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RESUMO

Com a forte alta do número de fundos de investimento no Brasil, há uma necessidade

urgente de identificar aqueles que têm melhores habilidades de gestão. Dessa forma, este estudo foi

desenvolvido com o objetivo de descobrir quais das métricas mais comuns presentes em fundos de

ações brasileiros têm uma relação de causalidade com suas habilidades de gestão, medidas pelo Alfa

de Jensen. Para tanto, selecionamos 14 métricas de fundos, a fim de verificar uma relação causal

existente entre cada uma e o Alpha. Por fim, indicamos seis métricas que são capazes de ser

utilizadas como proxy para a geração alfa.
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ABSTRACT

With the steep rise in the number of shares of investment funds

in Brazil, there is an urgent need to identify those which have

better management skills. Thus, this study was developed aiming

to discover which common metrics present in Brazilian stock funds

have a causal relationship with their management skills, measured

by the Jensen’s Alpha. For that purpose, we selected 14 stock fund

metrics in order to verify an existing causal relationship between

each one and the Alpha. At last, we indicate six metrics which are

able to be used as proxy for the alpha generation.
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1 INTRODUCTION

After the 2015 Brazilian economical crisis, the Government and

the Central Bank of Brazil’s eforts to control the iscal policy al-

lowed the interest rate to be reduced from 14.25% to 6.5% in 2018,

reaching the historical minimum level of 2%, in 2020, as shown in

Figure 1 [3]. Thereby, investments in ixed income, became less

attractive to common investors, who started to migrate to variable

income security markets, such as the stock market (Figure 2).
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Source: Own Author + [3]

Figure 1: Brazilian Interest Rate Evolution

Source: [6]

Figure 2: People Registered on Brazilian Stock Exchange

(B3)

Moreover, not only have the investors sought to invest directly in

public companies, but also through equity funds (stock funds), com-

panies responsible for managing inancial assets of shareholders.
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Hence, this movement generated a strong demand for the service

and stimulated both the growth of existing funds and the creation

of new funds, as shown in Figures 3 and 4.

Source: [1]

Figure 3: Number of Stock Funds in Brazil

Source: [1]

Figure 4: Total Brazilian Stock Funds Net Worth

However, due to the increase in the number of stock funds, the

task to verify and select skilled funds, those which are capable of

performing returns above the expected when compared to their risk

levels, requires much more efort. In addition, the Jensen’s Alpha ś

metric traditionally used to measure fund management skills, as

it will be discussed in Section 2.1 ś is not only unusually revealed

from those companies, but also it is diicult to be calculated.

Therefore, in order to assist the common investors to make their

investment decisions, this study aims to identify which of some of

the most common stock fund metrics ś those more often displayed

or more acknowledged by common investors ś can be used to

infer if a given fund generates alpha and, as a result, has good

management skills.

2 THEORETICAL BACKGROUND

In this section, we discuss the inancial and mathematical back-

ground necessary to develop this study. In Section 2.1, we under-

stand the regression model we use to calculate Jensen’s Alpha. In

Section 2.2, we analyse the Autoregressive models used in the ensu-

ing section, in which we discuss the Granger Causality deinition

and algorithm, used to verify if a given fund metric has a causal

relationship with Alpha.

2.1 Capital Asset Pricing Model (CAPM) and
Variations

In order to solve the problem of performance evaluation on inan-

cial portfolios, Sharpe [29], Lintner [22] and Treynor [33] deined

the portfolio risk premium ś diference between the expected return

and a risk free rate (� (��,� ) − �� ,� ) ś as the product of its exposure

to the systematic risk and the market risk premium (� (��,� ) −�� ,� ),

as the Equation 1 formalizes.

� (��,� ) − �� ,� = � [� (��,� ) − �� ,� ] + �� (1)

Where �� means the regression error.

Nonetheless, Jensen [17] discovered empirically a linear coei-

cient, called Jensen’s � , or simply � (Equation 2), which introduces

an ineiciency to the Eicient Market Hypothesis, discussed by

Fama [11], which states the reward-to-risk relation. Having a non-

null � means that a portfolio may have lower risks and higher

expected returns, this non-explicable behavior is the reason why it

is also referred as abnormal return.

