

CURSO DE GRADUAÇÃO EM ENGENHARIA ELÉTRICA

Universidade Federal de Campina Grande

Centro de Engenharia Elétrica e Informática

TRABALHO DE CONCLUSÃO DE CURSO

SIMULAÇÃO DIGITAL DO COMPORTAMENTO DE UM MOTOR SÍNCRONO SUBMETIDO A CARGAS MECÂNICAS VARIÁVEIS

MATHEUS MONTEIRO DE ALMEIDA

SIMULAÇÃO DIGITAL DO COMPORTAMENTO DE UM MOTOR SÍNCRONO SUBMETIDO A CARGAS MECÂNICAS VARIÁVEIS

> Trabalho de Conclusão de Curso submetido à Unidade Acadêmica de Engenharia Elétrica da Universidade Federal de Campina Grande como parte dos requisitos necessários para a obtenção do grau de Bacharel em Ciências no Domínio da Engenharia Elétrica.

Área de Concentração: Processamento de Energia

Orientador: Roberto Silva de Siqueira, M. Sc.

Campina Grande 2015

MATHEUS MONTEIRO DE ALMEIDA

SIMULAÇÃO DIGITAL DO COMPORTAMENTO DE UM MOTOR SÍNCRONO SUBMETIDO A CARGAS MECÂNICAS VARIÁVEIS

Trabalho de Conclusão de Curso submetido à Unidade Acadêmica de Engenharia Elétrica da Universidade Federal de Campina Grande como parte dos requisitos necessários para a obtenção do grau de Bacharel em Ciências no Domínio da Engenharia Elétrica.

Área de Concentração: Processamento de Energia

Aprovado em / /

Professor Leimar de Oliveira, M. Sc. Universidade Federal de Campina Grande Avaliador

Professor Roberto Silva de Siqueira, M. Sc. Universidade Federal de Campina Grande Orientador, UFCG

AGRADECIMENTOS

Primeiramente agradeço à Deus pelas oportunidades que tive e a proteção que me livra de todo mal visível e invisível.

Aos meus pais, José Almeida P. Filho e Edina Maria Monteiro, e irmãos, por todo amor, apoio e investimento que me proporcionaram durante minha graduação e por acreditarem na minha vitória.

Aos meus familiares por todo o incentivo e que de alguma forma ajudaram na minha conquista.

À minha namorada, Melyna C. Silva Simões, pelo companheirismo, carinho e apoio nos momentos em que mais precisei.

Aos amigos que fiz durante a graduação, principalmente ao pessoal do "Apto. 201", pelos momentos de lazer, descontração e estudo.

Ao professor, Roberto Siqueira, pela dedicação e amor ao trabalho, pela paciência e estar sempre à disposição para orientação,

Aos professores e demais pessoas que contribuíram para minha formação profissional e moral sejam de forma direta ou indireta.

"Agradeço todas as dificuldades que enfrentei; Não fosse por elas, eu não teria saído do lugar. As facilidades nos impedem de caminhar."

Chico Xavier.

RESUMO

As máquinas elétricas rotativas constituem os mais utilizados equipamentos para a conversão eletromecânica de energia. Por essa razão, elas são estudadas em várias disciplinas a partir da graduação em engenharia elétrica, com ênfase no seu funcionamento em regime permanente. No entanto, é igualmente indiscutível a relevância da análise dessas máquinas em regime transitório, o que motivou a presente pesquisa. No presente trabalho é examinado, mediante simulação digital, o desempenho de um motor síncrono em regime transitório, quando submetido a uma carga mecânica em seu eixo. Para tal, são desenvolvidas as equações diferenciais descritivas do motor em comentário, além do algoritmo necessário à sua resolução, desenvolvido com base em método de integração numérica e codificado em linguagem computacional. Os dados obtidos para as diversas quantidades físicas do motor são apresentados nas formas gráfica e numérica, sendo confrontados com os valores obtidos para essa máquina funcionando em regime permanente. É de destacar que, embora este estudo seja concernente a uma carga particular, o caráter genérico do método empregado permite sua aplicação a situações mais gerais envolvendo o efeito dinâmico de qualquer carga mecânica adicionada ao eixo do motor. Portanto, os resultados obtidos atenderam satisfatoriamente aos propósitos da presente pesquisa.

Palavras-Chave: Motor Síncrono. Regime transitório. Simulação digital.

ABSTRACT

Rotating electrical machines are the most used equipment for electromechanical energy conversion.. For this reason, they are studied in various disciplines from graduation in electrical engineering, where the emphasis is on their continuous operation. However, it is equally indisputable relevance of the analysis of these machines in transitional arrangements, which led this research. In this work is examined by digital simulation, the performance of a synchronous motor on transitional arrangements, when subjected to a mechanical load on its axis. To do this, the engine descriptive differential equations in review are developed in addition to the algorithm necessary to resolve, developed based on numerical integration method and encoded into computer language the data obtained for the various engine physical quantities are shown in numerical and graphical forms, and confronted with the values obtained for that machine working permanently. It is noteworthy that although this study is concerning a particular load, the generality of the method enables your application to more general situations involving the dynamic effect of any mechanical load added to the motor shaft. Therefore, the results obtained satisfactorily met the purposes of this research.

Keywords: Synchronous Motor. Transitory state. Digital simulation.

LISTA DE ILUSTRAÇÕES

Figura 2.1 – Característica de conjugado x ângulo de carga15
Figura 2.2 – Circuito equivalente por fase referente ao motor síncrono16
Figura 2.3 – (a) rotor com polos lisos
Figura 2.3 – (b) rotor com polos salientes
Figura 2.3 – (c) corte transversal da máquina síncrona18
Figura 2.4 – Disposição dos enrolamentos no estator da máquina bifásica22
Figura 4.5 - Comportamento da corrente de armadura na fase "a" durante o período
transtrio
Figura 4.6 - Comportamento da corrente de armadura na fase b durante o período tran-
sitório
Figura 4.7 - Comportamento da corrente de excitação da máquina durante o período
transitório
Figura 4.8 – Comportamento da velocidade angular da máquina durante o período tran-
sitório
Figura 4.9 – Comportamento do ângulo de carga durante o período transitório
Figura 4.10 – Comportamento do conjugado elétrico durante o período transitório40

Lista de Símbolos

 ω_s = Velocidade angular síncrona em radianos/segundo;

P =número de polos;

 φ = ângulo de defasagem;

f = frequência da fonte de alimentação da armadura;

 Φ_R = fluxo resultante por polo no entreferro;

 F_f = força magnetomotriz do enrolamento de campo ou excitação

 δ_{RF} = ângulo elétrico de fase espacial entre os eixos das ondas Φ_R e F_{f_i}

 R_a = resistência dos enrolamentos de armadura do motor síncrono;

 R_f = resistência do enrolamento de campo ou excitação;

 X_s = reatância síncrona;

 e_{af} = força eletromotriz induzida na fase "a" do enrolamento de armadura;

 E_{af} = força eletromotriz induzida na fase "a" do enrolamento de armadura (notação fasorial);

 v_a = tensão nos terminais da fase a;

 V_a = tensão nos terminais da fase a (notação fasorial);

 i_a = corrente de armadura nos terminais da fase a;

 I_a = corrente de armadura nos terminais da fase a (notação fasorial);

 I_f = corrente do enrolamento de campo ou excitação;

 I_m = valor de pico da corrente de armadura;

 V_m = valor de pico da tensão de armadura;

 λ_a = fluxo concatenado com o enrolamento da fase a;

M = indutância mutua;

L= indutância própria;

J = constante de inércia do motor síncrono;

k =constante de acoplamento entre enrolamentos de armadura e excitação;

 W_f' = coenergia.

Sumário

11
14
17
18
20
22
27
27
31
33
35
41
42
43
61

1 INTRODUÇÃO

As máquinas elétricas rotativas básicas, síncrona, assíncrona e de corrente contínua, constituem na atualidade os equipamentos mais utilizados para a conversão eletromecânica de energia. Daí a grande importância de estudá-las em diversas áreas da engenharia elétrica.

Por essa razão, este assunto está presente nos diversos conteúdos dos cursos de graduação em engenharia elétrica do país, embora, na grande maioria destes a sua ênfase dê-se fundamentalmente para o seu funcionamento em regime permanente.

No entanto, nas pesquisas em engenharia elétrica, o maior interesse concentra-se no estudo dinâmico destes conversores eletromagnéticos quando submetidos, por exemplo, a falhas ou a cargas variáveis, durante o estado transitório.

Neste trabalho é examinado, mediante simulação digital, o desempenho de um motor síncrono funcionando em regime transitório, quando submetido a uma carga mecânica em seu eixo.

O propósito geral deste trabalho foi analisar o comportamento das diversas quantidades físicas do motor síncrono em relevo, durante os estados transitório e permanente, quando este é submetido a uma carga mecânica em seu eixo.

Além do que, pelo caráter multidisciplinar da presente pesquisa, esta igualmente atingiu o seu escopo específico, que consistiu na elaboração e na codificação de um *algoritmo*, capaz de resolver o problema proposto, mediante simulação digital, e cujos resultados foram consistentes com aqueles obtidos sob condições de regime permanente.

É de ressaltar que a análise de desempenho de um motor síncrono durante o período transitório é bastante complexa, posto que, envolve a resolução de um conjunto de equações diferenciais não lineares, que normalmente não tem solução análítica.

Ademais, é sabido que para a integração de sistema de equações dessa natureza são frequentemente utilizados métodos numéricos.

Tendo em vista essa problemática, foi desenvolvido um *algoritmo* computacional para resolução de equações diferenciais não lineares com o objetivo de examinar, mediante dados numéricos e gráficos obtidos por simulação digital, o comportamento de um motor síncrono, em regime transitório, quando submetido a uma carga mecânica variável.

Dada a complexidade das equações diferenciais não lineares descritivas de um motor síncrono polifásico, optou-se por assumirem-se algumas hipóteses simplificadoras, compatíveis com o nível de um trabalho de conclusão de curso de graduação, sem que, com isso, houvesse perda de generalidade na essência do programa computacional desenvolvido.

Neste sentido, foram desconsideradas a saturação, as perdas mecânicas, por histerese e por correntes parasitas. Além do que, o motor utilizado é de polos lisos e não o de polos salientes.

O método de integração numérica usado para a resolução do conjunto de equações diferenciais em apreço foi o de Runge-Kutta de quarta ordem e o programa computacional desenvolvido para a simulação digital foi codificado utilizando-se a linguagem FORTRAN, no ambiente Windows.

É de destacar que, embora este estudo seja concernente a um caso particular, ele permite compreender o funcionamento dinâmico de um motor síncrono submetido a qualquer carga mecânica variável durante o seu período transitório.

A partir da simulação digital em comentário, foram examinados os desempenhos das correntes nos enrolamentos de armadura e de excitação, bem como do conjugado, do ângulo de carga e da velocidade mecânica do motor em estudo.

Ademais, foram realizados cálculos das quantidades físicas em regime permanente, para o caso estudado, que confrontados com os dados obtidos da simulação digital em regime transitório, ajudaram a confirmar a consistência da modelagem adotada no presente estudo.

É oportuno observar que, após este capítulo introdutório, esta monografia é desenvolvida em quatro capítulos. Neste sentido, os parágrafos a seguir apresentam sinteticamente o conteúdo presente em cada um deles.

O Capítulo 2 traz uma descrição sucinta sobre a máquina síncrona. Além disso, nele são apresentadas as equações gerais para um motor síncrono bifásico e são descritas as hipóteses simplificadoras que foram assumidas para a simulação digital em tela, assim como foram atribuídos os valores aos parâmetros do motor em estudo e às condições iniciais de suas quantidades físicas.

O Capitulo 3 trata do método de integração numérica utilizado para a resolução das equações diferenciais envolvidas, bem como do programa codificado em linguagem

FORTRAN, desenvolvido para proceder a requerida simulação digital do motor síncrono em destaque.

No Capítulo 4, são apresentados e analisados os resultados obtidos para as quantidades físicas do motor síncrono em apreço, tanto em regime permanente quanto em regime transitório, nas formas numérica e gráfica.

Por fim, no Capitulo 5 são apresentadas as considerações finais e ressaltado o êxito obtido nos resultados validadores da pesquisa em comento, sendo apresentadas sugestões para continuidade do presente estudo.

•

MOTOR SÍNCRONO 2

Uma das principais características de uma máquina síncrona quando funcionando em regime permanente é ter a sua velocidade mecânica mantida constante e girando na mesma velocidade do campo girante criado pelas correntes alternadas que circulam nos enrolamentos de sua armadura.

Ademais, como é cediço, a máquina síncrona pode funcionar como motor ou como gerador. Na primeira hipótese ela recebe potência elétrica ativa proveniente de uma fonte de energia elétrica que alimenta os enrolamentos de sua armadura e a converte em potência mecânica disponível no eixo de seu rotor.

No funcionamento como gerador, a máquina síncrona recebe energia de uma fonte mecânica, por exemplo, uma turbina hidráulica, e a converte em energia elétrica, fornecendo necessariamente, neste caso, potência ativa.

È de registrar que a máquina síncrona possui geralmente os seus enrolamentos polifásicos de armadura localizados no seu estator, pelos quais circulam correntes alternadas equilibradas igualmente polifásicas.

O enrolamento de excitação ou de campo está geralmente localizado no rotor e é alimentado por corrente contínua constante, mediante anéis coletores lisos colocados no eixo da máquina em comentário, sobre os quais deslizam escovas condutoras.

No modo de funcionamento como motor, em regime permanente, as máquinas síncronas, cujas armaduras são alimentadas por correntes senoidais polifásicas equilibradas, possuem uma onda de força magnetomotriz fundamental resultante que gira a uma velocidade proporcional à frequência destas correntes, conforme expresso na Equação 2.1, adiante apresentada.

Neste sentido, a velocidade da onda de campo girante da armadura é dada por:

$$\eta_s = \frac{120 f}{P} \tag{2.1}$$

Em que

 η_s - velocidade síncrona do campo girante da armadura, em rpm.

 \vec{f} - frequência das correntes de armadura, em Hz. P - número de polos da máquina síncrona.

Como o motor síncrono é o foco deste trabalho, ele será, doravante, discutido com maiores detalhes.

É de ressaltar que uma importante quantidade física no estudo do funcionamento de uma máquina síncrona é o seu conjugado eletromagnético. Portanto, é relevante saber que, se essa máquina é conectada a um barramento infinito, o seu conjugado, em regime permanente, pode ser expresso pela seguinte equação:

$$T = \frac{\pi}{2} \left(\frac{P}{2}\right)^2 \Phi_R F_f \operatorname{sen} \delta_{RF}$$
(2.2)

Em que

P - número de polos da máquina síncrona Φ_R - fluxo resultante por polo no entreferro F_f - força magnetomotriz do enrolamento de campo ou excitação δ_{RF} - ângulo elétrico de fase espacial entre os eixos das ondas Φ_R e F_f .

Da Equação 2.2, percebe-se que, na hipótese de a corrente de excitação ser mantida constante, consequentemente F_f também será constante, e se a armadura está conectada a um barramento infinito, então, o fluxo Φ_R , pode ser considerado invariável.

Assim, na hipótese de mudança na carga mecânica, e caso a máquina não perca o sincronismo, estas variações de carga repercutirão essencialmente no ângulo δ_{RF} .

Nestas circunstâncias, mantendo-se constantes $F_f e \Phi_R$, deduz-se da Equação 2.2 que a curva característica de conjugado elétrico versus ângulo δ_{RF} é uma senoide, como representada graficamente na Figura 2 (FITZGERALD *et al*, 2010):

Figura 2.1 - Característica de conjugado x ângulo.

Fonte: FITZGERALD et al, 2010.

O circuito equivalente de armadura, por fase, de um motor síncrono trifásico em regime permanente pode ser expresso esquematicamente pelo seguinte circuito elétrico equivalente:

Figura 1.2 - Circuito equivalente por fase referente ao motor síncrono.

Fonte: FITZGERALD et al, 2010.

Em que

R_a - resistência da armadura, referente à fase "a".

X_s – reatância síncrona da armadura.

E_{af} – tensão induzida na armadura pelo fluxo do enrolamento de campo.

 V_a – tensão nos terminais da fase "a".

 I_a – corrente de armadura da fase "*a*".

Vê-se que, do circuito elétrico da Figura 2.2, a tensão nos terminais da fase "a", V_a , considerando-se as componentes fundamentais de uma máquina síncrona trifásica equilibrada, é a soma da força eletromotriz, " e_{af} ", induzida no enrolamento de armadura da fase "a", a partir do fluxo do enrolamento de campo ou excitação, das quedas de tensões na resistência, R_a , e da queda de tensão na reatância de armadura, X_s .

2.1 ASPECTOS CONSTRUTIVOS DA MÁQUINA SÍNCRONA

A máquina síncrona trifásica, objeto do presente estudo, é composta de uma parte mecânica fixa denominada de estator, onde usualmente estão dispostos os enrolamentos trifásicos de sua armadura, os quais devem estar defasados entre si de 120º graus elétricos.

Estes enrolamentos são normalmente alimentados por uma fonte de tensão elétrica trifásica senoidal equilibrada, com amplitude e frequência constantes.

Esta máquina também possui uma parte mecânica móvel, passível de girar, denominada de rotor. Nesta peça comumente está situado o enrolamento de campo ou excitação, que é alimentado comumente por uma fonte de tensão contínua.

Em regra, no rotor estão igualmente dispostos os circuitos amortecedores, bastante similares ao induzido de uma máquina de indução trifásica do tipo rotor gaiola de esquilo.

Estes amortecedores além de servirem como auxiliares na partida ou acionamento de motores síncronos, eles ajudam a amortecer as oscilações eletromecânicas durante os períodos transitórios, contribuindo para proporcionar uma maior estabilidade a estas máquinas elétricas.

Assim, em regime permanente de funcionamento não existe componente de tensão fundamental induzida nos amortecedores e, consequentemente, não há nestes, corrente elétrica em circulação.

No que concerne à construção do rotor da máquina síncrona, ele pode apresentar-se sob a forma de polos lisos ou de polos salientes. No primeiro tipo estão usualmente as máquinas com até quatro polos e que trabalham com maior velocidade, quando comparadas com as máquinas síncronas de polos salientes.

A figura 2.3, a seguir, ilustra as máquinas síncronas de polos lisos ou cilíndricos e de polos salientes.

Figura 2.2 - (a) rotor com polos lisos; (b) rotor com polos salientes; (c) corte transversal da máquina síncrona.

Fonte: Modificado da web. www.docplayer.com.br.

2.2 EQUAÇÕES GERAIS PARA O MOTOR SÍNCRONO TRIFÁSICO

Para os propósitos deste estudo, a equação para a fase "a" pode ser mais bem expressa em termos de quantidades físicas instantâneas, como segue:

$$v_a = R_a i_a + \frac{d}{dt} (\lambda_a) \tag{2.3}$$

Ademais, sabe-se que o fluxo concatenado com a fase "a" é dado pela Equação 2.4, a seguir:

$$\lambda_a = L_a i_a + M_{af} i_f + M_{ab} i_b + M_{aC} i_C \tag{2.4}$$

Em que

$$M_{af} = M_{fa} = M \cos \theta_e \tag{2.5}$$

$$M_{ab} = M_{ba} = M\cos(\theta_e - 120^{\circ}) \tag{2.6}$$

$$M_{ac} = M_{ca} = M\cos(\theta_e + 120^{\circ}) \tag{2.7}$$

O termo L_a é a indutância própria de cada uma das fases dos enrolamentos da armadura, M_{af} refere-se à indutância mútua entre o enrolamento de armadura "a" e o enrolamento de excitação "f" e varia de acordo com o ângulo elétrico (θ_e) medido entre o eixo magnético do enrolamento de campo e aquele da fase "*a*".

Já a Equação 2.6 refere-se à indutância mútua entre o enrolamento de armadura "a" e o enrolamento da fase "b" e varia de acordo com o ângulo elétrico (θ_e) medido entre o eixo magnético da fase "a" e o eixo da fase "b". Raciocínio idêntico usa-se para a indutância M_{ac} entre as fases "a" e "c".

