

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE

CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA
UNIDADE ACADÊMICA DE SISTEMAS E COMPUTAÇÃO

CURSO DE BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

RAONI MATOS SMANEOTO

A RESILIENT AND CLOUDBASED BATCH PROCESSING

SYSTEM FOR HIGH PERFORMANCE COMPUTING

CAMPINA GRANDE PB

2020

RAONI MATOS SMANEOTO

A RESILIENT AND CLOUDBASED BATCH PROCESSING

SYSTEM FOR HIGH PERFORMANCE COMPUTING

Trabalho de Conclusão Curso
apresentado ao Curso Bacharelado em
Ciência da Computação do Centro de
Engenharia Elétrica e Informática da
Universidade Federal de Campina
Grande, como requisito parcial para
obtenção do título de Bacharel em Ciência
da Computação.

Orientadores:

Professor Dr. Francisco Vilar Brasileiro.
Professor Dr. Thiago Emmanuel Pereira da Cunha Silva.

CAMPINA GRANDE PB

2020

Elaboração da Ficha Catalográfica:

Johnny Rodrigues Barbosa

Bibliotecário-Documentalista

CRB-15/626

 S635r Smaneoto, Raoni Matos.
 A resilient and cloud-based batch processing system

for high performance computing. / Raoni Matos Smaneoto.

– 2020.

 12 f.

 Orientadores: Prof. Dr. Francisco Vilar Brasileiro;

Professor Dr. Thyago Emmanuel Pereira da Cunha Silva.

 Trabalho de Conclusão de Curso - Artigo (Curso de

Bacharelado em Ciência da Computação) - Universidade

Federal de Campina Grande; Centro de Engenharia Elétrica

e Informática.

 1. Batch systems. 2. High performance computing. 3.

Cloud elasticity. 4. Cloud computing. I. Brasileiro,

Francisco Vilar. II. Silva, Thiago Emmanuel Pereira da

Cunha. III. Título.

 CDU:004(045)

RAONI MATOS SMANEOTO

A RESILIENT AND CLOUDBASED BATCH PROCESSING
SYSTEM FOR HIGH PERFORMANCE COMPUTING

Trabalho de Conclusão Curso
apresentado ao Curso Bacharelado em
Ciência da Computação do Centro de
Engenharia Elétrica e Informática da
Universidade Federal de Campina
Grande, como requisito parcial para
obtenção do título de Bacharel em Ciência
da Computação.

BANCA EXAMINADORA:

Professor Dr. Francisco Vilar Brasileiro

Orientador – UASC/CEEI/UFCG

Professor Dr. Thiago Emmanuel Pereira da Cunha Silva

Orientador – UASC/CEEI/UFCG

Professor Dr. Adalberto Cajueiro de Farias
Examinador – UASC/CEEI/UFCG

Professor Dr. Tiago Lima Massoni
Disciplina TCC – UASC/CEEI/UFCG

Trabalho aprovado em: 2020.

CAMPINA GRANDE PB

A Resilient and Cloud-Based Batch Processing System for
High Performance Computing

Raoni Matos Smaneoto
Universidade Federal de Campina

Grande

raoni.smaneoto@ccc.ufcg.edu.
br

Francisco Vilar Brasileiro
Universidade Federal de Campina

Grande

fubica@computacao.ufcg.edu
.br

Thiago Emmanuel Pereira da
Cunha Silva

Universidade Federal de Campina
Grande

temmanuel@computacao.ufc
g.edu.br

ABSTRACT

Since computers were able to execute more than one program at a
time, the batch systems became usual. In this context, many batch
applications require a high level of processing capacity, which
leads us to high performance computing. This approach has been
used for long, mainly for scientific purposes. It is common that
the conventional environments for HPC, which are local clusters
and supercomputers, provide a command line interface for the
users to enable them to run their applications in nodes connected
through high-speed networks. However, high-speed networks
might not be useful in single-node applications, becoming a waste
point. Besides, despite the old users being used to the command
line, it may frustrate newcomers. That's why we propose, with this
work, a HPC supported system that takes advantage of some
cloud's features to minimize the cost and the waiting time, while
focusing on the user experience.
Keywords

Batch, cloud, high performance computing, user experience.