� (��,� ) − �� ,� = � + � [� (��,� ) − �� ,� ] + � (2)

Furthermore, [17] also stated that skilled asset managers tend

to have a positive � coeicient. Therefore, the investment industry

began to use it as a skill metric.

From those deinitions, [12] included two extra risk premia (size

and value) to the model (Equation 3) and [23] added two more

(liquidity and moment risk premia), in a ive-factor model (Equation

4). After these modiications, each factor explains a fraction of the

portfolio return. The alpha, however, remains as the abnormal

portion, not explained by any factors, as noted by Frazzini [13]

when calculating the Birkshire Hathaway alpha.

� (��,� )−�� ,� = �+� [� (��,� )−�� ,� ]+� (���)� +� (���)� +�� (3)

� (��,� ) − �� ,� = � + � [� (��,� ) − �� ,� ] + � (���)� + � (���)�

+ � (���)� + � (���)� + ��
(4)

Where � is the portfolio’s alpha; ��,� is the return on the portfolio

in period t; �� ,� is the risk-free rate in period t; ��,� − �� ,� is the

excess return on the portfolio in t; ��,� is the market return in t;

��,� − �� ,� is the market risk premium in t; ���� is the premium

for the size factor in t; ���� is the premium for the risk factor
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value in t; ���� is the premium for the risk factor moment in

t; ���� is the premium for the liquidity risk factor in t; �� is the

regression error.

We used the Equation 4 to calculate Jensen’s Alpha in this study.

2.2 Autoregressive Models

In this subsection, we discuss the Autoregressive Integrated

Moving Average and Vector Autoregression models, which are

used to verify a causal relationship between two time series.

2.2.1 Autoregressive Integrated Moving Average (ARIMA)

Model. The ARIMA model is formed by the integration of two

parts: autoregressive (AR) and moving averages (MA). The AR

model, according to Tsay [34], corresponds to statistical models

which uses only past data to perform a forecast of future data. In

other words, considering a time series �� , an AR model of �� uses

only the ��−� data, with � being the last value of the series and

� ≥ 0 to determine ��+� , for � > 0), according to Equation 5.

�� = �0 +

�
∑

�=1

����−� + �� (5)

Where �0 and each �� are the autoregression coeicients of order

� and �� means the model error (white noise) with zero mean and

�2� variance.

The MA model, nonetheless, assumes that �� can be deined as

the linear combination of white noises, as described in Equation 6

[31].

�� = �� +

�
∑

�=1

����−� (6)

Where each �� is a non-null parameter resulting from � order mod-

eling.

Thus, combining those deinitions, we have the ARMA model

(Autoregressive Moving Average), as describes the Equation 7.

�� = �0 +

�
∑

�=1

����−� −

�
∑

�=1

����−� (7)

According to this equation, �� is an ARMA model and it may

be stated as �� =
�
���� , where �� means a non-stationary time

series and �� the diferential of irst order of �� . Generalizing to �

diferentiations, we obtain:

�� =
� (�)

���
�� (8)

Similarly, we may state �� as the � − �ℎ integral of �� , as illus-

trated in Equation 9 . Therefore, �� is deined as an ARIMA model

of order < �, �, � >.

�� =

∫ �

����
� (9)

2.2.2 Vector Autorregression (VAR) Model. Tsay [34] consid-

ers a time series �� as VAR of order 1, VAR (1), if it can be expressed

by:

�� = �0 + Φ��−1 + �� , (10)

Where �0 is a k-dimensional vector, Φ is a � × � matrix and �� is

a sequence of uncorrelated vectors of zero mean and positive and

deined covariance matrix Σ.

In this study, we apply, in Section 2.3, a bivariate VAR model,

since we use a pair <fund metric, Alpha> to understand Alpha’s

behavior. Thus, considering this case, if we attribute � = 2, �� =

(�1� , �2� ) and �� = (�1� , �2� ), the VAR(1) model consists of:

�1� = �10 + Φ11�1,�−1 + Φ12�2,�−1 + �1� (11)

�2� = �20 + Φ21�1,�−1 + Φ22�2,�−1 + �2� (12)

Where Φ�� corresponds to the n-th and the m-th term of the matrix

Φ, respectively, and ��0 is the i-th element of �0 vector. Considering

this, we notice that the values Φ�� indicate if a linear dependence

between the variables ��� and the past values � �,�−1 exists. If Φ12 = 0

and Φ21 ≠ 0, then we state a unidirectional relationship from �1 to

�2; if Φ12 = 0 and Φ21 = 0, then the series are dissociated; if Φ12 ≠ 0

and Φ21 ≠ 0, exists, therefore, a feedback relationship between

them.

