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Abstract—Making innovative, cohesive and appealing games
has become inherently more difficult given the ever increasing
competition in the digital games’ market. Manually creating
game content is expensive and time-consuming. Therefore, al-
ternative approaches for game content creation are relevant for
increasing the efficiency of the game development process. This is
where procedural techniques step in. Even though they have been
used by commercial games since the 1980s, it was only in recent
years that this kind of approach has been given the righteous
attention in the academic context. In this work, we propose
a procedural content generation approach for creating infinite
environments for a 2D platform runner game. The approach
consists of a Genetic Algorithm that innovatively takes into
account environment aesthetics as well as game’s physics and
rules in its fitness function. Therefore, the created environments
should be pleasant and possible to be overcome by the player.
An instantiation of the approach was developed using the Godot
Game Engine. Time viability for in-game real-time generation
and convergence to high/stable fitness values were experimentally
evaluated. Our tests indicated parameter ranges that performed
best in terms of environment quality and processing time were
mutation rates between 0.5% and 1% aligned with a population
ranging from 50 to 100 individuals. This approach is expandable
to other games that have a tilemap-based environments.

Index Terms—Procedural Content Generation, Genetic Algo-
rithm, Game Development, Artificial Intelligence

I. INTRODUCTION

Digital games have become increasingly popular over the
past few decades. In 2014, for example, the gaming industry
was generating sales around 47 billion USD annually [1].
Recent research by the Software Entertainment Association
(ESA) in 2020 found that 75% of households in the United
States have at least one person who played video games. More
than 4000 Americans were interviewed [2].

A. Problem Statement

Despite being a promising market, the Digital Game In-
dustry faces a number of challenges. Among them, there is
the time needed to create high quality games. Typically, this
period lasts between 1.5 to 3 years. This is due to the fact
that the construction of each component of AAA1 games is
quite a complex task, as it requires different technical and

1Read ”triple-A” games. They are considered the highest quality games on
the market, usually developed by large companies and by a large number of
professionals from the most diverse areas [3].

artistic skills. If we had to divide the components of a game
into two parts, these would be: the engine and the content.
The first dictates the rules of the game, provides the rendering
of the graphics that the player sees throughout the different
states of the game. The content corresponds to all the game
entities, such as its world, interactive objects, stories, missions,
textures, narratives, items, vehicles, characters, sound effects
and music [1], [4].

As hardware technology advances, the range of content pos-
sibilities that can be rendered increases. Over the years, games
have reached greater level of detail, number of simultaneously
rendered objects and even the complexity of their behavior.
Thus, what used to be simpler to be built by one or a few
people, becomes not viable for some projects, due to the high
workload involved. To remedy this problem, one can think of
hiring more professionals to meet the demand, or even reuse
existing content generated for other similar projects owned by
the company, negatively impacting originality.

Among the various game genres and content types, this
work focuses on the task of creating a playable environment
for a 2D endless platform game. This comprises having to
consider the constraints imposed by the game rules in the
content creation methodology. Furthermore, the game has to
present the player with unique playable environments in real-
time, as he/she explores it.

B. Solution

In this context, a possible solution for such a task is to
use Procedural Content Generation (PCG). Broadly speaking,
PCG consists of a technique in which the content is not created
manually, but rather algorithmically - or procedurally. In other
words, the content is generated partially or totally by some
algorithm. In this work, we focus on using an evolutionary
algorithm to create the environment for a bi-dimensional (2D)
platform game as mentioned before. This approach is an ex-
ample of a search algorithm which is inspired in the Darwin’s
Theory of species evolution [5]. Evolutionary Algorithms
have been widely used in many artificial systems and are also
considered a form of reinforcement learning [6]. Particularly,
we used a genetic algorithm which encodes possible solutions
for the problem as individuals with a digital representation
of its genetic code and apply operations such as mutations,



crossovers and natural selection simulations over the course
of generations based on a fitness function. Eventually, the
best individual is chosen to be incorporated into the game
environment as the player explores it in real-time. More details
on this technique are given in Section III.

C. Goals

As mentioned, this work focuses on generating the envi-
ronment of an interactive bi-dimensional platform game. Our
proposed approach is be able to generate:

1) the platforms on which the player can walk/run and jump
onto2;

2) the power-ups3 that help the player achieve the game’s
goals;

3) a certain density of enemies per area that meets a
tolerance range4; and

4) an overall cohesive environment that can be explored in
real-time as it is procedurally created.

