TECNOLOGIA RFID E SUAS APLICAÇÕES

Aluno:
Manoel Sátiro de Medeiros Neto

Orientador:
Prof. Bruno Barbosa Albert

Campina Grande – PB
Abril 2010

Manoel Sátiro de Medeiros Neto
(Aluno)

Bruno Barbosa Albert
(Orientador)

Campina Grande – PB
Abril 2010
Agradeço a Deus, à minha família pelo apoio, ao professor Bruno Albert pelo incentivo e dedicação. Agradeço especialmente à minha esposa Diana, que com tanta paciência me deu a maior força para a conclusão deste trabalho.
LISTA DE FIGURAS

Figura 1: Um sistema RFID
Figura 2: Novas capacidades virão com a maior adoção
Figura 3: Relacionamentos entre os diversos tipos de aplicações RFID
Figura 4: Tag em paciente
Figura 5: RFID aplicada a pedágios
Figura 6: Tag na orelha do animal
Figura 7: RFID na indústria
Figura 8: Esquemática do sistema básico de RFID
Figura 9: Modelos de RFID
Sumário

1. Objetivos ... 06
2. Descrição sobre RFID ... 06
 2.1. Vantagens e Desvantagens da RFID sobre outras tecnologias 07
2.2. Os Períodos da RFID .. 09
 2.2.1. O Período Proprietary ... 10
 2.2.2. O Período da Compatibilidade ... 10
 2.2.3. O Período das Empresas com RFID ... 10
 2.2.4. O Período das Indústrias com RFID ... 10
 2.2.5. O Período da Internet das Coisas ... 11
2.3. Tipos de Aplicações ... 11
 2.3.1. Hospitalar .. 12
 2.3.2. Implantes Humanos ... 13
 2.3.3. Pedágios ... 14
 2.3.4. Uso em Bibliotecas ... 15
 2.3.5. Identificação Animal ... 15
 2.3.6. Linhas de Montagem Industrial ... 16
 2.3.7. Aplicações Biométricas .. 17
3. O Funcionamento da Tecnologia por Radiofrequência .. 17
 3.1. A antena de RFID ... 18
 3.2. O Transceiver e Leitor ... 18
 3.3. O Transponder ou RF Tag .. 19
 3.4. Características da RF Tags ... 20
 3.4.1. RF Tags Ativas ... 20
 3.4.2. RF Tags Passivas .. 20
4. RFID: Faixas de Freqüências ... 21
5. Privacidade e Segurança .. 23
 5.1. Disponibilidade .. 23
 5.2. Integridade ... 23
 5.3. Confidencialidade ... 23
6. Conclusões ... 24
7. Bibliografia .. 25
8. Anexo .. 26
1. OBJETIVOS

Inicialmente, o objetivo do trabalho de conclusão de curso foi apresentar uma visão geral da tecnologia chamada de Radio Frequency Identification (RFID). Com uma grande gama de aplicações, pode-se perceber a utilidade da tecnologia em diversas áreas de atuação.

2. DESCRIÇÃO SOBRE RFID

RFID significa Radio Frequency Identification (Identificação por frequência de Rádio), um termo que descreve qualquer sistema de identificação no qual um dispositivo eletrônico que usa frequência de rádio ou variações de campo magnético para comunicar é anexado a um item. Os dois componentes mais citados de um sistema RFID são o identificador, que é um dispositivo de identificação anexado ao item que queremos rastrear, e o leitor, que é um dispositivo que consegue reconhecer a presença de identificadores RFID e ler as informações armazenadas neles. O leitor pode então informar outro sistema a respeito da presença dos itens identificados. O sistema com o qual o leitor se comunica, geralmente executa um software que fica entre o leitor e as aplicações.

Figura 1: Um sistema RFID
Fonte: http://www.hightechaid.com/tech/rfid/rfid_technology.htm
2.1. VANTAGENS E DESVANTAGENS DA RFID SOBRE OUTRAS TECNOLOGIAS

RFID possui qualidades extras que a tornam mais apropriada do que outras tecnologias (como código de barras ou tarjas magnéticas). Não se pode, por exemplo, adicionar informações com facilidade a um código de barras após ele ter sido impresso, enquanto que alguns tipos de identificadores RFID podem ser gravados e regravados muitas vezes. Além disso, devido a RFID eliminar a necessidade de alinhar objetos para registro, é mais discreta. Ela simplesmente “trabalha” em segundo plano, permitindo que dados sobre os relacionamentos entre objetos, localizações e tempo sejam agregados de forma discreta sem a intervenção aberta do usuário ou do operador.

