

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE

CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA

UNIDADE ACADÊMICA DE SISTEMAS E COMPUTAÇÃO

COORDENAÇÃO DE PÓS-GRADUAÇÃO EM CIÊNCIA DA

COMPUTAÇÃO

ISABELLY SANTOS CAVALCANTE

TEST CASE PRIORITIZATION: A CASE STUDY IN THE
EVOLUTION OF A REAL SYSTEM

CAMPINA GRANDE - PB
2020

Universidade Federal de Campina Grande

Centro de Engenharia Elétrica e Informática

Coordenação de Pós-Graduação em Ciência da Computação

Test Case Prioritization: A Case Study in the

Evolution of a Real System

Isabelly Santos Cavalcante

Dissertação submetida à Coordenação do Curso de Pós-Graduação em

Ciência da Computação da Universidade Federal de Campina Grande -

Campus I como parte dos requisitos necessários para obtenção do grau

de Mestre em Ciência da Computação.

Área de Concentração: Ciência da Computação

Linha de Pesquisa: Testes em Software

Dr. Tiago Lima Massoni (Orientador)

Dra. Patrícia Duarte de Lima Machado (Orientadora)

Campina Grande, Paraíba, Brasil

c©Isabelly Santos Cavalcante, 02/01/2020

C376t

Cavalcante, Isabelly Santos.

 Test case prioritization : a case study in the Evolution of a real system

/ Isabelly Santos Cavalcante. - Campina Grande, 2020.

 55 f. : il. Color.

 Dissertação (Mestrado em Ciência da Computação) - Universidade

Federal de Campina Grande, Centro de Engenharia Elétrica e Informática,

2020.

 "Orientação: Prof. Dr. Tiago Lima Massoni, Profa. Dra. Patrícia

Duarte de Lima Machado.

 Referências.

 1.

 1. Engenharia de Software. 2. Teste de Regressão. 3. Priorização de

Casos de Teste. 4. Prioritization Techniques. 5. Test Case Prioritization. 6.

Regression Testing. I. Massoni, Tiago Lima. II. Machado, Patrícia Duarte

de Lima. III. Título.

 CDU 004.41(043)
 FICHA CATALOGRÁFICA ELABORADA PELO BIBLIOTECÁRIO GUSTAVO DINIZ DO NASCIMENTO CRB-15/515

TEST CASE PRIORITIZATION: A CASE STUDY IN THE EVOLUTION OF A REAL

SYSTEM

ISABELLY SANTOS CAVALCANTE

DISSERTAÇÃO APROVADA EM 03/02/2020

TIAGO LIMA MASSONI, Dr., UFCG

Orientador(a)

PATRICIA DUARTE DE LIMA MACHADO, PhD, UFCG

Orientador(a)

EVERTON LEANDRO GALDINO ALVES, Dr., UFCG

Examinador(a)

JULIANO MANABU IYODA, PhD, UFPE

Examinador(a)

CAMPINA GRANDE - PB

Resumo
A manutenção de software pode introduzir novos bugs em um sistema. Por isso, é crucial

verificar os impactos causados no restante do código. Uma metodologia amplamente us-

ada para validar alterações no programa é o teste de regressão. Ele consiste em executar os

testes antigos na nova versão do sistema para verificar se não houve alterações no compor-

tamento. No entanto, esse processo pode ser caro e demorado. A Priorização de Casos de

Teste (PCT) é uma das estratégias desenvolvidas para ajudar a resolver esse problema. Ela

reordena o conjunto de testes com base em um determinado critério, para que os casos de

teste prioritários sejam executados primeiro. Existem muitas técnicas de PCT disponíveis

na literatura. E, ainda assim, algumas equipes de desenvolvedores ainda encontram suas

próprias maneiras de passar pelos custos da regressão. Neste trabalho, realizamos um estudo

de caso em um grande sistema em evolução para avaliar e comparar a eficácia de seis técni-

cas de priorização, que usam informação de cobertura, com o que ocorre na prática durante

o desenvolvimento de um software. Os desenvolvedores deste sistema realizam testes em

dois momentos: antes de integrar o código, onde é necessário executar o conjunto inteiro,

e durante o desenvolvimento, onde geralmente escolhem os testes a serem executados para

economizar tempo. Nosso objetivo neste trabalho é analisar o possível uso das técnicas de

PCT durante o processo de desenvolvimento e integração do código nesse sistema. Existem

apenas alguns estudos de caso industriais envolvendo faltas reais e avaliando técnicas de

PCT que utilizam informações de cobertura em um sistema com integração contínua. Nos-

sos resultados mostraram que: 1) as técnicas baseadas em modificação são as mais eficazes

na detecção de faltas e na redução da taxa de dispersão de testes falhos, entre as técnicas

de PCT avaliadas. 2) No cenário em que todos os testes precisam ser executados, todas as

técnicas de PCT apresentaram um melhor resultado que a ordem original. 3) Embora as

técnicas PCT tenham melhores resultados do que a ordem original quando todos os testes

precisam ser executados, elas não foram mais eficazes na detecção de faltas do que a seleção

do desenvolvedor quando as restrições de tempo são maiores. Eles geralmente selecionam

o mesmo número, ou menos, de testes com falha usando o mesmo tempo de execução. 4)

A seleção que o desenvolvedor faz é talvez mais eficaz, porque ele quase sempre seleciona

testes alterados/adicionados, que são os que geralmente falham, enquanto as técnicas não

iii

priorizam esses testes. Testes adicionados ou alterados sempre devem ser considerados ao se

propor uma nova técnica de priorização.

iv

Abstract
The software maintenance can introduce new bugs in the system. Therefore, it is crucial

to check the impacts caused on the rest of the code. One widely used methodology for

validating program changes is regression testing. It consists of running the old tests on the

new version of the system to check that there have been no changes in behavior. However,

this process can be expensive and time-consuming. The Test Case Prioritization (TCP) is one

of the strategies developed to help solve this problem. It rearranges the test suite based on a

given criterion so that priority test cases are performed first. There are many TCP techniques

available in the literature. And still, some developer’s teams still find their own ways of going

through the regression costs. In this work, we conducted a case study on a large evolving

system to evaluate and compare the effectiveness of six prioritization techniques, which use

coverage information, with what happens in practice during software development. The

developers of this system perform tests at two moments: before integrating the code, where

it is required to run the entire suite, and during development, where they usually choose the

tests to run to save time. Our objective in this work is to analyze the possible use of TCP

techniques during the process of developing and integrating the code in this system. There

are only a few industrial case studies involving real faults and evaluating TCP techniques that

use coverage information in a system with a continuous integration environment. Our results

showed that: 1) the modification-based techniques are the most effective in fault detection

and reduction of the spread rate of failed tests, among the evaluated TCP techniques. 2) In the

scenario where all the tests need to be performed, all the TCP techniques presented a better

result than the original order. 3) Although TCP techniques had better results than the original

order when all the tests need to be run, they were not more effective at fault detection than

developer selection when time constraints are higher. They usually select the same number,

or less, of failed tests using the same execution time. 4) The developer selection is maybe

more effective because he almost always selects changed/added tests, which are the ones

that usually fail, whereas the techniques do not prioritize these tests. Added or altered tests

should always be considered when proposing a new prioritization technique.

v

Acknowledgements
First of all, I would like to thank God for always giving me strength and patience when I

needed it, for allowing me to complete this stage of my studies and for the blessings poured

out on my life.

I am immensely grateful to my husband Matheus for literally everything. For being

always present, patient and helpful. For all the love, care, and encouragement. For always

helping me when I was lost. For every night of company. For cheering and believing in me

more than myself. For being my best friend, my mentor and love of my life.

To my sister Carol, one of the most important people to me, for all the love, affection,

conversations, and moments of relaxation.

To my father Assis and all my family for always being by my side, providing love, en-

couragement, and support. For always understanding that I was not able to visit them as I

wanted. I am especially gratefully to my aunt Marcia for always believing in me.

I also thank my mentors Tiago and Patricia, for guiding me on this journey and for all

these years of teaching, discussion, trust, patience, review, and availability. For always being

excellent teachers.

To my close friends, specially Ivyna and Adysia, I am very grateful for all the patience

over these years and for never left my side. To my colleagues and friends of UFCG, who

have helped me throughout this journey, you have certainly made these years easier. I espe-

cially thank my course mates Wesley, Lucas, Julio, and Marcos for having gone all this way

together. To Julie for friendship, snacks, and company, especially this past year.

My sincere thanks to all members ePol for making our day to day work enjoyable and

for being the best dream team. Thanks for sharing so much knowledge with me.

To teachers and employees of COPIN and SPLab for the great help, patience, and com-

petence. Special thanks to Professor Everton for introducing me to the testing world as a

graduate student and always answering my questions. To Lilian and Marilene for all the help

and talk these years. And Paloma and Lyana for all help with the processes and questions.

Lastly, I thank CNPq for the financial support provided for this work.