D. Paper Structure

The remainder of this paper is structured as follows. Section
II contains some background about the game development
industry, procedural content generation and its applications
in games, search based approaches and an introduction to
the basics of genetic algorithms. Section III presents core
aspects in the proposed approach’s architecture, such as how
the game world is represented, technologies used, how the
genetic algorithm’s fitness function selects the best candidate
solutions and other particularities of the procedural generation.
Then, in Section IV some of the main results obtained from the
validation tests performed are presented. Section V discusses
some related works that propose alternative approaches to
similar 2D platform games. Finally, Section VI contains final
considerations and conclusions on the contributions of this
work.

E. Publication

This work was presented as a full paper in the Computing
Track of the Brazilian Symposium on Computer Games and
Digital Entertainment (SBGames) 20205, which is organized
by SBC (Brazilian Computing Society). A brief video presen-
tation is available here.

II. BACKGROUND

To better understand the context and motivations for proce-
dural content generation approaches, this section presents the
relevant background information.

2This implies the platforms must be disposed in a way as to make it possible
for the player character to move between platforms, given restrictions such
as its maximum jump height and horizontal speed.

3Items that grant the player some sort of beneficial attributes.
4Again, regardless of the difficulty, the game must be beatable.
5Proceedings available at this link.

A. Game Development Industry Challenges

As already mentioned, the gaming industry generates bil-
lions of dollars every year [1], [7]. However, the workload
required to develop appealing games is increasingly demand-
ing. This raises the cost of production both from a financial
and time standpoints. Typically, larger games may cost from
thousands to millions of dollars to produce and take between
18 and 36 months to be ready for release.

Among the challenges involved in the game development
process, the content creation task is particularly important.
This may involve the narrative, texture of the characters, their
attributes within the game, scenery, voices, music etc. This
usually requires hiring several professionals and coordinating
them to harmoniously converge to a cohesive game. In this
context, alternative approaches may be essential for the feasi-
bility of the game in a reasonable time.

B. Procedural Content Generation

Procedural Content Generation (PCG) is a technique for
creating content algorithmically. This content may be anything
such as poetry [8], music [9]–[11], narratives [12], game rules,
images, videos and so forth.

Togelius et al. [13] suggest that the use of PCG for games
does not encompass content that was created by players –
online or offline. Also, concerning whether or not PCG implies
the use of randomness, some authors abide by the definition
that it does, such as Andrew Doull [14]; whereas others
like Togelius et al. do not [13], [15]. Therefore, according
to the former, it would be possible to create non-stochastic
procedural content.

As mentioned, PCG has been used in digital games since
the 1980’s. At first, it was closely related to the hardware
limitations of that time, specially storage devices [4], [7].
One of the early examples of a PCG game was the game
Elite [16], made in 1984. It immersed the player into immense
galaxies and star systems that were generated procedurally. Its
deterministic algorithm was based on the Fibonacci sequence
and a chosen numerical seed. This proved to be interesting
for players who enjoyed exploring the vast content present
in the game world. Furthermore, beyond the hardware limita-
tions, PCG makes infinite game content a feasible task. This
increases replayability6 [4], if done properly.

Even further, it is possible to make environments adapt
to each player’s gameplay. One may even argue that PCG
helps mature the very process of game content creation.
Artificial Intelligence (AI) supported PCG in games enables
the development of highly creative systems and tools that
enhance the process of game design [17]. This is specially
important in the competitive game market. Therefore, in order
to remain relevant in the commercial scene game companies
must seek richer game designs. Attention to detail does not
go unnoticed by players, which are more likely to spend their
money on games that are genuinely worth it.

6Making the player play the game again without feeling tired of it.



More recently, one of the most famous games that use
PCG is Minecraft [18]. An interesting fact is that this game
was originally created by a single developer: Markus Persson,
who founded the company Mojang and released the game
under its name. When the player starts the game, a portion of
the map is procedurally generated and expands as the player
explores beyond its original boundaries. However, because
of an astonishing success, Microsoft decided to buy Mojang
for 2.5 billion USD and continues its development to this
day [19]. Other titles worth mentioning for the use of PCG
are: Spelunky [20], Dwarf Fortress [21], No Man’s Sky [22],
Diablo III [23], Just Cause [24] and Rogue [25].

