

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE

CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA
UNIDADE ACADÊMICA DE SISTEMAS E COMPUTAÇÃO

CURSO DE BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

JÚLIO BARRETO GUEDES DA COSTA

NATURAL LANGUAGE PROCESSING TECHNIQUES FOR

SESSIONBASED RECOMMENDATION

CAMPINA GRANDE PB

2020

JÚLIO BARRETO GUEDES DA COSTA

NATURAL LANGUAGE PROCESSING TECHNIQUES FOR

SESSIONBASED RECOMMENDATION

Trabalho de Conclusão Curso
apresentado ao Curso Bacharelado em
Ciência da Computação do Centro de
Engenharia Elétrica e Informática da
Universidade Federal de Campina
Grande, como requisito parcial para
obtenção do título de Bacharel em Ciência
da Computação.

Orientador: Professor Dr. Leandro Balby Marinho.

CAMPINA GRANDE PB

2020

Elaboração da Ficha Catalográfica:

Johnny Rodrigues Barbosa

Bibliotecário-Documentalista

CRB-15/626

 C837n Costa, Júlio Barreto Guedes da.
 Natural language processing techniques for session-

based recommendation. / Júlio Barreto Guedes da Costa. –

2020.

 13 f.

 Orientador: Prof. Dr. Leandro Balby Marinho.

 Trabalho de Conclusão de Curso - Artigo (Curso de

Bacharelado em Ciência da Computação) - Universidade

Federal de Campina Grande; Centro de Engenharia Elétrica

e Informática.

 1. Processamento de linguagem natural. 2. Sistemas

de recomendação. 3. Recomendação baseada em sessões. 4.

Performance de sistema de recomendação. 5. Matrizes. 6.

Rede neural recorrente. 7. Gated recurrent unit. I.

Marinho, Leandro Balby. II. Título.

 CDU:004(045)

JÚLIO BARRETO GUEDES DA COSTA

NATURAL LANGUAGE PROCESSING TECHNIQUES FOR

SESSIONBASED RECOMMENDATION

Trabalho de Conclusão Curso
apresentado ao Curso Bacharelado em
Ciência da Computação do Centro de
Engenharia Elétrica e Informática da
Universidade Federal de Campina
Grande, como requisito parcial para
obtenção do título de Bacharel em Ciência
da Computação.

BANCA EXAMINADORA:

Professor Dr. Leandro Balby Marinho

Orientador – UASC/CEEI/UFCG

Professor Dr. Cláudio de Souza Baptista
Examinador – UASC/CEEI/UFCG

Professor Dr. Tiago Lima Massoni
Disciplina TCC – UASC/CEEI/UFCG

Trabalho aprovado em: 2020.

CAMPINA GRANDE PB

Natural Language Processing Techniques
for Session-Based Recommendation

Júlio Barreto Guedes da Costa
julio.costa@ccc.ufcg.edu.br

Universidade Federal de Campina Grande
Campina Grande, Paraíba, Brazil

Leandro Balby Marinho
lbmarinho@computacao.ufcg.edu.br

Universidade Federal de Campina Grande
Campina Grande, Paraíba, Brazil

ABSTRACT
Recommender Systems is a field of research and application focused
on identifying and retrieving relevant items given user preferences.
There are many scenarios where a Recommender System can be
applied, but its performance usually depends on the availability of
user consumption historic data. In this work, we evaluate the per-
formance of Recommender Systems in the Session-based scenario,
in which the user cannot be identified, comparing the performance
of naïve, matrix-based, sequential, and session-based models, also
introducing an alternative implementation of one of these mod-
els, based on a specific type of Recurrent Neural Network called
Gated Recurrent Units. We use Natural Language Processing tech-
niques to create three different input strategies and create session
embeddings, analyzing their performance in our model implemen-
tation, extracting insights, and applying fine tuning to achieve
better results. This work was evaluated using a real-world database
extracted from the Last.fm online radio platform.

RESUMO
Sistemas de Recomendação é um campo de pesquisa e aplicação que
objetiva identificar e recuperar itens relevantes, dadas as preferên-
cias do usuário. Existem muitos cenários em que Sistemas de Reco-
mendação podem ser aplicados, mas sua performance usualmente
depende da disponibilidade de dados relacionados ao histórico de
consumo do usuário. Neste trabalho, nós avaliamos a performance
de Sistemas de Recomendação no cenário baseado em sessões, em
que o usuário não pode ser identificado, comparando a performance
de métodos ingênuos, baseados em matrizes, sequenciais, e basea-
dos em sessões, além de introduzir uma implementação alternativa
de um destes, cuja implementação faz uso de um tipo específico de
Rede Neural Recorrente chamado Gated Recurrent Unit. Nós usamos
técnicas de Processamento de Linguagem Natural para criar três
diferentes estratégias de entrada para os dados e gerar Embeddings
das sessões, analisando a performance da nossa implementação,
percebendo possíveis melhorias, e aplicando ajustes finos para obter
melhores resultados. Este trabalho foi avaliado usando uma base
de dados real extraída da plataforma Last.fm.

KEYWORDS
Recommender Systems, Natural Language Processing, Session-
based Recommendation

PALAVRAS-CHAVE
Sistemas de Recomendação, Processamento de Linguagem Natural,
Recomendação baseada em sessões

1 INTRODUCTION
With the evolution of internet, Recommendation Systems (RSs)
have become an essential part of what is accessed everyday. Emerg-
ing in the mid-1990s, RSs are software tools and techniques that
provide customized suggestions for each user, indicating items (e.g.
a movie, a product), to support the process of decision-making.
Social networks, blogs, e-commerce, streaming, and many other
websites and services are applying RSs to improve functionalities,
better retain users, or sell more products. The creation of new RSs
methods involves expertise in different fields, such as Artificial
Intelligence, Machine Learning, Data Mining, Statistics, Marketing,
and others [20].