Assim, a partir da Equação 2.4, percebe-se que a tensão " e_{af} ", induzida pelo fluxo do enrolamento de campo, pode ser obtida pela derivada da Equação 2.4, em relação ao tempo, quando a corrente de armadura i_a é igual a zero. Assim:

$$e_{af} = \frac{d}{dt}(\lambda_a) = \frac{d}{dt}(M_{af}i_f)$$
(2.8)

De outra forma, usando-se a regra da cadeia para a Equação 2.3, combinada com as Equações 2.4, 2.5, 2.6 e 2.7, tem-se a seguinte equação geral para a tensão terminal da fese "a" da armadura de uma máquina síncrona trifásica de polos lisos:

$$v_a = R_a i_a + L_a \frac{di_a}{dt} + i_f \frac{dM_{af}}{dt} + M_{af} \frac{di_f}{dt} + i_b \frac{dM_{ab}}{dt} + M_{ab} \frac{di_b}{dt} + i_c \frac{dM_{ac}}{dt} + M_{ac} \frac{di_c}{dt}$$
(2.9)

De modo análogo pode-se escrever as equações para as tensões terminais das fases "b" e "c" da máquina em debate, respectivamente, como:

$$v_b = R_a i_b + L_a \frac{di_b}{dt} + i_f \frac{dM_{bf}}{dt} + M_{bf} \frac{di_f}{dt} + i_a \frac{dM_{ab}}{dt} + M_{ab} \frac{di_a}{dt} + i_c \frac{dM_{bc}}{dt} + M_{bc} \frac{di_c}{dt}$$
(2.10)

$$\nu_c = R_a i_c + L_a \frac{di_c}{dt} + i_f \frac{dM_{cf}}{dt} + M_{cf} \frac{di_f}{dt} + i_a \frac{dM_{ac}}{dt} + M_{ac} \frac{di_a}{dt} + i_b \frac{dM_{bc}}{dt} + M_{bc} \frac{di_b}{dt}$$
(2.11)

Admitindo-se para o caso em estudo que as tensões e as correntes de armadura variam de forma senoidal no tempo e que a velocidade angular, " ω ", do rotor é mantida constante, as equações 2.8, 2.9 e 2.10 podem ser escritas na forma fasorial, em regime permanente, como:

$$V_a = R_a \hat{l}_a + j X_s \hat{l}_a + \hat{E}_{af}$$
(2.12)

$$V_b = R_b \hat{l}_b + j X_s \hat{l}_b + \hat{E}_{bf}$$
(2.13)

$$V_c = R_c \hat{I}_c + j X_s \hat{I}_c + \hat{E}_{cf}$$
(2.14)

Por fim, a representação da tensão terminal do enrolamento de campo pode ser escrita como segue:

$$v_{f} = R_{f}i_{f} + L_{f}\frac{di_{f}}{dt} + i_{a}\frac{dM_{af}}{dt} + M_{af}\frac{di_{a}}{dt} + i_{b}\frac{dM_{bf}}{dt} + M_{bf}\frac{di_{b}}{dt} + i_{c}\frac{dM_{cf}}{dt} + M_{cf}\frac{di_{c}}{dt}$$
(2.15)

Em regime permanente, obedecidas igualmente as mesmas hipóteses anteriormente elencadas para a dedução das equações 2.12, 2.13 e 2.24, obtêm-se a seguinte expressão, na forma fasorial, para a Equação 2.15:

$$V_f = R_f I_f \tag{2.16}$$

É de destacar que a máquina síncrona trifásica em regime permanente, quando conectada a um barramento infinito, possui ondas fundamentais de tensões e correntes senoidais trifásicas de armadura igualmente equilibradas, desde que o conjugado mecânico e a corrente de campo ou excitação sejam mantidos constantes.

2.3 MOTOR SÍNCRONO BIFÁSICO SUBMETIDO A CARGA ME-

CÂNICA VARIÁVEL

Conforme comentado anteriormente, o presente trabalho examina o funcionamento dinâmico de um motor síncrono bifásico submetido a uma carga mecânica variável durante os períodos transitório e permanente.

Neste sentido, o presente trabalho foi realizado mediante o estudo de caso, que consiste em submeter o motor síncrono bifásico, que inicialmente opera com conjugado nulo, a uma carga mecânica de valor constante no eixo de seu rotor.

A máquina elétrica girante escolhida no presente trabalho é um motor síncrono de polos lisos, sem amortecedores, cujas indutâncias próprias de armadura, L_a, e de

campo ou excitação, L_f , são admitidas constantes, sendo que as indutâncias mútuas, M_{ab} , M_{af} e M_{bf} entre os enrolamentos de armadura e de excitação possuem amplitudes constantes, mas variam senoidalmente no espaço.

Ademais, na pesquisa em tela, não são consideradas as perdas mecânicas e nem a histerese, a saturação e as correntes parasitas.

É de ressaltar que a escolha de um motor síncrono bifásico, e não de um trifásico, teve por escopo tão-somente reduzir os esforços computacionais e de obtenção da matriz inversa efetivado no Tópico 3.3, adiante, pois, ao eleger-se como objeto de estudo um motor bifásico, se reduz o quantitativo de equações diferenciais de três para duas.

Além disso, é sabido que um motor síncrono trifásico equilibrado pode ser representado por um bifásico mediante meras transformações de fase, conforme é amplamente tratado na literatura sobre esta matéria, a exemplo da matriz de transformação expressa na Parte I, Tópico 15, do livro: *The unified theory of electrical machines* (JO-NES, 1967, p. 101).

Assim, percebe-se que a utilização de um motor síncrono bifásico não afeta a generalidade e o alcance do presente trabalho.

No caso em estudo, o motor síncrono bifásico está inicialmente funcionando a uma velocidade síncrona angular constante, " ω_s ", sendo o seu conjugado mecânico igual a zero. Consequentemente, o ângulo de carga ou ângulo elétrico de fase espacial entre os eixos das ondas $\Phi_R e F_f$, $\delta_{RF} = \delta$, deve ser também igual a zero.

É de ressaltar que, nas condições de estado permanente a corrente de excitação, $i_f = I_f$, é contínua constante e as correntes de armadura são senoides de amplitude e frequência constantes.

Posteriormente, o eixo do rotor, antes em vazio, é submetido a uma carga mecânica, T_m , período no qual ocorrem variações na corrente de excitação, nas correntes de armadura, na velocidade mecânica do eixo do rotor, no conjugado elétrico e no ângulo de carga, até estabelecer-se um novo estado permanente, conforme examinado no Capítulo 3, adiante.

Para a simulação digital em apreço foram assumidos os seguintes valores para os parâmetros e para as quantidades físicas do motor síncrono em estudo:

- Indutância própria de armadura, L_a, igual a 0,2 H;
- Amplitude da indutância mútua de armadura, M, igual a 0,4 H;
- Resistência de armadura, R_a, igual a 0,2 ohm;

- Resistência de excitação, R_f, igual a 2,0 ohm;
- Tensão da fonte de alimentação da excitação, V_f, igual 5 V;
- Amplitude das tensões do barramento infinito, V_m, igual a 400 V;
- Velocidade angular do campo girante da armadura, ω_s , 400 radianos/segundo.
- Constante de inércia do motor síncrono, J, igual a 0,01 kW-s/kVA;
- Constante de acoplamento entre armadura e excitação, k, igual a 0,95.

É de destacar que os valores iniciais para as correntes de armadura e de excitação são, respectivamente, $i_a = 10 \text{ A}$ e $i_b = 0,0 \text{ A}$, sendo $i_f = V_f/Rf = 10/4 = 2,5\text{ A}$.

2.4 EQUAÇÕES GERAIS PARA O MOTOR SÍNCRONO BIFÁSICO

Como o estudo de caso feito neste trabalho envolve um motor síncrono bifásico, faz-se necessário escrever as equações gerais para este motor, a exemplo das equações 2.9, 2.10, 2.11 e 2.15, expressas para a máquina síncrona trifásica.

Figura 2.3 – Diagrama esquemático para armadura da máquina bifásica.

Fonte: Modificado da web. www.docplayer.com.br.

Portanto, as equações para as fases "a" e "b" da armadura e para o enrolamento de excitação do motor síncrono bifásico podem ser expressas em termos de quantidades físicas instantâneas, como segue:

$$v_a = R_a i_a + \frac{d}{dt} (\lambda_a) \tag{2.17}$$

$$v_b = R_a i_b + \frac{d}{dt} (\lambda_b) \tag{2.18}$$

$$v_f = R_f i_f + \frac{d}{dt} (\lambda_f)$$
(2.19)

Sabe-se que os fluxos concatenados com os enrolamentos "a", "b" e "f" são dados, respectivamente, pelas equações 2.20, 2.21 e 2.22, a seguir. Assim:

$$\lambda_a = L \cdot i_a + M_{af} i_f + M_{ab} i_b \tag{2.20}$$

$$\lambda_b = L.i_b + M_{bf}i_f + M_{ba}i_a \tag{2.21}$$

$$\lambda_f = L_f i_f + M_{af} i_a + M_{bf} i_f \tag{2.22}$$

Em que,

 $L_{aa} = L_{bb} = L$ – Indutancia própria dos enrolamentos de armadura "a" e "b" $L_{ff} = L_f$ – Indutância própria do enrolamento de excitação "f" $M_{af} = M_{fa}$ – Indutancia mútua entre os enrolamentos "a" e "f". $M_{bf} = M_{fb}$ – Indutancia mútua entre os enrolamentos "b" e "f" $M_{ab} = 0$ – Indutancia mútua entre os enrolamentos "a" e "b".

Substituindo-se as equações 2.20, 2.21 e 2.22 nas equações 2.17, 2.18 e 2.19, tem-se:

$$v_{a} = R_{a}i_{a} + L.\frac{di_{a}}{d_{t}} + \frac{dM_{af}}{dt}i_{f} + M_{af}\frac{di_{f}}{d_{t}}$$
(2.23)

$$v_{b} = R_{b}i_{b} + L.\frac{di_{b}}{d_{t}} + \frac{dM_{bf}}{dt}i_{f} + M_{bf}\frac{di_{f}}{d_{t}}$$
(2.24)

$$v_f = R_f i_f + L_f \frac{di_f}{d_t} + \frac{dM_{fa}}{dt} i_a + M_{fa} \frac{di_a}{d_t} + \frac{dM_{fb}}{dt} i_b + M_{fb} \frac{di_b}{d_t}$$
(2.25)

As indutâncias em um motor síncrono bifásico, cujas forças magnetomotrizes se distribuem senoidalmente no espaço, são dadas por:

$$L_{aa} = L_{bb} = L \tag{2.26}$$

$$L_{ff} = L_f \tag{2.27}$$

$$M_{af} = M_{fa} = M \cos \theta \tag{2.28}$$

$$M_{bf} = M_{fb} = M\sin\theta \tag{2.29}$$

$$M_{ab} = 0 \tag{2.30}$$

Substituindo-se as equações 2.26, 2.27, 2.28, 2.29 e 2.30 nas equações 2.23, 2.24 e 2.25, tem-se:

$$v_a = R_a i_a + L \frac{di_a}{d_t} - \omega M \sin \theta \, i_f + M \cos \theta \, \frac{di_f}{d_t}$$
(2.31)

$$v_b = R_b i_b + L \frac{di_b}{d_t} + \omega M \cos \theta \, i_f + M \sin \theta \frac{di_f}{d_t}$$
(2.32)

$$v_f = R_f i_f + L_f \frac{di_f}{d_t} - \omega M \sin \theta \, i_a + M \cos \theta \frac{di_a}{d_t} + \omega M \cos \theta \, i_b + M \sin \theta \frac{di_b}{d_t}$$
(2.33)

Em que,

$$\theta = \omega t - \delta \tag{2.34}$$

Além disso, a Equação 2.2, para o conjugado elétrico, pode ser convenientemente escrita em termos das correntes elétricas que circulam nos enrolamentos de armadura e de excitação de um motor síncrono bifásico.

É sabido da literatura atinente ao processo de conversão eletromecânica de energia que o conjugado elétrico é expresso por:

$$T_e = \frac{\partial W'_{f(ia,ib,if,\theta)}}{\partial \theta}$$
(2.35)

Sendo a coenergia para a máquina em estudo dada por:

$$W'_{f(ia,ib,if,\theta)} = \frac{1}{2}L_{aa}i_a^2 + \frac{1}{2}L_{bb}i_b^2 + \frac{1}{2}L_{ff}i_f^2 + M_{af}i_ai_f + M_{bf}i_bi_f + M_{ab}i_ai_b$$
(2.36)

Como as fases "a" e "b" estão dispostas 90° elétricos uma da outra, a indutância mútua entre elas será igual a zero. Assim, a Equação 2.36 pode ser escrita como:

$$W'_{f} = \frac{1}{2}L_{aa}i_{a}^{2} + \frac{1}{2}L_{bb}i_{b}^{2} + \frac{1}{2}L_{ff}i_{f}^{2} + M_{af}i_{a}i_{f} + M_{bf}i_{b}i_{f}$$
(2.37)

Para o motor síncrono em tela, as indutâncias próprias, L_{aa} , L_{bb} e L_{ff} , são consideradas constantes, sendo as indutâncias mútuas dadas por: $M_{af} = M \cdot \cos \theta$ e $M_{bf} = M \cdot \sin \theta$.

Assim, substituindo-se a Equação 2.37 na Equação 2.35 e resolvendo-a, tem-se:

$$Te = -Mi_a i_f \sin \theta + Mi_b i_f \cos \theta \tag{2.38}$$

Como $i_a = I_m \cos \omega t$, $i_b = I_m \sin \omega t$ e $i_f = I_f$, então:

$$Te = -M. I_m I_f \cos(\omega t) \sin \theta + MI_f. I_m \sin(\omega t) \cos \theta$$
$$Te = MI_m I_f [-\cos(\omega t) \sin \theta + \sin(\omega t) \cos \theta]$$

Usando a identidade trigonométrica sin(a - b) = sin a cos b - cos a sin b

$$Te = M. I_m. I_f[\sin(\omega t - \theta)]$$

Mas, como $\theta = \omega t - \delta$

$$Te = M. I_m. I_f[\sin(\delta)]$$
(2.39)

Como M, I_m e I_f são constantes, o conjugado terá um comportamento de uma senoide com amplitude máxima de MI_mI_f . Para um ângulo de carga positivo a máquina funcionará como gerador, caso contrário, seu comportamento será de motor, cuja curva característica está apresentada na Figura 2.2. Como assumido no Subtítulo 2.3, o conjugado mecânico é inicialmente igual a zero. Portanto, o conjugado elétrico em regime permanente, onde a frequência angular mecânica é constante e igual à síncrona, deve ser também igual a zero.

No entanto, para que o conjugado da Equação 2.39 seja nulo, sabendo-se que M, I_m e I_f são constantes e diferentes de zero, o ângulo de carga δ deve ser igual a zero.

3 MODELAGEM COMPUTACIONAL

A análise de uma máquina síncrona mesmo quando funcionando em regime permanente é algo complexo e que comporta um esforço gigantesco na obtenção de seu modelo de representação se não forem adotadas algumas simplificações, conforme discutido no Tópico 2.3 do Capítulo 2 do presente trabalho, a fim de reduzir as dificuldades de modelagem e de simulação numérica do seu comportamento.

Neste capítulo desenvolvem-se as equações gerais para o motor síncrono em estudo, colocando-as na forma conveniente para o tratamento numérico que se segue, que consiste na escolha do método de integração numérica adequado e na elaboração do algoritmo correspondente.

3.1 MODELO MATEMÁTICO

As equações gerais descritivas dos circuitos elétricos dos enrolamentos de armadura e de excitação do motor síncrono bifásico em estudo, considerando-se as hipóteses simplificadoras assumidas neste trabalho, expressas nas equações 2.31. 2.32 e 2.33, são reescritas e renumeradas a seguir:

$$v_a = R_a i_a + L \frac{di_a}{d_t} - \omega M \sin \theta \, i_f + M \cos \theta \frac{di_f}{d_t}$$
(3.1)

$$v_b = R_b i_b + L \frac{di_b}{d_t} + \omega M \cos \theta \, i_f + M \sin \theta \frac{di_f}{d_t}$$
(3.2)

$$v_f = R_f i_f + L_f \frac{di_f}{d_t} - \omega M \sin \theta \, i_a + M \cos \theta \frac{di_a}{d_t} + \omega M \cos \theta \, i_b + M \sin \theta \frac{di_b}{d_t}$$
(3.3)

Em que,

$$\theta = \omega t - \delta \tag{3.4}$$

A abordagem numérica do problema em tela requer que as equações diferenciais que o descrevem sejam colocadas numa forma adequada para os necessários procedimentos de integração, que será realizada usando-se o método numérico de Runge-Kutta, tratado no tópico 3.3 deste capítulo.

O referido método exige que, por exemplo, as variáveis y e z, a serem integradas sejam postas na seguinte forma diferencial: $dy/dt = f(x, y, z) e \frac{dz}{dt} = g(x, y, z)$.

Em consequência, as equações 3.1. 3.2 e 3.3 devem ser expressas em termo das derivadas das correntes de armadura e de excitação em relação ao tempo, como desenvolvido a seguir.

$$\begin{bmatrix} v_{a} \\ v_{b} \\ v_{f} \end{bmatrix} = \begin{bmatrix} R_{a} & 0 & -\omega M \sin \theta \\ 0 & R_{a} & \omega M \cos \theta \\ -\omega M \sin \theta & \omega M \cos \theta & R_{f} \end{bmatrix} \cdot \begin{bmatrix} i_{a} \\ i_{b} \\ i_{f} \end{bmatrix} + \begin{bmatrix} L & 0 & M \cos \theta \\ 0 & L & M \sin \theta \\ M \cos \theta & M \sin \theta & L_{f} \end{bmatrix} \cdot \begin{bmatrix} \frac{di_{a}}{d_{t}} \\ \frac{di_{b}}{d_{t}} \\ \frac{di_{f}}{d_{t}} \end{bmatrix}$$
(3.5)

A equação 3.5 pode ser escrita na forma matricial como:

$$[V] = [A]. [I] + [B]. \frac{d}{dt} [I]$$
(3.6)

Em que,

$$\begin{bmatrix} V \end{bmatrix} = \begin{bmatrix} v_a \\ v_b \\ v_f \end{bmatrix}$$
$$\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} R_a & 0 & -\omega M \sin \theta \\ 0 & R_a & \omega M \cos \theta \\ -\omega M \sin \theta & \omega M \cos \theta & R_f \end{bmatrix}$$
$$\begin{bmatrix} I \end{bmatrix} = \begin{bmatrix} i_a \\ i_b \\ i_f \end{bmatrix}$$

$$[B] = \begin{bmatrix} L & 0 & M\cos\theta \\ 0 & L & M\sin\theta \\ M\cos\theta & M\sin\theta & L_f \end{bmatrix}$$

$$\frac{d}{dt}[I] = \begin{bmatrix} \frac{di_a}{d_t} \\ \frac{di_b}{d_t} \\ \frac{di_f}{d_t} \end{bmatrix}$$

A escrita das equações 3.1, 3.2 e 3.3 em função de $\frac{d}{dt}[I]$, requer inicialmente o cálculo da matriz inversa de [*B*].

Sabe-se que o determinante de [B] é dado por:

$$Det B = L(LL_f - M^2 \sin \theta^2) + M \cos \theta (-LM \cos \theta)$$
$$Det B = L(LL_f - M^2 \sin \theta^2 - M^2 \cos \theta^2)$$

$$Det B = L(LL_f - M^2)$$

É cediço da teoria de circuitos magnéticos que o coeficiente de acoplamento, k, é dado por:

$$k^2 = \frac{M^2}{LL_f}$$

Assim, o determinante de [B] pode ser escrito como:

$$Det B = L^2 L_f (1 - k^2)$$

Sabe-se da álgebra linear que os cofatores da matriz B são dados por:

$$B_{11} = (LL_f - M^2 \sin \theta^2)$$
$$B_{12} = M^2 \sin \theta \cos \theta$$
$$B_{13} = -LM \cos \theta$$

$$B_{21} = M^{2} \sin \theta \cos \theta$$
$$B_{22} = (LL_{f} - M^{2} \cos \theta^{2})$$
$$B_{23} = -LM \sin \theta$$
$$B_{31} = -LM \cos \theta$$
$$B_{23} = -LM \sin \theta$$
$$B_{23} = L^{2}$$

$$[B^{-1}] = \begin{bmatrix} LL_f - M^2 \sin \theta^2 & M^2 \sin \theta \cos \theta & -LM \cos \theta \\ M^2 \sin \theta \cos \theta & LL_f - M^2 \cos \theta^2 & -LM \sin \theta \\ -LM \cos \theta & -LM \sin \theta & L^2 \end{bmatrix} \cdot \frac{1}{Det B}$$

Assim, podem-se escrever as matrizes e vetores expressos na Equação 3.5 como:

$$\frac{d}{dt}[I] = [B]^{-1}.([V] - [A].[I])$$
(3.7)

$$\frac{d}{dt} \begin{bmatrix} I_a \\ I_b \\ I_f \end{bmatrix} = \begin{bmatrix} LL_f - M^2 \sin \theta^2 & M^2 \sin \theta \cos \theta & -LM \cos \theta \\ M^2 \sin \theta \cos \theta & LL_f - M^2 \cos \theta^2 & -LM \sin \theta \\ -LM \cos \theta & -LM \sin \theta & L^2 \\ -LM \cos \theta & -LM \sin \theta & I_f \\ R_a I_a - \omega M \sin \theta I_f \\ R_b I_b + \omega M \cos \theta I_f \\ R_f I_f - \omega M \sin \theta I_a + \omega M \cos \theta I_b \end{bmatrix} \cdot \frac{1}{Det B}$$
(3.8)

$$\begin{bmatrix} \frac{dI_a}{dt} \\ \frac{dI_b}{dt} \\ \frac{dI_f}{dt} \end{bmatrix} = \frac{1}{Det B} \begin{bmatrix} LL_f - M^2 \sin \theta^2 & M^2 \sin \theta \cos \theta & -LM \cos \theta \\ M^2 \sin \theta \cos \theta & LL_f - M^2 \cos \theta^2 & -LM \sin \theta \\ -LM \cos \theta & -LM \sin \theta & L^2 \end{bmatrix} \cdot \begin{bmatrix} D_1 \\ D_2 \\ D_3 \end{bmatrix}$$

Em que,

$$D_1 = v_a - R_a I_a + \omega M \sin \theta I_f$$

$$D_2 = v_b - R_b I_b - \omega M \cos \theta I_f$$
$$D_3 = v_f - R_f I_f + \omega M \sin \theta I_a - \omega M \cos \theta I_b$$

Ademais, podem-se escrever as seguintes equações eletromecânicas para o motor síncrono em tela:

$$\frac{d\omega}{dt} = \frac{(Te - T)}{J} \tag{3.9}$$

$$\frac{d\theta}{dt} = \omega \tag{3.10}$$

Em que J é a constante de inércia do motor síncrono.