PCG has gained such traction in the past decade that
competitions have been arranged to stimulate exploration of
this field. An example of this is the Angry Birds Level
Generation Competition, which had its third edition in 2018,
in an ACM conference on Computational Intelligence and
Games (CIG) [26]. Besides the aforementioned games, there
is a framework called Mario AI7, which presents researchers
with a Java interface that exposes several playing agents, level
generators, original Mario Bros levels, human readable level
and so forth. Among researchers who used it, there is an
experiment conducted by Togelius et al. [27], who used the
own user gameplay as input for the procedural generation
algorithm. Players reported being impressed by the flexibility
at which the environment creation was implemented. Another
related research was conducted by Ferreira et al. [28], who
applied GAs to generate a Mario level. To accomplish it, they
separated the generation in four layers: terrain, interactible
blocks, enemies and coins. Among the criteria used in the
fitness fuction, they accounted for the terrain entropy (how
irregular it was) and the even distribution of the other elements
across the level.

Because there are many aspects in PCG techniques, tax-
onomies have been developed to categorize PCG approaches
by Hendrix [29]; Kelly and Cabe [30]; Togelius et al. [31];
and Oliveira and Seabra [32]. Among these aspects, one may
consider the type of content generated; techniques; generation
time; input; scale; variaton; correctness of result; stop condi-
tion; determinism; complexity and others.

C. Search-Based Algorithms

This is a category of algorithms whose main objective is to
explore candidate solutions for a problem. They are guided
by some heuristic which mainly depends on the definition
of a fitness function to evaluate how good a given instance
of a candidate solution is. After a determined number of
iterations or when the desired fitness is found in a candidate,
the search may be taken as completed [15]. A relevant question
in this kind of approach is how to encode the candidates such
that they can be processed by a discrete machine. Encoding
real-world problems is not a trivial task, as complexity is
often a computationally prohibitive aspect encountered in
many scenarios. In order to simplify the encoding, one may

7Available at http://marioai.org/.

use a direct or indirect approach. In the direct approach,
every characteristic of the candidates are written explicitly;
whereas the indirect encoding condenses more abstract or
high level aspects of the candidates in a non-linear fashion.
Each approach has advantages and disadvantages regarding
computational complexity and level of detail [15], [33], [34].
Given the inherent complexity involved in the search-based
approach, optimizations are recommended whenever possible.

D. Genetic Algorithms

This kind of search-based approach is inspired in Darwin’s
Theory of Evolution [5]. Each candidate solution is interpreted
as a biological individual with a genetic code that represents
its characteristics [35] [6]. This idea was first introduced
by Holland [36] and eventually explored in other studies in
a variety of applications. In Genetic Algorithms (GAs), the
highest scored individuals have a higher chance of surviving
over generations (elitism) and higher probability to pass along
part of its genetic code by crossing over with another individ-
ual [37]. GAs may be implemented with slight differences,
but the overall flow of operations is the same, as seen in
the Algorithm 1, presented in Section III, which is adopted
for implementing our proposal. A population of individuals
of size N is initialized with random genes. Then, for each
new generation (iteration), a small percentage of the best
individuals are kept intact for the next generation (elitism).
Then, the rest of the new population is the offspring resulting
from crossover operations with the randomly selected pairs
of parents from the previous generation. This selection is
biased by the fitness of the individuals, such that the higher
the fitness, the higher the chances of becoming a parent.
This crossover operation is better discussed in Section III-G.
The renewed population, then, suffers mutations based on the
defined mutation rate. The number of iterations is defined by
the user.

One problem in this search-based approach is that there is no
guarantee that a valid solution will ever be found. Therefore,
it may be necessary to add mechanisms for ensuring minimum
restrictions are not broken after all the iterations (generations)
[4]. On the other side, GAs are attractive for being able to
handle multiobjective, non-continuous and even NP-complete
problems. Furthermore, they are relatively simple to under-
stand [37].

III. SOLUTION ARCHITECTURE

In the following subsections, further details on each step of
the approach are presented.

A. Solution Overview

The context of this paper is in the realm of 2D platform
games. This type of game usually involves a form of physics
simulation in which the characters (or actors) can perform
actions such as walk, jump, fall and collide on platforms,
walls, and other game entities. The main goal of this work is
to procedurally generate a playable game world in real time.
To achieve that, a Genetic Algorithm was implemented which



generates the level dynamically as the main player explores
it. Before the game starts, the area around the player spawn
point is generated and cached into memory and a chunk of
it is decoded and rendered into the visible game world. As
the player advances in the horizontal (x) axis towards the
current world limits, new chunks are generated using the
GA approach and appended to the previous generation global
limits. This secondary generation happens in parallel with the
game execution, such that the player has a seamless gameplay.

