

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE

CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA
UNIDADE ACADÊMICA DE SISTEMAS E COMPUTAÇÃO

CURSO DE BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

ARAMIS SALES ARAUJO

A SURVEY ON DEVELOPER’S INTENTION UPON REFACTORING:

ASSESSING REFACTORINGMINER’S EFFICACY

CAMPINA GRANDE PB

2020

ARAMIS SALES ARAUJO

A SURVEY ON DEVELOPER’S INTENTION UPON REFACTORING:

ASSESSING REFACTORINGMINER’S EFFICACY

Trabalho de Conclusão Curso
apresentado ao Curso Bacharelado em
Ciência da Computação do Centro de
Engenharia Elétrica e Informática da
Universidade Federal de Campina
Grande, como requisito parcial para
obtenção do título de Bacharel em Ciência
da Computação.

Orientador: Professor Dr. Rohit Gheyi.

CAMPINA GRANDE PB

2020

Elaboração da Ficha Catalográfica:

Johnny Rodrigues Barbosa

Bibliotecário-Documentalista

CRB-15/626

 A663s Araujo, Aramis Sales.
 A survey on developer’s intention upon refactoring:

assessing refactoring. / Aramis Sales Araujo. – 2020.

 6 f.

 Orientador: Prof. Dr. Rohit Gheyi.

 Trabalho de Conclusão de Curso - Artigo (Curso de

Bacharelado em Ciência da Computação) - Universidade

Federal de Campina Grande; Centro de Engenharia Elétrica

e Informática.

 1. Desenvolvimento de software. 2. Refatoração de

software. 3. Desenvolvedores de software - pesquisa. 4.

Github. 5. RefactoringMiner. 6. Refactoring. 7. Firehouse

interview I. Gheyi, Rohit. II. Título.

 CDU:004.41(045)

ARAMIS SALES ARAUJO

A SURVEY ON DEVELOPER’S INTENTION UPON REFACTORING:

ASSESSING REFACTORINGMINER’S EFFICACY

Trabalho de Conclusão Curso
apresentado ao Curso Bacharelado em
Ciência da Computação do Centro de
Engenharia Elétrica e Informática da
Universidade Federal de Campina
Grande, como requisito parcial para
obtenção do título de Bacharel em Ciência
da Computação.

BANCA EXAMINADORA:

Professor Dr. Rohit Gheyi

Orientador – UASC/CEEI/UFCG

Professor Dr. Everton Leandro Galdino Alves
Examinador – UASC/CEEI/UFCG

Professor Dr. Tiago Lima Massoni
Professor da Disciplina TCC – UASC/CEEI/UFCG

Trabalho aprovado em: 2020.

CAMPINA GRANDE PB

A survey on developer’s intention upon refactoring: Assessing
RefactoringMiner’s efficacy

Aramis Araujo
aramis.araujo@ccc.ufcg.edu.br

Federal University of Campina Grande
Campina Grande, Paraíba, Brazil

Rohit Gheyi
rohit@dsc.ufcg.edu.br

Federal University of Campina Grande
Campina Grande, Paraíba, Brazil

ABSTRACT
Refactoring is an essential practice in software development, as it
allows developers to improve design, readability, and maintainabil-
ity. In this context, analysis tools such as RefactoringMiner intends
to provide an arguably precise classification of refactoring types.
However, there is a concern regarding the alignment between the
refactorings identified by these tools and the developer’s intention
towards those changes. For example, the tool may fail to detect
the developer’s intention of doing a Pull-up Method refactoring.
In this work, we are going to address this issue. Concretely, we
will conduct a survey with over 200 experienced Java developers
that contribute to highly rated and active open source repositories.
Those developers will be surveyed regarding refactorings detected
on specific commits they authored. The goal is to complement
the evaluation provided by RefactoringMiner, asking developers
whether they recognize and had the intention of performing the
refactoring types detected by the tool rather than assuming the
output as correct. Another goal is to assess whether the tool failed
to detect refactorings performed by the developers.