Traditional RSs rely on historic user data to generate person-
alized recommendations about products or items that such user
is likely interested in. Collaborative Filtering (CF), a widely used
approach, considers interactions of other users to make recommen-
dations. These interactions can either be explicit, such as ratings
given by users to items, or implicit, such as how many times an
user listened to a song, to make recommendations. There are two
different approaches for CF:

(1) Memory-BasedMethods. Also referred to as neighborhood-
based methods, the value of an unseen user-item interaction
is defined according to its neighborhood under certain crite-
ria. These methods can be user-based or item-based, accord-
ing to the neighborhood considered;

(2) Model-Based Methods. In these methods, Machine Learn-
ing (ML) and Data Mining are used for prediction. Examples
include the use of models such as decision trees, regres-
sion models, support vector machines and neural networks
(NNs) [1].

The performance of ML algorithms often depends on the given
data representation, such as predictive features. Deep Learning
(DL), a sub-field of ML, came up with techniques that address such
data representation problem by introducing complex representa-
tions that are expressed in terms of other, simpler ones [9]. DL has
been applied over multiple tasks (e.g. Natural Language Processing,
Image Classification) and achieved remarkable results [7]. Accord-
ing to a recent survey, the increase of available data, among other
factors, encouraged the use of DL in recommendation tasks, and
recently proposed models achieved or overcame state-of-the-art
performance [24].

When addressing DL to Natural Language Processing (NLP),
Recurrent Neural Networks (RNNs) have been used due to the se-
quential nature of the data (i.e. text or audio) in tasks such as speech
recognition, text generation and word spotting [7]. Word Embed-
dings, a more recent data representation strategy that captures the
contextual meaning of the word, was used in recently proposed

, , Costa, J and Balby, L

algorithms that surpassed the previous state-of-the-art methods
[14, 15, 17].

Recalling the recommendation scenario, an important condition
for traditional CF algorithms to work is the existence of informative
user profiles. However, there are many application scenarios, such
as e-commerce websites or streaming services, where this condition
is not satisfied, either because users are not required to authenticate
and/or they are newcomers. This scenario is often called Sequence-
Aware Recommendation, and its goal is to recommend objects that
match a given sequence of user actions [18].

It is important to emphasize that the intent of a user can change
after certain period of inactivity: an e-commerce website user can
search for a book and, some time later, use the same website search-
ing for a cellphone. In such scenario, a RS that analyzes the most
recent interactions apart from the previous ones is preferred, creat-
ing an sub-field called Session-Based Recommendation [12].

Due to the sequential nature of the data, and the notion co-
occurrence of items, RNNs have also been applied in the Sequential
Recommendation and Session-based scenarios, and robust NLP
models that using RNNs have been adapted and proven to be suited
for these tasks [8, 21]. However, they often use different frameworks,
architectures, and datasets, making it difficult to create a direct
comparison. The goal of our work is to evaluate the performance of
Sequence-Aware and Session-based models in a common ground,
and how the data representation might change the performance of
these models. Additionally, we implemented an alternative version
of a Session-based model using the recently released Tensorflow
Recommenders.

2 THEORETICAL BACKGROUND
This section introduces particular concepts of NLP and NNs, essen-
tial to understanding the principal aspects of this study.

2.1 Data Representation
The RSs are applied over three different entities: (1) the users that
interact with the system, denoted by 𝑈 = {𝑢1, 𝑢2, ..., 𝑢𝑛}; (2) the
items available in the system, denoted by 𝐼 = {𝑖1, 𝑖2, ..., 𝑖𝑚}; and (3)
the rating given by an user to an item, i.e., 𝑟𝑝,𝑞,∀𝑝 ∈ 𝑈 ,𝑞 ∈ 𝐼 .

In most RSs scenarios, the goal is the matrix-completion problem:
the data is represented using a 𝑁 ×𝑀 matrix such that each cell
𝑟𝑝,𝑞 represents the interaction between the user 𝑐𝑝 and the item 𝑖𝑞 .
An example of such representation is given in Eq. (1).

©«

𝑖1 𝑖2 . . . 𝑖𝑚

𝑢1 1 3 . . . 4
𝑢2 − 4 . . . 5
.
.
.

.

.

.
.
.
.

. . .
.
.
.

𝑢𝑛 2 3 . . . 3

ª®®®®¬
(1)

In contrast to matrix-completion problems, Sequential RSs re-
ceive a timestamp ordered list 𝐻 = [ℎ1, ℎ2, . . . , ℎ |𝐻 |] where each
element represents an action over an item, but may have additional
contextual information, such as user-related information. The goal
is not predicting the value of each missing 𝑟𝑝,𝑞 , but in computing
an ordered list of objects 𝐿 of length 𝑘 for each user, where each
element 𝑙 ∈ 𝐿 corresponds to an element of 𝑖 ∈ 𝐼 [19], as shown in
Eq. (2).

[ℎ1, ℎ2, . . . , ℎ |𝐻 |] → 𝑅𝑆 → [𝑙1, 𝑙2, . . . , 𝑙𝑘] (2)
The goal is to compare the predicted next items 𝐿 with the true

list of next items 𝑇 . The length 𝑘 of these lists is often denoted
along the name of a metric, such as Metric@k.

2.2 Natural Language Processing (NLP)
NLP is an area of research and application that aims to gather
knowledge on how human beings understand and use language so
that appropriate tools and techniques can be developed to make
computer systems understand and manipulate the language to per-
form tasks such as information retrieval, speech recognition, text
generation, and others. The foundations of NLP lie in a number
of disciplines that range from mathematics and engineering to
linguistics and psychology [4].