The Algorithm 1 has the overall execution flow of the GA-
based game content generation proposed in this work. The
representation of the population’s individuals is detailed in
Section III-D. The initialization of the population is explained
in Section III-E. The iGen variable represents the number of
each generation. The selection mechanism of best individuals
and parents is explained in Section III-G. The mutation is im-
plemented with a pseudo random algorithm that may slightly
change each gene with probability proportional to the chosen
mutation rate.

P = randomly initialized population of fixed size N ;
iGen = 0;

while iGen < maxGen do
E = selectBestIndividuals(P , elitismRate);
C = selectParentsAndCrossover();
P = union(E, C);
P = mutateIndividuals(P , mutationRate);
iGen += 1;

end
Algorithm 1: High-level pseudo-code for the Genetic
Algorithm used in this work.

B. Technologies Used

In order to implement the proposed approach, the Godot
Game Engine8 was used. It is an open-source software re-
leased under the MIT License. It supports 2D and 3D game
development. Among the programming languages it supports,
we chose to use C#.

C. Test Game

To demonstrate the algorithm, a 2D platform game was
developed9. In this particular game, the player is able to move
towards either horizontal direction and perform actions such
as walk, steer mid-air and jump. The goal of the game is to
keep playing for as long as possible without letting the player
fall down a hole or letting the time run out. In order to extend
the time left, the player has to pick up clock items that are
found in the game world. Fig. 1 depicts a sample of a rendered
chunk of the created game.

8Available at https://www.godotengine.org and source code at
https://github.com/godotengine/godot.

9Game source code and reproduction steps available at
https://github.com/rafaelgdp/evopcg.

Fig. 1. Screen capture of the Test Game created.

D. World Representation

When rendered into the game, the world consists of a bi-
dimensional matrix of collidable/interactible 64 × 64-pixel
blocks that have certain properties within the game rules.
Each cell is indexed with a 2D (x, y) coordinate that maps
itself to its respective global 64×64 pixel square horizontally
and vertically. However, in order to be generated by the GA,
the infinite game world is sectioned into finite chunks that
represent the space in a given horizontal (x) range.

To achieve this, a special representation was chosen. Instead
of using a bi-dimensional matrix of symbols defining the
block in a given (x, y) index, a uni-dimensional data structure
similar to a doubly linked list was used. Each node in this
list is an object that represents the information of all game
elements in its x index. More formally, let each node on
the doubly-linked list be called GeneColumn (GC). Each GC
has properties such as: the ground height, presence/position
of spikes, presence/position of a clock, reference to the GC
on its immediate left and right. Fig. 2 depicts a simplified
UML diagram with some of the properties present in the
GC representation. Because each GC has a reference to its
immediate neighbors, from any given GC that represents the
game world, it is possible to reach or inspect the entire
generated game world if necessary, simply by traversing the
data structure.

A doubly linked list is an effective data structure to perform
insertions in its head and tail dynamically. This is particularly
useful in this PCG approach as newly generated chunks are
ready to be appended to the game world either to the left or
the right. Fig. 3 shows how this data structure maps to the
cells in a given chunk of a horizontal (x) range of length 3.
As may be seen, each node has all the necessary information
for the game renderer to correctly place the cells in the game
world. This is also useful for extracting features from the game
world that are important for measuring the fitness function in
the GA as described in Section III-F.

When the genetic code is decoded and rendered into the
game world as a bi-dimensional block matrix, each block
visually corresponds to an entity that is within the area of



Fig. 2. Simplified UML representation of a GeneColumn.

Fig. 3. Mapping from the doubly-linked list-like data structure that carries
the genectic code from the generated individuals to its representation in the
game world.

a 64 × 64 pixels square. The environment is, then, formed
by contiguous blocks that are laid side by side. The possible
types of environment blocks are described in Table I. The table
also shows characters used by a simplified representation of
the game world matrix for in-game visualization/debugging
purposes.

