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ABSTRACT
The Aho-Corasick algorithm is used to recognize all occurrences

of a set of strings in a text. Its time complexity is 𝑂 (𝑚 + 𝑛 + 𝑜),
where𝑚 is the sum of the lengths of the keywords, 𝑛 is the text

length and 𝑜 is the number of occurrences of all keywords in the

text. However, when the input contains a large amount of matches

with the dictionary patterns, the algorithm performance decreases.

In many domains, such as information retrieval, natural language

processing and DNA sequence analysis, Aho-Corasick is used for

word counting, possibly with many repetitions. In this paper, we

improve the Aho-Corasick algorithm to count the number of occur-

rences of a set of words in a text. The new algorithm works offline

and does not depend on the frequencies of the dictionary words. Its

time complexity is 𝑂 (𝑚 + 𝑛 + 𝑢), where 𝑢 is the number of distinct

keywords found in the text, and its space complexity is the same as

the Aho-Corasick. We compare the original and the new algorithm

performances with texts varying up to 100MB and dictionaries with

sizes 1KB, 1MB and 10MB. The new algorithm performed better

in every experiment made, from 50% to 300% faster in comparison

with the Aho-Corasick.

CCS CONCEPTS
• Theory of computation→ Patternmatching; •General and
reference → Performance.

1 INTRODUCTION
Multiple pattern matching is the task of finding occurrences of a

set of words in a text. It is used in applications from many areas,

such as information retrieval [7], natural language processing [8],

intrusion detection [15] and DNA sequence matching [14]. The

Aho-Corasick algorithm [1] is commonly used for this purpose.

It extends the Knuth-Morris-Pratt [6] algorithm to a prefix tree,

using concepts of finite state machines [11] to search for multiple

patterns at once. It is used in many real-world applications. For

example, the Unix command GNU Grep [4] uses Aho-Corasick to

match multiple patterns in files.

However, this algorithm outputs every occurrence of every dic-

tionary word in the text. Thus, its runtime depends on the total

number of occurrences. It is possible that a large number of key-

word occurrences slows down the execution of the algorithm. For

example, consider the worst case where the keywords are {a, aa,
aaa, aaaa, . . . , ak} and the text is an (am means a concatena-

tion of𝑚 characters a). Every character of the text will contain up

to 𝑘 new occurrences. Therefore, the Aho-Corasick algorithm (and

every other pattern matching algorithm) would have to print each

one of the 𝑂 (𝑛𝑘) occurrences of words.
Since the output itself depends on the number of occurrences of

words, the time complexity cannot be better than the one achieved

by Aho-Corasick. However, in some applications (for example, to

count n-grams of a document) we will not need the positions of

the occurrences in the text. In these cases, we are only interested

in the frequencies of the keywords (i.e., the number of times the

keywords appear in the text).

In this paper, we present a modification to the Aho-Corasick

algorithm, called Word Counting Aho-Corasick, that outputs

the frequencies of each keyword in a text instead of listing every

occurrence and the positions where they happen. Both algorithms

are divided into two steps: building a pattern matching machine

with a set of keywords and searching a text with it. The method

of building the structure is similar for both algorithms and the

time complexity is 𝑂 (𝑚), where𝑚 is the sum of the lengths of all

keywords. For the search step, theWord Counting Aho-Corasick

time complexity is 𝑂 (𝑛 + 𝑢), where 𝑛 is the text length and 𝑢 is

the number of distinct keywords found in the text. It has a better

time complexity compared to the Aho-Corasick algorithm, which is

𝑂 (𝑛+𝑜), where𝑜 is the number of occurrences of all keywords in the

text. The Word Counting Aho-Corasick is an offline algorithm,

which means the output is calculated only after the whole input

has been fed. In some cases, the online nature of the Aho-Corasick

is useful, for example in intrusion detection [15].

TheWord Counting Aho-Corasick performed better than the

original algorithm on every experiment made. We used keyword

sets of sizes 1KB, 1MB and 10MB, two alphabets (DNA bases and

alphanumeric characters) and texts varying up to 100MB (over 100

million characters). For most pattern sets, the proposed algorithm

execution times were 100% faster than the original Aho-Corasick

ones, and for one pattern set they were 300% faster.

This paper is organized as follows: Section 2 defines our notations

and discusses approaches to the pattern matching problem. Sec-

tion 3 presents our algorithm, theWord Counting Aho-Corasick.

In Section 4 we present our experiments and discuss the achieved

results. Finally, in Section 5 we make our conclusions and point out

options for future work.
1

2 BACKGROUND
In this section, we provide an example to the multiple pattern

matching problem, give an overview of the previous approaches

to the problem, briefly explains the Aho-Corasick algorithm and

discusses the problem of having a large number of word occurrences

in the text.

1
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2.1 Example
Next we use the following notation: the data in which the words

are searched is called text and its length is 𝑛; the searched words

are called patterns or keywords and the set of patterns is called

a dictionary; a dictionary contains 𝑘 patterns and the sum of the

lengths of all patterns is 𝑚; alphabet is the set of symbols used

in the text and the patterns; the number of occurrences, or the

frequency, of a pattern 𝑝 in a text 𝑡 is the number of indexes of 𝑡

where 𝑝 appears as a substring.

The exact multiple pattern matching problem receives as input a

text and a dictionary and outputs all the occurrences of each pattern

in the text. For example, if we are looking for the words cab, ab
and aba in the text cababaab, then we have one occurrence of cab,
three occurrences of ab and two occurrences of aba. Table 1 shows
the locations of such occurrences in the text.

Table 1: String matching example for patterns cab, ab and
aba, and text cababaab.

Position Text Prefix Occurrences

1 cababaab
2 cababaab
3 cababaab ab, cab
4 cababaab aba
5 cababaab ab
6 cababaab aba
7 cababaab
8 cababaab ab

2.2 Previous Approaches
The simplest algorithm for this task is the brute force one: for

every starting position, scan the text and the pattern and compute

whether there is an occurrence of the pattern starting there. The

time complexity is 𝑂 (𝑛𝑚).
A more efficient solution is the Knuth-Morris-Pratt algorithm [6].