1. INTRODUCTION
A batch application or job is a group of tasks and their associated
input data that can be executed without user interaction. Batch
processing systems have become useful since computers were
able to execute more than one program at a time. These systems
can run a stream of jobs whose processing order can follow
several strategies. A very common way is to follow a
First-In-First-Out (FIFO) policy, in such a way that the first job to
enter the system is the first job to be processed. A job can be
scheduled to run as soon as the system has the required resources
available. These resources compose the system’s environment,
that can be a group of nodes, for example, and that has a huge
influence in the system performance, because the more resources
the system has, the less the jobs wait to be executed.

The usage of batch applications is very wide, varying from
complex scientific simulations, to simple task automation, like

printing a collection of documents or collecting logs. Each batch
job is composed of a set of tasks. The dependency relationship of
these tasks characterizes the job's structure. Thereby, batch
applications can range from complex ones, whose structures are
represented by direct acyclic graphs (DAG), to simple ones
comprising a set of independent tasks, known as bag-of-tasks
applications. Depending on the level of complexity of the
application, its tasks might interact frequently, which leads to the
need of using high-speed networks, in order to avoid delay in the
progress of each task.

The notable utility of batch systems has made many big
companies, and even some open source initiatives, invest some
effort to develop such systems, each one with its particularity.
Some of these systems are very famous nowadays, like celery
[10], nomad [6] and apache mesos [7].

Due to the non-interactive characteristic of batch applications, the
systems above, and any other batch system, do not provide a way
for the user to interact with applications during their runtime. It
restricts the user interactions to deployment and execution phases
interactions. During the deployment phase, the users' goal is to let
the application ready for execution. In general, this is not a simple
process. Some systems require the user to ask the system's
administrator to deploy the application, others make the
environment accessible, so the user himself/herself is able to
manually install the application in the system, and just a few
provide a friendly interface to deploy the application [15]. When
it comes to the execution phase, usually, the user’s interactions are
composed of three main steps: stage in of input data, processing
and stage out of results. In the stage in step all the data the
application needs to be executed is provided, in the processing
step the application execution is triggered and in the stage out step
the execution results are retrieved. There are a few ways to
provide interfaces for such steps. Some systems, for example,
expose a RESTFul API (Application Programming Interface),

others provide a Command Line Interface (CLI) client, and there
are still some of them that do not provide a specific interface for
that, which makes the user experience more complex.

Some batch applications need a significant amount of compute
resources to be executed, they are known as High Performance
Computing (HPC) applications. Local clusters and
supercomputers have been for long the main environments used
by these applications. Nowadays, though, cloud providers are also
supporting these applications. The natural elasticity characteristic
of clouds has a big impact on this scenario, because it may
significantly decrease the wait time of the applications’ tasks, and
in some situations it can save resources. Beyond that, the pricing
follows the pattern of other cloud services; the user pays for what
he or she uses. These aspects might take the cloud as a good
alternative for some HPC applications.

Thereby, the promising future of HPC in the cloud encouraged us
to propose an architecture of a batch processing system for
cloud-based infrastructures, which covers this scenario and
strengthens this approach. For this, the system addresses some
requirements, in order to take advantage of the cloud main
features, when compared to convencional HPC environments, like
autoscaling, optimization of resource usage and high resilience
and availability, while also taking into account the user
experience.

2. BACKGROUND
This section goal is to put some matters into context, so they can
be discussed more clearly in the following sections. The first topic
covered consists in the user experience in conventional HPC
infrastructures, followed by cloud elasticity, and lastly resilience
and availability in cloud computing.

2.1 User Experience in Conventional HPC
Infrastructures
To improve the user experience in HPC infrastructures, many
solutions have been designed: web interfaces, like Open
OnDemand that provides an easy way for systems’ administrators
to provide web access to their HPC resources; desktop clients,
like Eclipse Parallel Tools Platform; and science gateways, which
consist in domain-specific web interfaces. However, most HPC
infrastructures have the command line as their primary user
interface and despite part of the users being used to it, most of
them are not comfortable with such an interface [1], [5].

Many of the HPC users come from the scientific community.
Although some of them might be used to command line
interfaces, many face difficulties that come from unfriendly
interfaces. Thus, besides avoiding common errors that come from
unfriendly interfaces, a web interface might provide other

features, like the modern authentication, and ease cross-domain
science by integrating information from multiple sources and
making them accessible through the same interface.

