornecido ao *software* os valores iniciais dos parâmetros, conforme Figura 4.8.

Figura 4.8 - Interface do LAB Fit para inserção dos valores iniciais dos parâmetros de ajuste.

Os valores iniciais dos parâmetros de ajuste foram: A = 1, B = 1 e $C = 1e^{-5}$. Após confirmar o fornecimento dos dados, clicando-se no botão "OK", obteve-se a janela da Figura 4.9, com os resultados principais do ajuste. Ao se clicar em "Details", foi possível obter as informações completas do ajuste, como por exemplo, a matriz de covariância.

FIT FIE Curve fit Treatment of data Tools Help TREATMENT OF EXPERIMENTAL DATA	
Current data fit: ResfriamentSuperior.txt Correlation coefficient: Rxy =997177E+00 (Unw Curve fit	reighted)
	Convergence Iteration: 13 R ⁵ yy(x) = 0.3936474E+00 Data file: RetinismerSuperiot.txt Function Y=A+8*EXP[C%] Deg. Freed. = 33 ChSq. = 0.30000E+02 Red. ChSq. = 0.100000E+01 Parameters: Mean Uncertainties: SD A = 0.3476006897123E+02 SIGMAA = 0.8755174079554E+00 B = 0.2762458250753E+02 SIGMAA = 0.8755174079554E+00 C = -0.3381409558623E-03 SIGMAC = 0.1398957758919E-04 Evaluate Rejection Details Rejection Details Evaluate Residuals DK

Figura 4.9 - Interface do LAB Fit com o resultado dos parâmetros do ajuste.

Portanto, os resultados completos para tal ajuste, foram:

•
$$A = 34,768068\%1$$
 $\sigma_A = 0,87551740796$
• $B = 27,624582508$ $\sigma_B = 0,85448626780$ (4.1)
• $C = -0,33814095586 \times 10^{-3}$ $\sigma_C = 0,13989577598 \times 10^{-4}$

$$M = \begin{vmatrix} 0,766531 & -0,747841 & -0,122147 \times 10^{-4} \\ -0,747841 & 0,730147 & 0,118973 \times 10^{-4} \\ -0,122147 \times 10^{-4} & 0,118973 \times 10^{-4} & 0,195708 \times 10^{-9} \end{vmatrix}$$
(4.2)

. 1

A representação gráfica da função ajustada, com uma pequena extrapolação para o tempo t = 1652 s, pode ser visto na Figura 4.10.

Figura 4.10 - Decaimento da temperatura T ao longo do tempo t antes de imersão dos pedaços de cenoura (Região I).

Ainda foi possível pelo LAB Fit, clicando no botão "Evaluate", encontrar a temperatura por extrapolação, como mostra a Figura 4.11.

Figura 4.11 - Interface do LAB Fit para fornecer o tempo que se deseja encontrar a temperatura por extrapolação.

Ao clicar no botão "Ok" da Figura 4.11, obtêm-se os resultados vistos na Figura 4.12. Percebe-se que o valor obtido para temperatura no tempo t = 1640 s foi de T = 50,63 °C, valor esse que coincide com o valor obtido experimentalmente, sendo assim, um bom indicador para mostrar o quanto o ajuste foi bem feito.

Figura 4.12 - Interface do LAB Fit com os resultados das temperaturas obtidas por extrapolação.

Portanto, o valor obtido para a Equação (3.7) em t = 1652 s, com 95,4% de confiança, utilizando a fórmula geral de propagação de erro e os resultados encontrados em (4.1) e (4.2), foi o seguinte:

$$T_a = (50,57 \pm 0,06) \,^{\circ}C \tag{4.3}$$

Para a determinação da temperatura T_f , o arquivo aberto no LAB Fit para proceder com a determinação dos valores dos 3 parâmetros de ajuste (A, B e C) foi ResfriamentoInferior.txt, observando-se que na Região II $t_0 = 1720$ s, ficando a função de ajuste escrita da seguinte forma: Y = A+B*EXP(C*(X-1720)). Procedendo no LAB Fit com os mesmos passos descritos na determinação da temperatura T_q , os resultados obtidos foram:

•
$$A = 21,891745$$
 88 $\sigma_A = 9,5531537$ 509
• $B = 16,408315$ 88 $\sigma_B = 9,5290470$ 94
• $C = -0.3024760$ 500×10⁻³ $\sigma_C = 0.1925977$ 2792×10⁻³ (4.4)

$$M = \begin{vmatrix} 91,2627 & -91,0321 & -0,183935 \times 10^{-2} \\ -91,0321 & 90,8027 & 0,183460 \times 10^{-2} \\ -0,183935 \times 10^{-2} & 0,183460 \times 10^{-2} & 0,370939 \times 10^{-7} \end{vmatrix}$$
(4.5)

O gráfico da função ajustada pode ser visto na Figura 4.13, que mostra também uma pequena extrapolação até t = 1652 s.

Figura 4.13 - Decaimento da temperatura T ao longo do tempo t após a imersão dos pedaços de cenoura (Região II).

Nesse novo ajuste, o valor da temperatura do sistema em t = 1652 s, com 95,4% de confiança, foi:

(4.6)

 $T_f = (38,64 \pm 0,12) \circ C$.

Observou-se que a incerteza obtida em T_f dada por 0,12 °C foi um pouco maior que a obtida em T_q (0,06 °C), isso devido ao fato de na Região II a quantidade de pontos ser menor que a Região I.

Com os valores indicados na Tabela 4.2 e com as temperaturas obtidas nas Equações (4.3) e (4.6), pode-se usar novamente o LAB Fit, que dispõe de uma opção para o cálculo do valor médio e do erro propagado de expressões tal como aquela da Equação (3.6). Nesse cálculo foi usado, para o calor específico da água na temperatura de 62,3 °C, o valor de $c_{ag} = 1$ cal/(g °C) e para o alumínio, $c_{al} = 0,214$ cal/(g °C). Esses são valores definidos e, portanto, isentos de erros (incerteza igual a zero).

Portanto, clicando-se no botão "Prop" do painel direito do LAB Fit, tem-se a opção de fornecer a expressão do cálculo do calor específico, juntamente com os valores dos parâmetros e suas incertezas, conforme Figura 4.14. A expressão fornecida ao LAB Fit foi Y = (X1*0.214+X2*1.0)*(X3-X4)/(X5*(X4-X6)), em que: X1, X2 e X5 correspondem, respectivamente, a M_{al} , $M_{ág}$ e M_{ce} (todas com a incerteza de 2% do valor lido da balança); X3 e X4 referem-se as temperatura T_q e T_f ; e X6 com o valor da temperatura ambiente. O valor 0.214 que multiplica X1 na expressão, se refere ao calor específico do alumínio.

Figura 4.14 - Interface do LAB Fit para cálculo de expressão com propagação de erro.

Após clicar no botão "OK" da Figura 4.14, tem-se o resultado do valor do calor específico, juntamente com a incerteza associada, conforme Figura 4.15.

Figura 4.15 - Interface do LAB Fit com o resultado da expressão do cálculo do calor específico.

Portanto, através da Equação (3.6) obtém-se:

$$c_{ce} = (0.987 \pm 0.047) \text{ cal g}^{-1} \text{ °C}^{-1}.$$
 (4.7)

Em que passando, para KJ Kg⁻¹ K⁻¹, obtém-se:

$$c_{ce} = (4130,0 \pm 197) \text{ KJ Kg}^{-1} \text{ K}^{-1}.$$
 (4.8)

Como informação adicional, o valor do calor específico da cenoura obtido pela Equação (3.1), considerando um teor de umidade de 89,3%, foi: $c_{ce} = 3997$ KJ Kg⁻¹ K⁻¹.

4.4.2 Problema inverso: Difusividade térmica

O teor de umidade da cenoura foi obtido por método de estufa a 105 °C por 24 h e foi de 90,38%. Portanto, neste trabalho, o valor estimado da difusividade α da cenoura, conhecendo a Equação (3.8), foi de: $\alpha = 1,42 \times 10^{-7} \text{ m}^2 \text{ s}^{-1}$. A densidade da cenoura foi de 1003 kg m⁻³ medida para a peça com as seguintes dimensões: 22 mm de raio e 40 mm de comprimento; e massa de 61 g. A temperatura inicial do produto foi de 19 °C e a temperatura de resfriamento da câmara foi de 3,5 °C.

Na Figura 4.16 tem-se os pontos experimentais da temperatura ao longo do tempo no centro da cenoura, utilizados para a cinética de resfriamento. Na Tabela B2 do Apêndice encontram-se os dados experimentais do tempo e da temperatura para as dimensões anteriormente descritas.

Figura 4.16 - Pontos experimentais da cenoura.

Na Tabela 4.3, α e *h* foram determinados por otimização pelo modelo proposto, utilizando o LS *Optimizer*. Esses parâmetros foram multiplicados por (ρc_p) para obter *k* e *h_H*, respectivamente. As incertezas originalmente fornecidas pelo LS *Optimizer* para α e *h* foram multiplicadas pelo fator 2,0; o qual foi recomendado pelo *software* de otimização para garantir um intervalo de confiança de 95,4%; e os resultados finais são os apresentados na Tabela 4.3.

Propriedade térmica	Cenoura
α (m ² s ⁻¹)	$(1,43\pm0,08)\times10^{-7}$
$k (W m^{-1} K^{-1})$	$(0,592 \pm 0,033)$
<i>h</i> (m s ⁻¹)	$(1,760 \pm 0,022) \times 10^{-6}$
$h_H (W m^{-2} K^{-1})$	$(7,290 \pm 0,091)$
Bi_c	0,270
Bis	0,246

Tabela 4.3 - Propriedades térmicas determinadas para cenoura.

O resultado obtido para o valor da difusividade térmica da cenoura ($\alpha = 1,43 \times 10^{-7} \text{ m}^2 \text{ s}^{-1}$) pelo modelo proposto mostra-se coerente com o valor obtido a partir da estimativa da correlação de Riedel ($\alpha = 1,42 \times 10^{-7} \text{ m}^2 \text{ s}^{-1}$). Entretanto, pelo método proposto, é possível estimar a incerteza desta propriedade.

4.5 Problema direto: simulações para cenoura

Com os resultados obtidos para α e *h*, foi possível apresentar a cinética de resfriamento para o ponto central da cenoura, bem como os pontos experimentais, conforme mostra a Figura 4.17.

Figura 4.17 - Gráfico da cinética de resfriamento para o ponto central (0,0) da cenoura prevista pelo modelo proposto, utilizando os valores de α e h determinados pela otimização.

Uma inspeção visual da Figura 4.17 permite observar a compatibilidade entre os pontos experimentais e a linha simulada, com um desvio padrão de apenas 0,16 °C para o modelo proposto. Por outro lado, a determinação dos valores ótimos para α e *h* permite simular não só a cinética de resfriamento no centro da cenoura, de coordenadas (0,0), mas também na sua fronteira, no ponto de coordenadas (22,0). Um gráfico que mostra essas duas simulações é apresentado na Figura 4.18.

Figura 4.18 - Gráfico que simula a cinética de resfriamento da cenoura prevista pelo modelo proposto para o ponto central (0,0), linha vermelha e na superfície (22,0), linha azul.

Na Figura 4.18 observa-se o que é esperado: em tempos intermediários da cinética de resfriamento a temperatura do centro é maior que a temperatura na superfície do produto. Apesar de ser esperado, o modelo proposto permite simular essa situação.

O *solver* desenvolvido para o modelo proposto permite prever a distribuição de temperatura em um círculo em determinada posição axial (coordenada y) dentro do cilindro finito que representa a cenoura mostrada na Figura 4.19(a). Tais distribuições são vistas na Figura 4.19(b) para círculos em três posições, no tempo t = 12,5 min; e deve-se lembrar que o meio foi considerado homogêneo.

Figura 4.19 - (a) Cilindro finito (sem escala) com raio R = 22,0 mm e comprimento L = 40,0mm representando a cenoura; (b) Distribuição de temperatura prevista pelo modelo proposto no instante t = 12,5 min para áreas circulares localizadas de y = 0,0 (centro) até y = 20,0 mm (extremidade).

4.5.1 Problema direto: simulações para cenouras de outras dimensões

Na Figura 4.20 tem-se a simulação para a cinética de resfriamento de uma peça de cenoura de comprimento L = 10,0 mm e raio R = 18,0 mm, ou seja, uma peça cujas dimensões são menores que as dimensões da peça usada experimentalmente neste trabalho, a qual tem a sua cinética representada na mesma Figura 4.20 pela linha magenta, e as medidas foram: comprimento L = 40,0 mm e raio R = 22,0 mm. Observa-se o que é esperado: a peça menor resfria mais rapidamente. Portanto, a partir dos dados obtidos nesta pesquisa, é possível simular a cinética de resfriamento para cenouras de outras dimensões.