Como características primordiais, temos as seguintes:

- Altas velocidades de estoque
- Variedades de formas
- Registro em nível de itens
- Possibilidade de regravação.
- Capacidade de armazenamento, leitura e envio dos dados para etiquetas ativas;
- Detecção sem necessidade da proximidade da leitora para o reconhecimento;
- Durabilidade das etiquetas com possibilidade de re-utilização;
- Contagens instantâneas de estoque, facilitando os sistemas empresariais;
- Precisão nas informações de armazenamento e velocidade na expedição;
- Melhoria no reabastecimento com eliminação de itens faltantes e aqueles com validade vencida;
Não podemos deixar de citar algumas características de desvantagens com o uso da RFID. São elas:

- O custo elevado da tecnologia RFID em relação aos sistemas de código de barras é um dos principais obstáculos para o aumento de sua aplicação comercial;

- O preço final dos produtos, pois a tecnologia não se limita apenas ao microchip anexado ao produto. Por trás da estrutura estão antenas, leitores, ferramentas de filtragem das informações e sistemas de comunicação;

- O uso em materiais metálicos e condutivos pode afetar o alcance de transmissão das antenas. Como a operação é baseada em campos magnéticos, o metal pode interferir negativamente no desempenho. Entretanto, encapsulamentos especiais podem contornar esse problema fazendo com que automóveis, vagões de trens e contêineres possam ser identificados, resguardadas as limitações com relação às distâncias de leitura. Nesse caso, o alcance das antenas depende da tecnologia e frequência usadas, podendo variar de poucos centímetros a alguns metros (cerca de 30 metros), dependendo da existência ou não de barreiras;

- A padronização das frequências utilizadas para que os produtos possam ser lidos por toda a indústria, de maneira uniforme.

Podemos fazer um comparativo entre RFID e Código de Barras, conforme mostra a tabela:
Características

<table>
<thead>
<tr>
<th>Características</th>
<th>RFID</th>
<th>Código de Barras</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistência Mecânica</td>
<td>Alta</td>
<td>Baixa</td>
</tr>
<tr>
<td>Formatos</td>
<td>Variados</td>
<td>Etiquetas</td>
</tr>
<tr>
<td>Exige Contato Visual</td>
<td>Não</td>
<td>Sim</td>
</tr>
<tr>
<td>Vida Útil</td>
<td>Alta</td>
<td>Baixa</td>
</tr>
<tr>
<td>Possibilidade de Escrita</td>
<td>Sim</td>
<td>Não</td>
</tr>
<tr>
<td>Leitura Simultânea</td>
<td>Sim</td>
<td>Não</td>
</tr>
<tr>
<td>Dados Armazenados</td>
<td>Alta</td>
<td>Baixa</td>
</tr>
<tr>
<td>Segurança</td>
<td>Alta</td>
<td>Baixa</td>
</tr>
<tr>
<td>Custo Inicial</td>
<td>Alto</td>
<td>Baixo</td>
</tr>
<tr>
<td>Custo de Manutenção</td>
<td>Baixo</td>
<td>Alto</td>
</tr>
</tbody>
</table>

2.2. OS PERÍODOS DA RFID

O progresso da adoção da RFID se divide naturalmente em períodos: o período Proprietário, o período da Compatibilidade, o período das Empresas com RFID, o período das Indústrias com RFID e o período da Internet de Coisas.

![Figura 2:Novas capacidades virão com a maior adoção](http://www.hightechaid.com/tech/rfid/rfid_technology.htm)
2.2.1. O Período Proprietário

Alguns dos sistemas desenvolvidos durante este período eram tecnicamente avançados e altamente integrados nos processos de negócios, mas eram caracterizados tanto por suporte fraco ao compartilhamento de informações entre parceiros de negócios (IDs incompatíveis, por exemplo) e componentes identificadores e leitores custosos.

2.2.2. O Período da Compatibilidade

A nova e mais barata tecnologia de identificadores ainda é propensa a defeitos de fabricação e, em parte devido a ser o início das implementações dos padrões de identificadores, muitas vezes os identificadores do período da Compatibilidade não desempenham tão bem na prática, quanto os identificadores dos sistemas do período Proprietário.

2.2.3. O Período das Empresas com RFID

Mesmo com a grande adoção interna e a identificação na origem da cadeia de fornecimento, levará tempo até que as empresas desenvolvam acordos e segurança que permitam às organizações compartilhar informações RFID entre si.

2.2.4. O Período das Indústrias com RFID

Neste período, padrões RFID, redes de informações RFID, acordos de negócio e segurança abrangente e políticas de privacidade solidificaram ao ponto em que as indústrias e cadeias de fornecimento inteiras possam compartilhar informações apropriadas de forma confiável, acreditando que apenas usuários autorizados possam ver quaisquer informações sensíveis.
2.2.5. O Período da Internet das Coisas

Neste período, objetos físicos serão conectados à Internet através de suas identidades digitais. Da mesma forma que esperamos fazer uma pesquisa rápida na internet para descobrirmos a resposta para uma questão obscura de um jogo de perguntas, esperamos ser capazes de passar uma garrafa de refrigerante por um telefone celular, e coisas do tipo.

2.3. TIPOS DE APLICAÇÕES

Certos tipos amplos de aplicações RFID caracterizam abordagens inteiras a essa tecnologia e são suficientemente diferentes em considerações e implementação para garantir umas discussão separada. A árvore mostrada na figura 2.3 mostra o relacionamento da RFID com outros sistemas de identificação, assim como relacionamentos entre diversos tipos de RFID.