It builds an automaton that recognizes occurrences of one keyword.

Figure 1 shows an example of an automaton for the keyword aaba,
which will be explained later in this section. Unlike the brute force

algorithm, we only need to scan the text once per pattern. Hence,

the time complexity is 𝑂 (𝑛𝑘 +𝑚).

Figure 1: Automaton that finds occurrences of aaba. The
state with a dashed circle represents an occurrence of aaba.

The brute force solution is inefficient as for each pattern the text

needs to be scanned multiple times. For the Knuth-Morris-Pratt

algorithm be able to search the text in only one pass, it needs to

keep track of all the possible prefixes of the keyword that matches

with the current text at each iteration of the scan.

For example, consider that we are searching for the pattern aaba
in text baaaba. At each moment, we have knowledge of not only the

longest prefix of the keyword but also every prefix of the keyword

that matches the text up to the current index. Therefore, if the next

symbol of the text does not match with the next symbol of the

pattern, we do not need to backtrack the text (like the brute force

would do). We only need to discard that keyword prefix and use

the second largest one. See Table 2 for this example. In the first

iteration, there is no matching prefix, since the first letter of the

pattern is a and the first letter of the text is b. Note that, in baa, we
have two possible pattern prefixes, a and aa. This is the difference
between the Knuth-Morris-Pratt and the brute force, which only

keeps the longest matching pattern prefix: when moving to the next

iteration baaa, the pattern prefix aa cannot be expanded to aab and
the matching fails. However, we do not need to move back in the

text. Instead, we use the next possible prefix that can be matched

with the next letter of the text, which is a.

Table 2: Prefixes of the pattern aaba for each iteration of the
text baaaba.

Text prefix Pattern prefixes

b
ba a
baa a, aa

baaa a, aa
baaab aab
baaaba a, aaba

We keep track of the next possible prefix thanks to the failure
function. The failure function of a prefix points to the longest prefix

which is also a proper suffix of it. In other words, a failure function

points to the second longest prefix that can also match the current

text. See Figure 1 for an example. The failure functions are drawn

as dashed arrows. There, 𝑓 𝑎𝑖𝑙𝑢𝑟𝑒 (aaba) = a, 𝑓 𝑎𝑖𝑙𝑢𝑟𝑒 (aa) = a, and
both 𝑓 𝑎𝑖𝑙𝑢𝑟𝑒 (aab) and 𝑓 𝑎𝑖𝑙𝑢𝑟𝑒 (a) equals to an empty string.

2.3 Aho-Corasick
The Aho-Corasick [1] algorithm uses the concept of Knuth-Morris-

Pratt and extends to a prefix tree, or a trie [2], to find occurrences

of multiple patterns simultaneously (see Figure 2 for an example,

which will be explained later in this section). Thus, we only need

to scan the text once. The algorithm can be divided into two parts:

building the structure and searching the text. Building the structure

only depends on the patterns and takes time proportional to the

sum of their lengths (i.e., the time complexity for constructing the

machine is 𝑂 (𝑚)). The search step does not depend on the number

of patterns. Since it only needs to pass through the text once, and it

outputs each occurrence, the time complexity for searching a text is

𝑂 (𝑛 + 𝑜), where 𝑜 is the total number of occurrences of all patterns

in the text. Hence, the total time complexity for searching a set of

keywords in a text is 𝑂 (𝑛 +𝑚 + 𝑜).
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Figure 2: Automaton that finds occurrences of ba, baba, abb,
bb and babb. Dashed circles represent keyword endings.

2.3.1 Combining more automata. The Aho-Corasick uses the au-

tomata introduced by Knuth-Morris-Pratt to search for multiple

keywords simultaneously. Similarly, the failure function of a state

in the prefix tree will point to the longest prefix of smaller depth

which is also a suffix of the current state, among all the keywords

of the dictionary. See Figure 2 for an example. The failure functions

are drawn as dashed arrows.

Note that a failure function of a state can lead to a prefix of

another word. For example, in Figure 2, the failure of state 3 (bab)
is state 6 (ab), and the failure of state 6 (ab) is state 1 (b). Also
note that we may have multiple occurrences simultaneously. Since

the failure of state 7 (abb) is state 8 (bb), every occurrence of abb
implies in another occurrence of bb.

2.3.2 Searching a text. Algorithm 1 was proposed in the original

Aho-Corasick paper [1] and explains how to search the input text

with an already built pattern matching machine. The goto function
receives a state and a symbol and looks for a transition in the dic-

tionary prefix tree using that symbol. If there is no valid transition,

it returns fail. A failed goto transition from the root points to itself.

For example, in Figure 2, 𝑔𝑜𝑡𝑜 (1, b) = 8 and 𝑔𝑜𝑡𝑜 (2, a) = 𝑓 𝑎𝑖𝑙 . The
output function returns the set of keywords that appears in one state.
In Figure 2, 𝑜𝑢𝑡𝑝𝑢𝑡 (4) = {baba, ba}, 𝑜𝑢𝑡𝑝𝑢𝑡 (9) = {babb, abb, bb}
and 𝑜𝑢𝑡𝑝𝑢𝑡 (3) = ∅. Note that the output function traverses the

prefix tree using the failure functions until it reaches the root (i.e.,

the empty prefix). Whenever it finds a state that represents the end

of a pattern (shown in the Figure 2 as dashed circles), it adds that

word to the set of found patterns.

Table 3 shows how the algorithm works for the text abbababba
and the automaton shown in Figure 2.

2.3.3 Problem. Due to the nature of the output function, we can

see that multiple keywords may appear in a single position of the

text. There will be cases where an occurrence of a state will be

counted many times, especially the states closer to the root, and

might slow down the execution of the algorithm. If we change

the output to count the frequencies of the words instead of their

locations, we can modify the search algorithm in such a way that

each state is visited at most once.