Na Figura 4.21 tem-se a simulação para a cinética de resfriamento de uma peça de cenoura de comprimento L = 60,0 mm e raio R = 25,0 mm, ou seja, uma peça cujas dimensões são maiores que as dimensões da peça usada experimentalmente neste trabalho, que foram de L = 40,0 mm e raio R = 22,0 mm, e observa-se o que é esperado: a peça maior resfria mais lentamente.

Figura 4.21 - Gráfico da simulação da cinética de resfriamento para o ponto central (0,0) da cenoura com raio R = 25,0 mm e comprimento L = 60,0 mm (linha vermelha), comparado ao gráfico da cinética da peça de cenoura utilizada experimentalmente (linha magenta) de dimensões: R = 22,0 mm e comprimento L = 40,0 mm.

Como observado nas Figuras 4.20 e 4.21, o *solver* desenvolvido é capaz de prever a distribuição espacial de temperatura em qualquer instante, durante o resfriamento, e por conseguinte, estimar o tempo desse resfriamento para produtos cilíndricos com outras dimensões. Essa assertiva pode ser inferida por meio de depreensão, ao analisar as simulações da Figura 4.20 acerca do tempo necessário para que fatias de cenoura com dimensões R = 22,0 mm e L = 40,0 mm atinja a temperatura de 5 °C, que ocorre em cerca de 180 min, enquanto a peça cilíndrica de dimensões menores, R = 18,0 mm e L = 10,0 mm, é resfriada até 5 °C após cerca de 76 min.

4.6 Problema inverso: determinação de propriedades térmicas da macaxeira

O teor de umidade da macaxeira foi obtido pelo método da estufa a 105 °C por 24 h e foi de 65,57%. Portanto, neste trabalho, o valor estimado da difusividade α da macaxeira, conhecendo a Equação (3.8), foi de $\alpha = 1,27 \times 10^{-7} \text{ m}^2 \text{ s}^{-1}$. A densidade da macaxeira foi de 1105 kg m⁻³ para a peça com as seguintes dimensões: 28 mm de raio e 52 mm de comprimento; e massa de 141,55 g. O calor específico estimado pela correlação de Riedel foi de 3.302,2 KJ Kg⁻¹ K⁻¹. A temperatura inicial do produto foi de 23 °C e a temperatura de resfriamento da câmara foi de 2 °C.

Na Figura 4.22 tem-se os pontos experimentais da temperatura ao longo do tempo no centro da macaxeira, utilizados para cinética de resfriamento. Na Tabela B3 do Apêndice encontram-se os dados experimentais do tempo e da temperatura para as dimensões anteriormente descritas.

Figura 4.22 - Pontos experimentais da macaxeira.

Na Tabela 4.4, α e *h* foram determinados por otimização pelo modelo proposto. Esses parâmetros foram multiplicados por (ρc_p) para obter *k* e *h_H*, respectivamente. As incertezas originalmente fornecidas pelo LS *Optimizer* para α e *h* foram multiplicadas pelo fator 2.0, o qual foi recomendado pelo *software* de otimização para garantir um intervalo de confiança de 95,4%; e os resultados finais são os apresentados na Tabela 4.4.

Propriedade térmica	Macaxeira
α (m ² s ⁻¹)	$(1,26\pm0,04)\times10^{-7}$
$k (W m^{-1} K^{-1})$	$(0,46 \pm 0,01)$
$h (m s^{-1})$	$(2,24 \pm 0,029) \times 10^{-6}$
$h_H (W m^{-2} K^{-1})$	$(8,\!17\pm0,\!1)$
Bi_c	0,497
Bis	0,462

Tabela 4.4 - Propriedades térmicas determinadas para macaxeira.

O resultado obtido para o valor da difusividade térmica da macaxeira ($\alpha = 1,26 \times 10^{-7}$ m² s⁻¹) pelo modelo proposto mostra-se coerente com o valor obtido a partir da estimativa da correlação de Riedel ($\alpha = 1,27 \times 10^{-7} \text{ m}^2 \text{ s}^{-1}$). Deve-se observar ainda que, com o modelo proposto, é possível determinar não só os valores dos parâmetros, mas também os valores de suas incertezas, além desses resultados possibilitarem fazer vários tipos de simulações, como mostrado a seguir.

4.7 Problema direto: simulações para macaxeira

Com os resultados obtidos para α e *h*, foi possível apresentar a cinética de resfriamento para o ponto central da macaxeira, bem como os pontos experimentais, conforme mostra a Figura 4.23.

Figura 4.23 - Gráfico da cinética de resfriamento para o ponto central (0,0) da macaxeira prevista pelo modelo proposto, utilizando os valores de α e h determinados pela otimização.

Uma inspeção visual da Figura 4.23 possibilita observar a compatibilidade entre os pontos experimentais e a linha simulada, com um desvio padrão de apenas 0,19 °C para o modelo proposto. Por outro lado, a determinação dos valores ótimos para α e *h* permite simular não só a cinética de resfriamento no centro da macaxeira, de coordenadas (0,0), mas também na sua fronteira, cujas coordenadas são (28,0). Um gráfico que mostra essas duas simulações é apresentado na Figura 4.24.

Figura 4.24 - Gráfico que simula a cinética de resfriamento de macaxeira pelo modelo proposto para o ponto central (0,0), linha vermelha e na superfície (28,0), linha azul.

Ao observar o gráfico da Figura 4.24 pode-se ver que a peça de macaxeira apresentou uma maior diferença de temperatura entre a região da superfície e do seu centro durante o resfriamento em relação as peças de banana e cenoura. Isso pode ser compreendido pelo fato de que o número de Biot para o cilindro ($Bi_c = 0,497$) da macaxeira ter sido maior que os da banana ($Bi_c = 0,301$) e cenoura ($Bi_c = 0,270$).

O *solver* desenvolvido para o modelo proposto permite prever a distribuição de temperatura em um círculo em determinada posição axial (coordenada y) dentro do cilindro finito que representa a macaxeira mostrada na Figura 4.25(a). Tais distribuições são vistas na Figura 4.25(b) para círculos em várias posições, no tempo t = 17,6 min; e deve-se lembrar que o meio foi considerado homogêneo.

Observa-se na Figura 4.25(b) a nítida diferença de temperatura entre o centro do cilindro e a superfície em 3 regiões circulares no instante t = 17,6 min, evidenciando que a cinética de propagação de calor ocorre da superfície para o centro da peça.

Figura 4.25 - (a) Cilindro finito (sem escala) com raio R = 28,0 mm e comprimento L = 52,0mm representando a macaxeira; (b) Distribuição de temperatura prevista pelo modelo proposto no instante t = 17,6 min para áreas circulares localizadas de y = 0,0 (centro) até y = 26,0 mm (extremidade).

4.8 Problema inverso: determinação de propriedades térmicas do pepino

A fim de comparar dois métodos de obtenção de propriedades térmicas do pepino, o mesmo conjunto de dados experimental utilizado por Silva et al. (2012a) foi aplicado nesta pesquisa. Assim, para o pepino, o teor de umidade inicial foi 96% (base úmida); a densidade de

959 kg m⁻³ (determinada por Fasina e Fleming (2001)) e o calor específico de 4.193,8 KJ Kg⁻¹ K⁻¹ (determinado pela Equação (3.1)). O raio médio do pepino foi R = 0,019 m, e seu comprimento médio foi estimado como L = 0,160 m. A temperatura inicial do produto foi de 22 °C e a temperatura de resfriamento da câmara foi de 4 °C. Durante o experimento, a velocidade do ar de resfriamento foi mantida em 2 ms⁻¹, com uma umidade relativa de 80%. O conjunto de dados experimental foi gravado no formato adimensional, pela Equação (4.9):

$$T^{*} = \frac{T - T_{\infty}}{T_{0} - T_{\infty}}$$
(4.9)

Na Figura 4.26 tem-se os pontos experimentais da temperatura (adimensional) ao longo do tempo no centro do pepino, utilizados para cinética de resfriamento. Na Tabela B4 do Apêndice encontram-se os dados experimentais do tempo e da temperatura para as dimensões anteriormente descritas.

Figura 4.26 - Pontos experimentais do pepino.

Os resultados obtidos para o resfriamento do pepino através do modelo proposto, bem como os obtidos pelo modelo unidimensional (SILVA et al., 2012a) foram apresentados na Tabela 4.5.

Na Tabela 4.5, α e *h* foram determinados por otimização pelo modelo proposto, usando o LS *Optimizer* considerando 40 subdivisões. Esses parâmetros foram multiplicados por (ρc_p) para obter *k* (Equação (2.3)) e *h_H*(Equação (2.4)), respectivamente. As incertezas originalmente fornecidas pelo LS *Optimizer* para α e *h* foram multiplicadas pelo fator 2,04, o qual foi recomendado pelo *software* de otimização para garantir um intervalo de confiança de 95,4%; e os resultados finais são os apresentados na Tabela 4.5.

Propriedade térmica	Modelo proposto	Silva et al. (2012a)
α (m ² s ⁻¹)	$(1,48\pm0,12)\times10^{-7}$	$1,47 \times 10^{-7}$
$k (W m^{-1} K^{-1})$	$(0,60 \pm 0,05)$	-
<i>h</i> (m s ⁻¹)	$(6,35 \pm 0,25) \times 10^{-6}$	6,39 x 10 ⁻⁶
$h_H (W m^{-2} K^{-1})$	$(25,5 \pm 1,0)$	-
Bi_c	0,815	-
Bis	3,432	-

Tabela 4.5 - Propriedades térmicas determinadas pelo modelo proposto neste trabalho e por Silva et al. (2012a).

4.9 Problema direto: simulações para o pepino

Com os resultados obtidos para α e *h*, foi possível apresentar a cinética de resfriamento para o ponto central do pepino, conforme mostra a Figura 4.27.

Figura 4.27 - Gráfico da cinética de resfriamento para o ponto central (0,0) do pepino previsto pelo modelo proposto, utilizando os valores de α e h determinados pela otimização.

Uma inspeção visual da Figura 4.27 possibilita observar a compatibilidade entre os pontos experimentais e a linha simulada, com um desvio padrão (σ) de apenas 0,28 °C para o modelo proposto. Por outro lado, a determinação dos valores ótimos para α e *h* permite simular não só a cinética de resfriamento no centro do pepino, de coordenadas (0,0), mas também na sua fronteira, no ponto de coordenadas (19,0). Um gráfico que mostra essas duas simulações é apresentado na Figura 4.28.

Figura 4.28 - Gráfico que simula a cinética de resfriamento do pepino prevista pelo modelo proposto para o ponto central (0,0), linha vermelha e na superfície (19,0), linha azul.

As cinéticas de resfriamento no centro do pepino e em sua superfície, vistas na Figura 4.28 foram obtidas através do uso do *software* $F_C_Third_K_Cooling$ a partir da Equação (3.13) com valores de raio R = 0 mm e R = 19 mm respectivamente, considerando os primeiros 200 termos da série.

O *solver* desenvolvido para o modelo proposto permite prever a distribuição de temperatura em um círculo em determinada posição axial (coordenada y) dentro do cilindro finito que representa o pepino mostrada na Figura 4.29(a). Tais distribuições são vistas na Figura 4.29(b) para círculos em várias posições, no tempo t = 6,6 min; e deve-se lembrar que o meio foi considerado homogêneo.

Figura 4.29 - (a) Cilindro finito (sem escala) com raio R = 0,019 m e comprimento L = 0,160 m representando o pepino; (b) Distribuição de temperatura prevista pelo modelo proposto no instante t = 6,6 min para áreas circulares localizadas de y = 0,0 (centro) até y = 0,08 m (extremidade).

4.10 Discussão

De acordo com os resultados obtidos para a validação na Figura 4.1, a solução analítica para o cilindro finito (L = 0,10 m e R = 2,0 m) apresentou resultados semelhantes ao numérico obtido para a parede infinita (L = 0,10 m), como foi destacado na Figura 4.1(c). Essa coerência deve indicar que o *solver* desenvolvido fornece resultados corretos para um problema direto.

Uma observação na Tabela 4.1 permite afirmar que os resultados dos dois modelos analisados (proposto e simplificado) foram coerentes. A discrepância de cerca de 3% para a difusividade térmica é aceitável, uma vez que Erdogdu et al. (2014) usaram o método da inclinação e uma solução unidimensional da equação de difusão; enquanto o modelo proposto usa 200 termos da série que representa a solução bidimensional e o algoritmo Levenberg-Marquardt. Por outro lado, apenas 1,4% da discrepância entre os dois métodos foi verificada para o coeficiente de transferência de calor. Esse último resultado é particularmente interessante porque Erdogdu et al. (2014) determinaram esse parâmetro usando o número Nusselt, enquanto que neste trabalho o mesmo parâmetro foi calculado pela otimização usando o modelo proposto.