vi

Contents

1 Introduction 1

2 Background 4

2.1 Test case prioritization . 4

2.1.1 Studied techniques . 5

2.1.2 Metrics . 7

2.2 Continuous integration . 10

3 Study Methodology 12

3.1 Study definition . 12

3.1.1 Research questions . 12

3.2 Study context . 13

3.2.1 The changes and their workflow 14

3.3 Experimental Procedure . 15

3.3.1 Experimental units . 15

3.3.2 Instrumentation and data collection 16

3.3.3 Applying prioritization techniques 19

4 Results 25

4.1 Answers to research questions 1 to 4 . 25

4.1.1 RQ1: Do the chosen TCP techniques improve the system test suite

fault detection rate? . 25

4.1.2 RQ2: Are the chosen TCP techniques equally efficient according to

the APFD metric? . 29

vii

CONTENTS viii

4.1.3 RQ3: Do the chosen TCP techniques decrease the spread of failed

test cases in the system test suite? 30

4.1.4 RQ4: Are the chosen TCP techniques equally efficient according to

the F-Spreading metric? . 33

4.2 Answers to research questions 5 and 6 . 34

4.2.1 RQ5: Was the developer able to select all tests that detected the fault? 34

4.2.2 RQ6: Are time-constrained prioritization techniques more efficient

than manual selection in the development environment? 35

5 Discussion 38

5.1 Prioritization tradeoffs . 38

5.2 Coverage Processing . 40

5.3 Project-related issues . 41

5.4 Practice of Testing . 43

5.5 Threats to validity . 44

6 Related Work 46

6.1 Prioritization techniques and their evaluation 46

6.2 Empirical studies . 48

7 Conclusion 51

List of Figures

2.1 Graph representing the APFD calculation of T1. 8

2.2 Graph representing the APFD calculation of T2. 9

2.3 Example of the CI process. 10

3.1 System change development flow. 15

3.2 Scenarios where the data collection script occurred. 18

3.3 Data flow after script call. 18

3.4 Extraction steps of the data coverage information. 22

3.5 Script executing the TCP techniques. 24

4.1 Boxplots with the APFD distribution per technique. 26

4.2 Confidence interval for the APFD median values of each technique. 27

4.3 Boxplots with the F-Spreading distribution per technique. 30

4.4 Confidence interval for the F-Spreading median values of each technique. . 31

4.5 Comparison, per experimental unit, of the number of failed tests that the

most efficient technique detected utilizing the time it took the developer to

perform her selection, with the number of tests the developer detected, and

with the total number of tests that had to be detected. 36

4.6 Comparison between the execution time of the developer-selected tests, and

the time that the most effective technique of each respective unit, took to

perform the same amount of failed tests. 37

5.1 Scenario using the coverage memory solution. 42

ix

List of Tables

2.1 Test suite and list of faults exposed by the same. 8

3.1 Summary of the discarded tests runs. 20

4.1 Shapiro-Wilk Normality Test for APFD metric. 27

4.2 Conover test (p-value) for APFD metric. In gray cells, the pairs with popu-

lation difference. 28

4.3 Cliff Delta measurement result for APFD metric. In gray cells, the pairs with

the largest effects. 29

4.4 Shapiro-Wilk Normality test for F-Spreading metric. In gray cells, the tech-

niques that follow a non-normally distribution. 32

4.5 Conover test (p-value) for F-Spreading metric. 32

4.6 Cliff’s Delta measure results for F-Spreading metric. 33

5.1 Average processing time of each technique. In gray, the technique with the

shortest time of processing. 40

x

Chapter 1

Introduction

The modern world could not exist without software [22]. It is present in many products,

services, and structures around the world. However, no matter how well designed and tested

the software was before it was delivered, it will eventually be modified [18; 26]. According

to Lu et al. [11], during software maintenance, a system continuously evolves due to various

reasons, e.g., adding new features, fixing bugs, or improving efficiency and maintainability.

The maintenance can introduce new bugs in the system, so it is crucial to verify the

impacts caused on the rest of the code. One widely used methodology for validating program

changes is regression testing [18]. It consists of running the old tests on the new version of

the system to check that areas supposedly not affected by the updates kept the same behavior

as before. However, this process can be expensive and time-consuming [3; 11; 17; 24].

According to some works, running an entire test suite may take weeks [16]. And as the

software evolves, its test suite also tends to grow, and because of that, it will need more

resources over time. Many strategies have been developed to help to solving this problem,

one of them is Test Case Prioritization (TCP).

This strategy aims to reorganize a test suite to improve the achievement of specific testing

goals (e.g., a faster rate of fault detection) [2]. In other words, for fast fault detection, it sorts

the test suite and puts the test cases that detect the fault in the first positions so that they can

be executed earlier than the rest. With a good prioritized test suite, developers can run only

the top test cases, or the number of tests which is feasible due to resource limitations, without

losing much of the testing potential [3]. Many prioritization techniques have been proposed

and evaluated in the literature [11; 17; 18; 24; 26]. In 2012, Singh et al. [21] conducted

1

2

a systematic review and found 106 prioritization techniques evaluated in 65 papers by that

year. And, recent studies show that this number continues to grow. In the work of Mukherjee

et al. [14], a survey about different TCP approaches, they reviewed 90 scholarly articles

ranging from 2001 to 2018.

Even with all these techniques available in the literature, there are still teams of devel-

opers who find their own ways of going through regression costs. An example of this is the

system that motivated our study. There, developers began to manually select test cases that

would validate their changes to avoid waiting for the entire test suite to run. When all tests

were required to run, it took an average of 28 minutes to execute1. Waiting for this time in a

Continuous Integration (CI) environment, considering scale issues, is unsustainable.

As further discussed in Chapter 6, there are only a few industrial case studies involving

real faults and evaluating TCP techniques that use coverage information in a system with

CI environment. In this work, we conducted a case study on a large evolving system to

evaluate and compare the effectiveness of six prioritization techniques, which use coverage

information, with what happens in practice during the software development of this system.

In our study, we used real faults inserted accidentally by the developers during maintenance.

In summary, the main contributions of this work are as follows:

• A case study on a real evolving system, used by the Brazilian Federal Police, that

has approximately 260 KLoC in Java and 4,000 test cases in its regression test suite.

The case study used information collected about maintenance changes made by 20

developers.

• An empirical study that compared and evaluated six prioritization techniques that use

coverage information using 43 versions of maintenance changes with real faults.

• A discussion about the prioritization tradeoffs and the coverage processing problem in

CI environments.

• A website with the implementations in Java of all strategies used in this work and

the scripts used during the experiment to help to extract coverage information per test

using Jacoco.

1Time calculated from the test executions made during the experiment.

3

The results show that, in the scenario where it is necessary to perform all tests, the

modification-based techniques, Echelon and Echelon Time [23], are the most effective tech-

niques for fault detection and reduction of the spread rate of failed tests among the evaluated

TCP techniques. When we compared them, considering the cost-benefit of implementation,

the result is still the same. Also, all TCP techniques presented better results than the original

order used in the CI environment. We believe this is an incentive to research solutions that

allow collecting coverage information in a CI environment, where test suites continuously

arrive as developers submit commits, and where the time available to perform this analysis

is limited [7; 10].

Another significant result is that, although the TCP techniques had better results than the

original order, they could not be more effective than the developer selection in the scenario

where the time constraints to perform tests are higher. They usually select the same number

of failed tests or less using the same time available to execution. Developer selection is

maybe more effective because he almost always includes changed/added tests, which are the

tests that usually fails, whereas the techniques do not prioritize these tests. And even these

tests are not considered part of the regression tests by definition, they will still be run by the

developers along with the rest of the tests. Therefore, if they are part of the executed suit,

they should always be considered when proposing a new prioritization technique.

We organize the rest of this work as follows. Chapter 2 presents the key concepts needed

for our research and describes the techniques and metrics used in the experiment. Chapter

6 describes related work, followed by Chapter 3 that presents the research questions and the

case study performed. Chapter 4 and 5 shows a summary of our experimental findings and a

discussion about them, respectively. And finally, Chapter 7 presents our conclusions.

Chapter 2

Background

This chapter defines the main concepts needed for our research. It also describes the tech-

niques and metrics used in our study.

2.1 Test case prioritization

The test case prioritization aims to reorganize a test suite to improve the achievement of

specific testing goals (e.g., a faster rate of fault detection) [2]. In other words, it orders a test

suite, so that higher-priority test cases run earlier than lower-priority ones. Rothermel et al.

[17] have formally defined the TCP problem as follows:

Given: T, a test suite; PT, the set of permutations of T; and f, a function from PT to the

real numbers.

Problem: Find T ′ ∈ PT such that (∀T ′′)(T ′′ ∈ PT)(T ′′ 6= T ′)(f(T ′) ≥ f(T ′′)).

According to this definition, PT represents the set of all possible orders of T, whereas f

is a function that returns the best possible value, given some criterion, when some order is

applied. For example, if a team wants to increase the fault detection rate of their test suite,

the function f returns the fault detection rate of each ordered suite. The higher the value of

this rate, the better the fault detection.

In the literature, there are several approaches designed to solve the prioritization problem.

Singh et al. [21] classified the 106 techniques founded in their work into eight categories:

coverage-based approaches, modification, faults, requirements, history, genetics, composite

approaches (when using more than one approach at a time) and others (approaches used by

4

2.1 Test case prioritization 5

only one technique in the literature). However, in practice, the most commonly explored

category is the coverage-based, follow by the requirement-based in second place [14].

We choose to apply only TCP techniques in our experiment because they can be applied

in the two test environments of the system chosen for our case study. If we tried to use

a selection technique in the scenario in which there is no need to execute the whole suite,

it would be necessary to introduce two different techniques in the process (one for each

environment). With prioritization techniques, we were able to interfere in both scenarios and

obtain results changing as little as possible of the case study process.

2.1.1 Studied techniques

Most existing test prioritization techniques guide their prioritization process based on cover-

age information, which refers to whether any structural unit is covered by a test [11]. In our

study, we choose to use only this type of techniques because of their simplicity and overall

satisfactory results [2], and also because they do not need previous information about the

system or the test suite to implement.

We adopted six different strategies for prioritizing test suites: Total-stmt, Add-stmt, Ge-

netic, ARTMaxMin, Echelon, and Echelon Time. In addition to these techniques, we use as

a baseline the current strategy used in the system to order the test cases. The presentation of

the strategies used in the study follows:

• Total-stmt: Total Statement Coverage (Total-stmt) technique is a greedy algorithm.

It works on the principle that the element with the maximum weight is taken first,

followed by the element with the second-highest weight, and so on until complete the

solution [9]. In the case of the Total-stmt technique, the weight is the total number of

statements covered by the test cases, meaning that it schedules test cases according to

their statements covered.

• Add-stmt: Additional Statement Coverage (Add-stmt) works similar to Total. How-

ever, it uses feedback about coverage so far obtained by selected tests to focus on

statements not yet covered.

• Genetic: This strategy is an application of search-based software engineering. Typi-

cally, this type of test prioritization takes all the permutations as candidate solutions

2.1 Test case prioritization 6

and utilizes some heuristics to guide the searching process [11]. The fitness function

of this strategy is based on the coverage of tests to find the optimal solution [9].

• ARTMaxMin: In 2009, Jiang et al. [8] proposed a family of test case prioritization

techniques based on the concept of Adaptive Random Testing (ART)1. ARTMaxMin

was the technique with the best results from the family. It first selects a test case with

the highest coverage. And then, the remaining tests are reordered based on a function f

that finds the longest minimum distance of a test compared to the previously selected

ones [25].

• Echelon: This technique, proposed by Srivastava et al. [23], works similar to Total

and Add-stmt in regards to instruction prioritization. However, it uses coverage in-

formation about the modified code. It first identifies the changed blocks between two

versions and then schedules the test cases according to their total number of statements

covered inside the changed block [3].

• Echelon Time: It is an extension of the Echelon technique that differs by considering

the execution time of the tests in the prioritization. If two tests provide the same

coverage of impacted blocks, the one with the shortest time should be selected; the

rest of the prioritizing algorithm remains unchanged [23].

• Original: It is the original sequence of test cases provided by the developers. It uses

the file-system order, the default configuration to order the tests in Maven2. We con-

sider this strategy as the control treatment3.

