
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE
CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA

CURSO DE BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

GUSTAVO BEZERRA RIBEIRO

CONTEST ADVISOR:

A TOOL TO HELP WITH THE CREATION OF PROGRAMMING

CONTESTS

CAMPINA GRANDE - PB

2021

GUSTAVO BEZERRA RIBEIRO

CONTEST ADVISOR:

A TOOL TO HELP WITH THE CREATION OF PROGRAMMING

CONTESTS

Trabalho de Conclusão de Curso
apresentado ao Curso Bacharelado em
Ciência da Computação do Centro de
Engenharia Elétrica e Informática da
Universidade Federal de Campina
Grande, como requisito parcial para
obtenção do título de Bacharel em
Ciência da Computação.

Orientador: Professor Dr. Rohit Gheyi.

CAMPINA GRANDE - PB

2021

Elaboração da Ficha Catalográfica:
Johnny Rodrigues Barbosa

Bibliotecário-Documentalista
CRB-15/626

 R484c Ribeiro, Gustavo Bezerra.
 Contest Advisor: a tool to help with the creation of
programming contests. / Gustavo Bezerra Ribeiro. – 2021.

 10 f.

 Orientador: Professor Dr. Rohit Gheyi.

 Trabalho de Conclusão de Curso - Artigo (Curso de
Bacharelado em Ciência da Computação) - Universidade
Federal de Campina Grande; Centro de Engenharia Elétrica
e Informática.

 1. Competições de programação. 2. Contest Advisor
tool. 3. Competitive programming. 4. Maratona Brasileira
de Programação. 5. Brazilian Programming Marathon. 6.
Codeforces. 7. Online judge plataforms. I. Ghevi, Rohit.
II. Título.

 CDU:004(045)

GUSTAVO BEZERRA RIBEIRO

CONTEST ADVISOR:

A TOOL TO HELP WITH THE CREATION OF PROGRAMMING

CONTESTS

Trabalho de Conclusão de Curso
apresentado ao Curso Bacharelado em
Ciência da Computação do Centro de
Engenharia Elétrica e Informática da
Universidade Federal de Campina
Grande, como requisito parcial para
obtenção do título de Bacharel em
Ciência da Computação.

BANCA EXAMINADORA:

Professor Dr. Rohit Gheyi

Orientador – UASC/CEEI/UFCG

Professora Dra. Francilene Procópio Garcia

Examinador – UASC/CEEI/UFCG

Professor Tiago Lima Massoni

Professor da Disciplina TCC – UASC/CEEI/UFCG

Trabalho aprovado em: 25 de Maio de 2021.

CAMPINA GRANDE - PB

RESUMO (ABSTRACT)

Estar preparado para competições de programação não é uma tarefa fácil, requerendo muitas horas

de prática com o objetivo de melhorar as habilidades em resolução de problemas. Para ajudar nesse

processo preparatório, os estudantes do ramo buscam participar de grupos de estudos,

acampamentos intensivos e cursos, onde são submetidos a aulas sobre tópicos comumente presentes

na resolução de problemas destas competições, além de listas de exercícios e competições não

oficiais. Embora existam diversas plataformas, chamadas Juízes Online, com vastos repositórios de

problemas disponíveis para prática, selecioná-los para compor uma lista de exercícios ou competição

não oficial com alta qualidade geralmente é uma tarefa manual e difícil. Diante disso, o presente

trabalho tem como objetivo apresentar a ferramenta Contest Advisor desenvolvida para automatizar

tal processo de seleção de problemas e auxiliar na criação de competições de programação.

Contest Advisor: A tool to help with the creation of
programming contests

Gustavo Bezerra Ribeiro
Federal University of Campina Grande

Campina Grande, Paraíba, Brazil

gustavo.ribeiro@ccc.ufcg.edu.br

Rohit Gheyi
Federal University of Campina Grande

Campina Grande, Paraíba, Brazil

rohit@dsc.ufcg.edu.br

ABSTRACT
Being prepared for programming competitions is not an easy task,
it usually requires lots of hours practicing to improve your
problem-solving skills. To help with this preparation process,
students commonly join study groups, campings, or courses
focused on that, where they take lessons about common
programming competition topics and are submitted to lists of
problems or unofficial contests. Although there are many
platforms, named Online Judges, with large repositories of
problems to practice, selecting them to compose your lists or
contests with high quality is generally a manual and hard task.
With that being said, this work aims to introduce the Contest
Advisor tool that was developed to make this selection process
automatic and help with the creation of such programming
contests.1

