
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE
CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA
UNIDADE ACADÊMICA DE SISTEMAS E COMPUTAÇÃO

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

FELIPE BARROS PONTES

A TECHNIQUE TO TEST APIS SPECIFIED IN NATURAL LANGUAGE

CAMPINA GRANDE - PB
2020

Universidade Federal de Campina Grande

Centro de Engenharia Elétrica e Informática

Coordenação de Pós-Graduação em Ciência da Computação

A Technique to Test APIs Specified in Natural

Language

Felipe Barros Pontes

Tese submetida à Coordenação do Curso de Pós-Graduação em Ciência

da Computação da Universidade Federal de Campina Grande - Campus

I como parte dos requisitos necessários para obtenção do grau de Doutor

em Ciência da Computação.

Área de Concentração: Ciência da Computaćão

Linha de Pesquisa: Linha de Pesquisa

Rohit Gheyi

Márcio Ribeiro

(Orientadores)

Campina Grande, Paraíba, Brasil

c©Felipe Barros Pontes, 29/04/2020

P814t

Pontes, Felipe Barros.

 A technique to test apis specified in natural language/Felipe Barros
Pontes. - Campina Grande, 2020.
 95 f. : il. Color.

 Tese (Doutorado em Ciência da Computação) - Universidade Federal

de Campina Grande, Centro de Engenharia Elétrica e Informática, 2020.
 “Orientação: Prof. Dr. Rohit Gheyi, Prof. Dr. Márcio de Medeiros

Ribeiro”.
 Referências.

 1.

 1. Especificação de Requisitos. 2. Linguagem Natural. 3. Não
Conformidade. 4. Especificação Incompleta. 5. Especificação Ambígua.
I. Gheyi, Rohit. II. Ribeiro, Márcio de Medeiros. III. Título.

 CDU 004.414.38(043)

 FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECÁRIA Itapuana Soares Dias CRB-15/93

A TECHNIQUE TO TEST APIS SPECIFIED IN NATURAL LANGUAGE

FELIPE BARROS PONTES

TESE APROVADA EM 05/03/2020

ROHIT GHEYI, Dr., UFCG
Orientador(a)

MÁRCIO DE MEDEIROS RIBEIRO, Dr., UFAL
Orientador(a)

TIAGO LIMA MASSONI, Dr., UFCG
Examinador(a)

EVERTON LEANDRO GALDINO ALVES, Dr., UFCG
Examinador(a)

ALESSANDRO FABRICIO GARCIA, Dr., PUC-RIO
Examinador(a)

LEOPOLDO MOTTA TEIXEIRA, Dr., UFPE
Examinador(a)

CAMPINA GRANDE - PB

Resumo

Desenvolvedores de Application Programming Interfaces (APIs) as implementam e testam

com base em documentos comumente especificados em linguagem natural. Entretanto, não

se sabe até onde os desenvolvedores que implementam as APIs são capazes de sistematica-

mente revelar i) especificações indeterminadas; e ii) não conformidades entre suas imple-

mentações e a especificação. Este trabalho apresenta uma análise da suíte de testes da API

de Reflexão de Java da máquina virtual OpenJDK e resultados de duas surveys para verificar

se a especificação influencia no entendimento deles. Neste trabalho, propõe-se uma téc-

nica para detectar especificações indeterminadas e não conformidades entre a especificação

e implementações de uma API. A técnica automaticamente gera casos de teste e os executa

usando diferentes implementações. Se os resultados forem diferentes, a técnica detecta um

candidato a especificação indeterminada ou a uma não conformidade entre a especificação e

pelo menos uma implementação da API. Para avaliar a técnica, foi usada a API de Reflexão

de Java com 446 programas de entrada. A técnica proposta identificou especificações inde-

terminadas e candidatos a não conformidades em 32 métodos públicos de sete classes da API

de Reflexão de Java. Foram reportados candidatos a especificações indeterminadas em 12

métodos da API de Reflexão de Java. Especificadores da API de Reflexão de Java aceitaram

três candidatos a especificação indeterminada (25%). Também foram reportados 24 can-

didatos a não conformidades para os desenvolvedores da máquina virtual Eclipse OpenJ9 e

7 para a Oracle. Desenvolvedores da Eclipse OpenJ9 aceitaram e corrigiram 21 candidatos

(87,5%). Desenvolvedores da Oracle aceitaram cinco e corrigiram quatro candidatos a não

conformidades. Doze casos de teste gerados pela técnica proposta neste trabalho fazem parte

da suíte de testes da Eclipse OpenJ9. A técnica proposta também foi avaliada usando a API

de Collections de Java. A técnica identificou 29 candidatos a especificações indeterminadas

e a não conformidades. Foram reportados 5 candidatos a especificação indeterminada para

os especificadores da API de Collections de Java. Também foram reportados 9 candidatos

a não conformidades na máquina virtual Eclipse OpenJ9 e 4 na Oracle. Desenvolvedores

da Oracle aceitaram e corrigiram três candidatos a não conformidades. Desenvolvedores da

Eclipse OpenJ9 aceitaram e corrigiram 1 candidato a não conformidade.

i

Abstract

Developers of widely used Application Programming Interfaces (APIs) implement and test

APIs based on a document, which is commonly specified using natural language. How-

ever, there is limited knowledge on whether API developers are able to systematically reveal

i) underdetermined specifications; and ii) non-conformances between their implementation

and the specification. To better understand the problem, we analyze test suites of Java Re-

flection API, and we conduct two surveys. A survey with 130 developers who use the Java

Reflection API, and a survey with 128 C# developers who use and implement the .NET

Reflection API to see whether the specification impacts on their understanding. We also pro-

pose a technique to detect underdetermined specifications and non-conformances between

the specification and the implementations of the APIs. It automatically creates test cases,

and executes them using different implementations. It saves objects yielded by methods to

be used to create more test cases. If results differ, it detects an underdetermined specification

or a non-conformance candidate between the specification and at least one implementation

of the API. We evaluate our technique using the Java Reflection API in 446 input programs.

Our technique identifies underdetermined specification and non-conformance candidates in

32 Java Reflection API public methods of 7 classes. We report underdetermined specification

candidates in 12 Java Reflection API methods. Java Reflection API specifiers accept 3 under-

determined specification candidates (25%). We also report 24 non-conformance candidates

to Eclipse OpenJ9 JVM, and 7 to Oracle JVM. Eclipse OpenJ9 JVM developers accept and

fix 21 candidates (87.5%), and Oracle JVM developers accept 5 and fix 4 non-conformance

candidates. Twelve test cases are now part of the Eclipse OpenJ9 JVM test suite. We also

evaluate our technique using the Java Collections API. Even being a very popular Java API,

our technique identifies 29 underdetermined specification and non-conformance candidates.

Our technique identifies 17 candidates that cannot be detected by popular automatic test

suite generators. We report 5 underdetermined specification candidates to the Java Collec-

tions API specifiers. We also report 9 non-conformance candidates to Eclipse OpenJ9 JVM,

and 4 to Oracle JVM. Oracle JVM developers accept and fix 3 non-conformance candidates.

Eclipse OpenJ9 JVM developers accept and fix 1 non-conformance candidate.

ii

Agradecimentos

Agradeço primeiramente a Deus por me dar saúde, força e sabedoria para ter discernimento

nos momentos necessários.

A realização deste trabalho só é possível graças a pessoas-chave na minha vida. Primeiro,

minha esposa, Monike, que está sempre ao meu lado me ajudando, sendo paciente e com-

preensiva nos momentos em que preciso me dedicar à pesquisa. Te amo! Minha filha, Sofia,

que me motiva com sua meiguice e sorrisos inocentes. Minha família, que me apoia e me

ajuda a ter energia para executar o trabalho e que aguenta as saudades em momentos mais

críticos. Amo vocês! Meus amigos, que de uma forma ou de outra me apoiam. Meus cole-

gas de trabalho (Embedded/Virtus/Edge) que entendem os momentos em que preciso me

ausentar para reuniões e atividades de pesquisa. Meus colegas de SPG, que enriquecem meu

trabalho apresentando ideias e compartilhando conhecimentos. Meus orientadores, que dão

todo o suporte necessário à condução do trabalho, questionando, apresentando ideias, co-

brando resultados nos momentos certos e sendo compreensivos nos momentos mais difíceis.

A todos vocês, meu muito obrigado.

Aos professores e funcionários da COPIN e do DSC; À Capes pelo apoio e suporte

financeiro fornecidos a este trabalho.

iii

Contents

1 Introduction 1

1.1 Problem . 2

1.2 Motivating Examples . 4

1.3 Solution . 6

1.4 Evaluation . 7

1.5 Contributions . 8

2 Relevance 10

2.1 Java Reflection APIs Test Suites . 12

2.2 Surveys . 16

2.2.1 The Java Reflection API Survey 16

2.2.2 The .NET Reflection API Survey 22

2.2.3 Discussion . 36

2.2.4 Threats to Validity . 41

2.3 Conclusions . 42

3 A Technique to Test APIs Specified in Natural Language 43

3.1 Overview . 43

3.2 Getting Initial Objects . 49

3.3 Generating Test Cases . 49

3.4 Feedback . 50

3.5 Oracle . 52

3.6 Classifier . 53

3.7 Simplifying Input Programs . 54

iv

CONTENTS v

3.8 Reading the Specification and Reporting Bugs 55

4 Evaluation 56

4.1 Testing the Java Reflection API . 56

4.1.1 Definition . 56

4.1.2 Planning . 57

4.1.3 Results . 58

4.1.4 Answers to the Research Questions 62

4.2 Testing the Java Collections API . 63

4.2.1 Definition . 63

4.2.2 Planning . 64

4.2.3 Results . 65

4.2.4 Answer to the Research Question 67

4.3 Discussion . 67

4.3.1 Report Candidates to APIs . 67

4.3.2 Input Programs . 71

4.3.3 False Positives . 73

4.3.4 Underdetermined APIs . 74

4.3.5 Automatic Test Suite Generators 75

4.4 Testing Other APIs . 78

4.5 Threats to Validity . 78

5 Related Work 80

5.1 Conformance Checking . 80

5.2 APIs Analysis . 82

5.3 Surveys . 84

6 Conclusions 85

6.1 Future Work . 87

List of Symbols

API - Application Programming Interface

SLOC - Source Lines of Code

SDK - Software Development Kit

JVM - Java Virtual Machine

vi

List of Figures

2.1 Question 1 about Class.getDeclaredMethods. 17

2.2 Developers experience with Java. 18

2.3 Developers knowledge about the Java Reflection API. Not knowledgeable -

I do not know anything about it; Somewhat knowledgeable - I have a vague

idea about it; Knowledgeable - I am familiar with it; Very knowledgeable - I

know all/most classes and methods of it. 18

2.4 Developers using the Java Reflection API to develop applications. Some-

times - I need reflection for less than 33% of the software applications I

develop; Occasionally - I use reflection in more than 33% but less than 66%

of the software applications I develop; Frequently - I need reflection for more

than 66% of the software applications I develop. 19

2.5 Results of Question 1: A.getDeclaredMethods. 20

2.6 Results of Question 2: A.getMethod c. 20

2.7 Results of Question 3: A.getDeclaredFields. 21

2.8 Question 1 of our survey. 23

2.9 .NET Reflection API users experience with C#. 24

2.10 Users knowledge about the .NET Reflection API. Not knowledgeable - I do

not know anything about it; Somewhat knowledgeable - I have a vague idea

about it; Knowledgeable - I am familiar with it; Very knowledgeable - I know

all/most classes and methods of it. 24

vii

LIST OF FIGURES viii

2.11 Users using the .NET Reflection API to develop applications. Sometimes -

I need reflection for less than 33% of the software applications I develop;

Occasionally - I use reflection in more than 33% but less than 66% of the

software applications I develop; Frequently - I need reflection for more than

66% of the software applications I develop. 25

2.12 .NET Reflection API developers experience with C#. 25

2.13 Developers knowledge about the .NET Reflection API. Not knowledgeable -

I do not know anything about it; Somewhat knowledgeable - I have a vague

idea about it; Knowledgeable - I am familiar with it; Very knowledgeable - I

know all/most classes and methods of it. 26

2.14 Developers using the .NET Reflection API to develop applications. Some-

times - I need reflection for less than 33% of the software applications I

develop; Occasionally - I use reflection in more than 33% but less than 66%

of the software applications I develop; Frequently - I need reflection for more

than 66% of the software applications I develop. 26

2.15 Question 1: MemberInfo.ReflectedType. 27

2.16 Question 2: ConstructorInfo.Invoke. 28

2.17 Question 3: Type.FindMembers. 30

2.18 Question 4: MethodInfo.MakeGenericMethod. 31

2.19 Question 5: Assembly.CreateInstance. 33

2.20 Question 6: Type.GetField. 34

2.21 Question 7: Type.GetMember. 35

3.1 Steps of our technique to detect underdetermined specifications and non-

conformances in APIs specified in natural languages. 46

4.1 Number of input programs that expose candidates after Step 7 (Figure 3.1). 62

4.2 Number of input programs exposing each candidate after Step 7 (Figure 3.1)

(see Id column in Table 4.1). 63

List of Tables

2.1 Java Reflection API methods usage. Content derived from Landman et al. [22]. 11

2.2 Chi-squared test results comparing responses of experienced and non-

experienced developers. 37

2.3 Chi-squared test results comparing responses of experienced and non-

experienced users. 38

2.4 Chi-squared test results comparing responses of experienced and non-

experienced developers. 38

2.5 Chi-squared test results comparing responses of users and developers. . . . 39

2.6 Results of Machine Learning classifiers for each question of the Java Reflec-

tion API Survey. Mean Accuracy considers 10-Fold Cross Validation. . . . 40

2.7 Results of Machine Learning classifiers for each question of the .NET Re-

flection API Survey. Mean Accuracy considers 10-Fold Cross Validation. . 41

3.1 Input data to generate test cases. 50

4.1 Detected Java Reflection API candidates. Test Cases: number of test cases

executed by Algorithm 1 calling the method. Failures: number of test cases

exposing a candidate in the method. S: Specification. J1: Oracle JVM. J2:

OpenJDK JVM. J3: Eclipse OpenJ9 JVM. J4: IBM J9 JVM. Status: – =

Unreported bug; O = Bug Open; F = Fixed bug; A = Accepted bug; R =

Rejected bug;!= Correct result; D = Duplicated bug. 59

ix

LIST OF TABLES x

4.2 Detected Java Collections API candidates. Test Cases: number of test cases

executed by Algorithm 1 calling the method. Failures: number of test cases

exposing a candidate in the method. S: Specification. J1: Oracle JVM. J2:

OpenJDK JVM. J3: Eclipse OpenJ9 JVM. J4: IBM J9 JVM. Status: – =

Unreported bug; O = Bug Open; F = Fixed bug; A = Accepted bug; R =

Rejected bug;!= Correct result; D = Duplicated bug. 66

4.3 Usage of Java Collections API open bugs methods in the 446 input programs

of the Java Reflection API evaluation (Section 4.1). 70

4.4 Java Reflection API false positives reported by our technique. 73

4.5 Java Collections API false positives reported by our technique. 74

4.6 Java Collections API candidates detected by Randoop. S: Specification. J1:

Oracle JVM. J2: OpenJDK JVM. J3: Eclipse OpenJ9 JVM. J4: IBM J9

JVM. Status: – = Unreported bug; O = Bug Open; F = Fixed bug; A =

Accepted bug; R = Rejected bug;!= Correct result; D = Duplicated bug. . 77

Listings

1.1 Code snippet of the Jsprit project related to routes. 4

1.2 Class.getResource test case. 5

1.3 ArrayList.ensureCapacity test case. 5

1.4 Code snippet related to MemberInfo.ReflectedType .NET Reflection

API property. 6

2.1 Test case of Eclipse OpenJ9 JVM using two oracles. 14

2.2 Class.getResource OpenJDK test case. 15

2.3 Program of Question 2. 20

2.4 Program of Question 3. 21

2.5 Program used in Question 2 concerning the ConstructorInfo.Invoke

method. 28

2.6 Program used in Question 3 concerning the Type.FindMembers method. 29

2.7 Program used in Question 4 concerning the

MethodInfo.MakeGenericMethod method. 31

2.8 Program used in Question 5 related to Assembly.CreateInstance

method. 32

2.9 Program used in Question 6 concerning the Type.GetField method. . . 33

2.10 Program used in Question 7 concerning the Type.GetMember method. . 35

3.1 Example of input program to create test cases. 49

3.2 Input program used in feedback. 52

3.3 Eclipse OpenJ9 JVM results. 52

3.4 Oracle JVM results. 53

3.5 Input program sample. 54

3.6 Simplified input program sample. 55

xi

LISTINGS xii

4.1 The SPQR input program. 68

4.2 ConcurrentSkipListMap.put test case. 69

4.3 ConcurrentSkipListMap.putIfAbsent test case. 70

4.4 ConcurrentSkipListSet.add test case. 71

4.5 Test case related to Arrays.copyOfRange. 71

4.6 The Pulsar Reporting program input. 72

4.7 Small program used as input. 76

Chapter 1

Introduction

A number of widely used Application Programming Interfaces (APIs) are specified using

natural language (e.g. the Java Reflection API, the Java Collections API, and the .NET Re-

flection API). The Java Reflection API and the Java Collections API are two of the most

used Java APIs. At least, 78% of open source Java projects use the Java Reflection API [22],

such as JBoss, JUnit5, Maven, and Spring Boot. These projects often depend on the Java

Reflection API to implement critical tasks in a program, such as handling dependencies dy-

namically, inspecting program components, manipulating fields, and invoking methods at run

time. Most projects also use the Java Collections API [21]. In C#, the seventh most popular

programming language,1 a number of popular open source projects use the .NET Reflection

API, such as ASP.NET projects (e.g. EntityFrameworkCore), and Microsoft Azure projects

(e.g. SDK for .NET). These projects use reflection APIs directly, by invoking methods and

properties in source code, or indirectly, by using other tools that use the .NET Reflection

API.

Developers may hesitate using an API, given its inherent complexity [28]. Hence, the

specification of an API plays a major role on encouraging developers to properly understand

and use it in their programs. Otherwise, even experienced developers may misunderstand

the behavior of API methods [56; 57; 65]. Specifiers use natural language to specify popular

APIs, such as the Java Reflection API, the Java Collections API, and the .NET Reflection

API [32]. We do not know whether the specification is imprecise and incomplete and how

1https://spectrum.ieee.org/computing/software/the-top-programming-

languages-2019

1

1.1 Problem 2

those shortcomings affect developers, which may increase development time, hamper source

code understanding, and induce developers to introduce non-expected results in their ap-

plications. However, developers can still be able to often implement applications that use

popular APIs in spite of the specification shortcomings. We do not know whether and how

the shortcomings of the specifications impact on developers’ understanding.

The reliable use of an API largely depends on the systematic conformance testing of the

API implementation. Otherwise, two basic problems may occur. First, the implementation of

each API method might not be in conformance with its specification. Second, API developers

may not be able to reveal issues in the API specification. These two problems may induce

misunderstandings of API methods even by experienced Java programmers [56; 57; 65]. Java

Virtual Machine (JVM) developers implement and test the Java Reflection API and the Java

Collections API based on a Javadoc [25, p. 37], which is specified using natural language. In

fact, developers of widely used JVMs — e.g., Eclipse OpenJ9 and OpenJDK — implement

test cases to verify whether their implementation is in conformance with the Javadoc.

1.1 Problem

There is limited knowledge on whether API developers systematically reveal under-

determined specifications and non-conformances in their implementations. Following

Liskov [26], we say that a specification is underdetermined if it allows multiple implemen-

tations to return different results for the same input. In its turn, a non-conformance occurs

when an API method does not follow its specification. Empirical studies tend to only inves-

tigate the frequency [22] and the complexity on the use of an API [60]. They conclude that

API users often have to invoke many API methods to implement recurring non-trivial tasks

in their programs [22], which makes the use of an API even harder. However, the scenario

may be even more worrisome. It may be the case that each API method is poorly tested based

on its specification. The lack of proper conformance testing does not help API developers

to either fix bugs or improve the specification. The latter may in turn induce developers to

misunderstand the behavior of API methods.

To better understand the problem, we analyze test suites of two widely used JVMs —

Eclipse OpenJ9 and OpenJDK. Their developers implement most test cases to check the

1.1 Problem 3

conformance between the Javadoc specification and the Java Reflection API implementation

only after a bug has been reported. Moreover, developers do not consider any strategies

on choosing data to invoke methods in test cases. Popular test cases generators, such as

Randoop [48] and EvoSuite [12], heavily use and depend on some APIs (e.g. Java Reflection

API and Java Collections API) in their implementations. However, these tools do not deal

with complex objects in parameter objects [61], such as Class and Method, and do not

focus on detecting non-conformances in the Java Reflection API [2].

We conduct a survey with 130 developers who use the Java Reflection API to see whether

the Javadoc specified in natural language impacts on their understanding. We present some

Javadoc sentences, and ask for the output of three APIs’ methods used in 77% of open

source Java projects. Although 67.7% of developers have more than 7 years of experience

in Java and 86.9% have knowledge about the Java Reflection API, there is no consensus in

the responses for 66.6% of questions. Some developers’ comments increase evidence that

the Javadoc specification is imprecise and incomplete. Also, some developers face similar

problems, as we can see in some issues reported in Randoop and EvoSuite bug trackers.