Algorithm 1 Aho-Corasick search algorithm. This algorithm uses

an already built state machine, receives an input text and outputs

the occurrences of the keywords and their locations.

Input: A string 𝑥 = 𝑎1𝑎2 . . . 𝑎𝑛 where each 𝑎𝑖 is an input symbol,

a pattern matching machine 𝑀 with a goto function, a failure
function and an output function.

Output: Occurrences of keywords in 𝑥 , indexed by their position.

function Aho-Corasick(𝑥,𝑀)

𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠 ← ∅
𝑠𝑡𝑎𝑡𝑒 ← 0

for 𝑖 ← 1 until 𝑛 do
while 𝑔𝑜𝑡𝑜 (𝑠𝑡𝑎𝑡𝑒, 𝑎𝑖 ) = 𝑓 𝑎𝑖𝑙 do

𝑠𝑡𝑎𝑡𝑒 ← 𝑓 𝑎𝑖𝑙𝑢𝑟𝑒 (𝑠𝑡𝑎𝑡𝑒)
𝑠𝑡𝑎𝑡𝑒 ← 𝑔𝑜𝑡𝑜 (𝑠𝑡𝑎𝑡𝑒, 𝑎𝑖 )
if 𝑜𝑢𝑡𝑝𝑢𝑡 (𝑠𝑡𝑎𝑡𝑒) ≠ ∅ then

𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠 (𝑖) ← 𝑜𝑢𝑡𝑝𝑢𝑡 (𝑠𝑡𝑎𝑡𝑒)
return 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠

Table 3: Execution of Algorithm 1 for the text abbababba and
the automaton shown in Figure 2.

Processed text Action state output(state)

start search 0

abbababba 𝑠𝑡𝑎𝑡𝑒 = 𝑔𝑜𝑡𝑜 (𝑠𝑡𝑎𝑡𝑒, a) 5

abbababba 𝑠𝑡𝑎𝑡𝑒 = 𝑔𝑜𝑡𝑜 (𝑠𝑡𝑎𝑡𝑒, b) 6

abbababba 𝑠𝑡𝑎𝑡𝑒 = 𝑔𝑜𝑡𝑜 (𝑠𝑡𝑎𝑡𝑒, b) 7 abb, bb
𝑠𝑡𝑎𝑡𝑒 = 𝑓 𝑎𝑖𝑙𝑢𝑟𝑒 (𝑠𝑡𝑎𝑡𝑒) 8

𝑠𝑡𝑎𝑡𝑒 = 𝑓 𝑎𝑖𝑙𝑢𝑟𝑒 (𝑠𝑡𝑎𝑡𝑒) 1

abbababba 𝑠𝑡𝑎𝑡𝑒 = 𝑔𝑜𝑡𝑜 (𝑠𝑡𝑎𝑡𝑒, a) 2 ba
abbababba 𝑠𝑡𝑎𝑡𝑒 = 𝑔𝑜𝑡𝑜 (𝑠𝑡𝑎𝑡𝑒, b) 3

abbababba 𝑠𝑡𝑎𝑡𝑒 = 𝑔𝑜𝑡𝑜 (𝑠𝑡𝑎𝑡𝑒, a) 4 baba, ba
𝑠𝑡𝑎𝑡𝑒 = 𝑓 𝑎𝑖𝑙𝑢𝑟𝑒 (𝑠𝑡𝑎𝑡𝑒) 2

abbababba 𝑠𝑡𝑎𝑡𝑒 = 𝑔𝑜𝑡𝑜 (𝑠𝑡𝑎𝑡𝑒, b) 3

abbababba 𝑠𝑡𝑎𝑡𝑒 = 𝑔𝑜𝑡𝑜 (𝑠𝑡𝑎𝑡𝑒, b) 9 babb, abb, bb
𝑠𝑡𝑎𝑡𝑒 = 𝑓 𝑎𝑖𝑙𝑢𝑟𝑒 (𝑠𝑡𝑎𝑡𝑒) 7

𝑠𝑡𝑎𝑡𝑒 = 𝑓 𝑎𝑖𝑙𝑢𝑟𝑒 (𝑠𝑡𝑎𝑡𝑒) 8

𝑠𝑡𝑎𝑡𝑒 = 𝑓 𝑎𝑖𝑙𝑢𝑟𝑒 (𝑠𝑡𝑎𝑡𝑒) 1

abbababba 𝑠𝑡𝑎𝑡𝑒 = 𝑔𝑜𝑡𝑜 (𝑠𝑡𝑎𝑡𝑒, a) 2 ba

3 WORD COUNTING AHO-CORASICK
First of all, recall that the failure function points to a smaller prefix

which also matches the current text. Therefore, the failure function

always points to a state with a smaller depth in the prefix tree. Since

every state with a nonempty prefix has a failure link, we can build

a directed tree, where the edges are the failure transitions and the

root is the root of the prefix tree (i.e., the empty prefix). We will

call it the failure tree. Figure 3 shows the failure tree of the example

given in Figure 2.

The failure tree allows us to intuitively see how the Aho-Corasick

output function works. For a state 𝑠 , whenever there is an occur-

rence of 𝑠 in the text, there are also occurrences of every state in

the path from 𝑠 to the root. So, by traversing the tree using the
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Figure 3: Failure tree of pattern matching machine given in
Figure 2.

failure links, the algorithm prints every keyword that appears in

one position of the text.