É de ressaltar que as equações 3.8, 3.9 e 3.10 estão na forma adequada para a integração numérica, exigida pelo método de Runge-Kutta.

3.2 MÉTODO DE INTEGRAÇÃO NUMÉRICA

.

Muitos sistemas físicos complexos, a exemplo das máquinas elétricas rotativas, são descritos por equações diferenciais não lineares, fato este que geralmente impossibilita a solução destas equações analiticamente.

As equações diferenciais discutidas no item anterior podem ser resolvidas por meio de vários métodos de integração numérica, entre os quais, citam-se: os métodos de Euler, Milne, Picard e Runge-Kutta. A acurácia de uma solução por integração numérica depende tanto do método escolhido como do tamanho do intervalo ou passo de integração usado.

Neste trabalho adotou-se o método de Runge-Kutta de quarta ordem por apresentar boa acurácia, baixo esforço computacional e um bom desempenho, além de não requerer aproximações repetidas como ocorre com outros métodos de integração numérica. Como está tratado no Capítulo 9, do livro: *Computer methods in power systems analysis* (STAGG e EL-ABIAD, 1988), o método consiste basicamente em selecionar valores para a variável independente em pontos determinados e calcular os correspondentes valores para as variáveis dependentes, a partir de um conjunto de expressões algébricas ou fórmulas, obtidas a partir da série de Taylor, conforme apresentadas adiante.

As referidas fórmulas empregadas no método de Runge-Kutta são deduzidas utilizando-se uma aproximação para substituir a expansão em série de Taylor truncada a partir de um dado grau do polinômio de Taylor.

Cada método de Runge-Kutta consiste em comparar um polinômio de Taylor apropriado para eliminar o cálculo das derivadas. Fazendo-se várias avaliações da função *f* a cada passo. Estes métodos podem ser construídos para qualquer ordem α .

Pelo polinômio de Taylor com resto, se uma função y(x) tiver k + 1derivadas contínuas em um intervalo aberto contendo ae x, poderemos escrever:

$$y(x) = y(a) + y'(a)\frac{x-a}{1!} + \dots + y^{(k)}(a)\frac{(x-a)^k}{k!} + y^{(k+1)}(c)\frac{(x-a)^{(k+1)}}{(k+1)!}$$

Em que c é algum numero entre a e x.

Se substituirmos *a* por x_n e *x* por $x_{n+1} = x_n + h$, a fórmula acima se torna

$$y(x_{n+1}) = y(x_n + h) = y(x_n) + hy'(x_n) + \frac{h^2}{2!}y''(x_n) + \dots + \frac{h^{k+1}}{(k+1)!}y^{(k+1)}(c)$$
(3.11)

Em que *c* é agora algum número entre x_n e x_{n+1} . Fazendo k = 4 na equação 3.10:

$$y(x_{n+1}) = y(x_n + h) = y(x_n) + hy'(x_n) + \frac{h^2}{2!}y''(x_n) + \frac{h^3}{3!}y'''(x_n) + \frac{h^4}{4!}y^{(4)}(x_n) + \frac{h^5}{5!}y^{(5)}(c)$$

O procedimento de Runge-Kutta de quarta ordem consiste em encontrar constantes apropriadas de tal forma que a fórmula:

$$y_{n+1} = y_n + ak_1 + bk_2 + ck_3 + dk_4$$

Considerando:

$$y(x_{n+1}) = y_n + h\varphi(x_n, y_n; h)$$

Em que

$$k_{1} = hf(x_{n}, y_{n})$$

$$k_{2} = hf(x_{n} + a_{1}h, y_{n} + \beta_{1}k_{1})4$$

$$k_{3} = hf(x_{n} + a_{2}h, y_{n} + \beta_{2}k_{1} + \beta_{3}k_{2})$$

$$k_{4} = hf(x_{n} + a_{3}h, y_{n} + \beta_{4}k_{1} + \beta_{5}k_{2} + \beta_{6}k_{3})$$

Coincide com um polinômio de Taylor de grau quatro:

$$p_4(x) = y(a) + y'(a)\frac{x-a}{1!} + \frac{y''(a)}{2!}(x-a)^2 + \frac{y'''(a)}{3!}(x-a)^3 + \frac{y^{(4)}(a)}{4!}(x-a)^4$$

Isso resulta em 11 equações com 13 incógnitas, ou seja, possui infinitas soluções. O mais utilizado é o método descrito abaixo:

$$y_{n+1} = y_n + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

$$k_1 = hf(x_n, y_n)$$

$$k_2 = hf(x_n + \frac{1}{2}h, y_n + \frac{1}{2}k_1)$$

$$k_3 = hf(x_n + \frac{1}{2}h, y_n + \frac{1}{2}k_2)$$

$$k_4 = hf(x_n + h, y_n + \frac{1}{2}k_3)$$

É aconselhável observar com cuidado as fórmulas acima. Observe que k_2 depende de k_1 , k_3 depende de k_2 e k_4 depende de k_3 . Além disso, k_2 e k_3 envolvem aproximações às inclinações no ponto médio do intervalo entre $x_n e x_{n+1}$.

Na solução de um conjunto de equações diferenciais não lineares é buscada uma relação funcional entre as variáveis dependentes e a variável independente hábil a satis-fazer a estas equações.

3.3 ALGORITMO E LINGUAGEM DE PROGRAMAÇÃO UTILIZADA

A maioria dos algoritmos é desenvolvida objetivando a implementação, por intermédio de um programa de computador executável, de uma série de instruções que descrevem as tarefas a serem realizadas para a solução de uma determinada questão. Assim, nem sempre um algoritmo representa um programa de computador executável, pois o algoritimo pode ser realizado, por exemplo, por um ser humano.

No entanto, devido ao expressivo número de iterações necessárias ao estudo do caso em debate, a implementação do algoritmo para integração numérica das equações diferenciais do motor síncrono, usando o método de Runge-Kutta, demandou a utilização de um programa computacional.

Este programa foi desenvolvido na linguagem FORTRAN (palavra que teve origem na expressão da empresa IBM, que a concebeu: "FORmula TRANslation"), que após inúmeras versões ao longo de décadas, voltadas para o uso em computadores com arquiteturas cada vez mais avançadas, apresentando-se atualmente na plataforma WIN-DOWS, como é o caso da versão utilizada no presente estudo.

É de destacar que a linguagem FORTRAN permite a criação de programas que, segundo a literatura sobre o tema, requerem grande velocidade de execução. Daí reside seu significativo uso em aplicações em programas computacionais que impregam de forma intensiva cálculos numéricos repetitivos, como a presente pesquisa.

É de ressaltar que o programa em linguagem FORTRAN encontra-se anexo do presente trabalho.

O pragrama foi desenvolvido de forma estruturada, permitindo a inclusão de tantas equações quantas forem necessárias para a resolução de problemas mais gerais.

É de registrar que o programa em relevo foi desenvolvido com base em um algoritmo geral implementado pelo orientador deste trabalho, a partir do qual foram realizadas as devidas adaptações ao problema em tela.

4 EXAME DOS DADOS OBTIDOS NA SIMULAÇÃO DIGITAL

O objetivo desse capítulo é apresentar e avaliar, com base na teoria apresentada nos capítulos 2 e 3, os dados obtidos mediante a simulação digital do funcionamento, nos regimes permanente e transitório, de um motor síncrono bifásico.

Neste sentido, são apresentados, na forma numérica e gráfica, os dados atinentes às variáveis correntes de armadura e de excitação, conjugado elétrico, velocidade angular e ângulo de carga do motor síncrono em estudo.

Tendo em vista o grande número de valores obtidos para a realização da simulação digital do caso estudado, achou-se conveniente apresentá-los no anexo que se encontra ao fim deste trabalho.

As representações gráficas dos comportamentos da corrente de armadura na fase "a", corrente de armadura na fase "b", corrente de excitação, velocidade angular, ângulo de carga e conjugado elétrico, todos em função do tempo, serão mostrados logo adiante.

Inicialmente o sistema descrito neste trabalho se apresenta da seguinte maneira: no período de tempo inicial ($\omega t = 0$), a máquina está ligada em vazio sob uma excitação constante (If = 2.5 A) e uma velocidade síncrona de 400 radianos/segundo.

Nesse sentido, observa-se na simulação digital que o ângulo de carga é nulo, pois o um conjugado mecânico requerido é nulo.

Nas figuras 4.6 e 4.7, é possível observar o comportamento das correntes de armadura nas fases "a" e "b", respectivamente.

Nota-se que enquanto a corrente Ia se encontra no seu valor máximo (Ia = 10A), a corrente Ib possui valor nulo. Pois, como descrito nos itens 2.4 e 2.5, os enrolamentos de armadura encontram-se defasados 90° elétricos entre si, gerando correntes senoidais, de frequências constantes, uma vez que a máquina funciona, neste momento, em regime permanente.

Quando se aplica no eixo do motor síncrono uma carga mecânica não nula, em $\omega t = 12.96$ radianos, começa o denominado período transitório, na qual se inicia também uma variação nas quantidades físicas, até que seja alcançado um novo ponto de estabilidade, instalando-se um novo regime permanente.

É obvio que, se a carga mecânica fosse muito intensa, o motor poderia perder a sua estabilidade e parar.

Figura 4.4 - Comportamento da corrente de armadura na fase a durante o período transitório.

Figura 4.5 - Comportamento da corrente de armadura na fase b durante o período transitório.

Fonte: Elaboração própria
A corrente de excitação, por sua vez, é constante antes da inserção de uma carga mecânica no eixo do motor síncrono, conforme se verifica na Figura 4.7.

Pois, como é sabido, em regime permanente as componentes fundamentais das correntes de armadura do motor em estudo criam um campo eletromagnético girante que roda na mesma velocidade do rotor, ou seja, em sincronismo, portanto, não interfere no enrolamento de excitação.

Assim, a corrente neste enrolamento é constante e igual a tensão dividida pela resistência do enrolamento de campo, como demonstrado no Capítulo 2.

Após a inclusão de uma carga mecânica no eixo do motor síncrono, este sai momentaneamente do sincronismo, tendo como uma das consequências a indução de tensão no enrolamento de excitação, provocada pela onda de fluxo girante produzida pelas correntes de armadura.

Assim, durante a presença deste período transitório, a corrente de excitação torna-se variável, aparentando uma forma similar àquela de uma onda oscilante *subamortecida*, convergindo para o seu valor inicial, igual a 2,5 A, ao alcançar um novo regime permanente. Pois, como é sabido, o estado permanente é estabelecido quando não mais existir variações de fluxo no enrolamento de campo causado pela onda de fluxo resultante fundamental da armadura.

É oportuno destacar que, a resistência e a indutância do enrolamento de excitação influenciam na referida oscilação.

Figura 4.6 - Comportamento da corrente de excitação da máquina durante o período transitório.

Por sua vez, a velocidade de rotação, apresenta uma oscilação *subamortecida* em torno do valor da velocidade síncrona do motor em exame, 400 radianos/segundo, retomando à velocidade inicial que possuía na ausência da carga mecânica, se não perder, como foi o caso, a sua estabilidade, como mostra a Figura 4.8.

Figura 7 - Comportamento da velocidade angular da máquina durante o período transitório.

Fonte: Elaboração própria.

A Figura 4.9 descreve o comportamento do ângulo de carga da máquina durante a simulação. O ângulo de carga corresponde ao ângulo entre o fluxo resultante provocado pelas correntes de armadura e aquele produzido pelo campo.

Em vazio, os campos encontram-se alinhados, por isso o ângulo é nulo, e na presença da aplicação da carga mecânica ocorre uma oscilação neste ângulo até que o motor encontre um novo ponto de equilíbrio entre o conjugado mecânico e o elétrico.

O valor deste ângulo de carga no novo regime permanente é de 15.5°, razão pela qual é para este valor que o ângulo de carga converge.

Figura 4.8 - Comportamento do ângulo de carga durante o período transitório.

Fonte: Elaboração própria.

Por fim, o conjugado elétrico mostrado na Figura 4.10, possui inicialmente valor nulo, em virtude da máquina está operando em vazio e em sincronismo, não sendo consideradas as perdas mecânicas do motor.

Diferentemente, após se insere uma carga mecânica no eixo do motor, dar-se início ao mencionado período transitório, surgindo um conjugado elétrico.

Este conjugado elétrico oscila em torno do valor do novo conjugado de estado permanente que os dois conjugados, elétrico e mecânico, se igualam.

No caso em tela, quando este novo regime permanente ocorre, o motor tem percorrido um deslocamento angular igual a, aproximadamente, 296.34 radianos, conforme se depreende da Figura 4.10.

Figura 4.9 - Comportamento do conjugado elétrico durante o período transitório

Fonte: Elaboração própria.

5 CONSIDERAÇÕES FINAIS E CONCLUSÕES

O presente trabalho teve como escopo principal examinar o comportamento das quantidades físicas de um motor síncrono bifásico de polos lisos quando submetido a uma carga mecânica variável em seu rotor.

Para alcançar este objetivo, foi elaborado um algoritmo para resolver as equações diferenciais não lineares do motor em apreço e foi realizada a sua consequente codificação em linguagem computacional, a fim de proceder à simulação digital requerida.

A partir dos resultados da simulação digital, expressos nas formas gráfica e numérica, constatou-se que os valores obtidos para as correntes de armadura e de campo, assim como para a velocidade mecânica, para o ângulo de carga e para o conjugado convergiram consistentemente para aqueles valores sob as condições de estado permanente.

Além disso, foi possível observar que as quantidades físicas do motor em estudo, durante o estado transitório, apresentaram um comportamento bastante aproximado daquele descrito na literatura sobre a matéria, a exemplo das oscilações experimentadas na corrente de excitação, na velocidade mecânica, no ângulo de carga e no conjugado elétrico, que se extinguiram quando se alcançou o regime permanente.

A escolha de um motor síncrono bifásico, e não, trifásico, teve por objetivo reduzir os esforços computacionais e o número de equações diferenciais descritivas do motor síncrono em apreço, posto que a utilização ou não dessas considerações não afetaria a essência dos métodos e do programa computacional utilizados.

Além disso, a fim de simplificar o modelo em estudo, não foram consideradas a histerese, a saturação e as correntes parasitas. Na escolha dos parâmetros do motor foram utilizados valores que proporcionassem uma redução no período de tempo da simulação digital.

Ressalte-se que essas hipóteses simplificadoras não afetam a essência do método de integração nem a do programa computacional utilizado.

Como contribuição para trabalhos futuros, sugere-se seja aprofundada a presente pesquisa com a inclusão de enrolamentos amortecedores, do efeito da saturação, bem como a análise de máquinas de polos salientes.

REFERÊNCIAS

ANDERSON, Paul M; FOUAD, Abdel-Aziz. **Power system control and stability.** Iowa: The Iowa State University Press. 464 p., 2000.

ABNT. NBR 14724 - Informação e documentação — Trabalhos acadêmicos — Apresentação. Associação Brasileira de Normas Técnicas (p. 11). ABNT, 2011.

ANTUNES, Helio M. André. **Modelagem matemática do gerador síncrono de pólos salientes.** Universidade Federal de Viçosa. 2007. Disponível em: https://www3.dti.ufv.br/download. Acesso em 02 de novembro de 2015.

DESOER, Charles A; KUH, Ernest S. Teoria básica de circuitos. Rio de Janeiro: Guanabara Dois. 823 p., 2000.

FITZGERALD, A. E., KINGSLEY Jr, C. e UMANS, S. D. Máquinas Elétricas. 6. ed. Porto Alegre: Bookman. 648 p., 2010.

JONES, Charles V. The unified theory of electrical machines. London: Butterworth & Co. Ltd.. 542 p., 1967.

MESSERLE, K. Hugo. Dynamic circuit theory. London: Pergamon Press. 647 p., 1965.

PEREIRA, José Matias. Manual de metodologia da pesquisa científica. São Paulo: Atlas, 2007.

RODRIGUES, Tiago Granato. Análise de curto-circuito em uma máquina síncrona de polos salientes pelo método dos elementos finitos. Universidade Federal do Rio de Janeiro. 2013. Disponível em: < www.monografias.poli.ufrj.br/monografias>. Acesso em 13 de novembro de 2015.

SLEMON, G. R.. Equipamentos Magnetelétricos, São Paulo: Livros Técnicos e Científicos. 240 p.

STAGG, Glenn W.; EL-ABIAD, Ahmed H. Computer methods in power system analysis. Tokyo: McGraw-Hill KogakushaLtd. 410 p., 1968.

ANEXO A – DADOS NA FORMA NUMÉRICA (SI-MULAÇÃO DIGITAL)

 ωt – Deslocamento angular (radianos)

 I_a – Corrente de armadura na fase a.(A)

 I_b – Corrente de armadura na fase b.(A)

 I_f – Corrente de excitação. (A)

n - Velocidade angular mecânica do eixo do rotor (radianos/segundo).

 δ – Ângulo de carga da máquina.

T – Conjugado elétrico do motor síncrono (N.m).