2.2 Cloud Elasticity
Cloud elasticity is a cloud feature that enables adding and
removing resources on demand. There are two possible types of
elasticity: vertical and horizontal. The vertical elasticity stands for
the ability to adapt some computing resources properties, like the
quantity of cpu cores, the amount of network bandwidth, etc.
Horizontal elasticity consists in the ability to adapt the number of
computing resources available, increasing or decreasing as
needed. Ideally, both of them should be automatically triggered by
changes in the current workload demand.

Another important aspect of cloud elasticity is that it always looks
for optimization, meaning that it aims to match the amount of
resources available with the amount of resources required by the
workload at a given time. The pricing of these resources follows a
pay-as-you-go policy, which means that the user only pays for
what he or she is using at a time.

2.3 Resilience and Availability in Cloud
Computing
Resilience and availability are two essential properties that aim at
the correct functioning of systems, which might maintain the
users’ confidence and prevent possible revenue losses. Some
authors define resilience as a measure of fault tolerance [12],
which stands for the ability of a system to work properly in the
presence of some failures. Availability can be understood as the
percentage of time a system is able to operate as expected; here,
the recovery time is also important, because the longer a system
takes to recover, the longer it will take to be available again.

When it comes to these properties, cloud computing plays an
important role, because of two reasons: cloud providers usually
invest effort in order to develop services that either make their
infrastructure more available and resilient or provide the users
with these properties; some mechanisms which clouds are based
on, like virtualization, ease some common mechanisms that
improve resilience and availability.

Resilience and availability have always been a concern to cloud
providers. Amazon, for example, has developed many services
with this goal. For example, AWS autoscaling is a service that
integrates to a system’s architecture the ability of automatically
scale its services based on current demand [6]; Amazon
CloudWatch is a monitoring service that ease anomalous
behaviour detection [2]; Amazon elastic load balancer [3] handles
entry and removal of nodes automatically, and deals with sudden
network traffic changes etc. Besides, some mechanisms regarding

fault tolerance in distributed systems that have a huge influence in
resilience and availability, like replication and scalability, fit very
well in cloud infrastructures. The ease in getting new computing
resources in clouds, mainly because of virtualization, and that
makes the resources easily changeable, is very important. For
example, if one node of an application is not operating correctly,
it can be easily destroyed and replaced by another, that can be
even in another physical place, in a transparent way for the users,
if there were more than one node running the application. The
elasticity is also important here, because it gives the users the
ability of scaling their application automatically based on the
current workload of the applications, preserving their health and
making them more resilient and available.

3. REQUIREMENTS
When a new proposal of a product already consolidated in the
community arises, there are a few requirements it has to follow to
be considered by the community members. These requirements
might guarantee that the product is at least as good as other
existent solutions, and even better in some scenarios. In the
context of this work, the requirements’ goals are to show to the
community that HPC applications can be executed in the cloud,
with the possible benefits of minimizing cost, shortening the
application waiting time, resilience and availability, all of that
without compromising the user experience.

3.1 Friendly User Experience
Once HPC is largely used for science purposes, it is required that
the scientists have a satisfactory experience in such systems. Most
of the users’ experience comes from the interface they are going
to use to interact with the system. First we have to take into
account that currently many users are used to the command line
interface, which is one of the most used in this context. Changing
this experience might be frustrating. On the other hand, the
command line interface is not that friendly, which makes us
believe that it can lead to many user-side errors and consequently
decrease the productivity of a team, which can also be reinforced
by the fact that frequently only some of the teams’ members are
comfortable with this kind of interface.

Therefore, we have to consider both the current users and the
newcomers, meaning that our interface must support a command
line client, aiming to reach the current users, and also more
friendly ones, which might result in less errors and could even
provide features that are not possible through the command line,
resulting in more productivity and engagement, mainly by the new
users. Thus, it is important that the proposed architecture aims to
provide a good user experience regardless of their knowledge
about computing systems.

3.2 Minimize Wait Time

The elasticity can be an important player to the system’s
performance. The ease it provides in getting and setting up new
resources might result in a shorter, or even none waiting time.
Thus, each time there is a new application waiting in the queue,
the system can provide new resources to run the application, if the
required ones are not available. This is not possible in local
clusters, for example. In order to boost them, one needs to buy the
new resources and set them up manually, which might take a huge
amount of time. A shorter application waiting time is very feasible
in the cloud infrastructure approach.