Total and Add-stmt techniques were proposed by Rothermel et al. in 1999 and they are

some of the most commonly used techniques in TCP works [2]. We obtained their imple-

mentations and the implementation of Genetic and ARTMaxMin techniques from Lu et al.’s

work [11]. The implementation of Echelon and its extension, Echelon Time, were developed

1A concept proposed to replace random testing for test case generation. The basic idea of ART is to spread

the distribution of test cases as evenly as possible across the input domain [8].
2https://maven.apache.org/
3We do not use an optimal order as a baseline because our main objective is to compare the techniques with

what occurs in development in practice.

2.1 Test case prioritization 7

by us using the algorithm present in Srivastava et al.’s work [23]. We implemented them

using the same language as all other implementation techniques, Java.

In this work, we choose to apply the techniques using only the granularity of the state-

ment due to the dependence with the Jacoco framework. As we wanted to modify as little as

possible to integrate the techniques in the system, we decided to continue using the Jacoco

framework, since the system already used it to obtain coverage information. However, it was

challenging to get this information per test case. As some works [11] show that different

coverage criteria present similar results, we applied efforts only to obtain coverage by the

statement.

2.1.2 Metrics

To evaluate the TCP techniques and to help us to answer our research questions, we focus on

two metrics: APFD and F-Spreading.

2.1.2.1 The Average Percentage of Faults Detected (APFD)

The APFD is the most dominant metric for addressing prioritization [8; 14; 18; 25]. It

calculates the weighted average percentage of faults detected over the life of a test suite [16].

In other words, it measures how fast a test suite detects faults. Its values range from 0 to 100,

the higher the values the faster the fault detection rate.

The APFD metric was formally defined in the work of Elbaum et al. [6] as: Consider T

as a test suite with n test cases, F as a set of m faults revealed by T and TFi as the position of

the first test case in the reordered T’ suite that reveals the fault i. The value of the APFD of

T’ is given by the Equation 2.1

APFD = 1− TF1 + TF2 + ...+ TFm

nm
+

1

2n
(2.1)

Example

To illustrate this metric consider any program that contains a suite with five test cases,

from A to E, and also contains eight faults detected by these test cases. Table 2.1 shows this

relationship.

2.1 Test case prioritization 8

Tests/Faults 1 2 3 4 5 6 7 8

A x x

B x x x x

C x x x x x x x

D x

E x x x

Table 2.1: Test suite and list of faults exposed by the same.

Assuming that a first execution order T1 for these test cases is A-B-C-D-E. After exe-

cuting the test case A, two of eight faults are detected. Thus, 25% of the faults have been

reveled after 0.2 of the test suite has been used. After executing the test case B, two more

faults are detected. Thus, 50% of the faults have been detected after 0.4 of the test suite has

been used. This relationship of the percentage of detected faults versus the percentage of

tests run can be followed in Figure 2.1.

Figure 2.1: Graph representing the APFD calculation of T1.

Now suppose a second order T2 for the test cases being C-E-A-B-D. After executing the

test case C, seven faults will are detected, which represents 87.5% of total faults. Because

of that, in this second scenario, the detection curve will rise faster than the first scenario, as

2.1 Test case prioritization 9

shown in Figure 2.2.

Figure 2.2: Graph representing the APFD calculation of T2.

Finally, by comparing the APFD values of the two scenarios, we can conclude that T2 is

faster at fault detection than T1 with 87.5% and 60%, respectively.

2.1.2.2 F-spreading

The F-spreading, proposed by Alves et al. [2], is a rate that measures how the failing test

cases are spread in a prioritized test suite. According to the authors, when failing test cases

are close, it can help a tester to find and locate the fault. The F-spreading values range from

0 to 1, the higher the value, the more spread the behavioral revealing test cases are. Thus, a

good prioritization should generate prioritized suites with low F-spreading.

The Equation 2.2 formalizes the metric, where n is the number of test cases of the test

suite; m is the number of failing test cases; TF is a sequence containing the positions of

failing test cases; and TFi is the position of the ith failing test case in the prioritized suite.

F-Spreading = (
m∑
i=2

TFi − TFi−1) ∗
1

n
, (2.2)

Example

For instance, suppose a program that contains a suite T with 100 test cases, from which

five fail due to one fault. Assuming that there are two execution orders T1, and T2 for this

2.2 Continuous integration 10

suite and the failing test cases appear in the following positions T1:{1, 20, 50, 85, 88}, and

T2:{5, 10, 11, 15, 40}. The F-spreading values for T1 and T2 are 0.87 and 0.35, respectively.

So, using T2 is better to help a tester find and locate the fault.

2.2 Continuous integration

According to Fowler [1], continuous integration is a software development practice where

members of a team integrate their work frequently. Each integration is verified by an au-

tomated build that uses the regression test suite to detect integration errors as quickly as

possible. Figure 2.3 shows an example of the CI process. When a developer sends her code

changes to the main repository, the CI server identifies this new commit and starts a new job.

It builds the code, regression tests are executed and statistical analysis are extracted. In the

end, everything is reported to the manager and developers team.

Figure 2.3: Example of the CI process.

Companies like Google, Amazon, Facebook, and Microsoft have adopted CI and its abil-

ity to better match the speed and scale of their development efforts [10]. To be able to put

2.2 Continuous integration 11

this process into practice, tools such as versioning and build generation and automation are

essential. The first is important because it supports development in a number of ways, such

as keeping track of software developments, allowing developers to work in parallel on the

same file, and enabling rapid and effective code reversal. CI servers work by generating

automatic builds, doing static code analysis, and performing regression testing.

Chapter 3

Study Methodology

This chapter describes the questions that guided our research, the study and experiment per-

formed.

3.1 Study definition

The purpose of this study is to compare the effectiveness of the TCP techniques with a

focus on their possible use in the development process, from the point of view of the software

developer in the context of a large web system in the evolution phase.

3.1.1 Research questions

In this work, we are interested in the following research questions:

RQ1: Do the chosen TCP techniques improve the system test suite fault detection rate?

RQ2: Are the chosen TCP techniques equally efficient according to the APFD metric?

RQ3: Do the chosen TCP techniques decrease the spread of failed test cases in the system

test suite?

RQ4: Are the chosen TCP techniques equally efficient according to the F-Spreading

metric?

From RQ1 to RQ4, we want to investigate the effectiveness of prioritization techniques

when applied to a large evolving web system. The focus of those is to compare the per-

formance of the prioritized tests with the order of the tests used in practice during the

12

3.2 Study context 13

system CI process.

RQ5: Was the developer able to select all tests that detected the fault?

RQ6: Are time-constrained prioritization techniques more efficient than manual selec-

tion in the development environment?

In RQ5 and RQ6, we want to analyze the developers’ test selection used to validate

their changes in the development environment. These RQs’ focus is to see if developers

can include in their selection all failed tests from the regression suite and compare the

effectiveness of that selection with a selection made from a prioritized list. Our goal with

the last question is to see if it is worth replacing developer selection for a time-constrained

selection based on a prioritized list obtained from a TCP technique.

Prioritized list selection will work by taking the tests from the top positions while the sum

of their time execution does not exceed the total time execution of the developer selection.

3.2 Study context

For the study, we use a web system called ePol. Its objective is to computerize Brazilian

Federal Police inquiries, allowing a fast record, access, and maintenance of the data inserted

in the system. The policemen are already using ePol since 2016, and we estimate that until

the end of 2020, the number of users will be up to 11,000.

The ePol back-end has approximately 260 Java KLoC and over 4,000 test cases in its

regression test suite. It’s developers team had 20 engineers when the experiment started in

February 2018 and kept with this average until March of 2019.

To test the ePol back-end, the developers used the TestNG1 and Arquillian2 frameworks.

And to collect the coverage information, they used the Jacoco3 framework. This is important

to mention because there is no tool to quickly extract coverage information per test with

Jacoco. Because of this, we had to create a script using the Jacoco source code to extract the

statement coverage information the way the techniques needed it. This script can be seen on

our website4.
1https://testng.org/doc/
2http://arquillian.org/
3https://www.eclemma.org/jacoco/
4https://sites.google.com/view/isabellycavalcante-research/

3.2 Study context 14

Since the implantation, the ePol has undergone many evolutionary and adaptive changes.

We observed that when developers maintained software, they tended to make code modi-

fications in small parts. As a result, they often needed to run regression tests to validate

each part. However, running the entire regression test suite took an average of 28 minutes.

Waiting even for a few minutes in an agile development environment like this can make it

impossible to perform all regression tests whenever the developer needs it. As a result of

the lack of time to run the entire test suite during changes, the developers began manually

choosing which tests to execute to validate their changes. They only run all regression tests

at the code review stage as it was mandatory.

3.2.1 The changes and their workflow

The changes made in the ePol system include functionality addition, bug fixes, and refac-

toring. We can classify a change into one of these types through descriptions added by the

developers in the system version file after completing the change.

The development flow of these changes is very similar, as shown in Figure 3.1. For

example, to correct a bug, the developer first makes a copy of the system code (or, in Git

terminology, clone the repository) in her machine (1). After that, she begins the analysis

phase (2), where she identifies the causes of the bug and verifies the impact of the fix on the

system. Then, she begins to change the source code (3).

During this step, she may choose to select and run some tests to ensure that the rest of the

system has not changed its behavior (4). When the bug fix is finished, the modified code is

submitted for review (5). At this stage, if the reviewer encounters code issues that need to be

resolved, the developer will return to step 3 to correct them. At the end of the review phase,

the developer or the reviewer must run the entire regression test suite at least once (6). If one

or more test fails, the developer returns to step 3 to find and correct the problem. However,

if all tests pass, and the reviewer gives his permission to submit the code (7), it will be sent

to the main repository (8).

It is not mandatory for the developer to always follow this sequence. She may decide to

analyze the impact of the change (step 2) before copying the code to her machine (step 1), or

she may decide not to run tests in the development phase (step 4). However, steps 3, 5 and 6

must always happen in all scenarios because if a change was made, it must be reviewed and

3.3 Experimental Procedure 15

Figure 3.1: System change development flow.

submitted to the regression tests suite at least once before being sent.

3.3 Experimental Procedure

The experiment execution involved the following steps:

• Data collection about test executions;

• Extraction of the information necessary to run the techniques, such as statement cov-

erage and execution time;

• Execution of the prioritization techniques;

However, before describing the experiment, we define in the next section, the experimen-

tal units used.

3.3.1 Experimental units

The experimental unit of this study consists of one or more test suites that, when executed,

detected a real system fault, which means that our experimental unit is composed of the test

suit, the modified code, and the bugs present in the code.

In this work, we consider as fault one or more changes in the code that cause some tests

to fail. For example, assuming a developer changed two files, and after running the test suite,

3.3 Experimental Procedure 16

he notices five tests failed. At this point, the developer begins to investigate and fix one by

one of the failed tests. He does this until all the tests pass again. For us, the fault is all what

made the five tests fail. It does not matter if the fault was caused by a problem on one line in

one file or multiple lines in different files. That way, our experimental unit always has just

one fault.