![Diagrama de relacionamentos entre os diversos tipos de aplicações RFID](http://www.hightechaid.com/tech/rfid/rfid_technology.htm)

Figura 3: Relacionamentos entre os diversos tipos de aplicações RFID

Em termos de aplicação, os sistemas RFID podem ser agrupados em 4 categorias:

- Sistemas EAS (Electronic Article Surveillance)
• Sistemas Portáteis de Captura de Dados
• Sistemas em Rede
• Sistemas de Posicionamento

Os sistemas EAS são tipicamente sistemas de um bit, usados para identificação de presença ou falta de um item. O largo uso dessa tecnologia está nos bloqueios das lojas onde cada item é avaliado e grandes antenas de leitura são colocadas em cada saída das lojas para detectar a saída desautorizada de um item.

Os sistemas portáteis são caracterizados pelo uso de terminais portáteis de coleta de dados, onde um sistema RFID está integrado do leitor com a antena. São utilizados em aplicações onde um alto grau de itens avaliados pode ser exibido. Os terminais do tipo hand-held capturam os dados dos itens e então são transmitidos a um sistema de processamento central.

Sistemas em rede são aplicações caracterizadas pelo posicionamento fixo dos transceptores (leitores) e conectados por uma rede a um sistema de gerenciamento central. Os transceptores são fixados numa posição e os itens com os tags movem-se por esteiras, ou com pessoas, dependendo da aplicação.

Os sistemas de posicionamento usam tags para facilitar a localização automática e suporte de navegação para dirigir veículos. Os transceptores são localizados a bordo dos veículos e conectados por um sistema de transmissão a um sistema de gerenciamento central.

2.3.1. Hospitalar

Pesquisadores da área de saúde sugerem que um dia um pequeno chip RFID implantado embaixo da pele, poderá transmitir seu número e automaticamente acessar um completo registro de sua saúde. Funcionários do hospital, remédios e equipamentos também podem ser
etiquetados, criando um potencial de administração automática, reduzindo erros e aumentando a segurança.

Outras aplicações médicas: existem os implantes de tags em humanos que contêm toda a informação de um paciente, podendo ser facilmente lida por um médico assim que o paciente chega ao hospital (conforme figura 4). Uma outra interação com a área médica pode ser no uso de lentes especiais com um transponder implantado no olho de um paciente com glaucoma.

Figura 4: Tag em paciente

Fonte: http://www.hightechaid.com/tech/rfid/rfid_technology.htm

2.3.2. Implantes humanos

Implantes de chips RFID usados em animais agora estão sendo usados em humanos também. Uma experiência feita com implantes de RFID foi conduzida pelo professor britânico de cibernética Kevin Warwick, que implantou um chip no seu braço em 1998. A empresa Applied Digital Solutions propôs seus chips "formato único para debaixo da pele" como uma solução para identificar fraude, segurança em acesso a determinados locais, computadores, banco de dados de medicamento, iniciativas anti-sequestro, entre outros. Combinado com sensores para monitorizar as funções do corpo, o dispositivo Digital Angel poderia monitorizar pacientes. O Baja Beach Club, uma casa noturna em Barcelona e em Roterdã usa chips implantados em alguns dos seus frequentadores para identificar os VIPs.
Em 2004 um escritório de uma firma mexicana implantou 18 chips em alguns de seus funcionários para controlar o acesso a sala de banco de dados.

Recentemente, a Applied Digital Solutions anunciou o VeriPay, chip com o mesmo propósito do Speedpass, com a diferença de que ele é implantado sob a pele. Nesse caso, quando alguém for a uma caixa eletrônica, bastará fornecer sua senha bancária e um scanner varrerá seu corpo para captar os sinais de RD que transmitem os dados de seu cartão de crédito.

Especialistas em segurança estão alertando contra o uso de RFID para autenticação de pessoas devido ao risco de roubo de identidade. Seria possível, por exemplo, alguém roubar a identidade de uma pessoa em tempo real. Devido a alto custo, seria praticamente impossível se proteger contra esses ataques, pois seriam necessários protocolos muito complexos para saber a distância do chip.

2.3.3. Pedágios

A tecnologia já se tornou comum nos pedágios de algumas rodovias. Ao invés de os carros pararem, um cartão provido com o microchip RFID é colocado no pára-brisa do veículo, enviando seu código de identificação para as antenas ou leitores eletrônicos localizados na cabine de cobrança (Figura 5). Uma vez reconhecido o código, a passagem é liberada.

Figura 5: RFID aplicada a pedágios
2.3.4. Uso em Bibliotecas

Em bibliotecas e centros de informação, a tecnologia RFID é utilizada para identificação do acervo, possibilitando leitura e rastreamento dos exemplares físicos das obras.

Funciona fixando uma etiqueta de RFID (tag) plana (de 1 a 2 mm), adesiva, de dimensões reduzidas (50 x 50 mm em média), contendo no centro um micro-chip e ao redor deste uma antena metálica em espiral, que um conjunto com sensores especiais e dispositivos fixos (portais), de mesa ou portáteis (manuais) possibilitam a codificação e leitura dos dados dos livros na mesma, principalmente seu código identificador - antes registrado em códigos de barras.

A etiqueta é inserida normalmente na contracapa dos livros, perto da lombada, dentro de revistas e sobre materiais multimídia (CD-ROM, DVD) para ser lida à distância.

É possível converter facilmente os códigos identificadores existentes atualmente no código de barras para etiquetas RFID através de equipamentos próprios para esta conversão.