ωt	Ia	I _b	I_f	n	δ	Т	
0.00	10.0	0.0	2.5	400.0	0.0	0.0	
0.39	9.2	3.8	2.5	400.0	0.0	0.0	
0.79	7.1	7.1	2.5	400.0	0.0	0.0	
1.18	3.8	9.2	2.5	400.0	0.0	0.0	
1.57	0.0	10.0	2.5	400.0	0.0	0.0	
1.96	-3.8	9.2	2.5	400.0	0.0	0.0	
2.36	-7.1	7.1	2.5	400.0	0.0	0.0	
2.75	-9.2	3.8	2.5	400.0	0.0	0.0	
3.14	-10.0	0.0	2.5	400.0	0.0	0.0	
3.53	-9.2	-3.8	2.5	400.0	0.0	0.0	
3.93	-7.1	-7.1	2.5	400.0	0.0	0.0	
4.32	-3.8	-9.2	2.5	400.0	0.0	0.0	
4.71	0.0	-10.0	2.5	400.0	0.0	0.0	
5.10	3.8	-9.2	2.5	400.0	0.0	0.0	
5.50	7.1	-7.1	2.5	400.0	0.0	0.0	
5.89	9.2	-3.8	2.5	400.0	0.0	0.0	
6.28	10.0	0.0	2.5	400.0	0.0	0.0	
6.68	9.2	3.8	2.5	400.0	0.0	0.0	
7.07	7.1	7.1	2.5	400.0	0.0	0.0	
7.46	3.8	9.2	2.5	400.0	0.0	0.0	
7.85	0.0	10.0	2.5	400.0	0.0	0.0	
8.25	-3.8	9.2	2.5	400.0	0.0	0.0	
8.64	-7.1	7.1	2.5	400.0	0.0	0.0	
9.03	-9.2	3.8	2.5	400.0	0.0	0.0	
9.42	-10.0	0.0	2.5	400.0	0.0	0.0	
9.82	-9.2	-3.8	2.5	400.0	0.0	0.0	
10.21	-7.1	-7.1	2.5	400.0	0.0	0.0	
10.60	-3.8	-9.2	2.5	400.0	0.0	0.0	
11.00	0.0	-10.0	2.5	400.0	0.0	0.0	
11.39	3.8	-9.2	2.5	400.0	0.0	0.0	

11.78	7.1	-7.1	2.5	400.0	0.0	0.0
12.17	9.2	-3.8	2.5	400.0	0.0	0.0
12.57	10.0	0.0	2.5	399.1	0.0	0.0
12.07	91	3.9	2.5	348 5	15	04
12.20	6.2	7.0	2.5	308.4	5.6	17
12.55	0.2	7.0	2.0	204.0	11.2	1.7
13.74	1.5	1.5	5.0 5.2	294.0	11.5	4.5
14.14	-3.0	4.9	5.5	329.9	10.0	9.0
14.53	-4.9	2.3	5.8	414.2	18.3	10.9
14.92	-5.9	2.5	4.7	485.3	15.2	7.4
15.31	-8.4	2.3	3.2	500.5	9.8	3.3
15.71	-10.0	-0.4	2.5	475.5	4.7	1.2
16.10	-9.5	-4.0	2.3	432.6	1.6	0.4
16.49	-7.2	-7.3	2.4	383.7	1.1	0.3
16.89	-3.6	-9.4	2.5	337.9	3.4	0.9
17.28	0.8	-9.0	3.0	305.9	7.8	2.5
17.67	4.4	-5.6	4.2	305.7	13.4	5.8
18.06	5.6	-1.0	5.4	357.1	17.5	9.8
18.46	5.7	1.2	5.4	438.7	17.6	9.7
18.85	7.2	1.9	4.0	488.8	13.7	5.7
19.24	8.5	4.4	2.8	487.8	8.6	2.5
19.63	7.3	7.7	2.2	456.8	4.4	1.0
20.03	4.0	10.1	2.1	413.7	24	0.5
20.03	-0.2	10.1	2.1	368.3	2.1	0.5
20.42	-0.2	0.7	2.1	378.0	5.0	1.5
20.01	-4.5	9.2 5.2	2.4	208.0	10.6	2.6
21.20	-0.9	0.1	5.5	205.0	10.0	5.0
21.00	-0.0	0.1	4.0 5.4	323.8 200.6	13.3	10.0
21.99	-4.7	-3.5	J.4	390.0	16.0	10.0
22.38	-4.4	-4.7	4.8	461.1	16.4	8.1
22.78	-4.9	-6.9	3.4	488.6	12.0	4.2
23.17	-3.3	-9.6	2.5	474.1	7.3	1.9
23.56	0.3	-10.8	2.1	438.6	4.0	0.9
23.95	4.4	-10.0	2.0	395.6	3.1	0.7
24.35	7.8	-7.3	2.2	353.5	4.5	1.0
24.74	9.3	-3.1	2.6	321.3	8.1	2.2
25.13	7.9	1.6	3.7	313.9	12.9	4.9
25.52	4.2	4.8	4.9	350.0	17.0	8.5
25.92	1.6	6.0	5.1	419.7	17.9	9.4
26.31	0.8	7.4	4.1	472.6	15.1	6.3
26.70	-1.0	9.5	2.8	480.4	10.6	3.1
27.09	-4.5	9.8	2.1	456.4	6.6	1.5
27.49	-8.1	7.7	1.9	418.7	4.5	0.9
27.88	-10.3	3.9	2.0	377.8	4.6	0.9
28.27	-10.4	-0.5	2.3	341.5	6.9	1.7
28.67	-7.8	-4.5	3.1	321.1	10.9	3.5
29.06	-33	-6.4	4.2	333.5	15.2	6.6
29.00	0.7	-6.3	5.0	386.0	17.6	9.0
20.45	2.6	-0.5	J.0 4.5	1173	16.6	י.ט ד ד
29.04	2.0	-0.5	4.5	447.5	12.0	1.1
20.62	4.0 7 0	-1.5	2.4	475.1	12.9	4.5
30.03	/.8	-0./	2.4	405.0	8.8	2.2
31.02	10.4	-3.9	2.0	434.1	6.0	1.2
51.41	11.3	0.3	1.9	395.7	5.1	1.0
31.81	9.9	4.6	2.0	358.3	6.5	1.4
32.20	6.4	7.6	2.6	330.9	9.6	2.6
32.59	1.5	8.1	3.6	327.7	13.8	5.1
32.99	-2.7	6.2	4.6	362.8	17.0	8.1
33.38	-4.9	4.5	4.7	422.5	17.5	8.4
33.77	-6.8	4.1	3.8	464.8	14.9	5.8
34.16	-9.3	2.8	2.7	468.9	10.9	3.1

34.56	-10.9	-0.5	2.1	446.0	7.6	1.6
34.95	-10.2	-4.6	1.9	411.3	6.0	1.2
35.34	-7.5	-8.1	2.0	374.7	6.4	1.3
35.73	-3.3	-9.8	2.4	344.1	8.7	2.2
36.13	1.3	-8.8	3.2	331.2	12.3	4.1
36.52	4.8	-5.6	4.2	350.0	15.8	6.8
36.91	6.3	-2.4	4.6	399.5	17.4	8.3
37.30	7.5	-0.7	4.0	447.7	15.9	6.7
37.70	9.2	1.3	3.0	464.2	12.6	3.9
38.09	9.6	4.7	2.2	450.3	9.3	2.1
38.48	7.7	8.3	1.9	420.4	7.2	1.4
38.88	3.9	10.6	1.9	385.8	7.1	1.4
39.27	-0.6	10.7	2.2	354.8	8.8	2.0
39.66	-4.7	8.2	2.9	337.6	11.9	3.6
40.05	-6.8	4.0	3.8	347.6	15.3	6.0
40.45	-7.0	0.1	4.4	388.4	17.2	7.9
40.84	-7.1	-2.3	4.1	436.4	16.4	7.0
41.23	-7.5	-4.7	3.2	459.8	13.6	4.5
41.62	-67	-7.8	2.4	452.6	10.3	2.6
42.02	-3.7	-10.4	2.0	427.0	8.0	17
42.02	0.5	-11.2	1.0	394.4	74	1.7
42.80	0.5 4 7	-9.7	2.1	363.5	86	1.9
43 19	7.6	-6.1	2.1	343.3	11.3	3.2
43 59	8.2	-1.5	3.5	345.9	14.6	53
13.08	6.0	$^{-1.5}$	1.2	377.0	16.8	73
43.90	57	2. 4 4.0	4.1	123.4	16.8	7.5
14.37 14.77	J.7 1 Q	+.) 7 2	33	451.8	14.5	5.0
45 16	т .9 3.0	0.7	2.5	451.0	11.5	3.0
45.10	0.6	9.7 11.0	2.5	420.0	0.2	1.0
45.55	-0.0	10.2	2.0	400.1	9.2 8 3	1.5
46.34	-4.0	7.2	2.1	370.7	0.5	2.0
46.73	-0.1	2.0	2.1	350.6	9.1 11 /	2.0
40.75	-9.5	2.9	2.0	350.6	11.4	5.0
47.12	-0.4	-1.7	3.4 4.1	277.0	14.5	5.0
47.51	-5.0	-4.9 67	4.1	377.2 418.0	10.5	0.9
47.91	-5.5	-0.7	4.1	416.0	10.0	7.0
40.50	-1.0	-0.4	5.4 2.6	440.1	14.7	2.2
40.09	1.1	-9.9	2.0	446.1	0.7	5.2 2.1
49.08	4.0	-9.8	2.1	429.9	9.1 0 7	2.1
49.48	0.5 10.2	-7.5	1.9	402.2	0.7 0.4	1.0
49.07	10.5	-5.0	2.1	254.1	9.4	2.0
50.20	10.0	1.0	2.5	252.2	11.5	5.0
51.05	7.4 2.9	4.8	3.2 2.0	332.2 275.2	14.5	4.8
51.05	5.0	0.9	5.9	373.5	10.4	0.0
51.44	0.8	1.1	4.0	415.2	10./	0.8
51.85	-1./	8.5	3.4	441.5	15.1	5.5
52.23	-4.8	8.7	2.6	445.4	12.6	3.4
52.62	-8.2	/.1	2.1	429.6	10.4	2.3
53.01	-10.5	3.7	2.0	404.1	9.4	1.9
53.40	-10.8	-0.7	2.1	377.9	9.9	2.2
53.80	-8.8	-4.8	2.6	359.4	11./	3.1
54.19	-5.1	-7.3	3.2	357.7	14.2	4.7
54.58	-1.0	-7.9	3.8	3/8.1	16.1	6.3
54.98	2.2	-/.6	3.8	411.5	16.4	6.5
55.37	4.8	-1.3	3.3	436.7	15.0	5.2
33.76	/.8	-6.2	2.6	440.5	12.7	3.5
56.15	10.2	-3.4	2.2	426.0	10.7	2.4
56.55	11.1	0.7	2.0	402.3	9.9	2.1
56.94	9.7	4.8	2.1	377.9	10.5	2.3

57.33	6.3	7.8	2.5	361.2	12.3	3.2
57.72	1.9	8.8	3.2	360.9	14.5	4.8
58.12	-2.0	7.9	3.7	381.3	16.3	6.2
58.51	-4.9	6.5	3.7	412.7	16.4	6.3
58.90	-7.4	5.0	3.2	435.4	15.0	5.0
59.29	-9.6	2.8	2.6	438.1	12.8	3.5
59.69	-10.7	-0.8	2.2	424.0	11.0	2.5
60.08	-9.9	-4.8	2.0	401.6	10.3	2.2
60.47	-7.0	-8.1	2.2	379.2	10.8	2.5
60.87	-2.8	-9.6	2.6	364.5	12.5	3.4
61.26	1.6	-8.8	3.2	365.4	14.5	4.8
61.65	49	-6.7	3.6	384.5	16.0	6.0
62.04	7.1	-4 3	3.6	412.4	16.0	6.0
62.01	8.9	-2.0	3.1	431.6	14.8	4.8
62.83	10.0	1.1	2.6	432.8	12.9	3.4
63.22	9.6	49	2.0	419.1	11.0	2.6
63.61	7.0	83	2.2	398.2	10.9	2.0
64.01	33	10.1	2.1	378.1	11.5	2.5
64.40	1.2	0.8	2.2	366.6	13.2	3.6
64.40	-1.2	9.0 7.5	2.7	370.6	15.2	5.0
65 19	-4.9	1.5	3.2 2.6	200.7	16.0	5.0
05.18	-1.2	4.4	5.0 2.5	590.7 416.2	16.2	5.9
03.38 65.07	-8.4	1.5	3.3 2.0	410.2	10.0	5.7 4.5
65.97	-9.2	-1.5	3.0 2.5	431.5	14.0	4.5
66.36	-8.9	-4.9	2.5	430.1	12.8	3.3
66.76	-7.0	-8.2	2.2	415.8	11.4	2.6
67.15	-3.4	-10.3	2.1	395.8	11.1	2.5
67.54	0.9	-10.4	2.3	3/1.1	11.9	2.9
67.93	4.9	-8.5	2.7	368.5	13.4	3.8
68.33	7.4	-5.0	3.2	374.2	15.1	5.0
68.72	8.4	-1.4	3.5	393.7	16.1	5.8
69.11	8.6	1.8	3.3	416.2	15.8	5.5
69.50	8.2	4.9	2.9	428.2	14.5	4.3
69.90	6.5	8.0	2.4	425.1	12.9	3.2
70.29	3.3	10.3	2.2	410.8	11.8	2.7
70.68	-0.8	10.8	2.2	392.5	11.7	2.6
71.08	-4.9	9.1	2.4	377.4	12.6	3.1
71.47	-7.7	5.8	2.8	372.2	14.1	4.1
71.86	-8.7	1.8	3.3	381.1	15.5	5.2
72.25	-8.4	-1.8	3.4	400.7	16.0	5.6
72.65	-7.5	-4.9	3.2	419.6	15.4	5.1
73.04	-5.9	-7.7	2.8	427.1	14.0	4.0
73.43	-3.0	-9.9	2.4	421.1	12.6	3.1
73.82	0.9	-10.7	2.2	406.3	11.8	2.7
74.22	4.9	-9.5	2.2	389.1	12.0	2.8
74.61	7.9	-6.4	2.5	376.3	13.0	3.4
75.00	9.2	-2.3	2.9	374.0	14.4	4.3
75.39	8.8	1.7	3.2	384.7	15.6	5.3
75.79	7.3	5.0	3.3	403.6	16.0	5.5
76.18	5.3	7.6	3.1	419.6	15.3	4.8
76.57	2.6	9.6	2.6	424.1	14.0	3.8
76.97	-1.0	10.5	2.3	416.6	12.8	3.1
77.36	-4.9	9.6	2.2	402.1	12.3	2.8
77.75	-8.1	6.8	2.3	387.2	12.6	3.0
78.14	-9.6	2.7	2.6	378.0	13.6	3.7
78.54	-9.2	-1.5	3.0	379.5	14.9	4.6
78.93	-7.4	-4.9	3.2	392.0	15.7	5.3
79.32	-5.0	-7.4	3.2	409.0	15.7	5.2
79.71	-2.2	-9.2	2.9	420.5	14.8	4.5

80.11	1.2	-10.0	2.6	420.9	13.6	3.6
80.50	4.9	-9.3	2.3	411.3	12.6	3.0
80.89	8.2	-6.9	2.2	397.0	12.4	2.9
81.28	10.0	-3.0	2.4	383.9	12.9	3.2
81.68	9.8	1.3	2.7	377.8	14.1	3.9
82.07	7.9	5.0	3.0	382.3	15.2	4.8
82.46	5.1	7.5	3.2	396.2	15.9	5.2
82.86	2.0	9.0	3.1	411.7	15.6	5.0
83.25	-1.4	9.6	2.8	420.0	14.7	4.2
83.64	-4.9	9.0	2.5	417.8	13.6	3.5
84.03	-8.1	6.8	2.3	407.4	12.9	3.0
84.43	-10.1	3.1	2.3	394.3	12.8	3.0
84.82	-10.2	-1.1	2.5	384.0	13.4	35
85.21	-83	-4.9	2.8	381.4	14 5	4.2
85.60	-53	-7.5	3.1	388.4	15.4	49
86.00	-1.9	-8.9	3.1	401.9	15.1	51
86 39	1.5	-9.3	3.0	413.9	15.0	47
86 78	1.5	-9.5	3.0 2.7	417.9	14.2	3.0
87.17	ч.) Q 1	-0.0	2.7	412.8	13.3	3.2
87.57	10.1	-0.0	2.4	401.7	12.0	3.1
87.06	10.1	-5.1	2.5	380.8	12.9	3.1
07.90	0.4	1.0	2.5	282.4	13.2	3.2
00.33 00 75	0.0 5 7	4.9	2.0	202.4	14.0	5.7
00.7 <i>3</i> 90.1 <i>4</i>	2.0	1.1	2.9	202.0	15.0	4.4 5.0
89.14 80.52	2.0	9.0	5.1 2.1	392.9 406 1	15.7	5.0
89.55	-1.0	9.1	5.1 2.9	400.1	15./	5.0
89.92	-5.0	8.3	2.8	415.0	15.1	4.4
90.52	-7.9	0.3	2.0	410.5	14.1	5.7
90.71	-10.0	3.0	2.4	409.6	13.4	3.3
91.10	-10.5	-1.0	2.3	398.7	13.1	3.1
91.49	-9.1	-4.9	2.4	388.7	13.5	3.4
91.89	-6.0	-/.8	2.7	384.3	14.3	4.0
92.28	-2.2	-9.2	2.9	387.8	15.1	4.6
92.67	1.6	-9.1	3.0	397.8	15.5	4.9
93.07	5.0	-8.0	3.0	408.7	15.3	4.7
93.46	7.8	-5.9	2.7	414.3	14.7	4.1
93.85	9.9	-2.8	2.5	412.2	13.9	3.6
94.24	10.5	1.0	2.3	404.0	13.4	3.2
94.64	9.3	5.0	2.3	393.9	13.5	3.3
95.03	6.4	8.0	2.5	386.5	14.0	3.6
95.42	2.5	9.5	2.7	385.5	14.9	4.2
95.81	-1.5	9.3	2.9	392.0	15.5	4.7
96.21	-5.0	8.0	3.0	402.8	15.7	4.8
96.60	-7.7	5.7	2.8	411.8	15.2	4.5
96.99	-9.7	2.6	2.6	414.4	14.5	3.9
97.38	-10.3	-1.1	2.4	409.9	13.8	3.4
97.78	-9.2	-4.9	2.3	401.1	13.4	3.3
98.17	-6.5	-8.0	2.4	392.1	13.6	3.4
98.56	-2.7	-9.7	2.6	387.0	14.2	3.8
98.96	1.4	-9.6	2.8	388.4	15.0	4.4
99.35	5.0	-8.0	2.9	395.8	15.4	4.7
99.74	7.7	-5.6	2.9	405.1	15.4	4.6
100.13	9.5	-2.5	2.7	411.1	14.9	4.2
100.53	10.1	1.2	2.5	410.8	14.3	3.7
100.92	9.2	5.0	2.4	404.9	13.8	3.4
101.31	6.6	8.1	2.4	396.6	13.8	3.4
101.70	2.8	9.9	2.5	389.8	14.2	3.6
102.10	-1.3	9.8	2.7	388.0	14.8	4.1
102.49	-5.0	8.2	2.9	392.4	15.4	4.5

100 00		<i>- - -</i>	2.0	101.0	15 6	4 7
102.88	-/./	5.6	2.9	401.0	15.6	4./
103.27	-9.4	2.3	2.8	408.9	15.3	4.5
103.67	-9.9	-1.3	2.6	412.0	14.7	4.0
104.06	-9.0	-5.0	2.5	409.1	14.1	3.6
104.45	-6.6	-8.1	2.4	402.1	13.7	3.4
104.85	-2.9	-9.9	2.4	394.3	13.8	3.5
105.24	1.2	-10.0	2.6	389.3	14.3	3.8
105.63	5.0	-8.4	2.7	389.6	14.9	4.2
106.02	7.7	-5.7	2.9	395.2	15.4	4.6
106.42	9.3	-2.3	2.9	403.0	15.4	4.6
106.81	9.7	1.4	2.7	408.6	15.1	4.3
107.20	8.8	5.0	2.5	409.3	14.6	3.8
107 59	6.5	81	2.4	405.0	14.1	3 5
107.99	3.0	10.0	2.1	398.2	14.0	35
107.55	-1.2	10.0	2.7	302 /	14.0	3.5
108.50	5.0	87	2.5	300.3	14.5	4.0
100.77	-5.0	5.9	2.0	202.4	15.2	4.0
109.17	-7.0	J.0 2.2	2.0	393. 4 400.1	15.5	4.4
109.50	-9.5	2.5	2.9	400.1	15.5	4.0
109.95	-9.6	-1.4	2.8	406.8	15.3	4.4
110.34	-8.6	-5.0	2.6	409.9	14.8	4.0
110.74	-6.4	-8.0	2.5	407.9	14.3	3.7
111.13	-2.9	-10.0	2.4	402.2	14.0	3.5
111.52	1.1	-10.3	2.4	395.6	14.0	3.5
111.91	5.0	-8.8	2.5	391.1	14.4	3.8
112.31	7.9	-6.0	2.7	391.0	15.0	4.2
112.70	9.4	-2.3	2.8	395.3	15.4	4.5
113.09	9.6	1.4	2.8	401.8	15.4	4.5
113.48	8.5	5.0	2.7	406.8	15.2	4.3
113.88	6.2	8.0	2.6	407.9	14.7	3.9
114.27	2.9	9.9	2.4	404.7	14.4	3.6
114.66	-1.1	10.3	2.4	399.2	14.3	3.6
115.06	-5.0	9.0	2.5	394.2	14.5	3.7
115.45	-7.9	6.1	2.6	392.3	14.9	4.0
115.84	-9.5	2.4	2.7	394.5	15.2	4.3
116.23	-9.6	-1.4	2.8	399.8	15.4	4.5
116.63	-8.4	-5.0	2.8	405.3	15.3	4.3
117.02	-6.1	-7.9	2.6	408.0	14.9	4.0
117.41	-2.8	-9.8	2.5	406.6	14.4	3.7
117.80	1.1	-10.3	2.4	401.9	14.2	3.6
118.20	5.0	-9.0	2.4	396.4	14.2	3.6
118.59	8.0	-6.3	2.5	392.5	14.6	3.8
118.98	9.6	-2.6	2.7	392.3	15.0	4.1
119.37	9.7	1.4	2.7	395.8	15.4	4.4
119.77	8.4	5.0	2.8	401.2	15.5	4.4
120.16	6.0	7.9	2.7	405.6	15.2	4.2
120.55	2.7	9.8	2.6	406.7	14.9	3.9
120.95	-1.2	10.2	2.5	404.2	14.6	3.7
121.34	-5.0	9.1	2.4	399.7	14.4	3.6
121.73	-8.0	6.4	2.5	395.5	14.6	3.8
122.12	-9.7	2.6	2.6	393.8	14.9	4.0
122.52	-9.8	-1.4	2.7	395.5	15.2	4.2
122.91	-8.4	-5.0	2.8	399.8	15.4	4.4
123 30	-59	-79	2.7	404 2	15.2	43
123.69	-2.6	_9 7	2.6	406.4	14.9	4.0
123.09	1.0	-10.1	2.0	405.7	14.6	3.8
124.09	1.2 5.0	-10.1	2.5	401.4	14.0	3.6
124.40	9.0 8 1	-9.0	2. 4 2.5	306.9	14.4 14.4	27
125.07	0.1	-0. 1 _2 7	2.5	303 7	14. 7	3.7
120.20	1.0	-4.1	2.0	575.1	17./	5.7