For the sake of efficiency, the original Aho-Corasick paper [1]

suggests that 𝑜𝑢𝑡𝑝𝑢𝑡 (𝑠𝑡𝑎𝑡𝑒) be implemented using linked lists. So, if

𝑠𝑡𝑎𝑡𝑒 marks the ending of a pattern (shown in this paper as a dashed

circle), then 𝑜𝑢𝑡𝑝𝑢𝑡 (𝑠𝑡𝑎𝑡𝑒) will be a linked list with that pattern

and a pointer to 𝑜𝑢𝑡𝑝𝑢𝑡 (𝑓 𝑎𝑖𝑙𝑢𝑟𝑒 (𝑠𝑡𝑎𝑡𝑒)). Otherwise, 𝑜𝑢𝑡𝑝𝑢𝑡 (𝑠𝑡𝑎𝑡𝑒)
will be equal to 𝑜𝑢𝑡𝑝𝑢𝑡 (𝑓 𝑎𝑖𝑙𝑢𝑟𝑒 (𝑠𝑡𝑎𝑡𝑒)). This approach skips the

internal states which are not an ending of any keyword. Thus,

𝑜𝑢𝑡𝑝𝑢𝑡 (𝑠𝑡𝑎𝑡𝑒) will be linear on the number of occurrences of key-

words in 𝑠𝑡𝑎𝑡𝑒 . Table 4 shows the output function for each state in

the example given in Figure 2.

Table 4: Output function for each state in example of Fig-
ure 2.

state output(state)

0 ∅
1 ∅
2 {ba}
3 ∅
4 {baba, ba}
5 ∅
6 ∅
7 {abb, bb}
8 {bb}
9 {babb, abb, bb}

3.1 Algorithm
Wewill modify the search algorithm and the output function in such

a way that each state is visited at most once. The modified search

will make the same transitions as the original algorithm, but instead

of printing at each iteration the occurrences in that position, the

algorithmwill increment a counter in the current state. That counter

indicates how many times that state appeared in the text. Since an

occurrence of 𝑠𝑡𝑎𝑡𝑒 implies an occurrence of 𝑓 𝑎𝑖𝑙𝑢𝑟𝑒 (𝑠𝑡𝑎𝑡𝑒), after
scanning the text we will propagate the counter of each state to its

parent on the tree. In other words, 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 (𝑓 𝑎𝑖𝑙𝑢𝑟𝑒 (𝑠𝑡𝑎𝑡𝑒)) will be
incremented by 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 (𝑠𝑡𝑎𝑡𝑒).

For the counters to be properly propagated through the failure

links, the only requirement is that the states are processed in a

topological order [2, 12, 13]. In other words, for each pair of states

𝑢 and 𝑣 such that 𝑓 𝑎𝑖𝑙𝑢𝑟𝑒 (𝑢) = 𝑣 , a topological ordering ensures

that 𝑢 is processed before 𝑣 . Since our structure is a tree, there is

always a correct topological ordering and we can achieve that by

traversing the tree in a depth-first-search manner.

To maintain efficiency of the algorithm, we will introduce two

functions: patternId and outputLink. If 𝑠𝑡𝑎𝑡𝑒 is marked as a pattern

ending, then 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝐼𝑑 (𝑠𝑡𝑎𝑡𝑒) will be equal to the index of that

word in the set. 𝑜𝑢𝑡𝑝𝑢𝑡𝐿𝑖𝑛𝑘 (𝑠𝑡𝑎𝑡𝑒) points to the first state in the

failure tree path to the root which is marked as a pattern ending,

or the root itself. Algorithm 2 shows how to calculate 𝑜𝑢𝑡𝑝𝑢𝑡𝐿𝑖𝑛𝑘 .

Both functions can be processed during the construction of the

pattern matching machine and can be stored as a one-dimensional

array and accessed in constant time.

Algorithm 2 Calculation of 𝑜𝑢𝑡𝑝𝑢𝑡𝐿𝑖𝑛𝑘 .

function calculate_outputlink(𝑠𝑡𝑎𝑡𝑒)

if 𝑠𝑡𝑎𝑡𝑒 is marked as a keyword ending or 𝑠𝑡𝑎𝑡𝑒 = 0 then
𝑜𝑢𝑡𝑝𝑢𝑡𝐿𝑖𝑛𝑘 (𝑠𝑡𝑎𝑡𝑒) ← 𝑠𝑡𝑎𝑡𝑒

else
𝑜𝑢𝑡𝑝𝑢𝑡𝐿𝑖𝑛𝑘 (𝑠𝑡𝑎𝑡𝑒) ← 𝑜𝑢𝑡𝑝𝑢𝑡𝐿𝑖𝑛𝑘 (𝑓 𝑎𝑖𝑙𝑢𝑟𝑒 (𝑠𝑡𝑎𝑡𝑒))

Thanks to the 𝑜𝑢𝑡𝑝𝑢𝑡𝐿𝑖𝑛𝑘 function, we can traverse the tree us-

ing only the relevant states (i.e., states marked as a pattern ending).

Now, we can create another tree, called outputTree, including only

the marked states which appear in the text. Thus, a traversal in

𝑜𝑢𝑡𝑝𝑢𝑡𝑇𝑟𝑒𝑒 will only use states for keywords that have at least

one occurrence in the text. Figure 4 shows the 𝑜𝑢𝑡𝑝𝑢𝑡𝑇𝑟𝑒𝑒 for the

example of Figure 2 with the text abbababba.
Algorithm 3 searches a text and outputs the number of occur-

rences of each keyword in the dictionary. Since we are traversing

the 𝑜𝑢𝑡𝑝𝑢𝑡𝑇𝑟𝑒𝑒 , only the states that appear in the text at least one

time are visited.

For example, for a set of words𝐾 = {ba, baba, abb, bb, babb} and
an input text abbababba, the Algorithm 3 will output a set of tuples

{(0, 3), (1, 1), (2, 2), (3, 2), (4, 1)}. The first element of the tuple is

the index of the pattern in the dictionary and the second element

is the number of occurrences of that pattern. In other words, if the

pattern 𝐾𝑖 appeared in the text 𝑗 times ( 𝑗 > 0), then Algorithm 3

will include tuple (𝑖, 𝑗) in its output.