We also conduct a survey (Section 2.2.2) with 94 users of the .NET Reflection API

(i.e. developers who use the API to implement applications) and with 34 developers of

the .NET Reflection API (i.e. developers of Mono and .NET Core SDK) to investigate

whether the specification of that API impacts on their understanding. We ask API users and

developers about the output of seven C# small programs that use a popular API property,

and six popular methods. We do not have consensus in 71.4% of questions. Respondents’

responses diverging from the most common varied from 6.2% to 45.5%. In a question,

only 7.3% of API users and 37.5% of API developers present the same response of .NET

Core SDK and Mono, which are popular tools that implement .NET Reflection API. Some

respondents state: “The API is easy to use, but should be avoided in high performance

scenarios”. Others commented: “Based on the quirks and gotchas the API is powerful, but

of limited use in daily development”. Those findings suggest that the .NET Reflection API is

incomplete. API specifiers and developers need better ways to specify and implement them.

The results of both investigations reinforce the need for improving systematic conformance

testing of APIs specified in natural language. Moreover, there is limited understanding of

how often non-conformances occur and how critical they are.

1.2 Motivating Examples 4

1.2 Motivating Examples

In this section, we present examples of underdetermined specifications in the Java Reflection

API Javadoc and in the .NET Reflection API documentation, and a non-conformance in the

Java Collections API. Jsprit is a Java based toolkit for solving rich traveling salesman and

vehicle routing problems.2 Listing 1.1 presents the Route enum declaring three options.

The ConstraintManager class defines the private array field routes to store supported

routes.

Listing 1.1: Code snippet of the Jsprit project related to routes.

1 p u b l i c enum Route {

2 INTER_ROUTE , INTRA_ROUTE , NO_TYPE

3 }

4 p u b l i c c l a s s C o n s t r a i n t M a n a g e r {

5 p r i v a t e Route [] r o u t e s ;

6 }

Consider a test case t1 invoking the Java Reflection API Class.getResource

method to retrieve a resource related to the Route[] type (Listing 1.2). Suppose

c is a Class object representing the Route[] type created to inspect the program

of Listing 1.1. Using Oracle 1.8.0_151 JVM, t1 yields a class folder URL (e.g.

file://home/classes). However, when using Eclipse OpenJ9 JVM 0.8.0, t1 yields

null. The Java Reflection API is specified in a Javadoc using natural language.3 According

to it, Class.getResource should return a resource with a given name. Javadoc presents

some rules of a valid resource name, but the specification does not explain the expected result

when an empty name is passed as parameter. So, we consider that as an underdetermined

specification because the Javadoc allows multiple implementations to present different re-

sults. Although Eclipse OpenJ9 JVM implements test cases for Class.getResource,

there is no test case evaluating the resource retrieval passing an empty string as a resource

name.
2https://github.com/graphhopper/jsprit
3https://docs.oracle.com/javase/8/docs/api/java/lang/Class.html#

getResource-java.lang.String-

1.2 Motivating Examples 5

Listing 1.2: Class.getResource test case.

1 c . g e t R e s o u r c e ("") ;

According to Landman et al. [22], 72% of Java open source projects use the

Class.getResource method, such as JUnit5, Hibernate ORM, and Apache Maven.

They use it mainly to retrieve files inside a jar file, load files resources used in tests, and

build projects defined in a resource folder. Java applications that contain a code similar to

Listing 1.2 may have different behaviors when running on distinct JVMs. We present exam-

ples of non-conformances between the Java Reflection API implementations and the Javadoc

in Chapter 4.

As another example, consider an empty ArrayList as an input program. Listing 1.3

presents a test case t2 invoking the Java Collections API ArrayList.ensureCapacity

method with an empty list. Using Eclipse OpenJ9 JVM 0.8.0, t2 yields

an OutOfMemoryError. It crashes the JVM. However, when using Oracle

1.8.0_151 JVM, t2 does not throw any exception or error, as defined in the

ArrayList.ensureCapacity method specification. The Java Collections API

is also specified in a Javadoc using natural language. Specification defines that

the ArrayList.ensureCapacity method should increase the capacity of the

ArrayList instance. Since Javadoc does not define any expected exception when exe-

cuting ArrayList.ensureCapacity method, we consider that as a non-conformance

between the Eclipse OpenJ9 implementation and the Javadoc. Läemmel et al. [21] conclude

that the Java Collections API is the Java API most used by open source projects. Java appli-

cations that contain a code similar to Listings 1.2 and 1.3 may have different behaviors when

running on the Oracle and Eclipse OpenJ9 JVMs. We present examples of non-conformances

between the Java Collections API implementations and the Javadoc in Chapter 4.

Listing 1.3: ArrayList.ensureCapacity test case.

1 new A r r a y L i s t () . e n s u r e C a p a c i t y (I n t e g e r .MAX_VALUE/ 1 0) ;

As a third example, consider the C# program of Listing 1.4. It defines classes A (Line 4)

and B (Line 8). Class A defines an Event (Line 5) and class B extends from A. B.Main

method (Line 9) prints the ReflectedType of Event’s AddMethod (Line 13). The pro-

gram presents different results whether we execute it using popular .NET tools that imple-

1.3 Solution 6

ment the .NET Reflection API. While the result is B using .NET Core SDK 2.1.401,

the program yields Awhen using Mono 5.4.1. We expect the result of the program of List-

ing 1.4 should be A because we use an instance of A to get the instance of MemberInfo.

The MemberInfo.ReflectedType property returns the class object used to obtain the

instance of MemberInfo [32]. We report a bug to .NET Core SDK maintainers.4 They

claim that the specification of MemberInfo.ReflectedType “...doesn’t apply to every

API that happens to yield a member info...”. We ask maintainers where we can find that

condition in the specification. They do not answer that, highlighting the incompleteness of

the .NET Reflection API specification. So, we also consider that as an underdetermined

specification because the specification allows multiple implementations to present different

results.

Listing 1.4: Code snippet related to MemberInfo.ReflectedType .NET Reflection

API property.

1 us ing System ;

2 us ing System . R e f l e c t i o n ;

3

4 p u b l i c c l a s s A {

5 p u b l i c event Ac t i on Event { add { } remove { } }

6 }

7

8 p u b l i c c l a s s B : A {

9 p u b l i c s t a t i c vo id Main (s t r i n g [] a r g s) {

10 Type t y p e = t y p e o f (B) ;

11 E v e n t I n f o e v e n t I n f o = t y p e . GetEvent (nameof (A. Event)) ;

12 MemberInfo memberInfo = e v e n t I n f o . AddMethod ;

13 Conso le . W r i t e L i n e (memberInfo . R e f l e c t e d T y p e) ;

14 }

15 }

1.3 Solution

To improve this scenario, we propose a technique [54] to detect underdetermined specifi-

cations and non-conformances between the specification and the implementations of APIs

4https://github.com/dotnet/corefx/issues/32232

1.4 Evaluation 7

specified in natural language (Chapter 3). Our technique automatically creates test cases

for all possible combinations of parameter values received, and executes them in differ-

ent API implementations to identify differences (i.e. underdetermined specification and

non-conformance candidates). We consider a test case as a set of input data, execution

commands, and conditions to determine whether a system satisfies the specification [3; 50;

38]. The technique initially considers differences as candidates because we need to check

whether they are indeed an underdetermined specification or a non-conformance. During the

test cases execution, objects and primitive values yielded by methods are saved to create more

test cases. The technique groups underdetermined specification and non-conformance can-

didates into four groups: different values, difference between exception thrown and value,

different exceptions, and implementation crash. Then, we execute some manual steps to

confirm whether an underdetermined specification or non-conformance candidate is indeed

a bug, and submit to the API specifiers or developers.

1.4 Evaluation

We evaluate our technique using 446 input programs from GitHub, and four JVMs (Ora-

cle, OpenJDK, Eclipse OpenJ9, and IBM J9) in Chapter 4. It identifies underdetermined

specification and non-conformance candidates in 32 Java Reflection API public methods

of 7 classes. Twenty-one (55.3%) candidates are detected due to test cases created using

objects and primitive values saved during the test cases execution. We report underdeter-

mined specification candidates in 12 Java Reflection API methods. The Java Reflection

API specifiers accept 3 candidates (25%). We also report 24 non-conformance candidates

to Eclipse OpenJ9, and 7 to Oracle JVMs. Eclipse OpenJ9 developers accept and fix 87.5%

non-conformance candidates. Our technique identifies non-conformance candidates in meth-

ods, such as Class.getMethods, used in 77% of Java open source projects [22]. A

number of non-conformance candidates (17) are related to Class. Eighty percent of non-

conformances candidates in Class are due to differences between exception and value. A

number of input programs (77%) used in our technique expose at least one non-conformance

candidate.

We also evaluate our technique using the Java Collections API. Our technique identifies

1.5 Contributions 8

29 underdetermined specification and non-conformance candidates. All candidates are de-

tected in methods that require primitive types as parameters. A number of 17 candidates

cannot be detected by Randoop [48] or EvoSuite [12], popular automatic test suite gener-

ators. We report 5 underdetermined specification candidates to the Java Collections API

specifiers. We also report 9 non-conformance candidates to Eclipse OpenJ9 JVM, and 4 to

Oracle JVM. Oracle JVM developers accept and fix 3 non-conformance candidates. Eclipse

OpenJ9 JVM developers accept and fix 1 non-conformance candidate. Our technique helps

JVM developers not only to improve the implementation but also to promote discussions

about underdetermined specifications in the APIs specifications.

1.5 Contributions

In summary, the main contributions of this work are:

• We analyze the Java Reflection API test suites of widely used JVMs, Eclipse OpenJ9

and OpenJDK (Section 2.1);

• We conduct surveys to investigate whether two popular reflection APIs documen-

tations specified in natural language impacts on developers understanding (Sec-

tions 2.2.1 and 2.2.2);

• We propose a technique to detect underdetermined specifications and non-

conformances between the specification and the implementations of APIs specified

in natural languages (Chapter 3);

• We report 17 underdetermined specification candidates detected by our technique to

API specifiers. They accept 3 candidates. We also report 44 non-conformance can-

didates detected by our technique to JVM developers. They accept 30 and fix 29 of

them. Twelve test cases are now part of the Eclipse OpenJ9 JVM test suite (Chapter 4).

This thesis is organized as follows. Chapter 2 presents an analysis of OpenJDK Java

Reflection API test suite and results of two surveys that investigate the impact of developers

understanding about specification. Chapter 3 describes a technique to detect underdeter-

mined specifications and non-conformances in APIs specified in natural language. Chapter 4

1.5 Contributions 9

evaluates our technique in the Java Reflection API and in the Java Collections API. Chap-

ter 5 presents related work. Finally, Chapter 6 summarizes the contributions of the thesis and

presents future work.

Chapter 2

Relevance

Most software development employs libraries and frameworks whose functionality is made

available through APIs [65]. In Java, specifiers define most APIs in Javadocs, which are

specified in natural language. The Java Persistence API is a Java specification that describes

the management of relational data in applications. The Java Cryptography API enables you

to encrypt and decrypt data in Java, as well as manage keys, sign and authenticate messages.

In this thesis we study the Java Reflection API and the Java Collections API.

According to Landman et al. [22], a number of 78% of open source Java projects use

the Java Reflection API. To conclude that, the authors perform an analysis of the frequency

of using methods of the Java Reflection API in real applications. From a collection of 20

thousand projects, they applied the Software Projects Sampling (SPS) [40] tool and arrived

at a set of 461 projects representing 99.47% of the entire sample. Authors consider Abstract

Syntactic Trees (AST) [51] of the source code to analyze the Java Reflection API methods

usage.

Table 2.1 summarizes data related to the Java Reflection API methods usage. Table 2.1

presents method category, a method example, and the usage frequency of the methods in an-

alyzed projects. Most used Java Reflection API methods (95%) are related to getting refer-

ences to meta objects (e.g. Class.getClass). It is an expected result because developers

need to use Class class to get instances to other Java Reflection API classes, like Field,

Method, and so on. Eighty-five percent of projects use textual representation methods (e.g.

Method.toString). Eighty percent of projects invoke methods to inspect a program and

get methods, fields, classes, and parameters.

10

11

Table 2.1: Java Reflection API methods usage. Content derived from Landman et al. [22].

Category Method Example Usage

References to meta objects Class.getClass 95%

Textual representation Constructor.toString 85%

References to other objects Class.getDeclaredFields 80%

Signature Method.getModifiers 80%

Resources retrieval Class.getResource 71%

Class loading Class.forName 70%

Objects instantiating Class.newInstance 65%

Methods invocation Method.invoke 60%

Field values retrieval Field.get 45%

Access modifiers changing Method.setAccessible 40%

Arrays manipulation Array.set 35%

Fields values changing Field.set 30%

Proxy instances instantiating Proxy.newProxyInstance 20%

Annotations Parameter.getAnnotations 19%

Security Class.getSigners 15%

Classes assertions Class.desiredAssertionStatus 2%

2.1 Java Reflection APIs Test Suites 12

Lämmel et al. [21] describe an approach to large-scale API-usage analysis of open source

Java projects. Authors use AST to get the numbers of distinct APIs used in a project, and

the percentage of methods of an API used in analyzed projects. The Java Collections API is

the most used API. A number of 1,374 projects use the Java Collections API. Lämmel et al.

identify calls to 406 distinct methods.

In this chapter, we illustrate and characterize the problem from three perspectives: (a)

an analysis of test suites of widely used JVMs showing that there is no systematic strategy

to check conformance between the specification and implementations of the Java Reflection

API (Section 2.1); (b) a survey of developers who use the Java Reflection API that demon-

strates diverging understanding on the specification of popular Java Reflection API methods

(Section 2.2.1); and (c) a survey (Section 2.2.2) with 94 developers of the most active C#

projects on GitHub (users of the .NET Reflection API) and 34 developers of popular im-

plementations (i.e. .NET Core SDK and Mono) of the .NET Reflection API to investigate

whether the specification of .NET Reflection API impacts on their understanding and what

is the magnitude of that.

2.1 Java Reflection APIs Test Suites

To better understand how API developers deal with the problem presented in Section 1.1, we

analyze two (Eclipse OpenJ9 and OpenJDK) popular JVMs test suites. We investigate how

developers reveal underdetermined specifications and how they check conformance between

the specification and the implementation of the Java Reflection API. We are interested in

identifying strategies used by open source Java Reflection API developers to implement test

cases. We look for random order and multiple test cases execution, occurrences of test

cases that use a single input program to invoke all possible Java Reflection API methods,

rules to choose values used to invoke them, and whether those test cases do differential

testing [30]. This investigation enables us to identify gaps in the tests of the Java Reflection

API implementations.

We consider the master branch commit 1d288ad of OpenJDK source code repository1

1https://github.com/AdoptOpenJDK/openjdk-jdk8u

2.1 Java Reflection APIs Test Suites 13

and the openj9 branch commit c2aa034 of Eclipse OpenJ9 source code repository.2 As the

JVMs’ test suites present 1,366 source files containing test cases related to Java Reflection

API methods, we analyze only the set of files related to popular methods [22]. We iden-

tify test cases invoking popular Java Reflection API methods, and containing references to

Class type and to java.lang.reflect package.

OpenJDK JVM developers implement 71% of source files in the test suite based on re-

ported bugs (i.e. files presenting the @bug custom tag in code comments [45]). Some test

cases invoke Java Reflection API methods multiple times (e.g. Class.newInstance).

JVM developers manually implement test cases using complex objects (e.g. Method) re-

turned by invoking a Java Reflection API method (e.g. Class.getMethods). Test

cases consider two oracles to check whether: i) invoking a Java Reflection API method

throws an exception; and ii) the values returned by a method match the expected re-

sults. Listing 2.1 presents a test case (test_getMethod) of Eclipse OpenJ9 JVM that tests

Class.getMethod and Method.invoke Java Reflection API methods. The input

program ClassTest (Line 4) defines a public method pubMethod and a private method

privMethod. Test case test_getMethod gets pubMethod (Line 16) and asserts the returned

value after invoked it (Line 17). Then, the test case tries to get privMethod (Line 19) and

expects a NoSuchMethodException because method is private and can not be retrieved

using Class.getMethod method.

2https://github.com/ibmruntimes/openj9-openjdk-jdk8

2.1 Java Reflection APIs Test Suites 14

Listing 2.1: Test case of Eclipse OpenJ9 JVM using two oracles.

1

2 p u b l i c c l a s s T e s t _ C l a s s {

3 . . .

4 p u b l i c s t a t i c c l a s s C l a s s T e s t {

5 . . .

6 p u b l i c i n t pubMethod () {

7 re turn 2 ;

8 }

9 p r i v a t e i n t pr ivMethod () {

10 re turn 1 ;

11 }

12 . . .

13 }

14 @Test

15 p u b l i c vo id t e s t _ g e t M e t h o d () {

16 Method m = C l a s s T e s t . c l a s s . ge tMethod ("pubMethod") ;

17 A s s e r t J U n i t . a s s e r t T r u e (((I n t e g e r) (m. in vo ke (new C l a s s T e s t ()))) .

i n t V a l u e () == 2) ;

18 t r y {

19 m = C l a s s T e s t . c l a s s . ge tMethod ("privMethod") ;

20 } ca tch (NoSuchMethodExcept ion e) {

21 / / C o r r e c t

22 re turn ;

23 }

24 A s s e r t J U n i t . a s s e r t T r u e ("Failed to throw exception accessing private

method" , f a l s e) ;

25 }

26 . . .

27 }

We do not identify automatic tools used by developers to generate test cases. Input pro-

grams size range from 2 SLOC to 32 KSLOC. JVM developers consider all Java keywords

in test cases but goto. We identify usage of enum, annotations, generics, inheritance, static

initialization, inner classes, and so on in input programs. However, we do not identify usage

of those Java constructs to implement test cases invoking all Java Reflection API methods.

2.1 Java Reflection APIs Test Suites 15

For instance, we do not find an input program that use enum to implement test cases of

Class.getResource method. Test cases are not executed in random order, which can

help identifying unexpected results.

We identify the following types used as data to invoke Java Reflection API methods:

Class[], String.class, List.class, String, bool, and so on. We do not find

differential testing neither strategies to choose method parameters values. For instance, there

is no test case invoking Class.getResource method with an empty string as parameter

value in Eclipse OpenJ9 JVM test suite. On the other hand, there is a similar test in OpenJDK

JVM (Listing 2.2). However, developers do not consider a strategy to implement or generate

different input programs. Some Eclipse OpenJ9 test cases do not check limit values. For ex-

ample, tests to create arrays using Class.forName method check whether the new array

has at most 10 dimensions. The Javadoc specification of Class.forName does not spec-

ify the maximum dimension of an array. However, the Javadoc of Array.newInstance

(another method used to create arrays) specifies “The number of dimensions of the new array

must not exceed 255.” Moreover, Section 4.4.1 (The CONSTANT_Class_info Structure) of

the Java Virtual Machine Specification (JVMS) [25, p. 80] specifies “An array type descrip-

tor is valid only if it represents 255 or fewer dimensions.”

Listing 2.2: Class.getResource OpenJDK test case.

1 p u b l i c c l a s s S o u r c e T e s t {

2 . . .

3 @Test

4 p u b l i c vo id t e s tURLReaderSource () {

5 t r y {

6 System . e r r . p r i n t l n (S o u r c e T e s t . c l a s s . g e t R e s o u r c e ("")) ;

7 . . .

8 catch (f i n a l IOExcep t i on e) {

9 f a i l (e . t o S t r i n g ()) ;

10 }

11 }

12 }

2.2 Surveys 16

2.2 Surveys

In this section, we present results of two surveys that investigate whether the specification in

natural language impacts on the developer’s understanding. We investigate whether under-

determined specifications, similar to the one presented in Section 1.2, actually impact on the

understanding of developers who use an API specified in natural language. The complete

results are available at our website [53].

We consider the same choices as Nadi et al. [39] to define the background of developers

who answered our surveys. The choices related to APIs knowledge are: i) Not knowledgeable

– I do not know anything about it; ii) Somewhat knowledgeable – I have a vague idea about

it; iii) Knowledgeable – I am familiar with it; and iv) Very knowledgeable – I know all or

most classes and methods of it. To define developers APIs usage, we consider the choices:

i) Never – I never used the API to develop applications; ii) Sometimes – I need reflection for

less than 33% of the software applications I develop; iii) Occasionally – I use reflection in

more than 33% but less than 66% of the software applications I develop; iv) Frequently – I

need reflection for more than 66% of the software applications I develop.

2.2.1 The Java Reflection API Survey

We present results of a survey about the Java Reflection API we conduct with Java develop-

ers. We send e-mails to 3,500 randomly selected GitHub developers.

Planning

We ask three questions about methods (Class.getDeclaredMethods,

Class.getMethod, and Class.getDeclaredFields) used in 77% of Java

open source projects [22]. Figure 2.1 shows a common question of our survey, in this case

related to the Class.getDeclaredMethods method. For each question, we present a

Javadoc snippet, a small program (3–13 SLOC), and we ask a question about a method call.