One recurrent problem in NLP is how to properly and efficiently
represent the text. A very popular technique is to extract 𝑛-grams
of the sentence, where 𝑛 ∈ N∗. An example of this technique can
be seen in Table 1.

Table 1: N-Grams transformation.

Sentence 1-Gram 2-Gram

The cat is furry The, cat, is, furry The cat, cat is, is furry
I am going I, am, going I am, am going

While many NLP applications use 𝑛-grams, increasing 𝑛 also
increases the number of tokens found, and while this can lead
to better performance, it also raises the cost. Another common
representation is the 1-of-𝑉 vector, also called 1-of-𝑁 and One-Hot
encoding, where each word is mapped into a 𝑉 -sized vector in
which 𝑉 is the number of unique tokens (i.e. the number of unique
words), and only one of the elements is 1, representing the word in
that position. Considering an example with the sentence "I went
to London" being the corpus, the 1-of-𝑉 representation would be a
sequence of vectors such as Eq. (3).

𝐼

𝐿𝑜𝑛𝑑𝑜𝑛

𝑡𝑜

𝑤𝑒𝑛𝑡

1
0
0
0

 ,

0
0
0
1

 ,

0
0
1
0

 ,

0
1
0
0

 (3)

However, while being simple, there still are problems in these
representations: when applied over a large corpus, each vector has
high dimensionality, thus requiring more memory; these vectors
do not extract information such as the similarity between words
nor the context in which they were used, and others [15].

2.2.1 Word Embeddings.
Word embeddings is a set of techniques and methods that map

each word of the corpus into a real valued vector of 𝑑 dimensions.
The recently proposed model families for learning word vectors
are:

(1) Local Context WindowMethods. These methods usually
map each word to a vector via a learned lookup-table. Then
a sequence of𝑤 word vectors, also called context window,

Natural Language Processing Techniques
for Session-Based Recommendation , ,

is used as input to a shallow NN applied to a task. When
the NN parameters are adjusted in response to a particular
word or word-sequence, the improvements will carry over to
occurrences of similar words and sequences, updating those
vectors. Examples of these methods are the Continuous Bag-
of-Words (CBOW) and the Skip-Gram models [6, 14, 15];

(2) Global Vectors (GloVe). This method considers not only
the context window, but the global co-occurrence counts,
making a better use of global corpus statistics. However,
instead of using preliminary values as input to a NN, this
method has predefined functions to calculate the word vec-
tor [17].

2.3 Neural Networks
Neural networks (NNs), or Artificial Neural Networks (ANNs), are
one of the basis of DL. The goal of a NN is to find some function
𝑓 ∗ that approximates an existing function 𝑓 based on given ex-
amples [9]. A NN can be composed of several layers, each layer
containing a number of neurons. Each neuron receives a vector 𝑥
of inputs, a vector𝑤 of weights, and a scalar bias 𝑏, and applies an
activation function \ to generate an output 𝑦, as shown in Figure 1.

𝑥1 𝑤1

𝑥2 𝑤2 Σ \

Activation
function

𝑦

Output

.

.

.
.
.
.

𝑥𝑛 𝑤𝑛

Weights

Bias
𝑏

Inputs

Figure 1: A NN unit, also called a neuron.

Mathematically, each neuron can be seen as in Eq. (4):

𝑦 = \

(
𝑁∑
𝑖=0

(𝑤𝑖 ∗ 𝑥𝑖) + 𝑏
)

(4)

When the NN has multiple layers, the outputs of the neurons
in the first layer becomes the inputs of the neurons in the second
layer and so on. An example of this can be seen in Figure 2. These
neural networks are often called Deep feedforward networks,
or Multilayer Perceptrons (MLPs) [9]. If these layers are part of
a larger NN, they are called Fully-Connected layers or Dense
layers [12]. When approximating 𝑓 ∗ the NN adjusts its weights to
produce a closer result, in a process referred to as learning, and
when multiple layers are stacked the NN is called Deep NN (DNN),
thus the term Deep Learning.

Input
layer

Hidden
layer

Output
layer

𝛼10

𝛼00

𝛼11

𝛼01 𝛼20

𝛼12

𝛼02

𝛼13

Output

Figure 2: An example of MLP.

2.3.1 Recurrent Neural Networks.
However, the inputs of a MLP have no relation between them-

selves, and there is no feedback between them, making it difficult to
solve problems with sequential input, such as text or sound. When
MLPs are extended to include feedback connections, they are called
Recurrent Neural Networks (RNNs) [9]: the input at time 𝑡 can
have influence over the input at 𝑡 + 1 and so on. An example of a
single layer RNN can be seen in Figure 3.

𝛼𝑡−2 𝛼𝑡−1 𝛼𝑡 𝛼𝑡+1 𝛼𝑡+2

𝛼1

Output

Figure 3: An example of a single layer RNN.

Since RNNs were created, more advanced layers that include
feedback were proposed, such as the Long Short-Term Memory
(LSTM) [13] and the Gated Recurrent Unit (GRU) [3], taking advan-
tage over the classical RNN unit by using memory and forget gates,
advancing even more the field [7].

3 RELATEDWORK
Many of the methods and techniques previously mentioned have
been applied to Sequential Recommendation tasks, achieving or
overcoming state-of-the-art performance. In this section we will
discuss about these works, the models proposed, the datasets used,
and how they were evaluated.

, , Costa, J and Balby, L

3.1 Naïve Models
A model can be considered naive when it does not consider the
input before accomplishing its task or performs an obvious and
predefined inference based on the input. In the recommendation
field, a model is naive when it always recommends the same item
or set of items regardless the user-item matrix or the history of
actions, and their use as baselines can be considered a sanity check
for the proposed models. Two of these methods are frequently used
as baselines:

• Top Popular. Also referred as Pop, this frequency-based
method always returns the 𝐿 most frequent items in the
entire training collection.