3.2 Analysis
Let 𝑢 be the number of distinct patterns found in the text. Since the

text is scanned only once, the size of 𝑜𝑢𝑡𝑝𝑢𝑡𝑇𝑟𝑒𝑒 is 𝑢 and each state

in 𝑜𝑢𝑡𝑝𝑢𝑡𝑇𝑟𝑒𝑒 is visited only once, then the time complexity of Al-

gorithm 3 is𝑂 (𝑛+𝑢). Recall that the time complexity of the original
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Figure 4: outputTree of pattern matching machine given in
Figure 2 with input text abbababba.

Algorithm 3Word Counting Aho-Corasick. This algorithm scans

the input text, creates a tree with the appearing output nodes and

traverses it, and returns the frequencies of each keyword. Keywords

with no occurrences are not included in the output.

Input: A string 𝑥 = 𝑎1𝑎2 . . . 𝑎𝑛 where each 𝑎𝑖 is an input symbol,

a pattern matching machine𝑀 with a goto function and a failure
function.

Output: Set of tuples (𝑖, 𝑗) which indicates 𝑖th keyword appeared 𝑗
times in 𝑥 ( 𝑗 > 0).

functionWord Counting Aho-Corasick(𝑥,𝑀)

𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← ∅
𝑜𝑢𝑡𝑝𝑢𝑡𝑇𝑟𝑒𝑒 ← ∅
𝑠𝑡𝑎𝑡𝑒 ← 0

for 𝑖 ← 1 until 𝑛 do
while 𝑔𝑜𝑡𝑜 (𝑠𝑡𝑎𝑡𝑒, 𝑎𝑖 ) = 𝑓 𝑎𝑖𝑙 do

𝑠𝑡𝑎𝑡𝑒 ← 𝑓 𝑎𝑖𝑙𝑢𝑟𝑒 (𝑠𝑡𝑎𝑡𝑒)
𝑠𝑡𝑎𝑡𝑒 ← 𝑔𝑜𝑡𝑜 (𝑠𝑡𝑎𝑡𝑒, 𝑎𝑖 )
𝑠 ← 𝑜𝑢𝑡𝑝𝑢𝑡𝐿𝑖𝑛𝑘 (𝑠𝑡𝑎𝑡𝑒) ⊲ Jump to next occurrence

𝑐𝑜𝑢𝑛𝑡𝑒𝑟 (𝑠) ← 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 (𝑠) + 1
while 𝑠 ≠ 0 ∧ 𝑠 ∉ 𝑜𝑢𝑡𝑝𝑢𝑡𝑇𝑟𝑒𝑒 do

𝑜𝑢𝑡𝑝𝑢𝑡𝑇𝑟𝑒𝑒 ← 𝑜𝑢𝑡𝑝𝑢𝑡𝑇𝑟𝑒𝑒 ∪ {𝑠}
𝑠 ← 𝑜𝑢𝑡𝑝𝑢𝑡𝐿𝑖𝑛𝑘 (𝑓 𝑎𝑖𝑙𝑢𝑟𝑒 (𝑠))

traverse_tree(0)

𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠 ← ∅
for all 𝑠 ∈ 𝑜𝑢𝑡𝑝𝑢𝑡𝑇𝑟𝑒𝑒 do

𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠 (𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝐼𝑑 (𝑠)) ← 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 (𝑠)
return 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠

function traverse_tree(𝑠)

for all 𝑐 ∈ 𝑜𝑢𝑡𝑝𝑢𝑡𝑇𝑟𝑒𝑒 | 𝑜𝑢𝑡𝑝𝑢𝑡𝐿𝑖𝑛𝑘 (𝑓 𝑎𝑖𝑙𝑢𝑟𝑒 (𝑐)) = 𝑠 do
traverse_tree(𝑐)

𝑐𝑜𝑢𝑛𝑡𝑒𝑟 (𝑠) ← 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 (𝑠) + 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 (𝑐)

Aho-Corasick search algorithm is 𝑂 (𝑛 + 𝑜), where 𝑜 is the total

number of keyword occurrences in the text. Also note that 𝑢 ≤ 𝑜

(i.e., the number of keyword occurrences is at least the number of

distinct found keywords). In the worst case, each pattern appears

only once in the text (𝑢 = 𝑜). In that case, Algorithm 3 and 1 will

have similar runtimes. But the more a keyword is found repeated

times, the better Algorithm 3 performs in comparison with the

original Aho-Corasick algorithm.

The additional structures used for this modification can be stored

as a one-dimensional array, allowing direct access in constant time.

The pattern matching machine can be built in a similar way to

the original algorithm. Hence, the time complexity to create the

structure is 𝑂 (𝑚), with the same space complexity as the Aho-

Corasick. The 𝑜𝑢𝑡𝑝𝑢𝑡𝑇𝑟𝑒𝑒 edges can be stored using adjacency

lists, so the tree traversal time is proportional to the number of

nodes. Therefore, the total time complexity of theWord Counting

Aho-Corasick, to create the machine and search for a text, is

𝑂 (𝑚 + 𝑛 + 𝑢).

3.3 Properties
This section shows that Algorithm 3 produces valid outputs. We

will first define properties of the failure tree, to then advance to the

𝑜𝑢𝑡𝑝𝑢𝑡𝐿𝑖𝑛𝑘 function, the 𝑜𝑢𝑡𝑝𝑢𝑡𝑇𝑟𝑒𝑒 , the 𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑒_𝑡𝑟𝑒𝑒 function

and finally the Algorithm 3 itself.

For the next lemmas, we say that 𝑓 𝑎𝑖𝑙𝑢𝑟𝑒𝑘 (𝑠) is the result of

applying the failure function 𝑘 times, starting from the initial value

𝑠 . For example, 𝑓 𝑎𝑖𝑙𝑢𝑟𝑒3 (𝑠) = 𝑓 𝑎𝑖𝑙𝑢𝑟𝑒 (𝑓 𝑎𝑖𝑙𝑢𝑟𝑒 (𝑓 𝑎𝑖𝑙𝑢𝑟𝑒 (𝑠))). In par-
ticular, 𝑓 𝑎𝑖𝑙𝑢𝑟𝑒0 (𝑠) = 𝑠 . We also say a state is a keyword ending if

we follow the 𝑔𝑜𝑡𝑜 links of some keyword and end in that state. In

this paper, we represent the keyword ending states in the images

as dashed circles.