KEYWORDS
Competitive Programming, Programming Contests, Learning

REPOSITORIES
https://github.com/gugabribeiro/contest-advisor

https://github.com/gugabribeiro/contest-advisor-service

https://github.com/gugabribeiro/codeforces-connector

1. INTRODUCTION
Competitive programming, also known as sports programming, is
a mind sport where participants, commonly students from
computing and related areas, are submitted to a set of
well-specified problems and must be able to solve them using
programming [1]. There are many official programming
competitions, such as Paraiba Olympiad in Informatics [2]
organized by the Federal University of Campina Grande,

1 The authors retain the rights, under a Creative Commons Attribution CC
BY license, to all content in this article (including any elements they may
contain, such as pictures, drawings, tables), as well as all materials
produced by authors that are related to the reported work and are
referenced in the article (such as source code and databases). This license
allows others to distribute, adapt and evolve their work, even
commercially, as long as the authors are credited for the original creation.

Brazilian Programming Marathon organized by the Brazilian
Computing Society, the prestigious International Collegiate
Programming Contest and the ones organized by companies such
as Google Code Jam and Facebook Hacker Cup. It is important to
mention that many companies evaluate the technical potential of
candidates according to their problem-solving skills when
submitted to problems very similar to the ones used in
programming competitions [3].

Being prepared for those competitions is not an easy task and
requires lots of hours practicing and studying topics that go far
beyond just programming. To help with this preparation process
there are many online and free platforms, called Online Judges,
with large repositories of problems. Codeforces, TopCoder, and
AtCoder are just a few examples of those. Their repositories
usually contain problems from past official competitions or even
unofficial competitions that happen on a weekly or monthly basis
and helps to measure the level of each participant according to its
performance on those.

However, registering on some of the aforementioned Online
Judges and starting to solve problems or take part in some
unofficial contests by yourself without any guidance is in the great
majority of the cases, especially for beginners, not enough. And
that’s why students often fall back on programming competition
study groups, campings and courses focused on that. All of those
programs share in common the presence of coaches or
experienced competitors responsible for two main things, the first
one being facilitating and guiding the student through the learning
process of new topics and techniques and the second consists in
providing lists of problems for knowledge solidification and
practicing or creating contests to simulate official competitions.

Nevertheless, create a contest for dozens of students from
different levels, taking into consideration the motivational aspect,
which means not to choose a set of problems hard enough to
demotivate less experienced competitors and also not too easy and
instead demotivating more experienced ones, also excluding all
the problems they already tried or solved before and having the
disposition of thousands of problems, many of them never seen
before, can be a challenging task even for coaches or experienced
competitors and despite the existence of many tools for own
contest management such as Virtual Judge, DOM Judge, and the
already mentioned Codeforces, none of then provides an easy way
to do that choice.

That said, a tool to facilitate this process of selecting problems to
create a contest for a set of students already known beforehand

1

https://github.com/gugabribeiro/contest-advisor
https://github.com/gugabribeiro/contest-advisor-service
https://github.com/gugabribeiro/codeforces-connector

and taking into consideration all the constraints cited previously
proves to be quite useful.

2. SOLUTION
This work aims to introduce the Contest Advisor tool, which is a
web platform to help with programming contest creation,2

automatic problem set selection for a group of users already
known beforehand, and follow contest standings . An important3

thing to mention is that currently, the Codeforces is the only
Online Judge integrated with the platform, meaning that all the
available problems for contest creation are the ones in the
Codeforces repository and also all the users who are going to
participate in a contest must have an account on it, even though
the Contest Advisor is already prepared to be integrated with other
Online Judge platforms.

But before starting to discuss the proposed tool in more detail and
give a brief description about its features, it becomes necessary to
understand why Codeforces was chosen to be the pilot Online
Judge of the solution.