• SPop. Another frequency-based method, SPop is an adap-
tation of Top Popular for Session-based recommendation:
It always returns the most frequent items of the current
session.

3.2 ItemKNN
Based on the k-Nearest Neighbors algorithms, ItemKNN is a Me-
mory-Based collaborative filtering model, that receives an user-
item ratings matrix, shown by Eq. (1), and its goal is to complete
the missing 𝑟𝑝,𝑞 values, introduced in Section 2.1 as the matrix-
completion problem.

Since the Sequential Recommendation problem does not have
explicit feedback (i.e. a rating given by an user to an item), the
user-item matrix is a binary matrix indicating whether the user
interacted or not with that item, thus losing the temporal aspect of
the data. Using this representation, the ItemKNN algorithm finds
the 𝑘 most similar items by using a similarity measure, such as the
cosine distance or adjusted cosine distance, and uses the ratings of
these 𝑘 items to predict the current item missing ratings [1].

3.3 MLPs and GRUs
The effectiveness of MLPs and GRU-based RNNs in Sequential
Recommendation was also put to the test using Word2Vec and
GloVe embeddings as input: their experiments used a single layer
with 200 neurons, either a fully connected layer in MLP or a GRU
in RNN [10].

The models were evaluated using an e-commerce website dataset
containing 946 thousand sessions with 15 thousand unique items for
training, and 54 thousand sessions for testing; the number of events
was not specified. The performance was reported using Precision,
Recall, and MRR@10, and compared to a single baseline: a public
implementation of Singular Value Decomposition (SVD).

3.4 GRU4Rec
Introduced by Hidasi et al. [12], GRU4Rec is a Sequential Recom-
mender that advances the idea of using RNNs in Sequential Recom-
mendation. This GRU-based model creates an embedding from a
1-of-𝑉 representation of an item to predict the next item. They eval-
uated stacking multiple GRU layers, but their experiments showed
that a single GRU layer with 1000 units produces better results. The
architecture of the model can be seen in Figure 4.

In their work, they evaluate the models using two different
datasets:

Figure 4: GRU4Rec [12].

(1) The RecSys ’15 challenge dataset. Contains almost 8 mil-
lion sessions of 31.6M events and 37.4 thousand unique items
for training, and 15.3 thousand sessions of 71.2 thousand
events for testing.

(2) Youtube-like platform dataset. Consists in almost 3M
sessions of 13M events with 330 thousand unique items for
training and 37 thousand sessions of 180 thousand events
for testing.

The performance of the model was evaluated in comparison
against a few baselines: Pop, SPop, ItemKNN and BPR-MF. The
comparison was made by calculating the Recall and MRR@20.

3.5 Caser
ConvolutionAI Sequence Embedding Recommendation, simplified
as Caser, is a model that maps the input sequence 𝐻 into a matrix
𝑀 |𝐻 |×𝑑 , where each interaction ℎ is mapped into a row and the
columns are the 𝑑 dimensions of that interaction’s embedding.
This matrix can be thought as an image, making it possible to
use Convolutional Neural Networks (CNNs). Another proposed
advance is to look not only to the next item, but also adopt a skip
technique and predict 𝐿∗, where 𝐿∗ is 𝐿1:𝑘+1. With this techniques,
the CNNs can learn both users’ general preferences and sequential
patterns.

Their model applies horizontal and vertical convolutions in the
history input sequence 𝐻 to create an embedding, which is then
combined with the user embedding and used as input to fully con-
nected layers. The architecture of the model can be seen in Figure 5.

The authors evaluate the models using four different datasets:
Movielens-1m, Gowalla, Foursquare and Tmall. Since Caser is not a
Session-based recommender, the number of sessions and events is
not reported. The recommendations are evaluated using Precision,
Recall and Mean Average Precision (MAP), and their results achieve
state-of-the-art performance.

4 METHODOLOGY
The goal of this work is to make a comparison between different
algorithms for sequential recommendation of music tracks. To do
so, we used one dataset with real-world examples and considered

Natural Language Processing Techniques
for Session-Based Recommendation , ,

Figure 5: Caser model [22].

In the figure, the input𝐻 is represented as 𝐿 and contains the 4 most recent items. The
embedding of these items is generated using a lookup table and they are formatted
into a matrix, in which the horizontal and vertical convolutions are applied. The result
of the convolutions and an embedding that represents the user are given as input to
Fully-Connected layers, to predict the𝑇 next items.

different strategies for recommendation, such as: TopPopular, SPop,
ItemKNN, GRU4Rec, and Caser. In particular, ItemKNN and Caser
were obtained from DRecPy [5], implemented using Tensorflow. In
the case of GRU4Rec, we implemented its alternative version using
Tensorflow Recommenders.

The following section describe the datasets, evaluation metrics,
and implementation strategies with more details.

4.1 Experimental Data
In this work, we used a single dataset in our experiments: The
Last.fm 1k Users dataset, that represents the listening habits for
nearly 1000 users and contains the records of more than 19M lis-
tening events [2]. The dataset description is depicted in Table 2.

Table 2: Statistic description of the dataset

Dataset Last.fm 1k

Users 992
Items 1,083,472
Events 19,150,868
Sessions 1,040,226

However, the sessions do not have the same number of tracks,
and many of them only have a few tracks. We used the distribution
of session-lengths of each dataset before choosing a minimum
number of tracks per session. This distribution is shown in Figure
6.