3.3.2 Instrumentation and data collection

The first step of our experiment was to collect data about system test runs. To do this, we

had to understand the ePol testing phase.

3.3.2.1 The test environment and collection instrumentation

In the ePol development environment, the developer had two options when she wanted to

test her changes. She could run the tests through the Maven test command 5 or run a script

created by previously developers. This alternative test script is designed to give the developer

the option to run test profiles (unit, integration, and system), and try to shorten the test

execution time a little. In ePol, the Maven test phase was set up to always inspect the code,

after running the tests, to look for code smells. This setting increased the total duration

of the Maven test command because the alternate script ran Maven through a particular

configuration (Surefire6) that eliminated this analysis phase, thereby decreasing the running

time by a few minutes.

We created a script to collect data automatically. Whenever someone ran a test, our

script captured information about that execution, to allow us to reproduce that run later. For

our script to run through the Maven testing phase, we have changed the POM7. That way,

whenever it finished the testing phase, it would call our script. However, this did not work

when the developer ran the alternate test script, so we also had to make a change to it to call

our script after the tests ran.

In our study, we choose to use previous executions to perform the techniques. This

5The mvn test command is a phase of the Maven build lifecycle (https://maven.apache.org/ref/3.5.3/maven-

core/lifecycles.html) that performs all system tests.
6https://maven.apache.org/surefire/maven-surefire-plugin/index.html
7Project Object Model - https://maven.apache.org/pom.html

3.3 Experimental Procedure 17

means that it was only after capturing some test executions that we begin our experiment.

No interaction was made with the developer during her activity.

3.3.2.2 Data collection

The principal information captured by our script was all code modified from the last synchro-

nized index (last local or repository commit) to that moment, the list of the tests executed,

the total duration, and the result of the execution. The script also captured which code branch

the developer was working on. We did this to help group information from the same change.

As shown in Figure 3.2, our script was run at two different points in the development

process. The first point occurred within the development environment when the developer

who was coding some modifications (1) decided to run some tests to verify her changes (2).

Immediately after the tests were run, our script was called regardless of the result (3), and

the data were collected (4). Only when this collection ended that also ended the test run. The

second point occurred within the continuous integration environment when the developer

finished her changes and submitted the code to review (5). At this point, she or the reviewer

needed to run the entire system regression test suite to validate the changes before submitting

it to the main repository (6). In this case, our script also was called immediately after the

tests ran, regardless of the result (7), and the data were collected (8).

In Figure 3.3, we can see how the data flow worked after the script was called. Each

time a test execution was completed and called our script (1), it performed the following

steps: created a file with the collected data (2), compressed this file (3) and sent it to a

remote application (4). Our role was to regularly download new data from this application

(5), extract a summary of the information, and add it to a spreadsheet (6) so that at the end

of the collection phase, we can analyze this data quickly.

3.3.2.3 Filtering data collection

A summary of the filtering collected data be seen in Table 3.1. As showed, after nearly a year

of collecting the data (02/22/18 to 12/18/18), we began the analysis and selection phase of

the experimental units. During this time, we collected approximately 6800 test executions.

Of these executions, we disregarded 436, because they were collected during the collec-

tion script creation and adjustment period (02/22/18 and 03/16/18). We also removed all

3.3 Experimental Procedure 18

Figure 3.2: Scenarios where the data collection script occurred.

Figure 3.3: Data flow after script call.

3.3 Experimental Procedure 19

executions collected after 10/30/18 (519 executions) because it was when the ePol started

migrating its continuous integration system from Jenkins to GitLab.

Then, we grouped the executions by branches, totaling 316 branches. We decided to

exclude branches that did not refer to system changes, such as branches created for the

training of new developers, merge branches, version branches, etc. The list with the names

of the 65 branches removed is available in our website8.

Finally, we removed 43 executions because they came with empty files. For some reason,

our script was called under circumstances that it could not capture any data, neither who was

the user, the current branch, the tests executed. Consequently, the file was empty, so we

decided to remove them.

At the end, we had 5263 executions (251 branches) as possible experimental units. As

mentioned earlier, our experimental unit is a test suite execution that detects a system fault.

So, we created a script that looked for branches that had at least one failed test execution

and, the cause of this failed execution could not be a configuration problem (any service

unavailable or .war with deployment issue). The script returned 164 branches out of 251, so

we ignored the 87 non-returned branches.

3.3.3 Applying prioritization techniques

With the remaining 164 branches, we move on to the TCP techniques execution phase. Here,

the first step was to extract the changed code and coverage information from each experimen-

tal unit.

3.3.3.1 Extracting the information necessary to run the techniques

We start by analyzing the execution history of each branch. Each one had an average of 30

runs. Our goal was to identify failed executions and gather information about them.

We analyze each branch’s executions one by one, looking for what the developer did dif-

ferently from one execution to another. Whenever we encountered a failed run, we identified

the type of change that was being made (bug fix, functionality added or refactoring), its ID

(each run collected had an ID that identified it), the code that corrected the fault, the Merge

8https://sites.google.com/view/isabellycavalcante-research/

3.3 Experimental Procedure 20

Amount Description How was the removal done?

6845

executions

Total data collected between

02/22/18 and 12/18/18.

-

436

executions

Data collected during the

collection script creation

and adjustment period.

The removal was done manually

filtering the executions that occurred

between 02/22/18 and 03/16/18.

519

executions

Data collected during the

continuous integration

system migration period.

The removal was done man-

ually filtering the executions

that occurred after 10/30/18.

65

branches

Branches that did not

refer to system changes.

The removal was done manually

analyzing the branches’ name and

then executing a script to remove all

executions that belonged to any of

these branches that would be removed.

45

executions

Executions that came

with empty files.

The removal was done manually filtering

the executions that came with empty files.

87

branches

Branches that have not

failed executions or

branches that have execu-

tions that failed because

of configuration problems.

The removal was done by running a script

that first grouped the executions of each

branch. And then, this script would try to

find at least one failed execution in each

branch. If it did not find, it would remove

all executions linked to this branch.

4943

executions

(164

branches)

The final total of possi-

ble experimental units.

-

Table 3.1: Summary of the discarded tests runs.

3.3 Experimental Procedure 21

Request (MR) of the change and the code changes that impacted in the execution.

We extracted this last item from the code that came in the file initially collected and from

the commits made before execution. As mentioned before, the collected code was a result of

the changes made between the last commit until the moment that ran the tests. Therefore, it

was necessary to check for commits before execution. If there are any commits, its changes

should be included.

We analyze the execution history of 48 of the 164 branches. Even with a script, this

process takes a long time because even though it compares and shows executions with the

help of a tool, we still need to look at executions one by one to understand the developer’s

thinking.

Almost all the 48 branches were maintenance about bugs in the system. And this was

because the 164 branches were ordered alphabetically by their names, and we selected the

first 48 branches. After the history analyses, we excluded 16 of the 48 branches because

we saw that their failed executions occurred in particular scenarios. For example, they were

branches with discontinued changes, that is, that the developers did not complete them, or

were branches with executions that failed due to intermittent faults. Our website9 has the list

of the 16 branches excluded by specific scenarios and their reasons.

With the remaining 32 branches, we were able to generate 43 experimental units because

some of these branches had more than one execution that detected system faults. The average

of failed tests from the 43 test suite executions used in the experiment was approximately

14 tests. This number was because two units changed a large entity of the system in their

maintenance, and as a result, many tests failed after inserting a fault. Without them, the

number of failed tests decreases to approximately four tests. A list of all experimental units

also can be seen on our website.

Each one of these experimental units went through 2 steps to extract its data coverage, as

shown in Figure 3.4.

Step 1 aimed to run the entire regression test suite of the experimental unit to generate

the coverage data. To do this, we tried to replicate the environment that it had previously

run. We created a script that put the repository on the same version as the day of execution,

added the changes made by the developer, and configured some of the external services to

9https://sites.google.com/view/isabellycavalcante-research/

3.3 Experimental Procedure 22

Figure 3.4: Extraction steps of the data coverage information.

3.3 Experimental Procedure 23

use the same version. Then, it ran the entire regression test suite. In the end, we manually

checked whether the failed tests were as expected.

Some experimental units have had more tests failing than expected. For example, in the

developer execution, three tests failed, and in our execution, five failed. This inconsistency

occurs because, as it was the developer who chose which tests to run, she may end up not

choosing all the tests that would identify the fault. Also, at this stage, we noticed that ex-

ecutions collected between March and May had a group of tests that always failed in our

re-executions. Since we are unable to understand why they fail, we decided to remove them

from the test suite before proceeding with the next steps.

Step 2 used the files of the folder /target generated in the previous step to extract the

coverage information. To do this, we had to create a second script that, based on the .exec

and .class files, created two files with the coverage information extracted in different formats.

The Total-stmt, Add-stmt, ARTMaxMin, and Genetic techniques would use the first, and the

Echelon and EchelonTime techniques would use the second. The difference between them

was that the second explicitly stated which lines of a class were exercised by each test, while

the first did not refer to which lines were, but only whether or not it covered.

With these two coverage files created we passed to the phase of performing the prioriti-

zation techniques.

3.3.3.2 Performing the TCP techniques

To automate the execution of all techniques, we created a new script. As showed in Figure

3.5, the script worked by receiving the two coverage files that are used by each technique,

the run time file per test, and the code change file. Then, the script executed the algorithm

of all techniques and returned a file with the prioritized list of each technique. After that, we

could move onto the metric application phase.

All the steps created to perform this experiment, from the re-execution of the test suites

to obtaining the prioritized lists, took almost 9 hours to run in just one experimental unit.

Because of that, we could not increase the total of the experimental units, staying with a total

of 43 test suite executions applied in all the six TCP techniques.

3.3 Experimental Procedure 24

Figure 3.5: Script executing the TCP techniques.

Chapter 4

Results

In this chapter, we present a summary of our experimental findings.

4.1 Answers to research questions 1 to 4

As described in Section 3.3.3, we applied six TCP techniques to 43 experimental units,

resulting in a total of 258 prioritized test suites. For each suite, we calculated the APFD and

F-Spreading values, which were analyzed and tested to help us discuss answers to research

questions 1 to 4, related to the performance of these techniques in the CI process.

In a companion website1, we provide the calculated values for both metrics, and the

scripts used in the RStudio tool2.

4.1.1 RQ1: Do the chosen TCP techniques improve the system test suite

fault detection rate?