Hence, it is possible to create a model generalization of order p,

VAR (p), deined by Equation 13.

�� = �� + �0 +

�
∑

�=1

Φ���−� . (13)

Implementing the backshift operator �, we are able to rewrite

Equation 13 as:

(� −

�
∑

�=0

Φ��
� )�� = �0 + �� , (14)

Where � corresponds to the identity matrix � × � and �� , to the i-th

backshift of �� , or ��−� . Considering Φ(�) = � −
∑�
�=0 Φ��

� , then the

Equation 14 can be reduced to:

Φ(�)�� = �0 + �� , (15)

Thereby, we have enoughmeans to estimate theΦ� parameters of

the general model using the method of ordinary least squares (OLS).

Considering the n-th equation of VAR (n) model, the OLS estimate

for each parameter (Φ
(�)
� ) generates a residual value described as:

�
(�)
� = �� − �

(�)
0

�
∑

�=1

�
(�)
� ��−� , (16)

Which produces the ensuing covariance matrix:

Σ� =
1

� − 2� − 1

�
∑

�=�+1

�
(�)
� [�

(�)
� ]

′, � ≥ 0. (17)

Thus, the general ���(�) model is calculated and qualiied to

be used in Granger Causality Tests, as discussed in Section 2.3,

presented next.
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2.3 Granger Causality

The general deinition of causality proposed by Granger [14]

states that a vector � causes another vector � if � contains infor-

mation about � that does not exist in a large set of information (A),

as described in Equation 18.

���� (��+1 ∈ �|Ω�) ≠ ���� (��+1 ∈ �|Ω� − ��) (18)

However, this deinition is not operational, which means it is not

able to be used with real data sets. For that purpose, Granger [14]

performs a sequence of restrictions based on a restructuring of the

general deinition. Given that, the author considered the existence

of a set of information �� at time � of all data available about ��

and a third vector �� such that �� ⊂ �� and �� ∩ �� = ∅.

Granger also deined a set � ′� consisting of �� plus the elements

of ��−� . Finally, � (��+1 |��) denotes the conditional probability

distribution function of ��+1 for a given �� , which has an average

of � [��+1 |��]. Considering that and starting from the equation 18,

the author stated the ensuing deinitions:

Deinition 1: �� does not causes ��+1 with respect to � ′� , if:

� (��+1 |��) = � (��+1 |�
′
�) (19)

Deinition 2: �� causes ��+1, if �
′
� ≡ Ω� and:

� (��+1 |Ω�) = � (��+1 |Ω� − ��) (20)

Deinition 3: �� is prima facie cause of ��+1 with respect to � ′� ,

if:

� (��+1 |��) ≠ � (��+1 |�
′
�) (21)

Deinition 4: �� does not causes ��+1 in mean with regard to a

� ′� , if 22 it is identically zero.

��+1 (�
′
�) = � [��+1 |��] (22)

Deinition 5: �� causes ��+1 in mean, if ��+1 (Ω�) ≠ 0.

Deinition 6:�� is prima facie cause of��+1 in mean with respect

to � ′� , if ��+1 (�
′
�) is not identically zero.

From these deinitions, [14], [15] and [16] apply the following

algorithm to identify a causal relationship between two stationary

vectors �� and �� .

(1) Re-sample �� and �� and build ARIMA models to obtain ��
and �� vectors;

(2) Examine the cross correlations ��� (�) in order to identify

evidence of any possible causal relations;

(3) For each possible causal relation, build a bivariate VARmodel

with �� e �� . If a unidirectional cause is suggested, then use

the transfer function methods from [5]. If a bidirectional

cause is suggested, then use [16]’s method;

(4) Evaluate ARIMA and VAR models to suggest a new model

for the original data set.

(5) Evaluate and compare the prediction skills of ARIMA and

VAR models in terms of the mean square error (MSE). If the

VAR model is signiicantly better, then the null hypothesis

can be discarded and evidence of a causal relationship is

found.