E. Population Initialization

Whenever a new chunk of terrain needs to be generated,
a new population of N individuals (environment chunks) is
created. Each individual consists of two connected sub-chunks.
One is an immutable reference chunk and another is a mutable

TABLE I
CHARACTER-ENCODED GAME BLOCKS USED FOR GENETIC CODE

REPRESENTATION

Character Meaning Description

B Blank Absence of a block. The player
may pass through this area.

G Ground
A block on which the player and
other physics entities may land
on and collide with.

S Spike A collidable block that harms
the player character.

C Clock A pickable item that grants
extra time to the player.

c Placed Clock
A clock that was already placed
(rendered) in the environment or
picked by the player.

chunk where the actual generation takes place. The reference
chunk is simply there to help the fitness function of the GA
to determine the best individual that connects to the reference
chunk. Otherwise, the generated chunk could be drastically
different from its neighboring area and still score a high fitness.
The reference chunk is static, which means the mutations and
crossovers in the GA do not affect it. However, the reference
chunk is used alongside the mutable chunk by the GA to
determine the individual fitness.

F. Fitness Function

One of the most important design aspects of GAs is the
fitness function. It is used to rank individuals of a population
which are closest to a desired solution. We measured it with
an integer value. The higher the value, the better the individual
potentially is to be used as a solution. Upon initialization, each
individual receives a given numeric fitness. For each positive
feature encountered within its genetic code, a positive integer
is added to its fitness. Likewise, for each negative feature, a
certain amount is subtracted. If a feature is extremely negative
(such as an impossible level), a significant amount would be
decreased. The following features were considered:

• Safe jumps: for each safe block the player can land on,
several jump simulations are performed to the neighbor
safe blocks. For each possible safe jump, a small amount
is added to the fitness. If the simulations identify an area
in which there are no possible safe jumps, a great penalty
is applied to the fitness. Fig. 4 depicts some parabolas
that simulate possible player jump trajectories from a
given starting block position. Each parabola starts at the
safe block being inspected and ends precisely on 64-
pixel separated spots that coincide with contiguous block
widths.

• Ground level: for each subsequent column in the matrix,
the ground height is compared to the the value immedi-
ately before. If the difference is greater than the maximum
player jump height, a huge amount is decreased, because
this would mean an impossible level. Likewise, if the
ground is very irregular, but still playable, a smaller
amount is decreased.

• Holes: if there are holes that separate two platform chunks
longer than the player jump could overpass, the fitness is
also be significantly decreased, as this means the game
is also be impossible.

• Enemy density: if there are contiguous spikes (blocks that
decrease the time left) such that they would be impossible
to be surpassed by the player jump, the fitness would
also decrease significantly. Likewise, even if surpassable,
there should not exist too many nor too few spikes for a
given horizontal (x) range (density). Therefore, the fitness
function penalizes if there are less or more spikes per area
than a tolerance range.

More formally, the fitness function is defined by (1).

fitness(i) = if(i) + sf(i) + hf(i) + cf(i) + jf(i) (1)



Fig. 4. Player jump simulations from a starting block at x = 0 to the right.
Each landing x to the right is separated by 64 pixels to represent block
distances.

Where,

if(i) = 200× w(i) (2)
sf(i) = −omsd(i)× sp (3)
hf(i) = −ohc(i)× hp (4)

cf(i) = k × it(i)− abs(it(i)− ct(i)) (5)
jf(i) = −chp(i)× ch(i) (6)

Most of these parameters are functions that have a given
individual i as input and output i’s respective:

• if(i): initial fitness of an individual;
• w(i): genetic width of an individual. It’s the number of

GCs in an individual chunk;
• omsd: over maximum contiguous spike distance. It’s

a sum of all lengths of contiguous spike chunks that
are over the maximum allowed in a given individual.
This value depends on player jump height and maximum
horizontal speed;

• sp: spike penalty (constant equal to 50);
• ohc(i): number of oversized hole columns of an individ-

ual;
• hp: oversized hole column penalty (constant equal to

100);
• ct(i): sum of clock extra times in the given area covered

by an individual chunk;
• k: a constant equal to 5;
• it(i): ideal extra time an individual chunk should have,

defined in (11);
• ch(i): contiguous hazard blocks of an individual. It’s a

sum of all contiguous unjumpable hazardous blocks such
as spikes or holes both from the left to right and vice
versa;