Apesar da pequena discrepância entre os valores obtidos para a condutividade térmica (Tabela 4.1), esses valores foram significativamente diferentes do valor da literatura. Por exemplo, usando a equação empírica fornecida por ASHRAE (1993) para a condutividade térmica (k = 0,148 + 0,493 MC), essa propriedade é igual a 0,523 W m⁻¹ K⁻¹ para a polpa de banana com um teor de umidade (MC) de 0,76. Por outro lado, ASHRAE (1993) também forneceu uma equação empírica para o calor específico ($c_p = 1381 + 2930 MC$), o que resultou em 3608 J kg⁻¹ K⁻¹. Resultados semelhantes também foram obtidos usando as expressões empíricas propostas por Fricke e Becker (2001). No entanto, esses valores acima mencionados para condutividade e calor específico, obtidos na literatura, foram significativamente diferentes dos apresentados no presente trabalho. De acordo com Erdogdu et al. (2014), esse desacordo se refere à casca da banana, uma vez que a casca não foi considerada pelo ASHRAE (1993) e também por Fricke e Becker (2001), entre outros autores.

Para banana madura com casca, o ajuste entre a curva simulada pelo modelo proposto e os pontos experimentais, visto na Figura 4.4, pode ser dado pelos seguintes indicadores estatísticos: coeficiente de determinação, $R^2 = 0,999955$; e qui-quadrado, $\chi^2 = 3,5484 \times 10^{-2}$. Um indicador estatístico adicional (*F-test*) foi apresentado por Yu et al. (2015) durante a determinação das propriedades térmicas das sementes de canola armazenadas, adicionando informações ao valor obtido para o qui-quadrado. Seguindo os argumentos desses autores, foi calculado o *F-test* (*Fisher-Snedecor*), com F = 5,3986 × 10⁵, indicando que, para 2 parâmetros de ajuste e 29 pontos experimentais, P(F) = 0,0. De acordo com Silva et al. (2018), esses indicadores estatísticos podem ser considerados bons. Como uma informação adicional, o gráfico apresentado na Figura 4.4 foi criado pelo mesmo *solver* desenvolvido para simular a cinética de resfriamento para determinados valores de α e *h*.

Na Figura 4.5 é apresentada a cinética de resfriamento no centro (0,0) e na superfície (20,0) do cilindro finito que representa a banana com casca. O modelo proposto permite determinar a maior diferença entre essas duas curvas, que é 1,72 °C, no instante t = 9,7 min ($T_{centro} = 21,27$ °C e $T_{limite} = 19,55$ °C). Por outro lado, uma observação da Figura 4.5 indica a proximidade entre as duas linhas que representam as simulações da cinética de resfriamento (centro e superfície), o que é explicado pelo baixo número de Biot obtido para a geometria cilíndrica, Bi_c , visto na Tabela 4.1. Além disso, uma inspeção na Figura 4.6(b) permite observar que, em cada círculo, as temperaturas no centro e na superfície não são tão diferentes, e esse

fato também deve ser previsto devido ao baixo número de Biot para o cilindro ($Bi_c = 0,301$). A mesma figura verifica-se que, em t = 20,4 min, apenas nos círculos localizados perto da extremidade, as distribuições de temperatura são significativamente diferentes daquelas em círculos localizadas na região central. Essa observação ajuda a entender os bons resultados obtidos com o modelo unidimensional.

É claro que a polpa e a casca das bananas não constituem um meio homogêneo, em essência. No entanto, como foi observado por Silva et al. (2013b), para considerar meios heterogêneos, uma solução analítica pode ser inapropriada para descrever o processo de resfriamento, que pode ser melhor descrito por soluções numéricas. No entanto, mesmo nestes casos, o estudo apresentado neste trabalho é útil porque, através do modelo proposto, os resultados obtidos servem como valores iniciais para outros processos de otimização envolvendo uma solução numérica para a equação de difusão.

Para o pepino, é interessante observar na Tabela 4.5 que o resultado apresentado para condutividade, concorda com o valor obtido pela equação empírica para a condutividade térmica (k = 0, 148 + 0, 493 X) que é k = 0,62 W m⁻¹ k ⁻¹, havendo uma discrepância de apenas 3% entre os dois valores. Os indicadores estatísticos de qui-quadrado e de coeficiente de determinação para o resultado apresentado na Figura 4.27 são: $R^2 = 0,9991$ e qui-quadrado, $\chi^2 = 2,6981 \times 10^{-3}$. Silva et al. (2012a), utilizando um modelo de análise unidimensional e uma técnica chamada de OREP, obteve $\alpha = 1,47 \times 10^{-7} \text{ m}^2 \text{ s}^{-1}$ e $h = 6,39 \times 10^{-6} \text{ m}^2 \text{ s}^{-1}$ para o mesmo conjunto de dados utilizado neste trabalho. Esses valores são compatíveis com o modelo analítico bidimensional proposto, que obteve os seguintes resultados $\alpha = (1,48 \pm 0,12) \times 10^{-7} \text{ m}^2 \text{ s}^{-1}$ e $h = (6,35 \pm 0,25) \times 10^{-6} \text{ m}^2 \text{ s}^{-1}$, com nível de confiança de 95,4%.

Quanto à determinação do calor específico, um aspecto importante a ressaltar nos procedimentos experimentais, foi o fato de se fragmentar a cenoura em pedações bem pequenos (Figura (3.5c)) o que contribuiu para uma rápida migração interna de calor, após a imersão, possibilitando determinar as temperaturas T_q e T_f supondo que as duas temperaturas possam ser calculadas por extrapolação, ambas "no mesmo instante". Deve-se observar que o único instrumento sofisticado utilizado foi o termômetro digital que permitiu uma aquisição automática de dados, entretanto, os demais materiais utilizados no experimento são de custo reduzido, garantindo mesmo assim resultados favoráveis. Alguns aspectos físicos não foram levados em consideração nos cálculos para determinar o valor do calor específico, como por exemplo, a evaporação da água no recipiente durante o resfriamento e os erros sistemáticos introduzidos pelos instrumentos de medida. Entretanto, o resultado obtido para o calor específico $c_{ce} = (4130,0 \pm 197)$ KJ Kg⁻¹ K⁻¹ apresenta uma margem de erro que é compatível com o valor obtido pela Equação (3.1): $c_{ce} = 3997$ KJ Kg⁻¹ K⁻¹. Além disso, a metodologia proposta permitiu estimar uma incerteza para o valor obtido para essa propriedade.

O fato de se utilizar um frigobar comercial, sem um controlador de temperatura preciso, no resfriamento das peças de cenoura e macaxeira, fez com que os experimentos fossem realizados repetidas vezes. Apesar de todos os artifícios utilizados, como por exemplo, o de colocar água no interior do equipamento, na tentativa de obter uma temperatura de equilíbrio sem muitas variações, recomenda-se a utilização de um equipamento com um controlador de temperatura de melhor qualidade.

CAPÍTULO 5 - CONCLUSÕES E SUGESTÕES PARA FUTUROS TRABALHOS

5.1 Conclusões

O modelo proposto é adequado para descrever a condução de calor em produtos com a geometria de um cilindro finito (com comprimento *L* e raio *R*), em que a condição de contorno é do terceiro tipo. Além disso, a solução analítica para a equação de difusão também apresenta bons resultados para um cilindro infinito (estabelecendo L >> R) e também para uma parede infinita (estabelecendo L << R).

A partir dos resultados obtidos para os coeficientes de transferência convectiva de calor, pode-se concluir que a resistência superficial ao fluxo de calor deve ser considerada, ou seja, as condições de contorno apropriadas são realmente do terceiro tipo, ao descrever o resfriamento de banana inteira com casca e das peças de cenoura, macaxeira e pepino. Por outro lado, o valor da difusividade térmica das bananas com casca obtida neste trabalho, considerando o modelo proposto ($\alpha = 1,45 \times 10^{-7} \text{ m}^2 \text{ s}^{-1}$), é ligeiramente inferior ao valor obtido na literatura ($\alpha = 1,50 \times 10^{-7} \text{ m}^2 \text{ s}^{-1}$), considerando o modelo simplificado (método com cilindro infinito e inclinação). Assim, o efeito geométrico e a técnica de otimização para determinar parâmetros tornam-se importantes, se for necessária maior precisão nos cálculos.

Os resultados obtidos para os valores da difusividade térmica da cenoura ($\alpha = 1,43 \times 10^{-7}$ m² s⁻¹) e da macaxeira ($\alpha = 1,26 \times 10^{-7}$ m² s⁻¹) pelo modelo proposto mostram-se coerentes com

os valores obtidos a partir da estimativa através da correlação de Riedel ($\alpha = 1,42 \ge 10^{-7} \text{ m}^2 \text{ s}^{-1}$); entretanto, através da metodologia proposta neste trabalho, é possível determinar as incertezas dos valores obtidos. Para o pepino, os resultados obtidos para os valores médios dos parâmetros ($\alpha = 1,48 \ge 10^{-7} \text{ m}^2 \text{ s}^{-1}$) são compatíveis com os da literatura ($\alpha = 1,47 \ge 10^{-7} \text{ m}^2 \text{ s}^{-1}$), e os indicadores estatísticos qui-quadrado e coeficiente de determinação foram $\chi^2 = 2,6981 \ge 10^{-3}$ e R² = 0,9991.

Foi proposta ainda deste trabalho a adaptação do experimento proposto em Silva et al. (2003) para encontrar o calor específico da cenoura. Essa técnica possibilita, utilizando instrumentos de baixo custo, determinar não só o valor médio do calor específico, mas também a incerteza desse valor médio, por propagação de erros. Valores obtidos experimentalmente na análise dos dados mostram-se coerentes com àqueles previstos pela teoria, como por exemplo, o valor $T_q = 50,63$ °C, no tempo t = 1640 s, obtido por extrapolação, sendo coerente com o valor obtido experimentalmente T = 50,6 °C no mesmo instante. O valor obtido para o calor específico $c_{ce} = (4130,0 \pm 197)$ KJ Kg⁻¹ K⁻¹ com a margem de erro condiz com o valor obtido pela Equação (3.1): $c_{ce} = 3997$ KJ Kg⁻¹ K⁻¹.

5.2 Sugestões para futuros trabalhos

Como sugestão para futuras pesquisas pode-se citar:

- Aplicar a metodologia proposta para outros produtos agrícolas com geometria cilíndrica;
- Fazer simulações de resfriamento em outras faixas de temperatura para os produtos cilíndricos aplicados nesta pesquisa;
- Fazer outras simulações de resfriamento considerando teores de umidade diferentes para um mesmo produto;
- Aplicar a metodologia proposta para pasteurização de produtos acondicionados em recipiente em formato cilíndrico;

- Considerar que os parâmetros termofísicos e as dimensões do domínio sejam variáveis ao longo do processo e aplicar a solução numérica bidimensional para os produtos com geometria cilíndrica, utilizando parte da metodologia proposta;
- Considerar as geometrias irregulares dos produtos aplicados nesta pesquisa e utilizar coordenadas generalizadas.

REFERÊNCIAS BIBLIOGRÁFICAS

ABBASNEZHAD, B., HAMDAMI, N., MONTEAU, J.Y., VATANKHAH, H. Numerical modeling of heat transfer and pasteurizing value during thermal processing of intact egg. **Food Science & Nutrition**, v. 4, n. 1, p. 42-49, 2016.

ALBUQUERQUE, J.A.A., SEDIYAMA, T., SILVA, A.A., ALVES, J.M.A., FINOTO, E.L., NETO, F.A., SILVA, G.R. Desenvolvimento da cultura de mandioca sob interferência de plantas daninhas. **Planta Daninha**, v. 30, n. 1, p. 37-45, 2012.

ANDRADE, B.A., PERIUS, D.B., MATTOS, N.V., LUVIELMO, M.M., MELLADO, M.S. Produção de farinha de banana verde (*Musa* spp.) para aplicação em pão de trigo integral. **Brazilian Journal of Food Technology**, v.21, e2016055, 2017.

ARAÚJO, P.M. Estudo da desidratação osmótica da cenoura (*Daucus carota* L.) em fatias. 2010. 122f. Dissertação (Mestrado em Engenharia Química) – Universidade Federal do Rio Grande do Norte, Natal – RN, 2010.

ASHRAE. **Handbook of fundamentals**. Atlanta: American Society of Heating, Refrigerating and Air Conditioning Engineers, 1993.

ATAÍDE, J.S.P. Transferência de calor durante o processo de pasteurização de polpas de frutas armazenadas em recipientes obtidos por revolução de áreas planas. 2014. 259f. Tese

(Doutorado em Engenharia de Processos) – Universidade Federal de Campina Grande, Campina Grande – PB, 2014.

BAIRI, A., LARAQI, N., GARCÍA DE MARÍA, J.M. Determination of thermal diffusivity of foods using 1D Fourier cylindrical solution. **Journal of Food Engineering,** v. 78, n. 2, p. 669–675, 2007.