2.3.5. Identificação Animal

Este tipo de sistema usado na identificação dos animais ajuda no gerenciamento dos mesmos entre as companhias, no controle de epidemias e garantia de qualidade e procedência. Seu uso é também praticado em animais silvestres para controle de migração, ajudando no estudo das espécies. A identificação animal por sistemas de RFID pode ser feita de quatro maneiras diferentes:

- **Colares** - fáceis de serem aplicados e transferidos de um animal para o outro; é usado geralmente apenas dentro de uma companhia
- **Brincos** - são as tags de menor custo, e podem ser lidas a uma distância de até um metro (figura 6).
Injetáveis - injetáveis, que são usadas a cerca de 10 anos, ela é colocada sob a pele do animal com uma ferramenta especial, um aplicador parecido com uma injeção.

Ingeríveis (bolus) - é um grande comprimido revestido geralmente por um material cerâmico resistente a ácido e de forma cilíndrica, e pode ficar no estomago do animal por toda sua vida.

![Figura 6: Tag na orelha do animal](image)

2.3.6. Linhas de Montagem Industrial

Uma aplicação bastante promissora para a tecnologia RFID está nas linhas de montagens de veículos ou de máquinas industriais. Nesse tipo de indústria, normalmente os produtos se movimentam com velocidade constante e não podem reduzir a marcha para leitura. Com a RFID todo o processo de montagem pode ser monitorado desde o início até a entrega final do produto ao consumidor, facilitando, inclusive, o acompanhamento nos casos de manutenção (Figura 7). No caso dos veículos, a tecnologia pode ser utilizada ainda como integrante de sistemas de proteção contra furtos, atuando no sistema de ignição até o travamento de portas e bloqueio de combustível do veículo.
2.3.7. Aplicações Biométricas

A União Européia pretende adotar o uso de passaportes biométricos dotados de um microchip RFID que, além da identificação do portador (nome, filiação, data e país de nascimento e outras informações) conterá sua foto digitalizada e dados de identificação com parâmetros característicos do rosto humano (distâncias e ângulos entre olhos, boca, nariz, maçãs faciais) e, no futuro, a impressão digital digitalizada. O governo dos EUA também está adotando o uso de um passaporte com dados biométricos capazes de serem lidos por leitores especiais. O objetivo é dificultar a falsificação do documento e facilitar a tarefa das autoridades de imigração ao rastrear um indivíduo (ou, pelo menos, seu passaporte) em qualquer região onde se implemente uma rede de sensores. Neste caso, em se tratando de um chip RFID, os sinais podem ser captados por sensores situados no raio de alguns metros dentro de locais de grande movimento como aeroportos, estação ferroviária, rodoviária, etc.

3. O FUNCIONAMENTO DA TECNOLOGIA POR RADIOFREQUÊNCIA

As Etiquetas Inteligentes são capazes de armazenar dados enviados por transmissores. Elas respondem a sinais de rádio de um transmissor e enviam de volta informações quanto a sua localização e identificação.

O microchip envia sinais para as antenas, que capturam os dados e os
retransmitem para leitoras especiais, passando em seguida por uma filtragem de informações, comunicando-se com os diferentes sistemas da empresa, tais como sistema de gestão, sistema de relacionamentos com clientes, sistemas de suprimentos, sistema de identificação eletrônica de animais, entre outros.

Esses sistemas conseguem localizar em tempo real os estoques e mercadorias, as informações de preço, o prazo de validade, o lote, enfim, uma gama de informações que diminuem o processamento dos dados sobre os produtos quando encontrados na linha de produção.

A figura 8 explica o diagrama esquemático básico de todos os sistemas de RFID.

Figura 8: Esquemática do sistema básico de RFID

Fonte: http://www.hightechaid.com/tech/rfid/rfid_technology.htm

O RF Tag ou transponder responde a um sinal do interrogator (reader/writer/antena) que emite por sua vez um sinal ao computador. Sistemas RFID basicamente consistem em três componentes: Antena, Transceiver (com decodificador) e um Transponder (normalmente chamado de RF Tag), este último é composto por uma antena e um chip eletronicamente programado com uma determinada informação.

3.1. A Antena de RFID

A antena emite um sinal de rádio ativando o RF Tag, realizando a leitura ou escrevendo algo. Na verdade a antena servirá como o meio capaz de fazer o RF Tag trocar ou enviar as informações ao leitor. As antenas são fabricadas em diversos tamanhos e formatos, possuindo configurações e características distintas, cada uma para um
tipo de aplicação. Quando a antena, o transceiver e o decodificador estão no mesmo invólucro recebem o nome de “leitor”.

