

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIÊNCIAS E TECNOLOGIA - CCT DEPARTAMENTO DE ENGENHARIA QUÍMICA – DEQ PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA QUÍMICA - PPEQ

DISSERTAÇÃO DE MESTRADO

ESTUDO DA CINÉTICA DAS REAÇÕES DE HIDRODESNITROGENAÇÃO

Thalita Cristine Ribeiro Lucas Fernandes Orientador: Prof. Dr. Antonio Tavernard Pereira Neto

CAMPINA GRANDE - PARAÍBA

2017

THALITA CRISTINE RIBEIRO LUCAS FERNANDES

ESTUDO DA CINÉTICA DAS REAÇÕES DE HIDRODESNITROGENAÇÃO

Dissertação apresentada ao Programa de Pós-Graduação em Engenharia Química da Universidade Federal de Campina Grande, como parte dos requisitos necessários para obtenção do título de Mestre em Engenharia Química.

Orientador: Prof. Dr. Antonio Tavernard Pereira Neto

CAMPINA GRANDE - PARAÍBA

2017

FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA CENTRAL DA UFCG

F363e	Fernandes, Thalita Cristine Ribeiro Lucas. Estudo da cinética das reações de hidrodesnitrogenação / Thalita Cristine Ribeiro Lucas Fernandes. – Campina Grande, 2017. 102 f. : il.
	Dissertação (Mestrado em Engenharia Química) – Universidade Federal de Campina Grande, Centro de Ciências e Tecnologia, 2017. "Orientação: Prof. Dr. Antonio Tavernard Pereira Neto". Referências.
	 Hidrodesnitrogenação. 2. Aspen Hysys. 3. Regressão Linear. 4. Kriging. I. Pereira Neto, Antonio Tavernard. II. Título.
	CDU 66.011(043)

ESTUDO DA CINÉTICA DAS REAÇÕES DE HIDRODESNITROGENAÇÃO

BANCA EXAMINADORA

q. mit orver

Prof. Dr. Antonio Tavernard Pereira Neto Orientador (DEQ/CCT/UFCG)

Prof. Dr. Sidinei Kleber da Silva Examinador Externo (DEQ/CCT/UFCG)

T Prof. Dr. José Jailson Nicácio Alves Examinador Interno (DEQ/CCT/UFCG)

CAMPINA GRANDE - PARAÍBA

Ш

AGRADECIMENTOS

Aos professores Antonio Tavernard Pereira Neto e Antonio Carlos Brandão de Araújo, pelo conhecimento transmitido e pela orientação.

Ao CNPQ pelo financiamento da bolsa durante o período de realização deste trabalho.

A todas as demais pessoas que contribuíram positivamente de forma direta ou indireta para a conclusão deste trabalho.

Resumo da Dissertação apresentada ao DEQ/UFCG como parte dos requisitos necessários para a obtenção do título de Mestre em Engenharia Química.

Thalita Cristine Ribeiro Lucas Fernandes

Setembro/2017

A hidrodesnitrogenação catalítica é um processo utilizado para remover impurezas de nitrogênio em produtos derivados de petróleo e ocorre mediante o tratamento da carga com hidrogênio a temperatura e pressão elevadas em um reator do tipo tricled-bed. Para otimizar as operações nestes reatores, é necessário que se tenha informações sobre a cinética das várias reações de hidrodesnitrogenação. Entretanto, as equações das taxas das reações não estão disponíveis na literatura. Assim, o objetivo deste trabalho consiste em obter as equações das taxas das reações e os parâmetros cinéticos para a rede reacional dos compostos nitrogenados utilizando o modelo rigoroso de hidrodesnitrogenação do Aspen Hysys como base numérica para as simulações. Experimentos numéricos foram realizados em um reator diferencial no software Aspen Hysys para obter dados de concentração de reagentes e produtos a diferentes alimentações. Diferentes métodos foram utilizados, um método de regressão linear multivariável para obtenção dos coeficientes de regressão, um método de metamodelagem interpoladora estocástica, o Kriging e a otimização do metamodelo Kriging utilizando o método dos mínimos quadrados. Para testar as metodologias propostas, todas as etapas foram aplicadas para um sistema de duas reações simples, uma reversível e outra irreversível, em um reator PFR. Os resultados referentes ao método de regressão linear mostraram que a metodologia pode ser utilizada para estimar parâmetros cinéticos desde que se conheça a equação da taxa correspondente. A comparação entre os dois métodos do tipo Kriging propostos (convencional e otimizado) foi feita a partir de técnicas de análise estatísticas, como o coeficiente de determinação R^2 e análise de variância (ANOVA). O kriging otimizado mostrou uma melhor aderência aos dados quando comparado com o kriging convencional.

Palavras-chave: Hidrodesnitrogenação, Aspen Hysys, Regressão linear, Kriging.

Abstract of the Dissertation presented to the DEQ / UFCG as part of the requirements for obtaining a Master's degree in Chemical Engineering.

Thalita Cristine Ribeiro Lucas Fernandes

September/2017

Catalytic hydrodenitrogenation is one process used to remove nitrogen impurities from refinery streams, and it occurs by reacting a given charge with hydrogen at high temperature and pressure in a trickled-bed reactor. In order to optimize the operation of such reactors one needs information about the kinetics of the various hydrodenitrogenation reactions. However, reaction rate expressions are not available in the open literature. Therefore, this work aims at obtaining the reaction rate expressions and parameters for the reaction network of nitrogen compounds using the rigorous hydrodenitrogenation model in Aspen Hysys as the numerical basis for simulations. A differential reactor to simulate the process for different feed streams generated data to estimate of concentration of reagent and products at different feed loads. Three different methods were used, a multivariable linear regression model to obtain the regression coefficients, a stochastic interpolator metamodeling, Kriging and an optimized Kriging with least square method. In a first step, two simple reactions rates were used to test the methodologies in a reactor PFR in Hysys, a reversible and an irreversible. The results showed that linear regression might be use to estimate parameters satisfactory only if you know the reaction rate expression. By using statistical analysis as determination coefficient R² and analyze of variance, ANOVA, it was possible to compare both Krigings (conventional and optimized). Optimized Kriging showed a better adherence to the data when compared to conventional kriging.

Keywords: Hydrodenitrogenation, Aspen Hysys, Linear Regression, Kriging.

SUMÁRIO

1.	INT	roi	DUÇÃO	1
-	1.1.	O h	idrotratamento	1
-	1.2.	Mot	tivação e contribuição	2
2.	CO	NCE	ITOS FUNDAMENTAIS	3
,	2.1.	Hid	rotratamento (HDT)	
-	2.1.	1.	Tipos de reatores	
	2.1.	2.	Reacões Químicas	
	2	.1.2.1	. Hidrodessulfurização	
	2	.1.2.2	. Hidrodesnitrogenacão	8
	2	.1.2.3	Hidrodesoxigenação	
	2	.1.2.4	. Hidrodesaromatização	
	2	.1.2.5	5. Saturação de Olefinas	
	2	.1.2.6	6. Hidrodesmetalização	
,	2.2.	Asp	en Hysys	
	2.3.	Cin	ética de reações heterogêneas catalíticas	14
	2.3.	1.	Taxas das reações heterogêneas catalíticas	14
	2.4.	Mét	odos de estimativas de parâmetros reacionais	
	2.4.	1.	Método diferencial de análise	
	2.4.	2.	Método integral	
	2.4.	3.	Método das velocidades iniciais	
	2.4.	4.	Método das meias-vidas	
	2.5	Mét	odos de interpolação espacial	
	2.5.	1	Método Kriging	
3.	AL	GUN	S TRABALHOS DESENVOLVIDOS	24
	3.1.	Hid	rotratamento	
	3.2.	Kri	ging	
4.	ME	TOD	OLOGIA	
	11	Dof	inição dos componentos dos regeões	20
4	+.1. 1 7	Def	años anvolvidos na hidradospitrogeneção	29
4	+.2. 1 3	меа	ções envolvidas na mui odesinti ogenação	
-	т.J. 1 <i>Д</i>	Má	anismos reacionais	בכוכ בכ
-	т. -т. Д Л	1	Lei de velocidade em função da concentração	2 21
	7.7.	1.0	ποι το τοιοτιααίο στη ταπέας πα ερματικά ατάρωση παραγιάταση παραγιά	JZ

4.4.2.	Linearização das leis de velocidades das reações	33
4.5.	Cálculo da constante de equilíbrio Keq	33
4.6.	Simulações	34
4.6.1.	Método de amostragem: Hipercubo Latino	34
4.7. I	Método de Regressão Linear	36
4.7.1.	Regressão dos parâmetros a temperatura constante	36
4.7.2.	Regressão dos parâmetros em função da temperatura	37
4.7.3.	Cálculo do calor de reação	38
4.8. I	Método kriging	38
4.8.1.	Otimização do Kriging	41
4.9.	Avaliação dos resultados	42
5. RESU	JLTADOS E DISCUSSÕES	46
5.1. I	Resultados testes	46
5.1.1.	Linearização das equações	46
5.1.2.	Simulações	47
5.1.3.	Método do reator diferencial	47
5.1.4.	Cálculo da constante de equilíbrio para diferentes temperaturas	48
5.1.5.	Regressão para obtenção dos parâmetros	48
5.1.6.	Cálculo do calor de reação a diferentes temperaturas	50
5.2.	Resultados para a Hidrodesnitrogenação	52
5.2.1.	Obtenção das equações das taxas de reações dos compostos nitrogenado	s 52
5.2.2.	Linearização das equações das taxas das reações	54
5.2.3.	Cálculo da constante de Equilíbrio	56
5.2.4.	Regressão linear	57
5.2.5.	Cálculo do calor de reação	58
5.2.6.	Método Kriging	58
6. CON	CLUSÕES E SUGESTÕES PARA TRABALHOS FUTUROS	66
7. REFI	ERÊNCIAS BIBLIOGRÁFICAS	67
APÊNDIO	CE A – EQUAÇÕES DAS TAXAS DAS REAÇÕES DE HDN	73
APÊNDIC	CE B - EQUAÇÕES DAS TAXAS DAS REAÇÕES LINEARIZADAS	76
APÊNDIC	CE C – RESULTADOS OBTIDOS PELA REGRESSÃO LINEAR	88
APÊNDIC	CE D – CÓDIGOS MATLAB	96
ANEXO I	: Reações de HDN	. 102

LISTA DE FIGURAS

Figura 1: Tipos de reatores do hidrotratamento	5
Figura 2: Reator Trickle-bed para o hidrotratamento	6
Figura 3: Representação de espécies metálicas presentes em frações pesadas do pe	etróleo 12
Figura 4: Esquema do bloco HBED no Hysys	13
Figura 5: Rede Reacional da Hidrodesnitrogenação	
Figura 6: Reator PFR no Hysys	
Figura 7: Coeficiente de determinação para a primeira reação do caso teste	51
Figura 8: Coeficiente de determinação para a segunda reação do caso teste	52
Figura 9: R ² para a reação 1 (Kriging Convencional e Kriging Otimizado)	
Figura 10: R ² para a reação 2 (Kriging Convencional e Kriging Otimizado)	
Figura 11: R ² para a reação 3 (Kriging Convencional e Kriging Otimizado)	
Figura 12: R ² para a reação 4 (Kriging Convencional e Kriging Otimizado)	
Figura 13: R ² para a reação 5 (Kriging Convencional e Kriging Otimizado)	
Figura 14: R ² para a reação 6 (Kriging Convencional e Kriging Otimizado)	
Figura 15: R ² para a reação 7 (Kriging Convencional e Kriging Otimizado)	
Figura 16: R ² para a reação 8 (Kriging Convencional e Kriging Otimizado)	
Figura 17: R ² para a reação 9 (Kriging Convencional e Kriging Otimizado)	
Figura 18: R ² para a reação 10 (Kriging Convencional e Kriging Otimizado)	

LISTA DE TABELAS

Tabela 1: Condições de operações de HDT para diferentes alimentações	4
Tabela 2: Grupos de Força Motriz	15
Tabela 3: Substituição de grupos gerais de adsorção (1 + K _A P _A + K _B P _B + K _R P _R + K _S P _S +	
$(\mathbf{K}_{\mathbf{I}} \mathbf{P}_{\mathbf{I}})^{n}$	15
Tabela 4: Grupos cinéticos	16
Tabela 5: Expoentes dos grupos de adsorção	16
Tabela 6: Componentes nitrogenados utilizados	29
Tabela 7: Critérios para a construção das amostras	35
Tabela 8: Tabela de Análise de Variância	43
Tabela 9: Observações para exemplo de construção da ANOVA	44
Tabela 10: Equações de taxas propostas para o caso teste	46
Tabela 11: Constante de equilíbrio a temperaturas diferentes	48
Tabela 12: Valores dos parâmetros após regressão para a proposta A	49
Tabela 13: Valores dos parâmetros após regressão para a proposta B	49
Tabela 14: Parâmetros A ₀ e Ea para cada reação, de acordo com a proposta A	50
Tabela 15: Parâmetros A0 e Ea para cada reação, de acordo com a proposta B	. 50
Tabela 16: Valores dos calores de reações a várias temperaturas	. 50
Tabela 17: Análise de variância para a reação 1 (Kriging Convencional)	51
Tabela 18: Análise de variância para a reação 2 (Kriging Convencional)	52
Tabela 19: Coeficientes A e B para o cálculo da constante de equilíbrio (Aspen Hysys	
V8.8)	. 56
Tabela 20: Constantes de equilíbrio para diferentes temperaturas das reações reversíve	is
da Hidrodesnitrogenação	. 57
Tabela 21: Calor de reação para as reações de hidrodesnitrogenação em diferentes	
temperaturas	. 58
Tabela 22: Análise de Variância para a reação 1 (Kriging Convencional e Kriging	
	. 59
Tabela 23: Análise de Variância para a reação 2 (Kriging Convencional e Kriging Original - Logo	~~
	. 60
Tabela 24: Analise de Variancia para a reação 3 (Kriging Convencional e Kriging	<u> </u>
Oumizado)	. 60
Analise de Variancia para a reação 4 (Kriging Convencionai e Kriging Otimizado)	61
Tabala 26: Análisa da Variância nara a reação 5 (Kriging Convencional e Kriging	. 01
Otimizado)	62
Tabela 27: Análise de Variância nara a reação 6 (Kriging Convencional e Kriging	. 02
Otimizado)	62
Tabela 28: Análise de Variância para a reacão 7 (Kriging Convencional e Kriging	
Otimizado)	63
Tabela 29: Análise de Variância para a reação 8 (Kriging Convencional e Kriging	
Otimizado)	64
Tabela 30: Análise de Variância para a reação 9 (Kriging Convencional e Kriging	
Otimizado)	64

NOMENCLATURA

Letras Latinas

A_0	Fator multiplicador da velocidade específica da reação
Ci	Concentração do componente i
C_{i0}	Concentração inicial do componente i
Ср	Variação da entalpia com a variação da temperatura à pressão constante
d	Número de dimensões na variável resposta y
Ea	Energia de ativação
ei	Vetor d-dimensional dos termos que representam os erros
Fi	Vazão molar do componente i
Gi	Energia de Gibbs do componente i
H_i	Entalpia do componente i
k	Velocidade específica de reação / Número de coeficientes de regressão
Ki	Constante de adsorção do componente i
n	Número de observações
р	Número de variáveis estimadoras
r _i	Velocidade da reação
R	Constante Universal dos Gases
S	Ruído
t	Tempo / Tendência
Т	Temperatura
t1/2	Tempo de meia-vida
W	Massa de catalisador
X_i	Matriz projeto das variáveis estimadoras
yi	Vetor resposta d-dimensional
Z	Dado

Letras Gregas

α	Ordem de reação
β	Vetor ou matriz dos coeficientes de regressão

β	Estimativa dos mínimos quadrados generalizados
ε _{ij}	erro associado ao i-ésimo tratamento na j-ésima unidade experimental
μ	Média geral
ρ	Densidade molar
σ^2	Erro médio quadrático
λ	Multiplicador de Lagrange
τ	Relação T/T ₀
$ au_i$	efeito do i-ésimo tratamento
ω	Peso de cada dado amostral

Sobrescritos

0	Padrão a	298K
	<i>i uuruo u</i>	230K

Subscritos

0	Referência
in	Entrada
out	Saída

Siglas

DACE	Design and Analysis of Computer Experiment
EBR	Reator de Leito Expandido
FBR	Reator de Leito Fixo
HBED	Hydroprocessor Bed
HBNITA2	Composto nitrogenado C21H25N
HBNITAN	Composto nitrogenado C21H33N
HDA	Hidrodesaromatização
HDM	Hidrodesmetalização
HDN	Hidrodesnitrogenação

HDO	Hidrodesoxigenação
HDS	Hidrodessulfurização
HDT	Hidrotratamento
HNNITA2	Composto nitrogenado C21H27N
LBNIT	Composto nitrogenado C4H9N
LHHW	Lang muir-Hinshelwood-Hougen-Watson
LHS	Latin Hypercube Sampling
LHSV	Velocidade especial horária líquida
LNNIT	Composto nitrogenado C4H5N
MBNITA	Composto nitrogenado C ₉ H ₇ N
MBNITN	Composto nitrogenado C ₉ H ₁₁ N
MBR	Reator de Leito móvel
MNNITA	Composto nitrogenado C9H9N
QM	Quadrado médio
SBR	Reator de Leito de Lama
SQ	Soma dos quadrados dos resíduos
VBNITA2N	Composto nitrogenado C47H73N
VNNITA3	Composto nitrogenado C47H73N

1. INTRODUÇÃO

1.1. O hidrotratamento

O hidrotratamento é um dos processos existentes que visam a remoção de impurezas presentes em produtos derivados de petróleo, como querosene e diesel. Este processo ocorre mediante o tratamento da carga com hidrogênio na presença de um catalisador a temperatura e pressão elevadas.

O principal motivo para o uso do hidrotratamento é a restrição cada vez maior de emissões de poluentes atmosféricos. A remoção de impurezas nos combustíveis fósseis tem recebido atenção das refinarias para poderem se adequar às normas, principalmente os destilados intermediários como o diesel por ter uma vasta aplicação no setor de transporte, o setor econômico que mais consome combustíveis fósseis (VALVERDE JUNIOR, PAULINO e AFONSO, 2008).

Devido à grande quantidade de impurezas no combustível brasileiro, o governo tem amplos gastos com saúde pública por causa da poluição atmosférica, em especial para a presença de alto teor de compostos de enxofre (SOx) e nitrogênio (NOx) nos combustíveis (SILVA et al., 2013).

Além da preservação ambiental, o hidrotratamento tem relevância na obtenção de um diesel de alta qualidade. Para ser considerado de qualidade, o diesel deve cumprir algumas especificações como aspecto, teor de enxofre, percentagem de água e sedimentos, teor de cinzas, ponto de entupimento de filtros, entre outros.

As condições de operação de um reator de hidrotratamento dependem do tipo de derivado que se deseja tratar. Quanto mais pesada for a fração a ser tratada e maior for o teor de impurezas, mais altas serão as condições de temperatura e pressão (GUIMARÃES, 2006). Os catalisadores utilizados devem ter características hidrogenantes e não estarem contaminados por compostos de enxofre e nitrogênio. Os mais empregados são à base de óxidos ou sulfetos de metais em transição, geralmente suportados em alumina (Al₂O₃) e devem apresentar as características de atividade, seletividade, estabilidade e resistência mecânica (HOFF, 2015).

Entre as reações características no processo de hidrotratamento pode-se citar a hidrodessulfurização (HDS), hidrodesnitrogenação (HDN), hidrodesoxigenação (HDO), hidrodesaromatização (HDA), saturação de olefinas e hidrodesmetalização (HDM).

Para cada uma das classes de reações citadas, existe uma rede reacional complexa envolvendo os componentes a serem removidos. O Aspen Hysys possui um pacote de operações destinadas ao processo de refinamento de petróleo (Petroleum Refining), entre elas está o Hydroprocessor Bed, o qual possui um modelo cinético interno detalhado de uma unidade de hidrotratamento.

1.2. Motivação e contribuição

Devido a leis ambientais que regulamentam o teor de poluentes nos combustíveis, o hidrotratamento tem recebido grande atenção por parte dos pesquisadores. Na literatura existem muitas pesquisas acerca do hidrotratamento, a maioria delas com uma atenção maior voltada para a hidrodessulfurização. Os estudos que envolvem outras classes de reações trabalham apenas com um ou dois componentes, ou utilizam a técnica de "lump".

O "lump" representa um agrupamento de compostos que possuem comportamentos semelhantes (ECKERT e VANEK, 2005). A associação pode ocorrer entre a taxa de reação como o ponto de ebulição ou com a solubilidade (NIGAM e KLEIN, 1993), ou outros grupos de propriedades que possam representar a característica relevante ao processo considerado (PEREIRA NETO, 2013).

Na literatura, ainda é escassa a presença de estudos com componentes nitrogenados. Assim, o objetivo principal desta dissertação é desenvolver uma rede reacional completa para os compostos nitrogenados presentes no hidrotratamento. Como objetivos secundários tem-se:

- Desenvolver mecanismos para as equações das leis de velocidades;
- Fornecer as constantes de equilíbrio para as reações reversíveis;
- Fornecer os valores dos ΔHs das reações em função da temperatura;
- Interpolar os dados com um metamodelo estocástico, o Kriging;
- Otimizar o metamodelo estocástico.

2. CONCEITOS FUNDAMENTAIS

2.1. Hidrotratamento (HDT)

O hidrotratamento (HDT) é um processo com a finalidade de reduzir a concentração de compostos indesejados presentes na carga de alimentação através da inserção do hidrogênio na presença de um catalisador, sem alterar significativamente a curva de destilação da carga (LUCA et al., 2006) e promover a hidrogenação catalítica de moléculas insaturadas, garantindo a preservação do produto tratado (DIETZ, 2014). Teve seu início da década de 50 na América (RAY et al., 1995).

Este processo pode acontecer em frações de petróleo que vão desde a faixa de nafta até gasóleos pesados e tem grande importância na produção de óleos lubrificantes de elevada quantidade e classificação de combustíveis como o diesel e o querosene de aviação. Esta importância advém do surgimento de petróleos com altos teores de impurezas e a presença de consumidores cada vez mais exigentes no mercado (TOLEDO, MEYER e MACIEL FILHO, 2005).

O processo de hidrotratamento tornou-se importante para atender a crescente demanda de combustíveis com baixo teor de impurezas (TOLEDO, MEYER, MACIEL FILHO, 2005) que vem sendo cada vez mais exigido pelos órgãos ambientais a fim de reduzir a emissão de poluentes na atmosfera, em especial, os compostos de enxofre (CALHEIROS, 2014).

Os processos podem se distinguir nas condições de operação, na configuração do reator, na carga, no tipo de catalisador e no aumento de temperatura e pressão das reações envolvidas (DIETZ, 2014).

Os benefícios essenciais na utilização do reator de hidrotratamento (HDT) são a baixa perda de catalisador, a necessidade de menor investimento e menores custos operacionais, a possibilidade de variação na taxa de líquido de acordo com o grau de molhamento do catalisador e apresentar a menor queda de pressão ao longo do leito catalítico (DIETZ, 2014). Entre as desvantagens, pode-se citar a dificuldade de transferência de calor devido a não uniformidade na taxa de liberação de energia ao longo do comprimento do reator e também ao fato de a maior parte da reação acontecer nas proximidades da entrada do reator (MORAIS, 2004).

As condições operacionais diferenciam dentro de uma ampla faixa conforme o tipo de carga e o grau do hidrotratamento. A temperatura de operação do HDT se encontra na faixa de 280° a 420°C. Entretanto, durante a operação o catalisador começa a perder sua atividade, sendo necessário o aumento da temperatura do reator para remediar a desativação e conservar as especificações do produto. A pressão requerida pode variar de 3 MPa a 21 MPa conforme as demais condições operacionais, a qualidade da matéria-prima e o objetivo do tratamento (ANCHEYTA, 2015).

A velocidade espacial horária líquida, mais conhecida como LHSV (Liquid Hourly Space Velocity) é um outro parâmetro operacional que impacta na eficiência do hidroprocessamento e na vida útil do catalisador. Este parâmetro é definido pela razão entre a vazão volumétrica da alimentação e o volume do catalisador (SPEIGHT, 2000).

A Tabela 1 mostra as condições de operação para o HDT com diferentes tipos de alimentação.

Alimentação	Temperatura (K)	Pressão (atm)	LHSV (hr ⁻¹)	
Nafta	593	15-30	3-8	
Querosene	603	30-45	2-5	
Gasóleo atmosférico	613	68-60	1,5-4	
Gasóleo a vácuo	633	75-135	1-2	
Resíduo atmosférico	643-683	120-195	0,2-0,5	
Resíduo a vácuo	673-713	150-225	0,2-0,5	

Tabela 1: Condições de operações de HDT para diferentes alimentações

Fonte: (TOPSOE e MASSOTH, 1996)

2.1.1. Tipos de reatores

Em relação a configuração do reator, eles podem operar em leito fixo (FBR), leito móvel (MBR), leito expandido (EBR) e reator de lama (SBR). Estes reatores diferem em detalhes técnicos (ANCHEYTA, 2011). A Figura 1 mostra uma representação destes reatores.

Os reatores de leito fixo são os mais utilizados em sistemas de operações de hidrotratamento pois são simples e de fácil operação. Entretanto estes reatores são limitados a hidrodessulfurização (HDS) de correntes de alimentações leves (ANCHEYTA, 2011). Para alimentações pesadas são encontradas três fases presentes: hidrogênio gasoso, uma mistura gás-líquido da alimentação parcialmente vaporizada e o catalisador sólido. Nestes casos, o sistema é adaptado para o trickle-bed (TBR) ou leito gotejante (RODRIGUEZ e ANCHEYTA, 2004), onde reatores multifásicos de leitos catalíticos empacotados fixos operam com uma fase gasosa contínua e uma fase líquida, geralmente em fluxo descendente, permitindo a distribuição uniforme sobre o leito catalítico (HOFF, 2015). A Figura 2 mostra este tipo de reator.

Figura 2: Reator Trickle-bed para o hidrotratamento

Fonte: (HOFF, 2015)

O processo é geralmente operado em condições de fluxos co-corrente pois resulta em uma menor perda de carga do que quando este mesmo reator é operado em fluxo contracorrente, reduzindo assim os gastos com bombeamento (JARULLAH, 2011). É de fácil construção, sem partes móveis e com baixo custo de investimento (LOPEZ e DASSORI, 2001).

2.1.2. Reações Químicas

As reações de hidrotratamento são geralmente designadas para processos leves cujo propósito seja a remoção de impurezas ou a saturação de olefinas sem que haja qualquer mudança na curva de destilação da alimentação (JARULLAH, 2011).

A dificuldade de remoção das impurezas depende do tipo de composto em que estão inseridas, por exemplo, é mais fácil remover as impurezas de compostos parafínicos e naftênicos do que de compostos aromáticos (SPEIGHT, 2000).

Dependendo das impurezas presentes na carga, as reações podem ser classificadas como hidrodessulfurização (HDS), hidrodesnitrogenação (HDN), hidrodesoxigenação (HDO), hidrodesaromatização (HDA), saturação de olefinas e hidrodesmetalização (HDM).

Dentro das classes de reações mencionadas, podem ocorrer dois tipos de reações: Hidrogenação e hidrogenólise. Na hidrogenação ocorre a adição de hidrogênio em uma cadeia carbônica insaturada. Na hidrogenólise ocorre a quebra de uma ligação carbonocarbono ou carbono-heteroátomo pelo hidrogênio. Na maioria das vezes esse heteroátomo pode ser enxofre, nitrogênio ou oxigênio (GRAHAM, 1996).

A conversão obtida ao final de cada reação é função de um conjunto de condições que definem o processo de hidrotratamento, são elas: Temperatura, pressão parcial de hidrogênio e tempo de residência. Quanto maior for o valor destes parâmetros, maior será a conversão da unidade (KRAUSE, 2011).

2.1.2.1. Hidrodessulfurização

A hidrodessulfurização (HDS) é a reação onde os compostos orgânicos sulfurados são convertidos em sulfeto de hidrogênio (H₂S). A capacidade de remoção do enxofre depende dos tipos de compostos presentes na carga. Em correntes de diesel, grande parte do enxofre é encontrado na forma de mercaptanas e sulfetos, os quais são de fácil remoção (DIETZ, 2014). Já os compostos sulfurados aromáticos exigem condições severas.

As reações são exotérmicas e irreversíveis (PACHECO, 2008) e há um consumo médio de 2 mol de H_2 por mol de S (enxofre) removido e uma geração média de calor de 32 Kcal por mol de H_2 consumido (TARHAN, 1983). A seguir são apresentados alguns exemplos de reações de HDS (PEREIRA NETO, 2013).

• Mercarptanas

$$R - SH + H_2 \rightarrow R - H + H_2S$$

• Sulfetos

$$R - S - R' + 2H_2 \rightarrow R - H + R' - H + H_2S$$

$$\boxed{\qquad} + 2H_2 \rightarrow C_4H_{10} + H_2S$$

• Dissulfetos

$$R - S - S - R' + 3H_2 \rightarrow R - H + R' - H + 2H_2S$$

• Tiofenos

$$\boxed{\qquad \qquad } +4H_2 \rightarrow C_4H_{10} + H_2S$$

• Benzotiofenos

$$+3H_2 \rightarrow C_2H_5 +H_2S$$

• Dibenzotiofenos

2.1.2.2. Hidrodesnitrogenação

A hidrodesnitrogenação (HDN) é a reação onde os compostos nitrogenados são convertidos em amônia (NH₃). Os compostos nitrogenados são encontrados nas frações mais pesadas do petróleo (ANCHEYTA, 2015) e a reação ocorre simultaneamente com a HDS, porém a HDN é mais lenta resultando em um maior tempo de residência da carga no reator (REFAP, 2009).

Compostos nitrogenados presentes nas frações de destilados médios podem ser encontrados como compostos aromáticos heterocíclicos e compostos heterogêneos não heterocíclicos. Os compostos não heterocíclicos como anilinas, aminas e nitrilas são facilmente removidos e por isso recebem menor atenção (GIRGIS e GATES, 1991).

Os compostos heterocíclicos são classificados em compostos básicos como a piridina e quinolina e em não básicos como indol e carbazol (KLEIN et al., 2006).

As reações são exotérmicas e irreversíveis (SILVA, 2007) e para se obter altas conversões de HDN é essencial uma pressão parcial de hidrogênio elevada garantindo um equilíbrio favorável para a hidrogenação. A seguir são apresentados alguns exemplos de reações de HDN (PEREIRA NETO, 2013).

• Piridinas

• Quinolinas

• Pirróis

$$\bigwedge_{H} +2H_2 \leftrightarrow \bigwedge_{H} +H_2 \rightarrow aminas + H_2 \rightarrow C_4H_{10} + NH_3$$

• Carbazóis

2.1.2.3. Hidrodesoxigenação

A hidrodesoxigenação (HDO) é a reação onde os compostos oxigenados são convertidos em água (H_2O) (HOFF, 2015).

As reações são rápidas, exotérmicas e reversíveis. Embora os compostos oxigenados existam em pequenas quantidades (PACHECO, 2008), as reações de desoxigenação tipo vem ganhando importância nas indústrias de refino por causa do processamento de óleos vegetais (BONFÁ, 2011). A seguir são apresentados alguns exemplos de reações de HDO (PEREIRA NETO, 2013).

• Fenóis

• Ácidos Naftênicos

2.1.2.4. Hidrodesaromatização

A hidrodesaromatização é a reação onde alguns compostos aromáticos são convertidos em naftenos. Esta reação é a que mais consome hidrogênio e é desejável por proporcionar o aumento no número de cetano no produto (HOFF, 2015). O aumento no número de cetano promove a melhora da qualidade da combustão no interior do motor (SILVA, 2007).

As reações são exotérmicas, reversíveis e os seus equilíbrios dependem da temperatura e da pressão parcial de H₂. Quanto maior for a pressão parcial de H₂, maior será a conversão da reação de hidrodesaromatização (PACHECO, 2008). A seguir são mostrados alguns exemplos de reações de desaromatização (PEREIRA NETO, 2013).

• Benzeno

• Naftaleno

• Antraceno

2.1.2.5. Saturação de Olefinas

A saturação de olefinas é a reação onde os compostos orgânicos que possuem duplas ligações são convertidos em seus compostos saturados. É a reação que ocorre mais facilmente. Quando o teor de olefinas é alto, deve-se tomar cuidado para limitar o aumento da temperatura do reator. A reação característica é mostrada a seguir (REFAP, 2009). A reação é altamente exotérmica (SCHWEITZER, LOPEZ-GARCIA e FERRE 2010) e a conversão geralmente é total. A seguir são mostrados alguns exemplos de reações de saturação de olefinas. (PEREIRA NETO, 2013).

$$R - CH = CH - CH_2 - CH_2 - R' + H_2 \rightarrow R - CH_2 - CH_2CH_2 - CH_2 - R'$$

2.1.2.6. Hidrodesmetalização

A hidrodesmetalização (HDM) é a reação onde ocorre a remoção dos metais presentes na carga. Esta reação ocorre nos primeiros leitos do reator, desativando fortemente o catalisador caso o teor seja elevado. Para o controle da desativação é necessária a utilização de catalisadores de menor atividade suportados em partículas de maior diâmetro do que o catalisador principal. Estes catalisadores alternativos são responsáveis por remover os metais presentes na carga antes que o leito principal seja alcançado (PEREIRA NETO, 2013). A Figura 3 esquematiza espécies metálicas presentes em frações pesadas do petróleo.

Figura 3: Representação de espécies metálicas presentes em frações pesadas do petróleo

Fonte: (PEREIRA NETO, 2013)

2.2. Aspen Hysys

O Aspen Hysys é um software de otimização de processos gás e óleo. Este software possui inovações para modelos mais precisos, melhorando o desempenho e aprimorando a experiência do usuário (ASPENTECH).

O Hysys possui um pacote de operações destinadas ao processo de refinamento de petróleo (Petroleum Refining). O reator de HDT dentro deste pacote de operações pode ser encontrado como Hydroprocessor Bed (HBED), o qual possui um modelo cinético interno detalhado de uma unidade de hidroprocessamento. Ele é capaz de modelar reações do tipo HDS, HDN, HDA e saturação de olefinas (HYSYS HELP, 2015).

A modelagem do reator é feita através de um modelo interno chamado Apen EORXR. As reações de saturação são consideradas reversíveis e as outras classes de reações são consideradas irreversíveis. Cada classe de reação é de ordem um para o reagente primário e todas as equações das taxas de reações possuem no denominador o termo LHHW (Langmuir – Hinshelwood – Hougen – Watson) (HYSYS HELP, 2015). A Figura 4 mostra a esquematização do HDT no Hysys.

Figura 4: Esquema do bloco HBED no Hysys

Fonte: Próprio Autor

A cinética LHHW é uma das formas mais complicadas de reação utilizada para modelar catálise heterogênea e não é encontrada em nenhum dos manuais da Aspen (REACTIONS IN HYSYS).

Um grupo de componentes podem ser inseridos no HBED, entre eles podem ser encontrados compostos parafínicos, naftênicos, aromáticos, sulfurados e nitrogenados (HYSYS REFYNING, 2011).

Entre os compostos sulfurados estão: Tiofeno, benzotiofeno, tetrahidrobenzotiofeno, dibenzotiofeno, tetrahidronaftabenzotiofeno, entre outros. Entre os compostos nitrogenados estão: Pirrolidina, pirrol, quinolina, fenatridina, carbazol, entre outros (HYSYS REFINING, 2011).

2.3. Cinética de reações heterogêneas catalíticas

O mecanismo de reações heterogêneas catalíticas passa basicamente por sete etapas, são elas (FROMENT, BISCHOFF, DE WILDE, 2011):

- Etapa 1: Transporte dos reagentes do meio para a superfície do catalisador;
- Etapa 2: Transporte dos reagentes para os poros do catalisador;
- Etapa 3: Adsorção dos reagentes no sítio catalítico;
- Etapa 4: Reação química entre as moléculas ou átomos adsorvidos;
- Etapa 5: Dessorção dos produtos;
- Etapa 6: Transporte dos produtos do poro do catalisador para a superfície da partícula;
- Etapa 7: Transporte dos produtos da superfície do catalisador de volta para o meio fluido.

2.3.1. Taxas das reações heterogêneas catalíticas

Para formular as taxas das reações é necessário que haja uma relação entre a taxa e a quantidade adsorvida com a concentração dos componentes do fluido em contato com a superfície (FROMENT, BISCHOFF e DE WILDE, 2011).

A taxa da reação pode ser dividida em 3 grupos, como mostrado na equação a seguir:

$$=\frac{(Fator cinético)(Grupo de Força Motriz)}{(Grupo de Adsorção)}$$
(2.1)

De acordo com o tipo de sítio, o tipo de mecanismo e o tipo de adsorção, a expressão da taxa pode variar significativamente, sendo necessário desenvolver o mecanismo para cada caso de interesse.

Para diminuir o esforço, Yang e Hougen (1950) publicaram tabelas com variadas expressões para cada um dos três grupos da taxa da reação: fator cinético, força motriz e adsorção. As Tabelas 2, 3, 4 e 5 mostram as equações cinéticas para reações em catalisadores sólidos em diferentes casos.

Em cada reação, é importante saber qual etapa (adsorção, reação na superfície e dessorção) é a limitante da reação, sabe-se que em 75% das reações existentes, a etapa limitante é a reação na superfície. Por este motivo, é indicado começar supondo que esta etapa é a etapa limitante (FOGLER, 2006).

Reação	A⇔R	A⇔R+S	A+B⇔R	A+B⇔R+S	
Adsorção de A é a etapa limitante	$P_A - \frac{P_R}{K}$	$P_A - \frac{P_R P_S}{K}$	$P_A - \frac{P_R}{KP_B}$	$P_A - \frac{P_R P_S}{K P_B}$	
Adsorção de B é a etapa limitante	0	0	$P_B - \frac{P_R}{KP_A}$	$P_B - \frac{P_R P_S}{K P_A}$	
Dessorção de R é a etapa limitante	$P_A - \frac{P_R}{K}$	$\frac{P_A}{P_S} - \frac{P_R}{K}$	$P_A P_B - \frac{P_R}{K}$	$\frac{P_A P_B}{P_S} - \frac{P_R}{K}$	
Reação na superfície é a etapa limitante	$P_A - \frac{P_R}{K}$	$P_A - \frac{P_R P_S}{K}$	$P_A P_B - \frac{P_R}{K}$	$P_A P_B - \frac{P_R P_S}{K}$	
Impacto de A é a etapa limitante (A não é adsorvido	0	0	$P_A P_B - \frac{P_R}{K}$	$P_A P_B - \frac{P_R P_S}{K}$	
Fonte: (Adaptado de FROMENT, BISCHOFF e DE WILDE, 2011)					

Tabela 3: Substituição de grupos gerais de adsorção (1 + K_AP_A + K_BP_B + K_RP_R + K_SP_S + K_IP_I)ⁿ

Reação	A⇔R	A⇔R+S	A+B⇔R	A+B⇔R+S
Adsorção de A é a etapa limitante, substituir K _A P _A por	$\frac{K_A P_R}{K}$	$\frac{K_A P_R P_S}{K}$	$\frac{K_A P_R}{K P_B}$	$\frac{K_A P_R P_S}{K P_B}$
Adsorção de B é a etapa limitante, substituir K _B P _B por	0	0	$\frac{K_B P_R}{K P_A}$	$\frac{K_B P_R P_S}{K P_A}$
Dessorção de R é a etapa limitante, substituir K _R P _R por	KK_RP_A	$KK_R \frac{P_A}{P_S}$	$KK_RP_AP_B$	$KK_R \frac{P_A P_B}{P_S}$
Adsorção de A é a etapa limitante com dissociação de A, substituir K _A P _A por	$\sqrt{\frac{K_A P_R}{K}}$	$\sqrt{\frac{K_A P_R P_S}{K}}$	$\sqrt{\frac{K_A P_R}{K P_B}}$	$\sqrt{\frac{K_A P_R P_S}{K P_B}}$
Quando a adsorção de equilíbrio de A ocorre com dissociação de A, substituir K _A P _A por	$\sqrt{K_A P_A}$	$\sqrt{K_A P_A}$	$\sqrt{K_A P_A}$	$\sqrt{K_A P_A}$
Quando A não é adsorvido, substituir K _A P _A por	0	0	0	0
Fonte: (Adaptado de FROMENT, BISCHOFF e DE WILDE, 2011)				

Reação	A⇔R	A⇔R+S	A+B⇔R	A+B⇔R+S
Adsorção de A é a etapa limitante	k_A	k_A	k_A	k_A
Adsorção de B é a etapa limitante	k_B	k_B	k_B	k_B
Dessorção de R é a etapa limitante	$k_R K$	$k_R K$	$k_R K$	$k_R K$
Adsorção de A é a etapa limitante com dissociação	k_A	k_A	k_A	k_A
Impacto de A é a etapa limitante	$k_A K_B$	$k_A K_B$	$k_A K_B$	$k_A K_B$
Reação na superfície é a etapa limitante sem dissociação de A	k _{sr} K _A	k _{sr} K _A	k _{sr} K _A K _B	$k_{sr}K_AK_B$
Reação na superfície é a etapa limitante com dissociação de A	k _{sr} K _A	k _{sr} K _A	k _{sr} K _A K _B	$k_{sr}K_AK_B$
Reação na superfície é a etapa limitante, B não é adsorvido	k _{sr} K _A	k _{sr} K _A	k _{sr} K _A	k _{sr} K _A
Reação na superfície é a etapa limitante, B não é adsorvido e A é dissociado	k _{sr} K _A	$k_{sr}K_A$	$k_{sr}K_A$	$k_{sr}K_A$

Tabela 4: Grupos cinéticos

Tabela 5. Expoentes dos grupos de adsorção				
Reação	A⇔R	A⇔R+S	A+B⇔R	A+B⇔R+S
Adsorção de A é a etapa limitante, sem dissociação	1	1	1	1
Dessorção de R é a etapa limitante	1	1	1	1
Adsorção de A é a etapa limitante, com dissociação	2	2	2	2
Reação na superfície é a etapa limitante sem dissociação de A	1	2	2	2
Reação na superfície é a etapa limitante com dissociação de A	2	2	3	3
Reação na superfície é a etapa limitante, B não é adsorvido e A é dissociado	2	2	2	2
Reação na superfície é a etapa limitante, B não é adsorvido e A não é dissociado	1	2	1	2
Fonte: (Adaptado de FROMENT, BISCHOFF e DE WILDE, 2011)				

Tabela 5: Expoentes dos grupos de adsorção

2.4. Métodos de estimativas de parâmetros reacionais

Geralmente são utilizados dois tipos comuns de reatores para se obter dados a partir das taxas das reações: Reatores em batelada e reatores diferenciais. Em experimentos com reatores em batelada, são medidas as variações da concentração, pressão e ou volume dos reagentes em relação ao tempo. Os dados são coletados durante a operação transiente. Em reatores diferenciais, a concentração do produto é medida diante de pequenas variações na corrente de alimentação (FOGLER, 2006).