125.66	9.9	1.3	2.6	393.5	15.1	4.1
126.05	8.5	5.0	2.7	396.6	15.4	4.3
126.44	5.9	7.9	2.7	401.1	15.5	4.3
126.84	2.6	9.7	2.7	404.8	15.3	4.2
127.23	-1.3	10.1	2.6	405.7	15.0	4.0
127.62	-5.0	9.0	2.5	403.7	14.7	3.8
128.01	-8.1	6.4	2.5	399.9	14.6	3.7
128.41	-9.9	2.8	2.5	396.5	14.7	3.8
128.80	-10.0	-1.3	2.6	395.0	14.9	4.0
129.19	-8.6	-5.0	2.7	396.4	15.2	4.2
129.58	-5.9	-7.9	2.7	399.8	15.3	4.3
129.98	-2.5	-9.6	2.7	403.3	15.2	4.2
130.37	1.3	-10.0	2.6	405.0	15.0	4.0
130.76	5.0	-8.9	2.5	404.0	14.7	3.8
131.16	8.1	-6.4	2.5	400.8	14.6	37
131.10	99	-2.8	2.5	397.1	14.6	37
131.94	10.1	1.2	2.5	394.6	14.9	3.9
132.33	87	5.0	2.5	394.7	15.2	4 1
132.33	6.0	7.0	2.0	307 /	15.2	1.1
132.75	2.5	9.6	2.7	401. 1	15.4	4.3
133.12	2.5	9.0	2.7	404.2	15.3	4.5
122.00	-1.5	9.9	2.0	404.2	15.0	4.2
124.20	-3.0	0.0 6.4	2.5	404.9	13.0	4.0
134.50	-0.1	0.4	2.5	403.1	14.0	3.0 2.7
125.09	-9.9	2.0	2.5	207.1	14./	5.7 2.0
135.08	-10.2	-1.2	2.5	397.1	14.8	5.8
135.47	-8.8	-5.0	2.6	395.9	15.0	4.0
135.87	-0.1	-7.9	2.7	397.1	15.2	4.2
136.26	-2.5	-9.6	2.7	399.8	15.3	4.2
136.65	1.3	-9.9	2.6	402.7	15.2	4.2
137.05	5.0	-8.8	2.6	403.9	15.0	4.0
137.44	8.0	-6.3	2.5	403.0	14.8	3.8
137.83	9.9	-2.8	2.5	400.3	14.7	3.8
138.22	10.2	1.2	2.5	397.3	14.8	3.8
138.62	8.9	5.0	2.5	395.5	15.0	3.9
139.01	6.1	8.0	2.6	395.8	15.3	4.1
139.40	2.5	9.7	2.7	398.2	15.4	4.2
139.79	-1.3	9.9	2.7	401.4	15.4	4.2
140.19	-5.0	8.7	2.6	403.8	15.3	4.1
140.58	-8.0	6.3	2.5	404.2	15.0	3.9
140.97	-9.9	2.8	2.5	402.6	14.8	3.8
141.36	-10.2	-1.2	2.5	399.8	14.8	3.8
141.76	-8.9	-5.0	2.5	397.5	14.9	3.9
142.15	-6.2	-8.0	2.6	396.6	15.0	4.0
142.54	-2.6	-9.7	2.6	397.6	15.2	4.1
142.94	1.3	-9.9	2.6	399.9	15.3	4.2
143.33	5.0	-8.7	2.6	402.1	15.2	4.1
143.72	8.0	-6.2	2.6	403.0	15.1	4.0
144.11	9.9	-2.8	2.5	402.1	14.9	3.9
144.51	10.2	1.2	2.5	399.9	14.9	3.8
144.90	9.0	5.0	2.5	397.6	14.9	3.8
145.29	6.3	8.0	2.5	396.3	15.1	4.0
145.68	2.6	9.7	2.6	396.8	15.3	4.1
146.08	-1.3	9.9	2.6	399.0	15.4	4.2
146.47	-5.0	8.7	2.6	401.6	15.4	4.2
146.86	-8.0	6.2	2.6	403.4	15.3	4.1
147.26	-9.8	2.7	2.5	403.5	15.1	3.9
147.65	-10.2	-1.2	2.5	402.0	14.9	3.8
148.04	-9.0	-5.0	2.5	399.6	14.8	3.8

	~ ~				
-6.3	-8.0	2.5	397.7	14.9	3.9
-2.7	-9.8	2.6	397.1	15.1	4.0
1.3	-10.0	2.6	398.0	15.2	4.1
5.0	-8.7	2.6	399.9	15.3	4.2
8.0	-6.1	2.6	401.7	15.2	4.1
9.8	-2.7	2.5	402.3	15.1	4.0
10.2	1.2	2.5	401.5	15.0	3.9
9.0	5.0	2.5	399.7	15.0	3.8
63	8.1	2.5	307.0	15.0	3.0
0.5	0.1	2.5	207.1	15.0	4.0
2.7	9.0 10.0	2.5	207.9	15.2	4.0
-1.5	10.0	2.0	200.6	15.5	4.1
-5.0	8.7	2.0	399.0	15.4	4.2
-8.0	6.1	2.6	401.8	15.4	4.1
-9.8	2.7	2.6	403.1	15.2	4.0
-10.1	-1.2	2.5	402.9	15.1	3.9
-8.9	-5.0	2.5	401.4	14.9	3.9
-6.3	-8.0	2.5	399.4	14.9	3.9
-2.7	-9.8	2.5	397.8	15.0	3.9
1.3	-10.0	2.6	397.4	15.1	4.0
5.0	-8.7	2.6	398.3	15.3	4.1
8.0	-6.1	2.6	400.0	15.3	4.1
9.8	-2.7	2.6	401.4	15.3	4.1
10.1	1.3	2.5	401.8	15.2	4.0
8.9	5.0	2.5	401.0	15.1	3.9
6.4	8.1	2.5	309.6	15.1	3.9
0. 1 2.8	0.1	2.5	308.2	15.1	3.0
2.0	9.9 10.1	2.5	307.8	15.1	<i>J.J</i>
-1.5	10.1	2.5	200 5	15.5	4.0
-5.0	8.8	2.0	398.5	15.4	4.1
-8.0	6.2	2.6	400.2	15.4	4.1
-9.7	2.6	2.6	401.8	15.3	4.1
-10.1	-1.3	2.6	402.7	15.2	4.0
-8.9	-5.0	2.5	402.3	15.1	3.9
-6.3	-8.1	2.5	400.9	15.0	3.9
-2.8	-9.9	2.5	399.2	15.0	3.9
1.2	-10.1	2.5	397.9	15.1	3.9
5.0	-8.8	2.6	397.8	15.2	4.0
8.0	-6.2	2.6	398.6	15.3	4.1
9.8	-2.6	2.6	400.0	15.3	4.1
10.1	1.3	2.6	401.1	15.3	4.1
8.9	5.0	2.5	401.4	15.2	4.0
6.3	8.1	2.5	400.7	15.2	3.9
2.8	9.9	2.5	399.6	15.2	39
-1.2	10.2	2.5	398.6	15.2	4.0
-5.0	8.0	2.5	308.4	15.2	4.0
-5.0	6.2	2.5	200.7	15.5	4.0
-8.0	0.2	2.0	599.2 400.5	15.4	4.1
-9.7	2.0	2.0	400.5	15.4	4.1
-10.0	-1.3	2.6	401.7	15.3	4.1
-8.8	-5.0	2.5	402.2	15.2	4.0
-6.3	-8.0	2.5	401.7	15.1	3.9
-2.8	-9.9	2.5	400.4	15.0	3.9
1.2	-10.2	2.5	398.9	15.0	3.9
5.0	-8.9	2.5	398.0	15.1	4.0
8.0	-6.2	2.6	398.0	15.3	4.0
9.8	-2.7	2.6	398.9	15.3	4.1
10.1	1.3	2.6	400.1	15.4	4.1
8.8	5.0	2.5	401.0	15.3	4.0
6.3	8.1	2.5	401.2	15.3	4.0
2.8	9.9	2.5	400.6	15.2	3.9
	$\begin{array}{c} -6.3\\ -2.7\\ 1.3\\ 5.0\\ 8.0\\ 9.8\\ 10.2\\ 9.0\\ 6.3\\ 2.7\\ -1.3\\ -5.0\\ -8.0\\ -9.8\\ -10.1\\ -8.9\\ -6.3\\ -2.7\\ 1.3\\ 5.0\\ 8.0\\ 9.8\\ 10.1\\ 8.9\\ 6.4\\ 2.8\\ -1.3\\ -5.0\\ 8.0\\ 9.8\\ 10.1\\ 8.9\\ 6.3\\ -2.8\\ 1.2\\ 5.0\\ 8.0\\ 9.8\\ 10.1\\ 8.9\\ 6.3\\ 2.8\\ -1.2\\ -5.0\\ 8.0\\ 9.8\\ 10.1\\ 8.9\\ 6.3\\ 2.8\\ -1.2\\ -5.0\\ 8.0\\ 9.8\\ 10.1\\ 8.9\\ 6.3\\ 2.8\\ -1.2\\ 5.0\\ 8.0\\ 9.8\\ 10.1\\ 8.9\\ 6.3\\ 2.8\\ -1.2\\ 5.0\\ 8.0\\ 9.8\\ 10.1\\ 8.9\\ 6.3\\ 2.8\\ -1.2\\ 5.0\\ 8.0\\ 9.8\\ 10.1\\ 8.9\\ 6.3\\ 2.8\\ -1.2\\ 5.0\\ 8.0\\ 9.8\\ 10.1\\ 8.9\\ 6.3\\ 2.8\\ -1.2\\ 5.0\\ 8.0\\ 9.8\\ 10.1\\ 8.9\\ 6.3\\ 2.8\\ -1.2\\ 5.0\\ 8.0\\ 9.8\\ 10.1\\ 8.9\\ 6.3\\ 2.8\\ -1.2\\ 5.0\\ 8.0\\ 9.8\\ 10.1\\ 8.9\\ 6.3\\ 2.8\\ -1.2\\ 5.0\\ 8.0\\ 9.8\\ 10.1\\ 8.9\\ 6.3\\ 2.8\\ -1.2\\ 5.0\\ 8.0\\ 9.8\\ 10.1\\ 8.8\\ 6.3\\ 2.8\\ -2.8\\ 1.2\\ 5.0\\ 8.0\\ 9.8\\ 10.1\\ 8.8\\ 6.3\\ 2.8\\ -2.8$	-6.3 -8.0 -2.7 -9.8 1.3 -10.0 5.0 -8.7 8.0 -6.1 9.8 -2.7 10.2 1.2 9.0 5.0 6.3 8.1 2.7 9.8 -1.3 10.0 -5.0 8.7 -8.0 6.1 -9.8 2.7 -10.1 -1.2 -8.9 -5.0 -6.3 -8.0 -2.7 -9.8 1.3 -10.0 5.0 -8.7 8.0 -6.1 9.8 -2.7 10.1 1.3 8.9 5.0 6.4 8.1 2.8 9.9 -1.3 10.1 -5.0 8.8 -8.0 6.2 -9.7 2.6 -10.1 -1.3 -8.9 -5.0 -6.3 -8.1 -2.8 -9.9 1.2 -10.1 5.0 -8.8 8.0 -6.2 9.8 -2.6 10.1 1.3 8.9 5.0 6.3 8.1 2.8 -9.9 1.2 -10.2 5.0 -8.9 8.0 -6.2 9.8 -2.7 10.1 1.3 8.8 -5.0 -6.3 -8.0 -2.8 -9.9 1.2 -10.2 5.0 -8.9 8.0 -6.2 9	-6.3 -8.0 2.5 -2.7 -9.8 2.6 1.3 -10.0 2.6 5.0 -8.7 2.6 8.0 -6.1 2.6 9.8 -2.7 2.5 10.2 1.2 2.5 9.0 5.0 2.5 6.3 8.1 2.5 -1.3 10.0 2.6 -5.0 8.7 2.6 -8.0 6.1 2.6 -9.8 2.7 2.6 -10.1 -1.2 2.5 -8.9 -5.0 2.5 -6.3 -8.0 2.5 -6.3 -8.0 2.5 -3.3 -10.0 2.6 5.0 -8.7 2.6 8.0 -6.1 2.6 9.8 -2.7 2.6 8.0 -6.1 2.6 9.8 -2.7 2.6 8.0 -6.1 2.6 9.8 -2.7 2.6 8.0 -6.1 2.6 9.8 -2.7 2.6 -10.1 1.3 2.5 -6.4 8.1 2.5 -5.0 8.8 2.6 -8.0 6.2 2.6 -9.7 2.6 2.6 -9.7 2.6 2.6 9.8 -2.6 2.6 9.8 -2.6 2.6 -9.7 2.6 2.6 -9.7 2.6 2.6 -9.8 -2.5 -2.6 -9.8 -2.6 2.6 <	-6.3-8.02.5397.7-2.7-9.82.6398.05.0-8.72.6399.98.0-6.12.6401.79.8-2.72.5402.310.21.22.5401.59.05.02.5399.76.38.12.5397.1-1.310.02.6397.8-5.08.72.6399.6-8.06.12.6401.8-9.82.72.6403.1-10.1-1.22.5402.9-8.9-5.02.5401.4-6.3-8.02.5397.81.3-10.02.6397.45.0-8.72.6398.38.0-6.12.6400.09.8-2.72.6401.4-6.3-8.02.5397.81.3-10.02.6397.45.0-8.72.6398.38.0-6.12.6400.09.8-2.72.6401.410.11.32.5401.410.11.32.5401.68.95.02.5401.410.11.32.6400.2-9.72.62.6398.5-8.06.22.6400.2-9.72.62.6401.8-10.12.5397.85.08.82.6398.5-8.06.22.6398.6 <t< td=""><td>-6.3-8.02.5397.714.9-2.7-9.82.6397.115.11.3-10.02.6398.015.25.0-8.72.6399.915.38.0-6.12.6401.715.29.8-2.72.5402.315.110.21.22.5401.515.09.05.02.5397.915.02.79.82.5397.115.2-1.310.02.6397.815.3-5.08.72.6403.115.2-1.310.02.6397.815.3-5.08.72.6403.115.2-10.1-1.22.5402.915.1-8.9-5.02.5401.414.9-6.3-8.02.5397.815.33.0-6.12.6400.015.39.8-2.72.6401.415.310.11.32.5401.415.310.11.32.5398.215.15.08.72.6400.015.39.8-2.72.6401.415.310.11.32.5401.415.310.11.32.5398.215.12.49.92.5398.215.12.539.615.12.52.89.92.5398.515.4-8.06.22.6400.215.4<tr< td=""></tr<></td></t<>	-6.3-8.02.5397.714.9-2.7-9.82.6397.115.11.3-10.02.6398.015.25.0-8.72.6399.915.38.0-6.12.6401.715.29.8-2.72.5402.315.110.21.22.5401.515.09.05.02.5397.915.02.79.82.5397.115.2-1.310.02.6397.815.3-5.08.72.6403.115.2-1.310.02.6397.815.3-5.08.72.6403.115.2-10.1-1.22.5402.915.1-8.9-5.02.5401.414.9-6.3-8.02.5397.815.33.0-6.12.6400.015.39.8-2.72.6401.415.310.11.32.5401.415.310.11.32.5398.215.15.08.72.6400.015.39.8-2.72.6401.415.310.11.32.5401.415.310.11.32.5398.215.12.49.92.5398.215.12.539.615.12.52.89.92.5398.515.4-8.06.22.6400.215.4 <tr< td=""></tr<>

171.21	-1.2	10.2	2.5	399.6	15.2	3.9
171.60	-5.0	8.9	2.5	398.9	15.3	4.0
171.99	-8.0	6.3	2.5	398.9	15.3	4.0
172.39	-9.8	2.7	2.6	399.6	15.4	4.1
172.78	-10.0	-1.3	2.6	400.7	15.4	4.1
173.17	-8.8	-5.0	2.6	401.6	15.3	4.0
173.56	-6.3	-8.0	2.5	401.7	15.2	4.0
173.96	-2.8	-9.8	2.5	401.1	15.1	3.9
174.35	1.2	-10.2	2.5	399.9	15.1	3.9
174.74	5.0	-8.9	2.5	398.8	15.1	3.9
175.14	8.0	-6.3	2.5	398.1	15.2	4.0
175.53	9.8	-2.7	2.5	398.3	15.3	4.0
175.92	10.1	13	2.6	399.2	15.4	4 1
176 31	8.8	5.0	2.6	400.2	15.4	4 1
176.71	63	8.0	2.5	401.0	15.1	4.0
177 10	2.7	99	2.5	401.0	15.3	4.0
177 49	-1.2	10.2	2.5	400.5	15.3	3.9
177.88	-5.0	8.9	2.5	399.7	15.3	3.9
178.28	-8.0	63	2.5	399.7	15.3	4.0
178.20	-0.0	0.5 2 7	2.5	300.3	15.3	4.0
170.07	-9.0	-1.3	2.5	300.0	15.3	4.0
179.00	-10.1 Q Q	-1.5	2.0	400.7	15.3	4.1 1
179.45	-0.0	-5.0	2.0	400.7	15.3	4.1
179.03	-0.2	-8.0	2.5	401.3	15.5	4.0
180.24	-2.7	-9.0	2.5	401.5	15.2	4.0
180.05	1.2	-10.2	2.5	200.6	15.1	3.9 2.0
181.05	3.0 8 1	-0.9	2.5	209.0	15.1	3.9
101.42	0.1	-0.5	2.5	208.7	15.2	5.9
181.81	9.8	-2.7	2.5	398.3 209.7	15.5	4.0
182.20	10.1	1.3	2.5	398.7 200.5	15.4	4.0
182.60	8.8	5.0	2.6	399.5	15.4	4.1
182.99	0.3	8.0	2.5	400.4	15.4	4.1
183.38	2.7	9.8	2.5	401.0	15.4	4.0
183.//	-1.2	10.2	2.5	400.9	15.3	4.0
184.17	-5.0	8.9	2.5	400.4	15.3	4.0
184.56	-8.1	6.3	2.5	399.8	15.3	4.0
184.95	-9.8	2.7	2.5	399.5	15.3	4.0
185.34	-10.1	-1.2	2.5	399.6	15.3	4.0
185.74	-8.8	-5.0	2.6	400.1	15.3	4.0
186.13	-6.2	-8.0	2.6	400.7	15.3	4.0
186.52	-2.7	-9.8	2.5	401.0	15.3	4.0
186.92	1.2	-10.1	2.5	400.8	15.2	4.0
187.31	5.0	-8.9	2.5	400.2	15.2	3.9
187.70	8.1	-6.3	2.5	399.3	15.2	3.9
188.09	9.9	-2.7	2.5	398.7	15.3	4.0
188.49	10.1	1.2	2.5	398.5	15.3	4.0
188.88	8.9	5.0	2.5	399.0	15.4	4.1
189.27	6.3	8.0	2.5	399.8	15.4	4.1
189.66	2.7	9.8	2.5	400.6	15.4	4.0
190.06	-1.2	10.2	2.5	401.0	15.4	4.0
190.45	-5.0	8.9	2.5	400.9	15.3	4.0
190.84	-8.1	6.3	2.5	400.4	15.3	4.0
191.24	-9.9	2.8	2.5	399.9	15.3	4.0
191.63	-10.1	-1.2	2.5	399.6	15.3	4.0
192.02	-8.9	-5.0	2.5	399.7	15.3	4.0
192.41	-6.3	-8.0	2.5	400.1	15.3	4.0
192.81	-2.7	-9.8	2.5	400.5	15.3	4.0
193.20	1.2	-10.1	2.5	400.7	15.3	4.0
193.59	5.0	-8.9	2.5	400.4	15.2	4.0