BART-PLANGE, A., ADDO, A., OFORI, H., ASARE, V. Thermal properties of Gros Michel banana grown in Ghana. **ARPN Journal of Engineering and Applied Sciences**, v. 7, n. 4, p. 478-484, 2012.

BASEDIYA L. A., SAMUEL D.V.K., BEERA, V. Evaporative cooling system for storage of fruits and vegetables – a review. **Journal of Food Science and Technology**, v. 50, n.3, p. 429-442, 2011.

BECKER, B.R., FRICKE, B.A. Hydrocooling time estimation methods. International Communications in Heat and Mass Transfer, v. 29, n. 2, p.165-174, 2002.

BETTA, G., RINALDI, M., BARBANTI, D., MASSINI, R. A quick method for thermal diffusivity estimation: Application to several foods. **Journal of Food Engineering,** v. 91, n. 1, p. 34–41, 2009.

BROSNAN, T., SUN, Da-Wen. Precooling techniques and applications for horticultural products – a review. **International Journal of Refrigeration**, v.24, p. 154-170, 2001.

CANTWEL, M. Postharvest handling systems: minimally processed fruits and vegetables. In: Kader, A.A., (Ed). **Postharvest technology of horticultural crops**. 2. Davis: University of California, Division of horticultural and natural resources, 1992, p. 273-281.

CARBONERA, L., CARCIOFI, B.M., HUBER, E., LAURINDO, J.B. Determinação experimental da difusividade térmica de uma massa de tomate comercial. **Brazilian Journal of Food Technology**, v. 6, n. 2, p. 285-290, 2003.

CARVALHO, A.D.F., AMARO, G.B., LOPES, J.F., VILELA, N.J., FILHO, M.M., ANDRADE, R. **A cultura do pepino**. Brasília, DF: Embrapa Hortaliças, Circular Técnica, v. 113, p. 1-18, 2013.

CARVALHO, J.D.S., GOUVÊA, F.S., FERREIRA, E.H.R., BARBOSA, M.I.M.J., JUNIOR, J.L.B. Caracterização química, qualidade microbiológica e aspectos nutricionais de picles elaborados com pepino (*Cucumis sativus* L.) e com nabo (*Brassica campestres* L. var. rapa) orgânicos produzidos por agricultores familiares). **Revista Verde de Agrotecnologia e Desenvolvimento Sustentável**, v. 9, n. 1, p. 222-228, 2014.

CENCI, S.A. Boas práticas de pós-colheita de frutas e hortaliças na agricultura familiar. In: NASCIMENTO NETO, F. do (Org). **Recomendações básicas para a aplicação das boas práticas agropecuárias e de fabricação na agricultura familiar**. Brasília, D.F: Embrapa Informação Tecnológica, 2006, cap. 3, p. 65-80.

CHAPRA, S.C., CANALE, R.P. Métodos numéricos para engenharia. 5 ed. São Paulo: McGraw-Hill, 2008.

CHITARRA, M.I.F., CHITARRA, A.B. Pós-colheita de frutos e hortaliças: Fisiologia e Manuseio. Lavras: ESAL/FAEPE, 2005.

CORRALLO, M.V., JUNQUEIRA, A.C, SHULER, T.E., Ciclo de modelagem associado à automatização de experimentos com o Arduino: uma proposta para formação continuada de professores. **Caderno Brasileiro de Ensino de Física**, v. 35, n. 2, p. 634-659, 2018.

COUTO, E.M. **Caracterização de cultivares de mandioca do semi-árido mineiro em quarto épocas de colheita**. 2013. 117f. Tese (Doutorado em Ciência dos Alimentos), Universidade Federal de Lavras, Minas Gerais, 2013.

CRANK, J. The mathematics of diffusion. Oxford, UK: Clarendon Press, 1992.

CUESTA, F.J, ALVAREZ, M.D. Mathematical modelling for heat conduction in stone fruits. **International Journal of Refrigeration**, v.80, p.120-129, 2017.

DA SILVA, W.P., SILVA, C.M.D.P.S. Calculation of the convective heat transfer coefficient and thermal diffusivity of cucumbers using numerical simulation and the inverse method. **Journal of Food Science and Technology**, v. 51, n. 9, p. 1750–1761, 2014.

DAVEY, K.R. Development and illustration of a computationally convenient App for simulation of transient cooling of fish in ice slurry at sea. **LWT - Food Science and Technology**, v. 60, n.1, p. 308-314, 2015.

DICKERSON, R.W. An apparatus for the measurement of thermal diffusivity of foods. **Food Technology**, v.5, n.19, p. 198-204, 1965.

DINCER, I. Transient heat transfer analysis in air cooling of individual spherical products. **Journal of Food Engineering,** v. 26, n.4, p. 453–467, 1995.

DINCER, I. Determination of thermal diffusivities of cylindrical bodies being cooled. **International Communication in Heat Mass,** v. 23, n. 5, p. 713–720, 1996.

ERDOGDU, F., BALABAN, M.O., CHAU, K.V. Automation of heat transfer coefficient determination: Development of a Windows-based software tool. **Food Technology in Turkey**, v. 3, n 10, p. 66-75, 1998.

ERDOGDU, F. A review on simultaneous determination of thermal diffusivity and heat transfer coefficient. **Journal of Food Engineering,** v. 86, n. 3, p. 453–459, 2008.

ERDOGDU, F., LINKE, M., PRAEGER, U., GEYER, M., SCHLÜTER, O. Experimental determination of thermal conductivity and thermal diffusivity of whole green (unripe) and yellow (ripe) Cavendish bananas under cooling conditions. **Journal of Food Engineering**, v. 128, p. 46–52, 2014.

FARIAS, S.N. Secagem de sólidos esferoidais usando o método de Galerkin. 2002. 60 f. Dissertação (Mestrado em Engenharia Mecânica) – Universidade Federal da Paraíba, Campina Grande – PB, 2002.

FARIAS, V.S. O. Difusão 3D em sólidos com forma arbitrária usando coordenadas generalizadas. 2011. 265 f. Tese (Doutorado em Engenharia de Processos) – Universidade Federal de Campina Grande, Campina Grande – PB, 2011.

FASINA, O.O., FLEMING, H.P. Heat transfer characteristics of cucumbers during blanching. Journal of Food Engineering, v. 47, n. 3, p. 203–210, 2001.

FELLOWS, P. Food processing technology: principles and practice. 2. ed. CRC, 2006.

FENNEMA, O.R., DAMODARAN, S., PARKIM, K.L. Química de alimentos de **FENNEMA**. 4 ed.. Porto Alegre: Artmed, 2010. 900 p.

FIOREZE, R. **Princípios de secagem de produtos biológicos**. João Pessoa: Editora Universitária – UFPB, 2004, 229 p.

FIKIIN, K.A. Generalized numerical modelling of unsteady heat transfer during cooling and freezing using an improved enthalpy method and quase-one-dimensional formulation. **International Journal of Refrigeration**, v.19, n.2, p. 132-140, 1996.

FRANCO, M.L.R.S., VIEGAS, E.M.M., KRONKA, S.N., VIDOTTI, R.M., ASSANO, M., GASPARINO, E. Effects of hot and cold smoking processes on organoleptic properties, yield and composition of matrinxa fillet. **Revista Brasileira de Zootecnia**, v. 39, n.4, p. 695-700, 2010.

FRICKE, B.A., BECKER, B.R. Evaluation of thermophysical property models for foods. **HVAC&R Research**, v. 7, n. 4, p. 311-330, 2001.

FUCHS, F., DOSSA, D. Cenoura: produção, mercado e preços na CEASA – PR. **Boletim Técnico CEASA – PR**., v. 04, p. 1-8, 2017.

GAVA, A.J. Princípios de tecnologia de alimentos. 2. ed.. São Paulo: Nobel, 2009.

GLAVINA, M.Y., DI SCALA, K.C., ANSORENA, R., DEL VALLE, C.E. Estimation of thermal diffusivity of foods using transfer functions. **LWT Food Science and Technology**, v. 39, n. 5, p. 455–459, 2006.

GUIMARÃES, I.C., MENEZES, E.G.T., RODRIGUES, L.F., RODRIGUES, A.C., MONTEIRO, A.G.D.P., REIS, K.C., BOAS, E.V.B.V. Filme comestível à base de amido e micro/nanofibrilas de celulose de cenoura prolonga a vida útil de cenoura minimamente processada. **Boletim do CEPPA**, v. 34, n. 1, p. 85-110, 2016.

HACIHAFIZOGLU, O., CIHAN, A., KAHVECI, K., LIMA, A.G.B. A liquid diffusion model for thin-layer drying of rough rice. **European Food Research and Technology**, v. 226, n. 4, p. 787-793, 2008.

HENRIQUES, F.S.S.C. Efeito da secagem sobre as propriedades das cucurbitáceas. 2012.
89 f. Dissertação (Mestrado em Qualidade e Tecnologia Alimentar). Escola Superior Agrária do Instituto Politécnico de Viseu, Viseu, 2012.

HONG, Y.K., HUANG, L., YOON, W.B., LIU, F., TANG, J. Mathematical modeling and Monte Carlo simulation of thermal inactivation of non-proteolytic Clostridium botulinum spores during continuous microwave- assisted pasteurization. **Journal of Food Engineering**, v. 190, n.1, p. 61-71, 2016.

HUANG, L. Computer simulation of heat transfer during in-package pasteurization of beef frankfurters by hot water immersion. **Journal of Food Engineering**, v. 80, n. 3, p. 839-849, 2007.

IBARZ, A., BARBOSA-CÁNOVAS, G.V. **Operaciones unitarias em la ingeneria de alimentos**. Lancaster: Technomic Publishing Company, Inc. 1999. 882p.

INCROPERA, F.P., DEWITT, D.P., BERGMAN, T.L., LAVINE, A.S. Fundamentos de transferência de calor e massa. Tradução e revisão técnica de Eduardo Mach Queiroz e Fernando Luiz Pellegrini Pessoa. 6. ed. Rio de Janeiro: LTC, 2013. 622 p.

ISRAELI, Y., LAHAV, E. Encyclopedia of applied plant sciences, 2nd ed., v. 3, p. 363-381, 2017.

JANICK, J. Horticultural science, 4th ed., New York: Free-man WH, p. 550-551, 1986.

JEDERMANN, R., GEYER, M., PRAEGER, U., LANG, W. Sea transport of bananas in containers – Parameter identification for a temperature model. **Journal of Food Engineering**, v. 115, n. 3, p. 330-338, 2013.

KIZILTAS, S., ERDOGDU, F., PALAZOGLU, T.K. Simulation of heat transfer for solidliquid mixtures in cans and model validation under pasteurization conditions. **Journal of Food Engineering**, v. 97, n. 4, p. 449-456, 2010. KORESE, J. K., STURM, B., ROMÁN, F., HENSEL, O. Simulation of transient heat transfer during cooling and heating of whole sweet potato (*Ipomoea batatas* (L). Lam.) roots under forced-air conditions. **Applied Thermal Engineering**, v. 111, p. 1171-1178, 2016.

KUMAR, R., KUMAR, A., MURTHY, U.N. Heat transfer during forced air precooling of perishable food products. **Biosystems Engineering**, v. 99, n. 2, p. 228-233, 2008.

LEITE, J.C.A. Cinética de resfriamento e caracterização física da manga (*Mangifera indica*L.) variedade Tommy Atkins. 2005. 107 f. Dissertação (Mestrado em Engenharia Agrícola) Universidade Federal de Campina Grande, Campina Grande, 2005.

LE NILIOT, C., LEFÈVRE, F. A parameter estimation approach to solve the inverse problem of point heat sources identification. **International Journal of Heat and Mass Transfer**, v. 47, n. 4, p. 827–841, 2004.

LESSI, E. Tecnologia do pescado. In: Seminário sobre tecnologia salga e defumação de pescado. 1995. Anais..., Campinas-SP, p. 14-17, 1995.

LEVENBERG, K. A method for the solution of certain problems in least squares. **Quarterly** of Applied Mathematics, v 2, n 2, p.164-168, 1944.

LIMA, D. R.; FARIAS, S. N.; LIMA, A. G. B. Heat and mass transfer inside oblato and prolate spheroids: an exact solution. **Proceedings of the 14th International Drying Symposium**, (IDS 2004) São Paulo, Brasil, August 22-25, p. 493-500, 2004.

LUIKOV, A.V. Analytical heat diffusion theory. Academic Press, Inc., Ltd., London, 1968, 685 p.

MALISKA, C. R. **Transferência de calor e mecânica dos fluidos computacional**. LTC Editora S.A., Rio de Janeiro, 2004, 453 p.

MARCOTTE, M., CHEN, C.R., GRABOWSKI, S., RAMASWAMY, H.S., PIETTE, J.P.G. Modelling of cooking-cooling processes for meat and poultry products. **International Journal of Food Science and Technology**, v. 43, n. 4, p. 673–684, 2008.