3.2. O Transceiver e Leitor

O leitor emite frequências de rádio que são dispersas em diversos sentidos no espaço, desde alguns centímetros até alguns metros, dependendo da saída e da frequência de rádio utilizada. O leitor opera pela emissão de um campo eletromagnético (radiofrequência), a fonte que alimenta o Transponder que por sua vez responde ao leitor com o conteúdo de sua memória. Por apresentar essa característica, o equipamento pode ler através de diversos materiais como papel, cimento, plástico, madeira, vidro, etc. Quando o Tag passa pela área de cobertura da antena, o campo magnético é detectado pelo leitor, que decodifica os dados codificados no Tag, passando-os para um computador realizar o processamento. O transceptor é o componente de comunicação entre o sistema RFID e os sistemas externos de processamento de informações. Os transceptores variam muito na sua complexidade, dependendo do tipo de tag e das funções a serem aplicadas. Os mais sofisticados apresentam funções de check de paridade de erro e correção de dados. Uma vez que os sinais do receptor sejam corretamente recebidos e decodificados, algoritmos podem ser aplicados para decidir se o sinal é uma repetição de transmissão de uma tag.

3.3. O Transponder ou RF Tag

O termo transponder deriva da expressão TRANSmitter/resPONDER, revela a função do componente. O tag responde para o transmissor com um dado ou informação que o tag carrega. Os tags são categorizados por serem ativos ou passivos. RFID tags ativos são energizados por uma bateria interna e são tipicamente de leitura/escrita. O tamanho de uma memória de um tag ativo pode variar com o tipo de aplicação; alguns casos operam com
ata 1 MB de memória. Os tags passivos contêm normalmente memórias do tipo ROM (*Read Only Memory*), usualmente de 32 a 128 bits, que não podem ser modificada. O custo dos modelos passivos é bem inferior, e tem uma vida útil bem mais elevada, se comparado aos modelos ativos.

Há uma diversidade de tamanho e formas de tags de RFID. Existem tags para animais, fixados nas orelhas, ou debaixo da pele, podendo ter até 10 mm de comprimento. Tags podem ser parafusados, para identificar itens de madeira ou metais, ou então colocados em cartões de crédito para uso em aplicações de acesso de usuários em ambiente.

Na figura 5 vemos alguns modelos de RF Tags existentes no mercado, como chaveiros, Smart Card, crachás. O tipo de RF Tag é definido conforme a aplicação do ambiente de uso e performance.

3.4. Características das RF Tags

Podemos encontrar atualmente duas categorias de RF Tags:

3.4.1. RF Tags Ativas

São alimentadas por uma bateria interna e tipicamente são de escrita e leitura, ou seja, podem ser atribuídas (re-escrita ou modificada) novas informações ao RF Tag. O custo
das RF Tags Ativas é maior que o das RF Tags Passivas, além de possuírem uma vida útil limitada de no máximo 10 anos.

3.4.2. RF Tags Passivas: Operam sem bateria, sua alimentação é fornecida pelo próprio leitor através das ondas eletromagnéticas. As RF Tags Passivas são mais baratas que as Ativas e possuem teoricamente uma vida útil ilimitada. As RF tags Passivas geralmente são do tipo só leitura (read-only), usadas para curtas distâncias e requerem um leitor mais completo (com maior potência)

Os sistemas de RFID também são definidos pela faixa de frequência que operam, o que abordaremos no item seguinte.

4. RFID: FAIXAS DE FREQUÊNCIAS

Os sistemas de RFID podem ser classificados também pela faixa de frequência de operação, em baixa, média e alta. A tabela a seguir sumariza as 3 faixas, suas características e aplicações típicas.

<table>
<thead>
<tr>
<th>Banda de Freqüência</th>
<th>Características</th>
<th>Aplicações Típicas</th>
</tr>
</thead>
</table>
| Baixa: 100 a 500 KHz | - Faixa de curta até média leitura
- Baixo custo
- Baixa velocidade de leitura | - Controle de acesso
- Identificação de animal
- Controle de inventário |
| Média: 10 a 100 KHz | - Faixa de curta | - Controle de acesso
- Controle de inventário
- Identificação de animal |

...
| 15 MHz (também denominada Alta) | até média leitura - Potencialmente de baixo custo - Média velocidade de leitura de acesso - Smart cards |
| Alta: 850 a 950 MHz e 2,4 a 5,8 GHz (também denominada Ultra Alta) | - Faixa larga de leitura - Alta velocidade de leitura - Alto custo - Linha de visão requerida - Monitoração de veículos em estradas |

Os sistemas de RFID na faixa baixa e intermediária operam com o princípio de acoplamento indutivo. A quantidade de energia transferida do transceptor para o tag é proporcional ao tamanho das antenas de transmissão e recepção, respectivamente. Já os sistemas na faixa de alta frequência operam com o princípio de comunicação de antenas de radar. Neste método, a comunicação do tag com o transceptor é via modulação do sinal recebido pelo tag e radiando de volta para o transceptor.
A taxa de transferência de dados é influenciada pela frequência da faixa em uso entre o tag e o transceptor. Quanto maior a frequência, maior é a taxa de transferência de dados. Usando-se um espectro de 2,5 GHz, é possível, por exemplo, uma banda de 2 Mbps de taxa de dados. Isto permite que um alto número de tags sejam lidos simultaneamente num sistema de faixa Alta, tipicamente 200 tags, contra até 50 tags num sistema de faixa Média.