Para analisar os dados coletados, existem seis técnicas conhecidas: Método Diferencial; Método Integral; Método de Meia-vida; Método das Taxas Iniciais e os Métodos de Regressão Linear e Não-linear (FOGLER, 2006). A seguir serão explicados os cinco primeiros métodos de acordo com Fogler (2006), e o último método será mostrado no capítulo 3.

2.4.1. Método diferencial de análise

Considerando uma equação genérica do tipo:

$$-\frac{dC_A}{dt} = k_A C_A^{\alpha} \tag{2.2}$$

E aplicando o logaritmo natural em ambos os lados:

$$\ln\left(-\frac{dC_A}{dt}\right) = \ln k_A + \propto \ln C_A \tag{2.3}$$

A ordem de reação pode ser obtida através da inclinação da reta obtida do gráfico de $ln(-dC_A/dt)$ com (lnC_A) . E o parâmetro k_A pode ser obtido pela através da equação:

$$k_A = \frac{-\left(\frac{dC_A}{dt}\right)}{c_A^{\alpha}} \tag{2.4}$$

2.4.2. Método integral

Para utilizar este método, é necessário supor uma ordem de reação e integrá-la. Se a ordem for a correta, o gráfico correspondente dos dados concentração-tempo deve ser linear. Este método é frequentemente empregado quando a ordem da reação é conhecida e se deseja calcular a velocidade específica da reação a diferentes temperaturas e assim determinar a energia de ativação.

Por exemplo, para uma reação genéria A => Produtos, de suposta ordem zero, tem-se:

$$C_A = C_{A0} - kt \tag{2.5}$$

Para confirmar que a ordem é nula, o gráfico de C_A em função do tempo deverá ser uma reta com inclinação -k.

Se a reação for de primeira ordem, a equação integrada será da forma:

$$ln\frac{c_{A0}}{c_A} = kC_A \tag{2.6}$$

E então, o gráfico de [ln(CA0/CA)] em função do tempo, deverá ser uma reta com inclinação k. E assim sucessivamente.

2.4.3. Método das velocidades iniciais

Em casos da presença de uma reação reversa, a utilização deste tipo de método é mais apropriada. Uma série de experimentos é conduzida a diferentes concentrações iniciais, C_{A0} , sendo a velocidade inicial da reação, $-r_{A0}$, determinada para cada experimento. A velocidade inicial pode ser calculada por diferenciação dos dados e extrapolação para o tempo zero. Relacionando $-r_{A0}$ com C_{A0} por meio de métodos gráficos, pode-se obter a lei de velocidade apropriada.

Por exemplo, se a lei da velocidade for apresentada como mostra a seguir:

$$-r_{A0} = kC_{A0}^{\alpha} \tag{2.7}$$

Então a inclinação da reta do gráfico de $\ln(-r_{A0}) \times \ln(C_{A0})$ fornecerá a ordem de reação a.

2.4.4. Método das meias-vidas

Meia-vida de uma reação, $t_{1/2}$, é definida como o tempo necessário para que a concentração do reagente seja reduzida à metade de seu valor inicial. Se obter a expressão do $t_{1/2}$ em função da concentração inicial, C_{A0} , será possível determinar os valores da ordem e da velocidade específica da reação.

Supondo uma reação de primeira ordem, com a seguinte expressão:

$$-\frac{dC_A}{dt} = -r_A = k_A C_A^{\alpha} \tag{2.8}$$

O tempo de meia-vida é dado por:

$$lnt_{1/2} = ln \frac{2^{\alpha - 1} - 1}{k(\alpha - 1)} + (1 - \alpha) \left(\frac{1}{C_{A0}}\right)$$
(2.9)

A ordem da reação pode ser obtida por 1 - inclinação da reta do gráfico de $ln(t_{1/2})$ X $ln(C_{A0})$.

2.5 Métodos de interpolação espacial

A interpolação espacial é o processo capaz de gerar mapas de dados a partir de uma pequena amostra de medições, de forma que este mapa seja uma representação relativamente confiável da realidade. Uma medição é um valor que representa uma variável e uma posição (MATIAS et al., 2004). O objetivo deste método é estimar valores para regiões do espaço utilizando medições em locais próximos. Existem vários métodos de interpolação espacial, entre eles pode-se citar (FAZIO, 2013):

 Método do vizinho mais próximo é um método de interpolação determinista onde o valor estimado é sempre igual à sua amostra mais próxima. É regularmente utilizada para interpolações rápidas (BOTELHO et al., 2005).

- Ponderação pelo inverso da distância estima o valor desconhecido como igual à média das medições ponderadas pelo inverso da distância do ponto a ser estimado (SILVA, QUINTAS e CENTENO, 2007).
- O método spline estima o valor conhecido como igual a um polinômio que utiliza apenas as medições mais próximas (LI e HEAP, 2008).
- Método de Kriging estima o valor desconhecido utilizando um modelo de variação de dados em função da distância, conhecido como semivariograma (LI e HEAP, 2008).
- Redes de funções de base radial estima o valor desconhecido utilizando neurônios que usam funções de ativação de base radial, como a função Gaussiana (HAYKIN, 2008).
- Markov Bayes é um método que utiliza probabilidades condicionais para realizar a interpolação (SIL e SRINVASAN, 2009).

2.5.1 Método Kriging

O método de Kriging foi criado por Daniel G. Krige (1951) e desenvolvida alguns anos depois por Georges Matheron (1961). Este método utiliza uma relação chamada de semivariograma (relação espacial que os dados têm entre si; variação quadrática dada uma distância) e tendência (valor médio dos dados). Com estas duas informações, o Kriging executa a interpolação por meio de uma média ponderada dos dados amostrais de forma que o erro esperado seja minimizado (FAZIO, 2013).

Através do Kriging, pode-se conhecer o erro associado à predição dos valores estimados. Este erro é analisado através da variância da estimativa (YAMAMOTO e CONDE, 1999).

De acordo com Fazio (2013), o Kriging divide o dado (z) em duas partes: tendência (t) e ruído (s). Onde a primeira representa o valor esperado ou valor médio e a segunda representa uma parte imprevisível, cuja média é igual a zero. Como mostra a equação a seguir (CRESSIE, 1993):

$$z = s + t \tag{2.10}$$

O valor esperado do ruído é zero, assim, o valor esperado dos dados é igual à tendência.

$$E(z) = E(s) + E(t) = 0 + E(t)$$
(2.11)

$$E(z) = E(t) \tag{2.12}$$

Para realizar a interpolação, o Kriging faz uma soma ponderada dos dados amostrais:

$$z_j = \sum_i \omega_i \, z_i \tag{2.13}$$

Onde i representa os pontos amostrais, j representa os pontos com valores que precisam ser interpolados e ω representa o peso de cada dado amostral. Assim:

$$E(z_j) = E(\sum_i \omega_i z_i)$$
(2.14)

Como o Kriging é um método não viciado, o valor interpolado esperado é igual ao valor real esperado:

$$E(z_j) = \sum_i \omega_i E(z_i) \tag{2.15}$$

Os pesos são calculados de forma que o valor esperado do erro quadrático da interpolação seja o menor possível. A equação do erro médio quadrático é dada por:

$$\sigma^2 = E\left(\sum_i \omega_i \, z_i - z_j\right)^2 \tag{2.16}$$

Um outro conceito utilizado no Kriging é o semivariograma (γ) que representa a metade da diferença quadrática esperada entre os valores de dois pontos a e b cuja distância entre si é h, dado pela equação:

$$\gamma(h) = \frac{E(z_a - z_b)^2}{2}$$
(2.17)

Na equação original do erro (2.16) é possível substituir a expressão z = t + s. Resultando em:

$$\sigma^{2} = E\left(\sum_{i} \omega_{i} \left(t_{i} + s_{i}\right) - \left(t_{j} + s_{j}\right)\right)^{2} = E\left(\sum_{i} \omega_{i} t_{i} + \sum_{i} \omega_{i} s_{i} - t_{j} - s_{j}\right)^{2}$$

$$\sigma^{2} = \left(E(\sum_{i} \omega_{i} t_{i}) + E(\sum_{i} \omega_{i} s_{i}) - E(t_{j}) - E(s_{j})\right)^{2} = \left(\sum_{i} \omega_{i} E(t_{i}) + E(\sum_{i} \omega_{i} s_{i}) - E(t_{j}) - E(t_{j}) - E(t_{j})\right)^{2}$$
(2.18)

A partir da equação (2.12), pode-se afirmar que:

$$E(z_j) = E(t_j) \tag{2.19}$$

$$E(z_i) = E(t_i) \tag{2.20}$$

$$E(t_j) = \sum_i \omega_i E(t_i)$$
(2.21)

O que significa dizer que, o valor esperado da tendência real é igual à soma ponderada do valor esperado da tendência da amostra. Então:

$$\sigma^{2} = \left(E(\sum_{i} \omega_{i} s_{i}) - E(s_{j}) \right)^{2} = E\left(\sum_{i} \omega_{i} s_{i} - s_{j}\right)$$
(2.22)

Desta forma, se conclui que a tendência não influencia na função erro. A etapa seguinte, consiste em minimizar a função erro, desde que a restrição da tendência seja respeitada. Para esta etapa pode-se utilizar o Multiplicador de Lagrange (MORDECAI, 2003).

A função de Lagrange é definida por:

$$\Lambda(x,\lambda) = f(x) + \lambda g(x)$$

$$g(x) = c \qquad (2.23)$$

Onde c representa uma constante, f(x) representa a função a ser minimizada, g(x)é a restrição e λ é uma variável extra chamada de multiplicador de lagrange. A minimização respeitando a restrição é realizada igualando a derivada a zero:

$$\nabla (f(x) + \lambda g(x)) = 0$$

$$g(x) = c \qquad (2.24)$$

Aplicando para as equações do Kriging:
$$\nabla \left(\sigma^2 + \lambda_l \left(E(t_j) - \sum_i \omega_i E(t_i) \right) \right) = 0$$
(2.25)

$$E(t_j) - \sum_i \omega_i E(t_i) = 0$$
(2.26)

Onde λ_1 representa o Multiplicador de Lagrande, t representa a tendência, σ^2 representa a função erro, ω representa os pesos, i representa os pontos amostrais e j representa os pontos a serem interpolados.

Dependendo de como a tendência é assumida, o método de Kriging é abordado de forma diferente. Para uma tendência igual a zero ele é chamado de Kriging Simples, se a tendência é uma constante de valor desconhecido o método pode ser chamado de Kriging Ordinário e se a tendência for um polinômio o método é chamado de Kriging Universal (CRESSIE, 1993).

3. ALGUNS TRABALHOS DESENVOLVIDOS

3.1. Hidrotratamento

Froment, Depauw e Vanrysselberghe (1994) desenvolveram um modelo cinético de um reator de hidrotratamento considerando uma rede reacional envolvida, e não apenas uma única reação geral contendo os seguintes componentes sulfurados: benzotiofeno, dibenzotiofeno e dimetildibenzotiofeno.

Pille e Froment (1997) realizaram um estudo cinético de dois componentes nitrogenados, a piridina e a piperidina avaliando em três tipos de alimentações diferentes e concluíram que a reação se processa em dois tipos de sítios ativos e uma adsorção competitiva de H₂.

Ancheyta e Sanchez (2001) realizaram um estudo experimental em um reator piloto de leito fixo, para avaliar o efeito do hidrotratamento na qualidade do diesel. Os experimentos mostraram que as especificações do diesel poderiam ser alcançadas através de um único estágio de tratamento da mistura e para alcançar um teor de enxofre menor que 50wppm, a temperatura aumenta entre 20 e 35 graus.

Bej, Dalai e Adjaye (2001) fizeram uma comparação entre a hidrodenitrogenação de compostos básicos e não básicos de areias petrolíferas derivadas de cortes de destilação pesadas e observaram que a taxa de remoção de compostos não básicos é muito menor do que a taxa de remoção de compostos básicos.

Zeuthen, Knudsen e Whitehurst (2001) estudaram a importância dos compostos nitrogenados orgânicos no hidrotratamento e observaram que os compostos indois e quinolinas são muito mais reativos quando comparados com os carbazois.

Chowdhury, Pedernera e Reimert (2002) desenvolveram um modelo para reações de HDS e HDA utilizando equações de Lagmuir-Hinshelwood para descrever as reações. A inibição do H₂S foi considerada. Os parâmetros cinéticos foram obtidos pela análise diferencial em diferentes níveis de conversão.

Avraam e Vasalos (2003) desenvolveram um modelo estacionário para o hidroprocessamento catalítico com alimentações de óleo, considerando as principais

reações envolvidas e comparando os resultados obtidos com uma planta piloto de hidrodessulfurização. Os dados cinéticos são fornecidos a uma temperatura fixa.

Massoth e Kim (2003) estudaram a cinética da quinolina nas condições da fase vapor. O mecanismo completo da hidrodesnitrogenação da quinolina proposto passa por onze reações distintas, algumas irreversíveis e outras não, até haver a completa remoção do nitrogênio.

Em (2004), Froment publicou a modelagem da rede reacional completa dos principais componentes sulfurados, com os devidos mecanismos reacionais e parâmetros e ainda fazendo análises de possíveis inibidores do processo.

Toledo, Meyer e Maciel Filho (2005) desenvolveram uma modelagem dinâmica considerando não apenas as reações de HDO, como também as de HDS e HDN, porém foi considerado a penas uma taxa de reação global para cada um desses grupos. O comportamento dinâmico mostrou-se altamente não-linear, com variação de sensibilidade e existência de tempo morto ao longo do comprimento axial do reator frente a perturbações nos seus parâmetros operacionais.

Jiménez, Kafarov e Nuñez (2007) modelaram reações simultâneas de HDA, HDS e HDN em alimentação de óleo pesado com experimentos realizados em escala piloto. O modelo foi desenvolvido considerando apenas uma reação geral para cada grupo de reações.

Murali et al. (2007) desenvolveu um modelo bifásico em reatores de hidrotratamento considerando as reações de remoção de compostos de enxofre e aromáticos com a determinação de seus respectivos parâmetros cinéticos a temperatura constante. Com o modelo desenvolvido, pode-se prever a qualidade do produto, o perfil de temperatura no reator e o consumo de hidrogênio.

Hoekstra (2007) estudou o efeito da razão gás/óleo no hidrotratamento de diesel com baixo teor de enxofre. Esta razão deve ser mantida alta para facilitar o controle da pressão parcial de hidrogênio no interior do reator e minimizar o efeito da inibição de H₂S.

Scherer, Malvesti e Pergher (2009) propuseram uma rota alternativa para a remoção de benzotiofeno e dibenzotiofeno de combustíveis através da adsorção onde a

eficiência da remoção do benzotiofeno foi melhor do que a do benzotiofeno, explicado pela menor complexidade do composto.

Hoff (2015) realizou um estudo observando modificações em reatores de leito catalítico no processo de hidrotratamento e observou que o reator trickle-bed melhor se encaixa para o processo e ainda sugeriu uma troca no sistema de dispersores de carga, substituindo dispersores simples por dispersores de alta eficiência.

Gutierrez et al. (2017) publicaram um estudo sobre a hidrodesoxigenação de compostos observando a influência da presença de H_2S na corrente de alimentação. A presença de H2S aumenta a reatividade de alguns compostos como heptanoato de etila e guaiacol e diminui a reatividade outros como o fenol.

Li e Cai (2017) estimaram parâmetros de algumas reações de hidrocraqueamento utilizando um modelo de "Lumping" para os componentes e compararam com estudos feitos anteriormente.

3.2. Kriging

Ryu et al. (2002) descreveram em seu artigo as definições, as funções de estimativa e os algoritmos de dois tipos de kriging. O modelo de estimativa empregado foi o de interpolação a partir do DACE (Design and Analysis of Comuter Experiments).

Martin e Simpson (2003) fizeram uma descrição básica sobre o Kriging destacando as principais semelhanças e diferenças entre os três principais tipos de Kriging (Simples, Ordinário e Universal), além disso aplicaram os três tipos em 6 estudos de caso diferentes e chegaram à conclusão que o uso de cada tipo de kriging pode ser melhor ou pior dependendo do caso aplicado.

Liu, Zhan e Tan (2012) desenvolveram um método de Kriging otimizado utilizando um algoritmo nomeado artifício de colônia de abelhas combinando amostragem de importância para problemas de confiabilidade estrutural. A metodologia se mostrou eficiente particularmente para problemas de alta não-linearidade, alta dimensionalidade e funções de desempenho implícitas.

Regis (2015) desenvolveu um novo método de otimização baseado no kriging chamado TRIKE que implementa uma abordagem de região de confiança em que cada

iteração é obtida maximizando uma função de melhoria esperada em alguma região de confiança.

Romero, Marim e Amon (2015) conduziram um experimento numérico para estudar a evolução de vários erros métricos durante o aprimoramento sequencial do modelo, estimar erros de predição e definir critério de parada adequado sem a necessidade de ter amostras adicionais além daquelas que já haviam sido utilizadas para a construção do modelo. Os resultados mostraram que é possível estimar o modelo com precisão se a utilização de amostras adicionais.

Para dados de entrada com grandes dimensões, o kriging se torna computacionalmente caro pois requer que a matriz seja invertida diversas vezes até que os parâmetros do modelo sejam estimados. Assim, Bouhlel et al (2016) melhoraram o kriging utilizando a construção de um núcleo de covariância que depende apenas de alguns parâmentros. Este núcleo foi construído com base em informações obtidas a partir do método de mínimos quadrados. Os resultados se mostraram satisfatórios para casos numéricos com até 100 dimensões.

Vicario, Craparotta e Pistone (2016) fizeram um estudo comparativo entre a utilização do kriging e as redes neurais, a fim de determinar qual modelo garantia uma melhor precisão na previsão do resultado de experimentos computacionais de dinâmica de fluidos em quatro dimensões para turbinas de baixa pressão onde são fornecidos valores de perda de energia.

Yi (2016) utilizou o método do kriging para prever condições de luz do dia durante um ano inteiro e associar este método com ferramentas de simulação de energia. Com isto ele obteve resultados mais realísticos e conseguiu reduzir o esforço computacional, comparado com os métodos que existiam anteriormente.

Gaspar, Teixeira e Soares (2017) propuseram um modelo rigoroso do Kriging com refinamento ativo para resolver a avaliação de confiabilidade dos problemas, como nos casos de haver um único ponto de design, em funções com um número moderado de variáveis aleatórias de entrada. O modelo desenvolvido se mostrou eficiente.

Dirignei (2017) utilizou o método Kriging Multivariante aplicado a um sistema de suspensão de veículo, a partir de um algoritmo capaz de lidar com um grande número

de parâmetros. O algoritmo proposto pode ser utilizado tanto para a estimação de probabilidade quanto para a validação.

Zhang et al. (2017) desenvolveu um modelo chamado método de convergência de linhas capaz de prever a função em um ponto onde a mesma não pode ser avaliada. O Kriging foi adotado para uma aproximação unidimensional, estimando não apenas o valor da função, mas também a incerteza da estimativa no ponto inacessível. O modelo mostrou ser preciso, robusto e confiável.

Wang, Wang e Zhao (2017) utilizaram o modelo de kriging no processo de otimização para atualizar o modelo FRF, um modelo baseado em função de resposta de frequência de aceleração. O kriging foi escolhido por ser um modelo rápido e de fácil aplicação.

4. METODOLOGIA

4.1. Definição dos componentes das reações

Muitas são as classes das reações presentes no processo de hidrotratamento: HDS, HDN, HDA, HDO, etc. Inúmeras são as publicações acerca da hidrodessulfurização, incluindo a rede reacional completa proposta por Froment (2004). Nesta dissertação serão propostas as equações das taxas para os componentes presentes na hidrodenitrogenação, e um modelo tipo Kriging para a rede reacional completa envolvida nessa classe reacional do hidrotratamento. Os compostos nitrogenados estudados serão os mesmos presentes no reator de HDT do software Hysys. A Tabela 6 mostra a nomenclatura dada pelo Hysys, a nomenclatura real, a fórmula molecular e a fórmula estrutural.

Nomenclatura Hysys	Nomenclatura Real	Fórmula Molecular	Fórmula Estrutural
LBNIT	Pirrolidina	C4H9N	N H
LNNIT	Pirrol	C4H5N	N H
MBNITN	1,2,3,4- Tetrahidroquinolina	C9H11N	N H
MBNITA	Quinolina	C ₉ H ₇ N	N
MNNITA	1,2-Dihidroquinolina	C9H9N	N H
HBNITAN		C ₂₁ H ₃₃ N	CgH18
HBNITA2		$C_{21}H_{25}N$	C ₈ H ₁₈

Tabela 6: Componentes nitrogenados utilizados

Fonte: (Próprio Autor)

4.2. Reações envolvidas na hidrodesnitrogenação

No reator de HDT são encontradas 17 reações para compostos nitrogenados (CHANG, 2011), sendo 5 reações de hidrogenação, 5 de hidrodesnitrogenação e 7 reações de craqueamento. Como o foco deste estudo não inclui as reações de craqueamento, serão utilizadas apenas as reações de hidrogenação e hidrodesnitrogenação. A Figura 5 mostra a rede reacional completa para a hidrodesnitrogenação. Todas as reações com suas respectivas estequiometrias encontram-se no ANEXO I.

Figura 5: Rede Reacional da Hidrodesnitrogenação

Fonte: (Próprio Autor)

4.3. Mecanismos reacionais

Para cada uma das 10 reações de compostos nitrogenados, serão propostos cinco mecanismos reacionais, os quais são mostrados a seguir com sua respectiva nomenclatura atribuída.

- (02) Mecanismos considerando que a reação na superfície do catalisador é a etapa limitante da reação, sendo:
 - (01) Mecanismo considerando que há dissociação do reagente nitrogenado (M1);
 - (01) Mecanismo considerando que não há dissociação do reagente nitrogenado (M2).
- (02) Mecanismos considerando que a etapa de adsorção dos reagentes na superfície do catalisador é a etapa limitante da reação, sendo:

- (01) Mecanismo considerando que há dissociação do componente nitrogenado (M3);
- (01) Mecanismo considerando que não há dissociação do componente nitrogenado (M4).
- (01) Mecanismo considerando que a etapa de dessorção dos produtos é etapa limitante da reação (M5).

4.4. Método de obtenção de parâmetros reacionais

4.4.1. Lei de velocidade em função da concentração

Nesta dissertação será utilizado o método do reator diferencial. Este é um método que consiste em determinar a taxa da reação como função da concentração ou da pressão parcial dos componentes. O reator é constituído por um tubo contendo uma quantidade muito pequena de catalisador. O critério para que o reator seja considerado diferencial é que a conversão dos reagentes no leito seja extremamente pequena, assim como a variação da temperatura ou da concentração através do leito. Como resultado, a concentração dos reagentes através do reator é praticamente constante e igual a concentração de entrada (FOGLER, 2006).

A equação 4.1 mostra como encontrar o valor da taxa da reação experimentalmente.

$$-r_A = \frac{F_{A,in} - F_{A,out}}{W} \tag{4.1}$$

Onde: $-r_A$ é a taxa da reação para o reagente A, $F_{A,in}$ é a vazão molar de entrada do componente A, $F_{A,out}$ é a vazão molar de saída do componente A e W é a massa do catalisador.

É necessário calcular as taxas das reações para diferentes alimentações, variando a composição de entrada dos componentes e a temperatura.

4.4.2. Linearização das leis de velocidades das reações

Para facilitar o esforço computacional e poder aplicar o método de regressão linear para encontrar os parâmetros reacionais, é indicado realizar a linearização das equações das taxas, de forma que todas fiquem da forma mostrada na equação 4.2 (FROMENT, BISCHOFF e DE WILDE, 2011).

$$y = a + bP_A + cP_R + dP_S \tag{4.2}$$

Por exemplo, para a equação mostrada a seguir:

$$r_{A} = \frac{kK_{A} \left[P_{A} - \left(\frac{P_{R}P_{S}}{K}\right) \right]}{(1 + K_{A}P_{A} + K_{R}P_{R} + K_{S}P_{S})^{2}}$$
(4.3)

Os coeficientes y, a, b, c e d são os seguintes:

$$y = \sqrt{\frac{P_A - \frac{P_R P_S}{K}}{r_A}}; a = \frac{1}{\sqrt{kK_A}}; b = \frac{K_A}{\sqrt{kK_A}}; c = \frac{K_R}{\sqrt{kK_A}}; d = \frac{K_S}{\sqrt{kK_A}}$$
(4.4)

4.5. Cálculo da constante de equilíbrio Keq

A constante de equilíbrio para cada uma das reações reversíveis foi calculada a partir de propriedades termodinâmicas, com o intuito de diminuir a quantidade de variáveis a serem encontradas experimentalmente.

A metodologia utilizada para o cálculo dessa constante foi a sugerida por Smith, Van Ness e Abbott (2005), onde a constante Keq é resultado de uma multiplicação de três fatores, K₀, K₁ e K₂. As equações 4.5, 4.6 e 4.7 mostram esses fatores.

$$K_0 = \exp\left(\frac{-\Delta G_0^o}{RT_0}\right) \tag{4.5}$$

$$K_1 = \exp\left[\frac{\Delta H_0^0}{RT_0} \left(1 - \frac{T_0}{T}\right)\right]$$
(4.6)

$$K_{2} = \exp\left\{\Delta A\left[ln\tau - \left(\frac{\tau-1}{\tau}\right)\right] + \frac{1}{2}\Delta BT_{0}\frac{(\tau-1)^{2}}{\tau} + \frac{1}{6}\Delta CT_{0}^{2}\frac{(\tau-1)^{2}(\tau+2)}{\tau} + \frac{1}{2}\frac{\Delta D}{T_{0}^{2}}\frac{(\tau-1)^{2}}{\tau^{2}}\right\}$$
(4.7)

Onde: $\Delta G0^{\circ}$ é a energia de Gibbs padrão da reação a 298K, R é a constante universal dos gases, T₀ é a temperatura de referência 298K, ΔH_0° é o calor da reação padrão a 298K, T é a temperatura em que está ocorrendo a reação, ΔA , ΔB , ΔC e ΔD são os balanços dos primeiros, segundos, terceiros e quartos coeficientes, respectivamente, do Cp para os componentes envolvidos na reação, e τ é a relação T/TO.

4.6. Simulações

As simulações foram conduzidas em um reator diferencial no Hysys em uma faixa de temperatura de 300°C até 400°C divididos em sete pontos igualmente espaçados. Em cada temperatura foram realizadas simulações para diferentes arranjos de composições na corrente de entrada, um total de 500 arranjos diferentes para o método de regressão linear e 2000 arranjos diferentes para o método kriging. A escolha destes arranjos foi feita a partir do método de amostragem conhecido como hipercubo latino.

4.6.1. Método de amostragem: Hipercubo Latino

Esta técnica de amostragem foi apresentada pela primeira vez em 1979 por McKay, Beckman e Conover. Ela divide o domínio de cada variável aleatória em faixas (OLSSOM, SANDEBERG e DAHLBLOM, 2003), cada faixa é amostrada uma única vez, resultando em uma distribuição esparsa dos pontos, o que garante uma cobertura homogênea do domínio das variáveis aleatórias (SANTOS, 2014).

Seja nv o número de variáveis aleatórias do problema e n o número de pontos da amostra. Uma matriz P, de dimensões (n x nv) é gerada, onde cada uma das nv colunas é uma permutação aleatória de 1 até n. Outra matriz R é gerada com as mesmas dimensões, cujos componentes são números aleatoriamente distribuídos entre (0,1). Então é possível obter uma matriz S a partir da equação 4.8 (OLSSON, SANDEBERG e DAHLBLOM, 2003).

$$S = \frac{1}{n}(P - R) \tag{4.8}$$

As amostras são geradas a partir de S, tal que:

$$x_{ij} = F_{xj}^{-1}(s_{ij}) \tag{4.9}$$

Onde Fxj⁻¹ é a inversa da função de distribuição acumulada de probabilidade da variável Xj.

Neste trabalho, foram coletados dados separados em 3 categorias: dados para as simulações pelo método de regressão, dados para as simulações de construção do modelo e dados de validação para verificar o desempenho dos modelos.

O método de amostragem LHS (Latin Hypercube Sampling) segue algumas propriedades: Os pontos são escolhidos aleatoriamente, mas não de uma forma independente; A média é enviesada; Cada variável é dividida em n estrados com igual probabilidade marginal (DEHLENDORFF, 2010).

Para a construção das amostras, foi necessário seguir alguns critérios, como a quantidade limite dos componentes presentes na mistura. As quantidades limites utilizadas são propostas por Riazi (2005).

A Tabela 7 mostra os critérios de entrada para o LHS.

Componentes	Porcentagem em Massa (RIAZI, 2005)	Fração Molar
Nitrogenados	0, 1 - 6	0,0003 - 0,006
H2S		0,0001 - 0,0008
Aromáticos	30 - 50	0,045 - 0,1125
	Fonte: (Próprio Autor)	

Tabela 7: Critérios para a construção das amostras

O restante da carga foi completado com parafinas e naftênicos, as quais para a hidrodesnitrogenação são inertes pois não participam das reações e também não atuam como inibidores desta classe de reação.

4.7. Método de Regressão Linear

4.7.1. Regressão dos parâmetros a temperatura constante

Com as equações linearizadas e as simulações finalizadas, é necessário realizar o método de regressão para encontrar os parâmetros a temperatura constante. A regressão foi realizada pelo método de regressão normal multivariada utilizando a função "mvregress" do Matlab.

A regressão normal multivariada é a regressão de uma resposta d-dimensional em uma matriz de projeto de variáveis estimadoras, com erros normalmente distribuídos.

O modelo é representado a seguir:

$$\mathbf{y}_i = \mathbf{X}_i \boldsymbol{\beta} + \boldsymbol{\varepsilon}_i, \qquad i = 1, 2, \dots, n. \tag{4.10}$$

Onde \mathbf{y}_i representa o vetor resposta d-dimensional, \mathbf{X}_i representa a matriz de projeto das variáveis estimadoras, β representa o vetor ou matriz dos coeficientes de regressão e \mathbf{e}_i representa um vetor d-dimensional dos termos que representam os erros com uma distribuição multivariável normal dada por:

$$\varepsilon_i \sim MVN_d(0, \Sigma)$$
 (4.11)

Como argumentos de entrada no código, tem-se a matriz X e a matriz y com as variáveis respostas. Considerando d como o número de dimensões na variável resposta y, n o número de observações, k o número de coeficientes de regressão que serão estimados, p o número de variáveis estimadoras, tem-se as seguintes observações para a construção da matriz X.

- Se d=1, então especifica-se X como uma única matriz com tamanho n x k.
- Se d>1 e todas as d dimensões tem o mesmo tamanho matricial, então especifica-se X como uma única matriz com tamanho n x p.
- Se d>1 e todas as n observações tem o mesmo tamanho matricial, especifica-se X como uma única matriz com tamanho d x k.
- Se d>1 e todas as n observações não possuem o mesmo tamanho matricial, especifica-se X como uma matriz de comprimento n contendo matrizes com tamanho d x k.

Para incluir um termo constante no modelo de regressão, cada matriz deve conter uma coluna de uns.

Para especificar a matriz de variáveis respostas, y, especifica-se uma matriz n x d. Quando d=1, a função mvregress trata os valores de y como n valores de respostas independentes.

Como argumentos de saída, tem-se o beta (β), que representa os coeficientes estimados na regressão, estes retornam como um vetor coluna ou como uma matriz.

- Se for especificado X como uma matriz única n x k, então a função mvregress retorna os valores de beta como um vetor coluna de comprimento k. Por exemplo, se X é uma matriz de tamanho 20X5, então beta corresponde a um vetor coluna de tamanho 5X1.
- Se for especificado X como uma matriz contendo uma ou mais matrizes de tamanho d x k, então a função mvregress retorna beta como um vetor coluna de tamanho k.
- Se for especificado X como uma única matriz n x p e a matriz y tiver dimensão d>1, então a função mvregress retorna beta como uma matriz pXd.

4.7.2. Regressão dos parâmetros em função da temperatura

A velocidade específica k é um parâmetro que depende da temperatura seguindo a equação 4.12.

$$k = A_0 \exp\left(\frac{-Ea}{RT}\right) \tag{4.12}$$

Onde A₀ representa o fator multiplicador da expressão, Ea é a energia de ativação da reação, R é a constante universal dos gases e T é a temperatura da reação.

A expressão linearizada para a equação 4.12 é dada pela equação 4.13.

$$\ln(k) = \ln(A_0) - \frac{Ea}{RT}$$
(4.13)

Com os valores de k a várias temperaturas, é possível encontrar os valores de A_0 e Ea a partir das seguintes expressões.

$$A_0 = \exp(coeficiente\ linear\ da\ reta) \tag{4.14}$$

$$Ea = -R \times (coeficiente angular da reta)$$
(4.15)

4.7.3. Cálculo do calor de reação

O calor da reação nas temperaturas dos experimentos será obtido pela expressão a seguir (SMITH, VAN NESS e ABBOTT, 2005):

$$\Delta H^{\circ} = \Delta H_0^o + \int_{T_0}^T \Delta C p \ dt \tag{4.16}$$

Onde ΔH_0° é a entalpia padrão a 298,15K, T₀ é a temperatura de referência, 298,15K, T é a temperatura da reação e Cp representa uma expressão para a variação da entalpia com a variação da temperatura a pressão constante.

4.8. Método kriging

É uma boa escolha para este caso, visto que o kriging interpola o ponto de dados observados ou conhecidos.

Neste trabalho foi utilizado o pacote DACE (Design and Analysis of Computer Experiment), o qual é uma toolbox do software Matlab para aproximações via método kriging para modelos computacionais.

O DACE utiliza o método do kriging ordinário, o qual assume uma média constante em todo o domínio. De acordo com Martin e Simpson (2003), a modelagem do kriging consiste em duas partes:

- Regressão linear dos dados (parte A);
- Ajuste sistemático do modelo (parte B).

Dado um conjunto de m dados com $X = [x_1, x_2, ..., x_m]^T$ representando o vetor de dados de entrada e $Y = [y_1, y_2, ..., y_m]^T$ representando o vetor resposta. De acordo com Sacks, Welch e Mitchell (1989), é adotado um modelo \hat{y} que expressa a resposta determinística y(x) para os m dados de entrada, através de um modelo de regressão F e uma função randômica estocástica.

$$\hat{y}(\mathbf{x}) = F(\beta, \mathbf{l}, \mathbf{x}) + z(\mathbf{x})$$

Onde β representa os parâmetros de regressão e o z(x) um processo randômico estacionário gaussiano com média nula e covariância dada pela equação a seguir:

$$E(x_1, x_2) = \sigma^2 R(\theta, x_1, x_2)$$
(4.18)

Onde σ^2 representa a variância, e R representa a função de correlação espacial com parâmetros θ a qual é responsável pelo controle da suavidade do modelo, da influência dos pontos adjacentes e da diferença na superfície de resposta.

Sejam pontos do modelo computacional:

$$X = \{x_1, x_2, \dots, x_n\} \subset \Omega \tag{4.19}$$

Onde Ω representa todas as possíveis entradas do modelo que resultam em respostas, ou o domínio do modelo computacional. As respostas são dadas por:

$$Y = \{y(x_1), y(x_2), \dots, y(x_n)\}$$
(4.20)

Considera-se uma estimativa linear para as respostas:

$$\hat{y}(x) = \lambda^T(x)Y \tag{4.21}$$

Em qualquer ponto x $\in \Omega$. O kriging assume $\hat{y}(x)$ como uma variável randômica e encontra a melhor estimativa linear imparcial, $\lambda^T(x)Y$, que minimiza o erro quadrado médio (MSE) da estimativa:

$$MSE[\hat{y}(x)] = E[\lambda^{T}(x)Y - y(x)]^{2}$$
(4.22)

Sujeito a uma restrição de imparcialidade:

$$E[\lambda^T(x)Y] = E[y(x)] \tag{4.23}$$

O kriging universal é definido como um conjunto de funções de regressão:

$$f(x) = \{f_1(x), f_2(x), \dots, f_k(x)\}^T$$
(4.24)

O kriging ordinário é um caso especial, definido como:

$$f(x) = \{1\} \tag{4.25}$$

A próxima etapa é definir um vetor F que seja o valor de f(x) avaliado em cada um dos locais conhecidos:

$$F = \begin{bmatrix} f(x_1) \\ f(x_2) \\ \vdots \\ f(x_n) \end{bmatrix}$$
(4.26)

Será necessário construir uma matriz de correlação. A matriz R representa a matriz de correlação composta pela função de correlação espacial avaliada e cada combinação possível de pontos conhecidos:

$$R = \begin{bmatrix} R(\theta, x_1, x_1) & R(\theta, x_1, x_2) & \dots & R(\theta, x_1, x_n) \\ R(\theta, x_2, x_1) & R(\theta, x_2, x_2) & \dots & R(\theta, x_2, x_n) \\ \vdots & \vdots & \ddots & \vdots \\ R(\theta, x_n, x_1) & R(\theta, x_n, x_2) & \cdots & R(\theta, x_n, x_n) \end{bmatrix}$$
(4.27)

Por último é preciso definir um vetor que representa a correlação entre um ponto desconhecido e todos os pontos conhecidos:

$$r(x) = \{R(\theta, x, x_1), R(\theta, x, x_2), \dots, R(\theta, x, x_n)\}^T$$
(4.28)

Se $\lambda(x)$ resolve o problema de minimização da restrição, então $\lambda^T(x)Y$ é chamado de melhor estimativa linear imparcial para $\hat{y}(x)$, a qual pode ser encontrada a partir da equação:

$$\hat{y}(x) = f^{T}(x)\hat{\beta} + r^{T}(x)R^{-1}(Y - F\hat{\beta})$$
(4.29)

Onde $\hat{\beta}$ é conhecido como a estimativa dos mínimos quadrados generalizados.

$$\hat{\beta} = (F^T R^{-1} F)^{-1} F^T R^{-1} Y \tag{4.30}$$

O erro quadrado médio (MSE) da estimativa de $\hat{y}(x)$ é dado pela equação seguinte:

$$MSE[\hat{y}(x)] = \sigma^2 (1 - [f^T(x) \quad r^T(x)] \begin{bmatrix} 0 & F^T \\ F & R \end{bmatrix} \begin{bmatrix} f(x) \\ r(x) \end{bmatrix}$$
(4.31)

A primeira parte da equação 4.29 representa a estimativa do mínimo quadrado generalizado de um ponto x $\epsilon \Omega$ dada a correlação da matriz R. A segunda parte arrasta a superfície de resposta pelos pontos de dados conhecidos. A elasticidade da superfície de resposta é determinada pela função de correlação espacial R. As estimativas dos pontos são retornadas exatamente iguais às observações correspondentes usadas para criar a função, realizando a interpolação dos dados conhecidos. Neste ponto, o erro quadrado médio é igual a zero porque não há incerteza nos resultados do modelo. Como a estimativa de x se afasta dos pontos conhecidos, a segunda parte da equação 4.29 se aproxima de zero, obtendo a estimativa dos mínimos quadrados generalizados.

A toolbox fornece modelos de regressão polinomial de ordem 0, 1 e 2. Para a correlação dos dados, existem diferentes formas de funções como mostrado por Lophaven, Nielsen e Sondegaard (2002): Exponencial, gaussiana, linear, esférica, cúbica, spline, etc.

Para o modelo de correlação foi utilizado a correlação de Gauss. De acordo com a correlação de Gauss, os coeficientes ótimos de θ são obtidos pela minimização da seguinte equação.

$${}^{\min}_{\theta}\{\psi(\theta) \equiv |R|^{\frac{1}{m}}\sigma^2\}$$
(4.32)

A minimização desta função é feita por um método heurístico interno do kriging.

4.8.1. Otimização do Kriging

Para otimizar o método kriging, é proposto um novo método para o cálculo dos parâmetros de θ . A minimização é feita utilizando o método dos mínimos quadrados através da função "lsqnonlin" do Matlab.