MARIANI, V.C., LIMA, A.G.B., COELHO, L.S. Apparent thermal diffusivity estimation of the banana during drying using inverse method. **Journal of Food Engineering**, v. 85, p. 569–579, 2008.

MARIANI, V.C., AMARANTE, A.C.C., COELHO, L.S. Estimation of apparent thermal conductivity of carrot purée during freezing using inverse problem. **International Journal of Food Science and Technology**, v. 44, p. 1292–1303, 2009.

MARKOWSKI, M., BIALOBRZEWSKI, I., CIERACH, M., PAULO, A. Determination of thermal diffusivity of Lyoner type sausages during water bath cooking and cooling. **Journal of Food Engineering**, v. 65, n.4, p.591–598, 2004.

MAROULIS, Z.B., KROKIDA, M.K., RAHMAN, M.S.A structural generic model to predict the effective thermal conductivity of fruits and vegetables during drying, **Journal of Food Engineering**, v.52, n. 1, p 47-52, 2002.

MARQUARDT, D.W. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math, v.11, n 2, p. 431e441, 1963.

MARTÍN-RAMOS, P., SUSANO, M., SILVA, P.S.P., SILVA, M.R.S. BYOD for Physics Lab: studying Newton's Law of cooling with a smartphone. In: **Proceedings of the 5th International Conference on Technological Ecosystems for Enhancing Multiculturality**, Cádiz, Spain, 2017.

MATTOS, C., GASPAR, A. Uma medida de calor específico sem calorímetro. **Revista Brasileira de Ensino de Física**, v. 25, n. 1, p. 45–48, 2003.

MERCALI, G.D., SARKIS, J.R., JAESCHKE, D.P., TESSARO, I.C., MARCZAK, L.D.F. Physical properties of acerola and blueberry pulps. **Journal of Food Engineering**, v. 106, n. 4, p. 283-289, 2011.

MONTEIRO, R.L., CARCIOFI, B.A.M., MARSAIOLI Jr, A., LAURINDO, J.B. How to make a microwave vacuum dryer with turntable. **Journal of Food Engineering**, v. 166, n. 1, p. 276– 284, 2015. MORETTI, C.L. **Laboratório de pós-colheita**, Embrapa hortaliças. Disponível em: www.cnph.embrapa.br/public/textos/texto7.html, 2007. Acesso em 22 out. 2013.

MURAMATSU, Y., GREIBY, I., MISHRA, D.K., DOLAN, K.D. Rapid Inverse Method to Measure Thermal Diffusivity of Low-Moisture Foods. **Food Research International**, v.45, n.2, p. 695-699, 2017.

OETTERER, M., REGITANO-D'ARCE, M.A.B., SPOTO, M.H.F. Fundamentos de Ciência e Tecnologia de Alimentos. Barueri – SP: Manole, 2006.

OKADA, M., AGUIRRE, J.M., GASPARINO FILHO, J. Fundamentos sobre a secagem de sólidos. In: **Desidratação de Frutas e Hortaliças**. Campinas: ITAL, p.1.1-1.10, 2002.

ORDÓÑEZ, J. A. **Tecnologia de alimentos – Componente dos alimentos e processos**. Porto Alegre – RS: Editora Artmed, v.1, 2005.

PASSOS, F.R., ALVES, L.C., MENDES, F.Q., ROCHA, K.R.O., RIBEIRO, L., PEREIRA, G.F., SILVA, T.O., ALCÂNTRA, V.C. Produção de etanol a partir dos subprodutos de cenoura. **Revista de Ciências Agrárias**, v.40, n.1, p.03-11, 2017.

PATANKAR, S.V. Numerical heat transfer and fluid flow. New York: Hemisphere Publishing Corporation, 1980, 197 p.

PBMH - PROGRAMA BRASILEIRO PARA A MODERNIZAÇÃO DA HORTICULTURA. **Normas de Classificação do Pepino**. Centro de Qualidade em Horticultura. São Paulo: CQH/CEAGESP, 2003. (CQH.Documentos, 23).

PBMH E PIF - PROGRAMA BRASILEIRO PARA A MODERNIZAÇÃO DA HORTICULTURA & PRODUÇÃO INTEGRADA DE FRUTAS. Normas de Classificação de Banana. São Paulo: CEAGESP, 2006. (Documentos, 29).

PESSÔA, P.M. Estudo teórico do resfriamento de frutas com forma arbitrária usando o método integral baseado em Galerkin. 2010. 67f. Dissertação (Mestrado em Engenharia Agrícola) - Universidade Federal de Campina Grande, Campina Grande, 2010.

POTTER, N. N. Food Science, 4. ed. New York: Chapman e Hall, 1986. 735 p.

PLAZL, I., LAKNER, M., KOLOINI, T. Modeling of temperature distributions in canned tomato based dip during industrial pasteurization. **Journal of Food Engineering**, v.75, n. 3, p. 400–406, 2006.

PUSCHMANN, R., COSTA, F.B., SIMÕES, A.N., SILVA, E.O. História e atualidades sobre pesquisa com processamento mínimo de frutas e hortaliças no Brasil. In: Encontro Nacional sobre Processamento Mínimo de Frutos e Hortaliças, In: 4 Simpósio Ibero-Americano de Vegetais Frescos e Cortados, 1. **Anais**... São Pedro: USP/ESALQ, 2006.

QUEIROZ, R.A. Modelagem e simulação do resfriamento do leito de frutas não climatéricas com ar forçado, estudo de caso: laranja valência. 2016. 123f. Dissertação (Mestrado em Engenharia Mecânica). Universidade Federal de Campina Grande, Campina Grande, 2016.

RAHMAN, M.S., CHEN, X.D., PERERA, C.O. An improved thermal conductivity prediction model for fruits and vegetables as a function of temperature, water content and porosity. **Journal of Food Engineering**, v. 31, n. 2, p. 163-170, 1997.

RAVAL, A.H., SOLANKI, S.C., YADAV, R. A simplified heat transfer model for predicting temperature change inside food package kept in cold room. **Journal of Food Engineering**, v. 50, n. 2, p. 257-265, 2011.

REDDING, G.P., YANG, A., SHIM, Y.M., OLATUNJI, J., EAST, A. A review of the use and design of produce simulators for horticultural forced-air cooling studies. **Journal of Food Engineering**, v. 190, p. 80-93, 2016.

REINHEIMER, M.A., MUSSATI, S.F., SCENNA, N.J. Hard candy cooling: Optimization of operating policies considering product quality. **Journal of Food Engineering**, v. 118, p. 141-149, 2013.

RESENDE, J.M., COELHO, A.F.S., CASTRO, E.C., SAGGIN JÚNIOR, O.J., NASCIMENTO, T., BENEDETTI, B.C. Modificações sensoriais em cenoura minimamente processada e armazenada sob refrigeração. **Horticultura Brasileira**, v.22, n.1, p. 147-150, 2004.

RINALDI, M., CHIAVARO, E., GOZZI, E., MASSINI, R. Simulation and experimental validation of simultaneous heat and mass transfer for cooking process of Mortadella Bologna PGI. International Journal of Food Science and Technology, v. 46, n. 3, p. 586–593, 2011.

RINALDI, M.M., VIEIRA, E.A., FIALHO, J.F., MALAQUIAS, J.V. Efeito de diferentes formas de congelamento sobre raízes de mandioca. **Brazilian Journal of Food Technology**, v. 18, n. 2, p. 93-101, 2015.

SALTVEIT, M.E. Fresh-cut product biology. In: Fresh-cut products. California: Davis, 1998.

SAMIRA, A., WOLDETSADIK, K., WORKNEH, T.S. Postharvest quality and shelf life of some hot pepper varieties. Journal of Food Engineering, v. 50, n. 5, p. 842-855, 2011.

SANTOS, E.L., LUDKE, M.C.M.M., RAMOS, A.M.P., BARBOSA, J.M., LUDKE, J.V., RABELLO, C.B.V. Digestibilidade de subprodutos da mandioca para a Tilápia do Nilo. **Revista Brasileira de Ciências Agrárias**, v. 4, n. 3, p. 358-362, 2009.

SIAS, D.B., RIBEIRO-TEIXEIRA, R.M. Resfriamento de um corpo: aquisição automática de dados propiciando discussões conceituais no laboratório didático de física no ensino médio. **Caderno Brasileiro de Ensino de Física**, v. 23, n. 3, p. 360–381, 2006.

SILVA, A.A., NASCIMENTO, J.J.S.; LIMA, A.G.B. Estudo analítico de secagem de placas cerâmicas usando o método integral baseado em Galerkin e condição de contorno de Dirichlet, **Revista Eletrônica de Materiais e Processo**, v. 4, n. 2, p. 48- 55, 2009. Disponível em: http://www.dema.ufcg.edu.br/revista. Acesso em: 03 nov. 2010.

SILVA, C.M.D.P.S. Ferramentas analíticas e numéricas para a descrição da secagem de sólidos na forma de cilindros e de elipsóides. 2012. 254 f. Tese (Doutorado em Engenharia de Processos), Universidade Federal de Campina Grande, Campina Grande, 2012.

SILVA, F.V.M., GIBBS, P.A. Thermal pasteurization requirements for the inactivation of Salmonella. **Food Research International**, v.45, n.2, p. 695-699, 2012.

SILVA, J.A. Tópicos da Tecnologia de Alimentos. São Paulo – SP: Livraria Varela, 2000.

SILVA, L.D. Técnicas analíticas e numéricas para a secagem de sólido na forma de paralelepípedo: Uma abordagem tridimensional. 2012. 182 f. Tese (Doutorado em Engenharia de Processos) – Universidade Federal de Campina Grande, Campina Grande, 2012.

SILVA, W.P., PRECKER, J.W., SILVA, C.M.D.P.S., SILVA, D.D.P.S., SILVA, C.D.P.S. Medida de calor específico e lei de resfriamento de Newton: um refinamento na análise dos dados experimentais. **Revista Brasileira de Ensino de Física**, v. 25, n. 4, p. 392-397, 2003.

SILVA, W.P., SILVA, C.M.D.P.S, SILVA, D.D.P.S., SILVA, C.D.P.S., LIMA, A.G.B. Determinação de funções aproximadas para a solução numérica de uma equação diferencial ordinária. **Revista da Faculdade de Engenharia UCV**, v. 21, n. 2, p. 29-37, 2006.

SILVA, W.P., SILVA, C.M.D.P.S. Lab fit curve fitting software, v.7.2.50, disponível em http://zeus.df.ufcg.edu.br/labfit/, 2009.

SILVA, W.P., SILVA, C.M.D.P.S., FARIAS, V.S.O., SILVA, D.D.P.S. Calculation of the convective heat transfer coefficient and cooling kinetics of an individual fig fruit. **Heat and Mass Transfer**, v. 46, n. 3, p.371–380, 2010.

SILVA, W.P., SILVA, C.M.D.P.S. **xyExtract Graph Digitizer**, v 5.1, disponível em http://zeus.df.ufcg.edu.br/labfit/inde xyExtract.htm, 2011.

SILVA, W.P., SILVA, C.M.D.P.S., LINS, M.A.A. Determination of expressions for the thermal diffusivity of canned foodstuffs by the inverse method and numerical simulations of heat penetration. **International Journal of Food Science and Technology**, v. 46, n. 4, p. 811–818, 2011a.

SILVA, W.P., CARMO, J.E.F., SILVA, C.M.D.P.S., ARAGÃO, R.F. Determination of convective heat transfer coefficient during cooling of an individual strawberry fruit using different methods. **International Review of Chemical Engineering**, v. 3, n. 2, p.233–240, 2011b.

SILVA, W.P., SILVA, C.M.D.P.S., NASCIMENTO, P.L., CARMO, J.E.F., SILVA, D.D.P.S., 2011c. Influence of the geometry on the numerical simulation of the cooling kinetics of cucumbers. **Spanish Journal of Agricultural Research**, v. 9, n. 1, p. 242–251, 2011c.

SILVA, W.P., SILVA, C.M., GAMA, F.J. An improved technique for determining transport parameters in cooling processes. **Journal of Food Engineering**, v. 111, p. 394–402, 2012a.

SILVA, W.P., SILVA, C.M.D.P.S., SILVA, L.D., LINS, M.A.A. Modeling of water transport in roof tiles by removal of moisture at isothermal conditions. **Heat Mass Transfer**. v. 48, p. 809–821, 2012b.

SILVA, W.P., AMARAL, D.S., DUARTE, M.E.M., MATA, M.E.R.M.C., Silva, C.M.D.P.S., Pinheiro, R.M.M., Pessoa, T. Description of the osmotic dehydration and convective drying of coconut (Cocos nucifera L.) pieces: A three-dimensional approach. Journal of Food Engineering, v. 115, n. 1, p. 121–131, 2013a.