Figure 4.1 presents boxplots with the distribution of APFD values per technique. All distri-

bution boxes overlap, which may imply similar APFD distributions for all techniques. Other

noteworthy information is that the Echelon and Echelon Time techniques had the highest

medians, with values close or equal to 100%, suggesting that they performed better than the

1https://sites.google.com/view/isabellycavalcante-research/
2A tool that uses a programming language to generate graphs and statistical calculations

(https://rstudio.com/)

25

4.1 Answers to research questions 1 to 4 26

rest of the techniques. We can also see that the Original order has the worst median com-

pared to the chosen TCP techniques, which may indicate that any one of these techniques, if

applied by ePol developers, might have improvements on the system’s fault detection rate.

Figure 4.1: Boxplots with the APFD distribution per technique.

We also performed a statistical analysis to compare these distributions. Since our col-

lected data is only a sample of the real world, we used the Bootstrap [20] method to make an

inference about the population. Figure 4.2 shows the Confidence Intervals (CI), with 95%

confidence, of the median APFD values with 10,000 replications for each strategy. As we

can see, Echelon and its extension, Echelon Time, have the higher ranges, which indicate

that they may be the techniques with the highest fault detection rate of the experiment. The

CIs also reinforce the idea that all techniques might improve the suite’s fault detection rate

since some of their range is above the Original range.

To have a statistical understanding of the techniques behavior, we first performed the

Shapiro-Wilk normality test. It verifies if the population of each technique is normally dis-

tributed [19]. The significance level used in our analysis is 0.05, which is a value commonly

used for these tests. Table 4.1 shows the calculated p-value for each technique. According

4.1 Answers to research questions 1 to 4 27

Figure 4.2: Confidence interval for the APFD median values of each technique.

to the test, all techniques follow a non-normal distribution. Thus, for testing distribution

differences, we need a non-parametric test.

Technique p-value

Total-stmt 1.828e-05

Add-stmt 0.0002250

Echelon 8.023e-09

EchelonTime 6.248e-09

ARTMaxMin 1.272e-05

Genetic 0.0001572

Original 0.0118455

Table 4.1: Shapiro-Wilk Normality Test for APFD metric.

To analyze whether techniques have similar distribution functions, we performed the

Kruskal-Wallis test. It verifies if the medians of all groups are equal. We obtained as p-value

1.137e-07, which means that at least one technique has a population with different behavior

4.1 Answers to research questions 1 to 4 28

from at least one other technique.

To try to identify the pairs that have a different distribution, we performed the Conover

test with Bonferroni adjustment, a pairwise test for multiple comparisons that tests if two

groups have the same distribution [4]. As we can see in Table 4.2, the results show that

only the pairs involving the Echelon and Echelon Time, detached in gray cells, presented a

population difference. For the rest of the techniques, this test cannot tell if they are different.

Add ART Ech EchTime Genetic Original Total

Add - - - - - - -

ART 1.00000 - - - - - -

Ech 0.04151 0.02002 - - - - -

EchTime 0.03400 0.01622 1.00000 - - - -

Genetic 1.00000 1.00000 0.00066 0.00051 - - -

Original 0.76219 1.00000 6.9e-06 5.1e-06 1.00000 - -

Total 1.00000 1.00000 0.01821 0.01474 1.00000 1.00000 -

Table 4.2: Conover test (p-value) for APFD metric. In gray cells, the pairs with population

difference.

To complement the results of the Conover test, we calculated the effect size of each

technique over the others. It gives the magnitude of the difference between two groups of

observations [12]. As previously tested, our data follows a non-parametric distribution, so

we choose to use the Cliff’s Delta measure. The Table 4.3 shows the calculated values for

each pair, and the interpretations [12] for theses values follow the Equation 4.1.

δij =

+1→ Group1i > Group2j, ∀i, ∀j

−1→ Group1i < Group2j, ∀i,∀j

0→ Group1i = Group2j, ∀i,∀j

(4.1)

The results show that all the six techniques can improve the suite’s fault detection

rate significantly when compared to the Original system order. The Echelon and Echelon

Time techniques had the most significant effect with 0.526 and 0.514, respectively, followed

by the Additional, ARTMaxMin, and Total techniques, with a minor improvement. The

4.1 Answers to research questions 1 to 4 29

1st Group

Add ART Ech EchTime Genetic Original Total

2nd Add - - - - - - -

G ART 0.014 - - - - - -

r Ech -0.394 -0.438 - - - - -

o EchTime -0.392 -0.440 -0.028 - - - -

u Genetic 0.138 0.112 0.490 0.490 - - -

p Original 0.300 0.290 0.526 0.514 0.138 - -

Total 0.026 0.006 0.422 0.424 -0.118 -0.254 -

Table 4.3: Cliff Delta measurement result for APFD metric. In gray cells, the pairs with the

largest effects.

Genetic technique had the smallest improvement but still managed to be better than the

Original. These results confirm the findings of visual analysis.

4.1.2 RQ2: Are the chosen TCP techniques equally efficient according

to the APFD metric?

To answer this question, we return to the results of the Cliff Delta measure in Table 4.3

to classify the techniques according to their effect size. Starting with the Additional and

ARTMaxMin techniques, we can see that Additional outperforms ARTMaxMin, but with a

value very close to zero, meaning that there was almost no difference between them. The

same occurs with Total vs. ARTMaxMin and Total vs. Additional. Therefore, we consider

that all these three techniques are equally efficient.

The Echelon and Echelon Time outperform all other techniques with a significant effect,

which means they are the most efficient of the group. When we compare them, we see an

effect size close to zero, showing that both are equally efficient. The Genetic technique loses

to all the other techniques, wining just of the Original, meaning that it had the worst efficient

of the group.

In short, the chosen TCP techniques are not equally efficient and we can rank them by

their APFD result as:

4.1 Answers to research questions 1 to 4 30

Echelon = Echelon Time > Additional = Total = ARTMaxMin > Genetic > Original

4.1.3 RQ3: Do the chosen TCP techniques decrease the spread of failed

test cases in the system test suite?

Unlike APFD, in the F-Spreading metric, it is desirable that a technique returns a low value.

A low value of F-Spreading means that the technique was able to group test cases that re-

vealed the fault. With that in mind, Figure 4.3 shows the boxplots with the distributions

of F-Spreading values per technique. Even the Echelon and Echelon Time having a large

variation in their results, 50% are close to or below 0.25, indicating a small spread of their

failed tests. We can also see the behavior of Total approaching the Original order. However,

as its median was lower, it may have a slight improvement in the spreading of tests. On the

other techniques, all have medians higher than Original, and their data variations are small,

suggesting that all three should have a higher spread than Original.

Figure 4.3: Boxplots with the F-Spreading distribution per technique.

We also used the Bootstrap method here to make CIs with the F-Spreading values. Figure

4.4 shows the CIs, with 95% confidence, of the median F-Spreading values with 10,000

4.1 Answers to research questions 1 to 4 31

replications for each strategy. It confirms the observations that we made before in the boxplot

chart: high variability of Echelon and Echelon Time values, Total with a behavior close to

the Original, and the high values of the other three techniques.

Figure 4.4: Confidence interval for the F-Spreading median values of each technique.

For a statistical understanding of the techniques behavior on this metric, we performed

the Shapiro-Wilk normality test. Table 4.4 shows that only Echelon, Echelon Time, and

Original follow a non-normally distribution. The other four strategies (Additional, Total,

ARTMaxMin, and Genetic) follow a normal distribution.

As one part of our techniques showed a normal distribution and the other part a non-

normal distribution, we decided to continue the analysis by applying non-parametric tests.

Parametric tests were also applied but only to confirm the results found in non-parametric

ones. The values returned by the parametric tests can be seen on our website.

The p-value obtained in the Krukal-Wallis test was 0.02021, meaning that at least one

technique has a population with different behavior from at least one other technique. There-

fore, we pass to the pairwise analysis to try to identify which ones are different. Table 4.5

shows the values calculated for the Conover test, and what we can see is all pairs had a p-

value higher than 0.05, which means that with this test, we have no significance to affirm

4.1 Answers to research questions 1 to 4 32

Technique p-value

Total-stmt 0.1575312491

Add-stmt 0.1684358376

Echelon 0.0005090073

EchelonTime 0.0005225778

ARTMaxMin 0.0837448360

Genetic 0.1160940417

Original 0.0350797699

Table 4.4: Shapiro-Wilk Normality test for F-Spreading metric. In gray cells, the techniques

that follow a non-normally distribution.

which techniques behave differently.

Add ART Echelon EchelonTime Genetic Original Total

Add - - - - - - -

ART 1.00 - - - - - -

Echalon 0.90 0.37 - - - - -

EchalonTime 1.00 0.42 1.00 - - - -

Genetic 1.00 1.00 0.33 0.38 - - -

Original 1.00 1.00 1.00 1.00 1.00 - -

Total 1.00 0.45 1.00 1.00 0.40 1.00 -

Table 4.5: Conover test (p-value) for F-Spreading metric.

Table 4.6 shows the values calculated using the Cliff’s Delta measure. Again, this mea-

sure shows the magnitude of the difference between two groups of observations. This means

that if one group is superior to another, their F-Spreading values are higher than the second

group. In this scenario, the second group is better than the first, according to F-Spreading,

because their values are lower.

Looking at the results of Cliff’s Delta for F-Spreading, we can see that the differences

between the strategies are very small. The Original order was superior to the Echelon,

Echelon Time, and Total by very little. This means that all these three techniques can

4.1 Answers to research questions 1 to 4 33

have a smaller spread of the failed test cases than the Original order. The other three

remaining techniques (Additional, Genetic, and ARTMaxMin) were superior to the values

of the Original order, meaning that they cannot have a smaller spread of the failed tests

than the Original.

1st Group

Add ART Echelon EchelonTime Genetic Original Total

2nd Add - - - - - - -

G ART -0.076 - - - - - -

r Echalon 0.332 0.364 - - - - -

o EchalonTime 0.336 0.364 -0.030 - - - -

u Genetic -0.084 -0.006 -0.378 -0.378 - - -

p Original 0.284 0.344 -0.138 -0.136 0.406 - -

Total 0.390 0.484 -0.100 -0.096 0.474 0.100 -

Table 4.6: Cliff’s Delta measure results for F-Spreading metric.

4.1.4 RQ4: Are the chosen TCP techniques equally efficient according

to the F-Spreading metric?

To answer this question, we return to the results of the Cliff Delta measure in Table 4.6, in

order to classify the techniques according to their effect size. We started by listing the tech-

niques that have the same behavior: Echelon = Echelon Time and Additional = ARTMaxMin

= Genetic. This second group shows superiority over the values of the first group in all pairs

involving elements of both groups. Thus, the first group obtained a better F-Spreading re-

sult. The remaining technique, Total, shows superiority over the values of the Additional,

ARTMaxMin, and Genetic, but not over the values of the two Echelons. Therefore, the effi-

ciency ranking for the F-Spreading metrics is: Echelon = Echelon Time > Total > Additional

= ARTMaxMin = Genetic, this show that the chosen TCP techniques are not equally

efficient. The final rank, after adding the results found in the RQ3, is:

Echelon = Echelon Time > Total > Original > Additional = ARTMaxMin = Genetic

4.2 Answers to research questions 5 and 6 34

4.2 Answers to research questions 5 and 6

Until now, we were using the system default order to compare with the TCP techniques order.