Esta função resolve os problemas de ajuste de curva dos mínimos quadrados não lineares da forma a seguir:

$$\underset{x}{^{\min}}||f(x)||_{2}^{2} = \underset{x}{^{\min}}(f_{1}(x)^{2} + f_{2}(x)^{2} + \dots + f_{m}(x)^{2})$$
(4.33)

Com limite superior e inferior opcional para os componentes de x. Os termos de x, do limite superior e do limite inferior podem ser escritos como vetores ou como matrizes. Como argumentos de entrada tem-se: A função a qual a soma dos quadrados é minimizada, a estimativa inicial, os limites superior (LS) e inferior (LI).

4.9. Avaliação dos resultados

Para avaliar os resultados do método kriging de interpolação e o método de regressão, serão utilizados o coeficiente de determinação ou o quadrado do coeficiente de correlação (R²), e a análise de variância (ANOVA).

De acordo com Magalhães e Lima (2002), em um experimento, cada observação Y_{ij} pode ser decomposta de acordo com a equação a seguir:

$$Y_{ij} = \mu + \tau_i + \epsilon_{ij}$$

 $i = 1, 2, 3, \dots, I \qquad J = 1, 2, 2, \dots, J$
(4.34)

Onde Yij representa a observação do i-ésimo tratamento na j-ésima unidade experimental, μ representa a média geral, τ_i representa o efeito do i-ésimo tratamento e ϵ_{ij} representa o erro associado ao i-ésimo tratamento na j-ésima unidade experimental, onde os erros devem ser independentes e identicamente distribuídos.

Na análise de variância existe o interesse e testar se existe diferenças significativas entre as médias dos tratamentos, ou seja, testar as hipóteses:

$$\begin{cases} H_0: \ \mu_1 = \mu_2 = \dots = \mu_I \\ H_1: \ \mu_i \neq \mu_{i'} \text{ para pelo menos um par } (i, i'), \text{ com } i \neq i' \end{cases}$$
(4.35)

Em que:

$$\mu_i = \mu + \tau_i$$
 $i = 1, 2, 3, \dots, I.$ (4.36)

O teste de hipóteses pode ser escrito de forma equivalente:

$$\begin{cases} H_0: \ \tau_1 = \tau_2 = \dots = \tau_I = \tau_0 \\ H_1: \ \tau_i \neq 0 \ para \ pelo \ menos \ um \ i \end{cases}$$
(4.37)

Se a hipótese nula for verdadeira, todos os tratamentos terão uma média comum µ. A análise de variância consiste na decomposição da variação total da variável resposta em partes que podem ser atribuídas aos tratamentos e ao erro experimental. Essa variação pode ser mensurada através das somas de quadrados definidas para cada um dos seguintes componentes.

$$C = \frac{(\sum_{i=1}^{I} \sum_{j=1}^{J} y_{ij})^{2}}{IJ}$$
(4.38)

$$SQTotal = \sum_{i=1}^{I} \sum_{j=1}^{J} y_{ij}^{2} - C$$
(4.39)

$$SQTrat = \frac{\sum_{i=1}^{l} y_i^2}{J} - C \tag{4.40}$$

A soma dos quadrados dos resíduos pode ser obtida pela diferença:

$$SQRes = SQTotal - SQTrat$$
 (4.41)

A SQtrat é a variação existente entre os diferentes tratamentos e a SQRes é função das diferenças entre as repetições de um mesmo tratamento.

Para testar a Hipótese H₀, utiliza-se o teste F, mostrado na Tabela a seguir.

Causas de Variação	Graus de Liberdade	Soma de Quadrados	Quadrados Médios	F calculado			
Tratamentos I-1 SQTrat QMTrat QMTrat/QMRes							
Resíduo	I(J-1)	SQRes	QMRes				
Total IJ-1 SQTotal							
Fonte: (MAGALHÃES e LIMA, 2002)							

	Tabela 8:	Tabela	de	Análise	de	Variância
--	-----------	--------	----	---------	----	-----------

Onde:

$$QMTrat = \frac{SQTrat}{I-1} \tag{4.42}$$

$$QMRes = \frac{SQRes}{I(J-1)}$$
(4.43)

A expressão QMTrat/QMRes tem distribuição F com (I-1) e I(J-1) graus de liberdade.

Se Fcalculado>Ftabelado, rejeita-se a hipótese H_0 , ou seja, há diferença significativa entre pelo menos um par de médias de tratamentos, ao nível α de significância escolhido. Se Fcalculado<Ftabelado não existe diferença significativa entre os tratamentos, ao nível α de significância escolhido.

Como resultado da ANOVA será mostrado ainda o valor-p, o qual representa a probabilidade do conjunto de dados possuírem Fcalculado>Ftabelado.

A seguir, tem-se um exemplo para o estudo de três diferentes níveis de um fator para uma resposta. Considerando que foram feitas seis observações, é possível construir a seguinte tabela de observações ou experimentos.

Observação	Observação	Observação
a 1	a 2	a 3
6	8	13
8	12	9
4	9	11
5	11	8
3	6	7
4	8	12

Tabela 9: Observações para exemplo de construção da ANOVA

A hipótese nula, denotada H0, para o teste F geral seria que todos os três níveis do fator resultam a mesma resposta, em média. Para obter o Fcalculado, segue-se as seguintes etapas:

Etapa 1: Cálculo da média de cada grupo de observações.

$$\overline{Y}_1 = \frac{6+8+4+5+3+4}{6} = 5 \tag{4.44}$$

$$\overline{Y_2} = \frac{8+12+9+11+6+8}{6} = 9 \tag{4.45}$$

$$\overline{Y_3} = \frac{13+9+11+8+7+12}{6} = 10 \tag{4.46}$$

Etapa 2: Cálculo da média geral.

$$\bar{Y} = \frac{5+9+10}{3} = 8 \tag{4.47}$$

Etapa 3: Cálculo da diferença da soma dos quadrados dos tratamentos.

$$S_T = n(\bar{Y}_1 - \bar{Y})^2 + n(\bar{Y}_2 - \bar{Y})^2 + n(\bar{Y}_3 - \bar{Y})^2$$
(4.48)

Onde n representa o número de dados por observações, n = 6.

$$S_T = 84$$
 (4.49)

O grau de liberdade é dado pelo número de grupos menos um.

$$f_T = 2 \tag{4.50}$$

O Quadrado Médio (QM) médio entre os grupos será dado por:

$$QMtrat = \frac{S_T}{f_T} = \frac{84}{2} = 42 \tag{4.51}$$

Etapa 4: Cálculo da soma dos quadrados dos resíduos:

Observação	Observação	Observação
a 1	a 2	a 3
6-5=1	8-9=-1	13-10=3
8-5=3	12-9=3	9-10=-1
4-5=-1	9-9=0	11-10=1
5-5=0	11-9=2	8-10=-2
3-5=-2	6-9=-3	7-10=-3
4-5=-1	8-9=-1	12-10=2

$$S_R = 1^2 + 3^2 + (-1)^2 + \dots + (-1)^2 + (-3)^2 + 2^2 = 68$$
(4.52)

O grau de liberdade dos resíduos é dado por:

$$f_R = a(n-1) = 3(6-1) = 15 \tag{4.53}$$

Então:

$$QMres = \frac{S_R}{f_R} = \frac{68}{15} = 4,5$$
 (4.54)

Etapa 5: Cálculo de F.

$$F = \frac{QMtrat}{QMres} = \frac{42}{4.5} \sim 9.3$$
(4.55)

Fcalculado = 9,3 e para α = 0,05 Ftabelado = 3,68. Como Fcalculado>Ftabelado, rejeita-se a hipótese H₀, ou seja, há diferença significativa entre as médias.

5. RESULTADOS E DISCUSSÕES

5.1. Resultados testes

Para testar a metodologia proposta, todos os passos foram seguidos para um sistema com duas reações em fase gasosa, sendo uma reversível e outra irreversível. As reações foram:

$$CH_4 + H_2 O \to CO + 3H_2 \tag{R.1}$$

$$C0 + H_20 \leftrightarrows C0_2 + H_2 \tag{R.2}$$

Para cada reação, duas equações de taxas de reações de diferentes mecanismos foram propostas. A seguir, a tabela 10 mostra as taxas para cada uma das reações.

Reação	Proposta A	Proposta B
$CH_4 + H_2O \rightarrow CO + 3H_2$	$-r_{CH_4} = \frac{k_{1,A} P_{CH_4}}{(1 + K_{H_2} P_{H_2})}$	$-r_{CH_4} = \frac{k_{1,B}P_{CH_4}P_{H_2O}}{(1+K_{H_2}P_{H_2})}$
$CO + H_2O \subseteq CO_2 + H_2$	$-r_{CO} = \frac{k_{2,A} \left(P_{CO} P_{H_2O} - \frac{P_{H_2} P_{CO_2}}{Keq} \right)}{(1 + K_{H_2} P_{H_2})}$	$-r_{CO} = \frac{k_{2,B} \left(P_{CO} - \frac{\bar{P}_{H_2} \bar{P}_{CO_2}}{\bar{P}_{H_2O} Keq} \right)}{(1 + K_{H_2} P_{H_2})}$

Tabela 10: Equações de taxas	s propostas para o caso te	este
------------------------------	----------------------------	------

5.1.1. Linearização das equações

As equações 5.1 e 5.2 apresentam as equações das taxas propostas linearizadas para a primeira reação e as equações 5.3 e 5.4 apresentam as equações das taxas propostas linearizadas para a segunda reação.

$$\frac{PCH_4}{-r_{CH_4}} = \frac{1}{k_1} + \frac{K_{H_2}}{k_1} P_{H_2}$$
(5.1)

$$\frac{PCH_4PH_2O}{-r_{CH_4}} = \frac{1}{k_1} + \frac{K_{H_2}}{k_1}P_{H_2}$$
(5.2)

$$\frac{P_{CO} - \frac{P_{H_2} P_{CO_2}}{P_{H_2O} Keq}}{-r_{CO}} = \frac{1}{k_2} + \frac{K_{H_2}}{k_2} P_{H_2}$$
(5.3)

$$\frac{P_{CO}P_{H_2O} - \frac{P_{H_2}P_{CO_2}}{Keq}}{-r_{CO}} = \frac{1}{k_2} + \frac{K_{H_2}}{k_2}P_{H_2}$$
(5.4)

5.1.2. Simulações

Para os experimentos testes, foi utilizado um reator diferencial do tipo PFR com 3,45cm de diâmetro e 4,46cm de altura e massa de 50g, cuja densidade do leito foi de 1200 kg/m³. A Figura 6 mostra o reator PFR no Hysys.

Figura 6: Reator PFR no Hysys

Fonte: (Próprio Autor)

A corrente de entrada é constituída por metano (CH₄), água (H₂O), monóxido de carbono (CO), hidrogênio (H₂), dióxido de carbono (CO₂) e nitrogênio (N₂) com uma vazão total fixa de 7596 kmol/h.

Foram feitas simulações para cem arranjos de composições diferentes, escolhidas pelo método de amostragem do hipercubo latino para cada uma das temperaturas a seguir, em K, (573,15 ; 593,15 ; 613,15 ; 633,15 ; 653,15 ; 673,15).

5.1.3. Método do reator diferencial

O método do reator diferencial foi aplicado para cada condição simulada utilizando as equações 5.5 e 5.6.

$$-r_{CH_4} = \frac{F_{in,CH_4} - F_{out.CH_4}}{W}$$
(5.5)

$$-r_{CO} = \frac{F_{out,CO_2} - F_{in,CO_2}}{W}$$
(5.6)

Onde: $F_{in,CH4}$ representa a vazão molar de entrada do metano, $F_{out,CH4}$ representa a vazão molar de saída do metano, $F_{in,CO2}$ representa a vazão molar de entrada do dióxido de carbono, $F_{out,CO2}$ representa a vazão molar de saída do dióxido de carbono e W representa a massa de catalisador.

5.1.4. Cálculo da constante de equilíbrio para diferentes temperaturas

A partir das equações 4.5, 4.6 e 4.7 as constantes de equilíbrio para a reação reversível foram calculadas para as seis temperaturas diferentes. A Tabela 11 mostra os valores das constantes obtidos para cada temperatura.

Temperatura (°C)	Temperatura (K)	Keq
300	573,15	33,1787
320	593,15	24,9594
340	613,15	19,4513
360	633,15	15,7057
380	653,15	13,1284
400	673,15	11,3458

Tabela 11: Constante de equilíbrio a temperaturas diferentes

5.1.5. Regressão para obtenção dos parâmetros

Como este exemplo trata de uma regressão linear simples, a regressão foi feita a partir das equações que seguem.

Para a primeira reação (-r_{CH4}):

$$\boldsymbol{y} = \boldsymbol{X}.\boldsymbol{\beta} \Leftrightarrow \begin{bmatrix} \frac{P_{CH_4}}{-r_{CH_4}} \end{bmatrix} = \begin{bmatrix} P_{H_2} & 1 \end{bmatrix} \begin{bmatrix} \frac{K_{H_2}}{k_1} \\ 1/k_1 \end{bmatrix}$$
(5.7)

$$\boldsymbol{y} = \boldsymbol{X}.\boldsymbol{\beta} \Leftrightarrow \left[\frac{P_{CH_4}P_{H_2O}}{-r_{CH_4}}\right] = \begin{bmatrix} P_{H_2} & 1 \end{bmatrix} \begin{bmatrix} K_{H_2} / k_1 \\ 1 / k_1 \end{bmatrix}$$
(5.8)

Para a segunda reação (-r_{CO}):

$$\boldsymbol{y} = \boldsymbol{X}.\boldsymbol{\beta} \Leftrightarrow \left[\frac{P_{CO}P_{H_2O} - \frac{P_{H_2}P_{CO_2}}{Keq}}{-r_{CO}}\right] = \begin{bmatrix} P_{H_2} & 1 \end{bmatrix} \begin{bmatrix} K_{H_2} / k_2 \\ 1 / k_2 \end{bmatrix}$$
(5.9)

$$\boldsymbol{y} = \boldsymbol{X}.\boldsymbol{\beta} \Leftrightarrow \left[\frac{P_{CO} - \frac{P_{H_2} P_{CO_2}}{P_{H_2O} Keq}}{-r_{CO}}\right] = \begin{bmatrix} P_{H_2} & 1 \end{bmatrix} \begin{bmatrix} K_{H_2} / k_2 \\ 1 / k_2 \end{bmatrix}$$
(5.10)

Onde $\boldsymbol{\beta} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}$ representa a solução da regressão do sistema linear.

A Tabela 12 mostra os valores obtidos de $k_{1,A}$; K_{H2} ,1; $k_{2,A}$ e K_{H2} ,2 para cada temperatura referentes a primeira proposta da equação da taxa. E a Tabela 13 mostra o resultado dos parâmetros obtidos de $k_{1,B}$; K_{H2} ,1; $k_{2,B}$ e K_{H2} ,2 para cada temperatura referentes a segunda proposta da equação da taxa.

Temperatura	k 1,A	Кн2,1	k 2,A	Кн2,2
(°C)	(kmol/kg.s.atm)	(atm ⁻¹)	(kmol/kg.s.atm ²)	(atm ⁻²)
300	4,76E-05	4,05527	6,31E-07	4,02878
320	8,89E-05	4,05135	1,49E-06	4,06825
340	1,60E-04	4,04737	3,28E-06	4,03864
360	2,76E-04	4,04243	6,89E-06	4,03100
380	4,61E-04	4,03602	1,38E-05	4,01372
400	7,46E-04	4,02709	2,67E-05	4,02399

Tabela 12: Valores dos parâmetros após regressão para a proposta A

Tabela 13: Valores dos parâmetros após regressão para a proposta B

Temperatura	k 1,В	Кн2,1	k 2,В	Кн2,2
(°C)	(kmol/kg.s.atm)	(atm ⁻¹)	(kmol/kg.s.atm ²)	(atm ⁻²)
300	1,67E-06	0,49587	-6,85E-07	-1,91300
320	3,12E-06	0,49576	-1,60E-06	-1,88219
340	5,60E-06	0,49561	-3,79E-06	-1,99906
360	9,69E-06	0,49541	-7,03E-06	-1,77181
380	1,62E-05	0,49513	-1,95E-05	-2,22707
400	2,63E-05	0,49472	-2,68E-05	-1,55980

A partir dos resultados obtidos, a proposta B é descartada para a segunda reação, pois os parâmetros obtidos pela regressão apresentaram valores negativos, os quais são fisicamente impossíveis.

As velocidades específicas, k1 e k2, são representadas pelas seguintes equações:

$$k_1 = A_{01} \exp\left(\frac{-Ea_1}{RT}\right) \tag{5.11}$$

$$k_2 = A_{02} \exp\left(\frac{-Ea_2}{RT}\right) \tag{5.12}$$

E suas respectivas equações linearizadas:

$$\ln(k_1) = \ln(A_{01}) - \frac{E_{a1}}{RT}$$
(5.13)

$$\ln(k_2) = \ln(A_{02}) - \frac{E_{a2}}{RT}$$
(5.14)

Onde A_{01} e A_{02} são os fatores multiplicadores da equação da velocidade específica e Ea₁ e Ea₂ são as energias de ativação de cada uma das reações.

A partir de dados de ln(k) e de 1/T nas temperaturas simuladas, é possível obter os valores dos parâmetros A_{01} , Ea_1 , A_{02} e E_{a2} por regressão linear. A Tabela 14 mostra os valores obtidos por regressão, os valores reais encontrados na literatura e o erro percentual de cada parâmetro.

Tabela 14: Parâmetros A₀ e Ea para cada reação, de acordo com a proposta A

	A 01,A	Ea1,A	A02, A	Ea2,A	Кн2,1,А	Кн2,2,А
	(kmol/m ³ .s.atm)	(kJ/kmol)	(kmol/m ³ .s.atm ²)	(kJ/kmol)	(atm ⁻¹)	(atm ⁻²)
Calc.	5283,32	88272,2	54869,1	120009	4,04324	4,03406
Real	5517,00	88490,0	54620,5	120000	4,05300	4,05300
Erro	4,42%	0,25%	0,45%	0,01%	0,24%	0,47%

Tabela 15: Parâmetros A₀ e Ea para cada reação, de acordo com a proposta B

	A01,B (kmol/m ³ .s.atm)	Ea1,B (kJ/kmol)	A02,B (kmol/m ³ .s.atm ²)	Ea2,B (kJ/kmol)	KH2,1,B (atm ⁻¹)	KH2,2,B (atm ⁻²)
Calc.	191,1987	88426,1			0,49542	
Real	5517,00	88490,0	54620,5	120000	4,05300	4,05300
Erro	2785,48%	0,07%			718,10%	

A partir dos erros percentuais mostrados nas tabelas 12 e 13, observa-se que a proposta A, também adere melhor aos dados para a primeira reação.

5.1.6. Cálculo do calor de reação a diferentes temperaturas

A partir da equação 4.16 deste trabalho e com dados presentes no anexo II, pôdese calcular os calores de reações para cada temperatura. A Tabela 16 mostra os resultados deste cálculo.

Temperatura (°C)	$\Delta H^{\circ}(-r_{CH4}) (J/mol)$	$\Delta H^{\circ}(-r_{CO}) (J/mol)$
300	310558,89	-45770,02
320	318079,32	-45157,80
340	325486,63	-44454,53
360	332768,16	-43666,53

Tabela 16: Valores dos calores de reações a várias temperaturas

380	339912,55	-42799,81
400	346909,66	-41860,10

5.1.7. Método Kriging

O arquivo principal do código em Matlab utilizado para a execução do interpolador do tipo kriging encontra-se no Apêndice D.

Para avaliar o resultado do modelo, foi calculado o coeficiente de determinação ou o quadrado do coeficiente de correlação (R²) e a análise de variância. As Figuras referentes ao cálculo do coeficiente de correlação e as tabelas referentes aos testes de variância, mostram os resultados obtidos para as duas reações.

Figura 7: Coeficiente de determinação para a primeira reação do caso teste

Tabela 17: Análise de variância para a reação 1 (Kriging Convencional)

Causas de	Soma dos	Graus de	Quadrados	F colculado	Valor P
Variação	Quadrados	uadrados Liberdade		r calculauv	v alut 1
Tratamentos	2,11E+04	1	2,11E+04	0,01508	0,90238
Resíduo	2,55E+08	182	1,40E+06		
Total	2,55E+08	183			

Figura 8: Coeficiente de determinação para a segunda reação do caso teste

Tabela 18: Análise de variância para a reação 2 (Kriging Convencional)

Causas de Variação	Soma dos Quadrados	Graus de Liberdade	Quadrados Médios	F calculado	Valor P
Tratamentos	1,55E+03	1	1,55E+03	0,04205	0,83778
Resíduo	5,74E+06	156	3,68E+04		
Total	5,74E+06	157			

Com os valores de P resultantes em 0,90238 para a primeira reação e 0,83778 para a segunda reação, observa-se que os dados aderem bem ao modelo visto que este valor representa a probabilidade de Fcalculado ser maior do que Ftabelado. Ou seja, pelo teste F, há 90,238% de chance para a primeira reação e 83,778% de chance para a segunda reação, das médias entre os valores obtidos pelo modelo e os valores obtidos pelos experimentos numéricos serem iguais.

5.2. Resultados para a Hidrodesnitrogenação

5.2.1. Obtenção das equações das taxas de reações dos compostos nitrogenados

Considerando as reações genéricas do tipo: $A + B \Rightarrow C + D$ (Irreversível) ou $A + z.B \Leftrightarrow C + D$ (Reversível). As leis de velocidades podem ser encontradas através das tabelas 2, 3, 4 e 5, mostradas no Capítulo 1, para cada um dos cinco mecanismos. A seguir

são mostradas equações genéricas para os cinco mecanismos. O subíndice I representa algum possível composto inibidor da reação.

- Mecanismo MA:
 - Reação Irreversível

$$r_{A \to C} = \frac{kK_A K_B x_A x_B}{(1 + K_A x_A + K_B x_B + K_C x_C + K_D x_D + K_I x_I)^3}$$
(5.15)

• Reação Reversível

$$r_{A \to C} = \frac{kK_A K_B \left(x_A x_B - \frac{x_C x_D}{Keq} \right)}{(1 + K_A x_A + K_B x_B + K_C x_C + K_D x_D + K_I x_I)^3}$$
(5.16)

- Mecanismo MB:
 - o Reação Irreversível

$$r_{A \to C} = \frac{kK_A K_B x_A x_B}{(1 + K_A x_A + K_B x_B + K_C x_C + K_D x_D + K_I x_I)^2}$$
(5.17)

o Reação Reversível

$$r_{A \to C} = \frac{kK_A K_B \left(x_A x_B - \frac{x_C x_D}{Keq} \right)}{(1 + K_A x_A + K_B x_B + K_C x_C + K_D x_D + K_I x_I)^2}$$
(5.18)

- Mecanismo MC:
 - o Reação Irreversível

$$r_{A \to C} = \frac{kx_A}{(1 + K_A x_A + K_B x_B + K_C x_C + K_D x_D + K_I x_I)^2}$$
(5.19)

o Reação Reversível

$$r_{A \to C} = \frac{k \left(x_A - \frac{x_C x_D}{K e q x_B^Z} \right)}{\left(1 + \sqrt{\frac{K_A x_C x_D}{K e q x_B}} + K_B x_B + K_C x_C + K_D x_D + K_I x_I \right)^2}$$
(5.20)

- Mecanismo MD:
 - o Reação Irreversível

$$r_{A \to C} = \frac{kx_A}{(1 + K_A x_A + K_B x_B + K_C x_C + K_D x_D + K_I x_I)}$$
(5.21)

• Reação Reversível

$$r_{A \to C} = \frac{k \left(x_A - \frac{x_C x_D}{Keq x_B^Z} \right)}{\left(1 + \frac{K_A x_C x_D}{Keq x_B} + K_B x_B + K_C x_C + K_D x_D + K_I x_I \right)}$$
(5.22)

- Mecanismo ME:
 - o Reação Irreversível

$$r_{A \to C} = \frac{k x_A x_B}{(1 + K_A x_A + K_B x_B + K_c x_C + K_D x_D + K_I x_I)}$$
(5.23)

o Reação Reversível

$$r_{A \to C} = \frac{kKeq(x_A x_B^z - \frac{x_C x_D}{Keq})}{(1 + K_A x_A + K_B x_B + K_C x_C + K_D x_D + K_I x_I)}$$
(5.24)

Os mecanismos reacionais para as reações de hidrodesnitrogenação encontramse no Apêndice A.

5.2.2. Linearização das equações das taxas das reações

Todas as equações linearizadas são do tipo:

$$y = a + bx_A + cx_B + dx_C + ex_D + fx_I$$
(5.25)

A seguir, são apresentadas as equações genéricas linearizadas para os cinco mecanismos apresentados anteriormente.

- Mecanismo MA:
 - Reação irreversível

$$y = \sqrt[3]{\frac{x_A x_B}{r_A}}; a = \frac{1}{\sqrt[3]{kK_A K_B}}; b = \frac{K_A}{\sqrt[3]{kK_A K_B}}; c = \frac{K_B}{\sqrt[3]{kK_A K_B}}; d = \frac{K_C}{\sqrt[3]{kK_A K_B}}; e = \frac{K_D}{\sqrt[3]{kK_A K_B}}; f = \frac{K_I}{\sqrt[3]{kK_A K_B}}$$
(5.26)

o Reação reversível

-

$$y = \sqrt[3]{\frac{x_A x_B^Z - \frac{x_C x_D}{K e q}}{r_A}}; a = \frac{1}{\sqrt[3]{k K_A K_B}}; b = \frac{K_A}{\sqrt[3]{k K_A K_B}}; c = \frac{K_B}{\sqrt[3]{k K_A K_B}}; d = \frac{K_C}{\sqrt[3]{k K_A K_B}}; e = \frac{K_D}{\sqrt[3]{k K_A K_B}}; f = \frac{K_I}{\sqrt[3]{k K_A K_B}}$$
(5.27)

- Mecanismo MB:
 - Reação reversível

$$y = \sqrt[2]{\frac{x_A x_B}{r_A}}; a = \frac{1}{\sqrt[2]{kK_A K_B}}; b = \frac{K_A}{\sqrt[2]{kK_A K_B}}; c = \frac{K_B}{\sqrt[2]{kK_A K_B}}; d = \frac{K_C}{\sqrt[2]{kK_A K_B}}; e = \frac{K_D}{\sqrt[2]{kK_A K_B}}; f = \frac{K_I}{\sqrt[2]{kK_A K_B}}$$
(5.28)

- Mecanismo MC:
 - Reação irreversível

$$y = \sqrt{\frac{x_A}{r_A}}; a = \frac{1}{\sqrt{k}}; b = \frac{K_A}{\sqrt{k}}; c = \frac{K_B}{\sqrt{k}}; d = \frac{K_C}{\sqrt{k}}; e = \frac{K_D}{\sqrt{k}}; f = \frac{K_I}{\sqrt{k}}$$
(5.29)

• Reação reversível

$$y = \sqrt{\frac{x_A - \frac{x_C x_D}{K e q x_B^{\chi}}}{r_A}}; a = \frac{1}{\sqrt{k}}; b = \frac{\sqrt{\frac{K_A x_C x_D}{K e q x_B}}}{\sqrt{k}}; c = \frac{K_B}{\sqrt{k}}; d = \frac{K_C}{\sqrt{k}}; e = \frac{K_D}{\sqrt{k}}; f = \frac{K_I}{\sqrt{k}} (5.30)$$

- Mecanismo MD:
 - Reação irreversível

$$y = \frac{x_A}{r_A}; a = \frac{1}{k}; b = \frac{K_A}{k}; c = \frac{K_B}{k}; d = \frac{K_C}{k}; e = \frac{K_D}{k}; f = \frac{K_I}{k}$$
(5.31)

• Reação reversível

$$y = \frac{x_A - \frac{x_C x_D}{Keq x_B^X}}{r_A}; a = \frac{1}{k}; b = \frac{\frac{K_A x_C x_D}{Keq x_B}}{k}; c = \frac{K_B}{k}; d = \frac{K_C}{k}; e = \frac{K_D}{k}; f = \frac{K_I}{k}$$
(5.32)

- Mecanismo ME:
 - Reação irreversível

$$y = \frac{x_A x_B}{r_A}; a = \frac{1}{k}; b = \frac{K_A}{k}; c = \frac{K_B}{k}; d = \frac{K_C}{k}; e = \frac{K_D}{k}; f = \frac{K_I}{k}$$
(5.33)

o Reação reversível

$$y = \frac{x_A x_B^x - \frac{x_C x_D}{Keq}}{r_A}; a = \frac{1}{kKeq}; b = \frac{K_A}{kKeq}; c = \frac{K_B}{kKeq}; d = \frac{K_C}{kKeq}; e = \frac{K_D}{kKeq}; f = \frac{K_I}{kKeq}$$
(5.34)

Todas as equações linearizadas para as reações de hidrodesnitrogenação encontram-se no Apêndice B.

5.2.3. Cálculo da constante de Equilíbrio

A constante de equilíbrio é dada pela seguinte equação:

$$Keq = e^{\left(A + B/T\right)} \tag{5.35}$$

A Tabela 15 mostra os coeficientes A e B para as 5 reações de equilíbrio existentes na rede reacional de hidrodesnitrogenação.

Tabela 19: Coeficientes A e B para o cálculo da constante de equilíbrio (Aspen Hysys V8.8)

Reação	Coeficiente A	Coeficiente B
$1: \mathbf{C}_{21}\mathbf{H}_{27}\mathbf{N} + 3\mathbf{H}_2 \Leftrightarrow \mathbf{C}_{21}\mathbf{H}_{33}\mathbf{N}$	-41,72	25600
$2: \mathbf{C}_{21}\mathbf{H}_{25}\mathbf{N} + 4\mathbf{H}_2 \Leftrightarrow \mathbf{C}_{21}\mathbf{H}_{33}\mathbf{N}$	-46,32	25600
3: C ₉ H ₉ N + H ₂ \Leftrightarrow C ₉ H ₁₁ N	-12,36	7500
4: C ₉ H ₇ N + 2H ₂ \Leftrightarrow C ₉ H ₁₁ N	-27,81	15600
5: C ₄ H ₅ N +2H ₂ \Leftrightarrow C ₄ H ₉ N	-29,81	15600

A Tabela 16 apresenta os valores da constante de equilíbrio (Keq) calculada para diferentes temperaturas.

T(°C)	T(K)	Keq (Reação 1)	Keq (Reação 2)	Keq (Reação 3)	Keq (Reação 4)	Keq (Reação 5)
300	573,15	19,0191	0,1912	2,0659	0,5532	0,0749
320	593,15	4,2182	0,0424	1,3289	0,2210	0,0299
340	613,15	1,0321	0,0104	0,8798	0,0937	0,0127
360	633,15	0,2760	0,0028	0,5978	0,0419	0,0057
380	653,15	0,0800	0,0008	0,4560	0,0197	0,0027
400	673,15	0,0250	0,0003	0,2957	0,0097	0,0013

Tabela 20: Constantes de equilíbrio para diferentes temperaturas das reações reversíveis da Hidrodesnitrogenação

5.2.4. Regressão linear

_

A função mvregress do Matlab foi eficiente para a obtenção dos coeficientes das equações linearizadas, entretanto os resultados obtidos não puderam ser utilizados para as etapas de obtenção de parâmetros cinéticos como por exemplo, as constantes de adsorção, pois apesar de haver sentido matemático, não foi possível obter um sentido físico.

Com um total de 10 reações e 5 mecanismos propostos para cada uma das reações, o total de arranjos possíveis são de 5^{10} , ou seja, temos 9.765.625 arranjos. Observando as equações linearizadas presentes no Apêndice B, era esperado que todos os coeficientes obtidos de um dado arranjo fossem positivos, pois a presença de um coeficiente negativo resultaria em uma constante de adsorção negativa, o que é fisicamente impossível.

As regressões foram feitas para cada reação em separado. De acordo com os resultados seria observado qual mecanismo obteve todos os coeficientes positivos para cada uma das reações, e assim seria definido um arranjo. A partir desse ponto as constantes de adsorção seriam calculadas para cada uma das reações e deveríamos obter valores iguais ou bem próximos, pois sabe-se que as constantes de adsorção independem da reação que está sendo processada, e só dependem do catalisador e (fracamente) da temperatura. De acordo com Froment, Bischoff e De Wilde (2011), se mais de um arranjo apresentasse essas características, o arranjo escolhido seria aquele que, após a análise estatística, obtivesse o maior valor de F.

Os resultados obtidos dos 5 mecanismos para cada uma das 10 reações na faixa de temperatura de 300°C a 400°C encontram-se no Apêndice C. É possível observar que

não houveram condições (reação, mecanismo, temperatura) em que todos os coeficientes fossem positivos, o que significa dizer que nenhum dos 5 mecanismos propostos neste trabalho correspondem aos mecanismos das reações de hidrodesnitrogenação.

O código em Matlab utilizado para a obtenção dos resultados encontra-se no Apêndice D.

5.2.5. Cálculo do calor de reação

O calor de reação foi calculado de acordo com a metodologia proposta na seção 4.7.3 deste trabalho. A Tabela 17 mostra os resultados obtidos para as 10 reações de hidrodesnitrogenação em diferentes temperaturas de reação.

Tabela 21: Calor de reação para as reações de hidrodesnitrogenação em diferentes temperaturas

	300°C	320°C	340°C	360°C	380°C	400°C
ΔH° (R1) (J/mol)	-439356	-457565	-455704	-493777	-511785	-529732
ΔH° (R2) (J/mol)	-574227	-596747	-619175	-641514	-663769	-685941
ΔH° (R3) (J/mol)	-149580	-155843	-162083	-168302	-174499	-180676
ΔH° (R4) (J/mol)	-159335	-166690	-173999	-181266	-188490	-195675
ΔH° (R5) (J/mol)	-194946	-200752	-206516	-212238	-217919	-223560
ΔH° (R6) (J/mol)	-53696	-44927,5	-36302,6	-27810,1	-19439,7	-11181,1
ΔH° (R7) (J/mol)	-107862	-103456	-99189,3	-95052,5	-91035,8	-87130,1
ΔH° (R8) (J/mol)	-128512	-127446	-126459	-125540	-124679	-123867
ΔH° (R9) (J/mol)	-386052	-393996	-1042051	-410204	-418442	-426755
ΔH° (R10) (J/mol)	-933330	-939927	-946640	-953461	-960381	-967391

5.2.6. Método Kriging

O arquivo principal do código em Matlab utilizado para a execução do interpolador do tipo Kriging encontra-se no Apêndice D.

Para avaliar o resultado do modelo, foi calculado o coeficiente de determinação ou o quadrado do coeficiente de correlação (R²) e a análise de variância. As Figuras referentes ao cálculo do coeficiente de correlação e as tabelas referentes aos testes de variância, mostram os resultados obtidos para as dez reações, considerando os dois modelos de Kriging, convencional e otimizado pelo método dos mínimos quadrados.

Figura 9: R² para a reação 1 (Kriging Convencional e Kriging Otimizado)

Tabela 22: Análise de Variância para a reação 1 (Kriging Convencional e Kriging Otimizado)

Kriging Convencional					
Causas de	Soma dos	Graus de	Quadrados	F calculado	Valor P
Variação	Quadrados	Liberdade	Médios	I carculau0	value 1
Tratamentos	2,34E+01	1	2,34E+01	0,00589	0,93887
Resíduo	1,31E+06	330	3,96E+03		
Total	1,31E+06	331			
		Kriging C	Itimizado		
Tratamentos	1,38E+01	1	1,38E+01	0,00337	0,95373
Resíduo	1,36E+06	330	4,11E+03		
Total	1,36E+06	331			

Figura 10: R² para a reação 2 (Kriging Convencional e Kriging Otimizado)

Kriging Convencional						
Causas de	Soma dos	Graus de	Quadrados	F calculado	Valor P	
Variação	Quadrados	Liberdade	Médios			
Tratamentos	3,37E+00	1	3,37E+00	0,00092	0,97586	
Resíduo	1,23E+06	334	3,68E+03			
Total	1,23E+06	335				
Kriging Otimizado						
Tratamentos	7,74E+00	1	7,74E+00	0,00208	0,96362	
Resíduo	1,24E+06	334	3,72E+03			
Total	1,24E+06	335				

Tabela 23: Análise de Variância para a reação 2 (Kriging Convencional e Kriging Otimizado)

Figura 11: R² para a reação 3 (Kriging Convencional e Kriging Otimizado)

Tabela 24: Análise de Variância para a reação 3 (Kriging Convencional e Kriging Otimizado)

Kriging Convencional						
Causas de	Soma dos	Graus de	Quadrados	Falaulada	Volor D	
Variação	Quadrados	Liberdade	Médios	r calculauo	valut r	
Tratamentos	9,94E-01	1	9,94E-01	0,00028	0,98675	
Resíduo	1,20E+06	334	3,60E+03			
Total	1,20E+06	335				
Kriging Otimizado						
Tratamentos	1,78E+00	1	1,78E+00	0,0005	0,98222	
Resíduo	1,20E+06	334	3,59E+03			
Total	1,20E+06	335				

Figura 12: R² para a reação 4 (Kriging Convencional e Kriging Otimizado)

Tabela 25: Análise de Variância para a reação 4 (Kriging Convencional e Kriging Otimizado)

Kriging Convencional					
Causas de Variação	Soma dos Quadrados	Graus de Liberdade	Quadrados Médios	F calculado	Valor P
Tratamentos	2,17E+00	1	2,17E+00	0,00081	0,97726
Resíduo	9,14E+05	342	2,67E+03		
Total	9,14E+05	343			
		Kriging C	Itimizado		
Tratamentos	4,92E+00	1	4,92E+00	0,00186	0,96566
Resíduo	9,07E+05	342	2,65E+03		
Total	9,07E+05	343			

Figura 13: R² para a reação 5 (Kriging Convencional e Kriging Otimizado)

Kriging Convencional					
Causas de Variação	Soma dos Quadrados	Graus de Liberdade	Quadrados Médios	F calculado	Valor P
Tratamentos	4,30E+01	1	4,30E+01	0,00292	0,95693
Resíduo	5,00E+06	340	1,47E+04		
Total	5,00E+06	341			
		Kriging C	Itimizado		
Tratamentos	6,32E+01	1	6,32E+01	0,00422	0,94822
Resíduo	5,09E+06	340	1,50E+04		
Total	5,09E+06	341			

Tabela 26: Análise de Variância para a reação 5 (Kriging Convencional e Kriging Otimizado)

Figura 14: R² para a reação 6 (Kriging Convencional e Kriging Otimizado)

Tabela 27: Análise de Variância para a reação 6 (Kriging Convencional e Kriging Otimizado)

Kriging Convencional					
Causas de	Soma dos	Graus de	Quadrados	Falaulada	Volor D
Variação	Quadrados	Liberdade	Médios	r calculauo	valut r
Tratamentos	4,82E+00	1	4,82E+00	0,06877	0,79331
Resíduo	2,17E+04	310	7,00E+01		
Total	2,17E+04	311			
		Kriging C	Itimizado		
Tratamentos	2,24E-01	1	2,24E-01	0,00311	0,95557
Resíduo	2,22E+04	308	7,21E+01		
Total	2,22E+04	309			

Figura 15: R² para a reação 7 (Kriging Convencional e Kriging Otimizado)

Tabela 28: Análise de Variância para a reação 7 (Kriging Convencional e Kriging Otimizado)

Kriging Convencional						
Causas de	Soma dos	Graus de	Quadrados	Faalaulada	Volor D	
Variação	Quadrados	Liberdade	Médios	r calculauo	valor r	
Tratamentos	3,24E-01	1	3,24E-01	0,00269	0,9587	
Resíduo	3,72E+04	308	1,21E+02			
Total	3,72E+04	309				
Kriging Otimizado						
Tratamentos	1,81E+00	1	1,81E+00	0,01467	0,90367	
Resíduo	3,77E+04	306	1,23E+02			
Total	3,77E+04	307				

Figura 16: R² para a reação 8 (Kriging Convencional e Kriging Otimizado)

Kriging Convencional							
Causas de	Soma dos	Graus de	Quadrados	F colculado	Valor P		
Variação	Quadrados	Liberdade	Médios	r calculau0	v alui 1		
	Continuação da Tabela 29						
Tratamentos	1,81E+00	1	1,81E+00	0,00039	0,98419		
Resíduo	1,59E+06	344	4,61E+03				
Total	1,59E+06	345					
		Kriging C	Itimizado				
Tratamentos	6,90E-01	1	6,90E-01	0,00015	0,99027		
Resíduo	1,59E+06	344	4,63E+03				
Total	1,59E+06	345					

Tabela 29: Análise de Variância para a reação 8 (Kriging Convencional e Kriging Otimizado)

Figura 17: R² para a reação 9 (Kriging Convencional e Kriging Otimizado)

Tabela 30: Análise de Variância para a reação 9 (Kriging Convencional e Kriging Otimizado)

Kriging Convencional					
Causas de	Soma dos	Graus de	Quadrados	F coloulado	Volor D
Variação	Quadrados	Liberdade	Médios	r calculado	valur r
Tratamentos	6,31E-04	1	6,31E-04	0,00024	0,98762
Resíduo	8,73E+02	334	2,61E+00		
Total	8,73E+02	335			
		Kriging C	Itimizado		
Tratamentos	2,18E-04	1	2,18E-04	8,30E-05	0,99274
Resíduo	8,77E+02	334	2,62E+00		
Total	8,77E+02	335			

Figura 18: R² para a reação 10 (Kriging Convencional e Kriging Otimizado)

Kriging Convencional						
Causas de	Soma dos	Graus de	Quadrados	Easlaulada	Valor D	
Variação	Quadrados	Liberdade	Médios	F calculado	valor P	
Tratamentos	9,71E-03	1	9,71E-03	0,00396	0,94983	
Resíduo	7,98E+02	326	2,45E+00			
Total	7,98E+02	327				
		Kriging (Itimizado			
Tratamentos	5,33E-02	1	5,33E-02	0,0206	0,88596	
Resíduo	8,38E+02	324	2,59E+00			
Total	8,38E+02	325				

Observa-se que os dois modelos, Kriging Convencional e Kriging Otimizado apresentaram bons resultados quanto à aderência do modelo aos dados. Em todas as reações é possível observar uma melhoria no valor do R² do modelo otimizado comparado com o convencional. Para a análise de variância, observa-se que para todas as reações, a probabilidade de Fcalculado ser maior do que Ftabelado foi maior do que 88%, para o modelo otimizado e 79% para o modelo convencional, o que garante concluir que o modelo obtido pelo Kriging Otimizado apresenta uma melhor aderência aos dados dos experimentos numéricos.