• chp: contiguous hazard penalty (constant equal to 50).
Concerning the jump simulations, multiple parabolas are

used as a simplified model for the infinitely possible ways
a player can actually jump from one safe block to another.
Fig. 4 depicts the simulated trajectories of jumps performed
from a given safe block in a X = 0 towards the possible right

blocks. The equations of the parabolas are of the following
form:

y = jc× x× (x− dl) (7)

Where,

jc =
d− d2/2

H
(8)

jt = −jf/g (9)

H = jf × jt+
g × jt2

2
(10)

Or, in words,
• jc: is a numerical constant directly related with the player

jump force.
• jf : is the player jump force (its initial y velocity when

taking off from the ground).
• jt: is the time in seconds the jump takes to reach its

maximum height.
• g: is the gravity acceleration in pixels/second2.
• H: is the maximum height the player jump can reach.
• dl is the distance in pixels to the l-th simulation landing

block.
For evaluation the ideal time-traversal considerations for

clock placement, we have the following equation:

it(i) = m× cw(i)× tpw(i)/ps (11)

Where,
• it(i): is the ideal extra time the clocks in a given

individual chunk should grant the player in order for it
to traverse it horizontally in a straight line;

• cw(i): chunk width. It’s the number of horizontal blocks
a given individual chunk has;

• tpw(i): tile pixel width of an individual;
• ps: player maximum horizontal speed. It’s measured in

pixels per second;
• m: multiplier. Since it’s humanly improbable to collect

all the clocks optimally in order to avoid a timeout, this
number increases the ideal time to a more player-friendly
time.

G. Elitism and Crossover

When evolving over the generations, the GA copies a small
percentage of the population to the next. Even though these
individuals are copied as is, they can still be changed by
mutation, according to the mutation rate. The rest of the next
generation population is created by recombining the genetic
codes of individuals from the previous generation in pairs
(here, called parents). Individuals from the previous generation
are chosen as parents with probability proportional to its fitness
value in comparison to the others. This means that higher
valued individuals have a higher chance of being chosen as
parents, but even the lowest fitness valued individual can still
be chosen. When a pair of parents is chosen, the next step is
to choose the crossover point. Since all individuals of a given



population represent contiguous blocks of the same horizontal
(x) range in the game world, this crossover operation happens
in a single point, such that the left parent passes along the
genes for the left part of the chunk, and the right parent to
the right portion. The crossover point is randomly chosen in
a central region of the horizontal range. If the chosen point
has an Obstacle Height that is too different from the other
(i.e. the player cannot jump from the lower to the higher), this
means that this crossover point is incompatible. The algorithm,
then, attempts to choose other contiguous points to the left and
right alternatively in the crossover region. If no crossover point
is found, the algorithm gives up trying to find a compatible
crossover point and the crossover point is the last value in
the trials. Fig. 5 depicts an example of this operation. Notice
that the colors represent the genes from the left and right
parent. Since the maps tend to be around the same average
height, not finding a compatible crossover point is rare. Even
if this happens, the resulting individual would potentially
present a low fitness value and be eventually discarded over
the generations.

Fig. 5. Crossover operation. A preferably compatible crossover point is
randomly chosen in the central region.

IV. EXPERIMENTAL EVALUATION AND RESULTS

To evaluate the proposed approach, batches of simulations
were run with different population sizes and mutation rates
for map chunks with 100 GCs in length. These tests were run
on a Macbook Pro 2018, with a 2,2 GHz 6-Core Intel Core
i7 processor, 16GB 2400 MHz DDR4 RAM. Each parametric
batch consisted of the following configurations:

• Population sizes: 10, 25, 50, 75, 100, 150, 250, 500, 1000.
• Mutation rates: 0.05%, 1%, 2.5%, 5%, 10%.
• Elitism: 5%, 10%, 20%.
Taking into account the test game created, the 100 GCs

generated imply that the chunk created consists of a horizontal
length of 100×64 = 6400 pixels. If the player has a maximum
horizontal speed of 500 pixels/second, it means this area could
be walked in at least 12.8 seconds (if there were no obstacles

(a)

(b)

Fig. 6. Simulations with population size 10 and mutation rates of 0.5%, 1%,
2.5% and 5%. The legend also shows the time lapse in seconds for 250 and
1000 generations.

nor the need for mid-air steering maneuvers). Even though it
is more probable that this is not the actual time a real player
would take, it is a good baseline for the chunk generation
algorithm processing time.