As we can see in Figure 6, the dataset has many sessions with a
single track. By removing the sessions with less than 10 tracks, the
Last.fm dataset was reduced to 47% of its total. However, in order
to obtain performance metrics, a higher cut is needed, and we are
only using sessions with at least 20 tracks.

One thing to mention is that the interactions are recorded and
timestamped, but a definition of session is still needed. Based on the
recent work of Hansen et al. [11], considering sessions in a Spotify
private dataset, we defined a session to be a sequence of tracks with

Figure 6: Dataset distribution. # means the minimum
number of tracks allowed in a session.

a maximum period of 20 minutes of inactivity between two tracks;
if this period is longer than 20 minutes, the tracks are split into two
sessions.

Having a clear definition of sessions, we proceeded with a pre-
processing step, transforming the data into a sequential string-
formatted input. Based on a recent survey in the literature [19],
three different strategies were adopted in our scenario:

• Previous. The algorithm uses only the last user action to pre-
dict 𝐿. Considering our previous notation, the input would
be [ℎ |𝐻 |].

• Last N. The algorithm uses the last 𝑁 user actions to predict
𝐿. Considering our previous notation, the input 𝐻 would be
shortened to [ℎ |𝐻 |−𝑁 , ℎ |𝐻 |−𝑁+1, . . . , ℎ |𝐻 |]. Since 𝑁 is one of
the parameters in this setting, it is possible that 𝐻 is shorter
than 𝑁 ; to solve this problem we apply a left padding, adding
a default token until |𝐻 | = 𝑁 . In this case, the input would
look like this: [0, 0, . . . , ℎ1, ℎ2, . . . , ℎ |𝐻 |].

• Sliding Window. This strategy, also considered to be a
data augmentation technique, maps the history of an user
into many histories, based on a window size 𝑠 , given as pa-
rameter. Considering our previous notation and 𝑠 = 3, this
technique would map [ℎ1, ℎ2, . . . , ℎ |𝐻 |] into a list of histo-
ries [[ℎ1, ℎ2, ℎ3], [ℎ2, ℎ3, ℎ4], . . . , [ℎ |𝐻 |−2, ℎ |𝐻 |−1, ℎ |𝐻 |], with
a different 𝐿 for each element: for example, the first would
target [ℎ4, ℎ5, . . . , ℎ4−1+𝑘], and so on. This technique is quite
frequent in NLP problems, such as Text Generation, and can
be compared to the N-gram generation. Although this pro-
cess is able to enhance the performance of the RS, it is very
expensive.

For the Last.fm dataset, we considered a time defined split, in
which only the sessions of the last time quarter are used for testing.
The time defined cut can be seen in Figure 7, in which the black
line represents the split. The resulting datasets are presented in
Table 3. However, considering the computational cost of training
and testing models on very large datasets, we decided to randomly
draw a sample of the training and testing splits, as shown in Table
3.

http://last.fm/

, , Costa, J and Balby, L

Figure 7: Last.fm dataset time split.

Table 3: Description of the dataset samples used.

Dataset Last.fm
Training Testing

Percentage 7.5 % 2.5 %
Users 629 568
Items 240,195 240,195
Events 880,992 299,106
Sessions 18,917 6305

4.2 Evaluation Metrics
In the field of RSs, the quality of the outputs of a model can be eval-
uated using metrics like Normalized Discounted Cumulative Gain
(NDCG), Root Mean Squared Error (RMSE), or Precision and Recall.
However, when dealing with Sequential RSs, ranking metrics can
be used for performance evaluation. In this work, the performances
will be evaluated using two different metrics:

(1) Mean Reciprocal Rank (MRR). This metric evaluates the
Reciprocal Rank (RR) for each test item and returns the mean
of these values. The RR is the inverse rank of the first pre-
dicted item 𝑙1 in the list of true next items; if 𝑙1 is not in this
list, the RR is 0. The MRR can be represented by Eq. (5).

𝑀𝑅𝑅@𝑁 =
1
𝑁

𝑁∑
𝑖=0

1
𝑟𝑎𝑛𝑘𝑖

(5)

(2) Recall. This metric denotes the number of relevant items in
𝐿 by evaluating the number of predicted items that are in
the list 𝑇 of true next items. The Recall can be represented
by Eq. (6).

𝑅𝑒𝑐𝑎𝑙𝑙@𝑁 =
|𝐿1:𝑁 ∩𝑇1:𝑁 |

𝑁
(6)

4.3 Implementation and Hardware
Upon investigating related work, we could see that contributions
to the problem were implemented using different technologies:
GRU4Rec was originally implemented 1 using the framework The-
ano [23], while Caser was originally implemented 2 using Matlab,
but the authors also released a version using PyTorch [16].

However, when looking at different applications of NNs, Ten-
sorflow and PyTorch are the most used libraries, and dispose of
several popular architectures, making the process of developing
and using a NN much simpler. Tensorflow, in particular, has re-
cently released a new extension called Tensorflow Recommenders3
that focus in making the development of Recommender Systems
much easier. Given its integration and speed up with GPUs, we
adopted Tensorflow Recommender in this project. By doing so, we
also implemented the features of GRU4Rec with this technology.

We performed this analysis using a computer with an AMD
Ryzen 3600x CPU, 32GB RAM, and an NVIDIA GeForce RTX 2080
Ti. However, the training time is proportional to the number of
training instances, and strategies such as the sliding window may
greatly increase the time.

5 RESULTS AND DISCUSSION
Considering the performance reported by Hidasi et al. [12], the
average values of Recall@20 and MRR@20 for GRU4Rec are around
0.6158 and 0.2888. Tang and Wang [22] evaluated Caser using
GRU4Rec as baseline, and while Caser had an average performance
of 0.1042 for Recall@10, GRU4Rec only achieved 0.0802. Since nei-
ther of these works used the Last.fm dataset, we evaluated their
performance once more, and by using MRR@10 and Recall@10, we
obtained the results for each model, shown in Table 4.