KEYWORDS
Refactoring, RefactoringMiner, GitHub, Survey, Firehouse Interview

1 INTRODUCTION
Modern software thrives through the use of agile development
techniques. Refactoring, being one of the most important, enables
developers to promote changes to a software artifact without modi-
fying its expected behavior [3]. It encourages improved maintain-
ability and extensibility, substantial aspects of successful software
products.

The study of refactoring is essential to understanding various
aspects of coding behaviors and their consequences. This is upheld
by the existence of many studies that often relate refactoring ac-
tivities to other development phenomena, such as the introduction
of bugs [2], occurrence of conflicts [4], and identification of code
smells [1].

These studies often base their analysis on predefined samples of
refactorings collected from code repositories. For this task, all the
aforementioned studies used RefactoringMiner, a tool that automat-
ically mines commit differences from a git repository, detects refac-
torings between changes, and classifies those into pre-established
refactoring classes.

RefactoringMiner [9] has been evaluated concerning the tool’s
precision and recall rates, yet we aim to compare the reported re-
sults with the product of a different survey, potentially matching an
expert’s intention with the tool’s output, assessing its false-positive

and false-negative rates. False-positives refer to refactorings that
were detected by the tool, but weren’t confirmed by the devel-
oper, and false-negatives to refactorings that the developer had
the intention of applying, but weren’t detected. These metrics are
important because they help to demonstrate the tool’s accuracy
and consequently its efficacy and usability.

The goal of this study is to improve the evaluation of the said
tool, by validating results obtained from it with data collected from
a survey conducted with over 200 developers. In order to better
understand the cases where the tool fails and assess its validity,
leading to impacts or reaffirmations on previous works that were
based on RefactoringMiner.

∗

2 RELATEDWORK
mpirical studies about refactoring often rely on automated tools
for gathering samples through mining code repositories. It is also
common for these to perform a questionnaire-based survey with
experienced developers to assess their opinion. For this task, one
of the most famous tools is RefactoringMiner, which was used in a
particular study by Silva et al.[8]. In their evaluation the tool was
able to achieve very high precision (0.98) and recall rates (0.93)[8],
which are the main object of this study.

Another study performed by Oliveira et al.[6] surveyed a group
of developers with the goal of better understanding their behaviour
when performing refactoring activities. From their study, we could
gather a list of refactorings commonly available in popular IDE
which was used to setup questions for a survey.

The survey conveyed in this work aims to ask experienced de-
velopers about their intention towards the detected refactorings,
without assuming it as a correct finding. Developers are also asked
for input in refactorings that may not have been detected by the
tool.

3 METHODOLOGY
3.1 Repositories and commits
In order to reach experienced and active developers, repositories
were queried through the use of GitHub’s API v3. In this query,
repositories that had Java as its programming language were se-
lected and ordered regarding both their stargazer count and latest

∗

“The authors retain the rights, under a Creative Commons Attribution CC BY
license, to all content in this article (including any elements they may contain, such
as pictures, drawings, tables), as well as all materials produced by authors that are
related to the reported work and are referenced in the article (such as source code and
databases). This license allows others to distribute, adapt and evolve their work, even
commercially, as long as the authors are credited for the original creation.”

Aramis Araujo et al.

modification date, which are common characteristics among popu-
lar and active projects.

This observatory activity extended 90 days (from September to
November 2020) and in total the topmost 2000 active repositories
had their commits filtered by pushed date to match the targeted
time frame of 90 days (prior to the starting date of the study).

Through an automated mining process, commits were analyzed
and, with the use of RefactoringMiner, the detected refactoring
types were obtained (Figure 1).