Finally, the operational deinition of causality between time se-

ries states that a vector �� causes another vector �� if it may be

used to predict values of �� .

3 METHODOLOGY

In this section, we explain the origin of our data set (Subsection

3.1) and how we applied the theoretical background to calculate

Jensen’s Alphas (Subsection 3.2) and the Granger Tests (Subsection

3.4) in order to achieve our objective.

3.1 Data Collection

We divided the data sample in two sets: risk factors and equity

funds data. The irst one consists of market, size, value, momentum

and liquidity risk factors time series extracted from a database pro-

vided by the University of Sao Paulo [7]. The second set consists of

metrics of Brazilian stock funds which were at least 5 years of life-

time. Those are either extracted from Economatica’s database [10]

or calculated from those which are, and inspired in the method for

variable selection proposed by Mendonça, Campani and Leal [24].

The metrics are: portfolios’ returns, fundraising, withdraws, liq-

uid fundraising, tax refund, net worth, lifetime, investors quantity,

Sharpe-ratio, Treynor-ratio, Information-Ratio, standard deviation

and downside deviation, as detailed in section 3.3.

All time series are in monthly frequency, in the closed interval of

January 2�� , 2001 (or minimum available) to December 31�� , 2020

(or maximum available) and they were calculated in 12, 24, 36, 48

and 60-month rolling windows.

3.2 Jensen’s Alpha

After we formed the database with all necessary data, we cal-

culated Jensen’s Alpha based in the 5-factor model (Equation 4)

following Algorithm 1:

Algorithm 1: Jensen’s Alpha

input :Funds’ returns: DataFrame,

Risk factors: DataFrame,

Rolling Window: Integer

output :Funds’ alpha series: DataFrame

begin

foreach fundReturns in allFundsReturns do
���� ← ����� ����(� ����������, �����������)

���� ← �������������� (����)

for (i = rollingWindow to data.nrows) do
����������� ← ����[(� − �������� �����) : �]

���ℎ����� ← ����������������(�����������)

We implemented the linear regression using the Ordinary Least

Squares (OLS) method from Seabold and Perktold’s library [28], we

also performed a 5-fold cross validation for each iteration using a

cross_validate function proposed by Pedregosa’s [26], in order to

reduce bias. Finally, we selected the model with highest accuracy.
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3.3 Fund Metrics

Aswe cited in Section 3.1, this study analyses 14metrics, of which

we use 9 with minimal processing and 5 (Sharpe-ratio, Treynor-

ratio, Information-Ratio, standard deviation and downside devia-

tion) we generate from the data extracted. Additional details are

provided next:

• Sharpe-Ratio (SR) [30]: is one of the most popular portfolio

evaluationmetrics, deined by the ratio between the portfolio

risk premium (�� − �� ) and its standard deviation (�� ), as

shown in Equation 23:

�� =

�� − ��

��
(23)

• Treynor-Ratio (TR) [32]: is a portfolio evaluation metric

deined by the ratio between the portfolio risk premium

(�� − �� ) and its systematic risk (� from Equation 4) , as

shown in Equation 24.

�� =

�� − ��

��
(24)

• Information-Ratio (IR) [2]: is another portfolio evaluation

metric, deined by the ratio between the active return (difer-

ence between the portfolio’s returns and themarket’s returns

ś �� − ��) and the tracking error (standard deviation of the

active return ś ���).

�� =

�� − ��

���
(25)

• Standard deviation(�) [4]: is a basic statistics error measure,

which is often used as risk measurement into the inancial

environment. It is calculated with the portfolio’s returns as

the equation 26 deines.

� =

√

√

√

1

�

�
∑

�=1

(��� − �̄� )2 (26)

Where N means the number of elements in the sample; ���
means i-th portfolio return and �̄� means the average return.

• Downside deviation [25]: is a portfolio risk measure similar

to the standard deviation, nonetheless, it only considers the

values below average in the algorithm 2.