Table 4: Performance evaluation.

Model Last.fm
MRR@10 Recall@10

TopPopular 0.00040 0.00200
SPop 0.18250 0.06340

ItemKNN 0.07530 0.07990
GRU4Rec 0.14570 0.19610

Caser 0.36170 0.55540
GRU4Rec* 0.00005 0.00001

* Our best implementation of this model.

TopPopular and SPop are the algorithms considered to be naïve,
and while they cannot be considered intelligent models, they follow
logical heuristics. The music domain that we are working with is
not that complicated, and its understandable why an algorithm like
SPop works very well: the users listen to a small set of songs in each
session, but there are songs that everyone likes or are trending and
may be useful to that user, creating an artist or genre popularity
bias, natural in this domain.

1https://github.com/hidasib/GRU4Rec
2https://github.com/graytowne/caser
3https://www.tensorflow.org/recommenders

Natural Language Processing Techniques
for Session-Based Recommendation , ,

ItemKNN was the algorithm with the highest runtime: 24 hours
per run. This long period made impossible to tune the 𝑘 parameter
properly and, among many errors and failed executions, we are
reporting the results of the only well succeeded execution. How-
ever, some facts are aligned with its performance: it takes a binary
matrix instead of a ratings matrix as input, therefore not weighting
items according to the interest of the user; while there are only 629
users, there are 240,195 items, making it difficult and slow properly
calculate the similarities in this very sparse matrix; at last, the time
sequence of events is ignored, and repeated consumption of the
item does not contribute to the problem, since the binary matrix is
not affected by a higher frequency.

GRU4Rec was the easiest and fastest model to run , taking around
10 minutes to train and evaluate the results. Considering the best
architecture and original implementation by the authors, GRU4Rec
did not achieve such remarkable results, but also surpassed the base-
lines mentioned in the proposing paper. Considering that GRU4Rec
was one of the first Session-based algorithms, its performance is
quite remarkable.

Differently from GRU4Rec, Caser is a Sequential Recommender,
taking advantage from some user history to predict the next items.
However, training this model needed some previous effort in trans-
forming the data into a specific format and encoding, which was not
obvious. After many tries, we were able to run it properly, achieving
the remarkable results previously shown. Some characteristics of
the model come to mind when we think about its performance: each
one of the last 𝑛 history items is transformed into an embedding,
then used as rows of a matrix, which is used as input to a CNN that
performs horizontal and vertical convolutions. This sophistication
to represent the data is the brightest insight of Caser, and probably
the reason behind the good results.

Despite the use of new and recent hardware, when implement-
ing GRU4Rec with Tensorflow Recommenders, we ran into many
issues, but the most frequent was insufficient memory, leading us
to the dataset reduction depicted in Table 3. Besides this reduction,
we also needed to slightly change the NN architecture: while the
original work proposed using an 1-of-𝑉 vector as input, it was not
possible in our experiment considering the large number of unique
items, which led us to use Embeddings, a strategy also tested by the
GRU4Rec authors but reported to have worse results. We trained
the model after implementing this changes, but each input strategy
had different results and pointed towards different thoughts:

• Previous. When training the model, the epochs after the
first already showed signs of overfitting: when looking at
the training and validation losses, they were close at first,
but while the training loss improved (lower values), the vali-
dation loss deteriorated (higher values). This result is shown
in Figure 8. Our hypothesis is that the model had not enough
variance in the data to predict the next item. Another prob-
lem in using only 1 item as input is that during training
the same item can be used to predict different items, and
the NN cannot approximate 𝑓 ∗ correctly, since it is not an
injective function. This latter problem may also be present
in the original GRU4Rec algorithm. The metric values for
this strategy are: MRR@10 = 0 and Recall@10 = 0.

(a) Loss.

(b) MRR.

Figure 8: GRU4Rec using Previous strategy.

• Last N. While this solves the variance issue of the Previous
strategy, the mapping is done slightly differently: the history
𝐻 is mapped into a single Embedding and not a sequence of
Embeddings, something called Session Embedding or Union-
level Embedding [11, 22]. We tried this strategy using 𝑁 =

{200, 50, 10, 5}, but 𝑁 = 10 achieved the best results. As
shown in Figure 9, the model is still not learning. The metric
values obtained for this strategy are: MRR@ 10 = 0 and
Recall@ 10 = 3.17 ∗ 10−5.

• SlidingWindow. At first, we evaluated this algorithm using
𝑠 = 1 but it already showed better results, and was the first
time that the MRR was better than 0, and a possible insight
to understand this improvement is the higher number of
training instances when compared with the Previous and
Last N strategies. For this value of 𝑠 , the metrics obtained
were: MRR@10 = 5 ∗ 10−5 and Recall@10 = 1.5 ∗ 10−5.

, , Costa, J and Balby, L

(a) Loss.

(b) MRR.

Figure 9: GRU4Rec using Last N strategy.

However, the loss was not improving differently than the
other methods, and 𝑠 = 1 leads to the same thoughts we had
about the Previous strategy: when the number of training
instances increases, the algorithm begins to learn something,
but the non-injective function damages the process. Figure
10 shows these results.

5.1 Combining Best Strategies for Fine Tuning
Having realized which input strategy performs the best, we can
apply a process called Fine Tuning: we apply minor changes in the
model parameters and hyperparameters, comparing the current
and previous results, seeking better settings.

One thing to notice is that the 𝑠 parameter of Sliding can be
thought as the𝑁 parameter of the Last N strategy, solving its lack of
training examples while also transforming the Sliding strategy into

(a) Loss.