However, in research questions 5 and 6, we are interested in analyzing the test selection made

manually by developers. They use this selection to validate their changes in the development

environment, where the time constraint is greater than in the CI environment and where there

is no need to run the entire test suite.

To answer these research questions, we used only 29 of the 43 experimental units because

they were the ones that contained test executions made in the development environment.

4.2.1 RQ5: Was the developer able to select all tests that detected the

fault?

The tests executed on the 29 experimental units were selected by the developers using their

knowledge of the changes made. On average, he selected one test class to run. This class

contained 50 test cases in maximum, which means that, on average, the developer executed

50 test cases.

We want to know with this question if their selection can include all the tests that detected

faults in the code. That is if the developer selection can be effective. For this question, we

analyzed the relationship between the tests executed by the developers and tests that detected

faults in these 29 units.

Developers selected the tests correctly in 20 of the 29 units, which means that in 69% of

the units, they were able to select all tests that detected the fault. In all these cases, there was

only one test to be selected. In eight units (28%), they selected only part of the tests, and in

only one (3%), they did not select any of the tests that detected the fault.

We analyzed the changed classes of these 20 units that were correctly selected and saw

that in 16 of them, the developer had changed or added the selected test. This may indicate

that ePol developers tend to choose tests that have recently been changed or added. Of the

43 initial units, 21 had at least one failed test that had been changed or added, confirming the

developer’s instinct to select these tests.

In summary, ePol developers can select tests in the scenario where only one test fails,

but in situations in which more than one test fails, they may not perform well.

4.2 Answers to research questions 5 and 6 35

4.2.2 RQ6: Are time-constrained prioritization techniques more effi-

cient than manual selection in the development environment?

Now that we have seen that the developer selection can correctly detect at least one failed

test, we want to know if a selection made from a prioritized list3 can be more effective at

detecting failed tests than the manual developer selection.

To help us answer this question, we first remove from the 29 experimental units, the

one the developer failed to select. Then, for each of the remaining 28 units, we list the most

effective technique4 at fault detection and collect the total execution time of the tests selected

by the developer. Finally, we created some visual analyses to describe our data.

Figure 4.5 compares, per experimental unit, the number of failed tests detected by the

developer selection, the number of tests detected by the selection made on the most effective

technique, and the total number of tests that had to be detected. For example, in unit number

eight, the developer took 37 seconds to execute her selection, with this time, she can detect

the only failed test, while the TCP technique did not. In approximately 43% of the units,

the developer selection detected more failed tests than the TCP techniques, in 18%, the

techniques detected more, and in 39%, they detected the same amount.

In the second visual analysis, we want to show a new view of how TCP techniques would

behave if used in the development environment. Figure 4.6 shows the comparison between

the execution time of the tests selected by the developer, with the time that the most effective

technique took to perform the same amount of failed tests. We use a circle to represent the

execution time of the selected tests and a triangle to represent the execution time of the most

effective technique. For example, in the unit number eight, the execution time of the tests

selected by the developer was 37 seconds, while that the prioritized list took approximately 3

min to run the same amount of failed tests. The experimental unit number 28 was an outline

because it is very high the difference between the failed tests selected by the developer and

the tests that failed. This occurred because the failure was related to the bigger entity of the

3As described before in Section 3.1.1, in our study, a prioritized list selection works by taking the tests from

the top positions while the sum of their time execution does not exceed the total time execution of the developer

selection.
4The most effective technique in the 28 experimental units was Echelon Time. The relationship of each

experimental unit with its most effective technique was listed on our website.

4.2 Answers to research questions 5 and 6 36

Figure 4.5: Comparison, per experimental unit, of the number of failed tests that the most

efficient technique detected utilizing the time it took the developer to perform her selection,

with the number of tests the developer detected, and with the total number of tests that had

to be detected.

system. And the developer was not able not to trail all the tests that could detect the problem.

In 12 of 28 units, TCP techniques took longer to perform failed tests than the developer

selection. And in the units that techniques were faster, the execution time of the developer-

selected tests was very close to theirs. This is indicative that TCP techniques may not be

worthwhile in the development environment.

In none of these analyses, we include in the execution time of the developer selection the

time used to select which tests would be run to validate the changes. The execution time here

consists only of the time used to run the selected test cases.

With these two analyses, we can conclude that prioritization techniques cannot be

more effective than the developer manual selection. Because they usually detect the same

number of failed tests or less than the developer selection using the same execution time. And

even when they can detect the same amount of failed tests faster, the gain is tiny compared

to when they take longer.

4.2 Answers to research questions 5 and 6 37

Figure 4.6: Comparison between the execution time of the developer-selected tests, and the

time that the most effective technique of each respective unit, took to perform the same

amount of failed tests.

Chapter 5

Discussion

We present in this chapter a discussion about our findings and the threats to validity of our

study.

5.1 Prioritization tradeoffs

Our study shows that the Echelon and Echelon Time are the most effective techniques in

fault detection among the evaluated TCP techniques in the scenario where all tests need to

be performed. Most studies cite Echelon in their related work to use it as an example of a

prioritization approach [14; 8; 9; 7]. To our knowledge, only Alves et al. [3] work uses it for

comparison with other techniques. In their work, they proposed a new approach based on

refactoring and compared it with Echelon, Total, and Additional techniques to evaluate its

effectiveness. Echelon achieved significant results in APFD, beating Total and Additional,

confirming our findings. Prioritizing tests that cover newly changed lines seems most ef-

fective because it is where probably occurs the system fault, since before such changes, the

regression tests were passing.

We also show that Echelon and Echelon Time are the most effective techniques in the

reduction of the spread rate of failed case tests, followed by the Total. This is probably

because all tests that cover any changed line are grouped at the beginning of the prioritized

list, and as we have seen from the APFD result, these tests are the ones that probably fail, so

the tests that fail end up grouped. No study analyzes the behavior of the Echelon using this

metric. However, in the work of Torres et al. [25], they investigated and compared the other

38

5.1 Prioritization tradeoffs 39

four techniques used in our work (Total, Additional, Genetic, and ART) using a variation

of the F-Spreading metric. The difference between the F-Spreading and its variation (M-

Spreading) is that M-Spreading works with several faults being detected by the test suite,

whereas F-Spreading works with only one fault, which is why we chose it. They showed

that among the four techniques, the Total had the best result, confirming our findings.

Selecting a prioritization technique depends not only on its efficiency in the achievement

of a specific objective but also on its cost to execute [24]. Thus, we decided to analyze the

cost of using each technique.

First, we look at the effort to gather the information needed to perform the techniques.

Since they all depend on the same data coverage information1, the overhead is the same.

However, the Echelon technique and its extension, Echelon Time, need one more information

for its execution (the changed classes), giving them an extra cost to execute.

In the work of Srivastava et al. [23], they propose the Echelon using a binary code-based

approach, which has an advantage over using source code because its extraction of code

difference avoids complex static analysis making it faster [13]. In our study, we choose to

implement this technique using the source code approach, once the authors provided only

a pseudo algorithm in their work. Therefore, as we had to implement it, we decided to do

it in the same language as the other techniques to facilitate the collection of coverage and

the automation of the experiment. To extract the changes, we had to use the Unix diff, a

simple and quick tool [23]. We did this extraction manually because we were dealing with

past data. There was no way to know the original commit used to clone the repository to get

the difference automatically. We believe the cost to automatically extract this information is

low.

Second, we consider the time necessary to run the techniques. Table 5.1 shows the av-

erage processing time of each technique during the case study. As we can see, ART and

Genetic techniques are the slowest to generate the prioritized list, making it almost impos-

sible to incorporate them in the CI process. They take this time because they need to do

more operations than the others to prioritize. For Echelon and Echelon Time, the higher the

number of changed lines, the longer it takes to process the tests that exercise those lines.

In the end, when we analyze the cost-benefit of a technique, we weigh the results it

1Coverage information collection aspects are discussed in more detail in Section 5.2

5.2 Coverage Processing 40

Technique Time (s)

Total-stmt 0:00:01.694

Add-stmt 0:07:15.113

Echelon 0:03:07.165

EchelonTime 0:03:13.759

ART 3:56:42.036

Genetic 3:12:33.696

Table 5.1: Average processing time of each technique. In gray, the technique with the short-

est time of processing.

achieves versus the cost it takes to implement. Thus, we can conclude that ART and Genetic

presents a prohibitive time cost execution, so they must be discarded. If the developers’

time constraints are an issue, then the Total approach would be better. However, the

Echelon technique can give better results in discovering relevant faults and grouping

them.

5.2 Coverage Processing

According to Elbaum et al. [7], keeping the coverage data information updated per test is

not feasible in continuous integration environments. Data collection requires the execution

of the entire suite, making the process even more expensive. Because of that, there is only

one study, to the best of our knowledge, that shows the results of using a coverage-based

technique in CI environments.

We performed a study to know if TCP techniques that use coverage information could be

effective in these environments. We had sufficient time to execute the entire suite test before

performing the techniques because it was outside the real CI environments. To implement

these techniques in practice require a solution to the coverage processing problem.

One alternative for scenarios such as ePol, in which developers need to run the entire test

suite before sending code to the main repository, is to create a coverage memory. During

the mandatory execution, the system could collect the coverage information per test for this

5.3 Project-related issues 41

version, and when the code was sent, the coverage information would be sent as well. In

such scenario, the next time the test suite needs to be run, the system will look for the latest

version that has coverage collected for that branch and can already begin the prioritization

process with that information.

We illustrate this idea, in Figure 5.1. When the developer A or her reviewer decides to

validate the code, the entire regression suite is executed (1), and the coverage information is

collected (2). If all tests pass and the reviewer gives permission, the developer can submit the

code (3). Looking at the final step in more depth, we can see it will consist of two actions:

sending the code to the main repository (4) and sending the collected coverage of that code

to an online repository (5).

Then, when a developer B decides to perform the regression set, the system will retrieve

the coverage information and begin the prioritization stage (6), only to then perform the

regression tests and collect the coverage data.

In the work of Lu et al. [11], they show the importance of using up-to-date coverage

information for test prioritization. They also show that added tests influence a good prioriti-

zation. The solution that we propose does not include coverage of recent changes made by

the developer. However, we believe that by making use of available coverage information

and giving high priority to added or changed tests, we will already have a good prioritization.