We present some options, and an open text box in case developers have a different answer.

We do not consider responses from developers who do not have experience developing Java

applications, knowledge of the Java Reflection API, or that never used the Java Reflection

API to develop applications.

2.2 Surveys 17

Class.getDeclaredMethods() returns an array containing Method objects reflecting all the
declared methods of the class or interface represented by this Class object, including public,
protected, default (package) access, and private methods, but excluding inherited methods.

public interface A {
 public A clone();
}

What is the result of getDeclaredMethods() for interface “A”?

public abstract A A.clone() and public default Object A.clone()
public abstract A A.clone()
public default Object A.clone()

No declared methods
Other...

Figure 2.1: Question 1 about Class.getDeclaredMethods.

Results

Overall, 130 (3.6%) developers answered the survey, which is the usual response rate for

surveys of this kind [31; 39]. We do not consider 17 responses from developers that never

used the Java Reflection API to develop applications. A number of 88 (67.7%) developers

have more than 7 years of experience in Java, and 86.9% have knowledge about the Java

Reflection API.

Figure 2.2 presents response rates related to developers experience developing Java ap-

plications. Almost 68% of the developers have more than seven years of experience with

Java. Figure 2.3 shows response rates of knowledge about the Java Reflection API. Most of

the survey respondents (86.9%) are familiar or know all or most of the Java Reflection API

classes and methods. Figure 2.4 presents response rates of frequency of usage of the Java

Reflection API to develop applications. A number of 62.3% of developers need the Java

Reflection API for less than 33% of software applications their develop.

Next, we explain results of all questions in our survey. The Class.get-

DeclaredMethods method returns all declared methods of a class, excluding inher-

ited ones [43]. Figure 2.1 presents the program used in Question 1. It declares an in-

terface A with a public method clone. Question 1 asks developers the result of invok-

ing Class.getDeclaredMethods on interface A. Most developers (79.3%) answer

2.2 Surveys 18

N
o

ex
pe

rie
nc

e

<
1

ye
ar

1-
3

ye
ar

s

4-
6

ye
ar

s

7-
10

 y
ea

rs

>
10

 y
ea

rs

0
10

30
50

0% 0.8%
6.9%

24.6%
20.8%

46.9%

Figure 2.2: Developers experience with Java.

N
ot

 k
no

w
le

dg
ea

bl
e

So
m

ew
ha

t k
no

w
le

dg
ea

bl
e

Kn
ow

le
dg

ea
bl

e

Ve
ry

 k
no

w
le

dg
ea

bl
e

0
20

40
60

1.5%
11.51%

63.16%

23.82%

Figure 2.3: Developers knowledge about the Java Reflection API. Not knowledgeable - I

do not know anything about it; Somewhat knowledgeable - I have a vague idea about it;

Knowledgeable - I am familiar with it; Very knowledgeable - I know all/most classes and

methods of it.

2.2 Surveys 19

N
ev
er

So
m
et
im
es

O
cc
as
io
na
lly

Fr
eq
ue
nt
ly

0
20

40
60

13.1%

62.3%

15.4%
9.2%

Figure 2.4: Developers using the Java Reflection API to develop applications. Sometimes

- I need reflection for less than 33% of the software applications I develop; Occasionally -

I use reflection in more than 33% but less than 66% of the software applications I develop;

Frequently - I need reflection for more than 66% of the software applications I develop.

public abstract A A.clone(). However, others (21.7%) disagree on that (Fig-

ure 2.5). Developers present six different answers to this question.

The Class.getMethod method returns a Method object that reflects the specified

public member method of the class [44]. Question 2 presents three classes to developers

(Listing 2.3). Class A extends class B and class B extends class C. Class C contains a pub-

lic method c. We ask developers the result of invoking Class.getMethod(“c”) on

class A. Some developers (57%) answer public void C.c, while others (27.6%) an-

swer public void A.c. Figure 2.6 presents the percentage of developers for each an-

swer. We obtained eight different answers to this question. Thus, the divergence here is even

more worrisome than the one obtained in Question 1.

2.2 Surveys 20

More than 10 years experienced developers

All developers

6.9%
8.8%

6.9%
3.5%

79.3%
78.8%

5.2%
6.2%

1.7%
2.7%

5

4

3

2

1

1 − public default Object A.clone()
2 − public abstract A A.clone() and public default Object A.clone()
3 − public abstract A A.clone()
4 − Other
5 − No declared methods

Figure 2.5: Results of Question 1: A.getDeclaredMethods.

Listing 2.3: Program of Question 2.

1 p u b l i c c l a s s A ex tends B {

2 }

3

4 p u b l i c c l a s s B ex tends C {

5 }

6

7 c l a s s C {

8 p u b l i c vo id c () {

9 }

10 }

More than 10 years experienced developers

All developers

8.6%
7.1%

27.6%
31%

5.2%
4.4%

56.9%
55.8%

1.7%
1.8%

5

4

3

2

1

1 − public void Object.c
2 − public void C.c
3 − public void B.c
4 − public void A.c
5 − Other

Figure 2.6: Results of Question 2: A.getMethod c.

The Class.getDeclaredFields method returns all declared fields of a class, ex-

2.2 Surveys 21

cluding inherited ones [42]. Listing 2.4 presents a program containing a class B with an

enum C. Moreover, the class A extends B, and declares a method with a parameter of C

type. Question 3 asks developers the result of invoking Class.getDeclaredFields

on class A. A number of developers (70.7%) answer class A has no declared fields. How-

ever, 29.3% of developers disagree on that. Developers present nine different answers to this

question.

Listing 2.4: Program of Question 3.

1 p u b l i c f i n a l c l a s s A ex tends B {

2 p u b l i c vo id a (C c) {

3 sw i t c h (c) {

4 c ase X:

5 }

6 }

7 }

8

9 p u b l i c c l a s s B {

10 p u b l i c enum C {

11 X

12 }

13 p r o t e c t e d C c ;

14 }

More than 10 years experienced developers
All developers

70.7%
67.3%

5.2%
9.7%

17.2%
12.4%

6.9%
8.8%

0%
1.8%

5

4

3

2

1

1 − protected int[] A.$SWITCH_TABLE

2 − protected C B.c

3 − private static int[] A.$SWITCH_TABLE$B$C

4 − Other

5 − No declared fields

Figure 2.7: Results of Question 3: A.getDeclaredFields.

2.2 Surveys 22

2.2.2 The .NET Reflection API Survey

We present results of a survey about the .NET Reflection API we conduct with C# developers.

We invite API users from the 25 most active C# projects of GitHub, including projects from

Unity, Microsoft, and Azure. We also invite developers of Mono and .NET Core SDK,

which are popular tools that implement the .NET Reflection API. We send e-mails to 1,507

randomly selected users, and to 1,134 API developers.

Planning

We divide the survey into three sections. The first section asks API users and develop-

ers about their C# experience, and .NET Reflection API knowledge. The second section

presents questions related to a popular property and some popular methods of .NET Re-

flection API. For each question, we present a small program (13–20 source lines of code,

SLOC), a link to a .NET Reflection API method or property specification, and we ask the

output of that program. Figure 2.8 shows a question of our survey, in this case related to

MemberInfo.ReflectedType property. The third section asks API users and devel-

opers for additional comments. We do not consider responses from developers who do not

have experience developing C# applications, knowledge of the .NET Reflection API, or that

never used the .NET Reflection API to develop applications.

Results

Overall, 128 (4.8%) API users and developers answered the survey, which is the usual re-

sponse rate for surveys of this kind [31]. We have 94 responses from users, and 34 responses

from developers of the .NET Reflection API. We do not consider 11 users’ responses and

7 developers’ responses that never used the .NET Reflection API to develop applications.

Figure 2.9 presents response rates related to developers experience developing C# appli-

cations. Forty-four (46.8%) API users have more than 10 years of experience in C#, and

77.6% of them have knowledge about the .NET Reflection API. About 69% of API users

have more than seven years of experience with C#. Figure 2.10 shows response rates of API

users knowledge about the .NET Reflection API. Most API users (60.6%) are familiar with

the .NET Reflection API. Figure 2.11 presents response rates of frequency of usage of the

2.2 Surveys 23

Consider the following program:

 1 using System;

 2 using System.Reflection;

 3

 4 public class A {

 5 public event Action Event { add { } remove { } }

 6 }

 7

 8 public class B : A {

 9 public static void Main(string[] args) {

10 Type type = typeof(B);

11 EventInfo eventInfo = type.GetEvent(nameof(A.Event));

12 MemberInfo memberInfo = eventInfo.AddMethod;

13 Console.WriteLine(memberInfo.ReflectedType);

14 }

15 }

What is the output of the above program? See documentation (https://goo.gl/TD3aMz).

A

B

Event

Null

Other:

Figure 2.8: Question 1 of our survey.

.NET Reflection API to develop applications. A number of 50% of API users need the .NET

Reflection API for less than 33% of software applications they develop.

Figure 2.12 presents response rates related to API developers experience developing C#

applications. About 73.5% of developers have more than seven years of experience with C#.

Seventeen (50%) API developers have more than 10 years of experience in C#. Figure 2.13

shows response rates of developers knowledge about the .NET Reflection API. Fourteen API

developers (44.1%) are familiar with the .NET Reflection API, and 85.3% of them have

knowledge about the .NET Reflection API. Figure 2.14 presents response rates of frequency

of usage of the .NET Reflection API to develop applications. A number of 41.1% of devel-

opers need the .NET Reflection API at least for 33% of software applications they develop.

2.2 Surveys 24

N
o

ex
pe

rie
nc

e

<
1

ye
ar

1-
3

ye
ar

s

4-
6

ye
ar

s

7-
10

 y
ea

rs

>
10

 y
ea

rs

0
20

40

1.1% 3.2%
9.6%

17%
22.3%

46.8%

Figure 2.9: .NET Reflection API users experience with C#.

N
ot

 k
no

w
le

dg
ea

bl
e

So
m

ew
ha

t k
no

w
le

dg
ea

bl
e

Kn
ow

le
dg

ea
bl

e

Ve
ry

 k
no

w
le

dg
ea

bl
e

0
20

40
60

5.31%
17.02%

60.66%

17.02%

Figure 2.10: Users knowledge about the .NET Reflection API. Not knowledgeable - I do not

know anything about it; Somewhat knowledgeable - I have a vague idea about it; Knowl-

edgeable - I am familiar with it; Very knowledgeable - I know all/most classes and methods

of it.

2.2 Surveys 25

N
ev
er

So
m
et
im
es

O
cc
as
io
na
lly

Fr
eq
ue
nt
ly

0
20

40
60

11.7%

50%

22.3%
16%

Figure 2.11: Users using the .NET Reflection API to develop applications. Sometimes - I

need reflection for less than 33% of the software applications I develop; Occasionally - I

use reflection in more than 33% but less than 66% of the software applications I develop;

Frequently - I need reflection for more than 66% of the software applications I develop.

N
o

ex
pe

rie
nc

e

<
1

ye
ar

1-
3

ye
ar

s

4-
6

ye
ar

s

7-
10

 y
ea

rs

>
10

 y
ea

rs

0
20

40
60

0% 2.9% 2.9%

20.62%23.52%

50.05%

Figure 2.12: .NET Reflection API developers experience with C#.

2.2 Surveys 26

N
ot

 k
no

w
le

dg
ea

bl
e

So
m

ew
ha

t k
no

w
le

dg
ea

bl
e

Kn
ow

le
dg

ea
bl

e

Ve
ry

 k
no

w
le

dg
ea

bl
e

0
20

40

2.9%
11.8%

41.2% 44.1%

Figure 2.13: Developers knowledge about the .NET Reflection API. Not knowledgeable -

I do not know anything about it; Somewhat knowledgeable - I have a vague idea about it;

Knowledgeable - I am familiar with it; Very knowledgeable - I know all/most classes and

methods of it.

N
ev
er

So
m
et
im
es

O
cc
as
io
na
lly

Fr
eq
ue
nt
ly

0
20

40

20.62%

38.24%

23.52%
17.62%

Figure 2.14: Developers using the .NET Reflection API to develop applications. Sometimes

- I need reflection for less than 33% of the software applications I develop; Occasionally -

I use reflection in more than 33% but less than 66% of the software applications I develop;

Frequently - I need reflection for more than 66% of the software applications I develop.

2.2 Surveys 27

The MemberInfo.ReflectedType property returns the class object used to ob-

tain the instance of MemberInfo [32]. The program used in Question 1 of survey (Fig-

ure 2.8) defines classes A (Line 4) and B (Line 8). Class A defines an Event (Line 5) and

class B extends from A. Main method (Line 9) in class B prints the ReflectedType of

Event’s AddMethod (Line 13). Figure 2.15 presents results for responses of the .NET

Reflection API users and developers. Almost two thirds of the API users (65.9%) answer B,

while others (26.8%) answer A. Most API developers (56.2%) answer B, while others (25%)

answer A. The program presents B as result when we execute it using .NET Core SDK

2.1.401, and A when using Mono 5.4.1. We expect the result of the program of Fig-

ure 2.8 should be A because we use an instance of A to get the instance of MemberInfo.

We report a bug to .NET Core SDK maintainers.3 They claim that the specification of

MemberInfo.ReflectedType “...doesn’t apply to every API that happens to yield a

member info...”. We can not find that condition in the specification, highlighting the incom-

pleteness of the .NET Reflection API specification.

A

B

Event

Null

Other

More than 10 years experienced API users

Less than 10 years experienced API users

More than 10 years experienced API developers

Less than 10 years experienced API developers

26.8%
16.7%

25%
18.2%

65.9%
54.8%

56.2%
45.5%

4.9%
21.4%

12.5%
36.4%

0%
2.4%

6.2%
0%

2.4%
4.8%

0%
0%

Figure 2.15: Question 1: MemberInfo.ReflectedType.

ConstructorInfo.Invoke invokes the constructor reflected by an instance.

The method throws a TargetInvocationException when the invoked con-

structor throws an exception [32]. We ask developers the result of invoking a con-

structor of object[] method informing -1 as parameter (Listing 2.5). Figure 2.16

presents results for responses of the .NET Reflection API users and developers.

Some API users (19.5%) answer OverflowException, while others (58.5%) an-

3https://github.com/dotnet/corefx/issues/32232

2.2 Surveys 28

swer TargetInvocationException. A number of API developers (25%) answer

OverflowException, while others (50%) answer TargetInvocationException.

Executing the program of Listing 2.5 in .NET Core SDK 2.1.401 yields

OverflowException. However, when using Mono 5.4.1, the program yields

TargetInvocationException. We report a bug to .NET Core SDK maintainers.4

They rejected it and claim that: “The constructors exposed by arrays have special code

paths and the TargetInvokeException wrapping was overlooked for those paths. We keep

the behavior now for compatibility sake”. We are not able to find that behavior in the .NET

Reflection API specification.

Listing 2.5: Program used in Question 2 concerning the ConstructorInfo.Invoke

method.

1 us ing System ;

2 us ing System . Linq ;

3 us ing System . R e f l e c t i o n ;

4 c l a s s A {

5 s t a t i c vo id Main () {

6 TypeIn fo t = t y p e o f (o b j e c t []) . Ge tTypeIn fo () ;

7 C o n s t r u c t o r I n f o c = t . D e c l a r e d C o n s t r u c t o r s . ToArray () [0] ;

8 Conso le . W r i t e L i n e (c . Invoke (new o b j e c t []{ −1})) ;

9 }

10 }

Other

OverflowException

System.Object[]

TargetInvocationException

Null

More than 10 years experienced API users

Less than 10 years experienced API users

More than 10 years experienced API developers

Less than 10 years experienced API developers

2.4%
2.4%

6.2%
0%

19.5%
16.7%

25%
9.1%

19.5%
23.8%

18.8%
45.5%

58.5%
57.1%

50%
45.5%

0%
0%
0%
0%

Figure 2.16: Question 2: ConstructorInfo.Invoke.

4https://github.com/dotnet/corefx/issues/32231

2.2 Surveys 29

Type.FindMembers returns a filtered array of MemberInfo objects of the spec-

ified member type. API specifiers do not define the order of members returned by

Type.FindMembers [32]. Figure 2.17 presents results for responses of the .NET Re-

flection API users and developers. Listing 2.6 presents the program used in Question 3 of

the survey. It defines a class A (Line 4) containing Member1 (Line 5) field and Member2

(Line 6) method. Main method (Line 8) invokes Type.FindMembers (Line 10) method

to retrieve members of class A. We expect returned order should be the same as declared

in source code (i.e. Member1, Member2). Some API users (7.3%) answer Member2,

Member1, while 92.7% of users answer a different result. Most API developers (62.5%)

answer Member1, Member2. Both .NET Core SDK 2.1.401 and Mono 5.4.1

present the same result (Member2, Member1). Results ordering seems to matter to some

people.5 Some other .NET Reflection API methods do not return results considering an spe-

cific order (e.g. Type.GetFields). Respondents of our survey with more than 10 years

of experience in C# send us comments stating that there is an absence of the members or-

dering policy in the specification. “I would hope that this would be implementation specific,

since the documentation doesn’t give an order” and “Particular order is not guaranteed”.

Listing 2.6: Program used in Question 3 concerning the Type.FindMembers method.

1 us ing System ;

2 us ing System . R e f l e c t i o n ;

3 c l a s s A {

4 p u b l i c s t a t i c i n t Member1 = 0 ;

5 p u b l i c s t a t i c vo id Member2 () { }

6 s t a t i c vo id Main () {

7 Type t y p e = t y p e o f (A) ;

8 MemberInfo [] members = t y p e . FindMembers (. . .) ;

9 f o r (i n t i = 0 ; i < members . Length ; i ++) {

10 Conso le . W r i t e L i n e (members [i]) ;

11 }

12 }

13 }

MethodInfo.MakeGenericMethod substitutes the current generic method defini-

tion, and returns a MethodInfo object representing the resulting constructed method [32].

5https://github.com/dotnet/corefx/issues/14606

2.2 Surveys 30

Exception

Null

Other

Member1,

Member2

Member2,

Member1

More than 10 years experienced API users

Less than 10 years experienced API users

More than 10 years experienced API developers

Less than 10 years experienced API developers

2.4%
4.8%

0%
0%
0%
2.4%

0%
0%

22%
16.7%

0%
0%

68.3%
61.9%
62.5%

90.9%
7.3%

14.3%
37.5%

9.1%

Figure 2.17: Question 3: Type.FindMembers.

Listing 2.7 presents the program used in Question 4 of the survey. Figure 2.18 presents

results for responses of the .NET Reflection API users and developers. It defines a

class A (Line 3) containing M<T> (Line 5) method and a class B (Line 8) extend-

ing from class A and containing Main method (Line 10). Main method invokes

MethodInfo.MakeGenericMethod (Line 14) method to substitute the generic defi-

nition of M<T> method. We expect result should be M[Int32]. Most API users (90.2%) an-

swer M[Int32], while other users answer a different result. Most API developers (93.8%)

answer M[Int32]. Both .NET Core SDK 2.1.401 and Mono 5.4.1 present the

same result (M[Int32]).

2.2 Surveys 31

Listing 2.7: Program used in Question 4 concerning the

MethodInfo.MakeGenericMethod method.

1 us ing System ;

2 us ing System . R e f l e c t i o n ;

3 p u b l i c c l a s s A

4 {

5 p u b l i c vo id M<T > () { }

6 }

7

8 p u b l i c c l a s s B : A

9 {

10 p u b l i c s t a t i c vo id Main (s t r i n g [] a r g s)

11 {

12 Type t = t y p e o f (B) ;

13 MethodInfo method = t . GetMethod ("M") ;

14 Conso le . W r i t e L i n e (method . MakeGenericMethod (t y p e o f (i n t))) ;

15 }

16 }

Exception

Other

M[Int32]

M[T]

Null

More than 10 years experienced API users

Less than 10 years experienced API users

More than 10 years experienced API developers

Less than 10 years experienced API developers

4.9%
19%

6.2%
0%

2.4%
0%
0%
0%

90.2%
78.6%

93.8%
90.9%

2.4%
2.4%

0%
9.1%

0%
0%
0%
0%

Figure 2.18: Question 4: MethodInfo.MakeGenericMethod.

Assembly.CreateInstance method locates a type from this assembly and cre-

ates an instance of it. The specification defines that the method should throw an

ArgumentException if argument informed is an empty string (“”). However, API spec-

ifiers do not specify what to return when one passes a blank character (“ ”) as argument [32].

Listing 2.8 presents the program used in Question 5 of the survey. It defines a class A (Line

2.2 Surveys 32

4) containing a Main method (Line 5). The program tries to create an instance of class A

invoking Assembly.CreateInstance method with a blank character (Line 7). Fig-

ure 2.19 presents results for responses of the .NET Reflection API users and developers.

Some API users (46.3%) state the result is Null, while others (51.2%) think It throws

an exception. On the other hand, a half of API developers state the result is Null,

while the other half think It throws an exception. Both .NET Core SDK 2.1.401

and Mono 5.4.1 yield Null for program of Listing 2.8. According to the specification, that

program should throw an ArgumentException, similar to the result returned when we

pass an empty string as argument. Question 5 presents the highest disagreement rate among

developers.

Listing 2.8: Program used in Question 5 related to Assembly.CreateInstance

method.