Algorithm 2: Downside Deviation

input :data: List of numbers

output :Downside Deviation: Decimal

begin
������� ←����(����)

�������� ← 0

foreach element in data do

if element < average then

�������� ← �������� + (������� − �������)2

�������� ← ���� (��������/����.�����ℎ)

Furthermore, we worked with the remaining metrics with min-

imal processing, for instance, re-sampling the data from daily to

monthly frequency and re-arranging data in rolling windows. These

metrics are:

• Lifetime: age in days of a fund;

• Returns: monthly portfolios’ returns;

• Fundraising: New capital invested per month in Brazilian

Real (BRL);

• Withdraws: Capital withdrew per month in BRL;

• Liquid Fundraising: diference between fundraising and with-

draws;

• Tax refund;

• Net worth: diference between assets and liabilities in BRL;

• Investors quantity: number of investors in a fund at the end

of a month.

3.4 Granger Causality Tests

For the application of the Granger causality tests, we used the

algorithm described in Section 2.3 in the pair alphas and metrics

time series of each fund. For that purpose, however, it is necessary

to implement a stationary test for each data, since Granger [14]

uses stationary time series in his method.

Hence, we applied the Augmented Dickey-Fuller (ADF) test [9],

which consists in a study about the Equation 27.

Δ�� = �1 + �2� + ���−1 +

�
∑

�=1

��Δ��−� + �� (27)

Where Δ means the irst diference operator; �1 means the intersec-

tion point or drift; �2 means the trend coeicient; � means the unit

root presence coeicient;� means the number of lags; �� means

the series t-th value.

Thereby, we perform a null hypothesis test, given by � = 0,

where there is a unitary root and the series is not stationary. Thus,

when the result (p-value) is lower then 0.05, then the null hypothesis

may be safely discarded and we are able to apply the Granger test.

Otherwise, the ADF test is redone with the series i-th diference

(Algorithm 3), for 1 ≤ � ≤ 5. Since the diference operator does not

guarantee a stationary result, if, after the 5�ℎ iteration, �� persists

non-stationary, it will be discarded, as describes Algorithm 4.

Algorithm 3: First Diference

input :data: list

output :dataFirstDiference: list

begin
����������� � � ������ [0] ← None

for � = 1 to ����.�����ℎ do
����������� � � ������ [�] ← ����[�]/����[� − 1] − 1

After we obtained the stationary time series, we started the

causality veriication algorithm, discussed in Section 2.3 and imple-

mented by Seabold and Perktold’s library [28], which is executed

for 1 to the maximum number of lags allowed by the library, accord-

ing to each alpha-metric pair of series. For each lag, if the p-value
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Algorithm 4: Stationary Transform

input :data: array

output : stationaryData: array /* if passed in test */

None ; /* otherwise */

begin
������� ← 0

������������ ← �����

while ������� < 5 ��� ��� ������������ do
������������ ← (��� (����) <= 0.05)

if ��� ������������ then
���� ← � ������ � � ������ (����)

������� ← ������� + 1

if ������������ then
�������������� ← ����

else
�������������� ← None

resulting is lower than 0.05, then it is considered statistically signif-

icant and that lag is marked as true (strong evidence that the metric

causes alpha; otherwise as false (causality may not be conirmed).

Thus, we combined all funds results into frequency scores, which

are in a range of [0,1] and are separated per lag and per metric as

described in Algorithm 5.

Algorithm 5: Score Formation

input :grangerResults: dictionary ; /* dictionary of

dataframes containing results of each

fund */

output : scores: DataFrame

begin

������ ← ��������� () ; /* DF: metrics X lags */

� ������� ← � ���������� .�����ℎ

foreach fundResults in grangerResults do

foreach metric in fundResults.index do

foreach lag in fundResults.columns do
� ← � ���������� [������] [���]

������ [������] [���]+ = �

������ [������] [���]/= � �������

Finally, in order to compare the results, we applied the Simpson’s

rule [8] to calculate the area below each graphic formed by the score

curves, as illustrated in Figure 8.

4 RESULTS

Succeeding the method’s execution, we generated the scores

illustrated in Figure 7 on Appendix A, which displays the fraction

of funds, for each metric, where the causal relation may be found.

Thereby, we noted that the chosen metrics efects are not instan-

taneous, which means the metrics, on average, tend to cause alpha

more frequently with some delay.

A second observation was that, when comparing peaks withing

the same rolling window, some metrics causes alpha a lot more

frequently than others, with highest diferences between peaks of

0.715 points (in the 12-month rolling window case).