The first and second lemmas define properties of the failure tree.

Lemma 3.1. Let 𝑠 and 𝑡 be two distinct states in the failure tree.
Then, there is a path from 𝑠 to 𝑡 in the failure tree if and only if
𝑡 = 𝑓 𝑎𝑖𝑙𝑢𝑟𝑒𝑘 (𝑠), for some 𝑘 ≥ 1.

Proof. We will prove this lemma by induction on the failure

tree depth. By the failure tree definition, there is a directed edge

from 𝑠 to 𝑡 if and only if 𝑓 𝑎𝑖𝑙𝑢𝑟𝑒 (𝑠) = 𝑡 . Since the failure function
is not defined for the root, the root has no outgoing edges, thus the

lemma is true for depth 0. Now, assume the lemma is true for all

states with depth ≤ 𝑖 . Then, for all states 𝑠 where 𝑑𝑒𝑝𝑡ℎ(𝑠) = 𝑖 + 1,
let 𝑓 = 𝑓 𝑎𝑖𝑙𝑢𝑟𝑒 (𝑠). It is clear that 𝑑𝑒𝑝𝑡ℎ(𝑓 ) = 𝑖 , so the lemma is

true for 𝑓 . Since there is an edge from 𝑠 to 𝑓 , then 𝑓 is reachable by

𝑠 and every state 𝑡 reachable by 𝑓 is also reachable by 𝑠 , using one

more application of the failure function (i.e., if 𝑡 = 𝑓 𝑎𝑖𝑙𝑢𝑟𝑒𝑘 (𝑓 ) and
𝑓 = 𝑓 𝑎𝑖𝑙𝑢𝑟𝑒 (𝑠), then 𝑡 = 𝑓 𝑎𝑖𝑙𝑢𝑟𝑒𝑘+1 (𝑠)). Thus, the lemma is true

for depth 𝑖 + 1 and the proof is complete. □

Lemma 3.2. Let 𝑡 be a state where a keyword 𝐾𝑖 ends. Then,
𝐾𝑖 ∈ 𝑜𝑢𝑡𝑝𝑢𝑡 (𝑠) if and only if 𝑡 is reachable by 𝑠 in the failure tree.

Proof. By the output function definition, 𝑜𝑢𝑡𝑝𝑢𝑡 (𝑠) contains
every keyword that appears as a suffix of 𝑠 . By definition, we also

know that 𝑓 𝑎𝑖𝑙𝑢𝑟𝑒 (𝑠) points to the longest proper suffix of 𝑠 that

is also a prefix of a keyword (both affirmations were proven in
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the original Aho-Corasick paper [1]). Then by Lemma 3.1, this

statement is true. □

The following lemma defines the 𝑜𝑢𝑡𝑝𝑢𝑡𝐿𝑖𝑛𝑘 function.

Lemma 3.3. 𝑜𝑢𝑡𝑝𝑢𝑡𝐿𝑖𝑛𝑘 (𝑠) = 𝑡 if and only if, among all 𝑝 where
𝑝 is either a keyword ending state or the root and 𝑝 is reachable by 𝑠 ,
𝑡 has the maximum depth.

Proof. We will prove this lemma by induction on the failure

tree depth. By Algorithm 2, 𝑜𝑢𝑡𝑝𝑢𝑡𝐿𝑖𝑛𝑘 (𝑟𝑜𝑜𝑡) = 𝑟𝑜𝑜𝑡 (state 0 is the
root, or the empty prefix), so the lemma is true for depth 0. Now,

assume the lemma is true for all states with depth ≤ 𝑖 . Then, for all
states 𝑠 where 𝑑𝑒𝑝𝑡ℎ(𝑠) = 𝑖 + 1, if 𝑠 is a pattern ending state, then

𝑜𝑢𝑡𝑝𝑢𝑡𝐿𝑖𝑛𝑘 (𝑠) = 𝑠 and the statement holds true. If 𝑠 is not a pat-

tern ending state, then 𝑜𝑢𝑡𝑝𝑢𝑡𝐿𝑖𝑛𝑘 (𝑠) = 𝑜𝑢𝑡𝑝𝑢𝑡𝐿𝑖𝑛𝑘 (𝑓 𝑎𝑖𝑙𝑢𝑟𝑒 (𝑠)),
and by Lemmas 3.1 and 3.2, 𝑜𝑢𝑡𝑝𝑢𝑡𝐿𝑖𝑛𝑘 (𝑠) is reachable by 𝑠 . Since
𝑑𝑒𝑝𝑡ℎ(𝑓 𝑎𝑖𝑙𝑢𝑟𝑒 (𝑠)) ≤ 𝑖 , then the statement holds true, the lemma is

true for depth 𝑖 + 1 and the proof is complete. □

The remaining lemmas describes the 𝑜𝑢𝑡𝑝𝑢𝑡𝑇𝑟𝑒𝑒 and how the

function 𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑒_𝑡𝑟𝑒𝑒 uses it to correctly produce the output.

Lemma 3.4. State 𝑠 ∈ 𝑜𝑢𝑡𝑝𝑢𝑡𝑇𝑟𝑒𝑒 if and only if 𝑠 is either the root
or a keyword ending state that happens in the input text at least once.