1 us ing System ;

2 us ing System . R e f l e c t i o n ;

3 p u b l i c c l a s s A {

4 p u b l i c s t a t i c vo id Main () {

5 Assembly assem = t y p e o f (A) . Assembly ;

6 A a = (A) assem . C r e a t e I n s t a n c e (‘ ‘ ’ ’) ;

7 i f (a == n u l l) {

8 Conso le . W r i t e L i n e (‘ ‘ Nul l ’ ’) ;

9 } e l s e {

10 Conso le . W r i t e L i n e (a) ;

11 }

12 }

13 }

Type.GetField searches for the public field with the specified name [32]. Listing 2.9

presents the program used in Question 6 of the survey. It defines a class A (Line 3) containing

a Field field (Line 5) and a Main method (Line 6). The program tries to get the field “” of

class A (Line 9). Figure 2.20 presents results for responses of the .NET Reflection API users

and developers. Some API users (73.2%) state the result is Null, while others (24.4%) think

It throws an exception. On the other hand, a number of 93.8% of API developers

state the result is Null, while only 6.2% think It throws an exception. Both .NET

Core SDK 2.1.401 and Mono 5.4.1 yield Null for program of Listing 2.9. According to the

2.2 Surveys 33

A

Exception

Null

System.Object

Other

More than 10 years experienced API users

Less than 10 years experienced API users

More than 10 years experienced API developers

Less than 10 years experienced API developers

2.4%
0%
0%
0%

51.2%
50%
50%

54.5%
46.3%

45.2%
50%

45.5%
0%

4.8%
0%
0%
0%
0%
0%
0%

Figure 2.19: Question 5: Assembly.CreateInstance.

specification, that program should print Null.

Listing 2.9: Program used in Question 6 concerning the Type.GetField method.

1 us ing System ;

2 us ing System . R e f l e c t i o n ;

3 p u b l i c c l a s s A

4 {

5 p u b l i c i n t F i e l d ;

6 p u b l i c s t a t i c vo id Main ()

7 {

8 Type t y p e = t y p e o f (A) ;

9 F i e l d I n f o f i e l d = t y p e . G e t F i e l d ("") ;

10 i f (f i e l d == n u l l)

11 {

12 Conso le . W r i t e L i n e ("Null") ;

13 }

14 e l s e

15 {

16 Conso le . W r i t e L i n e (f i e l d) ;

17 }

18 }

19 }

Type.GetMember searches for the public members with the specified name [32]. List-

ing 2.10 presents the program used in Question 7 of the survey. It defines a class A (Line 3)

containing a M(int p) method (Line 5), and a class B extending from class A and defin-

2.2 Surveys 34

Field

Exception

Null

Other

System.Object

More than 10 years experienced API users

Less than 10 years experienced API users

More than 10 years experienced API developers

Less than 10 years experienced API developers

2.4%
2.4%

0%
0%

24.4%
11.9%

6.2%
18.2%

73.2%
85.7%

93.8%
81.8%

0%
0%
0%
0%
0%
0%
0%
0%

Figure 2.20: Question 6: Type.GetField.

ing a M(string p) method (Line 9). The program tries to get the method “M” of class

B (Line 13). Figure 2.21 presents results for responses of the .NET Reflection API users

and developers. Most API users (65.9%) state the result is M(String) and M(Int32),

while others (26.8%) think it is M(String). A number of 62.5% of API developers state

the result is M(String) and M(Int32), while 31.2% think it is M(String). Both

.NET Core SDK 2.1.401 and Mono 5.4.1 yield M(String) and M(Int32) for program

of Listing 2.10. The specification defines nothing on whether the members of a superclass

must also be returned.

2.2 Surveys 35

Listing 2.10: Program used in Question 7 concerning the Type.GetMember method.

1 us ing System ;

2 us ing System . R e f l e c t i o n ;

3 p u b l i c c l a s s A

4 {

5 p u b l i c vo id M(i n t p) {}

6 }

7 p u b l i c c l a s s B : A

8 {

9 p u b l i c vo id M(s t r i n g p) {}

10 p u b l i c s t a t i c vo id Main ()

11 {

12 Type t y p e = t y p e o f (B) ;

13 MemberInfo [] membersArray = t y p e . GetMember ("M") ;

14 f o r (i n t i n d e x = 0 ; i n d e x < membersArray . Length ; i n d e x ++)

15 {

16 Conso le . W r i t e L i n e (membersArray [i n d e x] . T o S t r i n g ()) ;

17 }

18 }

19 }

Exception

Other

M(Int32)

M(String)

M(String),

M(Int32)

More than 10 years experienced API users

Less than 10 years experienced API users

More than 10 years experienced API developers

Less than 10 years experienced API developers

2.4%
2.4%

6.2%
0%

2.4%
2.4%

0%
0%

2.4%
7.1%

0%
9.1%

26.8%
28.6%

31.2%
36.4%

65.9%
59.5%

62.5%
54.5%

Figure 2.21: Question 7: Type.GetMember.

2.2 Surveys 36

2.2.3 Discussion

Overall, the number of different answers of the Java Reflection API Survey varied from six

to nine, and responses diverging from the most common one varied from 20.7% to 43%.

Moreover, developers also send us some comments about Java Reflection API in the open

text box. A developer states “I would strongly recommend not using the reflection API in

an application. It is a useful API to build a library or framework but isn’t something you

would want to use directly”. An experienced developer does not recommend the use of the

Java Reflection API to develop applications other than libraries and frameworks. We send

the results of our survey to developers. They highlighted the importance of fixing bugs in the

Java Reflection API.

Assembly.CreateInstance is the method that has more disagreement among

users and developers (Figure 2.19) of the .NET Reflection API Survey. The question about

MethodInfo.MakeGenericMethod method provides more agreement among users

and developers (Figure 2.18). API users provide the highest number of different responses

(nine) to the question concerning the members ordering returned by Type.FindMembers

method (Figure 2.17). API developers present at most four different responses for the ques-

tions related to MemberInfo.ReflectedType and ConstructorInfo.Invoke

methods.

Impact of Developers Experience in Surveys Responses

We conduct a Chi-Squared Test [14] with 0.05 as significance level to investigate whether

developers experience impacts on their responses. We use chisq.test R [55] function

using default parameters to execute Chi-Squared test.

Reflection API. To investigate on whether developers experience with Java are related to their

survey responses, we divide responses in two groups, such as: experienced developers (more

than 10 years of experience with Java), and non-experienced developers (less than or equal

to 10 years of experience with Java). To test whether the experience with Java is associated

with their responses in all questions of our survey, we consider that responses do not depend

on developers experience with Java as null hypothesis (H0), and that responses do depend

on developers experience as alternative hypothesis (H1).

2.2 Surveys 37

Table 2.2 presents the p–value returned by Chi-Squared test for each question. We sta-

tistically conclude that experience of API users is not associated with their responses to our

survey. We can not reject the H0 null hypothesis (p−value > 0.05) for all questions. We de-

tect some underdetermined specifications in the Java Reflection API (Chapter 4). In this case,

experience with Java of respondent of our survey do not help them to read the specification

of Java Reflection API and to answer our survey.

Table 2.2: Chi-squared test results comparing responses of experienced and non-experienced

developers.

Question p–value

1 0.2414

2 0.2202

3 0.2202

Collections API. We are interested in investigate whether: i) experience with C# of API users

is associated with their responses; ii) experience with C# of API developers is associated with

their responses; and iii) API users’ responses are associated with API developers’ responses.

To test whether the experience with C# of API users and developers is associated with their

responses in all questions of our survey, we consider API Users/API developers responses

are independent of their experience (H0a/H0b) as null hypothesis, and API Users/API de-

velopers responses are dependent of their experience (H1a/H1b) as alternative hypothesis.

We consider API users and developers responses are independent (H0c) as null hypothesis,

and API users and developers responses are dependent (H1c) as alternative hypothesis, to

test whether responses of API users are associated with responses of API developers in all

questions of our survey.

Tables 2.3, 2.4, and 2.5 present the p–value returned by Chi-Squared test for each

question. We statistically conclude that experience of API users is not associated with

their responses to our survey for all questions. We can not reject the H0a null hypothesis

(p − value > 0.05). Chi-Squared Test results also show that experience of API developers

is not associated with their responses in five of the survey questions. We reject the H0b null

hypothesis (p − value < 0.05) for developers’ responses to Questions 3, and 6 of our sur-

2.2 Surveys 38

vey. Finally, we conclude that API users’ responses are not associated with API developers’

responses. Results of statistical test do not reject the H0c null hypothesis for all questions of

our survey. We have some evidence that specification of the .NET Reflection API is incom-

plete. In this case, experience with C# and the kind of respondent of our survey do not help

them to read the specification of .NET Reflection API and to answer our survey.

Table 2.3: Chi-squared test results comparing responses of experienced and non-experienced

users.

Question p–value

1 0.22020

2 0.24140

3 0.22020

4 0.25900

5 0.25900

6 0.09094

7 0.09094

Table 2.4: Chi-squared test results comparing responses of experienced and non-experienced

developers.

Question p–value

1 0.24140

2 0.26500

3 0.04043

4 0.23490

5 0.08208

6 0.04043

7 0.25900

2.2 Surveys 39

Table 2.5: Chi-squared test results comparing responses of users and developers.

Question p–value

1 0.2414

2 0.2202

3 0.2650

4 0.2650

5 0.2650

6 0.1247

7 0.2590

Consensus in Surveys Responses

To better investigate the extent of consensus with developers responses, we train a model

to predict responses to our surveys using six supervised machine learning classifiers (i.e.

SVM, Decision Tree, Random Forest, kNN, Naive Bayes, and Logistic Regression) [13].

Independent variables are experience and whether the respondent is an API developer or

user. Dependent variable is respondent’s answer. We consider that there is consensus in the

responses of a question if the mean accuracy presented by Machine Learning classifiers is

greater than 80% [20]. On the other hand, if mean accuracy of a model is less than 80%, we

find evidence that there are issues on the API specification. In this case, API specifiers should

not present all possible parameters and programming language constructs when defining a

specification of a method. The lack of consensus may help understand that experience with

the programming language and the kind of a respondent do not affect responses to questions

of our survey.

We use scikit-learn 0.20.3 Python library6 using default parameters. We consider 10-

Fold Cross Validation technique [13] to mitigate the risk of introducing bias in the results.

That technique execute each Machine Learning algorithm 10 times changing the testing and

training sets and present a mean accuracy. We use 75% of the data set to train and 25% to

test each classifier.

Reflection API. Table 2.6 presents the mean accuracy returned by each classifier for all ques-

6https://scikit-learn.org

2.2 Surveys 40

tions of the Java Reflection API Survey when varying developer experience with Java. Clas-

sifiers have a good mean accuracy only in responses of Questions 1, and a worst mean accu-

racy for responses of Question 2. SVM, Random Forest, Logistic Regression and Decision

Tree returns the better mean accuracy for all questions, and Naive Bayes returns the worst

mean accuracy for Question 1. Although 58 participants have more than 10 years of experi-

ence in developing Java applications and knowledge about Java Reflection API, there is no

consensus in their survey responses for Questions 2 and 3.

Table 2.6: Results of Machine Learning classifiers for each question of the Java Reflection

API Survey. Mean Accuracy considers 10-Fold Cross Validation.

Mean Accuracy
Classifier

Q1 Q2 Q3

SVM 83.8% 57.8% 68.2%

Random Forest 83.8% 57.8% 68.2%

kNN 80.0% 43.2% 68.2%

Logistic Regression 83.8% 57.8% 68.2%

Naive Bayes 3.7% 56.0% 38.8%

Decision Tree 83.8% 57.8% 68.2%

Collections API. Table 2.7 presents the mean accuracy returned by each classifier for all

questions of the .NET Reflection API Survey when varying the type of the respondent and

its experience with C#. Classifiers have a good mean accuracy only in responses of Ques-

tions 4 and 6, and a worst mean accuracy for responses of Question 1. SVM and Decision

Tree returns the better mean accuracy for all questions, but for Question 2, which kNN clas-

sifier had a better mean accuracy, and Naive Bayes returns the worst mean accuracy for all

questions.

The mean accuracy of the models gives more evidence that the .NET Reflection API users

and developers do not have a consensus in 5 out of 7 questions of the survey. Respondents

of our survey present some general comments about the .NET Reflection API. A respondent

comment “...since the API is cumbersome the chance of a mistake is super high. In real world

application I would spent quite some time in debugger (or preferably writing unit tests) to

2.2 Surveys 41

Table 2.7: Results of Machine Learning classifiers for each question of the .NET Reflection

API Survey. Mean Accuracy considers 10-Fold Cross Validation.

Mean Accuracy
Classifier

Q1 Q2 Q3 Q4 Q5 Q6 Q7

SVM 42.3% 49.3% 75.8% 85.8% 57.6% 88.0% 57.2%

Random Forest 42.3% 49.3% 75.8% 85.8% 50.9% 88.0% 53.9%

kNN 38.6% 51.3% 75.8% 85.8% 57.6% 88.0% 57.2%

Logistic Regression 42.3% 49.3% 75.8% 85.8% 47.6% 88.0% 57.2%

Naive Bayes 9.1% 10.0% 75.8% 32.5% 39.2% 84.6% 19.6%

Decision Tree 42.3% 49.3% 75.8% 85.8% 57.6% 88.0% 57.2%

make sure everything works as expected”. Another respondent says “...[some questions of

the survey] are very technical and almost everyone I know will just test the code until they

get the results they need”.

2.2.4 Threats to Validity

Internal. Respondents could not understand the programs that we present in our surveys.

To mitigate that threat, we present small programs (3–20 SLOC), and a snippet or a link of

the specification. At least 46.9% of respondents of our survey have more than 10 years of

experience with Java, and 63.1% of them have knowledge about the Java Reflection API.

Moreover, at least 46.8% of respondents of our survey have more than 10 years of expe-

rience in C#, and 77.6% of them have knowledge about the .NET Reflection API. Also,

respondents of our survey can execute the programs used in our survey to get the answers

of our questions. As we see in practice, in some cases the answers depend on the tool used.

If some respondents present responses after executing the program, we have more evidence

that there are problems in the specifications of the Java Reflection API and the .NET Reflec-

tion API. Respondents can not be motivated to answer the questions of our survey. We think

it is not a threat because in case respondents provide answers without motivation, answers

should be distributed almost equally among all options. Machine Learning classifiers can

present biased results when we choose testing and training sets. We consider Fold Cross

2.3 Conclusions 42

Validation technique with 10 repetitions to mitigate that threat. Survey questions may ask

different things than what we want to ask. We conducted two pilots and improved the ques-

tions. Developers should be concerned about providing a wrong answer. However, all the

data collected from the survey is anonymous. We inform developers that the results of the

survey may be reported in academic publications.

External. We conduct our survey presenting programs in Java, and based on the Java

Reflection API specification. However, we face similar results in a study conducted in the

.NET Reflection API (Section 2.2.2). In that study, we also do not have consensus in re-

sponses of most questions of experienced developers. So, we think problems we find in the

Java Reflection API specification can happen in other APIs specified in natural language.

2.3 Conclusions

Surveys results and respondents’ comments suggest that APIs specified in natural language

allows users and developers to create a significantly different mental model of the API be-

havior, thereby introducing additional effort for everyone intending to safely use reflection

in Java and .NET projects and to implement the Java Reflection API and the .NET Reflection

API. Moreover, developers do not have a systematic strategy to test popular APIs specified in

natural language and to detect the problems in the specification identified in our surveys. The

results presented in this chapter reinforce the need for improving systematic conformance

testing of the APIs specified in natural language. Also, it can prevent users from experienc-

ing issues. In the following chapter, we present a technique to detect non-conformances and

underdetermined specifications in APIs specified in natural language, and we evaluate our

technique in Chapter 4.

Chapter 3

A Technique to Test APIs Specified in

Natural Language

In this chapter we propose a technique [54] to detect underdetermined specifications and

non-conformances in APIs specified in natural language. Section 3.1 presents an overview

of our technique. We summarize the algorithm to get initial data in Section 3.2. We present

algorithms and input data to generate test cases in Section 3.3. Section 3.4 explains how our

technique uses feedback to generate new test cases. Section 3.5 describes the oracle based

on differential testing. We present the classifier in Section 3.6. Sections 3.7 and 3.8 detail

manual steps of our technique.

3.1 Overview

Algorithm 1 and Figure 3.1 summarize the steps of our technique. Next, we explain our

technique using an example. Our technique receives as input a Java program, API imple-

mentations (e.g. JVMs), the API specification (e.g. Javadoc [47]), values for Java primitive

and non-primitive types and whether test cases should be sorted before execution. It tests

different implementations, such as the Eclipse OpenJ9 0.8.0 and Oracle 1.8.0_151 JVMs.

We can use Java Reflection API Javadoc provided by the Oracle JVM as input [17]. More-

over, our algorithm can consider the following values {MIN_INT, -1, 0, 1, MAX_INT} for

integers, {′′′′, ′′ ′′, ′′gEuOVmBvn1′′, ′′#A1′′, null} for strings, and so on. We define those

values based on Equivalence Class (e.g. “gEuOVmBvn1” for String), Boundary Value

43

3.1 Overview 44

(e.g. -1, 0, 1 for integers), and Limit Value (e.g. 263 − 1 for long) strategies [50].

Before creating test cases in Step 1 for each public method and constructor declared

in the specification, we use the input program to get initial objects (e.g. Java Re-

flection API Class objects) (Algorithm 1, Line 5). For instance, consider the input

program of Listing 1.1. To test the Java Reflection API, our technique compiles the

ConstraintManager.java file into the ConstraintManager.class and loads

it in a JVM using Class.forName(“ConstraintManager.class”) to yield a

Class object (c). Object c is added to the values received as input.

In Step 1, we identify all API public methods and constructors in the specifi-

cation. For instance, it identifies public URL Class.getResource(String

name) method in the Javadoc. It also identifies parameter types for each API pub-

lic method and constructor. For example, Class.getResource receives a String

as a parameter. We can use “” (an empty string) as parameter value for a String,

and the type (Route[]) of routes field of the ConstraintManager class of

Listing 1.1 to create the test case presented in Listing 1.2. The technique cre-

ates test cases for all possible combinations of all parameters values (Algorithm 1,

Line 8). For instance, consider the public Method Class.getMethod(String

name, Class[] parameterTypes) method. Our algorithm can create the follow-

ing test cases: c.getMethod(′′′′, null), c.getMethod(′′′′, new Object()),

c.getMethod(null, null), and so on. Algorithm 1 returns a default parameter value

(e.g. new Object()) to previously undefined types. Our technique does not generate

redundant test cases. Redundant test cases invoke the same API method using the same pa-

rameters values and the same input program. Before generating a new test case, the technique

verifies whether the input program, values, and types have already been used to generate a

test case.

Algorithm 1 executes all test cases in all implementations (Step 2). For instance, we

execute a test case in Eclipse OpenJ9 0.8.0 JVM and in Oracle 1.8.0_151 JVM. The test

case execution order depends on the user input for sort parameter. In general, execut-

ing test cases randomly improves chances of detecting bugs. However, some APIs (e.g.

Java Collections API) require a established order to avoid increasing the rate of false pos-

itives. Invoking Java Collections API methods changes the input program (i.e. the col-

3.1 Overview 45

Input: program, implementations, specification, values, sort

1 testCases← ∅;

2 allResults← ∅;

3 failedTestCases← ∅;

4 executedTestCases← ∅;

5 values← values ∪ getInitialObjects(program);

6 Step 1. Create test cases

7 foreach e: specification.getPublicMethods() ∪ specification.getPublicConstructors() do

8 tcs← createTestCases(e);

9 testCases← tcs ∪ testCases;

10 end

11 Step 2. Execute test cases

12 if sort then

13 sortTestCases(testCases);

14 end

15 foreach t: testCases – executedTestCases do

16 tcResults← ∅;

17 foreach implementation: implementations do

18 result← implementation.execute(testCase);

19 allResults← {(t, {result})} ∪ allResults;

20 tcResults← {(t, {result})} ∪ tcResults;

21 end

22 executedTestCases← {t} ∪ executedTestCases;

23 Step 3. Identify new non-conformance candidates

24 if tcResults are different then

25 failedTestCases← {t} ∪ failedTestCases;

26 end

27 end

28 Step 4. Create new test cases using new values

29 newParams← ∅;

30 foreach r: allResults do

31 newParams← {(r.type(), r.value())} ∪ newParams;

32 end

33 if newParams <> values then

34 values← newParams ∪ values;

35 goto Step 1;

36 end

37 Step 5. Grouping failed test cases into distinct ones

38 failedTestCases← classifier(failedTestCases);

Output: (program, failedTestCases)

Algorithm 1: Detect underdetermined specification and non-conformance candidates.

3.1 Overview 46

Step 1 Step 2

Test Case
Generator

Input
Program

Predefined
Parameters

Values

Step 3

Test Case
Executor

Specification

JVM
Implementations

≠

Step 4

Feedback

Oracle

Input
Program Failed Test

Cases
Non-conformance/Undetermined

Specification Candidates

Step 6

Simplify Input
Program

Step 7

Read the
Specification

Step 8

Report to
Developers/Specifiers

Step 5

Classifier

Sort Test
Cases?