We also stated a parabolic behavior in all curves, which means

there seem to be an optimal point to search causation in each curve

and in each window case. We may also infer that metrics not only

do not cause alpha instantaneously, but also they do not maintain

the causal relationship after a large number of lags.

The fourth observation is an inversely proportional relationship

between the window width and the highest scores, as well as the

number of lags to the peak occurrence, as illustrated in igures 5

and 6. In other words, as the window width increases, the peak not

only tends to happen in a lower delay, but also its score is inclined

to decrease. That occurs due to the fact that ancient data tend to

cause alpha in a lower frequency, as result of the parabolic behavior.

Thereby, to test a particular metric in 12-month window data, we

use up to 12-month-old elements plus the number of lags, since the

peak occurs in a lag of 22months, this means we use up to 34-month-

old data. On the other hand, analysing the 60-month window case,

we already use 60 months (without any lags) to calculate the metric,

which means we consider elements which did not cause alpha in

the irst measurement, disturbing the results in wider windows.

Figure 5: Average Peak Dislocation Between Windows

Figure 6: Average Peak Variation Between Windows

After the curve analysis, we gathered each curve into a single

area-score, result of each curve area, so we could be able to compare
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all metrics in a window at once. Thus, we observed that all metrics

above average are portfolio evaluation measures, as illustrated in

Figure 8 on Appendix B, which means that the main item to analyse

in a fund is its historical performance.

5 CONCLUSION

Thus, we are able to state that the these six metrics: Returns,

Sharpe-ratio, Treynor-ratio, Information-Ratio, standard deviation

and downside deviation are the most indicated variables to be anal-

ysed in funds for inferring management skills and alpha, since they

present scores above average in all six windows cases.

Therefore, since these metrics are easier be be calculated by the

common investors and these are more displayed in funds websites,

we achieved our objective to identify variables capable of inferring

a fund’s Alpha.

A suggestion as sequel for this work is to make Engle-Granger

cointegration tests between Jensen’s Alpha these six variables to

measure the short term values linkages, as realized by [27], and

support (or reject) the current results.

After that, another portfolio evaluation metrics could be evalu-

ated, such as the meanśvarianceśskewness [18], Value at Risk [21],

Shortfall Risk [20] and even a portfolio comparison to blindfolded

monkeys [19].

The last step would be to deine a new Machine Learning model

capable of predicting Alpha with an alternative form, beyond the

traditional CAPM.

ACKNOWLEDGEMENTS

We thank Dr. Herman Gomes and Dr. Felipe Pontes for the vital

guidance on this project; We also thank TC Traders Club, specially

the TC-Matrix and TC-School teams, for the immeasurable support.

REFERENCES
[1] Associação Brasileira das Entidades dos Mercados Financeiro e de

Capitais. [n.d.]. Consolidado Histórico de Fundos de Investimento.
https://www.anbima.com.br/pt_br/informar/estatisticas/fundos-de-
investimento/i-consolidado-historico.htm

[2] Carl R Bacon. 2012. Practical risk-adjusted performance measurement. John Wiley
& Sons.

[3] Banco Central do Brasil. [n.d.]. Taxas de juros básicas ś Histórico. https:
//www.bcb.gov.br/controleinlacao/historicotaxasjuros

[4] J Martin Bland and Douglas G Altman. 1996. Statistics notes: measurement error.
Bmj 312, 7047 (1996), 1654.

[5] George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung. 2015.
Time series analysis: forecasting and control. John Wiley & Sons.

[6] Brasil Bolsa Balcão. [n.d.]. Quadro De Investidores Pessoa Física.
http://www.b3.com.br/pt_br/market-data-e-indices/servicos-de-dados/market-
data/consultas/mercado-a-vista/historico-pessoas-isicas/

[7] Brazilian Center for Research in Financial Economics of the University of São
Paulo. [n.d.]. Data: Risk Factors. http://nein.com.br/risk_factors.html

[8] D Corbit. 1996. Numerical integration: From trapezoids to RMS-Object-oriented
numerical integration. DR DOBBS JOURNAL 21, 10 (1996), 117ś+.

[9] David A Dickey and Wayne A Fuller. 1979. Distribution of the estimators for
autoregressive time series with a unit root. Journal of the American statistical
association 74, 366a (1979), 427ś431.