(b) MRR.

Figure 10: GRU4Rec using Sliding Window strategy.

an injective function, a combination that can lead to better results.
In addition to that, it is also possible to use different parameters and
hyperparameters for the NN, evaluating differences in the learning
process. Examples of these parameters and hyperparameters are the
number of GRU layers, the embedding and GRU layers dimensions,
the dropout probability, etc. The parameters and hyperparameters
are depicted in Table 5.

As shown in Table 5, the different settings do not show influence
in the model performance, something unusual for NNs. However,
considering that Tensorflow Recommenders was recently released,
and our implementation is one of the earliest using this library, the
lack of performance is understandable.

Natural Language Processing Techniques
for Session-Based Recommendation , ,

Table 5: Fine Tuning.

Window Layers Dropout MRR@10 Recall@10
1 [100] 0.2 0.00005 0.00001
1 [100] 0.0 0.00000 0.00001
3 [100] 0.2 0.00000 0.00003
1 [100, 100] 0.2 0.00000 0.00004
1 [32, 32] 0.2 0.00000 0.00003

6 CONCLUSION AND FUTUREWORK
In this work, we applied NLP techniques to Session-based RSs in a
case study scenario of music recommendation. In order to provide
a baseline for comparison, we considered two naïve methods based
on item frequency, Top Popular and SPop, and also two established
Sequential Recommendation models, GRU4Rec and Caser. Our pro-
posal consists of a modification of inputs to GRU4Rec, by using the
Previous, Last N, and Sliding Window strategies.

Our case study scenario considered a real-world database ex-
tracted from Last.fm platform. Our modifications to GRU4Rec were
implemented using Tensorflow Recommenders, a recently released
framework that had no Sequential or Session-based models, our
implementation being the first. By using different parameters and
hyperparameters, we evaluated our solution and provided a com-
parison with existing strategies. The results obtained show that our
proposed strategies struggle to make relevant recommendations
in a user-independent scenario where the number of items is very
large when compared to the number of events. As a consequence
of the latter, few examples of item recommendation patterns are
available to effectively train the proposed models.

When carrying this work out, we faced many challenges: the
datasets were not structured, making it not trivial nor fast to trans-
form the data into useful formats to be handled by NNs, black-box
models, and models made available by other authors; lack of clar-
ity regarding configurations in the proposing papers, such as the
number of epochs or hyper-parameters; the diversity of program-
ming languages, frameworks, and code patterns in repositories that
implement RSs; and, high demand of computational resources, etc.

This work and the challenges faced were beyond what I have
previously experienced in classes or other projects, but it helped
me to integrate many abilities developed in my undergraduate
course in a unique and extensive way. In particular, concepts from
Scientific Methodology, Artificial Intelligence, Descriptive and Pre-
dictive Data Science, and Natural Language Processing classes were
substantial to successfully complete this work.

In future work, we aim at analyzing the performance of other
Sequential Recommendation models, enhancing the depth of inves-
tigation over datasets, model architectures, cost functions, among
other characteristics, while also standardizing their implementa-
tions under the same programming language and framework.

ACKNOWLEDGMENTS
I would like to thank my professor advisor Leandro Balby, who
presented the opportunity for me to start working with data science,
and was open to discussions regarding the most recent research

in Recommender Systems and about how I should have done this
work. To the research group of the Data Mining Laboratory, which
included me in the discussions of the papers and always showed
exemplary work.

I also would like to thank the Universidade Federal de Campina
Grande, more specifically to the Unidade Acadêmica de Sistemas e
Computação, where I had the first contact with Computer Science
and provided many opportunities to learn from excellent professors
and colleagues, while also providing an excellent infrastructure. To
the Brazilian people, always strong and persevering in search of a
better quality of life, but that creates opportunity for many with a
quality public education service. May we remain resilient in these
difficult times.

I would like to dedicate this work to my parents, Edilson and
Tamar, who did not fail to support and help in everything they
could. To my sisters, Thaís, Elloá and Laura, who inspired me to
research, seek excellence, and always do better than yesterday.

I also thank each one of my friends and colleagues, who never
stopped teaching me and clarifying my questions, with special
thanks to Leonardo Lima, who lent me the hardware to run this
analysis, and Ítalo Oliveira, who initially reviewed my writings.

REFERENCES
[1] Charu C. Aggarwal. 2016. Recommender Systems: The Textbook (1st ed.). Springer

Publishing Company, Incorporated.
[2] O. Celma. 2010. Music Recommendation and Discovery in the Long Tail. Springer.
[3] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau,

Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning Phrase
Representations using RNN Encoder-Decoder for Statistical Machine Translation.
arXiv:cs.CL/1406.1078

[4] Gobinda G. Chowdhury. 2003. Natural language process-
ing. Annual Review of Information Science and Technology
37, 1 (2003), 51–89. https://doi.org/10.1002/aris.1440370103
arXiv:https://asistdl.onlinelibrary.wiley.com/doi/pdf/10.1002/aris.1440370103

[5] Fábio Colaço, Márcia Barros, and Francisco M. Couto. 2020. DRecPy: A Python
Framework for Developing Deep Learning-Based Recommenders. In Fourteenth
ACM Conference on Recommender Systems (RecSys ’20). Association for Comput-
ing Machinery, New York, NY, USA, 675–680. https://doi.org/10.1145/3383313.
3418483

[6] Ronan Collobert and Jason Weston. 2008. A Unified Architecture for Natu-
ral Language Processing: Deep Neural Networks with Multitask Learning. In
Proceedings of the 25th International Conference on Machine Learning (ICML
’08). Association for Computing Machinery, New York, NY, USA, 160–167.
https://doi.org/10.1145/1390156.1390177

[7] Shaveta Dargan, Munish Kumar, Maruthi Rohit Ayyagari, and Gulshan Kumar.
2019. A survey of deep learning and its applications: A new paradigm to machine
learning. Archives of Computational Methods in Engineering (2019), 1–22.