Figure 3.1: Steps of our technique to detect underdetermined specifications and non-

conformances in APIs specified in natural languages.

3.1 Overview 47

lection). For instance, executing Vector.add method adds an object to a vector in-

stance and Vector.remove removes it. In a case we execute Vector.remove be-

fore Vector.add, we have a vector containing an object. On the other hand, executing

Vector.add before Vector.remove yields an empty vector. So, if our technique ex-

ecutes test cases in different order in different implementations, it can yield false positives.

All test case results are saved so that they can be used to create new tests. We use them in

Step 4.

Our technique compares the results using differential testing [30] (Step 3, Line 24). Dif-

ferential testing requires two or more comparable systems. If the results differ or one of

the systems loops indefinitely or crashes, the tester has a candidate for a bug-exposing test.

Algorithm 1 detects an underdetermined specification or a non-conformance candidate in an

API method when a test case presents different results in at least two implementations. It

verifies the return type of a test case. If the return type is primitive (e.g. int), it considers the

== operator to compare results. When the return type is non-primitive (e.g. String), our

algorithm invokes the equals method of that type to compare results. We implement the

equals method for some API classes (e.g. Java Reflection API TypeVariable class).

For example, Listing 1.2 presents a test case that has different results in Eclipse OpenJ9 and

Oracle JVMs. Eclipse OpenJ9 0.8.0 JVM yields null, while Oracle 1.8.0_151 JVM returns

a class folder URL. Since they have different values, the technique yields the input program

and the failed test case representing an underdetermined specification or a non-conformance

candidate in the Class.getResource method. In case a test case throws an exception,

our algorithm analyzes whether the exceptions thrown by each implementation are different.

To improve the chances of detecting underdetermined specification and non-conformance

candidates, our technique saves the objects and primitive values yielded by the test case ex-

ecution. The goal is to improve Java primitive and non-primitive values used by our tech-

nique (Step 4). It checks whether the returned data is already considered (Algorithm 1,

Line 33). In case it was not considered as an input for Java types, our technique goes to

Step 1 in Algorithm 1 to generate more test cases by considering all possible combinations

with the new values. For instance, Class.getFields returns Field instances that Al-

gorithm 1 uses to create tests for the Field class (e.g. Field.getName). It uses the

field name returned by executing Field.getName test case to create a new test case for

3.1 Overview 48

Class.getField(String fieldName), and so on. The technique can generate test

cases for methods that require values different of those initially considered, such as Method,

Field, and Class. The number of generated test cases depends on the number of API

public methods, parameters values, and class members of an input program. Then, Algo-

rithm 1 yields the underdetermined specification and non-conformance candidates. Each

one contains a program used as input and a failed test case, such as Listing 1.2. The tech-

nique then groups underdetermined specification and non-conformance candidates into four

distinct groups: different values, difference between exception thrown and value, different

exceptions, and implementation crashes (Step 5, Line 38).

After performing the automatic steps, we perform some manual steps to check whether

each underdetermined specification or non-conformance candidate is indeed a bug. To better

understand each underdetermined specification and non-conformance candidate, we remove

all Java constructs from input programs that are not related to each underdetermined specifi-

cation and non-conformance candidate. We simplify an input program inspired by the delta

debugging technique [68] in Step 6. We remove some code snippets, and check whether the

new resulting program compiles and the underdetermined specification or non-conformance

candidate is still detected. Otherwise, we put back the removed code snippet. We repeat this

process until we cannot remove any Java construct in the input program anymore.

We analyze each failed test case with respect to the specification (Step 7) to identify

false positives and correct results. For instance, some methods may yield random values as

specified. When our technique executes a test case in two different implementations results

may differ (false positive). We consider a non-conformance candidate when an API method

throws an exception not declared in the specification, or yields a result different than spec-

ified in Section Returns of the specification. We consider an underdetermined specification

candidate when the specification of a method is incomplete, imprecise, or ambiguous. In

other cases, implementation is in conformance with the specification (!), and we exclude

them. Finally, we report the remaining candidates to API specifiers and developers (Step 8).

3.2 Getting Initial Objects 49

3.2 Getting Initial Objects

Reflection is the ability to examine a program and to change its structure and behavior at run

time [28; 10]. To create test cases invoking the Java Reflection API methods we need an input

program. Algorithm 1 (Line 5) compiles input programs and generate .class files (byte-

codes). It creates a Class instance representing a bytecode invoking Class.forName

method. The Java Reflection API does not provide public constructors to instantiate objects

of most classes (e.g. Method). Class class is the entry point to other classes. For instance,

we can get objects representing methods of a class by invoking Class.getMethods

method.

3.3 Generating Test Cases

A test case is a set of input data, execution commands, and conditions to determine whether

a system satisfies the specification [3; 50; 38]. Our technique uses public methods and con-

structors signatures, parameters values, and initial objects (e.g. Class instance) to create

test cases. Our technique consider a differential testing oracle to decide whether a test should

pass or fail.

When testing the Java Reflection API test case, result depends on the input program.

For example, Class.getMethods returns all public methods of a class. Our technique

creates new test cases for each Method instance. Number of test cases depends on the

quantity and accessibility (i.e. public, protected, or private) of methods of a class. List-

ing 3.1 presents a program containing a class A (Line 1) which defines a public method a

(Line 2). Result of invoking Class.getMethods is a Method instance representing a

method. Our technique creates new test cases by invoking methods of Method class (e.g.

a.getModifiers(), a.getName(), and so on).

Listing 3.1: Example of input program to create test cases.

1 p u b l i c c l a s s A {

2 p u b l i c vo id a () { } ;

3 }

Some methods of popular APIs, like Java Reflection API and Java Collections API, re-

quire parameters. Our technique considers Equivalence Class, Boundary Values, and Limit

3.4 Feedback 50

Values [67] to generate input data of test cases. Table 3.1 presents some considered data. For

instance, our technique considers minimum and maximum Java integers as limit values for

int type; empty, valid ([^A-Za-z0-9]), and invalid (#A1) strings as values for equivalence

class for String type; and -1, 0, 1 as boundary values for int, long, and double types.

Table 3.1: Input data to generate test cases.

Type Data

int -2147483648, -1, 0, 1, 2147483647

long 263, -1, 0, 1, 263 − 1

double 4.9x10−324, -1.0, 0, 1.0, 1.7x10308

boolean false, true

char ′′, ′a′

String ′′′′, ′′[^A-Za-z0-9]′′, ′′#A1′′, null

Collection new ArrayList(), new ArrayList(””, ”abc”, ...), null

Other new Object(), null

Algorithm 2 presents the algorithm of method that returns data based on a type. That

algorithm receives the parameter types of a method or constructor and returns a set of val-

ues accordingly to a specific type. Algorithm 3 presents the algorithm to generate test cases

(Algorithm 1, Line 8). Our technique gets parameter types of all public methods and con-

structors to get data using Algorithm 2. Our technique generates a test case for each im-

plementation and for all possible combinations of parameters. Finally, Algorithm 3 returns

generated test cases.

3.4 Feedback

Algorithm 1 executes generated test cases in all implementations. It considers value of sort

input parameter to decide whether test cases should be sorted before execute them. Our

technique executes test cases in a implementation and logs results to files identified by the

implementation name (e.g. eclipse-openj9-jvm.txt). Each line of the result files

contains a key-value pair (e.g. A|Class|isArray|void:false). Keys contain a ref-

3.4 Feedback 51

Input: parameterTypes

1 data← ∅;

2 foreach p: parameterTypes do

3 if p.isInt() then

4 data.add({MIN_INT,−1, 0, 1,MAX_INT});

5 end

6 else if p.isLong() then

7 data.add({MIN_LONG,−1, 0, 1,MAX_LONG});

8 end

9 else if p.isDouble() then

10 data.add({MIN_DOUBLE,−1.0, 0.0, 1.0,MAX_DOUBLE});

11 end

12 else if p.isBoolean() then

13 data.add({false, true});

14 end

15 else if p.isChar() then

16 data.add({′′,′ a′});

17 end

18 else if p.isString() then

19 data.add({“”, < valid_string >,< invalid_string >, null});

20 end

21 else if p.isCollection() then

22 data.add({ArrayList(), ArrayList(“”, < valid_string >,< invalid_string >), null});

23 end

24 else

25 data.add({Object(), null});

26 end

27 end

Output: data

Algorithm 2: Input data generation algorithm.

Input: specification

1 cases← ∅;

2 foreach member : specification.getPublicMethods() ∪ specification.getPublicConstructors() do

3 inputData← getData(member.getParameterTypes());

4 foreach data : inputData do

5 case← member(data);

6 if cases.contains(case) then

7 cases.add(case);

8 end

9 end

10 end

Output: cases

Algorithm 3: Test case generation algorithm.

3.5 Oracle 52

erence to the input program (A), to the class and method of the API (Class.isArray),

and to parameters values (void). Values contain results of the test case execution (false).

Our technique analyzes the results of test cases to create new test cases with new values

to other API methods. For instance, consider the input program of Listing 3.2. It defines

a class A containing a method m. Invoking Class.getMethods on class A returns one

Method instance representing method m. Our technique uses that Method instance to cre-

ate tests for Method class (e.g. Method.getParameters). Our technique uses the

Parameter instance returned by Method.getParameters method to create a new

test case for Parameter.getType method, and so on.

Listing 3.2: Input program used in feedback.

1 p u b l i c c l a s s A {

2 p u b l i c vo id m(i n t p) {

3 }

4 }

3.5 Oracle

Algorithm 4 presents the oracle algorithm. It considers the same key for all results files and

compares values. If values differ for the same key, it detects an underdetermined specifi-

cation or a non-conformance candidate. Our technique detects a non-conformance or un-

derdetermined specification when a test case presents different results in at least two imple-

mentations. For example, Listings 3.3 and 3.4 present some results of test cases generated

using program of Listing 1.1 as input executed in Eclipse OpenJ9 and Oracle JVMs. For the

key A[]|Class|getResource|"", Algorithm 4 detects different results (i.e. null

and file:/.../target/classes). In this case, our technique detects an underdeter-

mined specification or a non-conformance candidate.

Listing 3.3: Eclipse OpenJ9 JVM results.

1 A [] | C l a s s | ge tMethods | vo id : []

2 A [] | C l a s s | g e t R e s o u r c e | "" : n u l l

3 A [] | C l a s s | i s A r r a y | vo id : t r u e

4 . . .

3.6 Classifier 53

Input: testCases

1 candidates← ∅;

2 foreach testCase : testCases do

3 results← testCase.getResults();

4 if compare(results) then

5 candidates.add(testCase, results);

6 end

7 end

Output: candidates

Algorithm 4: Oracle algorithm.

Listing 3.4: Oracle JVM results.

1 A [] | C l a s s | ge tMethods | vo id : []

2 A [] | C l a s s | g e t R e s o u r c e | "" : f i l e : / . . . / t a r g e t / c l a s s e s

3 A [] | C l a s s | i s A r r a y | vo id : t r u e

4 . . .

3.6 Classifier

Our technique groups all failed test cases considering the API method, the input program,

data used to generate the test case, and results into four groups: difference between values,

difference between exceptions, difference between exception and value, and system crash.

Algorithm 5 presents the classifier algorithm.

Input: failedTestCase

1 type← NULL;

2 if failedTestCase.result1.isSystemCrash() or failedTestCase.result2.isSystemCrash() then

3 type← SystemCrashType;

4 end

5 else if failedTestCase.result1.isValue() and failedTestCase.result2.isValue() then

6 type← DifferentV aluesType;

7 end

8 else if failedTestCase.result1.isException() and failedTestCase.result2.isException() then

9 type← DifferentExceptionsType;

10 end

11 else if (failedTestCase.result1.isException() and failedTestCase.result2.isValue()) or (failedTestCase.result1.isValue() and

failedTestCase.result2.isException()) then

12 type← V alueExceptionType;

13 end

Output: type

Algorithm 5: Classifier algorithm.

3.7 Simplifying Input Programs 54

3.7 Simplifying Input Programs

To better understand each underdetermined specification and non-conformance candidate,

we manually simplify input programs based on delta debugging [68]. Program of Listing 3.5

defines an interface C, a class A, which implements C, and another class B, which extends

from A. Oracle JVM yields public void m() when executing a test case for getting

methods of class B (i.e. Class.getMethods). On the other hand, Eclipse OpenJ9 JVM

throws a NullPointerException (Section 4.3.1).

Listing 3.5: Input program sample.

1 i n t e r f a c e C {

2 void c () ;

3 }

4 p u b l i c c l a s s A implements C {

5 p r i v a t e S t r i n g a ;

6

7 s t a t i c {

8 S t r i n g x = n u l l ;

9 x . g e t C l a s s () ;

10 }

11

12 void c () {

13 }

14 }

15

16 p u b l i c c l a s s B ex tends A {

17 p r i v a t e i n t b ;

18 p u b l i c vo id m() {}

19 }

Some program constructs are not related to the detected candidate. We first remove

interface C and run the Class.getMethods test case again to get methods of class B. We

continue detecting the candidate to non-conformance or underdetermined specification. As

test case is related to getting methods of class B, we remove all fields of classes, and method

c of class A. We execute the test case again, and our technique still detects that candidate. We

finally, remove the static block of class A and execute the test case again. Eclipse OpenJ9

3.8 Reading the Specification and Reporting Bugs 55

JVM does not throw the exception anymore. We stop simplifying the input program and

Listing 3.6 presents the resulting simplified input program.

Listing 3.6: Simplified input program sample.

1 p u b l i c c l a s s A {

2 s t a t i c {

3 S t r i n g x = n u l l ;

4 x . g e t C l a s s () ;

5 }

6 }

7

8 p u b l i c c l a s s B ex tends A {

9 p u b l i c vo id m() {}

10 }

3.8 Reading the Specification and Reporting Bugs

Javadoc specification for Class.getMethods method does not define a

NullPointerException as an expected exception. Javadoc defines that

Class.getMethods method can throw only a SecurityException. In this

case, we detect a non-conformance between the specification and the Eclipse OpenJ9

implementation of Class.getMethods method. We report a bug to Eclipse OpenJ9

JVM developers. They accept and fix that bug. Moreover, they ask us to send a pull request

containing the generated test case. Twelve test cases generated by our technique are now

part of the Eclipse OpenJ9 JVM test suite.

Chapter 4

Evaluation

In this chapter, we consider two APIs to evaluate our technique. Both APIs are widely

used [22; 21] and testing them allow us to stress our technique in different ways. Section 4.1

evaluates our technique using the Java Reflection API, and Section 4.2 evaluates our tech-

nique using the Java Collections API. Section 4.3 presents discussions about the evaluations.

Section 4.4 shows the steps to adapt our technique to test other APIs. Finally, Section 4.5

details the threats to validity of the evaluations. The complete results and replication package

are available at our website [53].

4.1 Testing the Java Reflection API

We evaluate our technique using the Java Reflection API.

4.1.1 Definition

The goal of our experiment consists of analyzing our technique for the purpose of detecting

underdetermined specifications and non-conformances between the Javadoc and the Java

Reflection API implementations with respect to Oracle, OpenJDK, IBM J9, and Eclipse

OpenJ9 JVMs from the point of view of specifiers and developers in the context of Java

input programs hosted at GitHub. We address the following research questions:

• RQ1: How many underdetermined specifications and non-conformances between

Javadoc and the Java Reflection API implementations can our technique detect?

56

4.1 Testing the Java Reflection API 57

We compute the number of underdetermined specifications and non-conformances ac-

cepted by Java Reflection API specifiers and JVM developers. The answer to this

question enables us to identify issues in the specification and in the implementations

of the Java Reflection API.

• RQ2: How many input programs used by our technique yield at least one under-

determined specification or non-conformance candidate?

We count all distinct input programs that yield at least one underdetermined specifica-

tion or non-conformance candidate. The answer to this question reveals how often real

input programs can detect underdetermined specification or non-conformance candi-

dates.

4.1.2 Planning

We use MetricMiner [63] to retrieve the commit (2017-03-02) of 446 input programs hosted

at GitHub with support to Maven and no dependency to Android SDK. Maven helps to

resolve dependencies and to compile source files, which are necessary to invoke Java Re-

flection API methods. We consider input programs from some popular companies, such as:

Apache (5), Spotify (3), Twitter (2), Google (2), Netflix (1), and Microsoft (1). Retrieved

input programs contain 60,387 source files, and Maven generates 45,984 binary files. Input

programs have from 85 to 399,129 SLOC, and 19,919 SLOC on average.

Spring Boot is the most popular input program (22,905 interested people and 339 devel-

opers) used in our study. Apache Maven input program has the greatest number of commits

(12,052). The input programs considered in Algorithm 1 do not need to use the Java Reflec-

tion API. Each test case uses an input program to invoke one Java Reflection API method. In

our study, 53.5% of analyzed input programs do not use reflection. We calculate the number

of executed test cases by summing all API methods calls.

We consider the Java Reflection API reference Javadoc provided by the Oracle JVM [47].

Algorithm 1 evaluates 237 public methods (98.75%) of classes Class, ClassLoader, and

Package, from the java.lang package, and AccessibleObject, Annotated-

Element, AnnotatedType, Constructor, Executable, Field, Method, and

Parameter from the java.lang.reflect package. We define values for the Java

4.1 Testing the Java Reflection API 58

Reflection API methods’ parameters based on Equivalence Class, Boundary Value, and Limit

Value strategies [50]. We test Oracle 1.8.0_151, OpenJDK 1.8.0_141, IBM J9 8.0.5.10, and

Eclipse OpenJ9 0.8.0 JVMs. We execute the experiment on Linux Deepin 15.5 64-bit (i7

3.40GHz and 32GB RAM). We use Maven 3.5, MetricMiner 2, and Git 2.12.2.

Algorithm 1 executes Maven to compile input programs and generate .class files (byte-

codes). It creates a Class instance representing a bytecode invoking Class.forName

method. Algorithm 1 uses public methods and constructors signatures, parameters values,

and the Class instance to create test cases. It randomly executes test cases in a JVM

(sort parameter as false in input of Algorithm 1) and logs results to files identified by the

JVM name (e.g. eclipse-openj9.txt). Each line of the result files contains a key-value pair.

Keys contain a reference to the input program (e.g. spring-boot), to the class and method

of the Java Reflection API (e.g. Class.getResource), and to parameters values (e.g.

′′′′). Values contain results of the test case execution (e.g. null). Algorithm 1 consid-

ers the same key for all results files and compares values. If values differ for the same

key, it detects an underdetermined specification or a non-conformance candidate. The tech-

nique analyzes the results of Class test cases to create new test cases with new values to

other Java Reflection API methods. For instance, Class.getMethods returns Method

instances that Algorithm 1 uses to create tests for Method (e.g. Method.getName). Al-

gorithm 1 uses the method name returned by Method.getName to create a new test case

for Class.getMethod, and so on.

4.1.3 Results

Algorithm 1 executes a total of 278M test cases. Some of them (0.03%) failed. The technique

takes about 12 hours to execute all steps presented in Algorithm 1. It yields 10 underdeter-

mined specification and 17 non-conformance candidates. We manually detect 11 candidates

during Step 6. Our technique cannot detect them automatically because of the random test

case execution. We take approximately one hour to manually analyze each of them in Steps 6

and 7. Experienced JVM developers may take less time. We identified 10 candidates as false

positives in Step 7. Some JVMs yield results in conformance with the specification in Step

7 (!). Then, we submit the remaining underdetermined specification and non-conformance

candidates only to JVMs that provide bug trackers open to the community in Step 8. Ta-

4.1 Testing the Java Reflection API 59

ble 4.1 presents methods with detected candidates, number of test cases, number of failures,

and the status of a candidate reported to the Java Reflection API specifiers, and to Eclipse

OpenJ9, and Oracle JVMs’ bug trackers. Twenty-one (55.3%) candidates are detected due

to test cases created using objects and primitive values saved during the test cases execution.

Eclipse OpenJ9 and IBM J9 JVMs throw an unexpected exception on candidate Ids: 14-

25, 26-27, and 30-32. All JVMs return expected exception but with different messages on

candidate Id 28. IBM J9 JVM returns a result different than expected on candidates Ids: 13,

and 29. Oracle and OpenJDK JVMs return a result different than expected on candidates

Ids 1-12. We consider all JVMs that do not throw an unexpected exception, and returns

expected results as correct. As IBM J9 and OpenJDK do not provide open bug trackers, and

some JVMs follow the specification for some non-conformance candidates, we submitted 12

underdetermined specifications to Javadoc specifiers and 31 reports to JVM developers. Java

Reflection API specifiers and JVM developers accepted 67.4% as real bugs. Eleven bugs are

open. So far, we have no answer to them.

Table 4.1: Detected Java Reflection API candidates. Test Cases: number of test cases exe-

cuted by Algorithm 1 calling the method. Failures: number of test cases exposing a candidate

in the method. S: Specification. J1: Oracle JVM. J2: OpenJDK JVM. J3: Eclipse OpenJ9

JVM. J4: IBM J9 JVM. Status: – = Unreported bug; O = Bug Open; F = Fixed bug; A =

Accepted bug; R = Rejected bug;!= Correct result; D = Duplicated bug.