6. CONCLUSÕES E SUGESTÕES PARA TRABALHOS FUTUROS

A partir do exemplo proposto para duas reações, é possível concluir que as metodologias de regressão linear e de interpolação a partir do método Kriging propostas neste trabalho são eficazes. Ainda considerando o exemplo, o Kriging otimizado apresentou melhor desempenho em relação a aderência do modelo aos dados simulados quando comparado com o Kriging convencional, o qual foi comprovado estatisticamente por meio da análise de variância.

Para o processo de hidrodesnitrogenação, composto por dez reações, o método de regressão linear não conseguiu encontrar resultados satisfatórios para os cinco mecanismos propostos, podendo concluir que nenhuma das equações propostas para as taxas das reações satisfazem as reações de hidrodesnitrogenação.

O modelo de interpolação do tipo Kriging se mostrou bastante eficaz para as reações de hidrodesnitrogenação, o qual foi comprovado por meio de análise estatística, onde pôde-se observar que para todas as reações, a probabilidade de Fcalculado ser maior do que Ftabelado foi maior do que 79%. A otimização pelo método dos mínimos quadrados foi eficiente, e após análise estatística, observou-se que para todas as reações, a probabilidade de Fcalculado ser maior do que 88%, garantindo uma melhor aderência do modelo aos dados simulados.

Como trabalhos futuros pode-se sugerir:

- Propor outras equações para as taxas das reações de hidrodesnitrogenação e seguir a mesma metodologia de regressão linear.
- Utilizar o interpolador do tipo Kriging em outras classes de reações de hidrotratamento, como: hidrodessulfurização, hidrodesoxigenação, saturação de olefinas, etc.
- Aplicar outros métodos de minimização de função, para obter melhores resultados para o Kriging.

7. REFERÊNCIAS BIBLIOGRÁFICAS

ANCHEYTA, J. Modeling and Simulation of Catalytic Reactors for Petroleum Refining. New Jersey, 2011.

ANCHEYTA, J. **Modelagem e Simulação de Reatores Catalíticos para o Refino de Petróleo**. 1^a. ed. Rio de Janeiro: gen.LTC, 2015;

ANCHEYTA, J.; SÁNCHEZ, G. M. Catalytic hydrotreating of middle distillates blens in a fixed-bed pilot reactor. **Applied Catalysis A: general.** 207, 407-420, 2001.

ASPENTECH. Aspen Hysys. Disponível em: < http://www.aspentech.com/products/ aspen-hysys/> Acesso em: 10 de Jan. 2017.

AVRAAM, D. G.; VASALOS, I. A. HdPro: a mathematical model of trickle-bed reactors for the catalytic hydroprocessing of oil feedstocks. **Catalysis Today**. 275-283. 2003.

BEJ, S. K.; DALAI, A. K.; ADJAYE, J. Comparison of hydrodenitrogenation of Basic and nonbasic nitrogen compounds presente in oil sands derived Heavy Oil. **Energy & Fuels**, 15, 377-383, 2001.

BONFÁ, M. H. P. Diesel S10: Impacto sobre o rendimento do parque de refino brasileiro em 2020 e propostas mitigadoras. **Dissertação**. Rio de Janeiro, RJ. Universidade Federal do Rio de Janeiro. 2011.

BOTELHO, M. F. et al. Comparação dos resultados de interpoladores "Vizinho mais próximo" e "Inverso de uma distância" no cálculo de volume a partir de dados do laser scanner. **Anais.** Simpósio Brasileiro de Sensoriamento Romoto. p. 731-736. Goiânia, GO. 2005.

BOUHLEL, M. A. et al. Improving kriging surogates of high-dimensional design models by Partial Least Squares dimension reduction. **Struct. Multidisc. Optim.** 2016.

CALHEIROS, C. J. P. Estudo do processo de hidrotratamento de diesel através de simuladores comerciais e redes neurais artificiais. **Dissertação**. Maceió, AL. Universidade Federal de Alagoas. 2014.

CHANG, A. Process Modelling of Next-Generation Liquid Fuel Production – Comercial Hydrocracking Process and Biodiesel Manufacturing. **Dissertation**. Faculty of Virginia Polytechnic Institute and State University. Blacksburg. 2011.

CHOWDHURY, R.; PEDERNERA, E.; REIMERT, R. Trickle-bed reactor model for desulfurization and dearomatization of diesel. **AICHE Journal**. 48, 126-135, 2002.

CRESSIE, N. A. C. Statistics for Spatial Data Revised Edition. Wiley-Interscience. p. 928. 1993.

DEHLENDORFF, C. Monte Carlo Anaysis. DTU Informatics, Technical University of Denmark. 2010.

DIETZ, A. C.; Modelagem e simulação de reatores de Hidrotratamento (HDT) de correntes de diesel. **Dissertação**. Campinas, SP. Universidade Estadual de Campinas. 2014.

DIRIGNEI, D. An Estimation Algorithm for Fast Kriging Surrogates of Computer Models with Unstructured Multiple Outputs. **Computer Methods in Applied Mechanics and Engineering**, 2017. Disponível em: http://dx.doi.org/10.1016/j.cma.2017.04.001. Acesso em: 06 Jun 2017.

ECKERT, E.; VANEK, T. New approach to the characterisation of petroleum mixtures used in modeling of separation processes. **Computers and Chemical Engineering**, 30, 346-356, 2005.

FAZIO, V. S. Interpolação espacial: Uma comparação analítica entre redes RBF e Krigagem. **Dissertação**. Florianópolis, SC. Universidade Federal de Santa Catarina. 2013.

FOGLER, H. S. Elements of Chemical Reaction Engineering. Fourth Edition. 2006.

FROMENT, G. F.; Modeling in the development of hydrotreatment processes. **Catalysis Today**. 98, 43-54, 2004.

FROMENT, G. F.; BISCHOFF, K. B.; DE WILDE, J. Chemical Reactor Analysis and **Desing.** Third Edition. 2011.

FROMENT, G. F.; DEPAUW, G. A.; VANRYSSELBERGUE, V. Kinetic Modeling and Reactor Simulation in Hydrodessulfurization of Oil Fractions. **Ind. Eng. Chem.** 33, 2975-2988, 1994.

GASPAR, B.; TEIXEIRA, A. P.; SOARES, C. G. Adaptive surrogate model with refinement combining kriging and a trust region method. **Reliability Engineering and System Safety**. 165, 277-291, 2017.

GIRGIS, M. J.; GATES, B. C. Reactivities, Reaction Networks, and Kinetics in High-Pressure Catalytic Hydroprocessing. **Ind. Eng. Chem.** 30, 2021-2058, 1991.

GRAHAM, S. T. W. Organic Chemistry. John Wiley & Sons. Sicth Edition. 1996.

GUIMARÃES, E. M. Causas e Formas de corrosão na Unidade de Recuperação de Enxofre da Refinaria Gabriel Passos (REGAP/PETROBRAS). **Dissertação**. Belo Horizonte, MG. Universidade Federal de Minas Gerais. 2006.

GUTIERREZ A. et al. Hydrodeoxygenation of model compounds on sulfided CoMo/y-Al2O3 and NiMo/y-Al2O3 calysts; Role of súlfur-containing groups in reaction networks. **Catalysis Today**. 285, 125-134, 2017.

HAYKIN, S. Neural Networks and Learning Machines. p. 936. 2008.

HEKSTRA, G. The effects of gas-to-oil rate in ultra low súlfur diesel hydrotreating. **Catalysis Today**. 127, 99-102, 2007.

HOFF, S. Desenvolvimento de modificações em reatores de leito catalítico de planta industrial de hidrotratamento de diesel. **Trabalho de Conclusão de Curso**. Porto Alegre, RS. Universidade Federal do Rio Grande do Sul. 2015.

HYSYS HELP. Aspen Hysys Help. V8.8. 2015.

HYSYS REFINING. Aspen Hysys Petroleum Refining. Unit Operations Guide. V. 7.3. 2011.

JARULLAH, A. T. Kinetic modeling simulation and optimal operation of trickle bed reator for hydrotreating of crude oil. **Thesis**. University of Bradford. United Kingdom, 2011.

JIMÉNEZ, F.; KAFAROV, V.; NUÑEZ, M. Modeling of industrial reactor for hydrotreating of vacum gas oils Simultaneous hydrodessulfurization, hydrodenitrogenation and hydrodearomatization reactions. **Chemical Engineering Journal**, 134, 200-208, 2007.

KLEIN, M. T. et al. Molecular Modeling in Heavy Hydrocarbon Conversions. **Taylor & Francis.** 2006.

KRAUSE, B. B. Simulação da desativação de catalisadores NiMo/Al₂O₃ em uma unidade industrial de hidrotratamento. **Dissertação.** Rio de Janeiro. Universidade Federal do Rio de Janeiro. 2011.

KRIGE, D. G. A statistical approach to some basic mine valuation problems on the Witwastersrand. Journal of the Chemical, Metallurgical and Mining Society of South Africa. 52 - 139, 1951.

LI, G.; CAI, C. Estimation parameters of hydrocracking model with NSGA-ii by using discrete kinetic lumping model. **Fuel**. 200, 333-344, 2017.

LI, J.; HEAP, A. D. A Review of Spatial Interpolation Methods for Environmental Scientists. **Geoscience Australia.** p. 137. 2008.

LIU, Z.; ZHAN, J.; TAN, C. Improved Reliability Approximate Method Combining Kriging and Importance Sampling. **Prognostics & System Health Management Conference.** 2012.

LOPEZ, R. DASSORI, C. G. Mathematical Modeling of a VGO Hydrotreating reactor. In: SPE Latin American and Caribbean Petroleum Engineering Conference. Argentina. 2001.

LOPHAVEN, S. N.; NIELSEN, H. B.; SONDERGAARD, J. Aspects of Matlab Toolbox DACE. Technical University of Denmark. 2002.

LUCA, B. V. et al. Análise da Associação de Tecnologias Alternativas Integradas ao Hidrotratamento para a Produção de Combustíveis com Baixos Teores de Enxofre. **Dissertação**. Rio de Janeiro, RJ. Universidade Estadual do Rio de Janeiro. 2006.

MAGALHÃES, M. M.; LIMA, A. C. P. **Noções de Probabilidade e Estatística**. São Paulo. Editora da Universidade de São Paulo, 2002.

MARTIN, J. D.; SIMPSON, T. W. A study on the use of kriging models to aproximate detrministic computer models. **Design Engineering Technical Conferences and Computers and Information in Engineering Conference**. Chicago. 2003.

MASSOTH, F. E.; KIM, S. C. Kinetics of the HDN of Quinoline under Vapor-Phase Conditions. Industrial & Engineering Chemistry Research. 42, 1011-1022, 2003.

MATIAS, J.M. et al. Comparison of Kriging and Neural Networks with application to the Exploitaion of a Slate Mine. **Mathematical Geology**. v.36, n.4, 464-486, 2004.

MATHERON, G. The Theory of Regionalized Variables and its Applications. Les Cahiers du Centre de Morphologie Mathématique de Fontainebleau. n. 5. Fontenebleau. 1971.

MCKAY, M. D.; BECKMAN, R. J.; CONOVER, W. J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. **Technometrics**. v.21, n.2, p. 239-124, 1979.

MORAIS, E. R. Modelagem e Simulação de reatores catalíticos de leito fixo: avaliação de diferentes configurações para o fluido refrigerante. 2004. **Dissertação**. Campinas. Universidade Estadual de Campinas. 2004.

MURALI, C. et al. Trickle bed reactor model to simulate the performance of comercial diesel hydrotreating unit. **Fuel**, 86, 1176-1184, 2007.

NIGAM, A.; KLEIN, M. A mechanism-oriented lumping strategy or heavy hydrocarbon pyrolysis: imposition of quantitative structure-reactivity relationships for pure componentes. **Industrial Engineering Chemical Research**, 32, 1297-1303, 1993.

OLSSOM, A.; SANDEBERG, G.; DAHLBLOM, O. On latin hypercube sampling for structural reliability analysis. **Structural safety**, 25, 47-68, 2003.

PACHECO, M. E. Desenvolviemnto de Metodologia para Desativação Acelerada de Catalisadores de Hidrotratamento em Plantas Piloto. **Tese**. Rio de Janeiro, RJ. Universidade Federal do Rio de Janeiro. 2008.

PEREIRA NETO, A. T. Modelagem e Simulação de Reatores de Hidrotratamento de Diesel. **Tese**. Campina Grande, PB. Universidade Federal de Campina Grande. 2013.

PILLE, R.; FROMENT, G. Kinetic study of the hydrodenitrogenation of pyridine and piperidine on a NiMo Catalyst. **Hydrotreatment and hydrocracking of oil fractions**. Belgium. 1997.

RAY, C. U. et al. Mild Hydrocracking – A state of Art. **Fuel Science and Technology**. 13, 1199, 1995.

REACTIONS IN HYSYS. Disponível em: < http://www.owlnet.rice.edu/~ceng403/ hysys/reactions.html. Acesso em 15 de Jan. 2017.

REFAP. **HDT** – **Manual de operação da unidade de hidrotratamento de Diesel.** Arquivo corporativo Petrobras. 2009.

REGIS, R. G. Trust regions in Kriging-based optimization with expected improvement.EngineeringOptimization.2015.Disponívelem:<</th>http://dx.doi.org/10.1080/0305215X.2015.1082350>Acesso em 05 Jun 2017.

RIAZI, M. R. Characterization and Properties of Petroleum Fractions. Firsto Edition. 2005.

RODRIGUEZ, M. A.; ANCHEYTA, J. Modeling of hydrodessulfurization (HDS), hydrodenitrogenation (HDN), and the hydrogenation of aromatics (HDA) in a vacum gas oil hydrotreater. **Energy Fuels**, 18, 789-794, 2004.

ROMERO, D. A.; MARIN, V. E.; AMON, C. H. Error Metrics and the Sequential Refinement of Kriging Metamodels. Journal of Machanical Design. v. 137. 2015.

RYU, J. S. et al. Kriging Interpolation Methods in Geostatistics and DACE Model. **KSME International Journal.** v.16, n.5, p.619-632, 2002.

SACKS. J.; WELCH, W. J.; MITCHELL, T. J.; WYNN, H. P. Design and Analysis of Computer Experiments. **Statistical Science**. V.4, n.4, 409-423, 1989.

SANTOS, K, R, M. Técnicas de amostragem inteligente em simulação Monte Carlo. **Dissertação**. São Carlos. Universidade de São Paulo. 2014

SCHERER, R. P.; MALVESTI, A. L.; PERGHER, S. B. Estudo de adsorção de compostos sulfurados utilizando um diesel comercial dopado com benzotiofeno e dibenzotiofeno. **Química Nova**. Vol.32, n.1, 34-37, 2009.

SCHWEITZER, J. M.; LOPEZ-GARCIA, C.; FERRE, D. Thermal runaway analysis of a three-phase reactor for LCO hydrotreatment. **Chemical Engineering Science**, 65, 313-321, 2010.

SIL, S.; SRINVASAN, S. Stochastic simulation of fracture strikes using seismic anisotropy induced velocity anomalies. **Exploration Geophysics.** v. 40, n. 3, p. 257, 2009.

SILVA, R. M. C. F. Modelagem Composicional e Cinética do Hidrocraqueamento de frações de Petróleo. **Tese**. Rio de Janeiro. Universidade Federal do Rio de Janeiro. 2007.

SILVA, T. E. P. et al. Enxofre: Um poluente em potencial na composição do óleo diesel brasileiro. In: Congresso Brasileiro de Gestão Ambiental, 4. Salvador. 2013.

SILVA, C. R.; QUINTAS, M. C. L.; CENTENO, J. A. S. Estudo do Método de Interpolação do Inverso da Distância a uma Potência. **Simpósio Brasileiro de Geomática.** p. 57-62. Presidente Prudente, SP. 2007.

SMITH, J. M.; VAN NESS, H. C.; ABBOTT, M. M. Introduction to Chemical Engineering Thermodynamics. Senventh Edition. 2005.

SPEIGHT, J. G. The dessulfurization of Heavy Oils and Residua. Second Edition. New York. 2000.

TAHRAN, M. O. Catalytic Reactor Design. New York. 1983.

TOLEDO, E. C. V.; MEYER, J. F. C. A.; MACIEL FILHO, R.; Modelagem dinâmica de um reator de hidrotratamento. In: Congresso Brasileiro de P&D em petróleo e gás, 3. Rio de Janeiro. 2005.

VALVERDE JUNIOR, I. M.; PAULINO, J. F.; AFONSO, J. C. Rota metalúrgica de recuperação de molibdênio, cobalto, níquel e alumínio de catalisadores gastos de hidrotratamento em meio ácido. **Química Nova**. 31, 3, 680-687, 2008.

VICARIO, G.; CRAPAROTTA, G.; PISTONE, G. Meta-models in Computer Experiments: Kriging versus Artificial Neural Networks. **Quality and Reliability Engineering International.** 2016.

WANG, J. T.; WANG, C. J.; ZHAO, J. P. Frequency response function-based model updating using Kriging model. **Mechanical Systems and Signal Processing**. 87, 218-228, 2017.

YANG, K. H.; HOUGEN, O. A. Chem. Eng. Prog. 46, 146, 1950.

Yi, Y. K. Dynamic coupling between a Kriging-based daylight model and building energy model. **Energy and Buildings**. 128, 798-808, 2016.

ZEUTHEN, P.; KNUDSEN, K. G.; WHITEHURST, D. D. Organic nitrogen compounds in gas oil blends, their hydrotreated products and the importante to hydrotreatment. **Catalysis Today**, 65, 370-314, 2001.

ZHANG, Y. et al. Function Prediction at One Inaccessible Point Using Converging Lines. **Journal of Mechanical Design.** v. 139, 2017.

APÊNDICE A – EQUAÇÕES DAS TAXAS DAS REAÇÕES DE HDN

NB: H_2S é o sulfeto de hidrogênio, ΣCN é o somatório de todos os compostos orgânicos nitrogenados e ΣCA é o somatório de todos os compostos aromáticos não nitrogenados.

	Reação 1 $C_{21}H_{27}N + 3H_2 \Leftrightarrow C_{21}H_{33}N$ HNNITA2 + 3H2 \Leftrightarrow HBNITAN	Reação 2 C ₂₁ H ₂₅ N + 4H ₂ ⇔ C ₂₁ H ₃₃ N HBNITA2 + 4H ₂ ⇔ HBNITAN
MA	$r_{1,A} = \frac{k_{1,A}K_{C21H27N}K_{H_2}\left(x_{C21H27N}x_{H_2}^3 - \frac{x_{C21H33N}}{Keq_1}\right)}{(1 + K_{H_2}x_{H_2} + K_{H2S}x_{H2S} + \sum K_{CN}x_{CN} + K_{CA}\sum x_{CA})^3}$	$r_{A,2} = \frac{k_{A,2}K_{C21H25N}K_{H_2}\left(C_{C21H25N}C_{H_2}^4 - \rho^4 \frac{C_{C21H33N}}{Keq_2}\right)}{(1 + K_{H_2}C_{H_2} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})^3}$
MB	$r_{1,B} = \frac{k_{1,B}K_{C21H27N}K_{H_2}\left(x_{C21H27N}x_{H_2}^3 - \frac{x_{C21H33N}}{Keq_1}\right)}{(1 + K_{H_2}x_{H_2} + K_{H2S}x_{H2S} + \sum K_{CN}x_{CN} + K_{CA}\sum x_{CA})^2}$	$r_{B,2} = \frac{k_{B,2}K_{C21H25N}K_{H_2} \left(C_{C21H25N}C_{H_2}^4 - \rho^4 \frac{C_{C21H33N}}{Keq_2}\right)}{(1 + K_{H_2}C_{H_2} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})^2}$
мс	$r_{1,C} = \frac{k_{1,C} \left(x_{C21H27N} - \frac{x_{C21H33N}}{Keq_1 x_{H_2}^3} \right)}{\left(1 + \sqrt{\frac{K_{C21H27N} x_{C21H33N}}{Keq_1 x_{H_2}}} + K_{H_2} x_{H_2} + K_{H2S} x_{H2S} + \sum K_{CN} x_{CN} + K_{CA} \sum x_{CA} \right)^2}$	$r_{C,2} = \frac{k_{C,2} \left(C_{C21H25N} - \rho^4 \frac{C_{C21H33N}}{Keq_2 C_{H_2}^4} \right)}{\left(1 + \sqrt{\frac{K_{C21H25N} C_{C21H33N}}{Keq_2 C_{H_2}}} + K_{H_2} C_{H_2} + K_{H2S} C_{H2S} + K_{CN} \sum C_{CN} + K_{CA} \sum C_{CA} \right)^2}$
MD	$r_{1,D} = \frac{k_{1,D} \left(x_{C21H27N} - \frac{x_{C21H33N}}{Keq_1 x_{H_2}^3} \right)}{\left(1 + \frac{K_{C21H27N} x_{AB}}{Keq_1 x_{H_2}} + K_{H_2} x_{H_2} + K_{H2S} x_{H2S} + \sum K_{CN} x_{CN} + K_{CA} \sum x_{CA} \right)}$	$r_{D,2} = \frac{k_{D,2} \left(C_{C21H25N} - \rho^4 \frac{C_{C21H33N}}{Keq_2 C_{H_2}^4} \right)}{\left(1 + \frac{K_{C21H25N} C_{AB}}{Keq_2 C_{H_2}} + K_{H_2} C_{H_2} + K_{H2S} C_{H2S} + \sum K_{CN} C_{CN} + K_{CA} \sum C_{CA} \right)}$
ME	$r_{1,E} = \frac{k_{1,E}K_{eq} \left(C_{C21H27N} C_{H_2}^3 - \rho^3 \frac{C_{C21H33N}}{Keq_1} \right)}{\left(1 + K_{H_2}C_{H_2} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA} \sum C_{CA} \right)}$	$r_{E,2} = \frac{k_{E,2}K_{eq} \left(C_{C21H25N} C_{H_2}^4 - \rho^4 \frac{C_{C21H33N}}{Keq_2} \right)}{\left(1 + K_{H_2} C_{H_2} + K_{H2S} C_{H2S} + \sum K_{CN} C_{CN} + K_{CA} \sum C_{CA} \right)}$
	Reação 3 C9H9N + H2 ⇔ C9H11N MNNITA + H2 ⇔ MBNITN	Reação 4 C₀H7N + 2H2 ⇔ C₀H11N MBNITA + 2H2 ⇔ MBNITN
MA	$r_{A,3} = \frac{k_{A,3}K_{C9H9N}K_{H_2} \left(C_{C9H9N}C_{H_2} - \rho \frac{C_{C9H1N}}{Keq_3}\right)}{\left(1 + K_{H_2}C_{H_2} + K_{H2S}C_{H2S} + K_{CN}\sum C_{CN} + K_{CA}\sum C_{CA}\right)^3}$	$r_{A,4} = \frac{k_{A,4}K_{C9H7N}K_{H_2}\left(C_{C9H7N}C_{H_2}^2 - \rho^2 \frac{C_{C9H11N}}{Keq_4}\right)}{(1 + K_{H_2}C_{H_2} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})^3}$
MB	$r_{B,3} = \frac{k_{B,3} K_{C9H9N} K_{H_2} \left(C_{C9H9N} C_{H_2} - \rho \frac{C_{C9H11N}}{Keq_3} \right)}{\left(1 + K_{H_2} C_{H_2} + K_{H2S} C_{H2S} + \sum K_{CN} C_{CN} + K_{CA} \sum C_{CA} \right)^2}$	$r_{B,4} = \frac{k_{B,4}K_{C9H7N}K_{H_2}\left(C_{C9H7N}C_{H_2}^2 - \rho^2 \frac{C_{C9H1N}}{Keq_4}\right)}{(1 + K_{H_2}C_{H_2} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})^2}$

МС	$r_{C,3} = \frac{k_{C,3} \left(C_{C9H9N} - \rho \frac{C_{C9H11N}}{Keq_3 C_{H_2}} \right)}{\left(1 + \sqrt{\frac{K_{C9H9N} C_{C9H11N}}{Keq_3 C_{H_2}}} + K_{H_2} C_{H_2} + K_{H2S} C_{H2S} + \sum K_{CN} C_{CN} + K_{CA} \sum C_{CA} \right)^2}$	$r_{C,4} = \frac{k_{C,4} \left(C_{C9H7N} - \rho^2 \frac{C_{C9H11N}}{Keq_4 C_{H_2}^2} \right)}{(1 + \sqrt{\frac{K_{C9H7N} C_{C9H11N}}{Keq_4 C_{H_2}}} + K_{H_2} C_{H_2} + K_{H2S} C_{H2S} + \sum K_{CN} C_{CN} + K_{CA} \sum C_{CA})^2}$
MD	$r_{D,3} = \frac{k_{D,3} \left(C_{C9H9N} - \rho \frac{C_{C9H11N}}{Keq_3 C_{H_2}} \right)}{\left(1 + \frac{K_{C9H9N} C_{AE}}{Keq_3 C_{H_2}} + K_{H_2} C_{H_2} + K_{H2S} C_{H2S} + \sum K_{CN} C_{CN} + K_{CA} \sum C_{CA} \right)}$	$r_{D,4} = \frac{k_{D,4} \left(C_{C9H7N} - \rho^2 \frac{C_{C9H11N}}{Keq_4 C_{H_2}^2} \right)}{\left(1 + \frac{K_{C9H7N} C_{C9H11N}}{Keq_4 4 C_{H_2}} + K_{H_2} C_{H_2} + K_{H2S} C_{H2S} + \sum K_{CN} C_{CN} + K_{CA} \sum C_{CA} \right)}$
ME	$r_{E,3} = \frac{k_{E,3} K_{eq} \left(C_{C9H9N} C_{H_2} - \rho \frac{C_{C9H11N}}{Keq_3} \right)}{\left(1 + K_{H_2} C_{H_2} + K_{H2S} C_{H2S} + \sum K_{CN} C_{CN} + K_{CA} \sum C_{CA} \right)}$	$r_{E,4} = \frac{k_{E,4}K_{eq} \left(C_{C9H7N} C_{H_2}^2 - \rho^2 \frac{C_{C9H11N}}{Keq_4} \right)}{\left(1 + K_{H_2}C_{H_2} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA} \sum C_{CA} \right)}$
	Reação 5 C4H5N +2H2 ⇔ C4H9N LNNIT + 2H2 ⇔ LBNIT	Reação 6 C ₂₁ H ₃₃ N + 2H ₂ => C ₂₁ H ₃₄ + NH ₃ HBNITAN + 2H ₂ => HAN + NH ₃
MA	$r_{A,5} = \frac{k_{A,5}K_{C4H5N}K_{H_2} \left(C_{C4H5N}C_{H_2}^2 - \rho^2 \frac{C_{C4H9N}}{Keq_5}\right)}{(1 + K_{H_2}C_{H_2} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})^3}$	$r_{A,6} = \frac{k_{A,6}K_{C21H33N}K_{H_2}C_{C21H33N}C_{H_2}}{(1 + K_{H_2}C_{H_2} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})^3}$
MB	$r_{B,5} = \frac{k_{B,5} K_{C4H5N} K_{H_2} \left(C_{C4H5N} C_{H_2}^2 - \rho^2 \frac{C_{C4H9N}}{Keq_5} \right)}{\left(1 + K_{H_2} C_{H_2} + K_{H2S} C_{H2S} + \sum K_{CN} C_{CN} + K_{CA} \sum C_{CA} \right)^2}$	$r_{B,6} = \frac{k_{B,6}K_{C21H33N}K_{H_2}C_{C21H33N}C_{H_2}}{(1 + K_{H_2}C_{H_2} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})^2}$
МС	$r_{C,5} = \frac{k_{C,5} \left(C_{C4H5N} - \rho^2 \frac{C_{C4H9N}}{Keq_5 C_{H_2}^2} \right)}{(1 + \sqrt{\frac{K_{C4H5N} C_{C4H9N}}{Keq_5 C_{H_2}}} + K_{H_2} C_{H_2} + K_{H2S} C_{H2S} + \sum K_{CN} C_{CN} + K_{CA} \sum C_{CA})^2}$	$r_{C,6} = \frac{k_{C,6}C_{C21H33N}}{(1 + K_{H_2}C_{H_2} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})^2}$
MD	$r_{D,5} = \frac{k_{D,5} \left(C_{C4H5N} - \rho^2 \frac{C_{C4H9N}}{Keq_5 C_{H_2}^2} \right)}{\left(1 + \frac{K_{C4H5N} C_{C4H9N}}{Keq_5 C_{H_2}} + K_{H_2} C_{H_2} + K_{H2S} C_{H2S} + K_{CN} \sum C_{CN} + K_{CA} \sum C_{CA} \right)}$	$r_{D,6} = \frac{k_{D,6}C_{C21H33N}}{(1 + K_{H_2}C_{H_2} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})}$
ME	$r_{E,5} = \frac{k_{E,5} K_{eq} \left(C_{C4H5N} C_{H_2}^2 - \rho^2 \frac{C_{C4H9N}}{Keq_5} \right)}{\left(1 + K_{H_2} C_{H_2} + K_{H2S} C_{H2S} + \sum K_{CN} C_{CN} + K_{CA} \sum C_{CA} \right)}$	$r_{E,6} = \frac{k_{E,6}C_{C21H33N}C_{H_2}}{(1 + K_{H_2}C_{H_2} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})}$