193.98	8.1	-6.3	2.5	399.8	15.2	3.9
194.38	9.9	-2.8	2.5	399.2	15.3	4.0
194.77	10.2	1.2	2.5	398.8	15.3	4.0
195.16	8.9	5.0	2.5	398.8	15.4	4.0
195.55	6.3	8.0	2.5	399.4	15.4	4.1
195.95	2.7	9.8	2.5	400.1	15.5	4.1
196.34	-1.2	10.1	2.5	400.7	15.4	4.0
196.73	-5.0	8.9	2.5	401.0	15.4	4.0
197.13	-8.1	6.3	2.5	400.8	15.3	4.0
197.52	-9.9	2.8	2.5	400.4	15.3	4.0
197.91	-10.2	-1.2	2.5	399.9	15.3	4.0
198.30	-8.9	-5.0	2.5	399.7	15.3	4.0
198.70	-6.3	-8.0	2.5	399.8	15.3	4.0
199.09	-2.7	-9.8	2.5	400.1	15.3	4.0
199.48	1.2	-10.1	2.5	400.4	15.3	4.0
199.87	5.0	-8.9	2.5	400.4	15.3	4.0
200.27	8.1	-6.3	2.5	400.1	15.3	4.0
200.66	9.9	-2.8	2.5	399.6	15.3	4.0
201.05	10.2	1.2	2.5	399.1	15.3	4.0
201.03	8.9	5.0	2.5	398.9	15.5	4.0
201.11	63	8.1	2.5	399.2	15.1	4.0
202.23	0.5 2 7	9.8	2.5	399.7	15.1	4.0
202.23	-1.2	10.1	2.5	400.3	15.5	4.0
202.02	-5.0	89	2.5	400.8	15.5	4.0
203.02	-8.1	63	2.5	400.9	15.1	4.0
203.41	_0.1	2.8	2.5	400.7	15.3	4.0
203.80	-9.9	-1.2	2.5	400.7	15.3	4.0
204.17	-10.2	-5.0	2.5	300.0	15.3	4.0
204.57	-6.3	-8.0	2.5	300.7	15.3	4.0
204.90	-0.5	-0.0	2.5	300.8	15.3	4.0
205.57	-2.7	-9.0	2.5	700 0	15.3	4.0
205.70	5.0	-10.1	2.5	400.0	15.3	4.0
200.10	9.0 9.1	-0.9	2.5	400.2	15.3	4.0
200.55	0.1	-0.5	2.5	200.0	15.2	4.0
200.94	9.9	-2.0	2.5	200.5	15.5	4.0
207.54	10.2	1.2	2.5	200.2	15.5	4.0
207.75	0.9 6 2	5.0 9.1	2.5	399.2 200.2	15.4	4.0
208.12	0.5	0.1	2.5	399.2 200.5	15.4	4.0
208.51	2.7	9.9	2.5	399.3 400.0	15.5	4.0
208.91	-1.2	10.1	2.5	400.0	15.5	4.0
209.30	-5.0	8.9	2.5	400.0	15.5	4.0
209.09	-8.0	0.5	2.5	400.9	15.4	4.0
210.08	-9.9	2.8	2.5	400.9	15.4	4.0
210.48	-10.2	-1.2	2.5	400.0	15.5	4.0
210.87	-8.9	-5.0	2.5	400.2	15.3	4.0
211.26	-6.3	-8.0	2.5	399.8	15.3	4.0
211.65	-2.7	-9.8	2.5	399.7	15.3	4.0
212.05	1.2	-10.1	2.5	399.7	15.3	4.0
212.44	5.0	-8.9	2.5	399.9	15.3	4.0
212.83	8.1	-6.3	2.5	400.0	15.3	4.0
213.23	9.9	-2.8	2.5	400.0	15.3	4.0
213.62	10.2	1.2	2.5	399.7	15.4	4.0
214.01	8.9	5.0	2.5	399.5	15.4	4.0
214.40	6.3	8.1	2.5	399.4	15.4	4.0
214.80	2.8	9.9	2.5	399.5	15.4	4.0
215.19	-1.2	10.2	2.5	399.8	15.5	4.0
215.58	-5.0	8.9	2.5	400.3	15.5	4.0
215.97	-8.0	6.3	2.5	400.7	15.4	4.0
216.37	-9.9	2.8	2.5	400.8	15.4	4.0

216.76	-10.2	-1.2	2.5	400.7	15.3	4.0
217.15	-8.9	-5.0	2.5	400.4	15.3	4.0
217.54	-6.3	-8.0	2.5	400.0	15.3	4.0
217.94	-2.8	-9.8	2.5	399.7	15.3	4.0
218.33	1.2	-10.1	2.5	399.6	15.3	4.0
218.72	5.0	-8.9	2.5	399.7	15.4	4.0
219.12	8.0	-6.3	2.5	399.8	15.4	4.0
219.51	9.9	-2.8	2.5	399.9	15.4	4.0
219.90	10.2	1.2	2.5	399.9	15.4	4.0
220.29	8.9	5.0	2.5	399.7	15.4	4.0
220.69	6.3	8.1	2.5	399.6	15.4	4.0
221.08	2.8	9.9	2.5	399.6	15.4	4.0
221.47	-1.2	10.2	2.5	399.7	15.5	4.0
221.86	-5.0	8.9	2.5	400.1	15.5	4.0
222.26	-8.0	6.3	2.5	400.5	15.4	4.0
222.65	-9.8	2.8	2.5	400.7	15.4	4.0
223.04	-10.2	-1.2	2.5	400.8	15.4	4.0
223.43	-8.9	-5.0	2.5	400.6	15.3	4.0
223.83	-63	-8.0	2.5	400.2	15.3	4.0
223.03	-2.8	_9.9	2.5	399.8	15.3	4.0
224.61	1.2	-10.2	2.5	399.6	15.3	4.0
225.01	5.0	-8.9	2.5	399.5	15.5	4.0
225.01	8.0	-6.3	2.5	399.6	15.1	4.0
225.10	99	-2.8	2.5	399.8	15.1	4.0
225.17	10.2	1.2	2.5	300.8	15.4	4.0
220.10	80	5.0	2.5	300.8	15.4	4.0
220.38	63	9.0 8.1	2.5	300.8	15.4	4.0
220.97	2.8	0.1	2.5	300 7	15.4	4.0
227.30	2.0 _1.2	10.2	2.5	300.8	15.5	4.0
227.75	-1.2	8.0	2.5	400.0	15.5	4.0
228.13	-5.0	63	2.5	400.0	15.5	4.0
228.34	-8.0	28	2.5	400.5	15.5	4.0
220.93	-9.0	2.0	2.5	400.0	15.4	4.0
229.33	-10.2	-1.2	2.5	400.7	15.4	4.0
229.72	-0.9	-5.0	2.5	400.0	15.4	4.0
230.11	-0.5	-8.0	2.5	400.4	15.5	4.0
230.30	-2.0	-9.9	2.5	200.7	15.5	4.0
230.90	1.2	-10.2	2.5	200.5	15.5	4.0
231.29	5.0 9 1	-0.9	2.5	399.3 200.5	15.5	4.0
231.08	0.1	-0.5	2.5	200.6	15.4	4.0
252.07	9.9	-2.0	2.5	200.7	15.4	4.0
232.47	10.2	1.2	2.5	399.7 200.0	15.4	4.0
232.80	8.9	5.0	2.5	399.9 200.0	15.4	4.0
255.25	0.3	8.1	2.5	399.9 200.0	15.4	4.0
233.04	2.8	9.9	2.5	399.9	15.4	4.0
234.04	-1.2	10.2	2.5	399.9	15.5	4.0
234.43	-5.0	8.9	2.5	400.0	15.5	4.0
234.82	-8.0	6.3	2.5	400.2	15.5	4.0
235.22	-9.8	2.8	2.5	400.4	15.4	4.0
235.61	-10.2	-1.2	2.5	400.6	15.4	4.0
236.00	-8.9	-5.0	2.5	400.6	15.4	4.0
236.39	-6.3	-8.0	2.5	400.4	15.3	4.0
236.79	-2.8	-9.9	2.5	400.1	15.3	4.0
237.18	1.2	-10.2	2.5	399.8	15.3	4.0
237.57	5.0	-8.9	2.5	399.6	15.3	4.0
237.96	8.1	-6.3	2.5	399.4	15.4	4.0
238.36	9.9	-2.8	2.5	399.5	15.4	4.0
238.75	10.2	1.2	2.5	399.6	15.4	4.0
239.14	8.9	5.0	2.5	399.8	15.4	4.0

239.53	6.3	8.1	2.5	399.9	15.5	4.0
239.93	2.8	9.9	2.5	400.0	15.5	4.0
240.32	-1.2	10.2	2.5	400.0	15.5	4.0
240.71	-5.0	8.9	2.5	400.1	15.5	4.0
241.11	-8.1	6.3	2.5	400.2	15.4	4.0
241.50	-9.9	2.8	2.5	400.3	15.4	4.0
241.89	-10.2	-1.2	2.5	400.4	15.4	4.0
242.28	-8.9	-5.0	2.5	400.5	15.4	4.0
242.68	-6.3	-8.0	2.5	400.4	15.4	4.0
243.07	-2.8	-9.9	2.5	400.2	15.3	4.0
243.46	1.2	-10.2	2.5	399.9	15.3	4.0
243.85	5.0	-8.9	2.5	399.7	15.4	4.0
244 25	8.1	-6.3	2.5	399.5	15.1	4.0
244 64	99	-2.8	2.5	399.4	15.1	4.0
245.03	10.2	1.2	2.5	399.5	15.1	4.0
245.03	8.9	5.0	2.5	399.7	15.1	4.0
245.82	63	8.1	2.5	300.0	15.5	4.0
245.02	2.8	9.9	2.5	400.0	15.5	4.0
246.60	1.2	10.2	2.5	400.0	15.5	4.0
240.00	-1.2	8.0	2.5	400.1	15.5	4.0
247.00	-5.0	6.2	2.5	400.2	15.5	4.0
247.39	-0.1	0.5	2.5	400.2	15.4	4.0
247.70	-9.9	2.0	2.5	400.3	15.4	4.0
240.17	-10.2	-1.2	2.5	400.5	15.4	4.0
248.57	-8.9	-5.0	2.5	400.4	15.4	4.0
248.96	-6.3	-8.0	2.5	400.4	15.4	4.0
249.35	-2.8	-9.9	2.5	400.2	15.4	4.0
249.74	1.2	-10.2	2.5	400.0	15.4	4.0
250.14	5.0	-8.9	2.5	399.8	15.4	4.0
250.53	8.1	-6.3	2.5	399.5	15.4	4.0
250.92	9.9	-2.8	2.5	399.4	15.4	4.0
251.32	10.2	1.2	2.5	399.5	15.4	4.0
251.71	8.9	5.0	2.5	399.6	15.5	4.0
252.10	6.3	8.1	2.5	399.8	15.5	4.0
252.49	2.8	9.9	2.5	400.0	15.5	4.0
252.89	-1.2	10.2	2.5	400.2	15.5	4.0
253.28	-5.0	9.0	2.5	400.2	15.5	4.0
253.67	-8.1	6.3	2.5	400.3	15.4	4.0
254.06	-9.9	2.8	2.5	400.3	15.4	4.0
254.46	-10.2	-1.2	2.5	400.3	15.4	4.0
254.85	-8.9	-5.0	2.5	400.3	15.4	4.0
255.24	-6.3	-8.0	2.5	400.3	15.4	4.0
255.63	-2.8	-9.9	2.5	400.2	15.4	4.0
256.03	1.2	-10.2	2.5	400.0	15.4	4.0
256.42	5.0	-8.9	2.5	399.8	15.4	4.0
256.81	8.1	-6.4	2.5	399.6	15.4	4.0
257.21	9.9	-2.8	2.5	399.5	15.4	4.0
257.60	10.2	1.2	2.5	399.5	15.4	4.0
257.99	8.9	5.0	2.5	399.6	15.5	4.0
258.38	6.3	8.1	2.5	399.8	15.5	4.0
258.78	2.8	9.9	2.5	400.0	15.5	4.0
259.17	-1.2	10.2	2.5	400.2	15.5	4.0
259.56	-5.0	9.0	2.5	400.3	15.5	4.0
259.95	-8.1	6.4	2.5	400.3	15.5	4.0
260.35	-9.9	2.8	2.5	400.3	15.4	4.0
260.74	-10.2	-1.2	2.5	400.3	15.4	4.0
261.13	-8.9	-5.0	2.5	400.3	15.4	4.0
261.52	-6.3	-8.0	2.5	400.2	15.4	4.0
261.92	-2.8	-9.9	2.5	400.2	15.4	4.0

262.31	1.2	-10.2	2.5	400.0	15.4	4.0
262.70	5.0	-8.9	2.5	399.9	15.4	4.0
263.10	8.1	-6.4	2.5	399.7	15.4	4.0
263.49	9.9	-2.8	2.5	399.5	15.4	4.0
263.88	10.2	1.2	2.5	399.5	15.4	4.0
264.27	9.0	5.0	2.5	399.6	15.5	4.0
264.67	6.3	8.1	2.5	399.7	15.5	4.0
265.06	2.8	9.9	2.5	399.9	15.5	4.0
265.45	-1.2	10.2	2.5	400.2	15.5	4.0
265.84	-5.0	9.0	2.5	400.3	15.5	4.0
266.24	-8.1	6.4	2.5	400.4	15.5	4.0
266.63	-9.9	2.8	2.5	400.4	15.4	4.0
267.02	-10.2	-1.2	2.5	400.3	15.4	4.0
267.42	-8.9	-5.0	2.5	400.2	15.4	4.0
267.81	-6.3	-8.0	2.5	400.2	15.4	4.0
268.20	-2.8	-9.9	2.5	400.1	15.4	4.0
268.59	1.2	-10.2	2.5	400.0	15.4	4.0
268.99	5.0	-8.9	2.5	399.9	15.4	4.0
269.38	8.1	-6.4	2.5	399.7	15.4	4.0
269.77	9.9	-2.8	2.5	399.6	15.4	4.0
270.16	10.2	1.2	2.5	399.5	15.4	4.0
270.56	9.0	5.0	2.5	399.6	15.5	4.0
270.95	6.4	8.1	2.5	399.7	15.5	4.0
271.34	2.8	9.9	2.5	399.9	15.5	4.0
271.73	-1.2	10.2	2.5	400.1	15.5	4.0
272.13	-5.0	9.0	2.5	400.3	15.5	4.0
272.52	-8.0	6.4	2.5	400.4	15.5	4.0
272.91	-9.9	2.8	2.5	400.4	15.4	4.0
273.31	-10.2	-1.2	2.5	400.3	15.4	4.0
273.70	-8.9	-5.0	2.5	400.3	15.4	4.0
274.09	-6.3	-8.0	2.5	400.2	15.4	4.0
274.48	-2.8	-9.9	2.5	400.1	15.4	4.0
274.88	1.2	-10.2	2.5	400.0	15.4	4.0
275.27	5.0	-8.9	2.5	399.9	15.4	4.0
275.66	8.1	-6.4	2.5	399.7	15.4	4.0
276.05	9.9	-2.8	2.5	399.7	15.4	4.0
276.45	10.2	1.2	2.5	399.6	15.4	4.0
276.84	9.0	5.0	2.5	399.6	15.5	4.0
277.23	6.4	8.1	2.5	399.7	15.5	4.0
277.62	2.8	9.9	2.5	399.9	15.5	4.0
278.02	-1.2	10.2	2.5	400.1	15.5	4.0
278.41	-5.0	9.0	2.5	400.3	15.5	4.0
278.80	-8.0	6.4	2.5	400.4	15.5	4.0
279.20	-9.9	2.8	2.5	400.4	15.4	4.0
279.59	-10.2	-1.2	2.5	400.4	15.4	4.0
279.98	-8.9	-5.0	2.5	400.3	15.4	4.0
280.37	-6.4	-8.0	2.5	400.2	15.4	4.0
280.77	-2.8	-9.9	2.5	400.0	15.4	4.0
281.16	1.2	-10.2	2.5	399.9	15.4	4.0
281.55	5.0	-8.9	2.5	399.8	15.4	4.0
281.94	8.0	-6.4	2.5	399.7	15.4	4.0
282.34	9.9	-2.8	2.5	399.7	15.4	4.0
282.73	10.2	1.2	2.5	399.6	15.4	4.0
283.12	9.0	5.0	2.5	399.6	15.5	4.0
283.51	6.4	8.1	2.5	399.7	15.5	4.0
283.91	2.8	9.9	2.5	399.9	15.5	4.0
284.30	-1.2	10.2	2.5	400.0	15.5	4.0
284.69	-5.0	9.0	2.5	400.2	15.5	4.0

285.09	-8.0	6.4	2.5	400.3	15.5	4.0
285.48	-9.9	2.8	2.5	400.4	15.5	4.0
285.87	-10.2	-1.2	2.5	400.4	15.4	4.0
286.26	-9.0	-5.0	2.5	400.3	15.1	4.0
286.66	-9.0	-5.0	2.5	400.2	15.4	4.0
280.00	-0.4	-0.0	2.5	400.2	15.4	4.0
207.03	-2.0	-9.9	2.5	200.0	15.4	4.0
287.44	1.2	-10.2	2.5	399.9	15.4	4.0
287.83	5.0	-9.0	2.5	399.8	15.4	4.0
288.23	8.0	-6.4	2.5	399.7	15.4	4.0
288.62	9.9	-2.8	2.5	399.7	15.4	4.0
289.01	10.2	1.2	2.5	399.7	15.5	4.0
289.41	9.0	5.0	2.5	399.7	15.5	4.0
289.80	6.4	8.1	2.5	399.8	15.5	4.0
290.19	2.8	9.9	2.5	399.9	15.5	4.0
290.58	-1.2	10.2	2.5	400.0	15.5	4.0
290.98	-5.0	9.0	2.5	400.2	15.5	4.0
291.37	-8.0	6.4	2.5	400.3	15.5	4.0
291.76	-9.9	2.8	2.5	400.4	15.5	4.0
292.15	-10.2	-1.2	2.5	400.4	15.4	4.0
292.55	-9.0	-5.0	2.5	400.3	15.4	4.0
292.94	-6.4	-8.0	2.5	400.2	15.4	4.0
293.33	-2.8	-9.9	2.5	400.0	15.4	4.0
293.72	1.2	-10.2	2.5	399.9	15.4	4.0
294.12	5.0	-9.0	2.5	399.8	15.4	4.0
294.51	8.0	-6.4	2.5	399.7	15.4	4.0
294.90	9.9	-2.8	2.5	399.7	15.4	4.0
295.30	10.2	1.2	2.5	399.7	15.5	4.0
295.69	9.0	5.0	2.5	399.7	15.5	4.0
296.08	6.4	8.1	2.5	399.8	15.5	4.0
296.47	2.8	9.9	2.5	399.9	15.5	4.0
296.87	-1.2	10.2	2.5	400.0	15.5	4.0
297.26	-5.0	9.0	2.5	400.2	15.5	4.0
297.65	-8.0	6.4	2.5	400.3	15.5	4.0
298.04	-9.9	2.8	2.5	400.4	15.5	4.0
298.44	-10.2	-1.2	2.5	400.4	15.4	4.0
298.83	-9.0	-5.0	2.5	400.3	15.4	4.0
299.22	-6.4	-8.0	2.5	400.2	15.4	4.0
299.61	-2.8	_9.9	2.5	400.1	15.4	4.0
300.01	1.2	-10.2	2.5	399.9	15.1	4.0
300.40	5.0	-9.0	2.5	399.8	15.4	4.0
300.79	8.0	-6.4	2.5	399.7	15.1	4.0
301.19	9.9	-2.8	2.5	399.7	15.1	4.0
301.19	10.2	1.2	2.5	399.7	15.1	4.0
301.97	9.0	5.0	2.5	399.7	15.5	4.0
302.36	5.0 6.4	8.1	2.5	300.8	15.5	4.0
302.50	0. 4 2.8	0.1	2.5	300.0	15.5	4.0
302.70	2.0	10.2	2.5	400.0	15.5	4.0
303.15	-1.2	9.0	2.5	400.2	15.5	4.0
303.03	-3.0	5.0 6.4	2.5	400.2	15.5	4.0
303.93	-8.0	28	2.5	400.3	15.5	4.0
304.33 304.77	-9.9	2.0 _1 2	2.5 2.5	400.5	15.5	4.0 / 0
305.11	-10.2	-1.2	2.5	400.4	15.4	т.0 Д П
305.11	-9.0	-5.0 8.0	2.5	400.5	15.4	4.0
205.00	-0.4 2 0	-0.0	2.3 2.5	400.2	15.4	4.0
204.20	-2.0 1.2	-9.9	2.5	400.1 200.0	13.4	4.0
306.29 306.69	1.2	-10.2	2.5	399.9 200 0	13.4 15 4	4.0
207.00	J.U 8 A	-9.0 6 4	2.5	200 7	15.4	4.0
207.08	0.0 0.0	-0.4	2.5	399./ 200.7	15.4	4.0
507.47	7.7	-∠.ð	2.5	399.1	13.4	4.0