2.1 Codeforces
Codeforces is one of the most popular online judge platforms
nowadays and it is very hard to find a programming competitor
that does not have an account on it. The popularity of the platform
is given by hosting, almost every week, unofficial contests and
using the performance of its contestants on those to measure their
levels. To do that, Codeforces uses a Rating System very similar
to the Elo Rating System used in chess and developed by Arpad
Elo [4]. In a few words, a contestant is characterized by its rating
R and given two contestants A and B with their respective ratings
being RA and RB the probability that contestant A will get a higher
position in an unofficial contest than the competitor B is given by:

That said, it turns out to be possible to calculate the expected
position of each contestant in a contest and also the difference
between its real and expected positions. Depending on this
difference, the contestant's rating will increase or decrease, the
bigger this difference in absolute values, the bigger the change
[5].

Another important characteristic of Codeforces is that it provides
a repository of more than 6,900 problems from past unofficial
contests. All of them are tagged with related topics, meaning that
it is possible to solve the problem using a technique or algorithm
related to that topic. And the most important thing, the problems
also have a rating or difficulty level on the same scale as the
contestant’s ratings, calculated according to the ratings of the
contestants who solved that problem during an unofficial contest.

3 A screencast with a demonstration of the Contest Advisor's features can
be accessed on: https://youtu.be/36UtM2910gk

2 The Contest Advisor web platform was deployed on Heroku [6] and can
be accessed on: https://contest-advisor.herokuapp.com/

Those characteristics, combined with the fact that the platform
also provides an API (Application Programming Interface) to
retrieve information about their contestants and problems, made
the choice of Codeforces to be the pilot Online Judge for the
Contest Advisor tool very easy.

2.2 Features
Contest Advisor has two types of users, Authenticated and
Anonymous. To be an Authenticated user you do not need to
create an account into the platform, providing email, password,
and other information, the only thing that is required is an already
existing Google account.

Authenticated users can list contests they previously created in the
platform and also create new ones. Every contest listed contains
information like their name, start time and duration, the
contestants who participated or are going to participate, its
problem set, and a link for its standings.

There are two ways that Authenticated users can create contests,
the first one consists in providing in advance the handles
(Codeforces contestant identifier) of all the contestants who are
going to participate, the problem topics to consider during the
choice, and the number of problems and let the tool automatically
select a set of problems according to the provided data. The
second way to create a contest is manually providing the problem
set, with no restriction on disposing of in advance the contestants
who are going to participate. An Authenticated user can still add
new problems or contestants to a contest already created, but note
that in the case where the problem set was selected automatically
by the Contest Advisor there will be no guarantee that the new set
of problems.

Anonymous users are allowed to see any contest standings,
meaning that the participants of any contest are not required to
authenticate on Contest Advisor, they will be able to see the
contest standings and access its problem set without any problem.

3. AUTOMATIC PROBLEM SET
SELECTION
This section aims to provide an explanation of how the automatic
problem set selection works. To do that we define the selection
criteria to guarantee a good selection of problems and briefly
explain the selection strategy adopted according to those criteria.

3.1 Selection Criteria
A set of competitors, a set of topics to consider, and the number of
problems to select defines some important selection criteria.

Given a set of all the available problems to the choice and
according to the provided set of competitors in the attempt to
consider only problems that have never been seen by any of them,
should be disregarded from the available problems all the
problems that were solved or tried by at least one of the
competitors. The problems whose topics do not include any of the
provided topics should also be disregarded. From the remaining
set of available problems, the number of problems provided
should be selected.

Considering that the level of the competitors provided may differ
between them and extolling the importance of the motivational
aspect of the choice, the selected set should follow other
important criteria. It should not be too hard because it may

2

https://youtu.be/36UtM2910gk
https://contest-advisor.herokuapp.com/

demotivate the less experienced competitors or the opposite being
too easy, and instead, have a high chance of demotivating the
most experienced ones. In other words, should be considered only
balanced sets of problems.

To measure how balanced a problem set is, the following metric
was created, considering C the levels of a set of competitors and P
the levels of an arbitrary subset of the available problems
following the same scale of the competitor’s levels:

A positive value of this metric means that the problem set is easy
for that set of competitors. On the opposite, a negative value
means that the set of problems is hard for those competitors.
Finally, a ProblemSetBalance equals 0 means that this problem set
meets our balance criteria.

3.2 Selection Strategy
Notice that our original selection problem has been reduced to an
optimization problem where we need to find a set of problems that
satisfies the selection criteria adopted.