SILVA, W.P., SILVA, C.M.D.P.S., GOMES, J.P. Drying description of cylindrical pieces of bananas in different temperatures using diffusion models. **Journal of Food Engineering**, v. 117, n. 3, p. 417–424, 2013b.

SILVA, W.P., SILVA, C.M.D.P.S., GAMA, F.J.A. Estimation of thermos-physical properties of products with cylindrical shape during drying: The coupling between mass and heat. **Journal of Food Engineering**, v. 141, n. 1, p. 65-73, 2014a.

SILVA, W.P., SILVA, C.M.D.P.S., LINS, M.A.A., COSTA, W.S. Optimal removal of experimental points to determine apparent thermal diffusivity of canned products. **International Journal of Food Engineering**, v. 10, n. 2, p. 223–231, 2014b.

SILVA, W.P., SILVA, C.M.D.P.S., GOMES, J.P. Comparison of diffusion models for description of osmotic dehydration of radish slices dipped in brine. **Engenharia Agrícola**, v. 35, n. 5, p. 894-904, 2015.

SILVA, W.P., RODRIGUES, A.F., SILVA, C.M.D.P.S., GOMES, J.P. Numerical approach to describe continuous and intermittent drying including the tempering period: Kinetics and spatial distribution of Moisture. **Drying Technology**, v. 35, n. 3, p. 272–280, 2016.

SILVA, W.P., ATAÍDE, J.S.P., OLIVEIRA, M.E.G., SILVA, C.M.D.P.S., NUNES, J.S. Heat transfer during pasteurization of fruits pulps stored in containers with arbitrary geometries obtained though revolution of flat areas. **Journal of Food Engineering**, v. 217, n. 1, p. 58-67, 2018.

SILVA, W.P., SILVA, C.M.D.P.S. **LS Optimizer**, v 6.2, disponível em http://zeus.df.ufcg.edu.br/labfit/LS.htm, 2017.

TACO, Tabela Brasileira de Composição Química dos Alimentos, Campinas: NEPA/UNICAMP. 2. ed, 2011, 104p.

TERUEL, Medeiros Bárbara Janet. **Estudo teórico-experimental do resfriamento de laranja e banana com ar forçado**. 2000. 209 f. Tese (Doutorado em Engenharia Mecânica) Faculdade de Engenharia Mecânica, Universidade Estadual de Campinas, Campinas, 2000.

TERUEL, B.; KIECKBUSCH, T.; CORTEZ, L. Cooling parameters for fruits and vegetables of diferente sizes in a hydrocooling system. **Scientia Agricola**, Piracicaba, v. 61, n. 6, p. 655-658, nov./dec. 2004.

TRIBESS, T.B.; HERNÁNDEZ-URIBE, J.P.; MÉNDEZ-MONTEALVO, M.G.C.; MENEZES, E.W.; 462 BELLO-PEREZ, L.A.; TADINI, C.C. 2009. Thermal properties and resistant starch 463 content of green banana flour (Musa cavendishii) produced at different drying 464 conditions. **LWT - Food Science and Technology**, v. 42, n. 5, p. 1022-1025, 2009.

UKRAINCZYK, N. Thermal diffusivity estimation using numerical inverse solution for 1 D heat conduction. **International Journal of Heat and Mass Transfer**, v. 52, n. 25–26, p. 5675 - 5681, 2009.

VASCONCELOS, M.A.S., MELO FILHO, A.B. Conservação de alimentos. Recife: EDUFRPE, 2010.

VEIGA, J.P.S., VALLE, T.L., FELTRAN, J.C., BIZZO, W.A. Characterization and productivity of cassava waste and its use as na energy source. **Renewable Energy**, v. 93, p. 691-699, 2016.

VERGAUWEN, D., SMET, I. Down the rabbit hole-carrots, genetics and art. **Trends in Plant Science**, v. 21, n.11, p. 895-898, 2016.

WIJEWARDANE, R. M. N. A., GULERIA, S. P. S. Effect of pre-cooling, fruit coating and packaging on postharvest quality of apple. **Journal of Food Science and Technology**, v. 50, n. 2, p. 325-331, 2011.

XU, Z., WANG, Y., REN, P., NI, P., LIAO, X. Quality of banana during storage: a comparison of high pressure processing and thermal pasteurization methods. **Food Bioprocess Technology**, v. 9, n. 3, p. 407-420, 2015.

YU, D.U., SHRESTHA, B.L., BAIK, O.D. Thermal conductivity, specific heat, thermal diffusivity, and emissivity of stored canola seeds with their temperature and moisture content. **Journal of Food Engineering**, v.165, n. 1, 156–165, 2015.

APÊNDICES

A1. Código de programas

Código A1 – Código para obter as raízes de uma função pelo método da bisseção.

program bissecao_raizes use dfport !variáveis real a,b,tol,int_aux integer n,cont

```
!Leitura dos dados
10 continue
write (*,*) 'Escreva o valor de a'
read (*,*, iostat = ierr) a
if (ierr /= 0) then
write(*,*) 'Erro Leitura!'
goto 10
endif
```

```
20 continue
write (*,*) 'Escreva o valor de b'
read (*,*, iostat = ierr) b
if (ierr /= 0) then
write(*,*) 'Erro Leitura!'
goto 20
endif
```

```
30 continue
write (*,*) 'Escreva o valor da tolerância'
read (*,*, iostat = ierr) tol
if (ierr /= 0) then
write(*,*) 'Erro Leitura!'
goto 30
endif
```
40 continue write (*,*) 'Escreva o número máximo de iterações' read (*,*, iostat = ierr) n if (ierr /= 0) then write(*,*) 'Erro Leitura!' goto 40 endif !Fim da Leitura dos dados !open(unit=3,file='Resultados.TXT')

call bissecao (a,b,tol, n)

!write(3,*) bissecao end program

function bissecao (a, b,tol, n)

```
if((a.GT.b).OR.(F(a).EQ.0).OR.(F(b).EQ.0)) then
    write (*,*)'Intervalo Incorreto!'
endif
cont=0
```

```
do while(cont.NE.n)
cont=cont+1
bissecao = (a+b)/2
```

if (F(a)*F(bissecao).LT.0) then

b = bissecao

else

a = bissecao

endif

```
if((b-a).LT.tol) then
write (*,*)'O resultado aproximado é: ',bissecao
stop
```

endif

write(*,*)'O resultado é: ',bissecao

enddo

write(*,*)'O resultado final é: ',bissecao

return end function bissecao

function F(x)

 $F = 1.504 \cos(x) - x \sin(x)$!parede

!F= 0.301*besj0(x) - x*besj1(x)!cilindro

end function F

Código A2 – Código para obter a temperatura pelo método analítico para um cilindro finito com condição de contorno de terceiro tipo.

program TemperaturaTeste

use dfport

implicit none

double precision An(200), Am(200), B(200), C(200), D(200), E(200)

double precision R, L, raizesC(200), raizesP(200), biotC, biotP, h, alfa, posicaoR, T0, Teq, posicaoY

double precision tempo, temperatura

integer zeros, i, j, k

!abre o arquivo com as raizes obtidas pelo método da bisseção open (unit=1,file='RaizesC.TXT') open (unit=2,file='RaizesP.TXT')

!Aquisição dos dados

!posição radial definida em relação ao eixo central do cilindro finito

posicaoR = 0.0D+00

!Raio do cilindro homogeneo e isotrópico

R = 20.00d-03

Comprimento do cilindro homogeneo e isotrópico

L = 200.00d-03

!Temperatura inicial uniforme

T0 = 22.00d + 00

!Temperatura de equilibrio

Teq = 8.000d+00

!Quantidade de raízes

zeros=200

!Valor da difusividade

alfa = 8.719537190607880E-006

!valor do coeficiente de transferência convectiva de calor

```
h=1.311722585788793E-004
```

!posição axial definida em relação ao eixo central do cilindro finito

posicaoY = 0.00d+00

!número de biot para cilindro infinito

biotC = 0.301

!biotC =h*R/alfa

!número de biot para parede infinita

biotP = 1.504

!biotP = (h*L/2)/alfa

```
!encontrando os coeficientes A<sub>n</sub> e A<sub>m</sub>
do i=1,zeros
        !obtem as raízes dos arquivos e armazena nos vetores
        read(1,*)raizesC(i)
```

 $\label{eq:read} \begin{array}{l} \mbox{read}(2,*)\mbox{raizes} P(i) \\ \mbox{!Solucionando a equação por partes} \\ \mbox{!Achando os valores das parcelas da equação dependentes das raízes} \\ \mbox{An}(i) = 2*\mbox{biot} C/((\mbox{raizes} C(i)**2 + \mbox{biot} C**2)*\mbox{DBESJ0}(\mbox{raizes} C(i))) \\ \mbox{Am}(i) = ((-1)**(i+1))*(2*\mbox{biot} P**(2+2+2+2+2)) \\ \mbox{Am}(i) = ((-1)**(i+1))*(2*\mbox{biot} P**2+2+2+2+2+2+2)) \\ \mbox{B}(i) = \mbox{DBESJ0}(\mbox{raizes} P(i)*(\mbox{biot} P**2+2+2+2+2+2+2+2)) \\ \mbox{B}(i) = \mbox{DBESJ0}(\mbox{raizes} C(i)*(\mbox{posicao} R/R)) \\ \mbox{C}(i) = \mbox{raizes} P(i)*(\mbox{posicao} Y/(\mbox{L}/2)) \\ \mbox{D}(i) = \mbox{raizes} C(i)**2/\mbox{R}**2 \\ \mbox{E}(i) = \mbox{raizes} P(i)*2/(\mbox{L}/2)) \\ \end{array}$

end do

!fechando o arquivo que contem as raízes obtidas pelo método da bisseção

close(1)

close(2)

```
temperatura = 0.0D+00
```

```
tempo = 0.085d+00
```

do k=1,zeros

do j=1,zeros

```
temperatura= temperatura + An(k)*Am(j)*B(k)*COS(C(j))*EXP((-(D(k)+E(j)))*alfa*tempo)
```

end do

end do

```
write(*,*)tempo, Teq+(T0-Teq)*temperatura
```

end

B1. Dados experimentais

Tabela B1 – Dados experimentais do resfriamento (ERDOGDU et al., 2014) da banana madura com casca com R = 20 mm, L = 200 mm, T_0 = 22 °C e T_{eq} = 8 °C

			-		
t (s)	T (°C)	Peso estatístico	t (s)	T (°C)	Peso estatístico
0.000000E+00	0.220102E+02	1	0.172108E+03	0.979644E+01	1
0.216216E+01	0.220102E+02	1	0.187676E+03	0.947837E+01	1
0.389189E+01	0.219466E+02	1	0.201946E+03	0.928753E+01	1
0.562162E+01	0.218193E+02	1	0.217081E+03	0.903308E+01	1
0.735135E+01	0.216285E+02	1	0.227027E+03	0.896947E+01	1
0.908108E+01	0.213740E+02	1	0.240000E+03	0.877863E+01	1
0.112432E+02	0.210560E+02	1			
0.142703E+02	0.206107E+02	1	•		
0.172973E+02	0.201654E+02	1			
0.216216E+02	0.195293E+02	1	•		
0.255135E+02	0.189567E+02	1			
0.302703E+02	0.183842E+02	1			
0.363243E+02	0.176209E+02	1	•		
0.462703E+02	0.164758E+02	1	•		
0.566487E+02	0.154580E+02	1			
0.691892E+02	0.143766E+02	1	•		
0.825946E+02	0.134860E+02	1			
0.960000E+02	0.126590E+02	1	-		
0.108108E+03	0.119593E+02	1			
0.118486E+03	0.115140E+02	1			
0.130595E+03	0.110051E+02	1			
0.142270E+03	0.106234E+02	1			
0.154811E+03	0.102417E+02	1			

Tabela B 1 - Dados experimentais do resfriamento da banana madura com casca.

Tabela B2 – Dados experimentais do resfriamento da cenoura com R = 22 mm, L = 40 mm, T_0 = 19.9 °C e T_{eq} = 3.5 °C

t (s)	T °C	Peso Estatístico	t (s)	T °C	Peso Estatístico
0.0000000E+00	19.90000	1.0	8000.000	6.300000	1.0
320.0000	19.60000	1.0	8320.000	6.100000	1.0
640.0000	19.10000	1.0	8640.000	6.000000	1.0
960.0000	18.10000	1.0	8960.000	5.900000	1.0
1280.000	17.30000	1.0	9280.000	5.700000	1.0
1600.000	16.20000	1.0	9600.000	5.500000	1.0
1920.000	15.20000	1.0	9920.000	5.400000	1.0
2240.000	14.20000	1.0	10240.00	5.400000	1.0
2560.000	13.30000	1.0	10560.00	5.300000	1.0
2880.000	12.90000	1.0	10880.00	5.000000	1.0
3200.000	12.00000	1.0	11200.00	4.900000	1.0
3520.000	11.30000	1.0	11520.00	4.900000	1.0
3840.000	10.70000	1.0	11840.00	4.800000	1.0
4160.000	10.40000	1.0	12160.00	4.900000	1.0
4480.000	9.800000	1.0	12480.00	4.700000	1.0
4800.000	9.300000	1.0	12800.00	4.600000	1.0
5120.000	8.900000	1.0	13120.00	4.500000	1.0
5440.000	8.600000	1.0	13440.00	4.500000	1.0
5760.000	8.200000	1.0	13760.00	4.500000	1.0
6080.000	7.700000	1.0	14080.00	4.300000	1.0
6400.000	7.700000	1.0	14400.00	4.200000	1.0
6720.000	7.300000	1.0	14720.00	4.200000	1.0
7040.000	7.000000	1.0	15040.00	4.400000	1.0
7360.000	6.800000	1.0	15360.00	4.200000	1.0
7680.000	6.600000	1.0	15680.00	4.100000	1.0

Tabela B 2 - Dados experimentais do resfriamento da cenoura.