Unfortunately, this solution is yet to be tested and remains for future work.

5.3 Project-related issues

During the experiment execution, we notice some scenarios related to the project that caused

the low performance of some techniques.

The first one occurred due to the way developers designed the ePol REST layer test long

before our experiment. They used an interface to simulate calls to the endpoints, which

means that, the REST classes of this layer are not called directly by the tests, but by this

simulator. For example, suppose the developer wants to create a test to verify the addition

of a person to the system. Instead of the test call the PersonREST addition method, it should

call the PersonRest simulator that, which in turn, will make a call to the endpoint of the

PersonREST addition method. As this call occurs through the framework it is not possible

5.3 Project-related issues 42

Figure 5.1: Scenario using the coverage memory solution.

5.4 Practice of Testing 43

for the Jacoco to track it. Because of that, when we collect coverage information from tests

that exercise this layer, we cannot see the REST classes in the coverage list. In summary,

what happens in this scenario is that when the developer changes some lines in one REST

class, the tests that exercise these lines do not contain coverage information about them,

and in the end, techniques as Echelon cannot prioritize well.

Of the 12 units in which Echelon under-performed, three were for this reason. Even with

coverage information missing from the REST classes, the other techniques are not affected

because they only use the total coverage information. In the three units, the techniques with

the best results are Genetic, ART, and Original.

The second scenario involves Original strategy. In two of the 43 experimental units, the

original order out-performed all the techniques in the APFD metric. The justification is that

the failed tests of these units had names that benefited by the alphabetic order and that they

occur in scenarios that the coverage did not work well, as REST tests.

The third scenario occurred on experimental units that failed due to added or changed

tests. Of the 12 units where Echelon under-performed, four were because these tests failed on

lines preceding the call of changed methods, and thus there was no coverage of the modified

parts. This is further indicative that added or changed tests should be considered when

proposing a new prioritization technique. This finding confirms the previous work of Lu

et al. [11].

5.4 Practice of Testing

In RQ5 and RQ6, we analyzed the tests selected by developers aiming to validate their

changes during the development process. The RQ5 results showed that the developer se-

lection always includes at least one failed test. So, it performs better in the scenario where

there is only one failed test to be identified. And in RQ6, we showed that the techniques,

when time-constrained, are less effective than manual developer selection. Using the same

time used by the developers in practice, the techniques executed the same amount or fewer

failed tests than developer selection.

These are interesting results because some works showed that TCP techniques improve

the order used by the developers [7; 5]. However, this is only true when the entire suite needs

5.5 Threats to validity 44

to be executed. When comparing the effectiveness of a manual selection made by developers

with that of TCP techniques under a time constraint, we see that using the techniques does

not seem worthy.

This result may be related to the number of failed tests in the suites used in the experi-

ment. A comparison involving information on the total coverage of the regression suite could

complement our results, however we did not include this data to be collected. Processing the

Jacoco’s .exec file could give us this information, but that will be a point to be added in the

future.

Analyzing the nine units where the techniques lost with a big difference in Figure 4.6, we

saw that their APFD values are relatively high (median at 0.85). This indicates that a high

APFD does not mean that the failed tests will be in the first positions. An example of this is

experimental unit 13, its APFD is 0.970 with the test that detects the fault at position 121o,

which is great if the developer is going to perform all 4142 tests. But within the development

environment, he wants to run the minimum amount of tests to validate his code. Performing

121 tests is not the best option here if only one matter.

In summary, if the developer does not mind waiting a few minutes longer, prioritization

techniques are the best option as they do the work of order the tests and running them up to a

certain maximum time. However, if the developer wants to minimize the test execution time,

his selection can be the best option.

5.5 Threats to validity

The threats to the internal validity of our study are: 1) the correctness of our tools and scripts

for running experiments, 2) the correctness of the implementation of the TCP techniques and

3) the random aspect of the techniques execution. For the first one, to minimize the errors,

we tested some of them to assure the correctness, and to the others, we validated using some

small examples of test suites and programs. For the second, we reused almost all the imple-

mentations of the techniques of other works [11] or tools [15]. The only implementations

that we made were the Echelon and its extension, and to reduce the threat, we did some tests

to assure the correctness. And for the third one, as only two techniques had random calls in

their algorithm and as they were the most time consuming, we decide to execute only time.

5.5 Threats to validity 45

However, this affects only two of the six techniques. To reduce this threat, we would need

more resources to run more times these algorithms.

The threats to external validity include 1) the number and type of experimental units used

(almost all the experimental units were of bugs correction) and 2) the number of faults in the

experimental units. For the first one, we try to include the maximum number of experimental

units in the experiment. However, the time to process and execute the TCP techniques was

too long. So, for this threat, only an extension of this study would include more experimental

units in the analysis. And for the second, maybe adding seeded faults to complement the

real ones. However, according to the purpose of this study, these faults can be regarded as

appropriate.

The threat to construct validity mainly appoint to the metrics used to evaluate the effec-

tiveness of TCP techniques. We used APFD and F-Spreading, aiming to reduce this threat.

The first is the most used metric in different prioritization works [14], and the second com-

plements the first one. However, to reduce even more this threat, more studies using other

metrics are required.

Chapter 6

Related Work

Many prioritization techniques have been proposed and evaluated in the literature. In this

chapter, we present the most relevant works in the area and related them to our study.

6.1 Prioritization techniques and their evaluation

In 1999, Rothermel et al. [16] introduced several prioritization techniques, including Total-

stmt and Add-stmt, and empirically examined their ability to improve the fault detection

rate of a test suite. It was the first work to use the APFD metric in its evaluation, metric

which was only formally defined years later [6]. They used seven C programs as subjects

with inserted faults. The experimental results showed that all prioritization techniques can

improve the rate of fault detection of test suites. Looking just at the results involving the two

techniques used in our study, we can see that Total outperformed the Additional in all the

seven programs, which is similar to our findings using a Java program with real faults.

Following the works in the coverage area, Alves et al. [3] proposed a refactoring-based

selection/prioritization approach to help developers to detect faults more effectively. Their

motivation is that even though widely used coverage techniques produce good results, they

are general-purpose techniques, while their approach is specifically to detect refactoring

faults. To evaluated their approach, they performed a case study in a real Java system us-

ing six versions with created faults and compared to the other six prioritization techniques,

including Total-stmt, Add-stmt, and Echelon using the APFD and F-Measure metrics. The

case study showed that their approach outperformed the other techniques in almost every

46

6.1 Prioritization techniques and their evaluation 47

case. The Echelon also showed good results, especially when compared with the other tech-

niques. However, as it does not differentiate the type of code changes applied, it ended losing

for the proposed technique. Comparing it with our study, a case study involving more ex-

perimental units and using real faults, we get similar results involving the three techniques

(Total-stmt, Add-stmt, and Echelon).

Years later, the authors of this work published a new one [2] extending the solution with a

complete definition of refactoring fault models and a broader evaluation. The approach called

Refactoring-Based Approach (RBA) was evaluated in this new work using three real open-

source projects with seeded refactoring faults and compared with the same six prioritization

techniques. However, in this work, in addition to the APFD and F-Measure, they used a

new metric called F-Spreading, which is a rate that measures how the failing test cases are

spread in a prioritized test suite. The results involving the three techniques common to

our study showed that the Echelon almost have the same effectiveness as the traditional

techniques for APFD values. And for F-spreading, we saw that Echelon loses to traditional

techniques, remaining roughly equal to the random order, which diverges from our results.

We believe this occurs because of the specificity of the context that involves only a few types

of refactoring, while ours involves other types of changes.

Srivastava and Thiagarajan [23] proposed a binary code-based approach for test prioriti-

zation based on program change (Echelon). Its main idea is to identify the changed blocks

between the two versions (working at the binary level) and order the tests according to the

number of modified blocks covered by each test. In their work, they measured the Echelon

performance on a large Microsoft product binaries without comparing it with other tech-

niques or approaches. According to the authors, the results showed that Echelon is a fast

technique and scales well to large programs, making it suitable for use in development envi-

ronments. In our study, we implement the Echelon in Java language and replace the binary

way to identify the changed blocks to a source-code one, that is, we used only the technique

algorithm. And, even not been faster as the binary approach, our results showed that the

Echelon effectiveness is still better than the other evaluated techniques.

Jiang et al. [8] proposed in their work a set of ART prioritization techniques guided

by white-box coverage information. For the evaluation, they used 11 programs with real and

seeded faults and compared the ART family with random ordering and six existing coverage-

6.2 Empirical studies 48

based prioritization techniques using the APFD metric. The results showed that the ART

techniques were superior to random order, and one of them is statistically comparable to

the best-studied coverage-based prioritization techniques in terms of the fault detection rate.

This result is similar to ours because when we analyzed the traditional prioritization tech-

niques we saw that ARTMaxMin had the same effectiveness than Total-stmt and Add-stmt

techniques.

6.2 Empirical studies

To initiate the section of empirical studies, we present the Lu et al.’s work [11]. They con-

ducted an empirical study to investigate the effectiveness of existing test prioritization on

eight open-source Java projects with seeded faults. Their main goal was to evaluate the TCP

techniques by considering the influence of the added tests and real source code changes and

considering the influence of time budgets in prioritization. This work is very similar to ours

because they used almost all techniques that we used (Total, Additional, Genetic, and ART-

MaxMin) and evaluated them on a real-world Java program using the APFD metric. The

differences were that we used real faults, and we include two other techniques. Their results

showed the importance of including the added test when proposing new test prioritization

techniques. They also showed that among the test prioritization techniques, the Additional

and Genetic were the most effective. The first find is similar to what we found in our study.

However, the second one is a little different because we saw that Genetic had the worst result

between the techniques.

Torres et al. [25] made a similar study to the last work. They compared four TCP

strategies using the same design, subjects, and techniques implementations from Lu et al.

[11]. However, besides the APFD metric, they evaluated using the F-Spreading, which is the

same metric that we used in our study. The APFD result showed similar results found in Lu

et al.’s work, meaning that they also disagree with part of our finds. However, concerning the

F-Spreading, they showed similar results to ours. The Total presented the lower spreading

of all techniques and followed by Additional and Genetic with the same results. Only the

ARTMaxMin that, in Torres et al.’s work, under-performed all the techniques, and in ours, it

presented the same result that Additional and Genetic.

6.2 Empirical studies 49

Now, from the studies involving prioritization on the CI environment, we started with

Elbaum et al. [7] work. In it, they evaluated a new approach for applying regression testing

in continuous integration development environments more cost-effectively. Their approach

uses not only test case prioritization but also the regression test selection (RTS)1. According

to the authors, traditional RTS and TCP techniques are difficult to apply in the CI environ-

ment because they tend to rely on code instrumentation and apply only to discrete, complete

sets of test cases. So, their approach innovates by using only failure history on its logic. It

works as follows: the RTS technique uses time windows to track how recently test suites

have been executed and revealed failures, to select test suites to be applied during pre-submit

testing2. Then, the TCP technique based on such windows prioritizes test suites that must be

performed during subsequent post-submit testing.