Id Method Test Cases Failures S J1 J2 J3 J4

1 Class.getAnnotations 937,860 3,602 O ! ! ! !

2 Class.getDeclaredAnnotations 939,368 3,490 D ! ! ! !

3 Class.getResource 1,178,325 200 A ! ! ! !

4 Class.getResourceAsStream 1,172,325 200 A ! ! ! !

5
Executable.get-

Annotations
177,220 41 O ! ! ! !

6
Executable.getDeclared-

Annotations
177,412 48 O ! ! ! !

Continue on next page

4.1 Testing the Java Reflection API 60

Table 4.1 – Continued from previous page

Id Method Test Cases Failures S J1 J2 J3 J4

7
Executable.getParameter-

Annotations
177,212 7 O ! ! ! !

8 Field.getAnnotations 603,028 120 O ! ! ! !

9
Field.getDeclared-

Annotations
615,960 122 O ! ! ! !

10 Method.getAnnotations 965,740 293 O ! ! ! !

11
Method.getDeclared-

Annotations
976,304 338 O ! ! ! !

12
Method.getParameter-

Annotations
963,708 45 O ! ! ! !

13 Class.getPackage 473,436 471 ! ! ! ! –

14 Class.getConstructor 470,384 59,934 ! ! ! F –

15 Class.getConstructors 468,663 979 ! ! ! F –

16
Class.getDeclared-

Constructor
469,624 15,389 ! ! ! F –

17 Class.getDeclaredConstructors 466,646 1,013 ! ! ! F –

18 Class.getDeclaredField 2,350,808 298 ! ! ! F –

19 Class.getDeclaredFields 467,522 449 ! ! ! F –

20 Class.getDeclaredMethod 8,184,703 480 ! ! ! F –

21 Class.getDeclaredMethods 467,347 1,265 ! ! ! F –

22 Class.getField 2,359,361 1,768 ! ! ! F –

23 Class.getFields 470,437 880 ! ! ! F –

24 Class.getMethod 8,205,417 40 ! ! ! F –

25 Class.getMethods 467,821 160,213 ! ! ! F –

! F – F –

! F – F –26
Constructor.getAnnotated-

ParameterTypes
356,884 7,657

! ! ! F –

! F – F –

Continue on next page

4.1 Testing the Java Reflection API 61

Table 4.1 – Continued from previous page

Id Method Test Cases Failures S J1 J2 J3 J4

! F – F –27 Executable.getAnnotated-

ParameterTypes

88,702 435

! ! ! F –

! O – R –

! O – R –28 Method.invoke 1,468,228 240

! D – R –

29
Package.getImplementa-

tionTitle
59,014 117 ! ! ! ! –

30
Parameter.getAnnotated-

Type
88,806 1,135 ! ! ! F –

31
Parameter.getParameteri-

zedType
88,764 1,131 ! ! ! F –

32 Parameter.toString 88,664 1,154 ! ! ! F –

Class.getMethod is executed in more test cases (8,205,417).

Class.getMethods yields more test failures (160,213). Algorithm 1 detects 7

non-conformance candidates in Oracle and in OpenJDK, and 26 in Eclipse OpenJ9 and

in IBM JVMs. JVM developers answered to 72.7% of them. Oracle JVM developers

accepted 5 non-conformance candidates, and Eclipse OpenJ9 JVM developers accepted

and fixed 87.5% of the non-conformance candidates. We do not report non-conformances

to OpenJDK and IBM J9 JVMs. Their bug trackers can only be accessed by registered

developers.

A number of input programs (73.1%) used in our technique expose underdetermined

specifications and non-conformance candidates accepted by JVM developers. Figure 4.1

presents a histogram with the number of input programs according to the number of de-

tected candidates, except false positives. That histogram presents data similar to an expo-

nential distribution. There are many input programs used to detect few candidates. On

the other hand, there are few input programs used to detect many candidates. Cubeqa

is the input program that exposed most candidates (23). It is also the input program

that most accepted by the reported bugs (17). Figure 4.2 shows the number of input

4.1 Testing the Java Reflection API 62

programs that expose each candidate. Executable.getParameterAnnotations

and Method.getParameterAnnotations have less input programs exposing them.

Class.getConstructor, Class.getConstructor, and Class.getMethods

are the methods that have most input programs exposing them.

Number of Candidates

N
u

m
b

e
r

o
f

In
p

u
t

P
ro

g
ra

m
s

0
5

0
1

5
0

2
5

0
3

5
0

1 2 3 4 5 6 7 8 9 11 13 15 17 19 21 23

338
322

281

129
114

93

60
45

30
18 11 10 8 8 6 6 6 6 6 6 3 2 1

Figure 4.1: Number of input programs that expose candidates after Step 7 (Figure 3.1).

4.1.4 Answers to the Research Questions

Next, we answer our research questions.

RQ1: How many underdetermined specifications and non-conformances between

Javadoc and the Java Reflection API implementations can our technique detect?

We find non-conformances in Class, Constructor, Executable, Field, Method,

Package, and Parameter classes, and in 32 public methods out of 237 methods tested.

We manually identify 10 detected non-conformances as false positives. We report 33 non-

conformances to Oracle and Eclipse OpenJ9 JVMs. Eclipse OpenJ9 developers accept and

fix 29 non-conformances, and ask us to send a pull request containing 12 test cases.

RQ2: How many input programs used by our technique yield at least one underdeter-

mined specification or non-conformance candidate?

A number of input programs (76.9%) can be used to detect at least one non-conformance in

4.2 Testing the Java Collections API 63

Method (Id)

N
u

m
b

e
r

o
f

In
p

u
t

P
ro

g
ra

m
s

0
5

0
1

5
0

2
5

0
3

5
0

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

5347

6 6 5 7 2 13131218
2 8

319

11

272

172132
6

37
55

3 6

336

6 6 6 6

818080

Figure 4.2: Number of input programs exposing each candidate after Step 7 (Figure 3.1) (see

Id column in Table 4.1).

our technique. Some of them (73.1%) expose non-conformances accepted by JVM develop-

ers. Cubeqa input program exposes most non-conformances (23). It also exposes the most

accepted number of non-conformances (17). We identify 76.5% of input programs exposing

a non-conformance in Class.getMethods method.

4.2 Testing the Java Collections API

In this section, we evaluate our technique using the Java Collections API [46].

4.2.1 Definition

The goal of our experiment consists of analyzing our technique for the purpose of detecting

underdetermined specifications and non-conformances between the Javadoc and Java Collec-

tions API implementations with respect to Oracle, OpenJDK, IBM J9, and Eclipse OpenJ9

JVMs from the point of view of specifiers and developers. We address the following research

question:

• RQ3: How many underdetermined specifications and non-conformances between

Javadoc and the Java Collections API implementations can our technique detect?

4.2 Testing the Java Collections API 64

We compute the number of underdetermined specifications and non-conformances ac-

cepted by Java Collections API specifiers and JVM developers. The answer to this

question enables us to identify issues in the specification and in the implementations

of the Java Collections API. We do not count the number of input programs used by

our technique yield at least one underdetermined specification or non-conformance

candidate since we do not need to yield complex objects, such as Class.

4.2.2 Planning

We do not consider real input programs to test the Java Collections API because they

are simpler than the input programs required to test the Java Reflection API. To test the

Java Reflection API we use real input programs because we have to create interesting

complex objects (Class, Method, and so on). On the other hand, we do not need real

input programs to test the Java Collections API because we can just instantiate collections

using default parameters. We use null, empty collections (e.g. HashMap), and an

ArrayList of String as input to generate test cases. We consider the Java Collections

API reference Javadoc provided by the Oracle JVM [46]. Algorithm 1 evaluates all public

methods of 25 classes (i.e. AbstractCollection, AbstractList, AbstractMap,

AbstractQueue, AbstractSequentialList, AbstractSet, ArrayDeque,

ArrayList, Arrays, Collections, EnumMap, EnumSet, HashMap, HashSet,

Hashtable, IdentityHashMap, LinkedHashMap, LinkedHashSet,

LinkedList, Objects, PriorityQueue, TreeMap, TreeSet, Vector, and

WeakHashMap) of the java.util package (e.g. ArrayList class), and 13 classes (i.e.

ArrayBlockingQueue, ConcurrentHashMap, ConcurrentSkipListSet,

ConcurrentSkipListMap, ConcurrentLinkedQueue,

CopyOnWriteArrayList, CopyOnWriteArraySet, DelayQueue,

LinkedBlockingDeque, LinkedBlockingQueue, LinkedTransferQueue,

PriorityBlockingQueue, and SynchronousQueue) of the

java.util.concurrent package (e.g. ConcurrentHashMap). Our technique can-

not test methods LinkedBlockingQueue.take, ArrayBlockingQueue.take,

PriorityBlockingQueue.take, LinkedBlockingDeque.takeFirst,

LinkedBlockingDeque.takeLast, LinkedBlockingDeque.take,

4.2 Testing the Java Collections API 65

DelayQueue.take, DelayQueue.take, SynchronousQueue.take,

LinkedTransferQueue.take, SynchronousQueue.put,

BlockingQueue.put, and LinkedTransferQueue.transfer because they

wait until some element becomes available. So, execution blocks when executing test cases

invoking those methods.

We test Oracle 1.8.0_151, OpenJDK 1.8.0_141, IBM J9 8.0.5.10, and Eclipse OpenJ9

0.8.0 JVMs. We execute the experiment on Linux Deepin 15.5 64-bit (i7 3.40GHz and

32GB RAM). Our technique executes all steps of Algorithm 1 in a similar way of the Java

Reflection API evaluation. However, we have different approaches to get initial objects in the

two APIs. In the Java Reflection API, we need to load binary files. As the Java Reflection API

consider more complex objects, like Parameter, feedback is more important than when

generating test cases for the Java Collections API. On the other hand, we can invoke new

statement to create objects of the Java Collections API. It does not need to inspect a program

(Algorithm 1, Line 5) to yield classes, fields, parameters, and so on. We just instantiate

objects using default parameters values. Before executing Java Collections API test cases,

our technique alphabetically sorts generated test cases by method names to mitigate detecting

false positives (Algorithm 1, Line 13).

4.2.3 Results

Algorithm 1 executes a total of 118,251 test cases. Some of them (0.73%) failed. The

technique takes about five minutes to execute all automatic steps presented in Algorithm 1.

It yields 5 underdetermined specification and 24 non-conformance candidates. Eight non-

conformance candidates result in a JVM crash due to OutOfMemoryError. Since pro-

grams are small, it is easy to execute Step 6. We take approximately 15 minutes to manually

analyze each of them in Steps 6 and 7. Experienced JVM developers may take less time. We

identified three candidates as false positives in Step 7. Some JVMs yield results in confor-

mance with the specification in Step 7 (). Then, we submit the remaining underdetermined

specification and non-conformance candidates only to JVMs that provide bug trackers open

to the community in Step 8. Table 4.2 presents methods with detected candidates, number of

test cases, number of failures, and the status of a candidate reported to the Java Collections

API specifiers, and to Eclipse OpenJ9, and Oracle JVMs’ bug trackers.

4.2 Testing the Java Collections API 66

Eclipse OpenJ9 JVM throws an unexpected exception on candidates Ids: 1, and 7–9. IBM

J9 JVM throws an unexpected exception on candidate Ids: 1, and 8. All JVMs return a result

different than expected on candidates Ids 3–6. The Java Collections API specification allows

multiple implementations to return different results for the same input on candidate Ids: 1-

2, and 7–9. We consider all JVMs that do not throw an unexpected exception, and returns

expected results as correct. As IBM J9 and OpenJDK do not provide open bug trackers,

and some candidates are false positives, we submitted 5 underdetermined specifications to

Javadoc specifiers and 13 reports to JVM developers.

Table 4.2: Detected Java Collections API candidates. Test Cases: number of test cases

executed by Algorithm 1 calling the method. Failures: number of test cases exposing a

candidate in the method. S: Specification. J1: Oracle JVM. J2: OpenJDK JVM. J3: Eclipse

OpenJ9 JVM. J4: IBM J9 JVM. Status: – = Unreported bug; O = Bug Open; F = Fixed bug;

A = Accepted bug; R = Rejected bug;!= Correct result; D = Duplicated bug.

Id Method Test Cases Failures S J1 J2 J3 J4

1 ArrayDeque 72 6 O ! ! R –

2 ArrayList.ensureCapacity 40 1 R ! ! F –

3 Arrays.copyOfRange 4,900 180 ! R – O –

4 ConcurrentSkipListMap.put 44 1 ! F – O –

5
ConcurrentSkipListMap.put-

IfAbsent
48 1 ! F – O –

6 ConcurrentSkipListSet.add 20 1 ! F – O –

7 Hashtable 264 72 O ! ! R !

8 IdentityHashMap 160 108 O ! ! R –

9 WeakHashMap 577 498 O ! ! R !

Arrays.copyOfRange method is executed by more test cases (4,900).

WeakHashMap’s constructor yields more test failures (498). Algorithm 1 detects

four non-conformance candidates in Oracle and in OpenJDK, nine in Eclipse OpenJ9, and

seven in IBM JVMs. JVM developers answered to 61.5% of them. Oracle JVM developers

accepted and fixed three non-conformance candidates. Eclipse OpenJ9 JVM developers

4.3 Discussion 67

accept and fix one non-conformance candidate, rejected four of them and four are still open.

4.2.4 Answer to the Research Question

Next, we answer our research question.

RQ3: How many underdetermined specifications and non-conformances between

Javadoc and the Java Collections API implementations can our technique detect?

Our technique identifies 29 underdetermined specification and non-conformance candidates.

A number of 17 candidates cannot be detected by Randoop [48] or EvoSuite [12], popu-

lar automatic test suite generators. We report 5 underdetermined specification candidates

to the Java Collections API specifiers. We also report 9 non-conformance candidates to

Eclipse OpenJ9 JVM, and 4 to Oracle JVM. Oracle JVM developers accept and fix 3 non-

conformance candidates. Eclipse OpenJ9 JVM developers accept and fix 1 non-conformance

candidate.

4.3 Discussion

In this section, we discuss our results.

4.3.1 Report Candidates to APIs

Reflection API. In RQ1, in some cases JVM developers do not agree on how to fix some

bugs related to the Java Reflection API. For instance, we report a non-conformance can-

didate in the Class.getResource method (Listings 1.1 and 1.2) to Oracle JVM1 and

Eclipse OpenJ92 developers. Oracle JVM developers consider the non-conformance as a

specification issue because the Java Reflection API Javadoc does not specify what to return

when a resource name is empty. On the other hand, developers of Eclipse OpenJ9 do not

agree: “I don’t think it is an spec issue. The javadocs define: The rules for searching re-

sources associated with a given class are implemented by the defining class loader of the

1https://bugs.java.com/bugdatabase/view_bug.do?bug_id=JDK-8202687
2https://github.com/eclipse/openj9/issues/1848

4.3 Discussion 68

class.” Eclipse OpenJ9 developers fix the reported non-conformance candidate by changing

the Class.getResource method result to have the same behavior of the Oracle JVM.

In other cases, developers initially did not accept some of our reported bugs. Af-

ter discussing with them, they accepted some of them as bugs. For instance, List-

ing 4.1 defines ManagerServer class extending from class App, which invokes a method

(LoggingFactory.bootstrap()) in a static block. Eclipse OpenJ9 JVM throws

an exception executing Class.getDeclaredFields test case to retrieve declared

fields of ManagerServer because class App throws an exception and we can not get

a ManagerServer instance. Developers stated we must initialize a class instance be-

fore accessing declared fields. Javadoc specification for Class.getDeclaredFields

is not clear about class initialization. Section Structural Constraints (4.9.2) of JVMS [25]

states: “When any instance method is invoked or when any instance variable is accessed,

the class instance that contains the instance method or instance variable must already be

initialized.” However, since Class declares getDeclaredFields, we should initialize

ManagerServer.class instance instead of ManagerServer instance. Developers

agreed on that, fixed the non-conformance and asked us to add our test case to their test

suite. We submit a pull request containing that test case and other 11 test cases exposing

non-conformances.

Listing 4.1: The SPQR input program.

1 p u b l i c c l a s s App {

2 s t a t i c {

3 L o g g i n g F a c t o r y . b o o t s t r a p () ;

4 }

5 }

6 p u b l i c c l a s s ManagerServer ex tends App {

7 p r i v a t e NodeManager nodeManager = n u l l ;

8 }

Eclipse OpenJ9 developers rejected three reported non-conformance candidates. Since

the bug in Method.invoke is present in a code imported from the OpenJDK JVM, they

asked us to report the bug to the OpenJDK JVM developers. Moreover, Oracle JVM de-

velopers have doubts about the specification of Class.getDeclaredAnnotations,

Class.getResource, and Class.getResourceAsStream. The bugs related to

4.3 Discussion 69

these methods (Ids: 2, 3, and 4 in Table 4.1) are still unfixed.

Collections API. Developers of Oracle JVM accept and fix non-

conformances between the specification and implementation of

ConcurrentSkipListMap.put, ConcurrentSkipListMap.putIfAbsent,

and ConcurrentSkipListSet.add methods. Those methods present nonde-

terministic results when executing test cases of Listings 4.2, 4.3, and 4.4 multiple

times. Sometimes the result is null, sometimes is ClassCastException.

The non-conformance is fixed by developers and those test cases always re-

turn ClassCastException. Developers of Eclipse OpenJ9 JVM accept

and fix a non-conformance between the specification and the implementation of

ArrayList.ensureCapacity method (Section 1.2). Our technique also detects non-

conformances between the specification and implementation of Arrays.copyOfRange,

ConcurrentSkipListMap.put, ConcurrentSkipListMap.putIfAbsent,

and ConcurrentSkipListSet.add methods in Eclipse OpenJ9 and IBM J9 JVMs.

Eclipse OpenJ9 developers claim that those non-conformances are present in a code

imported from the OpenJDK JVM. They asked us to report the bug to the OpenJDK JVM

developers. However, those bugs are still open. Non-conformances detected in classes

ConcurrentSkipListMap and ConcurrentSkipListSet may be explained by

intrinsic difficulty to test concurrent code.

Listing 4.2: ConcurrentSkipListMap.put test case.

1 new C o n c u r r e n t S k i p L i s t M a p () . p u t (new O b j e c t () , new O b j e c t ()) ;

We identify the usage of the Java Collections API methods, related to candidates reported

to developers and specifiers that are still open (Table 4.2), in the 446 input programs used in

the Java Reflection API evaluation. Table 4.3 presents the results. Hashtable is the most

used. On the other hand, less than 10% of the input programs use all other methods. That

low usage rate can help to explain why those reported candidates are still open.

Our technique detects eight non-conformances in methods of the Java Collections

API that crash Eclipse OpenJ9 and IBM J9 JVMs. Those non-conformances throw an

OutOfMemoryError because test cases use more memory than defined on JVM heap

size. Eclipse OpenJ9 developers claim that we should increase the heap size on JVM initial-

ization. However, Oracle and OpenJDK JVMs dynamically allocate heap size at run-time

4.3 Discussion 70

Table 4.3: Usage of Java Collections API open bugs methods in the 446 input programs of

the Java Reflection API evaluation (Section 4.1).

Method Usage (%)

ArrayDeque 8.1%

Arrays.copyOfRange 6.3%

ConcurrentSkipListMap 2.2%

ConcurrentSkipListSet 1.8%

Hashtable 48.2%

IdentityHashMap 4%

WeakHashMap 4.5%

based on system configuration to avoid crashing the JVM.

Listing 4.3: ConcurrentSkipListMap.putIfAbsent test case.

1 new C o n c u r r e n t S k i p L i s t M a p () . p u t I f A b s e n t (new O b j e c t () , new O b j e c t ()) ;

JVM developers reject five non-conformances, and one underdetermined specification.

We do not agree with all of them. For instance, we report an underdetermined specifica-

tion in the ArrayList.ensureCapacity method. Javadoc does not restrict the ca-

pacity of the ArrayList. Oracle JVM developers confirm that they limit the capacity

of ArrayList in the implementation. However, specifiers reject the reported underdeter-

mined specification claiming that the implementation works as designed. Listing 4.5 presents

a test case of Arrays.copyOfRange method. Arrays.copyOfRange(byte[]

original, int from, int to) method copies the specified range of the specified

array into a new array. Specification defines that Arrays.copyOfRange method must

throw a NullPointerException when original parameter is null. The test case

presented in Listing 4.5 throws an OutOfMemoryError when executed in Oracle JVM.

We report a bug to Oracle JVM developers.3 Developers claim that code behaves according

to the specification, and reject it. However, the specification of Arrays.copyOfRange

does not define a scenario, in which an OutOfMemoryError should be thrown.

3https://bugs.java.com/bugdatabase/view_bug.do?bug_id=JDK-8227674

4.3 Discussion 71

Listing 4.4: ConcurrentSkipListSet.add test case.

1 new C o n c u r r e n t S k i p L i s t S e t () . add (new O b j e c t ()) ;

Developers also reject non-conformances in ArrayDeque, Hashtable,

IdentityHashMap, and WeakHashMap constructors. All of them receives as

parameter the maximum capacity of the collection. Our technique generates test

cases with Integer.MAX_VALUE as parameter value. Those test cases throw an

OutOfMemoryError in the Eclipse OpenJ9 JVM. Developers claim that we are trying

to create an array of 2GB elements. In this case, we should configure the maximum heap

size on the JVM startup. However, Oracle JVM increases heap size dynamically and does

no throw any exception when executing test cases invoking those constructors.