[10] Economática. [n.d.]. Economática. https://economatica.com/
[11] Eugene F Fama. 1970. Eicient capital markets: A review of theory and empirical

work. The journal of Finance 25, 2 (1970), 383ś417.
[12] Eugene F Fama and Kenneth R French. 1993. Common risk factors in the returns

on stocks and bonds. Journal of Financial Economics (1993).
[13] Andrea Frazzini, David Kabiller, and Lasse H Pedersen. 2013. Bufett’s alpha.

Technical Report. National Bureau of Economic Research.
[14] Clive WJ Granger. 1980. Testing for causality: a personal viewpoint. Journal of

Economic Dynamics and control 2 (1980), 329ś352.

[15] Clive WJ Granger and Jin-Lung Lin. 1995. Causality in the long run. Econometric
theory (1995), 530ś536.

[16] Clive William John Granger and Paul Newbold. 2014. Forecasting economic time
series. Academic Press.

[17] Michael C Jensen. 1968. The performance of mutual funds in the period 1945-1964.
The Journal of inance 23, 2 (1968), 389ś416.

[18] Tarja Joro and Paul Na. 2006. Portfolio performance evaluation in a meanś
varianceśskewness framework. European Journal of Operational Research 175, 1
(2006), 446ś461.

[19] Yongjae Lee, Do-Gyun Kwon, Woo Chang Kim, and Frank J Fabozzi. 2018. An
alternative approach for portfolio performance evaluation: enabling fund evalua-
tion relative to peer group via Malkiel’s monkey. Applied Economics 50, 40 (2018),
4318ś4327.

[20] Martin L Leibowitz and Terence C Langetieg. 1989. Shortfall Risk And The Asset
Allocation Decision: A Simulat. Journal of Portfolio Management 16, 1 (1989), 61.

[21] Thomas J Linsmeier and Neil D Pearson. 2000. Value at risk. Financial Analysts
Journal 56, 2 (2000), 47ś67.

[22] John Lintner. 1965. Security prices, risk, and maximal gains from diversiication.
The journal of inance 20, 4 (1965), 587ś615.

[23] Weimin Liu. 2006. A liquidity-augmented capital asset pricing model. Journal of
Financial Economics 82, 3 (2006), 631ś671.

[24] João Antonio de Mendonça Júnior, Carlos Heitor Campani, and Ricardo
Pereira Câmara Leal. 2017. A escolha de fundos de ações e o investidor individual.
Revista de Administração Contemporânea 21, SPE (2017), 41ś62.

[25] David N Nawrocki. 1999. A brief history of downside risk measures. The Journal
of Investing 8, 3 (1999), 9ś25.

[26] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825ś2830.

[27] Sasipa Pojanavatee. 2013. An analysis of Australian mutual fund performance and
market relationships. Ph.D. Dissertation. Curtin University.

[28] Skipper Seabold and Josef Perktold. 2010. statsmodels: Econometric and statistical
modeling with python. In 9th Python in Science Conference.

[29] William F Sharpe. 1964. Capital asset prices: A theory of market equilibrium
under conditions of risk. The journal of inance 19, 3 (1964), 425ś442.

[30] William F Sharpe. 1966. Mutual fund performance. The Journal of business 39, 1
(1966), 119ś138.

[31] Robert H Shumway and David S Stofer. 2017. Time series analysis and its appli-
cations: with R examples. Springer.

[32] Keith V Smith and Dennis A Tito. 1969. Risk-return measures of ex post portfolio
performance. Journal of Financial and Quantitative Analysis (1969), 449ś471.

[33] Jack L Treynor. 1962. Jack Treynor’s’ Toward a Theory of Market Value of Risky
Assets’. Available at SSRN 628187 (1962).

[34] Ruey S Tsay. 2005. Analysis of inancial time series. Vol. 543. John wiley & sons.



Conference’17, July 2017, Washington, DC, USA Vítor Braga Diniz, Herman Martins Gomes, and Luiz Felipe Pontes de Araújo Girão

A CAUSALITY SCORES

On Figure 7, we display our curve scores in graphics plotted in Cartesian planes generated by the axis Number of Lags and Scores.

Figure 7: Scores

B AREAS SCORES

On Figure 8, we display our area scores in bar graphics, in which each bar consists in the area below its corresponding metric graphic for

each window in Figure 7.
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Figure 8: Area-Scores
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