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
arXiv:cs.CL/1810.04805

[9] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT
Press. http://www.deeplearningbook.org.

[10] Asnat Greenstein-Messica, Lior Rokach, and Michael Friedman. 2017. Session-
Based Recommendations Using Item Embedding. In Proceedings of the 22nd
International Conference on Intelligent User Interfaces (IUI ’17). Association for
Computing Machinery, New York, NY, USA, 629–633. https://doi.org/10.1145/
3025171.3025197

[11] Casper Hansen, Christian Hansen, Lucas Maystre, Rishabh Mehrotra, Brian
Brost, Federico Tomasi, and Mounia Lalmas. 2020. Contextual and Sequential
User Embeddings for Large-Scale Music Recommendation. In Fourteenth ACM
Conference on Recommender Systems. 53–62.

[12] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2016. Session-based Recommendations with Recurrent Neural Networks.
arXiv:cs.LG/1511.06939

[13] SeppHochreiter and Jürgen Schmidhuber. 1997. Long Short-termMemory. Neural
computation 9 (12 1997), 1735–80. https://doi.org/10.1162/neco.1997.9.8.1735

[14] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
Estimation of Word Representations in Vector Space. arXiv:cs.CL/1301.3781

http://arxiv.org/abs/cs.CL/1406.1078
https://doi.org/10.1002/aris.1440370103
http://arxiv.org/abs/https://asistdl.onlinelibrary.wiley.com/doi/pdf/10.1002/aris.1440370103
https://doi.org/10.1145/3383313.3418483
https://doi.org/10.1145/3383313.3418483
https://doi.org/10.1145/1390156.1390177
http://arxiv.org/abs/cs.CL/1810.04805
http://www.deeplearningbook.org
https://doi.org/10.1145/3025171.3025197
https://doi.org/10.1145/3025171.3025197
http://arxiv.org/abs/cs.LG/1511.06939
https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/cs.CL/1301.3781

, , Costa, J and Balby, L

[15] Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. 2013. Linguistic Regularities
in Continuous Space Word Representations. In Proceedings of the 2013 Conference
of the North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies. Association for Computational Linguistics, Atlanta,
Georgia, 746–751. https://www.aclweb.org/anthology/N13-1090

[16] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. In Advances in Neural Information Processing Systems 32, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.). Cur-
ran Associates, Inc., 8024–8035. http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-library.pdf

[17] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe:
Global Vectors for Word Representation. In Empirical Methods in Natural Lan-
guage Processing (EMNLP). 1532–1543. http://www.aclweb.org/anthology/D14-
1162

[18] Tu Minh Phuong, Tran Cong Thanh, and Ngo Xuan Bach. 2018. Combining
user-based and session-based recommendations with recurrent neural networks.
In International Conference on Neural Information Processing. Springer, 487–498.

[19] Massimo Quadrana, Paolo Cremonesi, and Dietmar Jannach. 2018. Sequence-
Aware Recommender Systems. ACM Comput. Surv. 51, 4, Article 66 (July 2018),
36 pages. https://doi.org/10.1145/3190616

[20] Francesco Ricci, Lior Rokach, and Bracha Shapira. 2015. Recommender Systems
Handbook (2nd ed.). Springer Publishing Company, Incorporated.

[21] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang.
2019. BERT4Rec: Sequential Recommendation with Bidirectional Encoder Rep-
resentations from Transformer. In Proceedings of the 28th ACM International
Conference on Information and Knowledge Management (CIKM ’19). ACM, New
York, NY, USA, 1441–1450. https://doi.org/10.1145/3357384.3357895

[22] Jiaxi Tang and Ke Wang. 2018. Personalized Top-N Sequential Recommendation
via Convolutional Sequence Embedding. In Proceedings of the Eleventh ACM
International Conference on Web Search and Data Mining (WSDM ’18). Association
for Computing Machinery, New York, NY, USA, 565–573. https://doi.org/10.
1145/3159652.3159656

[23] Theano Development Team. 2016. Theano: A Python framework for fast compu-
tation of mathematical expressions. arXiv e-prints abs/1605.02688 (May 2016).
http://arxiv.org/abs/1605.02688

[24] Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. 2019. Deep Learning Based
Recommender System: A Survey and New Perspectives. ACM Comput. Surv. 52,
1, Article Article 5 (Feb. 2019), 38 pages. https://doi.org/10.1145/3285029

https://www.aclweb.org/anthology/N13-1090
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
https://doi.org/10.1145/3190616
https://doi.org/10.1145/3357384.3357895
https://doi.org/10.1145/3159652.3159656
https://doi.org/10.1145/3159652.3159656
http://arxiv.org/abs/1605.02688
https://doi.org/10.1145/3285029

	2ec87462db3f876b37bd58152601f55174c3b0ea45d66532182b6906d4df6a58.pdf
	Natural Language Processing Techniques for Session-Based Recommendation
	Abstract
	1 Introduction
	2 Theoretical Background
	2.1 Data Representation
	2.2 Natural Language Processing (NLP)
	2.3 Neural Networks

	3 Related Work
	3.1 Naïve Models
	3.2 ItemKNN
	3.3 MLPs and GRUs
	3.4 GRU4Rec
	3.5 Caser

	4 Methodology
	4.1 Experimental Data
	4.2 Evaluation Metrics
	4.3 Implementation and Hardware

	5 Results and Discussion
	5.1 Combining Best Strategies for Fine Tuning

	6 Conclusion and Future Work
	Acknowledgments
	References