5. PRIVACIDADE E SEGURANÇA

Embora as questões de privacidade do consumidor em torno de sistemas RFID pareçam obter mais atenção, há outros aspectos da segurança RFID que são igualmente importantes. Embora as preocupações sobre privacidade com RFID tenham a ver principalmente com o que, quando, onde e quantos dados do consumidor é registrado sem nossa permissão ou até mesmo nosso conhecimento, a segurança RFID enfoca na segurança de sistemas RFID contra espiões, ladrões e outras entidades não autorizadas. Da mesma forma que com qualquer outro sistema de missão crítica, é importante considerar e planejar aliviar potenciais ameaças à disponibilidade, integridade e confidencialidade de um sistema RFID.

5.1. Disponibilidade

A disponibilidade aborda o tempo de um sistema no ar no desempenho e nível de escalabilidade requeridos. Além de arquiteturas mal planejadas, uma ameaça comum à disponibilidade são os ataques de negação de serviço. Sistemas RFID possuem certas vulnerabilidades que podem ameaçar sua disponibilidade.

5.2. Integridade

O principal objetivo das medidas de integridade é assegurar a precisão e autenticidade das informações transmitidas pelo sistema
evitando sua modificação acidental ou maliciosa. Imitações de identificadores seriam um exemplo de um ataque contra a integridade de um sistema RFID

5.3. Confidencialidade

Medidas de confidencialidade objetivam limitar o acesso de informações ao pessoal autorizado. Questões de privacidade do consumidor se adaptam na dimensão da confidencialidade.

6. CONCLUSÕES

O RFID é uma tecnologia que possui um grande espaço de aplicações e vem crescendo a cada dia que passa. Novas pesquisas estão sendo realizadas para o aprimoramento dessa tecnologia para facilitar sua utilização com um custo mais baixo do que as tecnologias que estão sendo utilizadas hoje em dia. O sonho de caixa de supermercados sem fila e uma agilização do serviço está perto de ser realizado. As dificuldades existem, porém muitas delas não são de difícil solução.

O Trabalho de Conclusão de Curso teve como foco principal mostrar as diversas áreas de aplicações dessa tecnologia chamada RFID.
7. BIBLIOGRAFIA

ISO RFID: Uma Lista Completa

<table>
<thead>
<tr>
<th>Código</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 11784</td>
<td>A identificação por radiofrequências de animais</td>
</tr>
<tr>
<td>ISO 11785</td>
<td>A identificação por radiofrequências de animais</td>
</tr>
<tr>
<td>ISO 14223</td>
<td>Especifica a interface de ar entre o transceiver e o transponder avançados utilizadas na identificação de frequência de rádio de animais sob a condição de compatibilidade para uma completo, de acordo com a norma ISO 11784 e ISO 11785.</td>
</tr>
<tr>
<td>ISO/IEC 14443</td>
<td>Cartões de identificação - sem contato de circuito integrado (s) de cartões - cartões de proximidade</td>
</tr>
<tr>
<td></td>
<td>Parte 1: Características físicas</td>
</tr>
<tr>
<td></td>
<td>Parte 2: Rádio Frequência e interface de sinal</td>
</tr>
<tr>
<td></td>
<td>Parte 3: Inicialização e antecipação</td>
</tr>
<tr>
<td></td>
<td>Parte 4: Protocolo de transmissão</td>
</tr>
<tr>
<td>ISO/IEC 15961</td>
<td>Tecnologia da informação - Radio Frequency Identification (RFID) para a gestão de item</td>
</tr>
<tr>
<td>ISO/IEC 15962</td>
<td>Tecnologia da informação - Radio Frequency Identification (RFID) para a gestão de item</td>
</tr>
<tr>
<td>ISO/IEC 15693</td>
<td>Cartões de identificação - sem contato de circuito integrado (s) de cartões - cartões de vizinhança</td>
</tr>
<tr>
<td></td>
<td>Parte 1: Características físicas</td>
</tr>
<tr>
<td></td>
<td>Parte 2: Air interface e inicialização</td>
</tr>
<tr>
<td></td>
<td>Parte 3: Antecipação e protocolo de transmissão</td>
</tr>
<tr>
<td>ISO/IEC 18000</td>
<td>RFID para Gerenciamento de Item</td>
</tr>
<tr>
<td></td>
<td>Parte 1: Define a base para todas as definições de interface aérea na ISO / IEC 18000 série.</td>
</tr>
<tr>
<td></td>
<td>Parte 2: Parâmetros de comunicações ar abaixo de 135 kHz interface</td>
</tr>
<tr>
<td></td>
<td>Tipo A FDX (): 125 kHz</td>
</tr>
</tbody>
</table>
Tipo B (HDX): 134,2 kHz

Parte 3: Parâmetros para comunicações de interface aérea em 13,56 MHz

Parte 4: Parâmetros para comunicações interface ar a 2,45 GHz

Passivo de funcionamento tag como um interrogador faia primeiro

Bateria operacional tag assistida como palestras primeira tag.

Parte 6: Parâmetros para comunicações de interface aérea em 860 MHz a 960 MHz

Um tipo B e tipo com a principal diferença é o algoritmo anti-colisão usado.

Tipo C - também conhecida como Classe 1 EPCglobal Gen 2.