Proof. In Algorithm 3, after each 𝑔𝑜𝑡𝑜 transition, we traverse

the failure tree from the current state 𝑠 to the root, through the

𝑜𝑢𝑡𝑝𝑢𝑡𝐿𝑖𝑛𝑘 function. By Lemmas 3.2 and 3.3, every keyword ending

state reachable by 𝑠 is a suffix of 𝑠 and will be added in 𝑜𝑢𝑡𝑝𝑢𝑡𝑇𝑟𝑒𝑒

during this loop. □

Lemma 3.5. During Algorithm 3, for every state 𝑠 ∈ 𝑜𝑢𝑡𝑝𝑢𝑡𝑇𝑟𝑒𝑒 ,
𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑒_𝑡𝑟𝑒𝑒 (𝑠) will be called once.

Proof. We will prove this lemma by induction on the depth of

𝑜𝑢𝑡𝑝𝑢𝑡𝑇𝑟𝑒𝑒 . Algorithm 3 explicitly calls 𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑒_𝑡𝑟𝑒𝑒 (0), so the

statement is true for depth 0. Now, assume the lemma is true for

all states with depth ≤ 𝑖 . Then for a state 𝑠 where 𝑑𝑒𝑝𝑡ℎ(𝑠) = 𝑖 + 1,
let 𝑓 = 𝑜𝑢𝑡𝑝𝑢𝑡𝐿𝑖𝑛𝑘 (𝑓 𝑎𝑖𝑙𝑢𝑟𝑒 (𝑠)). We know that 𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑒_𝑡𝑟𝑒𝑒 (𝑠)
can only be called by 𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑒_𝑡𝑟𝑒𝑒 (𝑓 ). By Lemmas 3.3 and 3.4,

we know that for every state 𝑡 ≠ 𝑟𝑜𝑜𝑡 , if 𝑡 ∈ 𝑜𝑢𝑡𝑝𝑢𝑡𝑇𝑟𝑒𝑒 , then
𝑜𝑢𝑡𝑝𝑢𝑡𝐿𝑖𝑛𝑘 (𝑓 𝑎𝑖𝑙𝑢𝑟𝑒 (𝑡)) ∈ 𝑜𝑢𝑡𝑝𝑢𝑡𝑇𝑟𝑒𝑒 . Since 𝑓 ∈ 𝑜𝑢𝑡𝑝𝑢𝑡𝑇𝑟𝑒𝑒 and
𝑑𝑒𝑝𝑡ℎ(𝑓 ) = 𝑖 , then the statement is true for 𝑓 and 𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑒_𝑡𝑟𝑒𝑒 (𝑓 )
will be called once, therefore 𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑒_𝑡𝑟𝑒𝑒 (𝑠) will be called once

as well. Then the lemma is true for depth 𝑖 + 1 and the proof is

complete. □

Lemma 3.6. For all states 𝑠 ∈ 𝑜𝑢𝑡𝑝𝑢𝑡𝑇𝑟𝑒𝑒 different from the root,
after 𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑒_𝑡𝑟𝑒𝑒 (𝑠) finishes, 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 (𝑠) will be equal to the num-
ber of occurrences of the keyword ending in 𝑠 .

Proof. During the Algorithm 3 main loop, after each 𝑔𝑜𝑡𝑜 tran-

sition, the counter of the current state is incremented. Afterwards,

during 𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑒_𝑡𝑟𝑒𝑒 , the topological order of the traversal guar-

antees that if 𝑑𝑒𝑝𝑡ℎ(𝑠) < 𝑑𝑒𝑝𝑡ℎ(𝑡), then 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 (𝑡) is calculated
before 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 (𝑠). By Lemma 3.2, if 𝑠 is reachable by 𝑡 in the failure

tree, then every occurrence of 𝑡 implies in an occurrence of the

keyword ending in 𝑠 . Thus, 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 (𝑠) is the sum of 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 (𝑡), for
all 𝑡 such that 𝑑𝑒𝑝𝑡ℎ(𝑠) < 𝑑𝑒𝑝𝑡ℎ(𝑡) and there is an edge between 𝑠

and 𝑡 in the 𝑜𝑢𝑡𝑝𝑢𝑡𝑇𝑟𝑒𝑒 . □

Theorem 3.7 addresses the validity of theWord Counting Aho-

Corasick.

Theorem 3.7. Algorithm 3 produces valid outputs.

Proof. By Lemma 3.4, 𝑜𝑢𝑡𝑝𝑢𝑡𝑇𝑟𝑒𝑒 contains every keyword end-

ing state that happens in a text at least once. Furthermore, by

Lemma 3.5, for every 𝑠 in 𝑜𝑢𝑡𝑝𝑢𝑡𝑇𝑟𝑒𝑒 , function 𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑒_𝑡𝑟𝑒𝑒 (𝑠)
will be called once. Finally, by Lemma 3.6, after traversing the

tree, every keyword ending state 𝑠 will have the correct value of

𝑐𝑜𝑢𝑛𝑡𝑒𝑟 (𝑠) and will be mapped to the keyword index 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝐼𝑑 (𝑠).
Therefore, the output produced by Algorithm 3 is valid. □

4 EVALUATION
In this section, we will evaluate the new algorithm, comparing with

the original Aho-Corasick. We will establish research questions,

plan the experiments, discuss the results and point out threats to

validity.

4.1 Goal and Research Questions
Ourmain goal for the evaluation is to compare the time performance

of both the original Aho-Corasick and theWord Counting Aho-

Corasick. Specifically, we have three questions:

RQ1 To what extent our algorithm is better than the original one

with respect to different text lengths?

RQ2 To what extent our algorithm is better than the original one

with respect to different dictionary sizes?

RQ3 To what extent our algorithm is better than the original one

with respect to different alphabet sizes?

4.2 Planning
Both Algorithms were implemented by the authors in C++ [5],

and compiled using the -O3 optimization flag. The original Aho-

Corasick algorithm was accordingly modified to produce the same

output as the optimization (i.e., the number of occurrences of each

keyword), with no impact on its runtime.

The experiments were run on a personal computer, with an Intel

Core i7-8750H CPU, 2.2GHz clock speed, 384KB L1 cache, 1.5MB L2

cache and 9MB L3 cache, and a 16GB DDR4 memory at 2667MHz,

running a 64-bit Windows 10 operating system.