Figs. 6, 7, 8 show the fitness over the generations for
some of the experiments. The blue and orange lines represent
the fitness of the best individual and the mean of 5% best
individuals in each generation, respectively. The green and red
lines are the mean and median of the fitness in each generation.
An indication for the processing time for the first 250 and 1000
generations are presented in the label. They revealed that, for
this type of generation, the higher the mutation rate, the less
likely it is for the algorithm to find better solutions over the
iterations. Mutation rates of 2.5% or higher were very unstable
across all simulated population sizes. Even worse, there were
scenarios in which the fitness of the best individuals over
the generations were getting lower values, as depicted by the
sample images. This means that mutation rates of 2.5% or
higher are not recommended for the generation of desirably
playable maps with this particular approach.

However, low mutation rates of 0.5% and 1% rendered
much better individuals over the generations even with small
population sizes as low as 10. The experiments also showed



(a)

(b)

Fig. 7. Simulations with population size 50 and mutation rates of 0.5%, 1%,
2.5% and 5%. The legend also shows the time lapse in seconds for 250 and
1000 generations.

that higher population sizes yield better individuals in less
iterations. Nonetheless, the higher the population size, the
higher is the processing time per generation. Therefore, it is
necessary to choose the right balance between quality and
generation processing time. For this type of generation and
the aforementioned hardware used, the population size of 50
and mutation rate 0.5% took around 1.5 second to process
250 generations and reached a satisfactory fitness. This is less
than 12% of the optimal player area walk time. Therefore, nice
playable maps can be generated in a safe time window such
that the player can move at its top speed and never reach an
area before it can actually be algorithmically generated.

Another point to consider is that the rate at which the fitness
increases over first 100 generations is very high. However,
after this point, the fitness tends to increase at a much lower
rate. As the graphs show, after 200 generations, there is not
much gain in the subsequent generations. Therefore, one may
also choose to add stop criteria such as a lower number
of generations around 250 or when the rate of best fitness
increase decreases significantly. This iteration threshold is
important specially if a larger population size is used due to the
computationally prohibitive time demand that more individuals
entangle, as our tests indicated.

(a)

(b)

Fig. 8. Simulations with population size 250 and mutation rates of 0.5%,
1%, 2.5% and 5%. The legend also shows the time lapse in seconds for 250
and 1000 generations.

Concerning the Elistim parameter, there was no significant
change in percentages of 10% and 20%, so the graphs only
show the results for 5% of elitism. This level leads to mis-
cegenation in the subsequent populations, preserving only the
very best individuals in each.

Finally, it is also worth noting that a GA does not guarantee
that the generated map is playable. Therefore, it is also neces-
sary to add a validation algorithm to check the playability of
the generated map before actually using it in the game world.
However, from the experiments, even the maps generated by
low population sizes of 30 and 5% mutation rate over 10
iterations were all playable. Therefore, it is reasonable to say
that maps generated with population sizes of 75, and 250
generations are probably playable and computable in a safe
time lapse.

V. RELATED WORK

Other proposals to create PCG based on Genetic Algorithms
for platform games have been made. A recent one was
conducted by Classon and Andersson [38], which focused on
incorporating features that impacted on game difficulty in the
fitness function. Therefore, the generation algorithm had the
desired level of difficulty as an input. The tests they performed



concluded that the algorithm was successful in providing
outputs compatible with the difficulty defined in the input
parameter. The game they created had similar features to our
test game such as spikes, a character that can walk and jump,
but it also had other features such as springs that enhanced
the jump height, moving platforms, trees, coins and enemy
chicks. Among the variables they considered in their fitness
function, were: the average width of all gaps, the number of
gaps and the spatial diversity of gaps placed in a level. The
authors also incorporated a validation in their algorithm to
inhibit placement of spikes in undesired spots, such as under
a pit. The present work also does a similar check. Besides
focusing on the desired difficulty as the main goal of the GA,
the levels generated were all finite in length. Their approach
was different from ours in that they relied on human players
to test the game. They measured time taken to complete the
level, number of deaths and a questionnaire was used to gather
subject perceived difficulty. The results were then compared
to the values in the fitness function and showed they were
correlated.