	Reação 7	Reação 8
	$C_9H_{11}N + 2H_2 => C_9H_{12} + NH_3$	$C_4H_9N + 2H_2 => C_4H_{10} + NH_3$
	$MBNITN + 2H_2 \Longrightarrow C9A + NH_3$	$LBNIT + 2H_2 \Longrightarrow C4 + NH_3$
	$k_{A,7}K_{C9H11N}K_{H_2}C_{C9H11N}C_{H_2}$	$k_{A,8}K_{C4H9N}K_{H_2}C_{C4H9N}C_{H_2}$
MA	$r_{A,7} = \frac{1}{(1 + K_{H_2}C_{H_2} + K_{NH3}C_{NH3} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})^3}$	$T_{A,8} = \frac{1}{(1 + K_{H_2}C_{H_2} + K_{C4H10}C_{C4H10} + K_{NH3}C_{NH3} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})^3}$
	$k_{B,7}K_{C9H11N}K_{H_2}C_{C9H11N}C_{H_2}$	$k_{B,8}K_{C4H9N}K_{H_2}C_{C4H9N}C_{H_2}$
MB	$V_{B,7} = \frac{1}{(1 + K_{H_2}C_{H_2} + K_{NH3}C_{NH3} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})^2}$	$K_{B,8} = \frac{1}{(1 + K_{H_2}C_{H_2} + K_{C4H10}C_{C4H10} + K_{NH3}C_{NH3} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})^2}$
	$k_{C,7}C_{C9H11N}$	k _{C,8} C _{C4H9N}
MC	$V_{C,7} = \frac{1}{(1 + K_{H_2}C_{H_2} + K_{NH3}C_{NH3} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})^2}$	$K_{C,8} = \frac{1}{(1 + K_{H_2}C_{H_2} + K_{C4H10}C_{C4H10} + K_{NH3}C_{NH3} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})^2}$
	$k_{D,7}C_{C9H11N}$	k _{D,8} C _{C4H9N}
MD	$V_{D,7} = \frac{1}{(1 + K_{H_2}C_{H_2} + K_{NH3}C_{NH3} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})}$	$V_{D,8} = \frac{1}{(1 + K_{H_2}C_{H_2} + K_{C4H10}C_{C4H10} + K_{NH3}C_{NH3} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})}$
	$k_{E,7}C_{C9H11N}C_{H_2}$	$k_{E,8}C_{C4H9N}C_{H_2}$
ME	$T_{E,7} = \frac{1}{(1 + K_{H_2}C_{H_2} + K_{NH3}C_{NH3} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})}$	$T_{E,8} = \frac{1}{(1 + K_{H_2}C_{H_2} + K_{C4H10}C_{C4H10} + K_{NH3}C_{NH3} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})}$
	D ~ 0	
	Reação 9	Reação 10
	$\begin{array}{l} \text{Reaçao 9} \\ \text{C}_{35}\text{H}_{55}\text{N} + 4\text{H}_2 => \text{C}_{21}\text{H}_{30} + \text{NH}_3 + \text{C}_{14}\text{H}_{30} \end{array}$	Reação 10 C47H73N + 3H2 => C47H76 + NH3
	$\begin{array}{l} \text{Keaçao 9} \\ \text{C}_{35}\text{H}_{55}\text{N} + 4\text{H}_2 => \text{C}_{21}\text{H}_{30} + \text{NH}_3 + \text{C}_{14}\text{H}_{30} \\ \text{VBNITA2N} + 4\text{H}_2 => \text{HA2} + \text{NH}_3 + \text{C}_{14}\text{P} \end{array}$	Reação 10 C47H73N + 3H2 => C47H76 + NH3 VNNITA3 + 3H2 => VA3 + NH3
	$\begin{array}{c} \text{Keaçao 9} \\ \text{C}_{35}\text{H}_{55}\text{N} + 4\text{H}_2 => \text{C}_{21}\text{H}_{30} + \text{NH}_3 + \text{C}_{14}\text{H}_{30} \\ \text{VBNITA2N} + 4\text{H}_2 => \text{HA2} + \text{NH}_3 + \text{C}_{14}\text{P} \\ \hline k_{A,9}K_{C35H55N}K_{H_2}C_{C35H55N}C_{H_2} \end{array}$	Reação 10 C47H73N + 3H2 => C47H76 + NH3 VNNITA3 + 3H2 => VA3 + NH3 $k_{A,10}K_{C47H73N}K_{H_2}C_{C47H73N}C_{H_2}$
MA	$\begin{aligned} \text{Keaçao 9} \\ \text{C}_{35}\text{H}_{55}\text{N} + 4\text{H}_2 => \text{C}_{21}\text{H}_{30} + \text{NH}_3 + \text{C}_{14}\text{H}_{30} \\ \text{VBNITA2N} + 4\text{H}_2 => \text{HA2} + \text{NH}_3 + \text{C}_{14}\text{H}_2 \\ \hline r_{A,9} = \frac{k_{A,9}K_{C35H55N}K_{H_2}C_{C35H55N}C_{H_2}}{(1 + K_{H_2}C_{H_2} + K_{C14H30}C_{C14H30} + K_{NH3}C_{NH3} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})^3} \end{aligned}$	$\begin{aligned} \text{Reação 10} \\ \text{C}_{47}\text{H}_{73}\text{N} + 3\text{H}_2 &=> \text{C}_{47}\text{H}_{76} + \text{NH}_3 \\ \text{VNNITA3 + 3H}_2 &=> \text{VA3 + NH}_3 \\ \hline r_{A,10} &= \frac{k_{A,10}K_{C47H73N}K_{H_2}C_{C47H73N}C_{H_2}}{(1 + K_{H_2}C_{H_2} + K_{NH3}C_{NH3} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})^3} \end{aligned}$
MA	$\begin{aligned} \text{Keaçao 9} \\ \text{C}_{35\text{H}55\text{N}} + 4\text{H}_2 &=> \text{C}_{21\text{H}30} + \text{NH}_3 + \text{C}_{14\text{H}30} \\ \text{VBNITA2N} + 4\text{H}_2 &=> \text{HA2} + \text{NH}_3 + \text{C}_{14\text{H}30} \\ \text{VBNITA2N} + 4\text{H}_2 &=> \text{HA2} + \text{NH}_3 + \text{C}_{14\text{H}30} \\ \hline r_{A,9} &= \frac{k_{A,9}K_{C35H55N}K_{H_2}C_{C35H55N}C_{H_2}}{(1 + K_{H_2}C_{H_2} + K_{C14H30}C_{C14H30} + K_{NH3}C_{NH3} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA} \sum C_{CA})^3} \\ \hline \\ &= \frac{k_{B,9}K_{C35H55N}K_{H_2}C_{C35H55N}C_{H_2}}{(1 + K_{H_2}C_{H_2} + K_{C14H30}C_{C14H30} + K_{NH3}C_{NH3} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA} \sum C_{CA})^3} \end{aligned}$	Reação 10 $C_{47}H_{73}N + 3H_2 => C_{47}H_{76} + NH_3$ $VNNITA3 + 3H_2 => VA3 + NH_3$ $r_{A,10} = \frac{k_{A,10}K_{C47H73N}K_{H_2}C_{C47H73N}C_{H_2}}{(1 + K_{H_2}C_{H_2} + K_{NH3}C_{NH3} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})^3}$
MA MB	$\begin{aligned} & \text{Keaçao 9} \\ & \text{C}_{35}\text{H}_{55}\text{N} + 4\text{H}_{2} => \text{C}_{21}\text{H}_{30} + \text{NH}_{3} + \text{C}_{14}\text{H}_{30} \\ & \text{VBNITA2N} + 4\text{H}_{2} => \text{HA2} + \text{NH}_{3} + \text{C}_{14}\text{H}_{30} \\ & \text{VBNITA2N} + 4\text{H}_{2} => \text{HA2} + \text{NH}_{3} + \text{C}_{14}\text{H}_{30} \\ & \text{r}_{A,9} = \frac{k_{A,9}K_{C35H55N}K_{H_{2}}C_{C35H55N}C_{H_{2}}}{(1 + K_{H_{2}}C_{H_{2}} + K_{C14H30}C_{C14H30} + K_{NH3}C_{NH3} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})^{3}} \\ & r_{B,9} = \frac{k_{B,9}K_{C35H55N}K_{H_{2}}C_{C35H55N}C_{H_{2}}}{(1 + K_{H_{2}}C_{H_{2}} + K_{C14H30}C_{C14H30} + K_{NH3}C_{NH3} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})^{2}} \end{aligned}$	$\begin{aligned} \text{Reação 10} \\ \text{C47H73N + 3H2 => C47H76 + NH3} \\ \text{VNNITA3 + 3H2 => VA3 + NH3} \\ \hline r_{A,10} &= \frac{k_{A,10}K_{C47H73N}K_{H_2}C_{C47H73N}C_{H_2}}{(1 + K_{H_2}C_{H_2} + K_{NH3}C_{NH3} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})^3} \\ r_{B,10} &= \frac{k_{B,10}K_{C47H73N}K_{H_2}C_{C47H73N}C_{H_2}}{(1 + K_{H_2}C_{H_2} + K_{NH3}C_{NH3} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})^2} \end{aligned}$
MA MB	$\begin{aligned} & \text{Keaçao 9} \\ & \text{C}_{35}\text{H}_{55}\text{N} + 4\text{H}_{2} => \text{C}_{21}\text{H}_{30} + \text{NH}_{3} + \text{C}_{14}\text{H}_{30} \\ & \text{VBNITA2N} + 4\text{H}_{2} => \text{HA2} + \text{NH}_{3} + \text{C}_{14}\text{H}_{30} \\ & \text{VBNITA2N} + 4\text{H}_{2} => \text{HA2} + \text{NH}_{3} + \text{C}_{14}\text{H}_{30} \\ & \text{r}_{A,9} = \frac{k_{A,9}K_{C35H55N}K_{H_{2}}C_{C35H55N}C_{H_{2}}}{(1 + K_{H_{2}}C_{H_{2}} + K_{C14H30}C_{C14H30} + K_{NH3}C_{NH3} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})^{3}} \\ & r_{B,9} = \frac{k_{B,9}K_{C35H55N}K_{H_{2}}C_{C35H55N}C_{H_{2}}}{(1 + K_{H_{2}}C_{H_{2}} + K_{C14H30}C_{C14H30} + K_{NH3}C_{NH3} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})^{2}} \\ & \text{r}_{C,9}C_{C35H55N} \end{aligned}$	$\begin{aligned} & \text{Reação 10} \\ & \text{C47H73N + 3H2} => \text{C47H76 + NH3} \\ & \text{VNNITA3 + 3H2} => \text{VA3 + NH3} \\ \hline & \text{VNNITA3 + 3H2} => \text{VA3 + NH3} \\ \hline & r_{A,10} = \frac{k_{A,10}K_{C47H73N}K_{H_2}C_{C47H73N}C_{H_2}}{(1 + K_{H_2}C_{H_2} + K_{NH3}C_{NH3} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})^3} \\ \hline & r_{B,10} = \frac{k_{B,10}K_{C47H73N}K_{H_2}C_{C47H73N}C_{H_2}}{(1 + K_{H_2}C_{H_2} + K_{NH3}C_{NH3} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})^2} \\ \hline & Implies the set of the set $
MA MB MC	$\begin{aligned} & \text{Keaçao 9} \\ & \text{C}_{35}\text{H}_{55}\text{N} + 4\text{H}_{2} => \text{C}_{21}\text{H}_{30} + \text{NH}_{3} + \text{C}_{14}\text{H}_{30} \\ & \text{VBNITA2N} + 4\text{H}_{2} => \text{HA2} + \text{NH}_{3} + \text{C}_{14}\text{H}_{30} \\ & \text{VBNITA2N} + 4\text{H}_{2} => \text{HA2} + \text{NH}_{3} + \text{C}_{14}\text{H}_{30} \\ \hline & r_{A,9} = \frac{k_{A,9}K_{C35H55N}K_{H_{2}}C_{C35H55N}C_{H_{2}}}{(1 + K_{H_{2}}C_{H_{2}} + K_{C14H30}C_{C14H30} + K_{NH3}C_{NH3} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})^{3}} \\ & r_{B,9} = \frac{k_{B,9}K_{C35H55N}K_{H_{2}}C_{C35H55N}C_{H_{2}}}{(1 + K_{H_{2}}C_{H_{2}} + K_{C14H30}C_{C14H30} + K_{NH3}C_{NH3} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})^{2}} \\ & r_{C,9} = \frac{k_{C,9}C_{C35H55N}}{(1 + K_{H_{2}}C_{H_{2}} + K_{C14H30}C_{C14H30} + K_{NH3}C_{NH3} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})^{2}} \end{aligned}$	$\begin{aligned} & \text{Reação 10} \\ & \text{C47H73N + 3H2} => \text{C47H76 + NH3} \\ & \text{VNNITA3 + 3H2} => \text{VA3 + NH3} \\ \hline & \text{VNNITA3 + 3H2} => \text{VA3 + NH3} \\ \hline & r_{A,10} = \frac{k_{A,10}K_{C47H73N}K_{H_2}C_{C47H73N}C_{H_2}}{(1 + K_{H_2}C_{H_2} + K_{NH3}C_{NH3} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})^3} \\ \hline & r_{B,10} = \frac{k_{B,10}K_{C47H73N}K_{H_2}C_{C47H73N}C_{H_2}}{(1 + K_{H_2}C_{H_2} + K_{NH3}C_{NH3} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})^2} \\ \hline & r_{C,10} = \frac{k_{C,10}C_{C47H73N}}{(1 + K_{H_2}C_{H_2} + K_{NH3}C_{NH3} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})^2} \\ \hline \end{aligned}$
MA MB MC	$\begin{aligned} & \text{Keaçao 9} \\ & \text{C}_{35}\text{H}_{55}\text{N} + 4\text{H}_{2} => \text{C}_{21}\text{H}_{30} + \text{NH}_{3} + \text{C}_{14}\text{H}_{30} \\ & \text{VBNITA2N} + 4\text{H}_{2} => \text{HA2} + \text{NH}_{3} + \text{C}_{14}\text{H}_{30} \\ & \text{VBNITA2N} + 4\text{H}_{2} => \text{HA2} + \text{NH}_{3} + \text{C}_{14}\text{H}_{30} \\ \hline & r_{A,9} = \frac{k_{A,9}K_{C35H55N}K_{H_{2}}C_{C35H55N}C_{H_{2}}}{(1 + K_{H_{2}}C_{H_{2}} + K_{C14H30}C_{C14H30} + K_{NH3}C_{NH3} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})^{3}} \\ \hline & r_{B,9} = \frac{k_{B,9}K_{C35H55N}K_{H_{2}}C_{C35H55N}C_{H_{2}}}{(1 + K_{H_{2}}C_{H_{2}} + K_{C14H30}C_{C14H30} + K_{NH3}C_{NH3} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})^{2}} \\ \hline & r_{C,9} = \frac{k_{C,9}C_{C35H55N}}{(1 + K_{H_{2}}C_{H_{2}} + K_{C14H30}C_{C14H30} + K_{NH3}C_{NH3} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})^{2}} \\ \hline & r_{C,9} = \frac{k_{D,9}C_{C35H55N}}{(1 + K_{H_{2}}C_{H_{2}} + K_{C14H30}C_{C14H30} + K_{NH3}C_{NH3} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})^{2}} \\ \hline \end{array}$	$\begin{aligned} & \text{Reação 10} \\ & \text{C47H73N + 3H2} => \text{C47H76 + NH3} \\ & \text{VNNITA3 + 3H2} => \text{VA3 + NH3} \\ \hline & \text{VNNITA3 + 3H2} => \text{VA3 + NH3} \\ \hline & r_{A,10} = \frac{k_{A,10}K_{C47H73N}K_{H_2}C_{C47H73N}C_{H_2}}{(1 + K_{H_2}C_{H_2} + K_{NH3}C_{NH3} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})^3} \\ \hline & r_{B,10} = \frac{k_{B,10}K_{C47H73N}K_{H_2}C_{C47H73N}C_{H_2}}{(1 + K_{H_2}C_{H_2} + K_{NH3}C_{NH3} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})^2} \\ \hline & r_{C,10} = \frac{k_{C,10}C_{C47H73N}}{(1 + K_{H_2}C_{H_2} + K_{NH3}C_{NH3} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})^2} \\ \hline & r_{C,10} = \frac{k_{C,10}C_{C47H73N}}{(1 + K_{H_2}C_{H_2} + K_{NH3}C_{NH3} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})^2} \\ \hline \end{array}$
MA MB MC MD	$\begin{aligned} & \text{Keaçao 9} \\ & \text{C}_{35}\text{H}_{55}\text{N} + 4\text{H}_{2} => \text{C}_{21}\text{H}_{30} + \text{NH}_{3} + \text{C}_{14}\text{H}_{30} \\ & \text{VBNITA2N} + 4\text{H}_{2} => \text{HA2} + \text{NH}_{3} + \text{C}_{14}\text{H}_{30} \\ & \text{VBNITA2N} + 4\text{H}_{2} => \text{HA2} + \text{NH}_{3} + \text{C}_{14}\text{H}_{30} \\ \hline & r_{A,9} = \frac{k_{A,9}K_{C35H55N}K_{H_{2}}C_{C35H55N}C_{H_{2}}}{(1 + K_{H_{2}}C_{H_{2}} + K_{C14H30}C_{C14H30} + K_{NH3}C_{NH3} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})^{3}} \\ & r_{B,9} = \frac{k_{B,9}K_{C35H55N}K_{H_{2}}C_{C35H55N}C_{H_{2}}}{(1 + K_{H_{2}}C_{H_{2}} + K_{C14H30}C_{C14H30} + K_{NH3}C_{NH3} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})^{2}} \\ & r_{C,9} = \frac{k_{C,9}C_{C35H55N}}{(1 + K_{H_{2}}C_{H_{2}} + K_{C14H30}C_{C14H30} + K_{NH3}C_{NH3} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})^{2}} \\ & r_{D,9} = \frac{k_{D,9}C_{C35H55N}}{(1 + K_{H_{2}}C_{H_{2}} + K_{C14H30}C_{C14H30} + K_{NH3}C_{NH3} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})^{2}} \end{aligned}$	$\begin{aligned} & \text{Reação 10} \\ & \text{C47H73N + 3H2} \Longrightarrow \text{C47H76 + NH3} \\ & \text{VNNITA3 + 3H2} \Longrightarrow \text{VA3 + NH3} \\ \hline & \text{VNNITA3 + 3H2} \Longrightarrow \text{VA3 + NH3} \\ \hline & r_{A,10} = \frac{k_{A,10}K_{C47H73N}K_{H_2}C_{C47H73N}C_{H_2}}{(1 + K_{H_2}C_{H_2} + K_{NH3}C_{NH3} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})^3} \\ \hline & r_{B,10} = \frac{k_{B,10}K_{C47H73N}K_{H_2}C_{C47H73N}C_{H_2}}{(1 + K_{H_2}C_{H_2} + K_{NH3}C_{NH3} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})^2} \\ \hline & r_{C,10} = \frac{k_{C,10}C_{C47H73N}}{(1 + K_{H_2}C_{H_2} + K_{NH3}C_{NH3} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})^2} \\ \hline & r_{D,10} = \frac{k_{D,10}C_{C47H73N}}{(1 + K_{H_2}C_{H_2} + K_{NH3}C_{NH3} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})^2} \end{aligned}$
MA MB MC MD	$\begin{aligned} & \text{Keaçao 9} \\ & \text{C}_{35}\text{H}_{55}\text{N} + 4\text{H}_{2} => \text{C}_{21}\text{H}_{30} + \text{NH}_{3} + \text{C}_{14}\text{H}_{30} \\ & \text{VBNITA2N} + 4\text{H}_{2} => \text{HA2} + \text{NH}_{3} + \text{C}_{14}\text{H}_{30} \\ & \text{VBNITA2N} + 4\text{H}_{2} => \text{HA2} + \text{NH}_{3} + \text{C}_{14}\text{H}_{30} \\ \hline & r_{A,9} = \frac{k_{A,9}K_{C35H55N}K_{H_{2}}C_{C35H55N}C_{H_{2}}}{(1 + K_{H_{2}}C_{H_{2}} + K_{C14H30}C_{C14H30} + K_{NH3}C_{NH3} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})^{3}} \\ & r_{B,9} = \frac{k_{B,9}K_{C35H55N}K_{H_{2}}C_{C35H55N}C_{H_{2}}}{(1 + K_{H_{2}}C_{H_{2}} + K_{C14H30}C_{C14H30} + K_{NH3}C_{NH3} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})^{2}} \\ & r_{C,9} = \frac{k_{C,9}C_{C35H55N}}{(1 + K_{H_{2}}C_{H_{2}} + K_{C14H30}C_{C14H30} + K_{NH3}C_{NH3} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})^{2}} \\ & r_{D,9} = \frac{k_{D,9}C_{C35H55N}}{(1 + K_{H_{2}}C_{H_{2}} + K_{C14H30}C_{C14H30} + K_{NH3}C_{NH3} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})^{2}} \\ & \text{C}_{A,9} = \frac{k_{D,9}C_{C35H55N}}{(1 + K_{H_{2}}C_{H_{2}} + K_{C14H30}C_{C14H30} + K_{NH3}C_{NH3} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})^{2}} \\ & \text{C}_{A,9} = \frac{k_{D,9}C_{C35H55N}}{(1 + K_{H_{2}}C_{H_{2}} + K_{C14H30}C_{C14H30} + K_{NH3}C_{NH3} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})^{2}} \\ & \text{C}_{A,9} = \frac{k_{D,9}C_{C35H55N}}{(1 + K_{H_{2}}C_{H_{2}} + K_{C14H30}C_{C14H30} + K_{NH3}C_{NH3} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})^{2}} \\ & \text{C}_{A,9} = \frac{k_{D,9}C_{C35H55N}}{(1 + K_{H_{2}}C_{H_{2}} + K_{C14H30}C_{C14H30} + K_{NH3}C_{NH3} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})^{2}} \\ & \text{C}_{A,9} = \frac{k_{D,9}C_{C35H55N}C_{H_{2}}} \\ \end{array}$	$\begin{aligned} \text{Reação 10} \\ \text{C47H73N + 3H2} &=> \text{C47H76 + NH3} \\ \text{VNNITA3 + 3H2} &=> \text{VA3 + NH3} \\ \hline \text{VNNITA3 + 3H2} &=> \text{VA3 + NH3} \\ \hline r_{A,10} &= \frac{k_{A,10}K_{C47H73N}K_{H_2}C_{C47H73N}C_{H_2}}{(1 + K_{H_2}C_{H_2} + K_{NH3}C_{NH3} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})^3} \\ \hline r_{B,10} &= \frac{k_{B,10}K_{C47H73N}K_{H_2}C_{C47H73N}C_{H_2}}{(1 + K_{H_2}C_{H_2} + K_{NH3}C_{NH3} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})^2} \\ \hline r_{C,10} &= \frac{k_{C,10}C_{C47H73N}}{(1 + K_{H_2}C_{H_2} + K_{NH3}C_{NH3} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})^2} \\ \hline r_{D,10} &= \frac{k_{D,10}C_{C47H73N}}{(1 + K_{H_2}C_{H_2} + K_{NH3}C_{NH3} + K_{H2S}C_{H2S} + \sum K_{CN}C_{CN} + K_{CA}\sum C_{CA})^2} \\ \hline \end{cases}$

APÊNDICE B - EQUAÇÕES DAS TAXAS DAS REAÇÕES LINEARIZADAS

Mecanismo MA

	$\begin{aligned} & \text{Reação 1} \\ & \text{HNNITA2} + 3H_2 \Leftrightarrow \text{HBNITAN} \\ & \text{y} = a + b_{XH2} + c_{XH2S} + d_{XLBNIT} + e_{XLNNIT} + \\ & f_{XMBNITN} + g_{XMBNITA} + h_{XMNNITA} + \\ & i_{XHBNITAN} + j_{XHBNITA2} + h_{XNNITA3} + n_{X2CA} \end{aligned}$	Reação 2 HBNITA2 + 4H ₂ \Leftrightarrow HBNITAN y = a + bx _{H2} +cx _{H2} s+ dxlbnit + exlnnit + fx _{MBNITN} + gx _{MBNITA} + hx _{MNNITA} + ix _{HBNITAN} + jx _{HBNITA2} + k _{HNNITA2} + lx _{VBNITA2N} + mx _{VNNITA3} + nx _{ΣCA}	Reação 3 MNNITA + $H_2 \Leftrightarrow$ MBNITN y = a + bxH2 +cxH2s+ dxLBNIT + exLNNIT + fxMBNITN + gxMBNITA + hxMNNITA + ixHBNITAN + jxHBNITA2 + kHNNITA2 + lxVBNITA2N + mXVNNITA3 + nx _{SCA}	Reação 4 MBNITA + $2H_2 \Leftrightarrow MBNITN$ $y = a + bx_{H2} + cx_{H2S} + dx_{LBNIT} +$ $ex_{LNNIT} + fx_{MBNITN} + gx_{MBNITA} +$ $hx_{MNNITA} + ix_{HBNITAN} + jx_{HBNITA2} +$ $k_{HNNITA2} + lx_{VBNITA2N} + mx_{VNNITA3} +$ nx_{\SigmaCA}	Reação 5 LNNIT + 2H ₂ \Leftrightarrow LBNIT y = a + bxH ₂ + cxH ₂ s+ dxLBNIT + exLNNIT + fxMBNITN + gxMBNITA + hxMNNITA + ixHBNITAN + jXHBNITA ₂ + kHNNITA ₂ + lxvBNITA ₂ N + mxvNNITA ₃ + nx ₂ CA
у	$\sqrt[3]{\frac{x_{\text{HNNITA2}}x_{H2}^3 - \frac{x_{\text{HBNITAN}}}{Keq1}}{r_{1,A}}}$	$\int_{1}^{3} \frac{x_{\text{HBNITA2}} x_{H2}^{4} - \frac{x_{\text{HBNITAN}}}{Keq2}}{r_{2,A}}$	$\sqrt[3]{\frac{x_{MNNITA}x_{H2} - \frac{x_{MBNITN}}{Keq3}}{r_{3,A}}}$	$\sqrt[3]{\frac{x_{MBNITA}x_{H2}^2 - \frac{x_{MBNITN}}{Keq4}}{r_{4,A}}}$	$\sqrt[3]{\frac{x_{LNNIT}x_{H2}^2 - \frac{x_{LBNIT}}{Keq5}}{r_{5,A}}}$
a	$\frac{1}{\sqrt[3]{k_{1,A}K_{HNNITA2}K_{H_2}}}$	$\frac{1}{\sqrt[3]{k_{2,A}K_{HBNITA2}K_{H_2}}}$	$\frac{1}{\sqrt[3]{k_{3,A}K_{MNNITA}K_{H_2}}}$	$\frac{1}{\sqrt[3]{k_{4,A}K_{MBNITA}K_{H_2}}}$	$\frac{1}{\sqrt[3]{k_{5,A}K_{LNNIT}K_{H_2}}}$
b	$\frac{K_{H_2}}{\sqrt[3]{k_{1,A}K_{HNNITA2}K_{H_2}}}$	$\frac{K_{H_2}}{\sqrt[3]{k_{2,A}K_{HBNITA2}K_{H_2}}}$	$\frac{K_{H_2}}{\sqrt[3]{k_{3,A}K_{MNNITA}K_{H_2}}}$	$\frac{K_{H_2}}{\sqrt[3]{k_{4,A}K_{MBNITA}K_{H_2}}}$	$\frac{K_{H_2}}{\sqrt[3]{k_{5,4}K_{LNNIT}K_{H_2}}}$
c	$\frac{K_{H2S}}{\sqrt[3]{k_{1,A}K_{HNNITA2}K_{H_2}}}$	$\frac{K_{H2S}}{\sqrt[3]{k_{2,A}K_{HBNITA2}K_{H_2}}}$	$\frac{K_{H2S}}{\sqrt[3]{k_{3,A}K_{MNNITA}K_{H_2}}}$	$\frac{K_{H2S}}{\sqrt[3]{k_{4,A}K_{MBNITA}K_{H_2}}}$	$\frac{K_{H2S}}{\sqrt[3]{k_{5,A}K_{LNNIT}K_{H_2}}}$
d	$\frac{K_{LBNIT}}{\sqrt[3]{k_{1,A}K_{HNNITA2}K_{H_2}}}$	$\frac{K_{LBNIT}}{\sqrt[3]{k_{2,A}K_{HBNITA2}K_{H_2}}}$	$\frac{K_{LBNIT}}{\sqrt[3]{k_{3,A}K_{MNNITA}K_{H_2}}}$	$\frac{K_{LBNIT}}{\sqrt[3]{k_{4,A}K_{MBNITA}K_{H_2}}}$	$\frac{K_{LBNIT}}{\sqrt[3]{k_{5,A}K_{LNNIT}K_{H_2}}}$
e	$\frac{K_{LNNIT}}{\sqrt[3]{k_{1,A}K_{HNNITA2}K_{H_2}}}$	$\frac{K_{LNNIT}}{\sqrt[3]{k_{2,A}K_{HBNITA2}K_{H_2}}}$	$\frac{K_{LNNIT}}{\sqrt[3]{k_{3,A}K_{MNNITA}K_{H_2}}}$	$\frac{K_{LNNIT}}{\sqrt[3]{k_{4,A}K_{MBNITA}K_{H_2}}}$	$\frac{K_{LNNIT}}{\sqrt[3]{k_{5,A}K_{LNNIT}K_{H_2}}}$
f	$\frac{K_{MBNITN}}{\sqrt[3]{k_1} K_{HNNITA2} K_{H_2}}$	$\frac{K_{MBNITN}}{\sqrt[3]{k_2} K_{HBNITA2} K_{H2}}$	$\frac{K_{MBNITN}}{\sqrt[3]{K_{3}}K_{MNNITA}K_{H_2}}$	$\frac{K_{MBNITN}}{\sqrt[3]{K_{4,4}K_{MBNITA}K_{H_2}}}$	$\frac{K_{MBNITN}}{\sqrt[3]{k_{5,A}K_{LNNIT}K_{H_2}}}$
g	$\frac{K_{MBNITA}}{\sqrt[3]{k_1} \sqrt{k_1} \sqrt{k_2}}$	$\frac{K_{MBNITA}}{\sqrt[3]{k_2} \sqrt[3]{k_2} \sqrt{K_{HBNITA2} K_{Ha}}}$	$\frac{K_{MBNITA}}{\sqrt[3]{K_3 a K_{MNNITA} K_{H_2}}}$	$\frac{K_{MBNITA}}{\sqrt[3]{K_{A,A}K_{MBNITA}K_{H_{a}}}}$	$\frac{K_{MBNITA}}{\sqrt[3]{K_{5.4}K_{INNIT}K_{H_{2}}}}$
h	$\frac{K_{MNNITA}}{\sqrt[3]{k_{1,A}K_{HNNITA2}K_{H_2}}}$	$\frac{K_{MNNITA}}{\sqrt[3]{k_{2,A}K_{HBNITA2}K_{H_2}}}$	$\frac{K_{MNNITA}}{\sqrt[3]{k_{3,A}K_{MNNITA}K_{H_2}}}$	$\frac{K_{MNNITA}}{\sqrt[3]{K_{4,A}K_{MBNITA}K_{H_2}}}$	$\frac{K_{MNNITA}}{\sqrt[3]{k_{5,A}K_{LNNIT}K_{H_2}}}$

-					
i	K _{HBNITAN}	K _{HBNITAN}	K _{HBNITAN}	K _{HBNITAN}	K _{HBNITAN}
-	$\sqrt[3]{k_{1,A}K_{HNNITA2}K_{H_2}}$	$\sqrt[3]{k_{2,A}K_{HBNITA2}K_{H_2}}$	$\sqrt[3]{k_{3,A}K_{MNNITA}K_{H_2}}$	$\sqrt[3]{k_{4,A}K_{MBNITA}K_{H_2}}$	$\sqrt[3]{k_{5,A}K_{LNNIT}K_{H_2}}$
i	K _{HBNITA2}	K _{HBNITA2}	K _{HBNITA2}	K _{HBNITA2}	K _{HBNITA2}
J	$\sqrt[3]{k_{1,A}K_{HNNITA2}K_{H_2}}$	$\sqrt[3]{k_{2,A}K_{HBNITA2}K_{H_2}}$	$\sqrt[3]{k_{3,A}K_{MNNITA}K_{H_2}}$	$\sqrt[3]{k_{4,A}K_{MBNITA}K_{H_2}}$	$\sqrt[3]{k_{5,A}K_{LNNIT}K_{H_2}}$
k	K _{HNNITA2}	K _{HNNITA2}	K _{HNNITA2}	K _{HNNITA2}	K _{HNNITA2}
ĸ	$\sqrt[3]{k_{1,A}K_{HNNITA2}K_{H_2}}$	$\sqrt[3]{k_{2,A}K_{HBNITA2}K_{H_2}}$	$\sqrt[3]{k_{3,A}K_{MNNITA}K_{H_2}}$	$\sqrt[3]{k_{4,A}K_{MBNITA}K_{H_2}}$	$\sqrt[3]{k_{5,A}K_{LNNIT}K_{H_2}}$
1	K _{VBNITA2N}	K _{VBNITA2N}	K _{VBNITA2N}	K _{VBNITA2N}	K _{VBNITA2N}
1	$\sqrt[3]{k_{1,A}K_{HNNITA2}K_{H_2}}$	$\sqrt[3]{k_{2,A}K_{HBNITA2}K_{H_2}}$	$\sqrt[3]{k_{3,A}K_{MNNITA}K_{H_2}}$	$\sqrt[3]{k_{4,A}K_{MBNITA}K_{H_2}}$	$\sqrt[3]{k_{5,A}K_{LNNIT}K_{H_2}}$
m	K _{VNNITA3}	K _{VNNITA3}	K _{VNNITA3}	K _{VNNITA3}	K _{VNNITA3}
	$\sqrt[3]{k_{1,A}K_{HNNITA2}K_{H_2}}$	$\sqrt[3]{k_{2,A}K_{HBNITA2}K_{H_2}}$	$\sqrt[3]{k_{3,A}K_{MNNITA}K_{H_2}}$	$\sqrt[3]{k_{4,A}K_{MBNITA}K_{H_2}}$	$\sqrt[3]{k_{5,A}K_{LNNIT}K_{H_2}}$
n	$K_{\sum CA}$	$K_{\sum CA}$	$K_{\sum CA}$	$K_{\sum CA}$	$K_{\sum CA}$
	$\sqrt[3]{k_{1,A}K_{HNNITA2}K_{H_2}}$	$\sqrt[3]{k_{2,A}K_{HBNITA2}K_{H_2}}$	$\sqrt[3]{k_{3,A}K_{MNNITA}K_{H_2}}$	$\sqrt[3]{k_{4,A}K_{MBNITA}K_{H_2}}$	$\sqrt[3]{k_{5,A}K_{LNNIT}K_{H_2}}$
	Reação 6 HBNITAN + $2H_2 \Leftrightarrow$ HAN + NH_3 y = a + bxH ₂ + cxH ₂ s+ dxLBNIT + exLNNIT + fx _{MBNITN} + gx _{MBNITA} + hx _{MNNITA} +	$\begin{array}{c} Reação \ 7\\ MBNITN + 2H_2 \Leftrightarrow C9A + NH_3\\ y = a + bx_{H2} + cx_{H2S} + dx_{LBNIT} + ex_{LNNIT} + fx_{MBNITN} + gx_{MBNITA} + hx_{MNNITA} + \end{array}$	Reação 8 LBNIT + $2H_2 \Leftrightarrow C4 + NH_3$ y = a + bxH ₂ + cxH ₂ s+ dxLBNIT + exLNNIT + fxMBNITN + gxMBNITA + hxMNNITA + iyUNDTAN + iyUNDTA2 + kUNDTA2 +	Reação 9 VBNITA2N + $4H_2 \Leftrightarrow HA2 + NH_3$ +C14P $y = a + bx_{H2} + cx_{H2S} + dx_{LBNIT} + ex_{LNNIT} + fx_{MBNITN} + gx_{MBNITA} +$	Reação 10 VNNITA3 + $3H_2 \Leftrightarrow VA3 + NH_3$ $y = a + bx_{H2} + cx_{H2S} + dx_{LBNIT} + ex_{LNNIT}$ + fx_MBNITN + gx_MBNITA + hx_MNNITA + ix_HBNITAN + jx_HBNITA2 + k_HNNITA2 +
	ixhbnitan + jxhbnita2 + khnnita2 + $lxvbnita2n + mxvnnita3 + nxsca + oxnh3$	ixhbnitan + jxhbnita2 + khnnita2 + $lxvbnita2n$ + $mxvnnita3 + nx_{\Sigma CA} + oxnh3$	$\frac{1}{12} x_{\text{VBNITA2N}} + \frac{1}{12} x_{VBNIT$	hxmnnita + ixhbnitan + jxhbnita2 + khnnita2 + lxvbnita2n + mxvnnita3 + nxΣca + oxnh3 + qxc14p	$l_{xvbnita2n} + m_{xvnnita3} + n_{xca} + o_{xnh3}$
у	$\sqrt[3]{\frac{\chi_{\text{HBNITAN}}\chi_{H2}}{r_{6,A}}}$	$\sqrt[3]{\frac{x_{\text{MBNITN}}x_{H2}}{r_{7,A}}}$	$\sqrt[3]{\frac{x_{\text{LBNIT}}x_{H2}}{r_{8,A}}}$	$\sqrt[3]{\frac{x_{\text{VBNITA2N}}x_{H2}}{r_{9,A}}}$	$\sqrt[3]{\frac{x_{\text{VNNITA3}}x_{H2}}{r_{10,A}}}$
9	1	1	1	1	1
a	$\sqrt[3]{k_{6,A}K_{HBNITAN}K_{H_2}}$	$\sqrt[3]{k_{7,A}K_{MBNITN}K_{H_2}}$	$\sqrt[3]{k_{8,A}K_{LBNIT}K_{H_2}}$	$\sqrt[3]{k_{9,A}K_{VBNITA2N}K_{H_2}}$	$\sqrt[3]{k_{10,A}K_{VBNITA2N}K_{H_2}}$
h	K _{H2}	K _{H2}	K _{H2}	K_{H_2}	K _{H2}
U	$\sqrt[3]{k_{6,A}K_{HBNITAN}K_{H_2}}$	$\sqrt[3]{k_{7,A}K_{MBNITN}K_{H_2}}$	$\sqrt[3]{k_{8,A}K_{LBNIT}K_{H_2}}$	$\sqrt[3]{k_{9,A}K_{VBNITA2N}K_{H_2}}$	$\sqrt[3]{k_{10,A}K_{VBNITA2N}K_{H_2}}$
C	K _{H2S}	K _{H2S}	K _{H2S}	K _{H2S}	K _{H2S}
C	$\sqrt[3]{k_{6,A}K_{HBNITAN}K_{H_2}}$	$\sqrt[3]{k_{7,A}K_{MBNITN}K_{H_2}}$	$\sqrt[3]{k_{8,A}K_{LBNIT}K_{H_2}}$	$\sqrt[3]{k_{9,A}K_{VBNITA2N}K_{H_2}}$	$\sqrt[3]{k_{10,A}K_{VBNITA2N}K_{H_2}}$
d	K _{LBNIT}	K _{LBNIT}	K _{LBNIT}	K _{LBNIT}	K _{LBNIT}
4	$\sqrt[3]{k_{6,A}K_{HBNITAN}K_{H_2}}$	$\sqrt[3]{k_{7,A}K_{MBNITN}K_{H_2}}$	$\sqrt[3]{k_{8,A}K_{LBNIT}K_{H_2}}$	$\sqrt[3]{k_{9,A}K_{VBNITA2N}K_{H_2}}$	$\sqrt[3]{k_{10,A}K_{VBNITA2N}K_{H_2}}$
e	K _{LNNIT}			K _{LNNIT}	
	$\sqrt[3]{k_{6,A}K_{HBNITAN}K_{H_2}}$	$\sqrt[3]{k_{7,A}K_{MBNITN}K_{H_2}}$	$\sqrt[3]{k_{8,A}K_{LBNIT}K_{H_2}}$	$\sqrt[3]{k_{9,A}K_{VBNITA2N}K_{H_2}}$	$\sqrt[3]{k_{10,A}K_{VBNITA2N}K_{H_2}}$

c	K _{MBNITN}	K _{MBNITN}	K _{MBNITN}	K _{MBNITN}	K _{MBNITN}
1	$\sqrt[3]{k_{6,A}K_{HBNITAN}K_{H_2}}$	$\sqrt[3]{k_{7,A}K_{MBNITN}K_{H_2}}$	$\sqrt[3]{k_{8,A}K_{LBNIT}K_{H_2}}$	$\sqrt[3]{k_{9,A}K_{VBNITA2N}K_{H_2}}$	$\sqrt[3]{k_{10,A}K_{VBNITA2N}K_{H_2}}$
a	K _{MBNITA}	K _{MBNITA}	K _{MBNITA}	K _{MBNITA}	K _{MBNITA}
g	$\sqrt[3]{k_{6,A}K_{HBNITAN}K_{H_2}}$	$\sqrt[3]{k_{7,A}K_{MBNITN}K_{H_2}}$	$\sqrt[3]{k_{8,A}K_{LBNIT}K_{H_2}}$	$\sqrt[3]{k_{9,A}K_{VBNITA2N}K_{H_2}}$	$\sqrt[3]{k_{10,A}K_{VBNITA2N}K_{H_2}}$
h	K _{MNNITA}	K _{MNNITA}	K _{MNNITA}	K _{MNNITA}	K _{MNNITA}
11	$\sqrt[3]{k_{6,A}K_{HBNITAN}K_{H_2}}$	$\sqrt[3]{k_{7,A}K_{MBNITN}K_{H_2}}$	$\sqrt[3]{k_{8,A}K_{LBNIT}K_{H_2}}$	$\sqrt[3]{k_{9,A}K_{VBNITA2N}K_{H_2}}$	$\sqrt[3]{k_{10,A}K_{VBNITA2N}K_{H_2}}$
i	K _{HBNITAN}	K _{HBNITAN}	K _{HBNITAN}	K _{HBNITAN}	K _{HBNITAN}
1	$\sqrt[3]{k_{6,A}K_{HBNITAN}K_{H_2}}$	$\sqrt[3]{k_{7,A}K_{MBNITN}K_{H_2}}$	$\sqrt[3]{k_{8,A}K_{LBNIT}K_{H_2}}$	$\sqrt[3]{k_{9,A}K_{VBNITA2N}K_{H_2}}$	$\sqrt[3]{k_{10,A}K_{VBNITA2N}K_{H_2}}$
i	K _{HBNITA2}	K _{HBNITA2}	$K_{HBNITA2}$	K _{HBNITA2}	K _{HBNITA2}
J	$\sqrt[3]{k_{6,A}K_{HBNITAN}K_{H_2}}$	$\sqrt[3]{k_{7,A}K_{MBNITN}K_{H_2}}$	$\sqrt[3]{k_{8,A}K_{LBNIT}K_{H_2}}$	$\sqrt[3]{k_{9,A}K_{VBNITA2N}K_{H_2}}$	$\sqrt[3]{k_{10,A}K_{VBNITA2N}K_{H_2}}$
ŀ	K _{HNNITA2}	K _{HNNITA2}	K _{HNNITA2}	K _{HNNITA2}	K _{HNNITA2}
к	$\sqrt[3]{k_{6,A}K_{HBNITAN}K_{H_2}}$	$\sqrt[3]{k_{7,A}K_{MBNITN}K_{H_2}}$	$\sqrt[3]{k_{8,A}K_{LBNIT}K_{H_2}}$	$\sqrt[3]{k_{9,A}K_{VBNITA2N}K_{H_2}}$	$\sqrt[3]{k_{10,A}K_{VBNITA2N}K_{H_2}}$
1	K _{VBNITA2N}	K _{VBNITA2N}	K _{VBNITA2N}	K _{VBNITA2N}	K _{VBNITA2N}
1	$\sqrt[3]{k_{6,A}K_{HBNITAN}K_{H_2}}$	$\sqrt[3]{k_{7,A}K_{MBNITN}K_{H_2}}$	$\sqrt[3]{k_{8,A}K_{LBNIT}K_{H_2}}$	$\sqrt[3]{k_{9,A}K_{VBNITA2N}K_{H_2}}$	$\sqrt[3]{k_{10,A}K_{VBNITA2N}K_{H_2}}$
m	K _{VNNITA3}	K _{VNNITA3}	K _{VNNITA3}	K _{VNNITA3}	K _{VNNITA3}
111	$\sqrt[3]{k_{6,A}K_{HBNITAN}K_{H_2}}$	$\sqrt[3]{k_{7,A}K_{MBNITN}K_{H_2}}$	$\sqrt[3]{k_{8,A}K_{LBNIT}K_{H_2}}$	$\sqrt[3]{k_{9,A}K_{VBNITA2N}K_{H_2}}$	$\sqrt[3]{k_{10,A}K_{VBNITA2N}K_{H_2}}$
n	$K_{\Sigma CA}$	$K_{\Sigma CA}$	$K_{\sum CA}$	$K_{\sum CA}$	$K_{\sum CA}$
11	$\sqrt[3]{k_{6,A}K_{HBNITAN}K_{H_2}}$	$\sqrt[3]{k_{7,A}K_{MBNITN}K_{H_2}}$	$\sqrt[3]{k_{8,A}K_{LBNIT}K_{H_2}}$	$\sqrt[3]{k_{9,A}K_{VBNITA2N}K_{H_2}}$	$\sqrt[3]{k_{10,A}K_{VBNITA2N}K_{H_2}}$
0	K _{NH3}	<i>K_{NH3}</i>	K _{NH3}	K _{NH3}	<u> </u>
U	$\sqrt[3]{k_{6,A}K_{HBNITAN}K_{H_2}}$	$\sqrt[3]{k_{7,A}K_{MBNITN}K_{H_2}}$	$\sqrt[3]{k_{8,A}K_{LBNIT}K_{H_2}}$	$\sqrt[3]{k_{9,A}K_{VBNITA2N}K_{H_2}}$	$\sqrt[3]{k_{10,A}}K_{VBNITA2N}K_{H_2}$
n			K_C4		
Р			$\sqrt[3]{k_{8,A}K_{LBNIT}K_{H_2}}$		
a				<i>K</i> _{C14P}	
Ч				$\sqrt[3]{k_{9,A}K_{VBNITA2N}K_{H_2}}$	