307.86	10.2	1.2	2.5	399.7	15.5	4.0
308.25	9.0	5.0	2.5	399.7	15.5	4.0
308.65	6.4	8.1	2.5	399.8	15.5	4.0
309.04	2.8	9.9	2.5	399.9	15.5	4.0
309.43	-1.2	10.2	2.5	400.0	15.5	4.0
309.82	-5.0	9.0	2.5	400.2	15.5	4.0
310.22	-8.0	6.4	2.5	400.3	15.5	4.0
310.61	-9.9	2.8	2.5	400.3	15.5	4.0
311.00	-10.2	-1.2	2.5	400.3	15.4	4.0
311.40	-9.0	-5.0	2.5	400.3	15.4	4.0
311.70	-6.4	-8.0	2.5	400.2	15.1	4.0
312.18	-2.8	_9.9	2.5	400.1	15.4	4.0
312.10	1.2	-10.2	2.5	300.0	15.1	4.0
312.57	5.0	-9.0	2.5	399.8	15.1	4.0
313.36	8.0	-6.4	2.5	399.7	15.4	4.0
313.75	9.0	-2.8	2.5	399.7	15.1	4.0
31/ 1/	10.2	1.2	2.5	300.7	15.5	4.0
314.14	0.0	1.2 5.0	2.5	300.7	15.5	4.0
214.02	9.0 6.4	S.0	2.5	200.8	15.5	4.0
314.95	0.4 2.8	0.0	2.5	300.0	15.5	4.0
215 71	2.0	9.9	2.5	399.9 400.1	15.5	4.0
216 11	-1.2	10.2	2.5	400.1	15.5	4.0
216 50	-5.0	9.0	2.5	400.2	15.5	4.0
216.90	-8.0	0.4	2.5	400.5	15.5	4.0
310.89	-9.9	2.8	2.5	400.3	15.5	4.0
317.29	-10.2	-1.2	2.5	400.3	15.4	4.0
317.68	-9.0	-5.0	2.5	400.3	15.4	4.0
318.07	-6.4	-8.0	2.5	400.2	15.4	4.0
318.46	-2.8	-9.9	2.5	400.1	15.4	4.0
318.86	1.2	-10.2	2.5	400.0	15.4	4.0
319.25	5.0	-9.0	2.5	399.8	15.4	4.0
319.64	8.0	-6.4	2.5	399.7	15.4	4.0
320.03	9.9	-2.8	2.5	399.7	15.4	4.0
320.43	10.2	1.2	2.5	399.7	15.5	4.0
320.82	9.0	5.0	2.5	399.7	15.5	4.0
321.21	6.4	8.0	2.5	399.8	15.5	4.0
321.60	2.8	9.9	2.5	399.9	15.5	4.0
322.00	-1.2	10.2	2.5	400.1	15.5	4.0
322.39	-5.0	9.0	2.5	400.2	15.5	4.0
322.78	-8.0	6.4	2.5	400.3	15.5	4.0
323.18	-9.9	2.8	2.5	400.3	15.5	4.0
323.57	-10.2	-1.2	2.5	400.3	15.4	4.0
323.96	-9.0	-5.0	2.5	400.3	15.4	4.0
324.35	-6.4	-8.0	2.5	400.2	15.4	4.0
324.75	-2.8	-9.9	2.5	400.1	15.4	4.0
325.14	1.2	-10.2	2.5	400.0	15.4	4.0
325.53	5.0	-9.0	2.5	399.8	15.4	4.0
325.92	8.0	-6.4	2.5	399.7	15.4	4.0
326.32	9.9	-2.8	2.5	399.7	15.4	4.0
326.71	10.2	1.2	2.5	399.7	15.5	4.0
327.10	9.0	5.0	2.5	399.7	15.5	4.0
327.50	6.4	8.0	2.5	399.8	15.5	4.0
327.89	2.8	9.9	2.5	399.9	15.5	4.0
328.28	-1.2	10.2	2.5	400.1	15.5	4.0
328.67	-5.0	9.0	2.5	400.2	15.5	4.0
329.07	-8.0	6.4	2.5	400.3	15.5	4.0
329.46	-9.9	2.8	2.5	400.3	15.5	4.0
329.85	-10.2	-1.2	2.5	400.3	15.5	4.0
330.24	-9.0	-5.0	2.5	400.3	15.4	4.0

330.64	-6.4	-8.0	2.5	400.2	15.4	4.0
331.03	-2.8	-9.9	2.5	400.1	15.4	4.0
331.42	1.2	-10.2	2.5	400.0	15.4	4.0
331.81	5.0	-9.0	2.5	399.8	15.4	4.0
332.21	8.0	-6.4	2.5	399.7	15.4	4.0
332.60	9.9	-2.8	2.5	399.7	15.4	4.0
332.99	10.2	1.2	2.5	399.7	15.5	4.0
333.39	9.0	5.0	2.5	399.7	15.5	4.0
333.78	64	8.0	2.5	399.8	15.5	4.0
33/ 17	28	0.0	2.5	300.0	15.5	4.0
334.56	2.0	10.2	2.5	400.1	15.5	4.0
224.06	-1.2	0.0	2.5	400.1	15.5	4.0
225.25	-5.0	9.0	2.5	400.2	15.5	4.0
335.35	-8.0	6.4 2 .0	2.5	400.3	15.5	4.0
335.74	-9.9	2.8	2.5	400.3	15.5	4.0
336.13	-10.2	-1.2	2.5	400.3	15.5	4.0
336.53	-9.0	-5.0	2.5	400.3	15.4	4.0
336.92	-6.4	-8.0	2.5	400.2	15.4	4.0
337.31	-2.8	-9.9	2.5	400.1	15.4	4.0
337.70	1.2	-10.2	2.5	400.0	15.4	4.0
338.10	5.0	-9.0	2.5	399.8	15.4	4.0
338.49	8.0	-6.4	2.5	399.7	15.4	4.0
338.88	9.9	-2.8	2.5	399.7	15.4	4.0
339.28	10.2	1.2	2.5	399.7	15.5	4.0
339.67	9.0	5.0	2.5	399.7	15.5	4.0
340.06	64	8.0	2.5	399.8	15.5	4.0
340.45	28	0.0	2.5	300.0	15.5	4.0
3/0.85	_1.2	10.2	2.5	400.1	15.5	4.0
241.24	-1.2	0.0	2.5	400.1	15.5	4.0
241.24	-5.0	9.0	2.5	400.2	15.5	4.0
341.63	-8.0	6.4 2 .0	2.5	400.3	15.5	4.0
342.02	-9.9	2.8	2.5	400.3	15.5	4.0
342.42	-10.2	-1.2	2.5	400.3	15.5	4.0
342.81	-9.0	-5.0	2.5	400.3	15.4	4.0
343.20	-6.4	-8.0	2.5	400.2	15.4	4.0
343.60	-2.8	-9.9	2.5	400.1	15.4	4.0
343.99	1.2	-10.2	2.5	400.0	15.4	4.0
344.38	5.0	-9.0	2.5	399.8	15.4	4.0
344.77	8.0	-6.4	2.5	399.8	15.4	4.0
345.17	9.9	-2.8	2.5	399.7	15.4	4.0
345.56	10.2	1.2	2.5	399.7	15.5	4.0
345.95	9.0	5.0	2.5	399.7	15.5	4.0
346.34	6.4	8.0	2.5	399.8	15.5	4.0
346 74	2.8	99	2.5	399.9	15.5	4.0
347.13	-1.2	10.2	2.5	400.1	15.5	4.0
347.52	-5.0	0.0	2.5	400.2	15.5	4.0
247.01	-5.0	9.0 6.4	2.5	400.2	15.5	4.0
249.21	-8.0	0.4	2.5	400.5	15.5	4.0
348.31	-9.9	2.8	2.5	400.3	15.5	4.0
348.70	-10.2	-1.2	2.5	400.3	15.5	4.0
349.09	-9.0	-5.0	2.5	400.2	15.4	4.0
349.49	-6.4	-8.0	2.5	400.2	15.4	4.0
349.88	-2.8	-9.9	2.5	400.1	15.4	4.0
350.27	1.2	-10.2	2.5	400.0	15.4	4.0
350.66	5.0	-9.0	2.5	399.8	15.4	4.0
351.06	8.0	-6.4	2.5	399.8	15.4	4.0
351.45	9.9	-2.8	2.5	399.7	15.5	4.0
351.84	10.2	1.2	2.5	399.7	15.5	4.0
352.23	9.0	5.0	2.5	399.7	15.5	4.0
352.63	6.4	8.0	2.5	399.8	15.5	4.0
353.02	2.8	9.9	2.5	399.9	15.5	4.0

353.41	-1.2	10.2	2.5	400.0	15.5	4.0
353.80	-5.0	9.0	2.5	400.2	15.5	4.0
354.20	-8.0	6.4	2.5	400.3	15.5	4.0
354.59	-9.9	2.8	2.5	400.3	15.5	4.0
354.98	-10.2	-1.2	2.5	400.3	15.5	4.0
355.38	-9.0	-5.0	2.5	400.2	15.4	4.0
355.77	-6.4	-8.0	2.5	400.2	15.4	4.0
356.16	-2.8	-9.9	2.5	400.1	15.4	4.0
356.55	1.2	-10.2	2.5	400.0	15.4	4.0
356.95	5.0	-9.0	2.5	399.8	15.4	4.0
357.34	8.0	-6.4	2.5	399.8	15.4	4.0
357.73	9.9	-2.8	2.5	399.7	15.5	4.0
358.12	10.2	1.2	2.5	399.7	15.5	4.0
358.52	9.0	5.0	2.5	399.7	15.5	4.0
358.91	6.4	8.0	2.5	399.8	15.5	4.0
359.30	2.8	9.9	2.5	399.9	15.5	4.0
359.69	-1.2	10.2	2.5	400.0	15.5	4.0
360.09	-5.0	9.0	2.5	400.2	15.5	4.0
360.48	-8.0	6.4	2.5	400.2	15.5	4.0
360.87	-9.9	2.8	2.5	400.3	15.5	4.0
361.27	-10.2	-1.2	2.5	400.3	15.5	4.0
361.66	-9.0	-5.0	2.5	400.2	15.4	4.0
362.05	-6.4	-8.0	2.5	400.2	15.4	4.0
362.44	-2.8	-9.9	2.5	400.1	15.4	4.0
362.84	1.2	-10.2	2.5	400.0	15.4	4.0
363.23	5.0	-9.0	2.5	399.8	15.4	4.0
363.62	8.0	-6.4	2.5	399.8	15.4	4.0
364.01	9.9	-2.8	2.5	399.7	15.5	4.0
364.41	10.2	1.2	2.5	399.7	15.5	4.0
364.80	9.0	5.0	2.5	399.8	15.5	4.0
365.19	6.4	8.0	2.5	399.8	15.5	4.0
365.59	2.8	9.9	2.5	399.9	15.5	4.0
365.98	-1.2	10.2	2.5	400.0	15.5	4.0
366.37	-5.0	9.0	2.5	400.2	15.5	4.0
366.76	-8.0	6.4	2.5	400.2	15.5	4.0
367.16	-9.9	2.8	2.5	400.3	15.5	4.0
367.55	-10.2	-1.1	2.5	400.3	15.5	4.0
367.94	-9.0	-5.0	2.5	400.2	15.4	4.0
368.33	-6.4	-8.0	2.5	400.2	15.4	4.0
368.73	-2.8	-9.9	2.5	400.1	15.4	4.0
369.12	1.1	-10.2	2.5	400.0	15.4	4.0
369.51	5.0	-9.0	2.5	399.8	15.4	4.0
369.90	8.0	-6.4	2.5	399.8	15.4	4.0
370.30	9.9	-2.8	2.5	399.7	15.5	4.0
370.69	10.2	1.2	2.5	399.7	15.5	4.0
371.08	9.0	5.0	2.5	399.8	15.5	4.0
371.48	6.4	8.0	2.5	399.8	15.5	4.0
371.87	2.8	9.9	2.5	399.9	15.5	4.0
372.26	-1.2	10.2	2.5	400.0	15.5	4.0
372.65	-5.0	9.0	2.5	400.1	15.5	4.0
373.05	-8.0	6.4	2.5	400.2	15.5	4.0
373.44	-9.9	2.8	2.5	400.3	15.5	4.0
373.83	-10.2	-1.1	2.5	400.3	15.5	4.0
374.22	-9.0	-5.0	2.5	400.2	15.4	4.0
374.62	-6.4	-8.0	2.5	400.2	15.4	4.0
375.01	-2.8	-9.9	2.5	400.1	15.4	4.0
375.40	1.1	-10.2	2.5	400.0	15.4	4.0
375.79	5.0	-9.0	2.5	399.9	15.4	4.0

376.19	8.0	-6.4	2.5	399.8	15.4	4.0
376.58	9.9	-2.8	2.5	399.7	15.5	4.0
376.97	10.2	1.1	2.5	399.7	15.5	4.0
377.37	9.0	5.0	2.5	399.8	15.5	4.0
377.76	6.4	8.0	2.5	399.8	15.5	4.0
378.15	2.8	9.9	2.5	399.9	15.5	4.0
378.54	-1.1	10.2	2.5	400.0	15.5	4.0
378.94	-5.0	9.0	2.5	400.1	15.5	4.0
379.33	-8.0	6.4	2.5	400.2	15.5	4.0
379.72	-9.9	2.8	2.5	400.3	15.5	4.0
380.11	-10.2	-1.1	2.5	400.3	15.5	4.0
380.51	-9.0	-5.0	2.5	400.2	15.4	4.0
380.90	-6.4	-8.0	2.5	400.2	15.4	4.0
381.29	-2.8	-9.9	2.5	400.1	15.4	4.0
381.68	1.1	-10.2	2.5	400.0	15.4	4.0
382.08	5.0	-9.0	2.5	399.9	15.4	4.0
382.47	8.0	-6.4	2.5	399.8	15.4	4.0
382.86	9.9	-2.8	2.5	399.7	15.5	4.0
383.26	10.2	1.1	2.5	399.7	15.5	4.0
383.65	9.0	5.0	2.5	399.8	15.5	4.0
384.04	6.4	8.0	2.5	399.8	15.5	4.0
384.43	2.8	9.9	2.5	399.9	15.5	4.0
384.83	-1.1	10.2	2.5	400.0	15.5	4.0
385.22	-5.0	9.0	2.5	400.1	15.5	4.0
385.61	-8.0	6.4	2.5	400.2	15.5	4.0
386.00	-9.9	2.8	2.5	400.3	15.5	4.0
386.40	-10.2	-1.1	2.5	400.3	15.5	4.0
386.79	-9.0	-5.0	2.5	400.2	15.4	4.0
387.18	-6.4	-8.0	2.5	400.2	15.4	4.0
387.58	-2.8	-9.9	2.5	400.1	15.4	4.0
387.97	1.1	-10.2	2.5	400.0	15.4	4.0
388.36	5.0	-9.0	2.5	399.9	15.4	4.0
388.75	8.0	-6.4	2.5	399.8	15.4	4.0
389.15	9.9	-2.8	2.5	399.7	15.5	4.0
389.54	10.2	1.1	2.5	399.7	15.5	4.0
389.93	9.0	5.0	2.5	399.8	15.5	4.0
390.32	6.4	8.0	2.5	399.8	15.5	4.0
390.72	2.9	9.9	2.5	399.9	15.5	4.0
391.11	-1.1	10.2	2.5	400.0	15.5	4.0
391.50	-5.0	9.0	2.5	400.1	15.5	4.0
391.89	-8.0	6.4	2.5	400.2	15.5	4.0
392.29	-9.9	2.9	2.5	400.3	15.5	4.0
392.	68 -10.2	2 -1.1	2.5	400.3	3 15.5	

ANEXO B – ALGORITMO DO PROGRAMA (CÓDIGO)

```
С
     Motor Sincrono
С
С
C**** Método de RUNGE KUTTA
С
      DOUBLE PRECISION Y0(10), Y(10), Q1(10), Q2(10), Q3(10), Q4(10)
      DOUBLE PRECISION ALa, ALf, Ra, Rf, AM, AK, AKK, VM, DET, DETI, AI
      DOUBLE PRECISION V(6,3000), TENSAO(2,3000), Va, Vb, Vf, WS
      DOUBLE PRECISION D1,D2,D3,WT,WM,PI,X0,X,H,H2,T(3000),TE,TM
      DOUBLE PRECISION Xaa, D05, FI, R2, RRX
      DOUBLE PRECISION DELTA, SENDELTA, COSDELTA
С
      OPEN(UNIT=3,FILE='maqsincr.txt',STATUS='NEW')
с
      OPEN(UNIT=3,FILE='maqsincr.txt',STATUS='OLD')
      OPEN(UNIT=5,FILE='maqsincr.dat',STATUS='NEW')
с
      OPEN(UNIT=5,FILE='magsincr.dat',STATUS='OLD')
С
C-
С
C**** NE - Número de Equações Diferenciais
С
      NE=5
C-
С
С
      FREQUENCIA = 60 Hz
С
      PI=3.1416D+00
С
C**** 32 PONTOS POR CICLO
С
C---
                 _____
C**** H - Passo do Método de Runge-Kutta
С
С
      H2=0.019634D+00
      H2=0.009817
с
С
      H=H2+H2
С
С
C**** CONSTANTE DE INERCIA
С
      AI=0.00005D+00
С
C**** TM - CONJUGADO MECANICO
С
      TM=0.0D+00
С
C--
    ------
С
C** DADOS DA MAQUINA SINCRONA
С
C**** INDUTANCIA PROPRIA DA ARMADURA
С
```

```
ALa=0.2D+00
С
C**** INDUTANCIA MUTUA MAXIMA ENTRE ARMADURA E EXCITACAO
С
      AM=0.4D+00
С
C**** COEFICIENTE DE ACOPLAMENTO AK
С
      AK=0.95D+00
      AKK=AK*AK
С
С
C**** INDUTANCIA DE EXCITACAO
С
      ALf=AM*AM/(ALa*AKK)
С
C**** RESISTENCIA DE ARMADURA
С
      Ra=0.2D+00
С
**** RESISTENCIA DA EXCITACAO
С
      Rf=2.0D+00
С
C**** WS - Velocidade Sincrona em rd/s
С
      WS=400.0D+00
С
C--
      ------
С
С
C**** MODULO (VM) E FASE (FI) DA TENSAO DA FONTE ELETRICA BIFÁSICA
С
С
C VM= Raiz Quadrada de:
С
С
        [(Ra*Ia)**2 + (WS*La*Ia)**2 + (WS*M*If)**2]
С
С
      VM=DSQRT(Ra*Ra*AIM*AIM+WS*WS*((ALa*AIM+AM*2.5D+00)**2))
С
С
С
C****
     FI = ArcTg de [(WS*La*Ia + WS*M*If)/(Ra*Ia)
С
С
      FI=DATAN((WS*(ALa*AIM+AM*2.5D+00)/(Ra*AIM)))
      write(3,999)VM,FI
999
      FORMAT(2F15.2)
С
C----
           -----
С
C**** CALCULO DO DETERMINANTE DA MATRIZ INVERSA
С
С
      DET=ALa*ALa*ALf*(1.0D+00-AKK)
С
C**** DETI - INVERSO DO DETERMINANTE
С
      DETI=1.0D+00/(WS*DET)
```

С С C---_____ С С C** Valores Iniciais para as variaveis Y(N) a serem integradas С em relacao a X ou WT С Y(1)=10.0D+00 Y(2)=0.0D+00Y(3)=2.50D+00 Y(4)=WSY(5)=0.00D+00 Y(6)=0.00D+00 WT=0.0D+00 X=0.00D+00 TE=0.0D+00 DELTA=0.0D+00 С С write(3,777) 777 format(4X,'WT Ia Ib If Wm DELTA TE') write(3,666) WT,Y(1),Y(2),Y(3),Y(4),DELTA,TE С C-_____ С C** NP0 - Número de Iterações arbitradas С NP0=1000 С C--------С С C** Loop externo com NP0 iterações С С DO 4 NP=1,NP0 C--------С С C-----С C** V(NP,NE) - Vetor que ARMAZENA os valores das С NE variáveis Y(NE), ou seja, das С variaveis a serem integradas para NP С pontos ou iterações, em relacao a WT С DO 6 N=1,NE V(N,NP)=Y(N)6 CONTINUE С С----_____ С C** T(NP) - Variável que ARMAZENA os valores da С variável X para NP pontos ou iterações С T(NP)=XС -----C--С