4.3.2 Input Programs

Reflection API. RQ2 is important to better understand the Java input programs that yield

candidates. For instance, JVM developers can use Cubeqa input program to detect 23 can-

didates. Some candidates can be detected by more than 70% of our input programs. Those

results indicate that JVM developers consider simpler Java programs as inputs than us. Real

input programs contain more Java constructs, which increases the probability of detecting

candidates, since we can create more complex objects.

Listing 4.5: Test case related to Arrays.copyOfRange.

1 byte [] newArray = Ar ra y s . copyOfRange (nul l , 0 , 2147483647) ;

Even small input programs expose candidates. We manually simplify programs in Step

6. They have 6.8 SLOC on average, and use 14 (28%) Java keywords (4.5 on average).

Only one simplified input program contains a method body. Listing 4.6 presents a sim-

plified input program from the Pulsar Reporting.4 It declares an inner class (Itr, Line

2) inside a concrete class used to iterate over elements of a linked queue. It uses four

Java keywords and has 6 SLOC. When invoking the Parameter.getAnnotatedType

method to get the annotated type of the d parameter, the Oracle JVM yields Class

BytesBoundedLinkedQueue. Eclipse OpenJ9 JVM, however, yields an exception.

4Data visualization and reporting framework designed to provide real-time insights from Pulsar analytics

platform.

4.3 Discussion 72

Listing 4.6: The Pulsar Reporting program input.

1 p u b l i c c l a s s BytesBoundedLinkedQueue <E> {

2 p r i v a t e c l a s s I t r implements I t e r a t o r <E> {

3 I t r (I t e r a t o r <E> d) {

4 }

5 }

6 }

As the simplified input programs that expose a candidate are small, we used an auto-

matic program generator (JDolly [62]) to increase the quantity of input programs. JDolly

generated 197,530 input programs. We used the same Alloy [19] theory used by Mon-

giovi et al. [36]. They contain one package, at most two classes and two methods, inher-

itance between classes, interface, and one field. However, it does not contain some popular

Java constructs, like enum, static blocks, inner classes, generics, or annotations. We used

the programs generated by JDolly in Algorithm 1. Our technique detects one candidate in

the Class.getMethods method. The Object.wait method is implemented by the

Eclipse OpenJ9 JVM as a native method and it is implemented by the Oracle JVM as a non-

native method. We reported that candidate.5 6 However, developers of both JVMs claimed

that the Java Reflection API specification does not specify whether a method should be na-

tive, and rejected it. The technique also reported one false positive in Class.hashCode.

Step 6 is much easier to be done in small programs generated by JDolly. To detect more

candidates using programs generated by JDolly, we must include other Java constructs (e.g.

generics, inner classes) in Alloy theory. However, we can face problems related to state

explosion. JDolly may generate millions of programs. We can improve this scenario by

skipping some similar programs [37]. We decided to use real programs because they use a

number of Java constructs, and we can create a number of complex objects, and reuse the

saved ones. The goal was to improve chances to identify non-conformance candidates.

Collections API. Differently from the Java Reflection API evaluation, we use small input

programs to evaluate the Java Collections API. We do not need them to create complex

objects, such as Class, Method, and Field. We consider null, empty collections, and

collections of String as input programs to detect all 29 candidates. Our technique detects

5https://bugs.java.com/bugdatabase/view_bug.do?bug_id=JDK-8202688
6https://github.com/eclipse/openj9/issues/803

4.3 Discussion 73

86.2% of candidates using an empty collection, and 13.8% using null as input program.

We detect 17 candidates not detected by automatic test suite generators.

4.3.3 False Positives

Reflection API. In Step 7, our technique reports 10 false positives (Table 4.4). The Java

Reflection API represents parameters identifiers of a method as arg0, arg1, and so on.

So, two different methods of an input program can have different parameters types repre-

sented by the same identifier (e.g. arg0). Methods returning hash codes of an object (e.g.

Class.hashCode) must return the same value more than once just during an execution

of a Java application. Hash codes calculated by different JVMs do not necessarily have to be

equal. Java assign a new reference to each new object instance. Methods that instantiate new

objects, like Class.newInstance, return different instances references to the same input

program. We must invoke the Field.setAccessible method before trying to access

the value of a private, protected or package-private field. Otherwise it yields an exception.

If the running order of the Field.setAccessible and Field.getInt test cases is

different between JVMs, results are also different.

Table 4.4: Java Reflection API false positives reported by our technique.

Id False Positive Cause

1 Parameter.getDeclaringExecutable Generic parameters names

2 Class.hashCode

3 Parameter.hashCode
Hash code values do not have to be equal

4 Class.newInstance

5 Constructor.newInstance
Different instance references

6 Constructor.isAccessible

7 Field.isAccessible

8 Method.isAccessible

9 Field.getInt

10 Field.getLong

Different execution order

Collections API. Table 4.5 presents the false positives reported by our technique when test-

4.3 Discussion 74

ing the Java Collections API. Our technique detects candidates in HashMap.put and

HashMap.putIfAbsent because they insert elements in different orders. However,

Javadoc of HashMap class defines that it does not guarantee that the order of elements

will remain constant over time. According to specification of methods Arrays.fill,

HashSet.toArray, and LinkedHashSet.toArray implementations must throw an

ArrayStoreException if the specified value is not of a run-time type that can be stored

in the specified array. Our technique generates test cases, such as Arrays.fill(new

Integer[1], new Object()), which does not follow the specification.

Table 4.5: Java Collections API false positives reported by our technique.

Id False Positive Cause

1 Arrays.fill

2 HashSet.toArray

3 LinkedHashSet.toArray

Test cases do not follow specification

4 *.hashCode Hash code values do not have to be equal

5 HashMap.put

6 HashMap.putIfAbsent
Order of elements can change

4.3.4 Underdetermined APIs

Reflection API. Recent studies indicate that incompleteness in an API specification can avoid

developers to use an API [56; 57; 65]. In fact, some developers who answered our Survey

suggest to use other Java Reflection APIs. Other developers state that it is difficult to read the

specification and get coding [53]. Moreover, developers that implement APIs must assume

some particular constraints in underdetermined APIs, which can lead different implementa-

tions to present different results.

However, it is not an easy task to find underdetermined APIs. Our evaluation gives evi-

dence that our technique can help developers to detect specifications excerpts that are incom-

plete. We found some specifications that do not explain what to do when considering some

Java constructs, such as annotations (e.g. underdetermined specification 2 in Table 4.1),

or input values, such as empty string (Listing 1.1) (underdetermined specification 3 in Ta-

4.3 Discussion 75

ble 4.1). Algorithm 1 also detects a non-conformance candidate in the Class.getFields

method.7 Oracle JVM returns the class fields while Eclipse OpenJ9 JVM yields an excep-

tion. Class.getFields should return all public fields of a class. However, Javadoc does

not specify what to return when a class inherits fields with the same name.

We reported candidates to all possible implementations. In some cases, they accepted

them in at least one implementation. In other cases, developers indicated underdetermined

specifications.8 We hope that the results presented here can help the Java Reflection API

specifiers and developers to better understand and improve the specification and, conse-

quently, the JVM’s implementations.

Collections API. Our technique also detects other underdetermined specifications in 19 Java

Collections API methods related to exception‘s message. Specifications of those methods

(e.g. ArrayList.remove) do not define the message that should be returned in case an

exception is thrown. Eclipse OpenJ9 and IBM J9 JVMs return -1 as message when ex-

ecuting ArrayList.remove(-1) test case. On the other hand, Oracle and OpenJDK

JVMs return null as message. We report a bug to Java Collections API specifiers but we

have no response yet. As another example, the following test case Stack.add(-1, new

Object()) yields Array index out of range: -1 exception message when

executed in Eclipse OpenJ9 and IBM J9 JVMs, and null when executed in Oracle and

OpenJDK JVMs. The specification also does not state the output in this case.

4.3.5 Automatic Test Suite Generators

Reflection API. Tools like Randoop [48] and EvoSuite [12] can be used to aid developers on

improving tests coverage, and finding bugs in widely-deployed commercial and open-source

software. However, we cannot use these tools since most Java Reflection API classes do not

expose a public constructor to allow instantiating an object and invoking methods directly.

We execute Randoop and EvoSuite to generate tests for the Method class. Since Method

defines only methods that need an instance to be invoked, Randoop does not generate tests to

Method. So, Randoop does not generate tests invoking Java Reflection API methods. Evo-

Suite throws an exception when trying to generate tests to the Method class. Our technique

7https://github.com/eclipse/openj9/issues/1845
8https://bugs.java.com/bugdatabase/view_bug.do?bug_id=JDK-8202687

4.3 Discussion 76

finds non-conformance bugs in the Oracle JVM, like Method.invoke.

We also evaluate Randoop and EvoSuite in small programs that use the Java Reflection

API. For example, consider the program of Listing 4.7. It defines a class A and a method

m containing a Method parameter p. Randoop does not generate tests, while EvoSuite

consider null for p. Randoop and EvoSuite do not deal with these complex objects. It

is a complex and challenging task for them, since it requires a certain sequence of method

calls prior to exercising the target method [61]. For instance, to generate a Method object,

an automated tool must consider accessibility, parameters, body, return type, and so on.

Moreover, the software behavior using the Java Reflection API is fundamentally hard to

predict by analyzing the code [22]. So, these tools do not focus on testing programs using

the Java Reflection API [2], differently from our technique.

Listing 4.7: Small program used as input.

1 p u b l i c c l a s s A {

2 p u b l i c i n t m(Method p) {

3 re turn 0 ;

4 }

5 }

Collections API. To detect bugs in the Java Collections API, we consider two setups to eval-

uate Randoop and EvoSuite. First, we generate test cases and execute them in the same

JVM. Second, we generate test cases in a JVM and execute them in other one. We consider

Randoop 4.1.2 with –time-limit: 60 and –flaky-test-behavior: OUTPUT parameters, and

EvoSuite 1.0.6 with -generateTests parameter. Table 4.6 presents candidates detected using

Randoop. Randoop detects two underdetermined specifications in two Java Collections API

methods (Candidate Ids 1 and 5), and six non-conformances in three Java Collections API

methods (Candidate Ids 2–4). EvoSuite does not generate test cases using default parameters.

Randoop detects three candidates when generating and executing test cases using the

same JVM. However, Randoop detects two other candidates (Ids: 2 and 4 of Table 4.6) only

when generating test cases using a JVM (e.g. IBM J9) and executing them in another JVM

(Eclipse OpenJ9). Our technique also detects those candidates.

Our technique detects candidates in seven Java Collections API methods that Randoop

does not detect. Randoop generates test cases for ArrayList.ensureCapacity(int

4.3 Discussion 77

Table 4.6: Java Collections API candidates detected by Randoop. S: Specification. J1:

Oracle JVM. J2: OpenJDK JVM. J3: Eclipse OpenJ9 JVM. J4: IBM J9 JVM. Status: – =

Unreported bug; O = Bug Open; F = Fixed bug; A = Accepted bug; R = Rejected bug;!=

Correct result; D = Duplicated bug.

Id Method S J1 J2 J3 J4

1 Arrays.binarySearch O ! ! R –

2 Arrays.copyOfRange ! ! ! O –

3 Collections.addAll ! A – R –

4 Hashtable ! F – O –

5 Objects.hash R ! ! ! !

capacity) using 10 as the maximum integer value. Our technique de-

tects a non-conformance in ArrayList.ensureCapacity method consid-

ering Integer.MAX_INTEGER as parameter. In that case, Eclipse OpenJ9

and IBM J9 throw an unspecified OutOfMemoryError, which crashes the

JVMs. Randoop does not consider Object instances to generate test cases for

ConcurrentSkipListMap.put, ConcurrentSkipListMap.putIfAbsent,

and ConcurrentSkipListSet.add. Our technique detects non-conformances using

Object instances to generate test cases to those methods.

Our technique does not detect candidates in methods Arrays.binarySearch,

Collections.addAll, and Objects.Hash (Table 4.6). It generates test cases

for Collections.addAll considering Object[] p = null as parameter. Ran-

doop detects a candidate considering int[] = null as parameter. Our tech-

nique should consider Object[] p = new Object[1] as parameter instead of

Object[] p = new Object[]new Object(), null to detect candidates in the

Arrays.binarySearch method.

4.4 Testing Other APIs 78

4.4 Testing Other APIs

Initially, we should decide to use real or toy input programs. That decision depends on the

characteristics of the new API. For instance, we should consider real input programs to test

Abstract Syntax Tree (AST) APIs because they need to inspect an input program. The more

Java constructs we have, the more the probability of detect underdetermined specifications

or non-conformances between the specification and the implementation. On the other hand,

we can use toy input programs to test Java Cryptography Architecture APIs. We may need

to provide some predefined parameters values for new API types. For example, we define

an ArrayList for Collection type to test the Java Collections API. Another input

that we should evaluate to test other APIs is whether a test case can be randomly executed.

We must sort test cases before executing them when invoking API methods changes the input

programs. We also have to implement equalsmethods for some classes that do not provide

a default implementation (Step 3 in Algorithm 1). We do not need to change the other steps

of our technique to test the Java Collections API implementations.

4.5 Threats to Validity

Algorithm 1 does not detect an underdetermined specification or a non-conformance can-

didate if an API method presents the same results in different implementations. To reduce

this threat, we evaluated four implementations. Our classifier may miss some candidates in

Step 5. Due to manual reasoning, we can incorrectly classify a candidate as a false positive,

or having a correct result in Step 7. We execute Randoop with –time-limit: 60 and –flaky-

test-behavior: OUTPUT, and EvoSuite with -generateTests command line arguments. We

consider default arguments for all other parameters. We cannot find any argument in Ran-

doop and EvoSuite documentation to increase likelihood of detecting bugs.

We consider data available on the Google BigQuery9 to find all input programs that con-

tain the pom.xml file to select all Maven input programs hosted at GitHub. Although this

set of Java input programs may not be representative, we need input programs with support

to resolving dependencies because we need to build input programs to execute our analysis.

9https://medium.com/google-cloud/github-on-bigquery-analyze-all-the-

code-b3576fd2b150#.9e3g8sdb9

4.5 Threats to Validity 79

Although input programs are from one code repository, GitHub has almost 20M contribu-

tors10 and more than 1M Java input programs. We consider input programs with different

SLOC, amount of developers, and from different domains, including: build automation tools,

Web frameworks, and JDBC drivers. We consider only null, empty collections, and col-

lections of String as input programs to test the Java Collections API. Although they are

simple, our tool can test all non-blocking public methods and constructors. We evaluate only

specifications and implementations of Java 8 APIs. We consider that the specifications and

the implementations of the Java Reflection API and Java Collections API do not significantly

change in recent Java versions.

10https://github.blog/2017-04-10-celebrating-nine-years-of-github-with-

an-anniversary-sale/

Chapter 5

Related Work

In this chapter we present related work. To the best of our knowledge, there is no study

aiming to detect underdetermined specifications and to check conformances between the

specification and the implementations of the Java Reflection API and of the Java Collections

API. Section 5.1 describes works related to conformance checking. Section 5.2 presents

works related to statically and dynamically analyzing APIs. Section 5.3 reports works related

to surveys.

5.1 Conformance Checking

Tan et al. [64] present a technique, called @TCOMMENT, to check conformance between

the Javadoc and Java programs implementations. @TCOMMENT analyzes Javadoc of Java

input programs to infer properties about null values and related exceptions. Then, it gen-

erates random tests for the input programs, checks the inferred properties, and reports in-

consistencies. We have some non-conformance candidates in the Java Reflection API and

Java Collections API methods related to the null normal property [64]. @TCOMMENT

can be useful to confirm them as implementation bugs. Considering other types of non-

conformances may be a challenge [64], but we will investigate other heuristics.

Legunsen et al. [24] perform a study of the bug-finding effectiveness of formal specifi-

cations by using JavaMOP to check whether test suite execution results are in conformance

with formal specifications. Miranda et al. [35] propose RVPRIO, an approach to automat-

ically prioritize Runtime Verification violations and increase the likelihood to identify true

80

5.1 Conformance Checking 81

bugs. RVPRIO considers properties manually formalized from the Javadoc of a subset of

four Java packages, runs JavaMOP to collect violations of 11 open source projects, and uses

Machine Learning classifiers to prioritize those violations. Ahrendt et al. [1] propose a tool

(KeYTestGen) that generate test cases for a real-time Java API. KeYTestGen uses JML spec-

ifications as input of a prover and uses each proof branch to generate test inputs satisfying

each constraint. Cheon and Leavens [7] propose a tool that automatically generates test

cases from JML formal specifications. Milanez [33] proposes a tool to automatically check

conformance of Java programs annotated with JML [23] specifications based on automatic

test generation using Randoop [48]. Massoni et al. [29] propose a formal approach to semi-

automatically refactor Java programs in a model-driven manner. They explain their approach

in a case study considering three refactorings [11]. They show evidences about issues with

keeping object models and the implementation in conformance during refactoring. Khurshid

and Marinov [58] propose TestEra – a tool that considers a formal specification for a method

and uses the method precondition to automatically generate test inputs. When a program

violates a correctness property, TestEra generates concrete counterexamples. Khurshid and

Marinov test some methods of the Java Collections API. Corazza et al. [8] describe a protocol

to manually checking the coherence between comments and implementation of Java meth-

ods. This protocol maps a dataset programs’ results to Javadoc specifications. Our technique

checks conformance between the specification of Java Reflection API and Java Collections

API, which are described in natural language.

Cheon [6] proposes a tool (JET) that generates test cases to check conformance be-

tween implementations and specifications of applications defined in Java Modeling Lan-

guage (JML). JET generates oracles based on contracts and uses genetic algorithms to gen-

erate input data to test cases. Our technique considers Equivalence Class, Limit Values, and

Boundary Values as strategies to generate input data to test cases. We can consider genetic

algorithms to improve quality of generated test cases, increasing probability of detecting

non-conformances and underdetermined specifications.

Milanez et al. [34] present a tool (JMLOK2) to check conformance in applications based

on contracts defined using JML. JMLOK2 considers a random strategy to generate test cases.

That tool automatically generates oracles based on JML contracts assertions. It is not easy to

automatically generate oracles from specifications defined in natural language. Our tech-

5.2 APIs Analysis 82

nique considers differential testing to compare results of different API implementations.

JMLOK2 considers some heuristics to categorize non-conformances. Our technique groups

non-conformances and underdetermined specifications based on differences types.

5.2 APIs Analysis

Gyori et al. [15] propose NonDex, a tool for detecting and debugging wrong assumptions on

Java APIs. Some APIs have underdetermined specifications to allow the implementations to

achieve different goals, e.g., to optimize performance. When clients of such APIs assume

stronger-than-specified guarantees, the resulting client code can fail. NonDex tool executes

application’s test suite, then it changes the API implementation (e.g. the order of elements

in a collection), and it executes tests again. If results differ, it detects an underdetermined

specification candidate and presents an API code snippet. NonDex uses a binary search to

locate invocations that cause a failure. We manually reduced the programs inspired by the

delta debugging technique [68]. We can automate that reduction by adapting our technique

based on binary search [15].

Chen et al. [5] present the Classfuzz tool that creates Java programs by using mutations,

and uses differential testing to identify bugs in JVMs’ start-up processes. Classfuzz uses pre-

defined binary files to generate mutants used as input programs to create test cases. Chen et

al. [4] evaluate some differential testing techniques (Randomized Differential Testing – RDT

and Different Optimization Levels – DOL) in compilers. RDT randomly tests compilers, and

DOL looks for optimization bugs. We can use their tool to mutate the input programs consid-

ered in our evaluation. Our technique considers all combinations of input programs, values,

and Java Reflection API and Java Collections API methods to create test cases. Algorithm 1

applies differential testing to check whether the tests results are different when running in

more than one JVM.

Pham et al. [52] propose Java StarFinder (JSF), a tool that uses symbolic execution to

generate test cases. JSF handles dynamically-allocated linked data structures (e.g. trees) as

input. JSF does not focus on testing the Java Reflection API and Java Collections API. Algo-

rithm 1 generates test cases to identify underdetermined specification and non-conformance

candidates in both APIs.

5.2 APIs Analysis 83

Sen and Agha [59] propose a tool (jCUTE) to automatically test Java concurrent pro-

grams. jCUTE detects bugs in six Java Collections API synchronized classes (e.g. Vector).

Our technique does not test concurrent programs. Pacheco et al. [49] propose Randoop, a

tool to generate unit tests for object-oriented programs. Randoop randomly generates test

cases for static methods and for concrete methods of any Java class that provides a public

constructor. They found bugs in the Java Collections API. Fraser and Arcuri [12] introduce a

tool (EvoSuite) to generate test cases for Java classes. EvoSuite uses evolutionary search to

generate test cases until it reaches a coverage target. Randoop and EvoSuite heavily depends

on a reflection API in their implementations. Developers of Randoop and EvoSuite can also

face similar problems that we identify in this work.