Mecanismo MB

	Reação 1 HNNITA2 + $3H_2 \Leftrightarrow$ HBNITAN y = a + bxH2 + cxH2S+ dxLBNIT + exLNNIT + fxMBNITN + gxMBNITA + hxMNNITA + ixHBNITAN + jxHBNITA2 + kHNNITA2 + lxVBNITA2N + MXVNNITA3 + NX2CA	Reação 2 HBNITA2 + 4H ₂ \Leftrightarrow HBNITAN y = a + bx _{H2} +cx _{H2S} + dx _{LBNIT} + ex _{LNNIT} + fx _{MBNITN} + gx _{MBNITA} + hx _{MNNITA} + ix _{HBNITAN} + jx _{HBNITA2} + k _{HNNITA2} + lx _{VBNITA2N} + mx _{VNNITA3} + nx _{ΣCA}	Reação 3 MNNITA + $H_2 \Leftrightarrow MBNITN$ $y = a + bx_{H2} + cx_{H2S} + dx_{LBNIT} + ex_{LNNIT}$ $+ fx_{MBNITA} + gx_{MBNITA} + hx_{MNNITA} +$ $ix_{HBNITAN} + jx_{HBNITA2} + k_{HNNITA2} +$ $lx_{VBNITA2N} + mx_{VNNITA3} + nx_{SCA}$	Reação 4 MBNITA + $2H_2 \Leftrightarrow MBNITN$ $y = a + bx_{H2} + cx_{H2S} + dx_{LBNIT} +$ $ex_{LNNIT} + fx_{MBNITN} + gx_{MBNITA} +$ $hx_{MNNITA} + ix_{HBNITAN} + jx_{HBNITA2} +$ $k_{HNNITA2} + lx_{VBNITA2N} + mx_{VNNITA3} +$ nx_{\SigmaCA}	Reação 5 LNNIT + 2H2 ⇔ LBNIT y = a + dxh2 + cxh2s+ dxlbnit + exlnnit + fxmbnitn + gxmbnita + hxmnnita + ixhbnitan + jxhbnita2 + khnnita2 + lxvbnita2n + mxvnnita3 + nx5ca
у	$\sqrt[2]{\frac{x_{\text{HNNITA2}}x_{H2}^3 - \frac{x_{\text{HBNITAN}}}{Keq1}}{r_{1,B}}}$	$\sqrt[2]{\frac{x_{\text{HBNITA2}}x_{H2}^4 - \frac{x_{\text{HBNITAN}}}{Keq2}}{r_{2,B}}}$	$\sqrt[2]{\frac{x_{MNNITA}x_{H2} - \frac{x_{MBNITN}}{Keq3}}{r_{3,B}}}$	$\sqrt[2]{\frac{x_{MBNITA}x_{H2}^2 - \frac{x_{MBNITN}}{Keq4}}{r_{4,B}}}$	$\sqrt[3]{\frac{x_{LNNIT}x_{H2}^2 - \frac{x_{LBNIT}}{Keq5}}{r_{5,B}}}$
a	$\frac{1}{\sqrt[2]{k_{1,B}K_{HNNITA2}K_{H_2}}}$	$\frac{1}{\sqrt[2]{k_{2,B}K_{HBNITA2}K_{H_2}}}$	$\frac{1}{\sqrt[2]{k_{3,B}K_{MNNITA}K_{H_2}}}$	$\frac{1}{\sqrt[2]{k_{4,B}K_{MBNITA}K_{H_2}}}$	$\frac{1}{\sqrt[3]{k_{5,B}K_{LNNIT}K_{H_2}}}$
b	$\frac{K_{H_2}}{\sqrt[2]{k_{1,B}K_{HNNITA2}K_{H_2}}}$	$\frac{K_{H_2}}{\sqrt[2]{k_{2,B}K_{HBNITA2}K_{H_2}}}$	$\frac{K_{H_2}}{\sqrt[2]{k_{3,B}K_{MNNITA}K_{H_2}}}$	$\frac{K_{H_2}}{\sqrt[2]{k_{4,B}K_{MBNITA}K_{H_2}}}$	$\frac{K_{H_2}}{\sqrt[3]{k_{5,B}K_{LNNIT}K_{H_2}}}$
c	$\frac{K_{H2S}}{\sqrt[2]{k_{1,B}K_{HNNITA2}K_{H_2}}}$	$\frac{K_{H2S}}{\sqrt[2]{k_{2,B}K_{HBNITA2}K_{H_2}}}$	$\frac{K_{H2S}}{\sqrt[2]{k_{3,B}K_{MNNITA}K_{H_2}}}$	$\frac{K_{H2S}}{\sqrt[2]{k_{4,B}K_{MBNITA}K_{H_2}}}$	$\frac{K_{H2S}}{\sqrt[3]{k_{5,B}K_{LNNIT}K_{H_2}}}$
d	$\frac{K_{LBNIT}}{\sqrt[2]{k_{1,A}K_{HNNITA2}K_{H_2}}}$	$\frac{K_{LBNIT}}{\sqrt[2]{k_{2,B}K_{HBNITA2}K_{H_2}}}$	$\frac{K_{LBNIT}}{\sqrt[2]{k_{3,B}K_{MNNITA}K_{H_2}}}$	$\frac{K_{LBNIT}}{\sqrt[2]{k_{4,B}K_{MBNITA}K_{H_2}}}$	$\frac{K_{LBNIT}}{\sqrt[3]{k_{5,B}K_{LNNIT}K_{H_2}}}$
e	$\frac{K_{LNNIT}}{\sqrt[2]{k_{1,B}K_{HNNITA2}K_{H_2}}}$	$\frac{K_{LNNIT}}{\sqrt[2]{k_{2,B}K_{HBNITA2}K_{H_2}}}$	$\frac{K_{LNNIT}}{\sqrt[2]{k_{3,B}K_{MNNITA}K_{H_2}}}$	$\frac{K_{LNNIT}}{\sqrt[2]{k_{4,B}K_{MBNITA}K_{H_2}}}$	$\frac{K_{LNNIT}}{\sqrt[3]{k_{5,B}K_{LNNIT}K_{H_2}}}$
f	$\frac{K_{MBNITN}}{\sqrt[2]{k_{1,B}K_{HNNITA2}K_{H_2}}}$	$\frac{K_{MBNITN}}{\sqrt[2]{k_{2,B}K_{HBNITA2}K_{H_2}}}$	$\frac{K_{MBNITN}}{\sqrt[2]{K_{3,B}K_{MNNITA}K_{H_2}}}$	$\frac{K_{MBNITN}}{\sqrt[2]{K_{4,B}K_{MBNITA}K_{H_2}}}$	$\frac{K_{MBNITN}}{\sqrt[3]{k_{5,B}K_{LNNIT}K_{H_2}}}$
g	$\frac{K_{MBNITA}}{\sqrt[2]{k_{1,B}K_{HNNITA2}K_{H_2}}}$	$\frac{K_{MBNITA}}{\sqrt[2]{k_{2,B}K_{HBNITA2}K_{H_2}}}$	$\frac{K_{MBNITA}}{\sqrt[2]{K_{3,B}K_{MNNITA}K_{H_2}}}$	$\frac{K_{MBNITA}}{\sqrt[2]{K_{4,B}K_{MBNITA}K_{H_2}}}$	$\frac{K_{MBNITA}}{\sqrt[3]{K_{5,B}K_{LNNIT}K_{H_2}}}$
h	$\frac{K_{MNNITA}}{\sqrt[2]{k_{1,B}K_{HNNITA2}K_{H_2}}}$	$\frac{K_{MNNITA}}{\sqrt[2]{k_{2,B}K_{HBNITA2}K_{H_2}}}$	$\frac{K_{MNNITA}}{\sqrt[2]{K_{3,B}K_{MNNITA}K_{H_2}}}$	$\frac{K_{MNNITA}}{\sqrt[2]{K_{4,B}K_{MBNITA}K_{H_2}}}$	$\frac{K_{MNNITA}}{\sqrt[3]{k_{5,B}K_{LNNIT}K_{H_2}}}$
i	$\frac{K_{HBNITAN}}{\sqrt[2]{k_{1,A}K_{HNNITA2}K_{H_2}}}$	$\frac{K_{HBNITAN}}{\sqrt[2]{k_{2,B}K_{HBNITA2}K_{H2}}}$	$\frac{K_{HBNITAN}}{\sqrt[2]{K_{3,B}K_{MNNITA}K_{H_2}}}$	$\frac{K_{HBNITAN}}{\sqrt[2]{K_{4,B}K_{MBNITA}K_{H_2}}}$	$\frac{K_{HBNITAN}}{\sqrt[3]{k_{5.B}K_{LNNIT}K_{H_2}}}$
j	$\frac{K_{HBNITA2}}{\sqrt[2]{k_{1,B}K_{HNNITA2}K_{H_2}}}$	$\frac{K_{HBNITA2}}{\sqrt[2]{k_{2,B}K_{HBNITA2}K_{H_2}}}$	$\frac{K_{HBNITA2}}{\sqrt[2]{K_{3,B}K_{MNNITA}K_{H_2}}}$	$\frac{K_{HBNITA2}}{\sqrt[2]{K_{4,B}K_{MBNITA}K_{H_2}}}$	$\frac{K_{HBNITA2}}{\sqrt[3]{K_{5,B}K_{LNNIT}K_{H_2}}}$

k	K _{HNNITA2}	K _{HNNITA2}	K _{HNNITA2}	K _{HNNITA2}	K _{HNNITA2}
<u>к</u>	$\sqrt[2]{k_{1,B}K_{HNNITA2}K_{H_2}}$	$\sqrt[2]{k_{2,B}K_{HBNITA2}K_{H_2}}$	$\sqrt[2]{k_{3,B}K_{MNNITA}K_{H_2}}$	$\sqrt[2]{k_{4,B}K_{MBNITA}K_{H_2}}$	$\sqrt[3]{k_{5,B}K_{LNNIT}K_{H_2}}$
1	K _{VBNITA2N}	K _{VBNITA2N}	K _{VBNITA2N}	K _{VBNITA2N}	K _{VBNITA2N}
	$\sqrt[2]{k_{1,B}K_{HNNITA2}K_{H_2}}$	$\sqrt[2]{k_{2,B}K_{HBNITA2}K_{H_2}}$	$\sqrt[2]{k_{3,B}K_{MNNITA}K_{H_2}}$	$\sqrt[2]{k_{4,B}K_{MBNITA}K_{H_2}}$	$\sqrt[3]{k_{5,B}K_{LNNIT}K_{H_2}}$
m	K _{VNNITA3}	K _{VNNITA3}		K _{VNNITA3}	K _{VNNITA3}
	$\sqrt[2]{k_{1,B}K_{HNNITA2}K_{H_2}}$	$\sqrt[2]{k_{2,B}K_{HBNITA2}K_{H_2}}$	$\sqrt[2]{k_{3,B}K_{MNNITA}K_{H_2}}$	$\sqrt[2]{k_{4,B}K_{MBNITA}K_{H_2}}$	$\sqrt[3]{k_{5,B}K_{LNNIT}K_{H_2}}$
n	$\frac{K_{\sum CA}}{2\sqrt{1-2}}$	$\frac{R_{\sum CA}}{2\sqrt{1-2}}$	$\frac{K_{\sum CA}}{2\sqrt{1-W}}$	$\frac{K_{\sum CA}}{2}$	$\frac{R_{\sum CA}}{2\sqrt{1-1}}$
	$\sqrt[2]{k_{1,B}K_{HNNITA2}K_{H_2}}$	$\sqrt[2]{k_{2,B}K_{HBNITA2}K_{H_2}}$	$\sqrt[2]{k_{3,B}K_{MNNITA}K_{H_2}}$	$\sqrt[2]{k_{4,B}K_{MBNITA}K_{H_2}}$	$\sqrt[3]{k_{5,B}K_{LNNIT}K_{H_2}}$
				D == = ~ = 0	Danaža 10
	Reacão 6	Reacão 7	Reação 8	VBNITA2N + $4H_2 \Leftrightarrow HA2 + NH_3$	VNNITA3 + $3H_2 \Leftrightarrow VA3 + NH_3$
	$HBNITAN + 2H_2 \Leftrightarrow HAN + NH_3$	$MBNITN + 2H_2 \Leftrightarrow C9A + NH_3$	$LBNIT + 2H_2 \Leftrightarrow C4 + NH_3$ $v = a + bxH_2 + cxH_2s + dxH_2NIT + extNNIT$	+C14P	$y = a + bx_{H2} + cx_{H2S} + dx_{LBNIT} + ex_{LNNIT}$
	$y = a + bx_{H2} + cx_{H2S} + dx_{LBNIT} + ex_{LNNIT} + fx_{MDNITA} + bx_{MDNITA} + b$	$y = a + bx_{H2} + cx_{H2S} + dx_{LBNIT} + ex_{LNNIT} + fx_{MDNITA} + bx_{MDNITA} + b$	+ fxmbnitn + gxmbnita + hxmnita +	$y = a + bx_{H2} + cx_{H2S} + dx_{LBNIT} + extract + fx_{MDNUTA} + fx_{MDNUTA} + fx_{MDNUTA} + extract + fx_{MDNUTA} + fx_{MDNU$	+ fx_{MBNITN} + gx_{MBNITA} + hx_{MNNITA} +
	$i_{XHBNITAN} + j_{XHBNITA2} + k_{HNNITA2} + k_{HNNITA2}$	$i_{XHBNITAN} + j_{XHBNITA2} + k_{HNNITA2} +$	ixhbnitan + jxhbnita2 + khnnita2 +	$h_{XMNNITA} + i_{XHBNITAN} + j_{XHBNITA2} +$	$1_{XVBNITA2N} + m_{XVNNITA2} + m_{X\SigmaCA} + o_{XNH3}$
	lxvbnita2n + mxvnnita3 + nx2ca + oxnh3	$lxvbnita2n + mxvnnita3 + nx\SigmaCa + oxnh3$	$1XVBNITA2N + IIXVNNITA3 + IIX\SigmaCA + OXNH3 + DXC4$	khnnita2 + lxvbnita2n + mxvnnita3 +	
				$nx_{\Sigma CA} + 0x_{NH3} + qx_{C14P}$	
v	$\left \frac{x_{\text{HBNITAN}}x_{H2}}{x_{\text{HBNITAN}}}\right $	$2 \frac{x_{\text{MBNITN}} x_{H2}}{2}$	$\frac{2}{x_{\text{LBNIT}}x_{H2}}$	$\frac{2}{x_{\text{VBNITA2N}}x_{H2}}$	$\left \frac{x_{\text{VNNITA3}}x_{H2}}{x_{\text{VNNITA3}}}\right $
5	$\sqrt{r_{6,B}}$	$\sqrt{r_{7,B}}$	$\sqrt{r_{8,B}}$	$\sqrt{r_{9,B}}$	$\sqrt{r_{10,B}}$
0	1	1	1	1	1
a	$\sqrt[2]{k_{6,B}K_{HBNITAN}K_{H_2}}$	$\sqrt[2]{k_{7,B}K_{MBNITN}K_{H_2}}$	$\sqrt[2]{k_{8,B}K_{LBNIT}K_{H_2}}$	$\sqrt[2]{k_{9,B}K_{VBNITA2N}K_{H_2}}$	$\sqrt[2]{k_{10,B}K_{VBNITA2N}K_{H_2}}$
h	<i>K</i> _{<i>H</i>₂}	K _{H2}	K _{H2}	<i>K</i> _{<i>H</i>₂}	K _{H2}
U	$\sqrt[2]{k_{6,B}K_{HBNITAN}K_{H_2}}$	$\sqrt[2]{k_{7,B}K_{MBNITN}K_{H_2}}$	$\sqrt[2]{k_{8,B}K_{LBNIT}K_{H_2}}$	$\sqrt[2]{k_{9,B}K_{VBNITA2N}K_{H_2}}$	$\sqrt[2]{k_{10,B}K_{VBNITA2N}K_{H_2}}$
с	K _{H2S}	K _{H2S}	K _{H2S}	K _{H2S}	K _{H2S}
-	$\sqrt[2]{k_{6,B}K_{HBNITAN}K_{H_2}}$	$\frac{2}{\sqrt{k_{7,B}K_{MBNITN}K_{H_2}}}$	$\frac{2}{\sqrt{k_{8,B}K_{LBNIT}K_{H_2}}}$	$\sqrt[2]{k_{9,B}K_{VBNITA2N}K_{H_2}}$	$\sqrt[2]{k_{10,B}K_{VBNITA2N}K_{H_2}}$
d				K _{LBNIT}	
	$\sqrt[2]{k_{6,B}K_{HBNITAN}K_{H_2}}$	$\sqrt[2]{k_{7,B}K_{MBNITN}K_{H_2}}$	$\frac{2}{\sqrt{k_{8,B}K_{LBNIT}K_{H_2}}}$	$\sqrt[2]{k_{9,B}K_{VBNITA2N}K_{H_2}}$	$\sqrt[2]{k_{10,B}K_{VBNITA2N}K_{H_2}}$
e	$\frac{K_{LNNIT}}{2}$	$\frac{K_{LNNIT}}{2}$	K _{LNNIT}	K _{LNNIT}	
	$\sqrt[2]{k_{6,B}K_{HBNITAN}K_{H_2}}$	$\sqrt[2]{k_{7,B}K_{MBNITN}K_{H_2}}$	$\sqrt[2]{k_{8,B}K_{LBNIT}K_{H_2}}$	$\frac{\sqrt[2]{K_{9,B}K_{VBNITA2N}K_{H_2}}}{K}$	$\sqrt[2]{k_{10,B}K_{VBNITA2N}K_{H_2}}$
f	$\frac{\kappa_{MBNITN}}{2\sqrt{1-K}}$	$\frac{R_{MBNITN}}{2/L}$	$\frac{\Lambda_{MBNITN}}{2\sqrt{1-K}}$	$\frac{\Lambda_{MBNITN}}{2\sqrt{1-V}}$	$\frac{R_{MBNITN}}{2\sqrt{1-K}-K}$
	$\frac{\sqrt{\kappa_{6,B}\kappa_{HBNITAN}\kappa_{H_2}}}{\kappa_{HBNITAN}}$	$\frac{\sqrt{\kappa_{7,B}\kappa_{MBNITN}\kappa_{H_2}}}{\kappa_{1,2}}$	$\frac{\sqrt{\kappa_{8,B}\kappa_{LBNIT}\kappa_{H_2}}}{\kappa_{LBNIT}}$	$\sqrt{\kappa_{9,B}\kappa_{VBNITA2N}\kappa_{H_2}}$	$\frac{\sqrt{\kappa_{10,B}\kappa_{VBNITA2N}\kappa_{H_2}}}{\kappa_{VBNITA2N}}$
g	$\frac{MBNITA}{2\sqrt{1-V}}$	$\frac{MBNITA}{2\sqrt{1-V-V}}$	$\frac{\Lambda_{MBNITA}}{2\sqrt{1-V-V}}$	$\frac{\Lambda_{MBNITA}}{2\sqrt{1-V-V}}$	$\frac{\Lambda_{MBNITA}}{2\sqrt{1-V-V}}$
	$\sqrt{\kappa_{6,B} \kappa_{HBNITAN} \kappa_{H_2}}$	$\sqrt{\kappa_{7,B} \kappa_{MBNITN} \kappa_{H_2}}$	$\sqrt{\kappa_{8,B} \kappa_{LBNIT} \kappa_{H_2}}$	$\sqrt{\kappa_{9,B} \kappa_{VBNITA2N} \kappa_{H_2}}$	$\sqrt{\kappa_{10,B}} \kappa_{VBNITA2N} \kappa_{H_2}$

1.	K _{MNNITA}	K _{MNNITA}	K _{MNNITA}	K _{MNNITA}	K _{MNNITA}
n	$\sqrt[2]{k_{6,B}K_{HBNITAN}K_{H_2}}$	$\sqrt[2]{k_{7,B}K_{MBNITN}K_{H_2}}$	$\sqrt[2]{k_{8,B}K_{LBNIT}K_{H_2}}$	$\sqrt[2]{k_{9,B}K_{VBNITA2N}K_{H_2}}$	$\sqrt[2]{k_{10,B}K_{VBNITA2N}K_{H_2}}$
;	K _{HBNITAN}	K _{HBNITAN}	K _{HBNITAN}	K _{HBNITAN}	K _{HBNITAN}
1	$\sqrt[2]{k_{6,B}K_{HBNITAN}K_{H_2}}$	$\sqrt[2]{k_{7,B}K_{MBNITN}K_{H_2}}$	$\sqrt[2]{k_{8,B}K_{LBNIT}K_{H_2}}$	$\sqrt[2]{k_{9,B}K_{VBNITA2N}K_{H_2}}$	$\sqrt[2]{k_{10,B}K_{VBNITA2N}K_{H_2}}$
;	K _{HBNITA2}	K _{HBNITA2}	K _{HBNITA2}	K _{HBNITA2}	K _{HBNITA2}
J	$\sqrt[2]{k_{6,B}K_{HBNITAN}K_{H_2}}$	$\sqrt[2]{k_{7,B}K_{MBNITN}K_{H_2}}$	$\sqrt[2]{k_{8,B}K_{LBNIT}K_{H_2}}$	$\sqrt[2]{k_{9,B}K_{VBNITA2N}K_{H_2}}$	$\sqrt[2]{k_{10,B}K_{VBNITA2N}K_{H_2}}$
1-	K _{HNNITA2}	K _{HNNITA2}	K _{HNNITA2}	K _{HNNITA2}	K _{HNNITA2}
К	$\sqrt[2]{k_{6,B}K_{HBNITAN}K_{H_2}}$	$\sqrt[2]{k_{7,B}K_{MBNITN}K_{H_2}}$	$\sqrt[2]{k_{8,B}K_{LBNIT}K_{H_2}}$	$\sqrt[2]{k_{9,B}K_{VBNITA2N}K_{H_2}}$	$\sqrt[2]{k_{10,B}K_{VBNITA2N}K_{H_2}}$
1	K _{VBNITA2N}	K _{VBNITA2N}	K _{VBNITA2N}	K _{VBNITA2N}	K _{VBNITA2N}
1	$\sqrt[2]{k_{6,B}K_{HBNITAN}K_{H_2}}$	$\sqrt[2]{k_{7,B}K_{MBNITN}K_{H_2}}$	$\sqrt[2]{k_{8,B}K_{LBNIT}K_{H_2}}$	$\sqrt[2]{k_{9,B}K_{VBNITA2N}K_{H_2}}$	$\sqrt[2]{k_{10,B}K_{VBNITA2N}K_{H_2}}$
	K _{VNNITA3}	K _{VNNITA3}	K _{VNNITA3}	K _{VNNITA3}	K _{VNNITA3}
111	$\sqrt[2]{k_{6,B}K_{HBNITAN}K_{H_2}}$	$\sqrt[2]{k_{7,B}K_{MBNITN}K_{H_2}}$	$\sqrt[2]{k_{8,B}K_{LBNIT}K_{H_2}}$	$\sqrt[2]{k_{9,B}K_{VBNITA2N}K_{H_2}}$	$\sqrt[2]{k_{10,B}K_{VBNITA2N}K_{H_2}}$
	$K_{\sum CA}$	$K_{\sum CA}$	$K_{\sum CA}$	$K_{\sum CA}$	$K_{\sum CA}$
п	$\sqrt[2]{k_{6,B}K_{HBNITAN}K_{H_2}}$	$\sqrt[2]{k_{7,B}K_{MBNITN}K_{H_2}}$	$\sqrt[2]{k_{8,A}K_{LBNIT}K_{H_2}}$	$\sqrt[2]{k_{9,B}K_{VBNITA2N}K_{H_2}}$	$\sqrt[2]{k_{10,B}K_{VBNITA2N}K_{H_2}}$
	K _{NH3}	K _{NH3}	K _{NH3}	K _{NH3}	K _{NH3}
0	$\sqrt[2]{k_{6,B}K_{HBNITAN}K_{H_2}}$	$\sqrt[2]{k_{7,B}K_{MBNITN}K_{H_2}}$	$\sqrt[2]{k_{8,B}K_{LBNIT}K_{H_2}}$	$\sqrt[2]{k_{9,B}K_{VBNITA2N}K_{H_2}}$	$\sqrt[2]{k_{10,B}K_{VBNITA2N}K_{H_2}}$
			K_C4		
р			$\sqrt[2]{k_{8,B}K_{LBNIT}K_{H_2}}$		
				<i>K</i> _{C14P}	
Ч				$\sqrt[2]{k_{9,B}K_{VBNITA2N}K_{H_2}}$	

Mecanismo MC

	Reação 1 HNNITA2 + 3H ₂ \Leftrightarrow HBNITAN y = a + bx _{H2} +cx _{H2S} + dxlbnit + exlnnit + fx _{MBNITA} + gx _{MBNITA} + hx _{MNNITA} + ix _{HBNITAN} + jx _{HBNITA2} + k $\sqrt{\frac{x_{HNNITA2}}{Keq1x_{H2}}}$ + lx _{VBNITA2N} + mx _{VNNITA3} + nx _{2CA}	Reação 2 HBNITA2 + 4H ₂ \Leftrightarrow HBNITAN y = a + bx _{H2} + cx _{H2S} + dx _{LBNIT} + ex _{LNNIT} + fx _{MBNITA} + gx _{MBNITA} + hx _{MNNITA} + ix _{HBNITAN} + j $\sqrt{\frac{x_{HBNITA2}}{Keq2x_{H2}}}$ + k _{HNNITA2} + lx _{VBNITA2N} + mx _{VNNITA3} + nx _{ΣCA}	Reação 3 MNNITA + H ₂ \Leftrightarrow MBNITN y = a + bxH ₂ +cxH ₂ s+ dxLBNIT + exLNNIT + fxMBNITN + gxMBNITA + h $\sqrt{\frac{x_{MNNITA}}{Keq3x_{H2}}}$ + ixHBNITAN + jxHBNITA ₂ + kHNNITA ₂ + lxVBNITA ₂ N + mxVNNITA ₃ + nx ₂ CA	Reação 4 MBNITA + 2H ₂ \Leftrightarrow MBNITN y = a + bx _{H2} +cx _{H25} + dx _{LBNIT} + ex _{LNNIT} + fx _{MBNITN} + g $\sqrt{\frac{x_{MBNITA}}{Keq4x_{H2}}}$ + hx _{MNNITA} + ix _{HBNITAN} + jx _{HBNITA2} + k _{HNNITA2} + lx _{VBNITA2N} + mx _{VNNITA3} + nx _{ΣCA}	Reação 5 LNNIT + 2H ₂ \Leftrightarrow LBNIT y = a + bxh ₂ + cxh ₂ s+ dxlbnit + $e \sqrt{\frac{x_{LNNIT}}{Keq5x_{H2}}}$ + fxmbnitn + gxmbnita + hxmnnita + ixhbnitan + jxhbnita2 + khnnita2 + lxvbnita2n + mxvnnita3 + nx ₂ CA
у	$\sqrt[2]{\frac{x_{\text{HNNITA2}} - \frac{x_{\text{HBNITAN}}}{Keq1x_{H2}^3}}{r_{1,C}}}$	$\frac{1}{\sqrt{\frac{x_{\text{HBNITA2}} - \frac{x_{\text{HBNITAN}}}{Keq2x_{H2}^4}}}{r_{2,C}}}$	$\sqrt[2]{\frac{x_{MNNITA} - \frac{x_{MBNITN}}{Keq3x_{H2}}}{r_{3,C}}}$	$\sqrt[2]{\frac{x_{MBNITA} - \frac{x_{MBNITN}}{Keq4x_{H2}^2}}{r_{4,C}}}$	$\sqrt[3]{\frac{x_{LNNIT} - \frac{x_{LBNIT}}{Keq5x_{H2}^2}}{r_{5,C}}}$
a	$\frac{1}{\sqrt[2]{k_{1,c}}}$	$\frac{1}{\sqrt[2]{k_{2,c}}}$	$\frac{1}{\sqrt[2]{k_{3,c}}}$	$\frac{1}{\sqrt[2]{k_{4,c}}}$	$\frac{1}{\sqrt[2]{k_{5,c}}}$
b	$\frac{K_{H_2}}{\sqrt[2]{k_{1,c}}}$	$\frac{K_{H_2}}{\sqrt[2]{K_{2,c}}}$	$\frac{K_{H_2}}{\sqrt[2]{k_{3,c}}}$	$\frac{K_{H_2}}{\sqrt[2]{k_{4,c}}}$	$\frac{K_{H_2}}{\sqrt[2]{k_{5,c}}}$
c	$\frac{K_{H2S}}{\sqrt[2]{k_{1,c}}}$	$\frac{K_{H2S}}{\sqrt[2]{K_{2,c}}}$	$\frac{K_{H2S}}{\sqrt[2]{k_{3,c}}}$	$\frac{K_{H2S}}{\sqrt[2]{k_{4,c}}}$	$\frac{K_{H2S}}{\sqrt[2]{k_{5,c}}}$
d	$\frac{K_{LBNIT}}{\sqrt[2]{k_{1,c}}}$	$\frac{K_{LBNIT}}{\sqrt[2]{K_{2,c}}}$	$\frac{K_{LBNIT}}{\sqrt[2]{k_{3,c}}}$	$\frac{K_{LBNIT}}{\sqrt[2]{k_{4,c}}}$	$\frac{K_{LBNIT}}{\sqrt[2]{k_{5,c}}}$
e	$\frac{K_{LNNIT}}{\sqrt[2]{k_{1,c}}}$	$\frac{K_{LNNIT}}{\sqrt[2]{K_{2,c}}}$	$\frac{K_{LNNIT}}{\sqrt[2]{k_{3,c}}}$	$\frac{K_{LNNIT}}{\sqrt[2]{k_{4,c}}}$	$\frac{\sqrt{K_{LNNIT}}}{\sqrt[2]{k_{5,c}}}$
f	$\frac{K_{MBNITN}}{\sqrt[2]{k_{1c}}}$	$\frac{K_{MBNITN}}{\sqrt[2]{K_{2,c}}}$	$\frac{K_{MBNITN}}{\sqrt[2]{K_{3,c}}}$	$\frac{K_{MBNITN}}{\sqrt[2]{k_{4.c}}}$	$\frac{K_{MBNITN}}{\sqrt[2]{k_{5.c}}}$
g	$\frac{K_{MBNITA}}{\sqrt[2]{K_{1,c}}}$	$\frac{K_{MBNITA}}{\sqrt[2]{K_{2,c}}}$	$\frac{K_{MBNITA}}{\sqrt[2]{k_{3,c}}}$	$\frac{\sqrt{K_{MBNITA}}}{\sqrt[2]{K_{4.c}}}$	$\frac{K_{MBNITA}}{\sqrt[2]{k_{5,c}}}$
h	$\frac{K_{MNNITA}}{\sqrt[2]{k_{1c}}}$	$\frac{K_{MNNITA}}{\sqrt[2]{K_{2c}}}$	$\frac{\sqrt{K_{MNNITA}}}{\sqrt[2]{K_{2,c}}}$	$\frac{K_{MNNITA}}{\sqrt[2]{k_{4,c}}}$	$\frac{K_{MNNITA}}{\sqrt[2]{k_{5,c}}}$
i	$\frac{\frac{V_{1,c}}{K_{HBNITAN}}}{\frac{2}{\sqrt{k_{1,c}}}}$	$\frac{V^{2,c}}{\frac{K_{HBNITAN}}{\sqrt[2]{K_{2,c}}}}$	$\frac{\sqrt{K_{3,c}}}{\frac{K_{HBNITAN}}{\sqrt{k_{3,c}}}}$	$\frac{K_{HBNITAN}}{\sqrt[2]{k_{4,c}}}$	$\frac{K_{HBNITAN}}{\sqrt[2]{k_{5,c}}}$

-		-	-		
j	$\frac{K_{HBNITA2}}{\sqrt{2}/k_{1,c}}$	$\frac{\sqrt{K_{HBNITA2}}}{\sqrt{k_{ac}}}$	$\frac{K_{HBNITA2}}{\sqrt[2]{k_{2}c}}$	$\frac{K_{HBNITA2}}{\sqrt[2]{k_{4,c}}}$	$\frac{K_{HBNITA2}}{\sqrt[2]{k_{5,c}}}$
k	$\frac{\sqrt{K_{HNNITA2}}}{\sqrt{K_{HNNITA2}}}$	$\frac{\sqrt{K_{2,c}}}{\sqrt[2]{K_{HNNITA2}}}$	$\frac{K_{HNNITA2}}{\sqrt[2]{k_{3,c}}}$	$\frac{K_{HNNITA2}}{\sqrt[2]{k_{4,c}}}$	$\frac{K_{HNNITA2}}{\sqrt[2]{k_{5,c}}}$
1	$\frac{K_{VBNITA2N}}{\sqrt[2]{k_{1,c}}}$	$\frac{K_{VBNITA2N}}{\sqrt[2]{K_{2,c}}}$	$\frac{K_{VBNITA2N}}{\sqrt[2]{k_{3,c}}}$	$\frac{K_{VBNITA2N}}{\sqrt[2]{k_{4,c}}}$	$\frac{K_{VBNITA2N}}{\sqrt[2]{k_{5,c}}}$
m	$\frac{K_{VNNITA3}}{\sqrt[2]{k_{1,c}}}$	$\frac{K_{VNNITA3}}{\sqrt[2]{k_{2,c}}}$	$\frac{K_{VNNITA3}}{\sqrt[2]{k_{3,c}}}$	$\frac{K_{VNNITA3}}{\sqrt[2]{k_{4,c}}}$	$\frac{K_{VNNITA3}}{\sqrt[2]{k_{5,c}}}$
n	$\frac{K_{\sum CA}}{\sqrt[2]{K_{1,c}}}$	$\frac{K_{\sum CA}}{\sqrt[2]{K_{2,c}}}$	$\frac{K_{\sum CA}}{\sqrt[2]{k_{3,c}}}$	$\frac{K_{\sum CA}}{\sqrt[2]{k_{4,c}}}$	$\frac{K_{\sum CA}}{\sqrt[2]{k_{5,c}}}$
	$\begin{aligned} & Reação \ 6 \\ & HBNITAN + 2H_2 \Leftrightarrow HAN + NH_3 \\ y &= a + bx_{H2} + cx_{H2S} + dx_{LBNIT} + ex_{LNNIT} + \\ & fx_{MBNITN} + gx_{MBNITA} + hx_{MNNITA} + \\ & ix_{HBNITAN} + jx_{HBNITA2} + k_{HNNITA2} + \\ & lx_{VBNITA2N} + mx_{VNNITA3} + nx_{\SigmaCA} + ox_{NH3} \end{aligned}$	$\begin{array}{c} Reação \ 7\\ MBNITN + 2H_2 \Leftrightarrow C9A + NH_3\\ y = a + bx_{H2} + cx_{H2S} + dx_{LBNIT} + ex_{LNNIT} + fx_{MBNITN} + gx_{MBNITA} + hx_{MNNITA} + ix_{HBNITAN} + jx_{HBNITA2} + k_{HNNITA2} + lx_{VBNITA2N} + mx_{VNNITA3} + nx_{\SigmaCA} + ox_{NH3} \end{array}$	$\begin{array}{c} Reação \ 8\\ LBNIT + 2H_2 \Leftrightarrow C4 + NH_3\\ y = a + bx_{H2} + cx_{H2S} + dx_{LBNIT} + ex_{LNNIT}\\ + fx_{MBNITA} + gx_{MBNITA} + hx_{MNNITA} +\\ ix_{HBNITAN} + jx_{HBNITA2} + k_{HNNITA2} +\\ lx_{VBNITA2N} + mx_{VNNITA3} + nx_{\SigmaCA} + ox_{NH3}\\ + px_{C4} \end{array}$	$\begin{array}{c} Reação \ 9\\ VBNITA2N+4H_2 \Leftrightarrow HA2+NH_3\\ +C14P\\ y=a+bx_{H2}+cx_{H2S}+dx_{LBNIT}+\\ exlnnit+fxmbnitn+gxmbnita+\\ hxmnnita+ixhbnitan+jxhbnita2+\\ k_{HNNITA2}+lxvbnita2n+mxvnnita3+\\ nx_{\Sigma CA}+oxnH_3+qxc_{14P} \end{array}$	Reação 10VNNITA3 + $3H_2 \Leftrightarrow VA3 + NH_3$ $y = a + bx_{H2} + cx_{H2S} + dx_{LBNIT} + ex_{LNNIT}$ $+ fx_{MBNITA} + gx_{MBNITA} + hx_{MNNITA} + ix_{HBNITAN} + jx_{HBNITA2} + khnnita2 + lx_{VBNITA2N} + mx_{VNNITA3} + nx_{\SigmaCA} + 0x_{NH3}$
у	$\sqrt[2]{\frac{x_{\text{HBNITAN}}}{r_{6,C}}}$	$\sqrt[2]{\frac{x_{\text{MBNITN}}}{r_{7,C}}}$	$2 \sqrt{\frac{x_{\text{LBNIT}}}{r_{8,C}}}$	$\sqrt[2]{\frac{x_{\text{VBNITA2N}}}{r_{9,C}}}$	$\sqrt[2]{\frac{x_{\text{VNNITA3}}}{r_{10,C}}}$
a	$\frac{1}{\sqrt[2]{k_{6,C}}}$	$\frac{1}{\sqrt[2]{k_{7,C}}}$	$\frac{1}{\sqrt[2]{k_{8,C}}}$	$\frac{1}{\sqrt[2]{k_{9,C}}}$	$\frac{1}{\sqrt[2]{k_{10,C}}}$
b	$\frac{K_{H_2}}{\sqrt[2]{K_{6,C}}}$	$\frac{K_{H_2}}{\sqrt[2]{K_{7,C}}}$	$\frac{K_{H_2}}{\sqrt[2]{k_{8,C}}}$	$\frac{K_{H_2}}{\sqrt[2]{k_{9,C}}}$	$\frac{K_{H_2}}{\sqrt[2]{k_{10,C}}}$
c	$\frac{K_{H2S}}{\sqrt[2]{K_{6,C}}}$	$\frac{K_{H2S}}{\sqrt[2]{K_{7,C}}}$	$\frac{K_{H2S}}{\sqrt[2]{k_{8,C}}}$	$rac{K_{H2S}}{\sqrt[2]{k_{9,C}}}$	$\frac{K_{H2S}}{\sqrt[2]{k_{10,C}}}$
d	$\frac{K_{LBNIT}}{\sqrt[2]{K_{6,C}}}$	$\frac{K_{LBNIT}}{\sqrt[2]{K_{7,C}}}$	$\frac{K_{LBNIT}}{\sqrt[2]{k_{8,C}}}$	$\frac{K_{LBNIT}}{\sqrt[2]{k_{9,C}}}$	$\frac{K_{LBNIT}}{\sqrt[2]{k_{10,C}}}$
e	$\frac{K_{LNNIT}}{\sqrt[2]{K_{6,C}}}$	$\frac{K_{LNNIT}}{\sqrt[2]{K_{7,C}}}$	$\frac{K_{LNNIT}}{\sqrt[2]{k_{8,C}}}$	$\frac{K_{LNNIT}}{\sqrt[2]{k_{9,C}}}$	$\frac{K_{LNNIT}}{\sqrt[2]{k_{10,C}}}$
f	$\frac{K_{MBNITN}}{\sqrt[2]{K_{6,C}}}$	$\frac{K_{MBNITN}}{\sqrt[2]{k_{7,C}}}$	$\frac{K_{MBNITN}}{\sqrt[2]{k_{8,C}}}$	$\frac{K_{MBNITN}}{\sqrt[2]{k_{9,C}}}$	$\frac{\overline{K_{MBNITN}}}{\sqrt[2]{k_{10,C}}}$

	K _{MBNITA}	K _{MBNITA}	K _{MBNITA}	K _{MBNITA}	K _{MBNITA}
g	$\frac{1}{\sqrt[2]{k_{6,C}}}$	$\frac{1}{\sqrt[2]{k_{7,C}}}$	$\frac{2\sqrt{k_{8,C}}}{\sqrt{k_{8,C}}}$	$\frac{2}{\sqrt{k_{9,C}}}$	$\frac{1}{\sqrt[2]{k_{10,C}}}$
1.	K _{MNNITA}	K _{MNNITA}	K _{MNNITA}	K _{MNNITA}	K _{MNNITA}
n	$\sqrt[2]{k_{6,C}}$	$\sqrt[2]{k_{7,C}}$	$\frac{2}{\sqrt{k_{8,C}}}$	$\sqrt[2]{k_{9,C}}$	$\sqrt[2]{k_{10,C}}$
;	K _{HBNITAN}	K _{HBNITAN}	K _{HBNITAN}	K _{HBNITAN}	K _{HBNITAN}
1	$\sqrt[2]{k_{6,C}}$	$\sqrt[2]{k_{7,C}}$	$\sqrt[2]{k_{8,C}}$	$\sqrt[2]{k_{9,C}}$	$\sqrt[2]{k_{10,C}}$
;	K _{HBNITA2}	K _{HBNITA2}	K _{HBNITA2}	K _{HBNITA2}	K _{HBNITA2}
J	$\sqrt[2]{k_{6,C}}$	$\sqrt[2]{k_{7,C}}$	$\sqrt[2]{k_{8,C}}$	$\sqrt[2]{k_{9,C}}$	$\sqrt[2]{k_{10,C}}$
ŀ	K _{HNNITA2}	K _{HNNITA2}	K _{HNNITA2}	K _{HNNITA2}	K _{HNNITA2}
ĸ	$\sqrt[2]{k_{6,C}}$	$\sqrt[2]{k_{7,C}}$	$\sqrt[2]{k_{8,C}}$	$\sqrt[2]{k_{9,C}}$	$\sqrt[2]{k_{10,C}}$
1	K _{VBNITA2N}	$K_{VBNITA2N}$	K _{VBNITA2N}	K _{VBNITA2N}	K _{VBNITA2N}
1	$\sqrt[2]{k_{6,C}}$	$\sqrt[2]{k_{7,C}}$	$\sqrt[2]{k_{8,C}}$	$\sqrt[2]{k_{9,C}}$	$\sqrt[2]{k_{10,C}}$
m	K _{VNNITA3}	K _{VNNITA3}	K _{VNNITA3}	K _{VNNITA3}	K _{VNNITA3}
111	$\sqrt[2]{k_{6,C}}$	$\sqrt[2]{k_{7,C}}$	$\sqrt[2]{k_{8,C}}$	$\sqrt[2]{k_{9,C}}$	$\sqrt[2]{k_{10,C}}$
n	$K_{\Sigma CA}$	$K_{\Sigma CA}$	$K_{\sum CA}$	$K_{\Sigma CA}$	$K_{\sum CA}$
11	$\sqrt[2]{k_{6,C}}$	$\sqrt[2]{k_{7,C}}$	$\sqrt[2]{k_{8,C}}$	$\sqrt[2]{k_{9,C}}$	$\sqrt[2]{k_{10,C}}$
	K _{NH3}	K _{NH3}	K _{NH3}	K _{NH3}	K _{NH3}
0	$\sqrt[2]{k_{6,C}}$	$\sqrt[2]{k_{7,C}}$	$\sqrt[2]{k_{8,C}}$	$\sqrt[2]{k_{9,C}}$	$\sqrt[2]{k_{10,C}}$
n			K_{C4}		
Р			$\sqrt[2]{k_{8,C}}$		
a				K_{C14P}	
Ч				$\sqrt[2]{k_{9,C}}$	