For the sake of simplicity, let's suppose that the set of available
problems that we are going to consider has already been passed
through some process to guarantee the first two criteria mentioned
earlier (non solved or tried problems by any of the provided
contestants nor problems whose topics do not match any of the
provided topics). That said, it remains the task of finding the best
set of N problems, in terms of the minimum absolute value of
ProblemSetBalance, among the set of S available problems.

Given that, the simplest strategy to solve this problem is the
Complete Search or Brute Force [7] approach where all the
combinations of N problems from the set of the available
problems are analyzed and the best one according to our criteria is
chosen. But it turns out that this solution is not feasible for our
constraints because of the binomial nature of the number of
combinations.

Another strategy can be derived from the fact that the summation
of the differences between a set of values and their arithmetic
mean is always zero. This means that if we select N problems all
of them with the same level and that level being equal to the
arithmetic mean of the contestant’s levels the ProblemSetBalance
of the selected set will always be zero. But, no matter how, since
all the problems have the same level in this set we are going to
have a monotonous set which in general is not good for a contest

However, this result is important to us because it shows that if we
select problems with equidistant levels from the mean of the
contestant's levels the ProblemSetBalance will also tend to 0. That
said, the problem is now reduced to find a set of problems with
their levels equidistant to the mean of the contestant's levels,
which allows us to solve this by statistic approximation using a
Normal or Gaussian Distribution:

To define a Normal Distribution we need two values: mean or
mathematical expectation (�) and standard deviation (�) [8].
Since we want the problem's levels to be equidistant from the
contestant's levels we can use the contestant's levels to be the
mean of the distribution.

Considering the characteristics of the Normal distribution and its
curve:

Figure 1. Normal Distribution Curve

If we use the difference between the level of the most experienced
contestant and the mean of the contestant's levels as the standard
deviation of the distribution, we are going to achieve a set with
expected 68% of the problems being in the range of difficulty
from � - � to � + � inclusive, which means that is expected that
16% of the problems will be harder enough to challenge the most
experienced contestants.

That said, our final strategy consists of getting randomized
samples of N levels following a Normal Distribution with mean
equals to the mean of the contestant's levels and standard
deviation equals to the difference between the level of the most
experienced contestant and the mean of the contestant's levels
between all the samples, selecting the one with the minimum
absolute value of ProblemSetBalance and finally for each level in
the chosen sample select any problem with that level.

4. ARCHITECTURE
The architecture adopted to develop the Contest Advisor follows a
Client-Server model, where the client requests one or more
resources to a specific service, and a server responsible for it
handles the request and responds with the requested resources [9].
The communication between the two components is made
following the HTTP (HyperText Transfer Protocol) using the
REST (Representational State Transfer) model.

Figure 2. Client-server model using HTTP(S)

3

There are two main components in the architectural project, the
first one is the frontend that assumes the client role in the
arrangement and is responsible to present. in a friendly way, the
resources requested as the result of the user's interactions on it.
The second is the backend that assumes the server role of the
architecture and is responsible to handle all the client's requests
using a set of pre-developed business rules behind an API
abstraction, the Storage, and the Online Judge Gateway.

Figure 3. General representation of Contest Advisor
architecture

4.1 Frontend
The frontend was developed using ReactJS, which is an
open-source JavaScript library maintained by Facebook to build
user interfaces [10]. This technology is based on components and
this provides a flexible and modular development with a high
capacity for reuse and with a context API very easy to use and
perfect to maintain the application state without the need for other
state management libraries like Redux.

Tachyons, which is a Cascading Style Sheets (CSS) [11] design
system used to stylize components, was adopted to structure the
user interface and prevented from writing a single CSS line during
the entire development alongside the React-Bootstrap [12]
component library, responsible for creating pure React
components using the Bootstrap CSS framework [13] without the
need of any unnecessary dependencies.

To perform HTTP requests to the server-side, the native
JavaScript Fetch API was used.

4.2 Backend
The backend was developed using vanilla JavaScript on top of
NodeJS that is an open-source JavaScript runtime [14]. Those
technologies were selected for their easy configuration, usage and
also for being widely used in the community, facilitating the
search for solutions in forums and platforms such as Stack
Overflow.

4.2.1 REST API
The REST API was developed using Express, which is an
open-source framework for NodeJS designed to build web APIs.
It provides a very straightforward way to define with a few lines
of code the router and their respective handlers or controllers
responsible to handle the API requests, in this case, following the
REST model.