C** Loop para o quantitativo NSI de SUB-Iterações

С С с с DO 3 NSI=1,10 X0=WT X=X0 DO 9 N=1,NE 9 Y0(N)=Y(N)С C---_____ С C**** Calcula a Constante K1 do Runge-Kutta С para NE equações diferenciais С DO 11 N=1,NE GO TO (101,102,103,104,105,106),N 101 Q1(N)=F1(Y0,X0)*H GO TO 11 102 Q1(N)=F2(Y0,X0)*H GO TO 11 103 Q1(N)=F3(Y0,X0)*H GO TO 11 104 Q1(N)=F4(Y0,X0)*H GO TO 11 105 Q1(N)=F5(Y0,X0)*H GO TO 11 106 Q1(N)=F6(Y0,X0)*H 11 CONTINUE С C-------С X=X0+H2DO 12 N=1,NE 12 Y(N)=Y0(N)+(0.5D+00)*Q1(N)С С C**** Calcula a Constante K2 do Runge-Kutta С para NE equações diferenciais С DO 21 N=1,NE GO TO (201,202,203,204,205,206),N 201 Q2(N)=F1(Y,X)*H**GO TO 21** 202 Q2(N)=F2(Y,X)*H**GO TO 21** 203 Q2(N)=F3(Y,X)*HGO TO 21 204 Q2(N)=F4(Y,X)*H**GO TO 21** 205 Q2(N)=F5(Y,X)*H**GO TO 21** 206 Q2(N)=F6(Y,X)*H21 CONTINUE С

С C--С

C-

С DO 13 N=1,NE 13 Y(N)=Y0(N)+0.5D+00*Q2(N)С С C**** Calcula a Constante K3 do Runge-Kutta С para NE equações diferenciais С С DO 31 N=1,NE GO TO (301,302,303,304,305,306),N 301 Q3(N)=F1(Y,X)*HGO TO 31 302 Q3(N)=F2(Y,X)*HGO TO 31 303 Q3(N)=F3(Y,X)*HGO TO 31 304 Q3(N)=F4(Y,X)*HGO TO 31 305 Q3(N)=F5(Y,X)*HGO TO 31 306 Q3(N)=F6(Y,X)*H31 CONTINUE С C-С X=X0+HDO 14 N=1,NE 14 Y(N)=Y0(N)+Q3(N)С С С C**** Calcula a Constante K4 do Runge-Kutta С para NE equações diferenciais С С DO 41 N=1,NE GO TO (401,402,403,404,405,406),N 401 Q4(N)=F1(Y,X)*HGO TO 41 402 Q4(N)=F2(Y,X)*HGO TO 41 Q4(N)=F3(Y,X)*H403 GO TO 41 404 Q4(N)=F4(Y,X)*HGO TO 41 405 Q4(N)=F5(Y,X)*HGO TO 41 406 Q4(N)=F6(Y,X)*H41 CONTINUE С C---_____ С C** Integração das variáveis Y(NE) С DO 54 N=1,NE Y(N)=Y0(N)+(Q1(N)+Q2(N)+Q2(N)+Q3(N)+Q3(N)+Q4(N))/(6.0D+00)54 CONTINUE С С

```
WT=WT+2.*H
С
C-
                 _____
С
      SENDELTA=DSIN(Y(5))
      COSDELTA=DCOS(Y(5))
      TE=AM*Y(3)*(Y(2)*COSDELTA-Y(1)*SENDELTA)
с
3
      CONTINUE
С
C** Fim do loop de sub-iterações
С
С
      GRAU=180.0D+00*X/PI
      DELTA=WT-Y(5)
      DELTAG=180.0D+00*DELTA/PI
С
С
      WRITE(3,666)WT,Y(1),Y(2),Y(3),Y(4),DELTAG,TE
666
      format(7F7.1)
С
      WRITE(5,666)WT,Y(1),Y(2),Y(3),Y(4),DELTAG,TE
С
C-
              _____
С
C** Fim do loop de iterações
С
4
      CONTINUE
С
C-----
С
      CLOSE(UNIT=3,STATUS='KEEP')
  STOP
  END
С
С
C--
       -----
С
C**** Equações Diferenciais a Serem Resolvidas
С
C****
      Equação 1
С
      FUNCTION F1(Y,X)
      DOUBLE PRECISION Y0(10), Y(10), X, WT, X0
      DOUBLE PRECISION ALa, ALf, Ra, Rf, AM, AK, AKK, VM, DET, DETI, AI
      DOUBLE PRECISION D1,D2,D3,WM,PI,TE,TM,Va,Vb,Vf,WS
      DOUBLE PRECISION TETA, SENTETA, SENTETA2, COSTETA, COSTETA2
      DOUBLE PRECISION ALM, FI, FIL, AIM, Z
      PI=3.1416D+00
      AIM=10.0D+00
      WS=400.0D+00
      AK=0.95D+00
      AKK=AK*AK
      AI=0.000184D+00
      Ra=0.2D+00
      Rf=2.0D+00
      ALa=0.20D+00
      AM=0.40D+00
      ALf=AM*AM/(ALa*AKK)
      VM=400.0D+00
с
```

```
Z=WS*WS*((ALa*AIM+AM*2.5D+00)**2)
      VM=DSQRT(Ra*Ra*AIM*AIM+Z)
      DET=ALa*ALa*ALf*(1.0D+00-AKK)
      DETI=1.0D+00/(DET*WS)
С
C****
      TENSOES DE ARMADURA NOS ENROLAMENTOS "a" e "b", Va e Vb
С
      FI=DATAN((WS*(ALa*AIM+AM*2.5D+00)/(Ra*AIM)))
      write(3,111)VM,FI
с
c111
      format(2F10.4)
      FIL=DATAN(Ra/(WS*(ALa*AIM+AM*2.5D+00)))
      Va=VM*DCOS(X+FI)
      Vb=VM*DSIN(X+FI)
      Va=VM*DCOS(X)
с
      Vb=VM*DSIN(X)
с
С
С
C**** TENSÃO NO ENROLAMENTO DE EXCITAÇÃO VÍ
С
      Vf=5.0D+00
С
С
C**** VELOCIDADE MECANICA WM = Y(4)
С
      WM=Y(4)
С
С
      TETA=Y(5)
С
C**** MATRIZ D1, D2 e D3
С
С
C**** CALCULO DE SENO E COSSENO DE TETA
С
      SENTETA=DSIN(TETA)
      SENTETA2=SENTETA*SENTETA
      COSTETA=DCOS(TETA)
      COSTETA2=COSTETA*COSTETA
С
C**** MATRIZ D1, D2 e D3
С
      D1=(Va-Ra*Y(1)+Y(4)*AM*SENTETA*Y(3))*DETI
      D2=(Vb-Ra*Y(2)-Y(4)*AM*COSTETA*Y(3))*DETI
      D3 = (Vf - Rf^*Y(3) + Y(4)^*AM^*SENTETA^*Y(1) - Y(4)^*AM^*COSTETA^*Y(2))^*DETI
С
      ALM=ALa*AM*COSTETA*D3
      F1=(ALa*ALf-AM*AM*SENTETA2)*D1+AM*AM*SENTETA*COSTETA*D2-ALM
С
      RETURN
      END
С
С----
C****
      Equação 2
С
      FUNCTION F2(Y,X)
      DOUBLE PRECISION Y0(10), Y(10), X, WT, X0
      DOUBLE PRECISION ALa, ALf, Ra, Rf, AM, AK, AKK, VM, DET, DETI, AI
      DOUBLE PRECISION D1,D2,D3,WM,PI,TE,TM,Va,Vb,Vf,WS
      DOUBLE PRECISION TETA, SENTETA, SENTETA2, COSTETA, COSTETA2
      DOUBLE PRECISION ALM, FI, FIL, AIM, Z
```

```
PI=3.1416D+00
      AIM=10.0D+00
      WS=400.0D+00
      AK=0.95D+00
      AKK=AK*AK
      AI=0.000184D+00
      Ra=0.2D+00
      Rf=2.0D+00
      ALa=0.20D+00
      AM=0.40D+00
      ALf=AM*AM/(ALa*AKK)
      VM=400.0D+00
с
      Z=WS*WS*((ALa*AIM+AM*2.5D+00)**2)
      VM=DSQRT(Ra*Ra*AIM*AIM+Z)
      DET=ALa*ALa*ALf*(1.0D+00-AKK)
      DETI=1.0D+00/(DET*WS)
С
C****
      TENSOES DE ARMADURA NOS ENROLAMENTOS "a" e "b", Va e Vb
С
      FI=DATAN((WS*(ALa*AIM+AM*2.5D+00)/(Ra*AIM)))
      FIL=DATAN(Ra/(WS*(ALa*AIM+AM*2.5D+00)))
      Va=VM*DCOS(X+FI)
      Vb=VM*DSIN(X+FI)
      Va=VM*DCOS(X)
с
      Vb=VM*DSIN(X)
с
С
С
C**** TENSÃO NO ENROLAMENTO DE EXCITAÇÃO Vf
С
      Vf=5.0D+00
С
C**** VELOCIDADE MECANICA WM = Y(4)
С
      WM=Y(4)
С
С
      TETA=Y(5)
С
C**** MATRIZ D1, D2 e D3
С
С
C**** CALCULO DE SENO E COSSENO DE TETA
С
      SENTETA=DSIN(TETA)
      SENTETA2=SENTETA*SENTETA
      COSTETA=DCOS(TETA)
      COSTETA2=COSTETA*COSTETA
С
C**** MATRIZ D1, D2 e D3
С
      D1=(Va-Ra*Y(1)+Y(4)*AM*SENTETA*Y(3))*DETI
      D2=(Vb-Ra*Y(2)-Y(4)*AM*COSTETA*Y(3))*DETI
      D3 = (Vf - Rf^*Y(3) + Y(4)^*AM^*SENTETA^*Y(1) - Y(4)^*AM^*COSTETA^*Y(2))^*DETI
С
      ALM=ALa*AM*SENTETA*D3
      F2=AM*AM*SENTETA*COSTETA*D1+(ALa*ALf-AM*AM*COSTETA2)*D2-ALM
С
      RETURN
      END
С
```

С	
C****	Equação 3
C	EUNCTION E2(V V)
	FUNCTION F3(1,A) DOUDLE DECISION $V0(10) V(10) V WT V0$
	DOUBLE PRECISION 10(10), $1(10)$, $3(1)$, $3($
	DOUBLE I RECISION ALA, ALI, RA, ANI, ANI, AK, AKK, VW, DET, DET, AT
	DOUBLE I RECISION DI, D2, D3, WM, 11, 12, 110, Va, V0, V1, W3
	DOUBLE I RECISION ALM FLEIL AIM 7
	$\mathbf{D}\mathbf{U}$
	$\Delta IM = 10.0D \pm 00$
	WS = 400 0D + 00
	AK = 0.95D + 0.0
	AKK=AK*AK
	AI=0 000184D+00
	Ra=0.2D+00
	Rf=2.0D+00
	$AI_{a=0.20D+00}$
	AM=0.40D+00
	ALf=AM*AM/(ALa*AKK)
с	VM=400.0D+00
	Z=WS*WS*((ALa*AIM+AM*2.5D+00)**2)
	VM=DSQRT(Ra*Ra*AIM*AIM+Z)
	DET=ALa*ALa*ALf*(1.0D+00-AKK)
	DETI=1.0D+00/(DET*WS)
С	
C****	TENSOES DE ARMADURA NOS ENROLAMENTOS "a" e "b", Va e Vb
С	
	FI=DATAN((WS*(ALa*AIM+AM*2.5D+00)/(Ra*AIM)))
	FIL=DATAN(Ra/(WS*(ALa*AIM+AM*2.5D+00)))
	Va=VM*DCOS(X+FI)
	Vb=VM*DSIN(X+FI)
c	Va=VM*DCOS(X)
c	Vb=VM*DSIN(X)
С	
С	
C**** '	TENSÃO NO ENROLAMENTO DE EXCITAÇÃO Vf
С	
	Vf=5.0D+00
С	
С	
C****`	VELOCIDADE MECANICA WM = $Y(4)$
С	
~	WM=Y(4)
С	
С	
a	TETA=Y(5)
C	
C^{****}	MATRIZ D1, D2 e D3
C	
C	
$C^{\pi\pi\pi\pi}$	CALCULO DE SENO E COSSENO DE TETA
C	SENTET $A - DSIN(TET A)$
	$SENTET \land 2-SENTET \land 3 = SENTET \land$
	$SENTETA_=SENTETA$ $COSTETA_DCOS(TETA)$
	COSTET A 2 - COSTET A * COSTET A
C	COSTETAZ=COSTETA COSTETA
C****1	MATRIZ D1 D2 e D3
C I	

```
D1=(Va-Ra*Y(1)+Y(4)*AM*SENTETA*Y(3))*DETI
      D2=(Vb-Ra*Y(2)-Y(4)*AM*COSTETA*Y(3))*DETI
      D3 = (Vf - Rf^*Y(3) + Y(4)^*AM^*SENTETA^*Y(1) - Y(4)^*AM^*COSTETA^*Y(2))^*DETI
С
      F3=-ALa*AM*COSTETA*D1-ALa*AM*SENTETA*D2+ALa*ALa*D3
С
      RETURN
      END
С
C---
                  ------
C**** Equação 4
С
      FUNCTION F4(Y,X)
      DOUBLE PRECISION Y0(10), Y(10), X, WT, X0
      DOUBLE PRECISION ALa, ALf, Ra, Rf, AM, AK, AKK, VM, DET, DETI, AI
      DOUBLE PRECISION D1,D2,D3,WM,PI,TE,TM,Va,Vb,Vf,WS
      DOUBLE PRECISION TETA, SENTETA, SENTETA2, COSTETA, COSTETA2
      DOUBLE PRECISION DELTA, SENDELTA, COSDELTA
      DOUBLE PRECISION ALM, FI, FIL, AIM, Z
      PI=3.1416D+00
      AIM=10.0D+00
      WS=400.0D+00
      AK=0.95D+00
      AKK=AK*AK
      AI=0.000184D+00
      Ra=0.2D+00
      Rf=2.0D+00
      ALa=0.20D+00
      AM=0.40D+00
      ALf=AM*AM/(ALa*AKK)
      VM=400.0D+00
с
      Z=WS*WS*((ALa*AIM+AM*2.5D+00)**2)
      VM=DSQRT(Ra*Ra*AIM*AIM+Z)
      DET=ALa*ALa*ALf*(1.0D+00-AKK)
      DETI=1.0D+00/(DET*WS)
С
C****
      TENSOES DE ARMADURA NOS ENROLAMENTOS "a" e "b", Va e Vb
С
      FI=DATAN((WS*(ALa*AIM+AM*2.5D+00)/(Ra*AIM)))
      FIL=DATAN(Ra/(WS*(ALa*AIM+AM*2.5D+00)))
      Va=VM*DCOS(X+FI)
      Vb=VM*DSIN(X+FI)
      Va=VM*DCOS(X)
с
      Vb=VM*DSIN(X)
с
С
С
C**** TENSÃO NO ENROLAMENTO DE EXCITAÇÃO Vf
С
      Vf=5.0D+00
С
С
C**** VELOCIDADE MECANICA WM = Y(4)
С
      WM=Y(4)
С
С
      TETA=Y(5)
С
C**** MATRIZ D1, D2 e D3
С
```

```
С
C**** CALCULO DE SENO E COSSENO DE TETA
С
      SENTETA=DSIN(TETA)
      SENTETA2=SENTETA*SENTETA
      COSTETA=DCOS(TETA)
      COSTETA2=COSTETA*COSTETA
      DELTA=Y(5)-X
      SENDELTA=DSIN(DELTA)
      COSDELTA=COS(DELTA)
С
C**** MATRIZ D1, D2 e D3
С
      D1=(Va-Ra*Y(1)+Y(4)*AM*SENTETA*Y(3))*DETI
      D2=(Vb-Ra*Y(2)-Y(4)*AM*COSTETA*Y(3))*DETI
      D3=(Vf-Rf*Y(3)+Y(4)*AM*SENTETA*Y(1)-Y(4)*AM*COSTETA*Y(2))*DETI
С
С
C**** CONJUGADO MECANICO TM
С
      IF(X-12.56)1,1,2
      TM=0.0D+00
1
      GO TO 3
С
C**** CONJUGADO ELETRICO TE
С
2
      TM=4.0D+00
3
      SENDELTA=DSIN(Y(5))
      COSDELTA=DCOS(Y(5))
      TE=AM*Y(3)*(Y(2)*COSDELTA-Y(1)*SENDELTA)
С
      AI=0.03D+00
      F4=(TE-TM)/AI
С
      RETURN
      END
С
C-
C****
      Equação 5
С
      FUNCTION F5(Y,X)
      DOUBLE PRECISION Y0(10), Y(10), X, WT, X0
      DOUBLE PRECISION ALa, ALf, Ra, Rf, AM, AK, AKK, VM, DET, DETI, AI
      DOUBLE PRECISION D1,D2,D3,WM,PI,TE,TM,Va,Vb,Vf,WS
      DOUBLE PRECISION TETA, SENTETA, SENTETA2, COSTETA, COSTETA2
      DOUBLE PRECISION ALM, FI, FIL, AIM, Z
      PI=3.1416D+00
      AIM=10.0D+00
      WS=400.0D+00
      AK=0.95D+00
      AKK=AK*AK
      AI=0.000184D+00
      Ra=0.2D+00
      Rf=2.0D+00
      ALa=0.20D+00
      AM=0.40D+00
      ALf=AM*AM/(ALa*AKK)
      VM=400.0D+00
с
      Z=WS*WS*((ALa*AIM+AM*2.5D+00)**2)
      VM=DSQRT(Ra*Ra*AIM*AIM+Z)
```

```
DET=ALa*ALa*ALf*(1.0D+00-AKK)
      DETI=1.0D+00/(DET*WS)
С
C****
      TENSOES DE ARMADURA NOS ENROLAMENTOS "a" e "b", Va e Vb
С
      FI=DATAN((WS*(ALa*AIM+AM*2.5D+00)/(Ra*AIM)))
      FIL=DATAN(Ra/(WS*(ALa*AIM+AM*2.5D+00)))
      Va=VM*DCOS(X+FI)
      Vb=VM*DSIN(X+FI)
      Va=VM*DCOS(X)
с
      Vb=VM*DSIN(X)
с
С
С
C**** TENSÃO NO ENROLAMENTO DE EXCITAÇÃO Vf
С
      Vf=5.0D+00
С
С
C**** VELOCIDADE MECANICA WM = Y(4)
С
      WM=Y(4)
С
С
      TETA=Y(5)
С
C**** MATRIZ D1, D2 e D3
С
С
C**** CALCULO DE SENO E COSSENO DE TETA
С
      SENTETA=DSIN(TETA)
      SENTETA2=SENTETA*SENTETA
      COSTETA=DCOS(TETA)
      COSTETA2=COSTETA*COSTETA
С
C**** MATRIZ D1, D2 e D3
С
      D1=(Va-Ra*Y(1)+Y(4)*AM*SENTETA*Y(3))*DETI
      D2=(Vb-Ra*Y(2)-Y(4)*AM*COSTETA*Y(3))*DETI
      D3 = (Vf - Rf^*Y(3) + Y(4)^*AM^*SENTETA^*Y(1) - Y(4)^*AM^*COSTETA^*Y(2))^*DETI
С
      F5=Y(4)/WS
С
      RETURN
      END
С
C-
                ------
C****
      Equação 6
С
      FUNCTION F6(Y,X)
      DOUBLE PRECISION Y0(10), Y(10), X, WT, X0
      DOUBLE PRECISION ALa, ALf, Ra, Rf, AM, AK, AKK, VM, DET, DETI, AI
      DOUBLE PRECISION D1, D2, D3, WM, PI, TE, TM, Va, Vb, Vf, WS
      DOUBLE PRECISION TETA, SENTETA, SENTETA2, COSTETA, COSTETA2
      WS=400.0D+00
      AK=0.95D+00
      AKK=AK*AK
      AI=0.000184D+00
      Ra=0.2D+00
      Rf=8.0D+00
```
ALa=0.10D+00 AM=0.40D+00 ALf=AM*AM/(ALa*AKK) VM=400.0D+00 DET=ALa*ALa*ALf*(1.0D+00-AKK) DETI=1.0D+00/(DET*WS)

С

С

F6=1.0

RETURN END