Tabela B3 – Dados experimentais do resfriamento da macaxeira com R = 28 mm, L = 52 mm, T_0 = 23 °C e T_{eq} = 2.0 °C

t (s)	T (°C)	Peso estatístico	t (s)	T (°C)	Peso estatístico
0.000000E+00	23.00000	1.0	6864.000	7.500000	1.0
264.0000	22.90000	1.0	7128.000	7.200000	1.0
528.0000	22.70000	1.0	7392.000	7.000000	1.0
792.0000	22.40000	1.0	7656.000	6.800000	1.0
1056.000	21.60000	1.0	7920.000	6.500000	1.0
1320.000	20.70000	1.0	8184.000	6.300000	1.0
1584.000	19.80000	1.0	8448.000	6.100000	1.0
1848.000	18.80000	1.0	8712.000	5.800000	1.0
2112.000	17.90000	1.0	8976.000	5.700000	1.0
2376.000	17.00000	1.0	9240.000	5.600000	1.0
2640.000	16.20000	1.0	9504.000	5.400000	1.0
2904.000	15.20000	1.0	9768.000	5.300000	1.0
3168.000	14.40000	1.0	10032.00	5.100000	1.0
3432.000	13.80000	1.0	10296.00	4.900000	1.0
3696.000	13.00000	1.0	10560.00	4.800000	1.0
3960.000	12.30000	1.0	10824.00	4.600000	1.0
4224.000	11.80000	1.0	11088.00	4.500000	1.0
4488.000	11.20000	1.0	11352.00	4.300000	1.0
4752.000	10.70000	1.0	11616.00	4.200000	1.0
5016.000	10.30000	1.0	11880.00	4.100000	1.0
5280.000	9.700000	1.0	12144.00	4.000000	1.0
5544.000	9.200000	1.0	12408.00	3.900000	1.0
5808.000	8.900000	1.0	12672.00	3.800000	1.0
6072.000	8.500000	1.0	12936.00	3.800000	1.0
6336.000	8.000000	1.0	13200.00	3.500000	1.0
6600.000	7.800000	1.0			

Tabela B 3 - Dados experimentais do resfriamento da macaxeira.

Tabela B4 – Dados experimentais do resfriamento do pepino (SILVA et al., 2012a) com R = 0,019 m, L = 0,160 m, T₀ = 22 °C e T_{eq} = 4,0 °C

t (s)	T (°C)	Peso estatístico	t (s)	T (°C)	Peso estatístico
0.0000E+00	0.1000E+01	1.0	0.3012E+04	0.2106E+00	1.0
0.1234E+03	0.9996E+00	1.0	0.3139E+04	0.2004E+00	1.0
0.2520E+03	0.9666E+00	1.0	0.3267E+04	0.1903E+00	1.0
0.3576E+03	0.9285E+00	1.0	0.3383E+04	0.1725E+00	1.0
0.4863E+03	0.8905E+00	1.0	0.3500E+04	0.1624E+00	1.0
0.6040E+03	0.8397E+00	1.0	0.3616E+04	0.1497E+00	1.0
0.7220E+03	0.7789E+00	1.0	0.3732E+04	0.1421E+00	1.0
0.8397E+03	0.7281E+00	1.0	0.3859E+04	0.1421E+00	1.0
0.9566E+03	0.6977E+00	1.0	0.3975E+04	0.1294E+00	1.0
0.1085E+04	0.6672E+00	1.0	0.4091E+04	0.1192E+00	1.0
0.1203E+04	0.6190E+00	1.0	0.4207E+04	0.1116E+00	1.0
0.1320E+04	0.5658E+00	1.0	0.4323E+04	0.1040E+00	1.0
0.1437E+04	0.5302E+00	1.0			
0.1578E+04	0.4922E+00	1.0			
0.1694E+04	0.4643E+00	1.0			
0.1823E+04	0.4313E+00	1.0			
0.1940E+04	0.4110E+00	1.0			
0.2056E+04	0.3932E+00	1.0			
0.2172E+04	0.3729E+00	1.0			
0.2301E+04	0.3450E+00	1.0			
0.2418E+04	0.3171E+00	1.0	1		
0.2534E+04	0.2943E+00	1.0	1		
0.2651E+04	0.2689E+00	1.0	1		
0.2779E+04	0.2436E+00	1.0			
0.2895E+04	0.2309E+00	1.0			

Tabela B 4 - Dados experimentais do resfriamento do pepino.

Tabela B5 – Dados coletados a cada dois segundos do experimento do calor específico.

t(s)	T(°C)												
2	62,3	86	61,5	170	60,9	254	60,2	338	59,4	422	58,8	506	58
4	62,3	88	61,5	172	60,8	256	60,2	340	59,4	424	58,8	508	58
6	62,3	90	61,5	174	60,8	258	60,2	342	59,4	426	58,8	510	58
8	62,3	92	61,5	176	60,7	260	60,2	344	59,4	428	58,7	512	57,9
10	62,3	94	61,5	178	60,7	262	60,1	346	59,3	430	58,7	514	57,9
12	62,3	96	61,5	180	60,7	264	60,1	348	59,3	432	58,7	516	57,8
14	62,3	98	61,5	182	60,7	266	60,1	350	59,3	434	58,6	518	57,8
16	62,3	100	61,5	184	60,7	268	60,1	352	59,2	436	58,6	520	57,8
18	62,2	102	61,5	186	60,7	270	60	354	59,2	438	58,6	522	57,8
20	62,2	104	61,5	188	60,6	272	60	356	59,2	440	58,5	524	57,8
22	62,2	106	61,5	190	60,6	274	60	358	59,1	442	58,5	526	57,7
24	62,2	108	61,5	192	60,6	276	60	360	59,1	444	58,5	528	57,7
26	62,2	110	61,5	194	60,6	278	59,9	362	59,1	446	58,5	530	57,7
28	62,2	112	61,5	196	60,6	280	59,9	364	59,1	448	58,4	532	57,7
30	62,2	114	61,5	198	60,6	282	59,9	366	59,1	450	58,4	534	57,7
32	62,2	116	61,4	200	60,6	284	59,9	368	59,1	452	58,4	536	57,7
34	62,1	118	61,4	202	60,6	286	59,8	370	59,1	454	58,4	538	57,7
36	62,1	120	61,4	204	60,6	288	59,8	372	59	456	58,4	540	57,7
38	62,1	122	61,3	206	60,6	290	59,8	374	59	458	58,4	542	57,7
40	62,1	124	61,3	208	60,6	292	59,8	376	59	460	58,4	544	57,7
42	62,1	126	61,3	210	60,6	294	59,8	378	59	462	58,4	546	57,7
44	62,1	128	61,3	212	60,5	296	59,8	380	59	464	58,4	548	57,7
46	62,1	130	61,3	214	60,5	298	59,7	382	59	466	58,4	550	57,7
48	62,1	132	61,2	216	60,5	300	59,7	384	59	468	58,4	552	57,6
50	62,1	134	61,2	218	60,4	302	59,7	386	59	470	58,3	554	57,6
52	61,7	136	61,2	220	60,4	304	59,7	388	59	472	58,3	556	57,6
54	61,7	138	61,2	222	60,4	306	59,7	390	59	474	58,3	558	57,6
56	61,7	140	61,2	224	60,3	308	59,7	392	59	476	58,3	560	57,6
58	61,7	142	61,2	226	60,3	310	59,7	394	58,9	478	58,2	562	57,6
60	61,7	144	61,2	228	60,3	312	59,7	396	58,9	480	58,2	564	57,6
62	61,7	146	61,2	230	60,3	314	59,7	398	58,9	482	58,2	566	57,6
64	61,7	148	61,2	232	60,3	316	59,6	400	58,9	484	58,2	568	57,6
66	61,7	150	61,1	234	60,3	318	59,6	402	58,9	486	58,2	570	57,6
68	61,7	152	61,1	236	60,2	320	59,6	404	58,9	488	58,2	572	57,6
70	61,7	154	61,1	238	60,2	322	59,6	406	58,8	490	58,2	574	57,6
72	61,7	156	61,1	240	60,2	324	59,6	408	58,8	492	58,2	576	57,5
74	61,6	158	61,1	242	60,2	326	59,5	410	58,8	494	58,1	578	57,5
76	61,6	160	61,1	244	60,2	328	59,5	412	58,8	496	58,1	580	57,5
78	61,6	162	61	246	60,2	330	59,5	414	58,8	498	58,1	582	57,5
80	61,6	164	61	248	60,2	332	59,5	416	58,8	500	58,1	584	57,5
82	61,6	166	60,9	250	60,2	334	59,5	418	58,8	502	58,1	586	57,5
84	61,5	168	60,9	252	60,2	336	59,5	420	58,8	504	58,1	588	57,4

Tabela B 5 - Calor específico: pontos experimentais coletados a cada 2 s.

t(s)	T(°C)												
590	57,4	674	56,8	758	56,1	842	55,6	926	55	1010	54,4	1094	53,9
592	57,4	676	56,8	760	56,1	844	55,5	928	55	1012	54,4	1096	53,9
594	57,4	678	56,7	762	56,1	846	55,5	930	55	1014	54,4	1098	53,9
596	57,4	680	56,7	764	56,1	848	55,5	932	55	1016	54,4	1100	53,9
598	57,4	682	56,7	766	56,1	850	55,5	934	55	1018	54,3	1102	53,9
600	57,4	684	56,7	768	56,1	852	55,5	936	55	1020	54,3	1104	53,9
602	57,3	686	56,7	770	56,1	854	55,5	938	54,9	1022	54,3	1106	53,9
604	57,3	688	56,7	772	56,1	856	55,5	940	54,9	1024	54,3	1108	53,8
606	57,3	690	56,6	774	56,1	858	55,5	942	54,9	1026	54,3	1110	53,8
608	57,3	692	56,6	776	56,1	860	55,5	944	54,9	1028	54,2	1112	53,8
610	57,2	694	56,6	778	56,1	862	55,5	946	54,9	1030	54,2	1114	53,8
612	57,2	696	56,6	780	56	864	55,4	948	54,9	1032	54,2	1116	53,7
614	57,2	698	56,6	782	56	866	55,4	950	54,8	1034	54,2	1118	53,7
616	57,2	700	56,6	784	56	868	55,4	952	54,8	1036	54,2	1120	53,7
618	57,1	702	56,5	786	56	870	55,4	954	54,8	1038	54,2	1122	53,7
620	57,1	704	56,5	788	56	872	55,4	956	54,8	1040	54,2	1124	53,7
622	57,1	706	56,5	790	56	874	55,3	958	54,7	1042	54,2	1126	53,7
624	57,1	708	56,5	792	56	876	55,3	960	54,7	1044	54,2	1128	53,7
626	57,1	710	56,5	794	56	878	55,3	962	54,7	1046	54,2	1130	53,7
628	57,1	712	56,5	796	56	880	55,2	964	54,7	1048	54,2	1132	53,6
630	57,1	714	56,5	798	56	882	55,2	966	54,7	1050	54,1	1134	53,6
632	57	716	56,5	800	56	884	55,2	968	54,7	1052	54,1	1136	53,6
634	57	718	56,5	802	56	886	55,2	970	54,7	1054	54,1	1138	53,6
636	57	720	56,4	804	55,9	888	55,2	972	54,7	1056	54,1	1140	53,6
638	57	722	56,4	806	55,9	890	55,2	974	54,6	1058	54,1	1142	53,6
640	57	724	56,4	808	55,9	892	55,1	976	54,6	1060	54,1	1144	53,5
642	57	726	56,4	810	55,9	894	55,1	978	54,6	1062	54,1	1146	53,5
644	57	728	56,4	812	55,8	896	55,1	980	54,6	1064	54,1	1148	53,5
646	57	730	56,4	814	55,8	898	55,1	982	54,6	1066	54,1	1150	53,5
648	57	732	56,4	816	55,8	900	55,1	984	54,6	1068	54,1	1152	53,5
650	57	734	56,3	818	55,8	902	55,1	986	54,6	1070	54,1	1154	53,4
652	56,9	736	56,3	820	55,7	904	55,1	988	54,6	1072	54	1156	53,4
654	56,9	738	56,3	822	55,7	906	55,1	990	54,6	1074	54	1158	53,4
656	56,9	740	56,2	824	55,7	908	55,1	992	54,6	1076	54	1160	53,4
658	56,9	742	56,2	826	55,7	910	55,1	994	54,5	1078	54	1162	53,4
660	56,9	744	56,2	828	55,6	912	55,1	996	54,5	1080	54	1164	53,4
662	56,9	746	56,2	830	55,6	914	55	998	54,5	1082	54	1166	53,4
664	56,8	748	56,2	832	55,6	916	55	1000	54,5	1084	54	1168	53,4
666	56,8	750	56,2	834	55,6	918	55	1002	54,5	1086	53,9	1170	53,4
668	56,8	752	56,2	836	55,6	920	55	1004	54,5	1088	53,9	1172	53,4
670	56,8	754	56,1	838	55,6	922	55	1006	54,5	1090	53,9	1174	53,4
672	56,8	756	56,1	840	55,6	924	55	1008	54,5	1092	53,9	1176	53,4

Tabela B5 – Dados coletados a cada dois segundos do experimento do calor específico.