Visser et al. [66] use symbolic execution to generate test inputs and increase branch

coverage of Java TreeMap API implementation [9] [41]. They propose generating test inputs

based on white-box technique while we generate them using a black-box technique. does

not focus on increase code coverage. However, a study shows evidences that coverage is not

strongly related to test suite effectiveness [18]. Moreover, we do not require source code of

Java Reflection API as input.

Ahrendt et al. [1] propose a tool (KeYTestGen) that generate test cases for a real-time

Java API. KeYTestGen uses JML specifications as input of a prover and uses each proof

branch to generate test inputs satisfying each constraint. Our tool uses Limit Values, Bound-

ary Value and Equivalence Class strategies to generate test inputs. It does not check Javadoc

specification formally. KeYTestGen requires formal specifications and source code to gen-

erate test inputs.

Livshits et al. [27] propose an algorithm to statically analyze programs that use Java

Reflection. It does not cover all reflection usage because some classes are available only at

run time, specially in dynamic class loading scenarios. Landman et al. [22] perform studies

to identify challenges related to static analysis of programs using Java Reflection API. They

suggest that combining both static and dynamic analysis of programs using Java Reflection

API may improve the existing solutions for the challenges found. Algorithm 1 performs

dynamic analysis to identify candidates.

5.3 Surveys 84

5.3 Surveys

Uddin and Robillard [65] present results of two surveys that investigate issues on 72 distinct

APIs from six types of programming languages. They request developers for provide good

and bad examples of API specifications. After analyzing those examples, they identify am-

biguity, incompleteness, and incorrectness as the three severest issues. In the second survey,

researchers ask developers the issues’ frequency, their severity, and the necessity to solve

them. Head et al. [16] report results of a survey that asks developers what they miss from

C++ API specifications. They conclude that in 5% to 25% of the cases developers do not

find how to use the API. Our approach complements those works, since we focus on inves-

tigating in practice developers’ responses about the output of some popular .NET Reflection

API methods and properties. There is no consensus in responses of all questions. We find

that some responses diverge from 48.8% of the most common.

Robillard [56] conducts a survey to investigate the obstacles faced by Microsoft devel-

opers when learning how to use APIs. He concludes that obstacles caused by inadequate or

absent resources for learning the API (for example, documentation) are the most indicated

by developers. Nadi et al. [39] perform a survey about obstacles developers face while us-

ing Java cryptography APIs. They conclude that the lack of documentation impacts on how

correctly developers use a Java cryptography API. We find evidence that the .NET Reflec-

tion API specification is incomplete and imprecise. It can impact developers’ understanding

about some methods and properties.

Chapter 6

Conclusions

This work presents empirical investigations and a new technique that enables us to detect

underdetermined specifications and non-conformances in APIs specified in natural language.

We analyze test suites of popular JVMs, and we find that their developers implement most

test cases to reveal underdetermined specifications and to check the conformance between

the Javadoc specification and the Java Reflection API implementation only after a bug has

been reported. We conduct a survey with 130 developers who use the Java Reflection API

to see whether the Javadoc impacts on their understanding. Although 67.7% of developers

have more than 7 years of experience in Java and 86.9% have knowledge about the Java

Reflection API, there is no consensus in their responses for 66.6% of questions. We also

conduct a survey with 128 users and developers of the .NET Reflection API. In general,

experience with C# of API users and developers does not affect their responses to questions

of our survey. Moreover, we can not find statistical differences between responses of API

users and developers. There is no consensus in responses to 71.4% of questions of our survey.

Some responses diverge from 45.5% of the most common. In a question, only 7.3% of API

users present the same response of popular tools that implement the .NET Reflection API.

In the same question, most API developers (62.5%) present a response diverging from those

tools.

To improve this scenario, we propose a technique to detect underdetermined specifi-

cations and non-conformances between the specification and the implementations of APIs

specified in natural language. It automatically creates test cases and executes them in dif-

ferent implementations. We evaluate our technique in 446 input programs hosted at GitHub.

85

86

We find underdetermined specifications and non-conformance candidates in 32 public meth-

ods of 7 Java Reflection API classes. We report underdetermined specification candidates on

12 Java Reflection API methods. Java Reflection API specifiers accept 3 underdetermined

specification candidates (25%). We also report 31 non-conformance candidates to JVM de-

velopers. Oracle developers accept 5 and fix 4 non-conformance candidates and Eclipse

OpenJ9 developers accept and fix 21 non-conformance candidates, and include 12 test cases

in their suite. Twenty-one (55.3%) candidates are detected due to test cases created using

objects and values saved during previous test case execution. The test suites described in

Chapter 2 cannot detect the candidates found by our technique. We also evaluate our tech-

nique using the Java Collections API, a popular Java API [21]. Our technique identifies 29

underdetermined specification and non-conformance candidates. Our technique identifies 17

candidates that cannot be detected by popular automatic test suite generators (using default

parameters). We report 5 underdetermined specification candidates to the Java Collections

API specifiers. We also report 9 non-conformance candidates to Eclipse OpenJ9 JVM, and

4 to Oracle JVM. Oracle JVM developers accept and fix 3 non-conformance candidates.

Eclipse OpenJ9 JVM developers accept and fix 1 non-conformance candidate. So far, we do

not find any patterns in the bugs found.

The results of applying our technique helped both API developers to improve the im-

plementation and promote discussions about underdetermined specifications in the Java Re-

flection API and Java Collections API Javadocs, confirming the lack of consensus in most

questions found by our surveys. The Java Reflection API and Java Collections API specifiers

should propose a formal specification to avoid underdetermined specifications and consider

more Java constructs and values for method parameters when specifying method results. We

recommend both API developers to improve their testing strategies to identify underdeter-

mined specifications and non-conformances: i) create test cases using more combinations be-

tween input programs and parameter values for all API methods; ii) use strategies to choose

values (like Limit Value); iii) use differential testing; iv) use real programs to richer complex

objects for some kinds of APIs; and v) consider more complex objects for Class, Method,

and so on.

6.1 Future Work 87

6.1 Future Work

As future work, we intend to give more evidences that our technique can be applied in other

APIs. We aim at considering new parameters values and methods, and implement test cases

creation considering more than one API method per test case. We intend to evaluate Al-

gorithm 1 in different operating systems, and using new versions of JVMs that fixed the

detected non-conformance candidates found. We intend to collect bugs from JVM bug track-

ers, and see whether our technique can detect them. We plan to measure classes, lines, and

blocks coverage of executing generated test cases APIs implementations. We will extend our

technique to other programming languages (e.g. C#).

Bibliography

[1] Wolfgang Ahrendt, Wojciech Mostowski, and Gabriele Paganelli. Real-time Java API

Specifications for High Coverage Test Generation. In Proceedings of the International

Workshop on Java Technologies for Real-time and Embedded Systems, pages 145–154,

2012.

[2] Andrea Arcuri, Gordon Fraser, and Juan Pablo Galeotti. Automated Unit Test Gener-

ation for Classes with Environment Dependencies. In Proceedings of the Automated

Software Engineering, pages 79–90, 2014.

[3] Boris Beizer. Software Testing Techniques. Van Nostrand Reinhold Corporation, 2nd

edition, 1990.

[4] Junjie Chen, Wenxiang Hu, Dan Hao, Yingfei Xiong, Hongyu Zhang, Lu Zhang, and

Bing Xie. An Empirical Comparison of Compiler Testing Techniques. In Proceedings

of the International Conference on Software Engineering, pages 180–190, 2016.

[5] Yuting Chen, Ting Su, Chengnian Sun, Zhendong Su, and Jianjun Zhao. Coverage-

directed Differential Testing of JVM Implementations. ACM SIGPLAN Notices,

51(6):85–99, 2016.

[6] Yoonsik Cheon. Automated random testing to detect specification-code inconsisten-

cies. In Proceedings of the International Conference on Software Engineering Theory

and Practice, pages 112–119, 2007.

[7] Yoonsik Cheon and Gary Leavens. A Simple and Practical Approach to Unit Testing:

The JML and JUnit Way. In Proceedings of the European Conference on Object-

Oriented Programming, pages 231–255, 2002.

88

BIBLIOGRAPHY 89

[8] Anna Corazza, Valerio Maggio, and Giuseppe Scanniello. Coherence of Comments and

Method Implementations: a Dataset and an Empirical Investigation. Software Quality

Journal, 26(2):751–777, 2018.

[9] Thomas Cormen, Charles Leiserson, Ronald Rivest, and Clifford Stein. Introduction to

Algorithms. The MIT Press, 3rd edition, 2009.

[10] Ira Forman and Nate Forman. Java Reflection in Action (In Action Series). Manning

Publications Co., Greenwich, CT, USA, 2004.

[11] Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley,

1st edition, 1999.

[12] Gordon Fraser and Andrea Arcuri. EvoSuite: Automatic Test Suite Generation for

Object-oriented Software. In Proceedings of the Foundations of Software Engineering,

pages 416–419, 2011.

[13] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 1st

edition, 2016.

[14] P. E. Greenwood and M. S. Nikulin. A Guide to Chi-Squared Testing. Wiley-

Interscience, 1st edition, 1996.

[15] Alex Gyori, Ben Lambeth, August Shi, Owolabi Legunsen, and Darko Marinov. Non-

Dex: A Tool for Detecting and Debugging Wrong Assumptions on Java API Specifi-

cations. In Proceedings of the Foundations of Software Engineering, pages 993–997,

2016.

[16] Andrew Head, Caitlin Sadowski, Emerson Murphy-Hill, and Andrea Knight. When

Not to Comment: Questions and Tradeoffs with API Documentation for C++ Projects.

In Proceedings of the International Conference on Software Engineering, pages 643–

653, 2018.

[17] IBM. API Reference, 2015. https://www.ibm.com/support/

knowledgecenter/SSYKE2_8.0.0/com.ibm.java.api.80.doc/

api_overview.html.

BIBLIOGRAPHY 90

[18] Laura Inozemtseva and Reid Holmes. Coverage is Not Strongly Correlated with Test

Suite Effectiveness. In Proceedings of the International Conference on Software Engi-

neering, pages 435–445, 2014.

[19] Daniel Jackson. Software Abstractions: Logic, Language and Analysis. MIT press,

2006.

[20] Ron Kohavi. A Study of Cross-validation and Bootstrap for Accuracy Estimation and

Model Selection. In International Joint Conferences on Artificial Intelligence, pages

1137–1143, 1995.

[21] Lämmel, Ralf and Pek, Ekaterina and Starek, Jürgen. Large-Scale, AST-Based API-

Usage Analysis of Open-Source Java Projects. In Proceedings of the ACM Symposium

on Applied Computing, pages 1317–1324, 2011.

[22] Davy Landman, Alexander Serebrenik, and Jurgen Vinju. Challenges for Static Analy-

sis of Java Reflection – Literature Review and Empirical Study. In Proceedings of the

International Conference on Software Engineering, pages 507–518, 2017.

[23] A. Leavens, G. Baker and C. Ruby. Preliminary Design of JML: A Behavioral Interface

Specification Language for Java. SIGSOFT Software Engineering Notes, 31(3):1–38,

2006.

[24] Owolabi Legunsen, Wajih Hassan, Xinyue Xu, Grigore Roşu, and Darko Marinov. How

Good Are the Specs? A Study of the Bug-finding Effectiveness of Existing Java API

Specifications. In Proceedings of the Automated Software Engineering, pages 602–613,

2016.

[25] Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. The Java Virtual Ma-

chine Specification, Java SE 8 Edition. Addison-Wesley Professional, 1st edition, 2014.

[26] Barbara Liskov and John Guttag. Program Development in Java: Abstraction, Specifi-

cation, and Object-Oriented Design. Addison-Wesley Professional, 1st edition, 2000.

[27] Benjamin Livshits, John Whaley, and Monica Lam. Reflection Analysis for Java. In

Proceedings of the Asian Conference on Programming Languages and Systems, pages

139–160, 2005.

BIBLIOGRAPHY 91

[28] Pattie Maes. Concepts and Experiments in Computational Reflection. ACM SIGPLAN

Notices, 22(12):147–155, 1987.

[29] Tiago Massoni, Rohit Gheyi, and Paulo Borba. Formal Model-driven Program Refac-

toring. In Proceedings of the Fundamental Approaches to Software Engineering, pages

362–376, 2008.

[30] William McKeeman. Differential Testing for Software. Digital Technical Journal,

10(1):100–107, 1998.

[31] Flávio Medeiros, Márcio Ribeiro, Rohit Gheyi, Sven Apel, Christian Kästner, Bruno

Ferreira, Luiz Carvalho, and Baldoino Fonseca. Discipline Matters: Refactoring of

Preprocessor Directives in the #ifdef Hell. IEEE Transactions on Software Engineering,

44(5):453–469, 2018.

[32] Microsoft. .NET Reflection API Specification. https://docs.microsoft.

com/en-us/dotnet/api/system.reflection?view=netcore-2.1.

[33] Alysson Milanez. Fostering Design By Contract by Exploiting the Relationship be-

tween Code Commentary and Contracts. PhD thesis, UFCG, 2018.

[34] Alysson Milanez, Dênnis Souza, Tiago Massoni, and Rohit Gheyi. JMLOK2: A Tool

for Detecting and Categorizing Nonconformances. In Proceedings of the Brazilian

Conference on Software, pages 69–76, 2014.

[35] Breno Miranda, Igor Lima, Owolabi Legunsen, and Marcelo d’Amorim. Prioritiz-

ing runtime verification violations. In Proceedings of the International Conference on

Software Testing, Verification and Validation, 2020.

[36] Melina Mongiovi, Rohit Gheyi, Gustavo Soares, Márcio Ribeiro, Paulo Borba, and

Leopoldo Teixeira. Detecting Overly Strong Preconditions in Refactoring Engines.

IEEE Transactions on Software Engineering, 44(5):429–452, 2018.

[37] Melina Mongiovi, Gustavo Wagner, Rohit Gheyi, Gustavo Soares, and Márcio Ribeiro.

Scaling Testing of Refactoring Tools. In Proceedings of the International Conference

on Software Maintenance and Evolution, pages 371–380, 2014.

BIBLIOGRAPHY 92

[38] Glenford J. Myers, Corey Sandler, and Tom Badgett. The Art of Software Testing.

Wiley Publishing, 3rd edition, 2011.

[39] Sarah Nadi, Stefan Krüger, Mira Mezini, and Eric Bodden. Jumping Through Hoops:

Why do Java Developers Struggle with Cryptography APIs? In Proceedings of the

International Conference on Software Engineering, pages 935–946, 2016.

[40] Meiyappan Nagappan, Thomas Zimmermann, and Christian Bird. Diversity in software

engineering research. In Proceedings of the Foundations of Software Engineering,

pages 466–476, 2013.

[41] Oracle. Class TreeMap Javadoc Specification. https://docs.oracle.com/

javase/8/docs/api/java/util/TreeMap.html.

[42] Oracle. Class.getDeclaredFields Method Javadoc Specification, 2014.

https://docs.oracle.com/javase/8/docs/api/java/lang/

Class.html#getDeclaredFields--.

[43] Oracle. Class.getDeclaredMethods Method Javadoc Specification, 2014.

https://docs.oracle.com/javase/8/docs/api/java/lang/

Class.html#getDeclaredMethods--.

[44] Oracle. Class.getMethod Method Javadoc Specification, 2014. https:

//docs.oracle.com/javase/8/docs/api/java/lang/Class.html#

getMethod-java.lang.String-java.lang.Class...-.

[45] Oracle. How to Write Doc Comments for the Javadoc Tool, 2014. http://www.

oracle.com/technetwork/java/javase/documentation/index-

137868.html.

[46] Oracle. Java Collections API Javadoc Specification, 2014. https://docs.

oracle.com/javase/8/docs/technotes/guides/collections/

reference.html.

[47] Oracle. Java Reflection API Javadoc Specification, 2014. https://docs.

oracle.com/javase/8/docs/api/java/lang/reflect/package-

summary.html.

BIBLIOGRAPHY 93

[48] Carlos Pacheco, Shuvendu Lahiri, Michael Ernst, and Thomas Ball. Feedback-directed

Random Test Generation. In Proceedings of the International Conference on Software

Engineering, pages 75–84, 2007.

[49] Carlos Pacheco, Shuvendu K. Lahiri, and Thomas Ball. Finding Errors in .NET with

Feedback-directed Random Testing. In Proceedings of the International Symposium on

Software Testing and Analysis, pages 87–96, 2008.

[50] Mauro Pezzè and Michal Young. Software Testing and Analysis: Process, Principles

and Techniques. Wiley, 1st edition, 2007.

[51] F. Pfenning and C. Elliott. Higher-order abstract syntax. SIGPLAN Notices, 23(7):199–

208, 1988.

[52] Long Pham, Quang Le, Quoc-Sang Phan, Jun Sun, and Shengchao Qin. Testing Heap-

based Programs with Java StarFinder. In Proceedings of the International Conference

on Software Engineering, pages 268–269, 2018.

[53] Felipe Pontes, Rohit Gheyi, and Márcio Ribeiro. A Technique to Test APIs Specified

in Natural Language (Artifacts), 2020. http://www.dsc.ufcg.edu.br/~spg/

thesis.html.

[54] Felipe Pontes, Rohit Gheyi, Sabrina Souto, Alessandro Garcia, and Márcio Ribeiro.

Java Reflection API: Revealing the Dark Side of the Mirror. In Proceedings of the

Foundations of Software Engineering, page 636–646, 2019.

[55] R Core Team. R: A Language and Environment for Statistical Computing. R Founda-

tion for Statistical Computing, Vienna, Austria, 2014.

[56] Martin Robillard. What Makes APIs Hard to Learn? Answers from Developers. IEEE

Software, 26(6):27–34, 2009.

[57] Martin Robillard and Robert Deline. A Field Study of API Learning Obstacles. Em-

pirical Software Engineering, 16(6):703–732, 2011.

BIBLIOGRAPHY 94

[58] Sarfraz Khurshid and Darko Marinov. TestEra: A Novel Framework for Testing Java

Programs. In Proceedings of the International Conference on Automated Software

Engineering, pages 22–31, 2003.

[59] Koushik Sen and Gul Agha. CUTE and jCUTE: Concolic Unit Testing and Explicit

Path Model-Checking Tools. In Proceedings of the Computer Aided Verification, pages

419–423, 2006.

[60] Zalia Shams and Stephen Edwards. Reflection Support: Java Reflection Made Easy.

The Open Software Engineering Journal, 7(1):38–52, 2013.

[61] Sina Shamshiri, Rene Just, Jose Miguel Rojas, Gordon Fraser, Phil McMinn, and An-

drea Arcuri. Do Automatically Generated Unit Tests Find Real Faults? An Empirical

Study of Effectiveness and Challenges. In Proceedings of the Automated Software En-

gineering, pages 201–211, 2015.

[62] Gustavo Soares, Rohit Gheyi, and Tiago Massoni. Automated Behavioral Testing of

Refactoring Engines. IEEE Transactions on Software Engineering, 39(2):147–162,

2013.

[63] Francisco Sokol, Mauricio Aniche, and Marco Gerosa. MetricMiner: Supporting Re-

searchers in Mining Software Repositories. IEEE International Working Conference

on Source Code Analysis and Manipulation, 1(1):142–146, 2013.

[64] Shin Hwei Tan, Darko Marinov, Lin Tan, and Gary T. Leavens. @tComment: Testing

Javadoc Comments to Detect Comment-Code Inconsistencies. In Proceedings of the

International Conference on Software Testing, Verification and Validation, pages 260–

269, 2012.

[65] Gias Uddin and Martin Robillard. How API Documentation Fails. IEEE Software,

32(4):68–75, 2015.

[66] Willem Visser, Corina Pǎsǎreanu, and Sarfraz Khurshid. Test Input Generation with

Java PathFinder. SIGSOFT Software Engeneering Notes, 29(4):97–107, 2004.

[67] Michal Young and Mauro Pezzè. Software Testing and Analysis: Process, Principles

and Techniques. John Wiley & Sons, Hoboken, NJ, USA, 2005.

BIBLIOGRAPHY 95

[68] Andreas Zeller. Why Programs Fail: A Guide to Systematic Debugging. Morgan Kauf-

mann Publishers, 2nd edition, 2009.

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

	Introduction
	Problem
	Motivating Examples
	Solution
	Evaluation
	Contributions

	Relevance
	Java Reflection APIs Test Suites
	Surveys
	The Java Reflection API Survey
	The .NET Reflection API Survey
	Discussion
	Threats to Validity

	Conclusions

	A Technique to Test APIs Specified in Natural Language
	Overview
	Getting Initial Objects
	Generating Test Cases
	Feedback
	Oracle
	Classifier
	Simplifying Input Programs
	Reading the Specification and Reporting Bugs

	Evaluation
	Testing the Java Reflection API
	Definition
	Planning
	Results
	Answers to the Research Questions

	Testing the Java Collections API
	Definition
	Planning
	Results
	Answer to the Research Question

	Discussion
	Report Candidates to APIs
	Input Programs
	False Positives
	Underdetermined APIs
	Automatic Test Suite Generators

	Testing Other APIs
	Threats to Validity

	Related Work
	Conformance Checking
	APIs Analysis
	Surveys

	Conclusions
	Future Work