4.2.2 Cache
The Cache layer on top of both Storage and Gateway
subcomponents, to improve the performance of the system, was
implemented using Redis, which is an open-source in-memory
data structure store, used as a distributed in-memory key-value
database, cache, and message broker. The idea here is caching
some specific costly responses, in terms of latency and/or
processing, from the Storage and Gateway subcomponents. The
client used to connect the backend application with Redis was the
IORedis open-source client for NodeJS.

4.2.3 Storage
The Storage subcomponent, responsible to persist all the
application data, was implemented using PostgreSQL, which is an
open-source relational database. The choice of PostgreSQL [15]
was based on the fact that it handles the data persistence using a
transactional model aiming to guarantee data consistency and by
the well-defined and well-structured nature of the entities and
their respective relationships in the system. The Sequelize ORM
[16] (Object-Relational Mapping) was used to provide a database
abstraction to the service [.

Figure 3. Contest Advisor entities model

4.2.4 Gateway
The Gateway subcomponent is an internal abstraction of the
system that is responsible to communicate with the external
entities outside the architectural arrangement, those entities being
the Online Judges.

However, since each Online Judge has a different data format and
its way to provide this data it becomes necessary to define a
convention capable of facilitating the integration of them with the
Gateway subcomponent. This convention occurs through two
definitions, the Online Judge Integration Protocol and the Online
Judge Connector, both proposed and developed in this work.

4

4.2.4.1 Online Judge Integration Protocol
The Online Judge Integration Protocol (OJIP) defines a set of
REST Resources and its formats in a way that the Gateway
subcomponent is capable of handling, being them:

● Problems, where a GET request on the /problems
resource should be able to retrieve all the problems from
the repository of an Online Judge as a JSON array of
objects with:

○ id (id of the problem);
○ name (name of the problem);
○ level (level of the problem as a numeric value

in the same scale of the contestant's level);
○ topics (name of the topics as an array of

strings).
● Contestant Profile, where a GET request on the

/contestant/:id resource should be able to retrieve the
profile of the contestant identified by its id on an Online
Judge as a JSON object with:

○ name (name of the contestant);
○ level (level of the contestant as a numeric

value).
● Contestant Submissions, where a GET request on the

/contestant/:id/submissions resource should be able to
retrieve all the submissions from the contestant
identified by its id on an Online Judge as a JSON array
of objects with:

○ problemId (id of the problems associated with
that submission);

○ momentInSeconds (the moment where the
submission was made as an Epoch);

○ verdict (the verdict of the submission, being
SOLVED if that submission solved the
problem or TRIED, otherwise).

4.2.4.2 Online Judge Connector
The Online Judge Connector is an abstraction responsible to
implement the OJIP specifications and request the original
resources from an Online Judge according to its specifications.

In a few words, it should provide a REST API with the resources
defined in the aforementioned integration protocol to the Gateway
subcomponent.

After its implementation, to finish the integration process, the
Online Judge Connector should be registered using the Contest
Advisor API to persist its metadata:

● name (Name and unique identifier of the connector
through the system);

● URL (The accessible location through the internet where
the connector is hosted).

Done that, the Online Judge behind the connector is considered
integrated with the platform and should be possible to create
contests using its repository of problems or even automatically
select problems according to a set of contestants from the Online
Judge itself.

5.1 Authentication
The Firebase Authentication [17] platform was used to provide
authenticated access for the Contest Advisor users. The decision
to outsource the authentication to the Firebase tool was made
based on the simplicity of its integration and usage since it

provides an easy way to use your Google account to create access
credentials that can be used throughout your application.

In a few words, the frontend application pops up a built-in
Firebase Authentication UI for the user to select what Google
account they want to use, the user will input the Google Account's
password if needed and after that, it will be logged in into the
platform as an Authenticated user.

On the backend side, every authenticated request will receive an
authorization credential token as a request header from the
client-side and the backend itself will call the Firebase
Authentication service to check if that token credential is valid for
that request or not.

5. EVALUATION
This section aims to introduce the production environment, the
methodology used to evaluate the quality of a problem set selected
automatically and the results obtained during a real usage of the
Contest Advisor according to this methodology.