0 100 200 300 400 500 600
Occurrences

Rename Method
Extract Method

Rename Parameter
Rename Variable
Rename Attribute

Extract And Move Method
Extract Variable
Pull Up Method
Inline Method

Pull Up Attribute
Push Down Method

Push Down Attribute

518
378
367

330
199

156
151

67
65
49
39
27

Figure 1: Detected refactorings per type

3.2 RefactoringMiner
RefactoringMiner is a tool that tries to detect and classify refactor-
ingsmade throughout the commit history of a Java project. Through
the use of its standalone executable, the repository’s git URL, and
a commit’s hash, a JSON output is given containing the classified
refactoring types detected by the tool at the specified commit.

3.3 Survey
Inspired by a firehouse interview [5, 8] through which participants
are asked to answer questions related to recent activity, the survey
targeted developers’ commits that were at most 90 days old. For
this task, e-mails were sent to the authors of these commits with
simple questions regarding their activity in that particular commit.
Those e-mails were limited to one per address to diversify answers
and avoid confusing them with spam.

3.3.1 First Question. This question is related to the refactoring
types that were detected by RefactoringMiner. Authors were asked
whether they had the intention of performing the refactoring de-
tected by the tool. For this question, authors were requested to
answer one to at most three sub-questions with Yes or No referring
to detected refactorings.

3.3.2 SecondQuestion. With this question, the author is requested
to answer whether it had the intention to perform any other refac-
toring not mentioned on the previous question(s) and, by answering

affirmatively, it is asked to list the types of refactoring it had the
intention of applying with that commit.

3.3.3 Third Question. Finally, it is asked whether the author per-
formed any of the previously mentioned refactorings with the au-
tomated refactoring support of an IDE.

4 RESULTS
Of the 206 e-mails sent to distinct developers, 39 were answered
denoting a response rate of 18.96% which is a higher rate than the
5% commonly found in questionnaire-based software engineering
surveys[7]. This is expected behavior due to the firehouse inter-
view[5, 8] approach. In total 61 instances of refactoring types had
been analyzed by the developers, specifically, regarding the first
question and its sub-questions.

0 5 10 15 20 25 30 35
Occurrences

Confirmed RefactoringMiner output
Performed refactoring not detected
Rejected RefactoringMiner output
Used IDE to perform refactoring

29

28
11

15

Figure 2: Classification of answers

With regards to the first question and its sub-questions, develop-
ers confirmed that they had the intention to perform the refactoring
indicated by RefactoringMiner (subsubsection 3.3.1) in 28 out of 61
instances, resulting in a precision rate of 0.45 (Equation 1).

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|{𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑟 𝑎𝑔𝑟𝑒𝑒𝑑 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑡𝑜𝑜𝑙} ∩ {𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛𝑠}|

|{𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛𝑠}|
(1)

Additionally, with the collected answers for the second question
(subsubsection 3.3.2), the recall was determined as 0.49 (Equation 2).

𝑟𝑒𝑐𝑎𝑙𝑙 =
|{𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑟 𝑎𝑔𝑟𝑒𝑒𝑑 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑡𝑜𝑜𝑙}|

|{𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑟 𝑎𝑔𝑟𝑒𝑒𝑑} ∪ {𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑟 𝑑𝑖𝑠𝑎𝑔𝑟𝑒𝑒𝑑}| (2)

Furthermore, developers affirmed not having the intention of
performing the indicated refactoring in 11 instances (34.37%), in-
dicating a much higher false-positive rate than seen in previous
studies. With both Precision and Recall rates, the 𝐹1 score for accu-
racy was calculated at 0.56 (Equation 3).

𝐹1 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 2 · 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 (3)

Concerning the third question (subsubsection 3.3.3), 15 candi-
dates (38.46%) revealed they had performed the refactoring(s) with
help from their IDE. Few spontaneously mentioned which IDE was
used, the most popular being IntelliJ IDEA, Eclipse, and text editors
such as EMACS.