Even though GAs have been used for PCG, other ap-
proaches are also possible in PCG for games. In their study,
Mendes et al. [39] developed a deterministic seed-based ap-
proach for generating levels for a 2D bullet hell game. They
used an integer variable as input that is used to define the initial
values for all the content creation methods. Their algorithm
iterates over validity checks on the minimum requirements
for the rooms that were initially created with the provided
seed. These checks make sure that the pattern of rooms and
entity placement meet a certain acceptable pattern. The rooms
of the game are interconnected by contiguous pathways or
by portals. One of the checks is in the placement of portals
between rooms in the maze. Because the portal placement in
their game is quite complex, they used a logic gate circuit to
make this validity check, reducing programming complexity.

Another study that used a different PCG approach than a
GA for a similar goal was conducted by Summerville and
Mateas [40], which examined the use of Long Short-Term
Memory Recurrent Neural Networks (LSTMs) for generating
levels for of the Super Mario Bros game. The downside is
that the LSTM Neural Network relied on a dataset of human-
made levels for training. Their dataset consisted of real maps
from the original games and eight networks were trained
with different induced sequences. Among the metrics they
considered were the percentage that could be completed by a
simulated agent, the percentage of the level taken up by empty
space, the linearity of the level (how much it resembled a
straight line), the number of jumps required to complete a level
and so forth. They concluded that including the player path in
the metrics significantly improved the quality of the generated
levels, according to their quality metrics. They believe this
consideration may even help human game level designers
create better levels without the need of exhaustive play testing.

As may be seen, PCG approaches for games vary greatly,
depending on the game at hand, hardware, type of content,
available time for processing and other factors. Our approach

is unique and expandable for similar block-based game en-
vironments. Our doubly-linked-list game world representation
with GCs as nodes is specially useful for appending dynam-
ically generated chunks. This enables the creation of infinite
worlds. Furthermore, incorporating or removing features in
the generated world is simply a matter of editing the fitness
function. The GA will, then, search for solutions that match
best with the game generation goals. Therefore, we hope to
have contributed to the area of online PCG for 2D platform
games, specially infinite ones.

VI. CONCLUSION

The experiments presented in this paper showed that the
proposed evolutionary approach is suitable for generating 2D
platform game environments in a sufficient amount of time
such that it may be used to generate new chunks in real time
(online) as the player explores the map. However, to achieve
good maps, it is crucial that a proper fitness function be
modeled such that the individuals generated carry genes with
the desired features. Furthermore, the parameter that impacts
the most on the convergence of the algorithm to a increasingly
better individual over the generations is the mutation rate.
When it is set to values between 0.5% and 1%, the population
has a much higher probability of evolving to better individuals.
On the other hand, mutation rates of 5% or more are chaotic
and may even render worse individuals over the generations.

Even though higher population sizes tend to converge less
chaotically than smaller ones, the processing time penalty
is prohibitive for real-time level generations. Therefore, it
is the right balance of low mutation rate and medium-sized
populations that yield the best evolutionary procedural content
generation for this specific real-time application. An aspect
that may be explored in a future work is to incorporate the
calculation of the likelihood of evolution leap, which could be
used to measure the performance for each simulation param-
eter [41]. With this approach, the algorithm may dynamically
stop iterating when the fitness evolution rate has decreased
significantly.

We hope to have contributed to game developers and
researchers in the field of procedural game content creation
as this approach may be easily extended to other block based
game environments with new features. All that is required is
that they be incorporated into the fitness function. To achieve
this, one has to implement methods that extract the presence
or absence of desired/undesired features in the individuals and
add/subtract integer values from the fitness value. It is also
important to apply great penalties in the fitness for extremely
negative features (specially ones that render impossible levels).
If the new fitness function is properly implemented, the
algorithm will search for maps that match the generation goal.
After this, it is necessary to edit the method that translates the
GCs that represent the map to the 2D matrix of characters that
represent the blocks of the chunk to be rendered in the game.
If new types of blocks are necessary, it is important to assign
a unique character for each new type of block or game entity.



Finally, besides being expandable in terms of game features
and block types, this work may also be extended in the future
for 3D block-based environments, similar to Minecraft worlds.
To achieve that, a possible first step would be to expand the
proposed one-dimensional doubly-linked list structure for a bi-
dimensional quadruply-linked matrix. In this scenario, suppose
the vertical axis is now z. Therefore, each node (Gene Column
or GC) would have information on the placement of blocks in
its vertical z axis. Each GC would also have references to its
four neighbors (two in the x and two in the y direction). Hence,
each individual in the GA would represent a 3D chunk. Instead
of expanding only in the x direction, it would dynamically
grow in both the x and y directions.
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