Mecanismo MD

	Reação 1 HNNITA2 + 3H ₂ \Leftrightarrow HBNITAN y = a + bx _{H2} +cx _{H2S} + dx _{LBNIT} + ex _{LNNIT} + fx _{MBNITN} + gx _{MBNITA} + hx _{MNNITA} + ix _{HBNITAN} + jx _{HBNITA2} + $k_{Keq1x_{H2}}^{x_{HNNITA2}}$ + lx _{VBNITA2N} + mx _{VNNITA3} + nx _{ΣCA}	Reação 2 HBNITA2 + 4H ₂ \Leftrightarrow HBNITAN y = a + bx _{H2} + cx _{H2} s+ dx _{LBNIT} + ex _{LNNIT} + fx _{MBNITN} + gx _{MBNITA} + hx _{MNNITA} + ix _{HBNITAN} + j $\frac{x_{HBNITA2}}{Keq^2x_{H2}}$ + k _{HNNITA2} + lx _{VBNITA2N} + mx _{VNNITA3} + nx _{ΣCA}	Reação 3 MNNITA + H ₂ \Leftrightarrow MBNITN y = a + bxH ₂ +cxH ₂ s+ dxLBNIT + eXLNNIT + fxMBNITN + gxMBNITA + $h\frac{x_{MNNITA}}{Keq3x_{H_2}}$ + ixHBNITAN + jXHBNITA2 + kHNNITA2 + lxVBNITA2N + mXVNNITA3 + mX ₂ CA	Reação 4 MBNITA + 2H ₂ \Leftrightarrow MBNITN y = a + bx _{H2} +cx _{H2s} + dx _{LBNIT} + ex _{LNNIT} + fx _{MBNITN} + $g\frac{x_{MBNITA}}{Keq4x_{H2}}$ + hx _{MNNITA} + ix _{HBNITAN} + jx _{HBNITA2} + k _{HNNITA2} + lx _{VBNITA2N} + mx _{VNNITA3} + nx _{ΣCA}	Reação 5 LNNIT + 2H ₂ \Leftrightarrow LBNIT $y = a + bx_{H2} + cx_{H2S} + dx_{LBNIT} + e\frac{x_{LNNIT}}{Keq5x_{H2}}$ + fxmbnitn + gxmbnita + hxmnnita + ixhbnitan + jxhbnita2 + khnnita2 + lxvbnita2n + mxvnnita3 + nxsca
У	$\frac{x_{\text{HNNITA2}} - \frac{x_{\text{HBNITAN}}}{Keq1x_{H2}^3}}{r_{1.D}}$	$\frac{x_{\rm HBNITA2} - \frac{x_{\rm HBNITAN}}{Keq2x_{H2}^4}}{r_{2,D}}$	$\frac{x_{MNNITA} - \frac{x_{MBNITN}}{Keq3x_{H2}}}{r_{3D}}$	$\frac{x_{MBNITA} - \frac{x_{MBNITN}}{Keq4x_{H2}^2}}{r_{4,D}}$	$\frac{x_{LNNIT} - \frac{x_{LBNIT}}{Keq5x_{H2}^2}}{r_{5,D}}$
а	$\frac{1}{k_{1,D}}$	$\frac{1}{k_{2,D}}$	$\frac{1}{k_{3,D}}$	$\frac{1}{k_{4,D}}$	$\frac{1}{k_{5,D}}$
b	$\frac{\frac{K_{H_2}}{k_{1,D}}}{K_{1,D}}$	$\frac{\frac{K_{H_2}}{k_{2,D}}}{K_{2,D}}$	$\frac{\frac{K_{H_2}}{k_{3,D}}}{\frac{1}{2}}$	$\frac{K_{H_2}}{k_{4,D}}$	$\frac{\frac{K_{H_2}}{k_{5,D}}}{$
c	$\frac{K_{H2S}}{k_{1,D}}$	$\frac{k_{H2S}}{k_{2,D}}$	$\frac{K_{H2S}}{k_{3,D}}$	$\frac{K_{H2S}}{k_{4,D}}$	$\frac{K_{H2S}}{k_{5,D}}$
d	$\frac{K_{LBNIT}}{k_{1,D}}$	$\frac{K_{LBNIT}}{k_{2,D}}$	$\frac{K_{LBNIT}}{k_{3,D}}$	$\frac{K_{LBNIT}}{k_{4,D}}$	$\frac{K_{LBNIT}}{k_{5,D}}$
e	$\frac{K_{LNNIT}}{k_{1,D}}$	$\frac{K_{LNNIT}}{k_{2,D}}$	$\frac{K_{LNNIT}}{k_{3,D}}$	$rac{K_{LNNIT}}{k_{4,D}}$	$\frac{K_{LNNIT}}{k_{5,D}}$
f	$\frac{K_{MBNITN}}{k_{1,D}}$	$\frac{K_{MBNITN}}{k_{2,D}}$	$\frac{K_{MBNITN}}{k_{3,D}}$	$\frac{K_{MBNITN}}{k_{4,D}}$	$\frac{K_{MBNITN}}{k_{5,D}}$
g	$\frac{K_{MBNITA}}{k_{1,D}}$	$\frac{K_{MBNITA}}{k_{2,D}}$	$\frac{K_{MBNITA}}{k_{3,D}}$	$\frac{K_{MBNITA}}{k_{4,D}}$	$\frac{K_{MBNITA}}{k_{5,D}}$
h	$\frac{K_{MNNITA}}{k_{1,D}}$	$\frac{K_{MNNITA}}{k_{2,D}}$	$\frac{K_{MNNITA}}{k_{3,D}}$	$\frac{K_{MNNITA}}{k_{4,D}}$	$\frac{K_{MNNITA}}{k_{5,D}}$
i	$\frac{K_{HBNITAN}}{k_{1,D}}$	$\frac{K_{HBNITAN}}{k_{2,D}}$	$\frac{K_{HBNITAN}}{k_{3,D}}$	$\frac{K_{HBNITAN}}{k_{4,D}}$	$\frac{K_{HBNITAN}}{k_{5,D}}$
j	$\frac{K_{HBNITA2}}{k_{1,D}}$	$\frac{K_{HBNITA2}}{k_{2,D}}$	$\frac{K_{HBNITA2}}{k_{3,D}}$	$\frac{K_{HBNITA2}}{k_{4,D}}$	$\frac{K_{HBNITA2}}{k_{5,D}}$
k	$\frac{K_{HNNITA2}}{k_{1D}}$	$\frac{K_{HNNITA2}}{k_{2D}}$	$\frac{K_{HNNITA2}}{k_{3D}}$	$\frac{K_{HNNITA2}}{k_{4D}}$	$\frac{K_{HNNITA2}}{k_{5D}}$
1	$\frac{K_{VBNITA2N}}{k_{1,D}}$	$\frac{K_{VBNITA2N}}{k_{2,D}}$	$\frac{K_{VBNITA2N}}{k_{3,D}}$	$\frac{K_{VBNITA2N}}{k_{4,D}}$	$\frac{K_{VBNITA2N}}{k_{5,D}}$

m	K _{VNNITA3}	K _{VNNITA3}	K _{VNNITA3}	K _{VNNITA3}	K _{VNNITA3}
111	<u>k_{1,D}</u>	k _{2,D}	k _{3,D}	<i>k</i> _{4,D}	k _{5,D}
n	$K_{\sum CA}$	$K_{\sum CA}$	$K_{\sum CA}$	$K_{\sum CA}$	$K_{\sum CA}$
	k _{1,D}	k _{2,D}	k _{3,D}	k _{4,D}	k _{5,D}
	Reação 6 HBNITAN + 2H ₂ \Leftrightarrow HAN + NH ₃ y = a + bxh ₂ +cxh ₂ s+ dxlbnit + exlnnit + fxmbnitn + gxmbnita + hxmnnita + ixhbnitan + jxhbnita ₂ + khnnita ₂ + lxvbnita ₂ n + mxvnnita ₃ + nx ₂ ca + oxnh ₃	Reação 7 MBNITN + $2H_2 \Leftrightarrow C9A + NH_3$ y = a + bxH ₂ + cxH ₂ s+ dxlbnit + exlnnit + fxmbnitn + gxmbnita + hxmnita + ixHbnitan + jxHbnita ₂ + kHnnita ₂ + lxvbnita ₂ n + mxvnnita ₃ + nx ₂ Ca + oxnH ₃	$\begin{array}{l} Reação 8\\ LBNIT + 2H_2 \Leftrightarrow C4 + NH_3\\ y = a + bxH_2 + cxH_{2S} + dx_{LBNIT} + exlnnit\\ + fx_{MBNITN} + gx_{MBNITA} + hx_{MNNITA} + ixHBNITAN + jxHBNITA2 + kHNNITA2 + lx_{VBNITA2} + mx_{VNNITA3} + nx_{\SigmaCA} + ox_{NH3}\\ + px_{C4} \end{array}$	Reação 9 VBNITA2N + $4H_2 \Leftrightarrow HA2 + NH_3$ + $C14P$ $y = a + bx_{H2} + cx_{H2S} + dx_{LBNIT} +$ $ex_{LNNIT} + fx_{MBNITN} + gx_{MBNITA} +$ $hx_{MNNITA} + ix_{HBNITAN} + jx_{HBNITA2} +$ $k_{HNNITA2} + lx_{VBNITA2N} + mx_{VNNITA3} +$ $nx_{\Sigma CA} + ox_{NH3} + qx_{C14P}$	Reação 10 VNNITA3 + $3H_2 \Leftrightarrow VA3 + NH_3$ $y = a + bx_{H2} + cx_{H2S} + dx_{LBNIT} + ex_{LNNIT}$ + fxmbnitn + gxmbnita + hxmnnita + ixhbnitan + jxhbnita2 + khnnita2 + lxvbnita2n + mxvnnita3 + nx ₂ Ca + oxnH3
v	x_{HBNITAN}	x_{MBNITN}	x_{LBNIT}	x_{VBNITA2N}	x_{VNNITA3}
у	r _{6,D}	r _{7,D}	r _{8,D}	r _{9,D}	r _{10,D}
a	$\frac{1}{k_{6D}}$	$\frac{1}{k_{7D}}$	$\frac{1}{k_{8D}}$	$\frac{1}{k_{9D}}$	$\frac{1}{k_{10D}}$
b	$\frac{K_{H_2}}{k}$	$\frac{K_{H_2}}{k}$	$\frac{K_{H_2}}{k}$	$\frac{K_{H_2}}{\nu}$	$\frac{K_{H_2}}{k}$
	Kupc	K _{7,D}	K _{8,D}	Kups	$K_{10,D}$
с		$\frac{-2}{k_{7D}}$	$\frac{-H2S}{k_{BD}}$	$\frac{-H2S}{k_{9D}}$	$\frac{1-H_{2S}}{k_{10D}}$
л	K _{LBNIT}	K _{LBNIT}	K _{LBNIT}	K _{LBNIT}	K _{LBNIT}
a	<i>k</i> _{6,D}	$\overline{k_{7,D}}$	$\overline{k_{8,D}}$	$k_{9,D}$	k _{10,D}
e	KLNNIT	$\frac{K_{LNNIT}}{k_{T}}$	$\frac{K_{LNNIT}}{k_{DD}}$	Ken	KLNNIT
	K _{MBNITN}	K _{MBNITN}	K _{MBNITN}	Ky,D K _{MBNITN}	K _{10,D} K _{MBNITN}
f	k _{6 D}	$\frac{k_{7D}}{k_{7D}}$	$\frac{k_{BD}}{k_{BD}}$	k _{9D}	$\frac{k_{10,D}}{k_{10,D}}$
a	K _{MBNITA}	K _{MBNITA}	K _{MBNITA}	K _{MBNITA}	K _{MBNITA}
g	k _{6,D}	k _{7,D}	k _{8,D}	k _{9,D}	k _{10,D}
h	$\frac{K_{MNNITA}}{L}$	K _{MNNITA}	K _{MNNITA}	$\frac{K_{MNNITA}}{L}$	$\frac{K_{MNNITA}}{L}$
	<i>K</i> _{6,D}	<i>K</i> _{7,D}	K _{8,D}	K _{9,D}	<i>K</i> ^{10,D}
i	Kep Kep	$\frac{K_{HBNITAN}}{k_{TR}}$	Kop	Kop	$\frac{K_{HBNITAN}}{k_{ABB}}$
	K _{HBNIT} A2	K/,D KHBNIT42	K _{HBNIT 42}	K9,D KHBNIT42	K _{10,D} K _{HRNITA2}
j			$\frac{k_{B,D}}{k_{B,D}}$		
k	K _{HNNITA2}	K _{HNNITA2}	K _{HNNITA2}	K _{HNNITA2}	K _{HNNITA2}
к	k _{6,D}	$\sqrt[2]{k_{7,C}}$	$k_{8,D}$	k _{9,D}	$k_{10,D}$

1	K _{VBNITA2N}	K _{VBNITA2N}	K _{VBNITA2N}	K _{VBNITA2N}	K _{VBNITA2N}
1	$k_{6,D}$	$k_{7,D}$	$k_{8,D}$	$k_{9,D}$	$k_{10,D}$
m	K _{VNNITA3}	K _{VNNITA3}	K _{VNNITA3}	K _{VNNITA3}	K _{VNNITA3}
111	$k_{6,D}$	$k_{7,D}$	$k_{8,D}$	$k_{9,D}$	$k_{10,D}$
n	$K_{\sum CA}$	$K_{\sum CA}$	$K_{\sum CA}$	$K_{\sum CA}$	$K_{\sum CA}$
11	$k_{6,D}$	$k_{7,D}$	$k_{8,D}$	$k_{9,D}$	$k_{10,D}$
0	K _{NH3}	K _{NH3}	K _{NH3}	K _{NH3}	K _{NH3}
0	$k_{6,D}$	$k_{7,D}$	$k_{8,D}$	$k_{9,D}$	$k_{10,D}$
n			K_{C4}		
P			$\overline{k_{8,D}}$		
~				<i>K</i> _{C14P}	
q				$k_{9,D}$	

APÊNDICE C – RESULTADOS OBTIDOS PELA REGRESSÃO LINEAR

					1	Temperatu	re (°C): 30)0								Femperati	ure (°C): 3	20			
						Rea	ction									Rea	action				
		1	2	3	4	5	6	7	8	9	10	1	2	3	4	5	6	7	8	9	10
	а	3,8787	8,0871	-12,132	4,36669	0,0636	22,33	-0,9261	0,0109	-40,393	37,694	42,961	44,733	-8,2718	-0,9514	0,0804	16,278	-5,7365	0,01035	22,366	10,0412
	b	-7,5359	11,033	58,162	0,38208	-0,098	-45,736	24,5517	0,0392	160,95	-146,19	-141,78	-68,684	34,249	16,744	-0,1274	-30,082	36,089	0,03852	-23,399	-44,933
	с	67,92	83,566	607,61	-416,79	-2,5	-686,99	-22,817	-0,0018	1192,2	1134,9	729,89	3023,2	310,11	-447,42	-3,6343	-545,12	4,2752	-0,0493	417,23	1035,73
	d	-3E+09	-1E+10	-1E+09	2,2E+10	3E+08	0	0	0	0	0	-1E+10	-8E+10	9E+09	2E+10	3E+08	1E+10	4E+10	467570	-3E+10	5,7E+10
	e	0	0	0	0	0	0	0	0	0	0	-2E+09	-2E+11	7E+10	1E+11	4E+08	4E+10	7E+10	4747224	-1E+12	2,9E+11
	f	429,98	1367,6	880,91	2494,47	-1,5743	2013,7	3617,3	0,0007	-14258	-14379	2232,2	15396	224,19	1706,3	-7,8577	1206,2	1255,1	-0,249	-595,88	-15876
	g	27,573	578,09	374,26	390,326	-23,033	387,44	366,305	-0,0008	1518,3	1955,7	-333,92	-613,87	431,04	630,9	-33,882	324,81	308,31	0,02751	404,86	1754,15
МА	h	69,2	173,87	264,07	155,71	0,9396	219,36	-1815,2	0,0013	-289,56	-278,56	-60,117	-339,2	-78,592	238,28	1,6297	352,02	-949,07	-0,0026	-408,07	516,764
	i	939,36	3868,2	234,21	-1896,1	0,8666	2814,5	255,608	-0,0004	712,95	505,98	1185	5084	247,36	-2133,3	1,4197	2352,2	212,17	0,00655	126,08	452,416
	j	19,703	232,27	-660,81	263,758	1,2162	150,84	207,292	0,001	654,51	788,25	-129,82	38,703	-664,91	331,64	1,8604	115,35	170,61	0,00748	167,85	704,556
	k	-98,534	165,41	94,611	167,143	0,6268	-1763,7	89,0473	0,0003	-43,699	109,17	-93,199	-225,97	140,92	206,93	1,0215	-1292,6	336,76	0,00236	-118,02	428,318
	1	38,757	-2447,7	62,543	232,071	1,1619	127,19	125,762	-0,0004	3969,6	420,21	-87,152	-3814	99,925	278,63	1,8316	97,041	107,68	0,01392	2717,9	396,251
	m	-454,86	214,83	209,45	199,415	0,6715	132,92	142,317	-0,0005	821,72	3926,3	-812,21	-330,44	204,53	240,28	1,0637	101,83	123,03	0,01265	300,43	3175,76
	n	0,6228	6,6575	5,3529	3,17733	0,0116	-6,3512	2,45778	0,0003	13,009	-11,456	-11,012	-5,8931	4,63	5,0227	0,0181	-4,5293	3,3449	0,0005	-4,3789	-2,9264
	0	0	0	0	0	0	-1E+10	5E+09	-18030	1E+11	1E+11	0	0	0	0	0	-1E+10	-2E+10	682335	3E+10	2,1E+10
	р	0	0	0	0	0	0	0	-0,0003	0	0	0	0	0	0	0	0	0	-0,003	0	0
	q	0	0	0	0	0	0	0	0	-32,189	0	0	0	0	0	0	0	0	0	-43,604	0
	а	5,2358	9,8081	-46,9	9,30954	0,0148	97,035	-16,972	0,0009	-363,78	232,87	299,51	643,65	-37,81	-15,553	0,0215	60,78	-29,413	0,00081	106,09	63,7738
	b	-10,024	94,514	200,17	-0,8151	-0,0316	-239,05	125,379	0,0082	1223,5	-1119,6	-1043,2	-1371,8	138,08	75,531	-0,0491	-146,9	134,86	0,00807	-147,76	-414,38
	с	68,266	821,45	1645	-1961,9	-0,8592	-4733,7	538,314	-0,0005	10262	8699,9	5217,7	52161	720,77	-2092,1	-1,3633	-3350,3	579,27	-0,01	4334,7	7745,01
	d	-1E+10	-7E+10	-8E+09	6,7E+10	1E+08	0	0	0	0	0	-7E+10	-1E+12	2E+10	6E+10	1E+08	-5E+09	1E+11	97701,3	-2E+11	4,7E+11
	e	0	0	0	0	0	0	0	0	0	0	-3E+10	-4E+12	2E+11	5E+11	2E+08	2E+11	3E+11	948925	-8E+12	1,9E+12
	f	1310,1	9133,8	3241,7	13928,3	-0,7751	9861	19343,8	1E-04	-105637	-103257	13783	261663	1780,3	11576	-3,3275	5257,2	7059,2	-0,0501	-1873,3	-101602
	g	97,239	4327,1	1242,4	1825,4	-8,8536	2510,7	1337,31	-0,0002	12012	14406	-2447,4	-19126	1366,2	2914,1	-15,235	2158,1	1270,6	0,00546	3219,1	10856,6
	h	175,3	1070,8	824,3	620,94	0,3916	1019,9	-8094	0,0003	-2391,5	-1679,4	-808,02	-8770,5	-305,55	997,77	0,7615	623,39	-4432,4	-0,0005	-3420	4957,57
MB	i	2460	23592	777,22	-8932,3	0,3804	14721	1017,65	-8E-05	5464,2	3680,8	3379,8	32095	754,82	-10374	0,7063	11034	941,08	0,0013	1028,5	2642,46
	j	53,449	1660	-2353,6	1279,03	0,5339	946,26	830,99	0,0002	4843	5805,9	-1021,1	-2439,7	-2199,1	1634,9	0,9361	772,08	749,25	0,0015	1127,7	4349,21
	k	-206,45	1044,2	298,84	716,993	0,2462	-9458,2	425,585	5E-05	10,507	933,06	-476,33	-6490,4	425,19	901,3	0,4502	-6550,4	1026,9	0,00049	-806,98	3490,95
	1	108,86	-15426	241,83	1042,88	0,4869	757,6	363,038	-1E-04	28625	2747,3	-705,61	-34840	293,41	1263,5	0,863	613,22	389,36	0,00278	17415	2125,77
	m	-1245,3	1544,8	703,09	926,216	0,2759	850,87	484,036	-0,0001	6574,8	28638	-3418,7	-8729,8	618,18	1121,4	0,4851	675,05	485,59	0,00253	2292,3	20452,8
	n	2,6481	45,125	19,558	12,9745	0,0049	-33,888	12,0708	6E-05	98,922	-84,167	-87,999	-195,49	17,25	21,7	0,0084	-21,314	12,751	9,8E-05	-29,91	-28,382
	0	0	0	0	0	0	-6E+10	-1E+10	-3574,9	9E+11	9E+11	0	0	0	0	0	-9E+09	-6E+10	134276	2E+11	6E+10
	р	0	0	0	0	0	0	0	-6E-05	0	0	0	0	0	0	0	0	0	-0,0006	0	0
	q	0	0	0	0	0	0	0	0	-295,55	0	0	0	0	0	0	0	0	0	-308,25	0

					Т	Temperatu	re (°C): 34	0							,	Temperat	ure (°C): 3	860			
		1	2	3	4	Read	ction 6	7	8	0	10	1	2	3	4	Rea 5	action 6	7	8	0	10
	а	1 065	2 180.68	1 8714	1 1586	0.0042	12 085	6 7136	o	17.003	7 0514	1 36.217	<u>4</u> 330.71	1 7018	1 /008	0 1007	0.0413	8 8526	0 0008	9 11.6216	6 57180
	b	-129 37	-445.86	17 / 37	17 186	-0.1259	-23 33	30 320	0,0101	-20.621	-33 304	-98 594	-879.45	18 656	18 306	-0.0798	-1 1772	41 221	0,0098	-7 4747	-27 083
	c	1694 7	6925 3	-26 829	-505 31	-4 5751	-25,55	272 72	-0.0487	155.47	832.23	980.68	574.82	-129.9	-594.02	-0,0798	558.6	207.68	-0.0547	327 852	855 571
	d	-8E+09	-1E+11	8E+09	1E+10	2E+08	6E+09	3E+10	3E+06	-2E+10	2E+10	-8E+09	-9E+10	3E+09	6E+09	1E+08	1E+10	207,00 8E+09	2E+06	-7E+09	8 8E+09
	e	-1E+10	-4E+11	4E+10	6E+10	3E+08	2E+10	2E+10	5E+06	-5E+11	1E+11	1E+10	-4E+11	2E+10	4E+10	2E+08	-4E+09	-1E+10	3E+06	-3E+11	5.9E+10
	f	3095	43378	-74.112	1747.8	-13.896	1019.3	1478.1	-0.4404	-1156.2	-13615	7396.3	68452	753.65	1906.1	-15.216	1801.3	2688.4	-0.4637	-1152.5	-12214
	g	77,584	-2320,3	440,29	791,06	-49,025	302,76	184,66	0,0385	491,29	1444	-912,32	-4409,9	376,99	937,7	-74,062	110,93	-38,737	0,0389	439,159	1415,66
	h	-83,51	-2626	-109,54	279,04	2,3923	306,54	-597,93	0,0593	-647,98	409,46	32,544	-2959	-78,12	341,52	3,3715	838,75	-1021,1	0,0677	-459,87	275,652
MA	i	1444,1	5428,3	261,24	-2438,2	2,1166	2012,5	93,582	0,0007	237,64	406,37	2136	6709,1	202,68	-2767,4	2,9461	1659,7	217,19	-0,0005	192,252	347,123
	j	-241,24	-1104,3	-681,98	377,01	2,7183	93,94	102,1	0,0025	233,74	622,45	-240,26	-1916,1	-782,3	405,33	4,077	-146,87	117,77	0,002	178,601	547,879
	k	262,07	-913,98	126,03	218,52	1,5512	-1008,5	389	0,03	-235,37	289,67	44,855	101,84	101,06	239,78	2,1599	-689,23	392,72	0,0315	-146,84	197,739
	1	-191,34	-6617	150,66	298,83	2,5756	72,753	10,077	0,0123	2290,8	316,53	-110,74	-10464	104,89	313,61	3,7184	5,4076	-73,717	0,0107	1921,95	277,607
	m	-1150,2	-806,39	150,79	261,96	1,5273	74,829	74,793	0,0158	293,21	2587,9	-1660,4	-2324,8	99,25	276,65	2,1362	9,3402	168,68	0,0146	257,545	2143,89
	n	-8,5258	-41,163	3,5079	5,2435	0,0273	-3,4903	3,4705	0,0004	-3,1257	-2,2593	-4,0705	-80,792	3,4592	5,4514	0,045	-2,3305	4,9899	0,0005	-1,7629	-1,8047
	0	0	0	0	0	0	-6E+09	-2E+10	-1E+06	2E+10	1E+10	0	0	0	0	0	-1E+10	-6E+09	-698775	7,1E+09	5,6E+09
	р	0	0	0	0	0	0	0	-0,0028	0	0	0	0	0	0	0	0	0	-0,003	0	0
	q	0	0	0	0	0	0	0	0	-30,743	0	0	0	0	0	0	0	0	0	-20,249	0
	а	310,38	3475,1	-23,55	-16,513	0,0259	43,39	-30,692	0,0008	81,622	41,455	180,93	7314	-19,082	-18,249	0,0193	10,373	-21,064	0,0007	56,5338	31,5389
	b	-1027,7	-9408,4	76,628	77,098	-0,0502	-100,99	150,79	0,008	-140,85	-268,6	-507,33	-19893	63,562	82,035	-0,0048	78,016	97,649	0,0079	-82,096	-197,27
	с	15317	120534	-35,498	-2418,9	-1,8393	-2169,2	2015,8	-0,0098	2562,2	5934,6	8561,1	-48706	-407,2	-2965,8	-3,8181	6287,1	1703,2	-0,0111	2882,88	5158,73
	d	-6E+10	-2E+12	2E+10	4E+10	1E+08	2E+09	9E+10	568199	-1E+11	2E+11	-9E+10	-2E+12	7E+09	2E+10	8E+07	9E+10	8E+09	326078	-4E+10	6,3E+10
	e	-1E+11	-9E+12	1E+11	3E+11	1E+08	8E+10	5E+10	939390	-3E+12	7E+11	1E+11	-9E+12	6E+10	2E+11	1E+08	-7E+10	-1E+11	509595	-1E+12	3,2E+11
	f	22220	849796	2116,2	13114	-6,0764	3985,7	8141,5	-0,0886	-3479,7	-78780	77140	2E+06	4315,4	14987	-5,5629	10891	17850	-0,0934	-2916	-63691
	g	1163,6	-59600	1295,9	3655,3	-25,658	1729,5	481,77	0,0077	2941	8225,8	-10201	-120139	1058,7	4431,4	-45,216	159,18	-1122	0,0078	2440,35	7125,92
MD	n :	-1316,2	-56957	-409,52	1199,1	1,2789	579,53	-2280,8	0,0118	-3740,3	3635,4	-103,41	-78416	-234,99	1560,1	2,049	5469,7	-5400	0,0136	-2532,5	2584,96
МВ	1	4309,6	19407	748,59	-12190	1,204	8383,2	220,67	0,0002	1288,2	2153,9	9242,9	18189	566,02	-14199	1,8677	5785,3	1086,7	-0,0001	912,197	1651,31
	J Ir	-2295,5	-26726	-2260,5	1896,1	1,5723	549,65	327,12	0,0005	1189,2	3464,4	-2703	-49166	-2511,6	2053,3	2,6751	-1581,7	332,68	0,0004	794,27	2766,49
	К 1	2435,7	-21195	339,78	964,19	0,7909	-4515,5	1367,2	0,006	-1127,9	2297	184,96	-1967,7	268,84	1088,1	1,2825	-2142,2	740.97	0,0063	-606,1	1460,72
	m	-1888,8	-80222	200,50	13/8,/	1,377	400,54	-101,/	0,0025	13012	1504,5	-1219	-1/1023	200,03	1481,9	2,3394	-177,25	-/40,87	0,0021	9820,97	1241,05
	n	-6030,2	-19989	390,59	1230,1	0,7671	441,15	205,87	0,0032	1860,5	18 222	-11/09	-5/686	234,97	1315,3	1,1939	-121,84	809,42	0,0029	1414,54	12 272
		-75,713	-955,10	12,344	23,001	0,015	-14,377	15,224 6E+10	9E-03	-22,204	-10,223 3E+10	-2,3911	-1957,7	10,723	24,172	0,0300	-4,0954 8E+10	16,30/ 1E+10	9E-03	-14,/34	-15,273
	n	0	0	0	0	0	-012+09	-0E+10	-242177	10+11	512+10	0	0	0	0	0	-01+10	-112+10	-140308	3,00+10	1,02+10
	q	0	0	0	0	0	0	0	-0,0000	-210.84	0	0	0	0	0	0	0	0	-0,0000	-127.97	0

					,	Temperatu	ıre (°C): 38	30]	Femperatu	re (°C): 40	0			
		1	2	2	4	Rea	iction	7	0	0	10	1	2	2	4	Read	ction	7	ø	0	10
		1	Z	3	4	5	0	12 41	ð	9	100001	124.069	2 191-22	3	4	5	12 700	2 2207	8	9	22 102
	a b	45 295	1/5,81	-2,1985	12,930	0,07526	3,45292	-13,41	0,00787	21,0991	1,88881	245.64	181,52	0,475	4,10204	-0,234	-13,/88	-2,2307	0,00294	-11,257	-55,105
	C	-45,285	-230,12	224.02	-24,4	0,08909	7,45552	60,2071 577-141	0,04089	-0,9445	012 975	-545,04	-332,15	2,3098	-0,9199	0,9223	39,0398	21,2201	0,04950	/0,/85	547 49
	d	5E+00	6E+10	-224,92	-151,05	15,09	5E+00	1 2E 10	702600	1.0E+10	912,073	4E+00	9079,9 2E+10	-133,72	-445,05 2 1E+00	1 5 5 1 08	5 5E+00	0.4E+00	1220100	1590,5 8E+00	9E+00
	e	-JE+09	-0E+10	1E+09	2,0E+09	175+08	3E+09	7E+00	2162786	1,9E+10	1,3E+10	-4E+09	-2E+10	5E+00	5,1E+09	1,3E+08	3,3E+09	9,4E+09	6020166	0E+10	5E+09
	f	01/2 6	76069	1218 /	3186.16	1,727047	1268 74	183/110	-0.9805	30// /1	-8120.6	12506.3	51732	1510.0	1177.2	-136 31	2 86633	-20+09	-2.9634	1781 /	-6727.8
	σ	-1235 5	-4609 5	342 58	894 783	-119 59	130 205	-278.06	0.08594	-1052 7	249 646	-1325.7	-2543.1	347 17	703 823	-186.47	-110.85	-442 19	-0.0266	-607.5	-0727,0
	b h	101 549	-237 33	-29 314	245.20	/ 70111	660 681	-13/ 15	0,000004	1073.04	1584.26	286 203	2741.3	81 187	366.074	14 0022	1136.14	442,17	0.02573	1347.5	1474.7
MA	i	2856.2	12395	160.25	-3344 5	4 37481	1502.72	3 66155	0.04025	-693 53	-220.87	3497 31	19592	142 34	-3629.2	13 1281	1276 54	-24 322	0,02375	-511.65	-241 59
	i	-295.3	-4677 1	-869.91	380 655	6 56915	-106.13	6 4 1 4 1 1	0.04488	-532.87	164 291	456 119	-4443.9	-937.68	577 941	18 1801	-126.29	-23 448	0.15889	-223.93	85 574
	k	66.2073	-1563.8	82,176	215.816	3.0395	-608.78	644.331	0.018	793.238	668,209	-227.77	-1448.7	66,751	260.245	8.95175	-390.2	712.894	0.03396	580.08	506.66
	1	-122.07	-13848	90.34	290.092	5.32208	16.4093	-129.62	0.0266	1225.17	65.0419	-598.35	-13338	62.354	419.665	8.68561	21.2736	-94.47	0.11687	1095.7	72,996
	m	-2072.7	-2453	66.271	268.83	2.53598	14.6445	73.0181	0.03917	-148.53	1614.82	-2549.3	-1285.1	47.044	340.577	8.34871	86.0298	50.3568	0.08843	-115.92	1470.4
	n	2,80724	-35,889	2.6399	1.25015	0.07994	-0.5278	5,46364	0.00106	-4.5316	0.469	-31.839	-30,116	1.7348	3.72083	0.1797	5.64515	1,48377	0.00251	6.4688	12,473
	0	0	0	0	0	0	-4E+09	-9E+09	33528,8	-2E+10	-7E+09	0	0	0	0	0	-4E+09	-6E+09	189859	-6E+09	-4E+09
	р	0	0	0	0	0	0	0	-0,006	0	0	0	0	0	0	0	0	0	-0,0095	0	0
	q	0	0	0	0	0	0	0	0	3,94939	0	0	0	0	0	0	0	0	0	-32,238	0
	а	-7,7585	3490,2	-10,714	117,934	-0,0413	-7,1381	-49,395	0,00029	112,187	-44,065	1478,78	2393,6	-4,1262	106,96	-0,4231	-147,75	22,358	-0,0007	-219,86	-288,26
	b	146,176	-4190,8	36,325	-312,52	0,23211	93,0974	221,119	0,00858	1,03924	173,301	-4271,2	-2970,4	16,284	-269,75	1,34615	519,207	3,76181	0,01031	872,86	926,48
	с	12721,8	117614	-667,87	370,682	-6,0925	4899,18	3590,95	0,00406	5320,54	7230,63	55665,2	228029	-493,88	-234,96	-10,49	1746,55	1815,03	-0,0356	14004	3929
	d	-7E+10	-2E+12	3E+09	2,6E+09	6,2E+07	3,2E+10	4,9E+10	134060	1,6E+11	8,9E+10	-5E+10	-6E+11	1E+09	5,4E+09	1E+08	3,3E+10	4,8E+10	245009	6E+10	5E+10
	e	1,5E+11	-4E+12	3E+10	7,4E+09	9E+07	-2E+10	-7E+10	637170	-9E+11	5,9E+10	-3E+11	1E+12	2E+10	9,8E+09	1,7E+08	-3E+10	-4E+10	1225113	-5E+11	-5E+09
	f	108679	2E+06	5512,6	31025,7	15,9365	6944,89	11398,4	-0,1992	35997,2	-37612	155046	1E+06	5945,7	29569,1	-75,487	-2336,3	1844,87	-0,6024	8622,1	-32061
	g	-15387	-149108	915,14	3259,44	-86,873	318,27	-2116,4	0,01761	-9433,4	-1437,9	-17056	-119278	927,61	2315,92	-158,4	-1397,2	-3199,5	-0,0048	-4266,2	-3424,5
	h	427,444	-1483	-2,0001	262,289	3,30888	3843,38	-332,88	0,00352	16608,7	10034	2511,15	85448	346,17	437,224	10,9566	6489,34	4234,12	0,00517	10018	10345
MB	i	13985,3	142995	440,27	-18472	2,92522	4781,13	-129,53	0,00828	-6027,5	-2346	16744,9	322853	384,41	-21167	9,08031	3553,02	-818,13	0,03484	-3820,7	-2342,9
	j	-3701,3	-160517	-2718,4	1414,47	4,92502	-1096,3	-246,37	0,00928	-4882,5	632,798	7190,9	-173033	-2834,5	1974,75	15,5798	-1012,1	-765,87	0,0322	-1993,4	284,26
	k	458,355	-65630	212,83	727,774	2,07589	-1816,6	2902,94	0,0033	6660,92	4244,18	-3809,5	-75439	164,63	843,802	8,16785	-792,04	3730,68	0,0066	4508,9	3264,4
	1	-1471	-279452	211,98	1161,55	3,96075	-59,158	-897,87	0,00551	4465,5	137,955	-8626,6	-272620	146,14	1548,05	5,55542	94,9455	-904,92	0,02367	4260,6	299,33
	m	-16427	-71428	151,47	1082,45	1,45919	-42,377	298,409	0,00805	-1746,5	7680,99	-21078	-39993	113,28	1331,53	6,54937	645,302	-49,093	0,01804	-980,75	6854,4
	n	83,2964	-987,29	7,9262	-16,15	0,07079	2,01487	21,3578	0,00021	-29,152	18,7737	-436,71	-529,56	5,3069	-13,919	0,18441	52,8707	-3,6861	0,0005	82,949	103,25
	0	0	0	0	0	0	-3E+10	-4E+10	12949	-1E+11	-4E+10	0	0	0	0	0	-2E+10	-3E+10	40397,8	-4E+10	-3E+10
	р	0	0	0	0	0	0	0	-0,0012	0	0	0	0	0	0	0	0	0	-0,002	0	0
	q	0	0	0	0	0	0	0	0	35.6177	0	0	0	0	0	0	0	0	0	-207.7	0

						Tempera 30	ture (°C)									Tempera 3	ature (°C) 20				
			•	2		Read	ction	-	0	0	10		•	2		Rea	ction	-	0	0	10
	9	1	2	3	4	5 0 1446	0	12 207	ð	615 16	10	1 2691.6	2	51 16	4	5 0.2408	0	15.056	ð 0.00467	522.65	10
	u h	286.52	10256	-70,913	134,097	0,1440	716.25	-12,397	0,0049	2045.4	2082 7	2081,0	28630	102.31	355 76	0,2408	401 58	03 807	0,00407	-522,05	1077.3
	c	-200,52	-10250	2720.8	24051	2 1801	-/10,23	1102,141	0,0041	2045,4	18088	61/188	-28030 2E+06	3321.7	-355,70	3 2667	6883.8	93,897	0,00400	16088	130/6 2
	d	-4420,1	-3E±12	-6E±10	-24951 1 5E±11	-2,1001 5E±08	-9099,4	1102,02	-0,0012	21733	10000	-5E+11	_2E+00	3521,7 3E±10	-20709 6E±10	-5,2007 /E±08	-0885,8	905,54	-0,0211	10088	13940,2
	e	0	0	02110	0	0.0005	0	0	0	0	0	0	0	0	01110	0.0008	0	0	0	0	0
	f	4320.1	3242.91	11609	77211.3	-2.844	20779	41246.2	7E-05	-223283	-217189	103510	4E+06	6344.2	89136	-6.3575	14941	21659	-0.0814	-169058	-163917
	g	963.66	87315	2542.9	-3.2271	-39.519	5347.4	2803.79	-0.0004	25148	30503	-21844	-246552	2496.7	-3.754	-65.22	4058.9	3054.7	0.01009	19212	22758.7
	h	1748.6	17752	-0.2197	5075.27	1,7039	2136.5	-17091	0.0005	-4968.1	-3575.1	-6859.9	-107333	0.4394	6019.4	2.8197	1491.8	-12267	-0.0033	-3631.5	-2308.4
MC	i	23287	467101	1732	-39999	1,6072	31032	2115,59	-0,0002	11432	7616,8	29422	615890	1039	-44991	2,6246	22478	2203,3	0,00219	8660,1	5699,22
	j	628,2	-17,467	-5011,8	5507,48	2,2208	1965,9	1713,65	0,0005	10188	12267	-8897,3	131,1	-4658	6137,9	3,5438	1393,7	1724,1	0,00267	7636,2	9174,55
	k	-0,8269	30117	587,73	3175,46	1,0634	-19968	899,179	9E-05	55,195	1870,5	2,1655	-180404	765,18	3326,7	1,6824	-13398	670,63	-0,0001	26,539	1353,65
	1	1603,3	-312681	472,25	4603,08	2,1335	1553,7	735,163	-0,0002	60329	5782,5	-7489,9	-589818	453,65	4695	3,3693	1040,8	892,75	0,00512	41957	4115,36
	m	-11554	28982	1568,7	3631,27	1,1587	1818,7	1025,06	-0,0002	13781	60497	-29839	-123704	1094,8	3611,6	1,7682	1246,7	1127,8	0,00473	9608,6	42094,3
	n	40,543	840,54	38,259	64,5148	0,0182	-73,914	25,5356	0,0001	205,7	-188,74	-744,27	-2344,7	29,789	73,657	0,0212	-51,278	17,263	0,00016	167,47	-126,98
	0	0	0	0	0	0	-1E+11	-2E+10	-6559	2E+12	2E+12	0	0	0	0	0	-4E+10	3E+10	344381	7E+11	6,8E+11
	р	0	0	0	0	0	0	0	-0,0002	0	0	0	0	0	0	0	0	0	-0,0013	0	0
	q	0	0	0	0	0	0	0	0	-622,08	0	0	0	0	0	0	0	0	0	-493,26	0
	а	3566,5	8E+06	-7563,2	23670,7	0,0131	52710	-5986,1	2E-05	-357280	410298	9E+06	5E+08	-4918,3	22290	0,0317	24727	-1905,2	2,1E-05	-207168	215444
	b	-22586	-4E+07	28893	-102436	-0,041	-189890	27457,8	5E-05	1E+06	-2E+06	-3E+07	-2E+09	17781	-91635	-0,0962	-85509	6404,7	4,8E-05	739681	-873145
	с	84958	-3E+08	32629	-6E+06	-0,9142	-4E+06	432724	-1E-05	2E+07	2E+07	3E+08	1E+11	-7171,5	-7E+06	-2,183	-2E+06	328301	-0,0002	9E+06	8576931
	d	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	e	0	0	0	0	-4E-05	0	0	0	0	0	0	0	0	0	-9E-05	0	0	0	0	0
	f	400242	2E+08	358707	2,4E+07	8,0373	1E+06	4375102	-8E-06	8E+06	1E+07	-2E+07	-2E+10	619282	3E+07	19,999	480944	2E+06	6,5E-05	4E+06	6263804
	g	234673	5E+08	170870	-114,49	-7,2713	2E+06	399146	-4E-06	3E+06	5E+06	-5E+07	-7E+09	116515	-133,8	-18,165	972516	234140	1,5E-05	2E+06	2345208
MD	h	272434	9E+07	-1,5192	1068426	0,0761	122385	-2E+06	6E-06	2E+06	5E+06	-2E+07	-7E+08	0,0221	1E+06	0,1697	52140	-1E+06	2,1E-06	827570	2578836
MD	1	3E+06	2E+09	102264	-IE+07	0,0565	7E+06	271947	-1E-06	329048	-2E+06	354210	9E+09	53850	-1E+07	0,1182	3E+06	200823	-2E-05	218874	-IE+06
	J Ir	104283	-94/3,3	-3106/4	2013150	0,2005	/08630	246775	6E-06	-641301	2E+06	-2E+07	1E+06	-243114	2E+06	0,472	339196	149988	-1E-05	-311246	95/139
	K 1	-0,7345	1E+08	34120	848425	-0,0145	-4E+06	55175,9	9E-07	3E+06	3E+06	2143	-8E+09	23398	918089	-0,0198	-2E+06	69298	8,1E-06	1E+06	1285311
	1	1/6503	-1E+09	4/558	14/5563	0,2181	458339	/068,95	-2E-06	3E+07	-3E+06	-2E+07	-9E+09	12607	2E+06	0,5387	203808	36447	2,3E-05	1E+0/	-1E+06
	n	-2E+00	2E+08	2250 6	1424190	-0,003	10157	108980	-2E-06	4E+00	3E+07	-4E+07	-4E+09	40591	18904	-0,1373	9765 4	1012/	1,4E-05	2E+00	1,4E+07
	0	0033,1	3E+06	3230,6	10343,9	0,0048	-1915/	4/42,54	1E-06	9/510	-120303	-3E+06	-2E+08	2110,4	18804	0,0104	-8/05,4	1288,4	1,/E-06	0004	-03434
	n	0	0	0	0	0	0	0	2E 06	0	0	0	0	0	0	0	0	0	1E 05	0	0
	Р Q	0	0	0	0	0	0	0	0	-739235	0	0	0	0	0	0	0	0	0	-369199	0