To evaluate the proposed modification, we conducted experi-

ments using two alphabets: English text (lowercase and uppercase

letters, and digits) and DNA bases (𝐴, 𝐶 , 𝐺 and 𝑇 ). The purpose is

to test how well it performs on alphabets of different sizes (62 and

4, respectively).

The English texts were generated randomly, and the DNA se-

quences were downloaded from the National Center for Biotechnol-

ogy Information (NCBI) [10]. All patterns were generated randomly

with varying lengths from 1 to 20 symbols. For each alphabet, we

conducted three tests, with a dictionary size of 1KB, 1MB and 10MB.

Table 5 shows the time taken to construct the structures for each

alphabet and dictionary size. After constructing the pattern match-

ing machines, we executed the search algorithms, increasing the

text size from 10MB to 100MB.

4.3 Results and Discussion
Figure 5 shows the results of the experiments.
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(a) English, 1KB pattern set (b) DNA Sequences, 1KB pattern set

(c) English, 1MB pattern set (d) DNA Sequences, 1MB pattern set

(e) English, 10MB pattern set (f) DNA Sequences, 10MB pattern set

Figure 5: Conducted experiments for different pattern sets.

We conducted experiments with different text lengths, dictionary

sizes and alphabets. With the results in mind, we can answer the

questions made in Section 4.1:

RQ1 As the text length increases, the disparity between the two

algorithms increase, due to their time complexities: while

the Aho-Corasick computes every keyword occurrence, the

Word Counting Aho-Corasick only processes the first

occurrence of each pattern.

RQ2 The larger the dictionary gets, the more keyword occur-

rences a text can have. Our experiments have shown that the

Word Counting Aho-Corasick had a better performance

with different dictionary sizes.
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Table 5: Time taken to build a patternmatchingmachine for
each pattern set, for both implementations.

Alphabet Dictionary Build time (milliseconds)

Size Words Aho-Corasick Optimization

English 1KB 100 < 1 < 1

English 1MB 93,974 346 359

English 10MB 910,937 4586 4676

DNA 1KB 87 < 1 < 1

DNA 1MB 79,731 96 112

DNA 10MB 751,033 525 590

RQ3 A smaller alphabet means the keywords are closer to each

other, causing potentially more occurrences per text charac-

ter. The Word Counting Aho-Corasick performed better

on a smaller alphabet size (the DNA bases). Nonetheless,

the optimization still achieved better runtimes on a large

alphabet (62 symbols).

The proposed optimization achieved better performance in every

conducted experiment. In the majority of the experiments,Word

Counting Aho-Corasick completed the search more than 100%

faster than the original algorithm. Note that, in Figure 5d, the exe-

cution times were 300% faster in the optimization.

As for the build times, we can see in Table 5 that the construction

of the Word Counting Aho-Corasick is slightly slower than the

original algorithm since it creates additional arrays in memory.

However, the arrays lengths are proportional to the total size of the

keywords, so the space complexity of both algorithms is the same.

4.4 Threats to Validity
Both algorithms were implemented by the authors. Although this

may pose a threat to validity, we followed the algorithms presented

in the original Aho-Corasick paper [1], making the implementations

straightforward. The algorithms are not restricted to a specific

language. They are designed to function with all kinds of alphabets

and symbols (even integer numbers instead of characters).

The experiments were made in a personal computer, subject to

time variations caused by loss of CPU to other running processes.

Also, the pattern sets and the English texts were generated ran-

domly, which may not reflect real-world scenarios. However, since

pattern matching is a problem that finds applications in many do-

mains (human language, DNA bases, bytes and integer numbers),

we wanted to evaluate the proposed algorithm in a general way, so

it would not be associated to a language, such as English. Although

the validity of the performed evaluation might be threatened by

these factors, the theoretical discussion of Sections 2 and 3 is not

affected by it.

5 CONCLUSION
In this paper, we have proposed an optimization for the Aho-

Corasick search algorithm, calledWord Counting Aho-Corasick,

for cases where we are only interested in the frequencies of the

patterns. We have shown that the presented algorithm has a time

complexity of 𝑂 (𝑚 + 𝑛 + 𝑢), while the original Aho-Corasick time

complexity is𝑂 (𝑚+𝑛+𝑜), where 𝑜 is the total count of keyword oc-
currences and𝑢 is the number of different keywords that appears at

least once in the text. We have seen that 𝑢 ≤ 𝑜 , so the optimization

is expected to have better runtimes in most cases, using slightly

more memory. We performed tests and confirmed that the proposed

modification achieved better execution times in all inputs of our

dataset.

The proposed modification can be helpful in many specific ap-

plications, where the Aho-Corasick is being used only to count the

number of appearances, and the locations of the occurrences are

not relevant to the problem. Such applications might be in the area

of natural language processing (to count n-grams in a document), or

DNA sequence analysis (to count k-mers, equivalent to the n-grams,

in a genome sequence), and so on.

5.1 Related Work
The Aho-Corasick algorithm is widely studied as researchers try to

optimize it even further. Dori and Landau [3] described a method to

build the Aho-Corasick finite state machine in time proportional to

sum of pattern lengths, regardless of the alphabet size, using suffix

arrays. Nishimura et al. [9] described an optimization using Huff-

man Codes and rearranging states. Both studies can be combined

with theWord Counting Aho-Corasick to improve even more

its performance.

Even though there are many contributions involving the Aho-

Corasick algorithm, to the best of our knowledge, there is no other

work related to the optimization proposed in this paper.

5.2 Future Work
For future work, a better testing methodology can be used, with

more realistic texts and patterns. Also, a more controlled environ-

ment for the experiments, so the execution time can be calculated

more accurately, alongside with the memory consumption for the

algorithm. The proposed modification can be combined with other

known Aho-Corasick optimizations [3, 9] to reduce even more the

algorithm execution time. Furthermore, we plan to develop and

demonstrate a proof of time complexity for the proposed optimiza-

tion.
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