5.1 Production Environment
All the products developed in this work were deployed in
production using Heroku, which is a cloud Platform as a Service
(PaaS) that supports multiple programming languages and enables
developers to build, run and operate applications entirely in the
cloud [6]. It provides a limited, but free version of its services that
was used to deploy the frontend application, the backend service
application alongside its database, and the Codeforces connector.
The only component of the system that was not deployed in
Heroku was the Cache layer, which was deployed in a limited and
free environment of Redis Labs, which is a private software
company that provides infrastructure management for Redis
environments.

5.2 Methodology
To evaluate the quality of a problem set selected automatically by
the Contest Advisor tool, a subset of 9 students from the Olympic
Project in Informatics and the Advanced Algorithms class of the
2020.3 academic period of the Computer Science Course, both
from the Federal University of Campina Grande was selected.

The students from the selected subset were submitted to a 5-hour
contest with 12 problems automatically selected by the tool
according to the defined criteria. It is important to mention that
the student's levels varied from 1,600 to 2,400 Codeforces rating
points.

After the contest, the students were asked to evaluate their
satisfaction with the quality of the selected problem set according
to a set of well-defined aspects:

● Challenginess: the capacity of a set of problems from a
contest to provide a challenge to its contestants;

● Multidisciplinarity: the capacity of a set of problems
from a contest to require solutions using multiple
approaches, techniques, and algorithms;

● Variability: the capacity of a set of problems from a
contest to be from different levels taking into
consideration the contestant's levels.

There were 5 possible qualitative answers for each of the
aforementioned aspects and the students were asked to choose
only one for each aspect:

● Very unsatisfied;

5

● Unsatisfied;
● Neutral;
● Satisfied;
● Very Satisfied;

5.3 Results
The results obtained show that in general, the students showed
high satisfaction taking into consideration the defined aspects:

Figure 4. Chart with the problem set evaluation results

Grouping the students by their ratings in the following way:

● Less Experienced: from 1,600 to 1,900 rating points;
● Experienced: from 1,901 to 2,200 rating points;
● More Experienced: from 2,201 to 2,400 rating points.

And observing only the Variability aspect, there will be a
tendency of having better results in terms of satisfiability from the
Less Experienced students to the More experienced ones:

Figure 5. Chart with the problem set evaluation results for
Variability

This may indicate that the problem set was better selected for a set
of students with higher experiences.

But note that this does not mean that the less experienced ones
were unsatisfied with the selection, but instead that they are less
satisfied than the other students and this is an indication that other
approaches to build the Normal Distribution responsible to select
the problem's levels using statistical approximation should be
considered to achieve better results.

Figure 6. Standings of a contest held on Contest Advisor used to evaluate the quality of an automatically selected problem set

6. EXPERIENCE
This section aims to describe the experience of developing the
Contest Advisor application with a focus on the development
process, the main challenges and limitations of the work and the
future works planned.

6.1 Development Process
For the implementation of the system, an agile methodology was
adopted using the principles of Scrum [18]. This methodology is
based on fast deliveries of small features, which are evolving
incrementally and iteratively until reaching the final product.

6

The idea behind Scrum consists of following development cycles
called Sprints, with short and well-defined intervals, generally
weekly, biweekly, or monthly where the tasks are executed.

All the features that were developed during the project, as their
priorities, were defined in the Product Backlog during the phase
of elicitation of requirements of the tool. The Sprints were defined
to have cycles of the size of a week and a subset of the tasks from
the Product Backlog was selected to compose each Sprint
Backlog.

The approach used to select the tasks for each Sprint Backlog was
a bottom-up approach where the backend tasks were selected first
to complete the development of the backend components and after
that, start the development of the frontend application.

6.2 Main Challenges and Limitations
The design of an architecture capable of providing easy
integration with other online judge platforms and developing the
application using technologies never used before, like Redis,
PostgreSQL and Heroku were the main challenges of this work.

Creating contests with problems from different online judges, for
example, is one of the main limitations currently. Although it is
already possible to integrate with other online judges using the
OJIP protocol, it is not possible to create contests using problems
from different online judges, nor automatically recommend
problems.