Parte 7: Parâmetros para interface de comunicação activa do ar em 433 MHz

ISO / IEC TR 18046 Identificação do dispositivo de radiofrequência métodos de ensaio de desempenho

ISO / IEC TR 18047 Tecnologia da Informação - Identificação por Rádio Frequência dispositivo métodos de teste de conformidade

Parte 3: Métodos de ensaio para as comunicações de interface aérea em 13,56 MHz

ISO 18185 Tags RFID para selar electrónica (ISO TC 104 - Carga Containers)

ISO / IEC 19782 Tecnologia da informação - a identificação automática e captura de dados (AIDC) técnicas - Harmonizado vocabulário

Parte 3: A identificação por radiofrequências (RFID)

ISO 23389 Freight Containers - identificações de leitura / gravação de rádio-frequência (RFID) (ISO TC 104)

ISO / IEC 24730 O objetivo fundamental da norma ISO / IEC 24730 da norma é permitir a compatibilidade e promover a interoperabilidade dos produtos para o mercado crescente RTLS. A ISO / IEC dividiu o padrão em duas partes:

Parte 1: define uma API necessárias para a utilização de um RTLS. Ele permite que aplicativos de software para utilizar uma infra-estrutura RTLS para localizar bens com RTLS transmissores ligados a eles. Ela define um limite em que o software aplicativo usa facilidades de linguagens de programação para coletar as informações contidas na ficha tag RTLS recebido pela infra-estrutura RTLS.
Parágrafo 2. O 2,4 GHz protocolo de interface aérea, estabelece um padrão técnico para a localização em tempo real, sistemas que operam a uma frequência disponível internacionalmente banda de 2,4 GHz e destinam-se a localização aproximada, com atualizações frequentes (por exemplo, várias vezes de um minuto). Esta parte da norma define um sistema de localização de rede que fornece coordenadas e telemetria de dados. O sistema utiliza transmissores RTLS que autonomicamente gerar uma sequência direta-spread spectrum farol de radiofrequência. Os transmissores podem ser de campo programáveis e apoiar uma modalidade opcional excitação que permite a modificação da taxa de atualização de localização e localização do dispositivo RTLS.

<table>
<thead>
<tr>
<th>Número ISO</th>
<th>Título</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO / IEC 15434</td>
<td>A sintaxe para a transferência de Alta Capacidade de Media ADC</td>
</tr>
<tr>
<td>ISO / IEC 15459-1</td>
<td>Unidades Identificador exclusivo para as unidades de transporte - Parte 1: identificação única de transportes</td>
</tr>
<tr>
<td>ISO / IEC 15459-2</td>
<td>Identificador único para as unidades de transporte - Parte 2: Procedimentos de registo</td>
</tr>
<tr>
<td>ISO / IEC 15459-3</td>
<td>Identificador único para as unidades de transporte - Parte 3: As regras comuns para a identificação única</td>
</tr>
<tr>
<td>ISO / IEC 15459-4</td>
<td>Identificador único para as unidades de transporte - Parte 4: Identificação de itens exclusivos para a gestão da cadeia de abastecimento</td>
</tr>
<tr>
<td>ISO / IEC 15459-5</td>
<td>Identificador único para as unidades de transporte - Parte 5: Identificação de itens exclusivos removíveis (ITRs)</td>
</tr>
<tr>
<td>ISO / IEC 15459-6</td>
<td>Identificador único para as unidades de transporte - Parte 6: Identificação exclusivas para grupos de produtos, na gestão do ciclo de vida do material</td>
</tr>
<tr>
<td>ISO / IEC 15961</td>
<td>RFID para Gerenciamento de item - Dados de protocolo: interface de aplicativos</td>
</tr>
<tr>
<td>ISO / IEC 15961 regra</td>
<td>SC 31/WG 4 ISO / IEC 15961-1 protocolo de Dados - Parte 1: interface de aplicativos</td>
</tr>
<tr>
<td>ISO / IEC 15961 regra</td>
<td>SC 31/WG 4 ISO / IEC 15961-2 protocolo de dados - Parte 2: Registo de dados RFID construções</td>
</tr>
<tr>
<td>ISO / IEC 15961 regra</td>
<td>SC 31/WG 4 ISO / IEC 15961-3 protocolo de Dados - Parte 3: Os dados de RFID construções</td>
</tr>
<tr>
<td>ISO / IEC 15962</td>
<td>RFID para Gerenciamento de ponto-Protocolo: regras de codificação de dados e funções de memória lógica</td>
</tr>
<tr>
<td>ISO / IEC 15962 regra</td>
<td>RFID para Gerenciamento de ponto-Protocolo: regras de codificação de dados e funções de memória lógica</td>
</tr>
<tr>
<td>ISO / IEC 15903</td>
<td>RFID para Identificação de Gestão-Unique Item de RF Tag</td>
</tr>
<tr>
<td>ISO / IEC 18001</td>
<td>RFID para Gerenciamento de Item - Perfil de Aplicação Requisitos (ARP)</td>
</tr>
<tr>
<td>ISO / IEC 18047</td>
<td>Dispositivo RFID Conformidade métodos de ensaio, dividido em espelho ISO / IEC 18000</td>
</tr>
</tbody>
</table>
- 18047-1 Parte 1 - Não disponível
- 18047-2 Parte 2 - Parâmetros para Interface Aérea Communications abaixo 135 kHz
- 18047-3 Parte 3 - Parâmetros para Interface de Comunicação Air em 13,56 MHz
- 18047-4 Parte 4 - Parâmetros para Interface de Comunicação Air em 2,45 GHz
- 18047-5 Parte 5 - Não disponível
- 18047-6 Parte 6 - Parâmetros para Interface de Comunicação Air em 860 a 960 MHz
- 18047-7 Parte 7 - Parâmetros para Interface de Comunicação Air em 433 MHz