A survey on developer’s intention upon refactoring: Assessing RefactoringMiner’s efficacy

5 CONCLUSION
Although the survey had an unremarkable number of responses, the
findings of this study go against the stunningly high precision and
recall rates proclaimed by previous studies for the tool in question.

RefactoringMiner is an efficient tool for detecting refactorings in
Java projects, however, some indications conflict with the validity
of the said tool, namely its low accuracy rate. It is also noticeable
that the tool failed to identify some refactorings performed by the
developers.

We believe that in regards to survey-based studies, especially
those that involve analyzing the activity of a restricted group, a
longer observation period is very beneficial, contrasting with the
short four months period that this study was restricted to.

ACKNOWLEDGMENTS
I would like to thank my parents Analucia and Edson, for their
utmost love and care. My sisters Milena and Lorena for setting up
a high standard and helping me climb to it with all their love and
patience.

To my friends, in special Adauto, Pedro Henrique (Ph), Samara,
Alysson and Neize who took care of me during the hard, dark and
scary times.

Thanks to professor Rohit Gheyi, for all his teachings, patience
and opportunities that led me to my objectives. To professor Fran-
cisco Neto, whose "seal of approval" inspired me to move forward.
To professors Joseana Macêdo, Tiago Massoni and Cláudio Campelo
for the second chance.

Finally, thanks to all developers who took a sliver of their time
to answer the survey.

REFERENCES
[1] Diego Cedrim, Alessandro Garcia, Melina Mongiovi, Rohit Gheyi, Leonardo Sousa,

Rafael de Mello, Baldoino Fonseca, Márcio Ribeiro, and Alexander Chávez. 2017.
Understanding the impact of refactoring on smells: A longitudinal study of 23
software projects. In Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering. 465–475.

[2] Isabella Ferreira, Eduardo Fernandes, Diego Cedrim, Anderson Uchôa, Ana Carla
Bibiano, Alessandro Garcia, João Lucas Correia, Filipe Santos, Gabriel Nunes,
Caio Barbosa, et al. 2018. The buggy side of code refactoring: Understanding the
relationship between refactorings and bugs. In Proceedings of the 40th International
Conference on Software Engineering: Companion Proceeedings. 406–407.

[3] Martin Fowler. 2018. Refactoring: improving the design of existing code. Addison-
Wesley Professional.

[4] Mehran Mahmoudi, Sarah Nadi, and Nikolaos Tsantalis. 2019. Are refactorings
to blame? an empirical study of refactorings in merge conflicts. In 2019 IEEE
26th International Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, 151–162.

[5] Emerson Murphy-Hill, Thomas Zimmermann, Christian Bird, and Nachiappan
Nagappan. 2014. The design space of bug fixes and how developers navigate it.
IEEE Transactions on Software Engineering 41, 1 (2014), 65–81.

[6] Jonhnanthan Oliveira, Rohit Gheyi, Melina Mongiovi, Gustavo Soares, Márcio
Ribeiro, and Alessandro Garcia. 2019. Revisiting the refactoring mechanics. Infor-
mation and Software Technology 110 (2019), 136–138.

[7] Forrest Shull, Janice Singer, and Dag IK Sjøberg. 2007. Guide to advanced empirical
software engineering. Springer.

[8] Danilo Silva, Nikolaos Tsantalis, and Marco Tulio Valente. 2016. Why we refactor?
confessions of github contributors. In Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering. 858–870.

[9] Nikolaos Tsantalis, Matin Mansouri, Laleh Eshkevari, Davood Mazinanian, and
Danny Dig. 2018. Accurate and efficient refactoring detection in commit history.
In 2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE).
IEEE, 483–494.

	2d64a4a78ccc5d58c8ca3a93d393c069f5279f560b5e625f212518c2bf161a77.pdf
	A survey on developer’s intention upon refactoring: Assessing RefactoringMiner's efficacy
	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Repositories and commits
	3.2 RefactoringMiner
	3.3 Survey

	4 Results
	5 Conclusion
	Acknowledgments
	References