The performance of displaying the contest standings is also
another limitation. Currently, a cache policy of 60 seconds of
expiration time is being used to prevent multiple unnecessary calls
to the online judge’s connectors and be throttled by the online
judge itself. However, this implies that all contest's standings will
be updated only after 60 seconds periodically, and this may affect
the results of the contest a little bit since the contestants will not
be able to see what problems were solved so far until the cache
expires.

The creation of new contests and the automatic problem set
selection features misses some important validations. One of them
is if the contestants provided exist, and this may negatively impact
the recommendation algorithm since one of the parameters used is
the mean of the contestant's levels.

The platform used to deploy the application also has some
limitations, mainly for being a free version. The size of the
database and cache store, the load the system can handle and the
latency of the services, since the system can enter in an idle state,
are among the main limitations imposed by the platform.

6.3 Future Works
The current scope of Contest Advisor was developed
simplistically. However, the system has the potential to be used in
many use-cases, and therefore improvements in the user interface
can be adopted in future work. In addition, new improvements can
be incorporated, such as:

● Integrate other online judges with the platform;
● Allow automatic recommendation of problems and

contest creation with problems from different online
judges;

● Parameterizing the recommendation strategy;
● Improve standings performance.

ACKNOWLEDGMENTS
We thank Dr. Rohit Gheyi for the invaluable guidance. We thank
our institution, the Federal University of Campina Grande, and its
Computer Science undergraduate course, for the support. We
thank our colleagues from the Advanced Algorithms classand
from the Olympic Project in Informatics for helping during the
evaluation process of this work.

REFERENCES
[1] HALIM, Steven; HALIM, Felix. Competitive Programming 4:
The Lower Bound of Programming Contests in the 2020s, 2018.

[2] Paraiba Olympiad in Informatics, 2008-2021.
http://www.dsc.ufcg.edu.br/~opi/. Last access: May 17th, 2021.

[3] MCDOWELL, Gayle Laakmann. Cracking The Coding
Interview: 189 Programming Questions and Solutions. Palo Alto,
CA: CareerCup, LLC, 6th Edition, 2016.

[4] ELO, Arpad. The Rating of Chessplayers, Past and Present.
New York, NY: Arco. 2nd Edition, 1986.

[5] MIRZAYANOV, Mike. Codeforces Rating System.
https://codeforces.com/blog/entry/102. Last access: May 12th,
2021.

[6] Heroku, 2007-2021. https://www.heroku.com/. Last access:
May 17th, 2021.

[7] CORMEN, Thomas H.; LEISERSON, Charles E.; RIVEST,
Ronald L.; STEIN, Clifford. Introduction to Algorithms.
Cambridge, MA: MIT Press, 3rd Edition, 2009.

[8] BRYC, Wlodzimierz. The Normal Distribution:
Characterizations with Applications. New York, NY: Springer,
1995.

[9] PUDER, Arno; RÖMER, Kay; PILHOFER, Frank. Distributed
Systems Architecture. Burlington, MA: Morgan Kaufmann
Publishers, 2005.

[10] Facebook Inc, 2017-2021. https://reactjs.org/. Last access:
May 17th, 2021.

[11] W3C: Cascading Style Sheets, 1994-2021.
https://www.w3.org/Style/CSS/ Last access: May 17th, 2021.

[12] React-Bootstrap. https://react-bootstrap.github.io/. Last
access: May 17th, 2021.

[13] Bootstrap. https://getbootstrap.com/. Last access: May 17th,
2021.

[14] OpenJS Foundation, 2019-2021. https://nodejs.org/en/ Last
access: May 17th, 2021.

[15] The PostgreSQL Global Development Group. 1996-2021.
PostgreSQL. https://www.postgresql.org/. Last access: May 17th,
2021.

[16] Sequelize ORM, https://sequelize.org/. Last access: May
16th, 2021.

[17] Firebase, 2010-2021. https://firebase.google.com/. Last
access: May 17th, 2021.

[18] SUTHERLAND, J. J.; SUTHERLAND, Jeff,. Scrum: The
Art of Doing Twice the Work in Half the Time, 2014.

7

http://www.dsc.ufcg.edu.br/~opi/
https://codeforces.com/blog/entry/102
https://www.heroku.com/
https://reactjs.org/
https://www.w3.org/Style/CSS/
https://react-bootstrap.github.io/
https://getbootstrap.com/
https://nodejs.org/en/
https://www.postgresql.org/
https://sequelize.org/
https://firebase.google.com/