ISO / IEC 18046
RFID Tag e Métodos Interrogator Teste de Desempenho

ISO / IEC 19762
Técnicas de Tecnologia da Informação AIDC - Vocabulário Harmonizado

ISO / IEC 24710
Tecnologia da informação, identificação automática e captura de dados técnicas - Radio Frequency Identification para a gestão de Item - Elementary Tag funcionalidade da placa de licença para ISO / IEC 18.000 definições de interface aérea

ISO / IEC 18000
Tecnologia da Informação AIDC Técnicas da RFID para Gerenciamento de Item - Interface Air
- 18000-1 Parte 1 - Parâmetros Genéricos para a interface aérea de frequências globalmente aceites
- 18000-2 Parte 2 - Parâmetros para Interface Aérea Communications abaixo 135 kHz
- 18000-3 Parte 3 - Parâmetros para Interface de Comunicação Air em 13,56 MHz
- 18000-4 Parte 4 - Parâmetros para Interface de Comunicação Air em 2,45 GHz
- 18000-5 Parte 5 - Parâmetros para Interface de Comunicação Air em 860 a 960 MHz
- 18000-7 Parte 7 - Parâmetros para Interface de Comunicação Air em 433 MHz

ISO / IEC 18000
Tecnologia da Informação AIDC Técnicas da RFID para Gerenciamento de Item - Interface Air
- 18000-1 Parte 1 - Parâmetros Genéricos para a interface aérea de frequências globalmente aceites
- 18000-2 Parte 2 - Parâmetros para Interface Aérea Communications abaixo 135 kHz
- 18000-3 Parte 3 - Parâmetros para Interface de Comunicação Air em 13,56 MHz
- 18000-4 Parte 4 - Parâmetros para Interface de Comunicação Air em 2,45 GHz
- 18000-5 Parte 5 - Parâmetros para Interface de Comunicação Air em 860 a 960 MHz
- 18000-7 Parte 7 - Parâmetros para Interface de Comunicação Air em 433 MHz

ISO / IEC 18000
Tecnologia da informação, identificação automática e captura de dados técnicas - Radio Frequency Identification para a gestão de Item - Elementary Tag funcionalidade da placa de licença para ISO / IEC 18.000 definições de interface aérea

ISO / IEC 24710
Tecnologia da informação, identificação automática e captura de dados técnicas - Radio Frequency Identification para a gestão de Item - Elementary Tag funcionalidade da placa de licença para ISO / IEC 18.000 definições de interface aérea

ISO / IEC 24729
Tecnologia da informação - identificação por radiofrequências para a gestão de Item - Diretrizes para a Implementação -
- Parte 1: as etiquetas RFID
- Parte 2: Recolhimento de etiquetas de RF
- Parte 3: interrogador RFID / instalação de antena

ISO / IEC 24730
Sistemas de Localização em Tempo Real (RTLS)
- Parte 1: interface de programação de aplicativo (API)
- Parte 2: 2.4 GHz
- Parte 3: 433 MHz
- Parte 4: Sistemas de Localização Global (GLS)

ISO / IEC 24752
Tecnologia da informação - identificação Automática e Captura de Dados, Técnicas de Radio Frequency Identification (RFID) para o Item Management - Sistema de Gestão de Protocolo

ISO / IEC 24753
Tecnologia da informação - identificação automática e captura de dados Técnicas - Radio Frequency Identification (RFID) para a Gestão Item - Comandos Air Interface para a bateria e Assist Sensor Funcionalidade

ISO / IEC 24769
Tecnologia da informação, identificação automática e captura de dados Técnicas - Sistemas de Localização em Tempo Real (RTLS) - Métodos RTLS Device Test Conformidades
ISO / IEC 24770 - Tecnologia da Informação, identificação automática e captura de dados Técnicas - Sistemas de Localização em Tempo Real (RTLS) - RTLS Device Métodos Teste de Desempenho

Standards RFID aplicada à Frequência

<table>
<thead>
<tr>
<th>Espectro de Frequências</th>
<th>LF</th>
<th>HF</th>
<th>HF</th>
<th>UHF</th>
<th>UHF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>125/134,2 kHz</td>
<td>13,56 MHz</td>
<td>433 MHz</td>
<td>860-960 MHz</td>
<td>2,45 GHz</td>
</tr>
</tbody>
</table>

ISO
- ISO 11784
- ISO / IEC 14443
- ISO 18000-7
- ISO 18000-5A
- ISO 18000-4
- ISO / IEC 18000-2A
- ISO / IEC 15993
- ISO 18000-5B
- ISO / IEC 24730-2
- ISO / IEC 18000-2B
- ISO 18000-3
- ISO 18000-5C
- ISO / IEC 18000-1

EPCglobal
- Classe 0
- Classe 1
- Classe 1 Gen 2