Their empirical study was made using an extensive data set of test suite execution made

available by Google and involved, besides the new approach, a baseline approach that utilized

all test suites in the change list, and a random RTS approach. They used the APFD metric

to evaluate the TCP technique and measured the percentages of failures detected by the RTS

technique. The results showed that the TCP technique can reduce delays in fault detection

during post-submit testing. However, to the RTS technique they showed that even when it

reduces the testing execution cost, it can delay the detection of faults.

Liang et al. [10] also proposed and evaluated a new TCP technique for using in a con-

tinuous integration environment. As the work of Elbaum et al. [7], they also believe that

traditional TCP techniques are difficult to apply in the CI process. So, their approach is also

based on execution history and test suite failure. The main difference from the previously

presented work to this is the moment that this technique prioritizes the tests and the moment

that it collects the window information. In their study, they used the data set from Google and

other project managed under Travis, an open-source CI server, and compared their approach

with a baseline in which test cases are executed in the original order and an optimal order.

The metric used to evaluate the study was the APFDc, a variation of APFD metric that takes

the test case cost into consideration. The results showed that the technique proposed can

1RTS techniques attempt to select test cases that are important to execute [7].
2Pre-submit testing and post-submit testing are terms used in this work to refer to the phase of testing made

by the developer before submitting the code, and the phase after submitting, respectively.

6.2 Empirical studies 50

be more effective than the original order, but not as effective as the optimal order. Accord-

ing to the authors, the new technique is lightweight and quick, allowing it to be sufficiently

responsive in CI environments.

The relation between our study and the two works previously presented is that both focus

on TCP techniques applied in CI environments. The difference is that we used traditional

TCP techniques in our study. And although these works point that techniques that use cov-

erage information are difficult to apply, we showed that they still can present great results.

Finally, we present the Nardo et al. work [5], the study more related to ours. They per-

formed an industrial case study of coverage-based prioritization techniques on a real-world

system with real regression faults. Four techniques were used in the study: Total, Addi-

tional, Total Coverage of Modified Code and Additional Coverage of Modified Code. The

four techniques were applied using five different structural coverage criteria (function, calls,

statements, and branches). Besides the four techniques, the study evaluated a random, opti-

mal and original order. It involved four versions of a system written in C++, and the metric

used in the evaluation was the APFD. The results showed that the Additional technique using

finer grained coverage criteria outperformed all other techniques used in the study, includ-

ing random ordering. This result differed from ours because, for us, the modification-based

technique had the best result between the other techniques. As the authors did not specify

from which work they used the algorithm we can not compare it as the same technique.

Another differences with relation to our work are that we include techniques with different

approaches (ARTMaxMin and Genetic) and we include one more metric.

Chapter 7

Conclusion

Although test prioritization has been intensively investigated, few industrial case studies have

been done involving real faults and assessing TCP techniques that use coverage information

in a system that uses the CI environment. In this work, we conducted a case study on a

large evolving web system to evaluate and compare the effectiveness of six prioritization

techniques that use coverage information with what occurs in practice, focusing on their

possible use in the development process. In our study, we used real faults inserted by the

developers during maintenance.

To answer the RQs, we applied the TCP techniques to 43 experimental units, resulting in

a total of 258 prioritized test suites. For each suite, we calculated the APFD and F-Spreading

values, which were analyzed and tested. The case study shows that in the scenario where it

is needed to run all tests, Echelon and Echelon Time are the most effective techniques

in fault detection and reduction of the spread rate of failed tests, among the evaluated

TCP techniques. When they are compared, considering the cost-benefit of implementation,

the result is still the same. Also, all the TCP techniques presented the best result than the

original order used in the CI environment.

Another significant result is that, although TCP techniques had better results than the

original order, they were not more effective at fault detection than developer selection

when time constraints are higher. They usually detect the same number of failed tests or

less using the same execution time. Developer selection is maybe more effective because he

almost always selects changed/added tests, which are the tests that usually fails, whereas the

techniques do not prioritize these tests. Added or altered tests should always be consid-

51

52

ered when proposing a new prioritization technique.

This comparison may be unfair to the techniques because they did not include this type

of test in their heuristic. However, this was the scenario for almost half of the experimental

unit, which means that it is a common scenario. In the future, we want to extend the present

work by increasing the number of experimental units focusing on the situations in which this

type of test is no present to investigate whether the effectiveness of the techniques increases.

Also, as future work, we want to implement in practice the Echelon technique in the CI

environment to test if the developers get used to prioritization techniques in their processes.

We want to implement the coverage memory solution to analyze whether, using the available

coverage information, we still get a better result than the original order. And finally, im-

plement an extended version of the Echelon technique that will include in its prioritization

process the added/changed tests, so we can evaluate if it can be more effective than developer

selection.

Bibliography

[1] https://martinfowler.com/articles/continuousIntegration.html. Acesso em: 26 de

dezembro de 2019.

[2] E. L. G. Alves, P. D. L. Machado, T. Massoni, and M. Kim. Prioritizing test cases for

early detection of refactoring faults. Softw. Test. Verif. Reliab., 26(5):402–426, August

2016.

[3] E. L. G. Alves, P. D. L. Machado, T. Massoni, and S. T. C. Santos. A refactoring-based

approach for test case selection and prioritization. In 2013 8th International Workshop

on Automation of Software Test (AST), pages 93–99, May 2013.

[4] W. J. Conover and R. L. Iman. On multiple-comparisons procedures. Los Alamos

Scientific Laboratory, February 1979.

[5] D. Di Nardo, N. Alshahwan, L. Briand, and Y. Labiche. Coverage-based test case

prioritisation: An industrial case study. In 2013 IEEE Sixth International Conference

on Software Testing, Verification and Validation, pages 302–311, March 2013.

[6] S. Elbaum, A. G. Malishevsky, and G. Rothermel. Test case prioritization: a family

of empirical studies. IEEE Transactions on Software Engineering, 28(2):159–182, Feb

2002.

[7] S. Elbaum, G. Rothermel, and J. Penix. Techniques for improving regression test-

ing in continuous integration development environments. In Proceedings of the 22Nd

ACM SIGSOFT International Symposium on Foundations of Software Engineering,

FSE 2014, pages 235–245, New York, NY, USA, 2014. ACM.

53

BIBLIOGRAPHY 54

[8] B. Jiang, Z. Zhang, W. K. Chan, and T. H. Tse. Adaptive random test case prioritiza-

tion. In 2009 IEEE/ACM International Conference on Automated Software Engineer-

ing, pages 233–244, Nov 2009.

[9] Z. Li, M. Harman, and R. M. Hierons. Search algorithms for regression test case prior-

itization. IEEE Transactions on Software Engineering, 33(4):225–237, April 2007.

[10] J. Liang, S. Elbaum, and G. Rothermel. Redefining prioritization: Continuous priori-

tization for continuous integration. In 2018 IEEE/ACM 40th International Conference

on Software Engineering (ICSE), pages 688–698, May 2018.

[11] Y. Lu, Y. Lou, S. Cheng, L. Zhang, D. Hao, Y. Zhou, and L. Zhang. How does regres-

sion test prioritization perform in real-world software evolution? In 2016 IEEE/ACM

38th International Conference on Software Engineering (ICSE), pages 535–546, May

2016.

[12] G. Macbeth, E. Razumiejczyk, and R. Ledesma. Cliff’s delta calculator: A non-

parametric effect size program for two groups of observations. Universitas Psycho-

logica, 10:545–555, 05 2011.

[13] A. P. Mathur. Foundations of Software Testing. Addison-Wesley Professional, 1st

edition, 2008.

[14] R. Mukherjee and K. S. Patnaik. A survey on different approaches for software test case

prioritization. Journal of King Saud University - Computer and Information Sciences,

2018.

[15] J. H. Rocha, P. D. L. Machado, and E. Alves. Priorj - priorizacao automatica de casos

de teste junit. In Proceedings of Third Brazilian Conference on Software: Theory and

Practice (CBSoft) - Tools Section, volume 4, pages 43–50, Natal, 2012.

[16] G. Rothermel, R. H. Untch, Chengyun Chu, and M. J. Harrold. Test case prioritiza-

tion: an empirical study. In Proceedings IEEE International Conference on Software

Maintenance - 1999 (ICSM’99). ’Software Maintenance for Business Change’ (Cat.

No.99CB36360), pages 179–188, Aug 1999.

BIBLIOGRAPHY 55

[17] G. Rothermel, R. H. Untch, Chengyun Chu, and M. J. Harrold. Prioritizing test cases

for regression testing. IEEE Transactions on Software Engineering, 27(10):929–948,

Oct 2001.

[18] R. K. Saha, L. Zhang, S. Khurshid, and D. E. Perry. An information retrieval approach

for regression test prioritization based on program changes. In 2015 IEEE/ACM 37th

IEEE International Conference on Software Engineering, volume 1, pages 268–279,

May 2015.

[19] S. S. Shapiro and M. B. Wilk. An analysis of variance test for normality (complete

samples). Biometrika, 52(3-4):591–611, December 1965.

[20] K. Singh and M. Xie. Bootstrap: a statistical method. Un-

published manuscript, Rutgers University, USA. Retrieved from

http://www.stat.rutgers.edu/home/mxie/RCPapers/bootstrap.pdf, 2008.

[21] Y. Singh, A. Kaur, B. Suri, and S. Singhal. Systematic literature review on regression

test prioritization techniques. Informatica, 36(4):379–408, December 2012.

[22] I. Sommerville. Engenharia de software. PEARSON BRASIL, São Paulo, 9 edition,

2011.

[23] A. Srivastava and J. Thiagarajan. Effectively prioritizing tests in development environ-

ment. SIGSOFT Softw. Eng. Notes, 27(4):97–106, 2002.

[24] D. Suleiman, M. Alian, and A. Hudaib. A survey on prioritization regression testing

test case. In 2017 8th International Conference on Information Technology (ICIT),

pages 854–862, May 2017.

[25] W. N. M. Torres, E. L. G. Alves, and P. D. L. Machado. An empirical study on the

spreading of fault revealing test cases in prioritized suites. In 2019 IEEE 43rd Annual

Computer Software and Applications Conference (COMPSAC), volume 1, pages 129–

138, Jul 2019.

[26] W. E. Wong, J. R. Horgan, S. London, and H. Agrawal. A study of effective regression

testing in practice. In Proceedings The Eighth International Symposium on Software

Reliability Engineering, pages 264–274, November 1997.