												r									
						Tempera	ature (°C)									Temper	ature (°C)				
						3	40									3	360				
						Rea	ction	_	0	0	4.0					Rea	action	_	0	0	10
	_	1	2	3	4	5	6	7	8	9	10	1	2	3	4	5	6	7	8	9	10
	a 1	3158,3	44322	-17,426	166,48	0,3333	126,82	-41,222	0,0045	-46/,8	312,97	1689,2	108019	-33,102	72,482	0,4288	36,642	-29,315	0,0041	152,646	115,611
	D	-10/20	-130852	58,856	-408,37	-1,0523	-344,52	230,46	0,004	1559,5	-1293,1	-4947,8	-299862	104,57	-126,/4	-1,2639	89,663	147,65	0,0049	-320,58	-585,43
	c	247836	5E+06	-1344,9	-31296	1,0433	-4384	3964,5	-0,0211	11344	10423	39791	-3E+06	-905	-30617	-5,7752	12295	3396,8	-0,0214	5710,12	10019,7
	d	-/E+11	-3E+13	3E+10	3E+10	4E+08	-2E+10	2E+11	953730	4E+11	2E+11	-/E+11	-3E+13	1E+10	4E+10	3E+08	2E+11	1E+10	641938	-8E+10	1,2E+11
	e	0	0	0	0	0,0026	0	0	0	0	0	9E+11	-1E+14	1E+11	6E+11	0,0029	-1E+11	-3E+11	989102	-3E+12	6,3E+11
	I	252753	9E+06	6464,5	98222	-13,12	11252	18394	-0,1395	-136624	-128381	611765	2E+07	7214,4	89161	-1,2436	21215	35606	-0,1813	-6017,1	-124649
	g	11941	-704623	2261,1	-4,1165	-104,54	3390,8	899,22	0,0137	11256	15267	-79611	-2E+06	2046,9	-3,9564	-175,08	375,79	-2230,1	0,015	4674,91	13980,5
	h ia	-10141	-767391	-0,1722	7011,4	4,4792	638,05	-4876,4	0,0192	9192,4	3673,6	-843,99	-1E+06	-0,0076	9315,4	6,785	10549	-10723	0,0269	-4866,4	5141,62
IVI	IC 1	33991	460284	1536,9	-50257	4,2401	16781	404,42	-0,0005	4938,9	3662,7	69634	355528	1143,5	-54943	6,0137	11342	2141,2	-0,0003	1748,17	3157,83
	J	-20998	418,98	-4654,2	6827,4	5,657	1051,8	617,31	0,0004	4440	6472,8	-21506	-374	-4908,3	7534,3	9,0336	-3067,6	627,85	0,0007	1540,56	5427,7
	K	16,929	-543699	569,23	3403,8	2,8031	-9303,9	2619	0,01	5167,3	2956	-4,4025	311084	532,36	3994,3	4,4523	-4248,5	3217	0,0124	-1151,5	2861,66
	I	-26846	-1E+06	591,13	4909	5,1325	723,97	-372,84	0,0041	28927	2354,3	-6495,5	-3E+06	525,6	5603,7	8,4241	-345,02	-1478	0,0041	19214,1	2419,13
	m	-51593	-230995	630,33	3773,5	2,6493	853,49	392,55	0,0057	5753,5	29709	-90415	-780320	446,57	4143,3	3,8334	-217,14	1715,3	0,0056	2742,4	22071,2
	n	-767,81	-11305	18,334	70,419	0,0366	-35,251	23,859	0,0001	148,28	-86,636	-29,194	-26696	21,645	95,508	0,0781	-8,9213	34,955	0,0002	-29,116	-30,186
	0	0	0	0	0	0	-3E+09	-1E+11	-419633	-4E+10	1E+11	0	0	0	0	0	-1E+11	-3E+10	-278987	7E+10	3,3E+10
	р	0	0	0	0	0	0	0	-0,0012	0	0	0	0	0	0	0	0	0	-0,0012	0	0
	q	0	0	0	0	0	0	0	0	-330,89	0	0	0	0	0	0	0	0	0	-249,29	0
	a	1E+07	5E+09	-2432,1	37590	0,0292	12360	-7768,1	2E-05	-134009	100554	-2E+07	1E+10	-1107,6	51255	-0,021	-75079	50700	2E-05	-84720	61315,8
	b	-4E+07	-2E+10	8467,7	-119057	-0,1471	-39680	32550	5E-05	364691	-479127	7E+07	-3E+10	4034,8	-153276	-0,006	299611	-184327	4E-05	231085	-270013
	с	1E+09	9E+10	-78167	-8E+06	-1,1674	-736067	1E+06	-7E-05	5E+06	5E+06	-6E+08	-1E+12	-128414	-1E+07	-5,9139	2E+07	3E+06	-0,0002	2926114	2738313
	d	-4E+15	-3E+18	-1E+11	-3E+13	1E+08	0	0	0	0	0	-9E+15	-3E+18	-3E+11	-2E+13	1E+08	0	0	0	0	0
	e	0	0	0	0	1E-05	0	0	0	0	0	0	0	0	0	5E-05	0	0	0	0	0
	f	1E+09	1E+12	734686	4E+07	1,6357	866887	3E+06	-0,001	-4E+07	-3E+07	8E+09	2E+12	901959	5E+07	31,962	1E+07	1E+07	-0,0016	-2E+07	-2E+07
	g	1E+08	-1E+11	87969	-160,13	-40,243	463216	78716	0,0002	4E+06	4E+06	-9E+08	-3E+11	48369	-202,68	-103,87	2E+06	-2E+06	0,0002	2596825	2563129
	h	-6E+07	-9E+10	-1,478	1E+06	1,8201	54403	-660721	-2E-05	-1E+06	153038	5E+07	-2E+11	-2,3834	2E+06	3,8414	247779	-4E+06	-6E-05	-686339	182447
M	Di	-6E+07	-5E+10	49490	-2E+07	1,9214	2E+06	-59354	3E-05	2E+06	1E+06	2E+08	-9E+10	32726	-2E+07	3,2039	1E+06	1E+06	6E-05	1176649	472978
	j	-1E+08	-195230	-225669	2E+06	2,7071	139832	39924	2E-05	1E+06	2E+06	-2E+08	-1E+07	-223447	2E+06	5,7345	-3E+06	-262946	5E-05	850250	1125940
	k	9656	-3E+10	11906	666700	1,0227	-924542	88045	6E-05	340805	292583	-16831	8E+10	7826,2	722959	2,5789	-2E+06	2E+06	-1E-05	198702	89537,7
	1	-1E+08	-1E+11	5989,7	1E+06	2,1831	72181	-165167	5E-05	8E+06	218065	-1E+06	-3E+11	4318,2	1E+06	5,6381	178099	-923260	6E-05	4207397	172629
	m	-2E+08	-3E+10	10786	1E+06	0,9211	122977	34795	6E-05	2E+06	9E+06	-8E+08	-1E+11	-2396,5	1E+06	1,3627	214772	830111	8E-05	1289258	4510022
	n	-3E+06	-1E+09	1171,7	15438	0,0348	-4176,3	3409	2E-06	36648	-29569	1E+07	-3E+09	711,64	11240	0,1104	21428	-2379,7	1E-06	23469,5	-17434
	0	0	0	0	0	0	-1E+12	-4E+12	2213,8	7E+13	6E+13	0	0	0	0	0	-2E+13	-7E+12	1633,9	2E+13	1,8E+13
	р	0	0	0	0	0	0	0	-1E-05	0	0	0	0	0	0	0	0	0	-1E-05	0	0
	q	0	0	0	0	0	0	0	0	-187663	0	0	0	0	0	0	0	0	0	-102653	0

						Tempera 3	ature (°C) 80									Tempera 4	ature (°C) 00				
		1	2	2	4	Rea	iction	7	ø	0	10	1	2	2	4	Rea	ction	7	ø	0	10
	а	I 249.421	2 25772	3	4 601 142	5 0.26026	0	7 85 240	ð	9 244 221	10	1 8621.4	2 17048	3 2 2402	4 516 424	5	0 270.06	1	ð 0.00122	280.5	500.24
	h	-205 58	-34433	-13,740	-1616.1	-0.8728	136.01	-05,249	0,00528	-106.43	190 210	-25582	-10587	-0.6854	-1320.9	1 / 8820	-270,00 0/8 3/15	-14 189	0,00133	-369,5	-309,24
	c	58702	-2F+06	-1523.7	-56022	-36 973	9340.95	6828.65	0,00045	10176.9	13733 7	634844	-1E+06	-524 64	-60813	-24 216	3207.16	3358.92	-0.0665	25932	7224.8
	d	-5E+11	-2E+13	5E+09	-4E+09	2 1E+08	6 1E+10	9 2E+10	246440	3 1E+11	17E+11	-3E+11	-5E+12	2E+09	1 4E+10	3 3E+08	6 2E+10	8 8E+10	460207	1E+11	1E+11
	e	1E+12	-5E+13	6E+10	6.9E+09	-0.0042	-4E+10	-1E+11	1208908	-2E+12	1.1E+11	-2E+12	2E+13	3E+10	3E+10	0.00534	-5E+10	-7E+10	2271863	-9E+11	-1E+10
	f	802722	2E+07	10651	133057	91.2912	13195.3	22245.3	-0.3779	68666.5	-71411	867491	9E+06	12627	114503	-210.46	-4468.5	3783.98	-1.1192	15553	-59518
	g	-110648	-2E+06	1708,5	-12,117	-318,28	645,752	-4025,8	0.03375	-18150	-2836,3	-112048	-2E+06	1741,9	-13,305	-550,39	-2621,2	-5933,6	-0,0092	-7989,9	-6461,7
	h	3045,35	52681	-0,0501	12440	10,9372	7232,83	-848,61	0,00587	31889,8	19407,1	16371,2	1E+06	0,0472	14533,3	34,6222	12074,1	7691,35	0,01034	18626	19479
MC	i	97668,7	2E+06	883,21	-67388	9,28119	9127,61	-213,71	0,01584	-11556	-4595,2	104226	4E+06	638,17	-72951	29,0166	6595,08	-1489	0,06456	-7118,3	-4444,8
	j	-27199	-500,83	-5196,2	4941,05	16,2414	-2076,4	-473,01	0,01771	-9350,1	1171,89	44231,2	-635,13	-5274,9	6712,73	51,2217	-1876,8	-1417,3	0,05984	-3735,5	498,4
	k	-5,2817	-412661	404,25	2629,57	7,14697	-3497,8	5495,92	0,00595	12782,5	8172,86	43,849	-363223	303,73	3055,8	26,8309	-1479,3	6896,25	0,01275	8394,8	6124
	1	-6956,8	-4E+06	404,29	4215,15	13,793	-114,3	-1721,6	0,01051	8481,8	225,844	-83431	-3E+06	267,67	5462,4	18,1219	176,861	-1683,3	0,044	7927,3	541,8
	m	-117316	-830023	283,89	3561,35	4,57015	-69,23	587,685	0,01534	-3370,9	14645,1	-133677	-385520	228,8	4459,79	21,281	1219,4	-76,124	0,0335	-1808,6	12757
	n	570,449	-7937,8	15,056	-61,284	0,20501	3,31071	39,9739	0,0004	-55,608	32,5871	-2446,6	-615,96	8,7397	-43,687	0,47876	99,2113	-7,3308	0,00093	155,57	191,05
	0	0	0	0	0	0	-5E+10	-7E+10	30099,1	-3E+11	-9E+10	0	0	0	0	0	-4E+10	-6E+10	71408,4	-8E+10	-5E+10
	р	0	0	0	0	0	0	0	-0,0023	0	0	0	0	0	0	0	0	0	-0,0036	0	0
	q	0	0	0	0	0	0	0	0	74,0516	0	0	0	0	0	0	0	0	0	-384,7	0
	а	-6E+07	-7E+09	-321,31	767590	-0,8655	-34882	3523,63	8,3E-06	-65111	-330304	6,8E+07	-2E+10	167,05	1048431	-8,0774	-303333	36984,7	-0,0001	-1E+06	-700947
	b	2E+08	4E+10	1484,1	-2E+06	2,7348	131624	-14903	8,3E-05	345818	979904	-2E+08	8E+10	-52,559	-3E+06	24,5339	973332	-68564	0,00074	3E+06	2E+06
	с	-1E+09	-6E+11	-136633	4,8E+07	-17,842	8174181	2956834	8,5E-05	9562035	1,6E+07	9,9E+09	9E+11	-105071	8,1E+07	11,851	1907203	937355	-0,0014	2E+07	7E+06
	d	-8E+15	-3E+18	-2E+11	-5E+13	3,9E+07	0	0	0	0	0	-3E+15	-5E+17	-1E+11	-3E+13	3,9E+08	4,2E+13	3,5E+13	266681	7E+13	3E+13
	e	0	0	0	0	-0,0006	0	0	0	0	0	0	0	0	0	0,00643	0	0	0	0	0
	f	1,4E+10	3E+12	909947	1E+08	320,09	6335805	6168892	0,00591	4,6E+07	-3E+07	9,2E+09	-6E+11	825481	1,1E+08	-101,07	-1E+07	-2E+06	-0,0206	-5E+07	-4E+07
	g	-2E+09	-5E+11	32585	1042,84	-326,62	857702	-838931	-0,0005	-7E+06	-8E+06	-1E+09	-5E+11	34248	1981,6	-955,38	-3E+06	-2E+06	-0,0151	408701	-9E+06
	h	1,5E+08	3E+11	-2,6585	-1E+07	8,0877	133177	-2E+06	0,00019	-579660	2881299	4,7E+08	7E+11	-2,5124	-2E+07	51,2012	7601718	4785774	0,05036	9E+06	7E+06
MD	1	4E+08	7E+11	24351	-3E+07	1,83333	771131	516070	-0,0002	-4E+06	-4E+06	1,2E+08	2E+12	22085	-4E+07	27,2377	-246750	-885712	-0,008	-3E+06	-3E+06
	J	-3E+08	-1E+07	-211184	-4E+06	13,7141	-1E+06	-98985	-0,0002	-4E+06	2527426	1E+09	2E+06	-191179	-7E+06	124,426	-1E+06	-902695	-0,0061	-2E+06	2E+06
	K	-31260	-3E+11	4625,9	-2E+06	5,67451	-1E+06	899037	5,4E-05	473830	2241308	93662,4	-6E+11	1491,3	-3E+06	75,1581	1084158	2687556	0,01773	6E+06	2E+06
	I	4,1E+07	-9E+11	1620,8	-630472	14,3687	109040	-435894	-9E-05	356635	1438185	-1E+09	-1E+12	-171,85	-1E+06	14,329	214739	-728934	-0,0035	2E+06	2E+06
	m	-1E+09	-2E+11	-3337,6	-219824	-0,6628	118147	43/181	-0,0001	-1E+06	3560695	-1E+09	-3E+10	946,54	-270821	41,1751	1101713	-23/9/9	-0,0034	364161	4E+06
	n	2,7E+07	2E+09	402,3	-224921	0,53482	9778,36	4576,5	3,7E-06	22544,9	119076	-2E+07	7E+09	137,92	-323870	2,50438	103995	-9421,3	3,4E-05	349185	243575
	0	0	0	0	0	0	-4E+12	-2E+12	-2958,2	-3E+13	1,5E+13	0	0	0	0	0	-3E+13	-2E+13	-1/9216	-4E+13	-1E+13
	Р	0	0	0	0	0	0	0	-3E-05	162520	0	0	0	0	0	0	0	0	-0,0002	270710	0

						Tempera 3	ature (°C) 00									Temper	rature (°C) 320						
						Rea	ction	_	_	_				_		Re	action	_	_	_			
		1	2	3	4	5	6	7	8	9	10	1	2	3	4	5	6	7	8	9	10		
	a	-66,937	-3544,6	-1909,9	115,938	-0,0003	9437,5	-1328,5	-2E-06	-112101	55580	116047	3E+06	-1446,3	-1552,4	-0,0009	4148	-1072,2	-3E-06	15270	13490,7		
	b	276,82	13606	7401	99,5939	0,0009	-30434	10357,2	4E-05	328757	-329833	-410510	-7E+06	5132,7	5153	0,0026	-15814	3490,1	4,4E-05	-36639	-101691		
	c	-191,9	391434	15228	-140976	-0,0222	-820833	117062	-4E-06	4E+06	3E+06	2E+06	2E+08	3970,7	-161261	-0,0497	-406857	82527	-5E-05	1E+06	2125468		
	d	-3E+11	-2E+13	-3E+11	-2E+12	4E+06	0	0	0	0	0	-2E+13	-6E+15	2E+11	-7E+09	6E+06	-2E+13	-2E+12	526,105	-6E+13	1,5E+14		
	e	0	0	0	0	0	0	0	0	0	0	-3E+13	-2E+16	6E+12	3E+13	8E+06	2E+13	8E+12	4512,84	-2E+15	3,7E+14		
	I	28715	2E+06	105670	1429342	-0,0127	775502	2168215	-3E-07	-3E+07	-2E+07	4E+06	1E+09	119295	2E+06	-0,1157	334499	522795	-0,0002	52090	-2E+07		
	g	1084,8	1E+06	33005	114032	-0,3367	372266	-24631	-1E-06	4E+06	4E+06	-971312	-1E+08	31676	189731	-0,9235	277427	62049	2,6E-05	857088	1620874		
	h	2219,3	188475	20892	20317,7	0,0165	52839	-479944	1E-06	-918478	1840	-426462	-5E+07	-10515	43780	0,0484	-195501	-264805	-2E-06	-953507	1989432		
ME	1	31424	4E+06	19320	-622600	0,0181	1E+06	3064,08	-5E-07	2E+06	825099	-124004	-2E+07	14229	-791942	0,0513	784215	51841	6,1E-06	286465	266301		
	J	464,67	340638	-72205	89362,8	0,0265	138097	3123,39	1E-06	1E+06	2E+06	-410625	-2E+07	-55767	122914	0,0723	102815	39157	7,2E-06	185828	734169		
	K	-576,73	130840	6088,9	32184,8	0,0092	-985041	26375,8	6E-08	280941	297155	-179000	-4E+07	6923,4	44696	0,0257	-568149	6542,3	2,5E-06	-82294	1056377		
	I	1407,9	-3E+06	8792,2	62902,6	0,0222	88652	-39113	-6E-07	7E+06	270340	-311020	-6E+07	4788,6	81402	0,0602	70768	12744	1,3E-05	3E+06	63239,9		
	m	-18210	328491	20968	62517,3	0,0106	128319	-26709	-7E-07	2E+06	8E+06	-586076	-5E+07	11667	79729	0,0286	88711	19757	1,2E-05	653522	3829178		
	n	73,709	8024,5	747,78	558,514	0,0004	-4124,5	892,107	2E-07	26102	-21897	-36812	-1E+06	557,19	1150,4	0,0009	-1874,5	389,66	4,2E-07	-6945,9	-6508,8		
	0	0	0	0	0	0	-5E+12	-1E+13	-16,178	3E+14	2E+14	0	0	0	0	0	1E+13	1E+12	611,685	5E+13	-4E+13		
	р	0	0	0	0	0	0	0	-5E-07	0	0	0	0	0	0	0	0	0	-3E-06	0	0		
	q	0	0	0	0	0	0	0	0	-153588	0	0	0	0	0	0	0	0	0	-96239	0		
					T	lemperatu	ire (°C): 34	40								Temperat	ure (°C): 3	60					
	a	139719	3E+07	-881,34	-1664,2	-0,0035	2156,9	-1749,3	-3E-06	10315	5730,2	-380041	7E+07	-587,96	-1910,8	-0,0147	-14138	25613	-4E-06	6440,7	3809,34		
	b	-471614	-7E+07	2991,5	5344,24	0,0103	-7716,7	9939,3	4E-05	-27666	-46921	1E+06	-2E+08	1954,1	6018,2	0,0456	89705	-83985	4,3E-05	-16512	-27779		
	с	1E+07	5E+08	-3882,6	-202130	-0,067	-185022	293233	-4E-05	758949	1E+06	4E+06	-2E+09	-12784	-290457	-0,3715	4E+06	610980	-6E-05	532904	758727		
	d	-4E+13	-2E+16	3E+10	-1E+11	8E+06	-4E+12	7,1E+12	2745,3	-2E+13	4E+13	-1E+14	-2E+16	-4E+10	-1E+11	9E+06	5E+13	-7E+12	1590,12	-4E+12	1,1E+13		
	e	-1E+14	-6E+16	3E+12	2E+13	1E+07	4E+12	-7E+12	4570	-5E+14	1E+14	2E+14	-1E+17	1E+12	1E+13	1E+07	-6E+13	-7E+13	2463,34	-2E+14	3,4E+13		
	f	1E+07	6E+09	165940	1978161	-0,2117	182476	722502	-0,0004	-62384	-1E+07	1E+08	2E+10	203887	2E+06	1,2214	4E+06	5E+06	-0,0005	-11109	-6E+06		
	g	2E+06	-5E+08	25404	249525	-2,4483	149688	-48421	4E-05	498572	914580	-1E+07	-1E+09	16284	325445	-6,9744	-493140	-541348	3,8E-05	312673	592119		
	h	-1E+06	-4E+08	-10669	57667,2	0,1239	-85866	36547,8	6E-05	-603052	1E+06	1E+06	-9E+08	-3666,1	96088	0,2928	3E+06	-1E+06	6,6E-05	-294649	629379		
ME	i	-789115	-2E+08	11595	-1E+06	0,1342	417273	-51969	9E-07	198315	170672	3E+06	-6E+08	6908,6	-1E+06	0,2767	-154464	225809	-4E-07	93327	91858,2		
	j	-2E+06	-2E+08	-54860	152993	0,1895	50478	-17737	2E-06	122678	434306	-3E+06	-6E+08	-57065	171465	0,4663	-1E+06	-104563	2,1E-06	51402	262650		
	k	2E+06	-2E+08	4134,1	50047,7	0,071	-271252	106790	3E-05	-81812	545287	511090	-4E+07	3049,1	62259	0,1861	476110	322819	3,1E-05	-12273	260376		
	1	-1E+06	-4E+08	2864,8	94929,4	0,145	31232	-63198	1E-05	2E+06	23842	-1E+06	-1E+09	2210,8	110625	0,4027	-235817	-276170	1E-05	950044	32848,6		
	m	-2E+06	-2E+08	4173,8	92264,4	0,0663	40861	-12444	2E-05	365007	2E+06	-1E+07	-7E+08	570,98	103682	0,1255	-210676	170647	1,4E-05	195181	1158653		
	n	-33198	-7E+06	349,7	1286,63	0,0027	-911,62	773,132	4E-07	-4200,4	-2806,1	192087	-2E+07	249,61	1388,2	0,0088	4050,1	-4183,4	3,7E-07	-2507,6	-1691,6		
	0	0	0	0	0	0	2E+12	-6E+12	-1165,1	1E+13	-1E+13	0	0	0	0	0	-4E+13	7E+11	-678,23	3E+12	-2E+12		
	р	0	0	0	0	0	0	0	-3E-06	0	0	0	0	0	0	0	0	0	-3E-06	0	0		
	q	0	0	0	0	0	0	0	0	-52023	0	0	0	0	0	0	0	0	0	-25982	0		
	Temperature (°C): 380													Temperature (°C): 400									
----	-----------------------	---------	--------	---------	---------	---------	---------	---------	---------	---------	---------	---------	----------	-----------------------	---------	---------	---------	---------	---------	---------	---------	--	--
	Reaction												Reaction										
		1	2	3	4	5	6	7	8	9	10	1	2	3	4	5	6	7	8	9	10		
	а	-1E+06	-2E+06	-398,55	76150,3	-0,0907	-6872,8	7417,49	-6E-06	18840,2	-84623	2657770	-2E+08	-314,57	130236	-0,7255	-73381	18195,8	-1E-05	-227831	-181231		
	b	4358481	1E+08	1293,1	-215477	0,2935	38144,1	-18113	4,7E-05	52300,1	245327	-8E+06	7E+08	998,43	-358821	2,23286	239291	-41476	5,7E-05	713457	550356		
	c	7027331	-1E+09	-16662	1480409	-0,6413	2217515	749208	1,5E-05	2178387	4437489	1,3E+08	7E+09	-14547	2759806	-3,7148	512741	227986	-0,0002	7E+06	2E+06		
ME	d	-1E+14	-3E+16	-3E+10	-7E+12	4310546	1,1E+13	3,4E+12	-314,03	6,6E+13	-1E+13	-1E+14	-9E+15	-2E+10	-5E+12	3,2E+07	1E+13	9,4E+12	1383,52	1E+13	6E+12		
	e	3,5E+14	-2E+16	6E+11	-6E+13	1444143	-2E+13	-2E+13	3119,72	-1E+14	-2E+13	-8E+14	1E+17	3E+11	-6E+13	-1E+07	-2E+13	-1E+13	6405,28	-9E+13	-2E+13		
	f	2,4E+08	3E+10	205724	1,2E+07	21,6923	1753215	2496898	-0,001	1,5E+07	-7E+06	3,3E+08	9E+09	189442	1,6E+07	-4,792	-2E+06	155187	-0,0032	-8E+06	-8E+06		
	g	-3E+07	-3E+09	11868	-799493	-24,36	-105308	-404207	0,00012	-4E+06	-2E+06	-3E+07	-2E+09	11415	-2E+06	-81,027	-783842	-727994	-1E-05	-80613	-3E+06		
	h	4106727	2E+09	3986,6	-890118	0,63064	1135830	-279505	-9E-05	6717450	-241941	8642569	6E+09	11522	-1E+06	4,48481	1899051	1242031	5,3E-05	1E+06	2E+06		
	i	7991598	3E+09	4610,4	-3E+06	0,30775	16286,3	32625	6,2E-05	-3E+06	-954317	3212653	1E+10	4085,6	-4E+06	2,36435	-75430	-266477	0,00018	-794714	-812929		
	j	-6E+06	-5E+09	-57048	-432041	1,27439	-494109	-95737	6,2E-05	-2E+06	781772	2,5E+07	-8E+09	-54874	-742792	10,9854	-316193	-262766	0,00017	-449017	513163		
	k	1925525	-2E+09	2127,9	-217413	0,42463	121934	374439	-2E-05	2661813	229750	-9E+06	-5E+09	1076,7	-315684	6,41754	208237	717549	3,9E-05	1E+06	284106		
	1	-2E+06	-5E+09	1291	-142527	1,11446	-74192	-177984	3,8E-05	-630491	448638	-2E+07	-7E+09	576,98	-235971	1,0213	46209,5	-219144	0,00012	372711	451616		
	m	-2E+07	-1E+09	-207,49	-115353	0,01426	-62400	61258,3	4,9E-05	-940370	1024465	-3E+07	-2E+08	217,4	-147208	3,49008	303818	-75644	9,3E-05	49584	1E+06		
	n	564019	-1E+06	176,89	-22533	0,04105	1801,22	-617,07	1,1E-06	-4711,9	30772,6	-888898	6E+07	123,76	-39307	0,20657	25924,2	-4851,4	2,6E-06	79181	64039		
	0	0	0	0	0	0	-9E+12	-3E+12	786,548	-5E+13	1,1E+13	0	0	0	0	0	-7E+12	-6E+12	144,181	-6E+12	-2E+12		
	р	0	0	0	0	0	0	0	-6E-06	0	0	0	0	0	0	0	0	0	-1E-05	0	0		
	q	0	0	0	0	0	0	0	0	32430,9	0	0	0	0	0	0	0	0	0	-110425	0		

APÊNDICE D – CÓDIGOS MATLAB

• Kriging para o caso teste:

```
clear all; clc
load M % M
load N % N
m\{1\} = M(:,[1:67]);
m\{2\} = M(:,[1:6\ 8]);
cut = [0.1 \ 0.1];
%Construção do Modelo
for i = 1:length(m)
  aux = m\{i\};
  aux = aux(aux(:,end) \ge cut(i),:);
  lb = 0.001*ones(size(aux,2)-1,1);
  ub = 100*ones(size(aux,2)-1,1);
  [dmodel{i}, perf] = dacefit(aux(:,1:end-1), aux(:,end), @regpoly2, @corrgauss,
ones(size(aux,2)-1,1),lb, ub);
end
n\{1\} = N(:,[1:67]);
n{2} = N(:,[1:6 8]);
% Validação
for i = 1:length(n)
  aux = n\{i\};
  aux = aux(aux(:,end) \ge cut(i),:);
  aux1 = [];
  for j = 1:size(aux,1)
     aux1(j,1) = predictor(aux(j,1:end-1),dmodel{i});
  end
  rhat\{i\} = aux1(aux1>0);
  rval{i} = aux(aux1>0,end);
end
% Gráficos
figure(1)
for i = 1:2
  subplot(1,2,i), plot(rval{i},rhat{i},'o'), hline = refline(1,0); grid
  R2 = corr2(rval{i}, rhat{i}); title(['Reaction ', num2str(i), '; R^2 =
',num2str(R2,'%10.3f')])
End
%Análise de Variância
for i = 1:2
  [p(i),tbl{i},stats(i)] = anova1([rval{i} rhat{i}],[],'off');
end
```

• Regressão para as reações de Hidrodesnitrogenação

%% Modelos de Regressão clear all; clc load tbl300 % z

```
% z = [xH2S xH2 xNH3 xLBNIT xLNNIT xMBNITN xMBNITA xMNNITA
%xHBNITAN xHBNITA2 xHNNITA2 xVBNITA2N xVNNITA3 C6A C7A C8A C9A
%C10A MA1LO MANLO MA2LO MAN2LO MA2NLO MA1HI MANALO MANHI
%MA2HI MAN2HI HA1 MA2NHI HAN MANAHI HA2 HAN2 HAN3 HA2N HANA
%HA2N2 HA3 HA4 VA1 VAN VA2 VAN2 VAN3 VA2N VANA VA2N2 VA3 VA4
%C12A C14A C16A xC4 xC14 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10], taxas em kmol/m3.s
temp = 300 + 273.15; \% K
% Construção da Matriz X
cut = 1e-9;
index = all(z(:,56:end) >= cut,2);
aux = z(index,:);
sarom = sum(z(:,14:53),2); % Somatório de Aromáticos
sarom = sarom(index);
x = [aux(:,[2 \ 1 \ 4:13]) \text{ sarom } aux(:,3) aux(:,54:55)];
Xmat = [ones(size(x,1),1),x];
n = length(x);
d = 10; % Número de reações
% Y matrizes para os 5 mecanismos A, B, C, D and E
Ke = Keq(temp);
p = [3 4 1 2 2]; \% potência de H2
% Mecanismo A
y(:,1,1) = aux(:,11).*aux(:,2).^{p}(1) - aux(:,9)/Ke(1);
y(:,2,1) = aux(:,10).*aux(:,2).^{p}(2) - aux(:,9)/Ke(2);
y(:,3,1) = aux(:,8).*aux(:,2).^p(3) - aux(:,6)/Ke(3);
y(:,4,1) = aux(:,7).*aux(:,2).^{p}(4) - aux(:,6)/Ke(4);
y(:,5,1) = aux(:,5).*aux(:,2).^{p}(5) - aux(:,4)/Ke(5);
y(:,6,1) = aux(:,9).*aux(:,2);
y(:,7,1) = aux(:,6).*aux(:,2);
y(:,8,1) = aux(:,4).*aux(:,2);
y(:,9,1) = aux(:,12).*aux(:,2);
y(:,10,1) = aux(:,13).*aux(:,2);
y(:,:,1) = abs(y(:,:,1));
y(:,:,1) = nthroot(y(:,:,1)./aux(:,56:65),3);
% Mecanismo B
y(:,1,2) = aux(:,11).*aux(:,2).^{p(1)} - aux(:,9)/Ke(1);
y(:,2,2) = aux(:,10).*aux(:,2).^p(2) - aux(:,9)/Ke(2);
y(:,3,2) = aux(:,8).*aux(:,2).^p(3) - aux(:,6)/Ke(3);
y(:,4,2) = aux(:,7).*aux(:,2).^p(4) - aux(:,6)/Ke(4);
y(:,5,2) = aux(:,5).*aux(:,2).^p(5) - aux(:,4)/Ke(5);
y(:,6,2) = aux(:,9).*aux(:,2);
y(:,7,2) = aux(:,6).*aux(:,2);
y(:,8,2) = aux(:,4).*aux(:,2);
y(:,9,2) = aux(:,12).*aux(:,2);
y(:,10,2) = aux(:,13).*aux(:,2);
y(:,:,2) = abs(y(:,:,2));
y(:,:,2) = nthroot(y(:,:,2)./aux(:,56:65),2);
% Mecanismo C
y(:,1,3) = aux(:,11) - aux(:,9)./(Ke(1).*aux(:,2).^p(1));
y(:,2,3) = aux(:,10) - aux(:,9)./(Ke(2).*aux(:,2).^p(2));
y(:,3,3) = aux(:,8) - aux(:,6)./(Ke(3).*aux(:,2).^p(3));
```

```
y(:,4,3) = aux(:,7) - aux(:,6)./(Ke(4).*aux(:,2).^p(4));
y(:,5,3) = aux(:,5) - aux(:,4)./(Ke(5).*aux(:,2).^p(5));
y(:,6,3) = aux(:,9);
y(:,7,3) = aux(:,6);
y(:,8,3) = aux(:,4);
y(:,9,3) = aux(:,12);
y(:,10,3) = aux(:,13);
y(:,:,3) = abs(y(:,:,3));
y(:,:,3) = nthroot(y(:,:,3)./aux(:,56:65),2);
% Mecanismo D
y(:,1,4) = aux(:,11) - aux(:,9)/(Ke(1).*aux(:,2).^{p(1)});
y(:,2,4) = aux(:,10) - aux(:,9) / (Ke(2).*aux(:,2).^p(2));
y(:,3,4) = aux(:,8) - aux(:,6)./(Ke(3).*aux(:,2).^p(3));
y(:,4,4) = aux(:,7) - aux(:,6)./(Ke(4).*aux(:,2).^p(4));
y(:,5,4) = aux(:,5) - aux(:,4)./(Ke(5).*aux(:,2).^p(5));
y(:,6,4) = aux(:,9);
y(:,7,4) = aux(:,6);
y(:,8,4) = aux(:,4);
y(:,9,4) = aux(:,12);
y(:,10,4) = aux(:,13);
y(:,:,4) = abs(y(:,:,4));
y(:,:,4) = y(:,:,4)./aux(:,56:65);
% Mecanismo E
y(:,1,5) = aux(:,11).*aux(:,2).^p(1) - aux(:,9)/Ke(1);
y(:,2,5) = aux(:,10).*aux(:,2).^{p}(2) - aux(:,9)/Ke(2);
y(:,3,5) = aux(:,8).*aux(:,2).^p(3) - aux(:,6)/Ke(3);
y(:,4,5) = aux(:,7).*aux(:,2).^p(4) - aux(:,6)/Ke(4);
y(:,5,5) = aux(:,5).*aux(:,2).^{p}(5) - aux(:,4)/Ke(5);
y(:,6,5) = aux(:,9).*aux(:,2);
y(:,7,5) = aux(:,6).*aux(:,2);
y(:,8,5) = aux(:,4).*aux(:,2);
y(:,9,5) = aux(:,12).*aux(:,2);
y(:,10,5) = aux(:,13).*aux(:,2);
y(:,:,5) = abs(y(:,:,5));
y(:,:,5) = y(:,:,5)./aux(:,56:65);
% Regressão
for i = 1:size(y,3)
  if i == 3
     X = cell(n,1);
     for j = 1:n
        X{i} = [eye(d) kron(x(i,1:13),eye(d)) zeros(d,5) [zeros(5,5); x(i,14)*eye(5,5)]
zeros(d,20)];
        X{j}(8,158) = x(j,15);
        X{j}(9,169) = x(j,16);
        X{j}(1,101) = sqrt(x(j,11)/x(j,2));
        X{i}(2,92) = sqrt(x(i,10)/x(i,2));
        X{i}(3,73) = sqrt(x(j,8)/x(j,2));
        X{j}(4,64) = sqrt(x(j,7)/x(j,2));
        X{i}(5,45) = sqrt(x(i,5)/x(i,2));
```

```
end
```

```
elseif i == 4
     X = cell(n,1);
    for j = 1:n
       X{j} = [eye(d) kron(x(j,1:13),eye(d)) zeros(d,5) [zeros(5,5); x(j,14)*eye(5,5)]
zeros(d,20)];
       X{j}(8,158) = x(j,15);
       X{j}(9,169) = x(j,16);
       X{j}(1,101) = x(j,11)/x(j,2);
       X{i}(2,92) = x(i,10)/x(i,2);
       X{j}(3,73) = x(j,8)/x(j,2);
       X{j}(4,64) = x(j,7)/x(j,2);
       X{i}(5,45) = x(i,5)/x(i,2);
     end
  else
     X = cell(n,1);
     for j = 1:n
       X{j} = [eye(d) kron(x(j,1:13),eye(d)) zeros(d,5) [zeros(5,5); x(j,14)*eye(5,5)]
zeros(d,20)];
       X{j}(8,158) = x(j,15);
       X{i}(9,169) = x(i,16);
     end
  end
  Y = y(:,:,i);
  aux1 = mvregress(X,Y,'algorithm','cwls','maxiter',1000);
  beta{i} = reshape(aux1,d,size(Xmat,2))';
end
```

• Método Kriging as reações de Hidrodesnitrogenação

```
clear all; clc
```

```
% S = V = [Tout(K) xH2 xH2S xLBNIT xLNNIT xMBNITN xMBNITA xMNNITA
xHBNITAN xHBNITA2 xHNNITA2 xVBNITA2N xVNNITA3 xSCA xNH3 xC4 xC14
% R1 R2 R3 R4 R5 R6 R7 R8 R9 R10], taxas em mol/m3.h
load S % M
load V % N
cut = [3.0 \ 3.0 \ 3.0 \ 3.0 \ 3.0 \ 1.0 \ 1.0 \ 3.0 \ 0.1 \ 0.1];
s{1} = M(:,[1:14\ 18]);
s{2} = M(:,[1:14\ 19]);
s{3} = M(:,[1:14\ 20]);
s{4} = M(:,[1:14\ 21]);
s{5} = M(:,[1:14\ 22]);
s{6} = M(:,[1:15\ 23]);
s{7} = M(:,[1:15\ 24]);
s{8} = M(:,[1:16\ 25]);
s{9} = M(:,[1:15\ 17\ 26]);
s{10} = M(:,[1:15\ 27]);
n = length(s);
v{1} = N(:,[1:14\ 18]);
v{2} = N(:,[1:14\ 19]);
v{3} = N(:,[1:14\ 20]);
```

```
v{4} = N(:,[1:14\ 21]);
v{5} = N(:,[1:14\ 22]);
v{6} = N(:,[1:15\ 23]);
v{7} = N(:,[1:15\ 24]);
v{8} = N(:,[1:16\ 25]);
v{9} = N(:,[1:15\ 17\ 26]);
v{10} = N(:,[1:15\ 27]);
tic
for i = 1:n
  x = s\{i\};
  x = x(x(:,end) >= cut(i),:);
  y = v\{i\};
  y = y(y(:,end) >= cut(i),:);
  theta0 = ones(size(x,2)-1,1);
  lb = 0.001*ones(size(x,2)-1,1);
  % mínimos quadrados
  options =
optimoptions(@lsqnonlin,'Display','iter','MaxFunEvals',50000,'MaxIter',50000);
  theta1{i} = lsqnonlin(@myfun,theta0,lb,[],options,x,y);
  dmodel1{i} = dacefit(x(:,1:end-1), x(:,end), @regpoly0, @corrgauss, theta1{i});
end
toc
%Validação
load N % N
u\{1\} = N(:,[1:14\ 18]);
u{2} = N(:,[1:14\ 19]);
u{3} = N(:,[1:14\ 20]);
u{4} = N(:,[1:14\ 21]);
u{5} = N(:,[1:14\ 22]);
u{6} = N(:,[1:15\ 23]);
u{7} = N(:,[1:15\ 24]);
u\{8\} = N(:,[1:16\ 25]);
u{9} = N(:,[1:15\ 17\ 26]);
u\{10\} = N(:,[1:15\ 27]);
for i = 1:n
  y = u\{i\};
  y = y(y(:,end)>=cut(i),:);
  x = [];
  z = [];
  for j = 1:size(y,1)
     [x(j,1), \neg, z(j,1)] = predictor(y(j,1:end-1),emodel{i});
  end
  aux = y(:,end);
  rval{i} = aux(x>0);
  rhat{i} = x(x>0);
  mse{i} = z(x>0);
end
% Gráficos -
figure(1)
for i = 1:n
```

```
subplot(2,5,i), plot(rval{i},rhat{i},'o'), xlabel('Hysys'), ylabel('Kriging'), hline =
refline(1,0); grid
R2 = corr2(rval{i},rhat{i}); title(['Reaction ',num2str(i),'; R^2 =
',num2str(R2,'%10.3f')])
end
figure(2)
for i = 1:n
subplot(2,5,i), errorbar(rhat{i},sqrt(mse{i}),'o'), hold on, plot(rval{i},'ro'),
legend('Kriging','Hysys'), grid, hold off
end
% Análise de Variância
model = {'Hysys','Kriging'};
for i = 1:n
[p_ind(i),tbl_ind{i},stats] = anova1([rval{i} rhat{i}],model,'off');
figure(i+4), multcompare(stats,'Alpha',0.05)
```

ANEXO I: Reações de HDN

- Reação 1: $C_{21}H_{27}N + 3H_2 \Leftrightarrow C_{21}H_{33}N$
- Reação 2: $C_{21}H_{25}N + 4H_2 \Leftrightarrow C_{21}H_{33}N$
- Reação 3: $C_9H_9N + H_2 \Leftrightarrow C_9H_{11}N$
- Reação 4: $C_9H_7N + 2H_2 \Leftrightarrow C_9H_{11}N$
- Reação 5: C₄H₅N +2H₂ \Leftrightarrow C₄H₉N
- Reação 6: $C_{21}H_{33}N + 2H_2 => C_{21}H_{34} + NH_3$
- Reação 7: $C_9H_{11}N + 2H_2 => C_9H_{12} + NH_3$
- Reação 8: $C_4H_9N + 2H_2 => C_4H_{10} + NH_3$
- Reação 9: $C_{35}H_{55}N + 4H_2 => C_{21}H_{30} + NH_3 + C_{14}H_{30}$
- Reação 10: $C_{47}H_{73}N + 3H_2 => C_{47}H_{76} + NH_3$