(cont.)

	D I	1 4 1	1	1 .	1		• 4		1	10
Tabela Kh -	- Dadue	coletados a	ehen i	doig	segundas	do e	vnerimento	do	calor	esnecifica
I abcia Do	Dauos	concludos	i cuuu	uois	segundos	uou	sper miento	uu	cuiui	copecifico.

(cont.)

t(s)	T(°C)												
1178	53,4	1262	52,8	1346	52,4	1430	51,8	1514	51,4	1598	50,8	1682	38,8
1180	53,3	1264	52,8	1348	52,3	1432	51,8	1516	51,3	1600	50,8	1684	38,4
1182	53,3	1266	52,8	1350	52,3	1434	51,8	1518	51,3	1602	50,8	1686	38,4
1184	53,3	1268	52,8	1352	52,3	1436	51,8	1520	51,3	1604	50,8	1688	38,4
1186	53,3	1270	52,8	1354	52,3	1438	51,8	1522	51,3	1606	50,8	1690	38,4
1188	53,3	1272	52,8	1356	52,3	1440	51,7	1524	51,3	1608	50,8	1692	38,4
1190	53,3	1274	52,7	1358	52,3	1442	51,7	1526	51,2	1610	50,8	1694	38,4
1192	53,3	1276	52,7	1360	52,3	1444	51,7	1528	51,2	1612	50,8	1696	38,4
1194	53,2	1278	52,7	1362	52,3	1446	51,7	1530	51,2	1614	50,8	1698	38,4
1196	53,2	1280	52,7	1364	52,3	1448	51,7	1532	51,2	1616	50,8	1700	38,4
1198	53,2	1282	52,7	1366	52,2	1450	51,7	1534	51,2	1618	50,8	1702	38,4
1200	53,2	1284	52,7	1368	52,2	1452	51,6	1536	51,2	1620	50,8	1704	38,4
1202	53,2	1286	52,7	1370	52,2	1454	51,6	1538	51,2	1622	50,7	1706	38,4
1204	53,2	1288	52,7	1372	52,2	1456	51,6	1540	51,1	1624	50,7	1708	38,4
1206	53,2	1290	52,6	1374	52,2	1458	51,6	1542	51,1	1626	50,7	1710	38,3
1208	53,1	1292	52,6	1376	52,2	1460	51,6	1544	51,1	1628	50,7	1712	38,3
1210	53,1	1294	52,6	1378	52,2	1462	51,6	1546	51,1	1630	50,6	1714	38,3
1212	53,1	1296	52,6	1380	52,2	1464	51,6	1548	51,1	1632	50,6	1716	38,3
1214	53,1	1298	52,6	1382	52,2	1466	51,6	1550	51,1	1634	50,6	1718	38,3
1216	53,1	1300	52,6	1384	52,2	1468	51,5	1552	51,1	1636	50,6	1720	38,3
1218	53,1	1302	52,6	1386	52,1	1470	51,5	1554	51,1	1638	50,6	1722	38,3
1220	53,1	1304	52,5	1388	52,1	1472	51,5	1556	51,1	1640	50,6	1724	38,3
1222	53,1	1306	52,5	1390	52,1	1474	51,5	1558	51,1	1642	50,6	1726	38,3
1224	53	1308	52,5	1392	52,1	1476	51,5	1560	51	1644	50,5	1728	38,3
1226	53	1310	52,5	1394	52,1	1478	51,5	1562	51	1646	50,5	1730	38,3
1228	53	1312	52,5	1396	52,1	1480	51,5	1564	51	1648	50,5	1732	38,3
1230	53	1314	52,5	1398	52	1482	51,5	1566	51	1650	49	1734	38,3
1232	53	1316	52,5	1400	52	1484	51,4	1568	51	1652	47	1736	38,3
1234	53	1318	52,5	1402	52	1486	51,4	1570	51	1654	45,8	1738	38,3
1236	53	1320	52,5	1404	52	1488	51,4	1572	51	1656	43,5	1740	38,3
1238	53	1322	52,5	1406	52	1490	51,4	1574	51	1658	42,1	1742	38,2
1240	53	1324	52,5	1408	52	1492	51,4	1576	51	1660	39,6	1744	38,2
1242	52,9	1326	52,5	1410	52	1494	51,4	1578	51	1662	39,6	1746	38,2
1244	52,9	1328	52,5	1412	52	1496	51,4	1580	51	1664	39,6	1748	38,2
1246	52,9	1330	52,5	1414	51,9	1498	51,4	1582	51	1666	39,6	1750	38,2
1248	52,9	1332	52,5	1416	51,9	1500	51,4	1584	51	1668	39,6	1752	38,2
1250	52,9	1334	52,5	1418	51,9	1502	51,4	1586	50,9	1670	39,5	1754	38,1
1252	52,9	1336	52,4	1420	51,9	1504	51,4	1588	50,9	1672	39,5	1756	38,1
1254	52,8	1338	52,4	1422	51,9	1506	51,4	1590	50,9	1674	39,4	1758	38,1
1256	52,8	1340	52,4	1424	51,9	1508	51,4	1592	50,9	1676	39,4	1760	38,1
1258	52,8	1342	52,4	1426	51,9	1510	51,4	1594	50,9	1678	39,3	1762	38,1
1260	52,8	1344	52,4	1428	51,8	1512	51,4	1596	50,9	1680	39,3	1764	38,1

	D I	1 4 1				• •		10
Tabela Ka -	- Dados co	Metados a	cada d	lnis segur	ngue gu	evneriment	o do calo	r especifico
I abcia Do	Duuosee	netuuos a	cuuu u	ions segui	uob uo	caper miene	o uo cuio	i especifico.

(cont.)

t(s)	T(°C)	t(s)	T(°C)	t(s)	$T(^{\circ}C)$	t(s)	T(°C)	t(s)	T(°C)	t(s)	T(°C)	t(s)	T(°C)
1766	38,1	1850	37,6	1934	37,3	2018	37	2102	36,4	2186	36,1	2270	35,8
1768	38,1	1852	37,6	1936	37,3	2020	36,9	2104	36,4	2188	36,1	2272	35,8
1770	38	1854	37,6	1938	37,3	2022	36,9	2106	36,4	2190	36,1	2274	35,8
1772	38	1856	37,6	1940	37,2	2024	36,9	2108	36,4	2192	36,1	2276	35,8
1774	38	1858	37,6	1942	37,2	2026	36,9	2110	36,4	2194	36,1	2278	35,8
1776	38	1860	37,6	1944	37,2	2028	36,9	2112	36,4	2196	36,1	2280	35,8
1778	38	1862	37,5	1946	37,2	2030	36,9	2114	36,4	2198	36,1	2282	35,8
1780	38	1864	37,5	1948	37,2	2032	36,9	2116	36,4	2200	36	2284	35,8
1782	38	1866	37,5	1950	37,2	2034	36,9	2118	36,4	2202	36	2286	35,8
1784	38	1868	37,5	1952	37,2	2036	36,9	2120	36,4	2204	36	2288	35,8
1786	38	1870	37,5	1954	37,2	2038	36,9	2122	36,4	2206	36	2290	35,8
1788	38	1872	37,5	1956	37,2	2040	36,9	2124	36,3	2208	36	2292	35,8
1790	38	1874	37,5	1958	37,2	2042	36,8	2126	36,3	2210	36	2294	35,8
1792	38	1876	37,5	1960	37,1	2044	36,8	2128	36,3	2212	35,9	2296	35,7
1794	38	1878	37,5	1962	37,1	2046	36,8	2130	36,3	2214	35,9	2298	35,7
1796	38	1880	37,5	1964	37,1	2048	36,8	2132	36,3	2216	35,9	2300	35,7
1798	37,9	1882	37,5	1966	37,1	2050	36,8	2134	36,3	2218	35,9	2302	35,7
1800	37,9	1884	37,5	1968	37,1	2052	36,8	2136	36,3	2220	35,9	2304	35,7
1802	37,9	1886	37,5	1970	37,1	2054	36,8	2138	36,3	2222	35,9	2306	35,6
1804	37,9	1888	37,5	1972	37,1	2056	36,7	2140	36,3	2224	35,9	2308	35,6
1806	37,9	1890	37,5	1974	37,1	2058	36,7	2142	36,3	2226	35,9	2310	35,6
1808	37,9	1892	37,5	1976	37,1	2060	36,7	2144	36,3	2228	35,9	2312	35,6
1810	37,9	1894	37,5	1978	37,1	2062	36,7	2146	36,3	2230	35,9	2314	35,6
1812	37,8	1896	37,5	1980	37,1	2064	36,7	2148	36,3	2232	35,9	2316	35,6
1814	37,8	1898	37,5	1982	37,1	2066	36,7	2150	36,3	2234	35,9	2318	35,6
1816	37,8	1900	37,4	1984	37,1	2068	36,7	2152	36,3	2236	35,9	2320	35,6
1818	37,8	1902	37,4	1986	37,1	2070	36,7	2154	36,3	2238	35,9		
1820	37,8	1904	37,4	1988	37,1	2072	36,7	2156	36,2	2240	35,9		
1822	37,8	1906	37,4	1990	37,1	2074	36,7	2158	36,2	2242	35,9		
1824	37,8	1908	37,4	1992	37,1	2076	36,6	2160	36,2	2244	35,9		
1826	37,8	1910	37,4	1994	37,1	2078	36,6	2162	36,2	2246	35,9		
1828	37,7	1912	37,4	1996	37,1	2080	36,6	2164	36,2	2248	35,9		
1830	37,7	1914	37,4	1998	37,1	2082	36,6	2166	36,2	2250	35,9		
1832	37,7	1916	37,4	2000	37	2084	36,6	2168	36,2	2252	35,9		
1834	37,7	1918	37,4	2002	37	2086	36,6	2170	36,2	2254	35,9		
1836	37,7	1920	37,4	2004	37	2088	36,6	2172	36,1	2256	35,9		
1838	37,7	1922	37,4	2006	37	2090	36,5	2174	36,1	2258	35,9		
1840	37,7	1924	37,4	2008	37	2092	36,5	2176	36,1	2260	35,9		
1842	37,7	1926	37,3	2010	37	2094	36,5	2178	36,1	2262	35,8		
1844	37,6	1928	37,3	2012	37	2096	36,5	2180	36,1	2264	35,8		
1846	37,6	1930	37,3	2014	37	2098	36,5	2182	36,1	2266	35,8		
1848	37,6	1932	37,3	2016	37	2100	36,4	2184	36,1	2268	35,8		

Tabela B6 – Dados resumido para cada 40 segundos do experimento do calor específico.

t (s)	T (°C)	t (s)	T (°C)
0	62,3	1160	53,4
40	62,1	1200	53,2
80	61,6	1240	53
120	61,4	1280	52,7
160	61,1	1320	52,5
200	60,6	1360	52,3
240	60,2	1400	52
280	59,9	1440	51,7
320	59,6	1480	51,5
360	59,1	1520	51,3
400	58,9	1560	51
440	58,5	1600	50,8
480	58,2	1640	50,6
520	57,8	1720	38,3
560	57,6	1760	38,1
600	57,4	1800	37,9
640	57	1840	37,7
680	56,7	1880	37,5
720	56,4	1920	37,4
760	56,1	1960	37,1
800	56	2000	37
840	55,6	2040	36,9
880	55,2	2080	36,6
920	55	2120	36,4
960	54,7	2160	36,2
1000	54,5	2200	36
1040	54,2	2240	35,9
1080	54	2280	35,8
1120	53,7	2320	35,6

Tabela B 6 - Calor específico: pontos experimentais a cada 40 s.