3.3 Minimize Cost
Supercomputers and local clusters, which are one of the most used
infrastructure for HPC, have been designed to support huge
workloads and intensive task communication. For this reason,
they usually have high-speed and consequently high-cost
networks. However, a considerable part of HPC systems
workloads are single node applications and this scenario does not
require high-speed networks, once there is no intensive
communication between nodes [6]. Thus, there is a waste of
resources, specifically of network resources, in the conventional
HPC infrastructures.

Besides the network issue, there is still another point of wasting
regarding possible idle resources. As the system has a shorter wait
time as a requirement and because this requirement is based on
the scale out part of cloud elasticity, it is possible that, in a
specific moment in time, some available compute resources, that
once had some job to do, are idle.

Therefore, it is important that the system be aware of these two
issues in order to avoid unused resources, minimizing the cost.

3.4 Deal With the Trade-off: Minimize
Wait Time Versus Minimize Cost
Scaling the resources out is the main alternative to handle with
increasing workload and to minimize the wait time. On the other
hand, scaling them in is the main alternative to minimize the cost
and avoid idle resources. Thus, because the system is worried with
both directions, the protocols it follows must be as precise as
possible to make it clear whether the resources need to be scaled
in or out, depending on the demand.

3.5 Resilience and Availability
Resilience and availability are two properties that fit very well in
cloud infrastructures, but in order to take the maximum advantage
of this, the proposed system’s architecture must support it. The
components design and the way they interact must allow that
some mechanisms of fault tolerance, like replication and
scalability, are applicable. Thus, by taking advantage of the cloud
infrastructure and the way it is built, the system can reach the

availability desired by the users and provide a good user
experience even upon failures of some components.

4. SOLUTION
In this section we detail the proposed solution. It is composed of
four subsections: the first one focuses on pointing out some of the
important decisions we have made regarding the architecture; the
second one describes the architecture and its main components;
the third one describes the protocols the system must follow in
order to meet the expected functioning and the requirements.
These protocols explain when and how the components
communicate with each other; in the fourth subsection we explain
why the proposed solution meets the requirements; lastly we
present a proof of concept, illustrating how the mais parts of the
proposed system could be implemented.

4.1 Rationale
Before delving into the details of the architecture's description, we
discuss some of the design decisions taken. Starting from a
broader perspective, we decided that the system should have
RESTful interfaces as the gateway to its core, because we believe
they are easy to integrate with other clients. Besides, the system
works in a pull-based communication style, meaning that the core
component works in a passive way, answering the incoming
requests from the other components, instead of requesting them.
This is important because the core component does not need to
know the others, and can work completely independent. More
importantly, this helps deployment by concentrating the
configuration of firewall rules at the core component side.

Focusing in the core component, we have also taken some
important decisions. We decided that the system must support
multiple queues. The queues are the structures where jobs live.
The first interesting feature enabled by multiple queues comes
from another core decision, it consists in customized scheduling
policy per queue, which, in other words, allows that each queue
has a specific way to choose the next job to execute. Another
feature it enables is a semantic split of jobs; one might create
multiple queues and insert the jobs to them based on the semantics
attached to each queue, thus, jobs from different contexts do not
interfere in each other’s scheduling. HPC users are already used
with the existence of multiple queues in typical HPC
infrastructures, however, in the system that we propose, they add
extra flexibility.

4.2 Architecture
The proposed architecture’s main goal is to fulfill the
requirements previously described. It is composed of three main
parts: the Server, the Workers and the ResourcesManager. The
Server is the core of the system, it exposes a RESTful API and its
components interact with each other aiming at managing the
execution of jobs and providing their results properly. The
Workers are responsible for executing the tasks and report their
results; periodically, the worker also reports its progress. The

communication between the workers and the server is pull-based,
such that it is always triggered by a worker. The last part is the
ResourcesManager. It interacts with the server in order to check if
the current resource availability matches the current workload.
Depending on the scenario, it can either scale the system’s
resources out, if there are not enough resources to handle the
current workload, or scale them in, if there are any idle resources.

This architecture is summarized in Fig. 1. We describe the key
components below, to explain in more details how they interact to
achieve the system’s goal in the protocols subsection.

Fig. 1: Proposed architecture big picture

4.2.1 Queue
This is an abstraction that works like a jobs’ buffer to the system.
The users can create queues to keep their jobs, according to their
semantics. For each queue, a Scheduler is assigned, and for this
reason, the scheduling policy can change from queue to queue.

4.2.2 Worker
A worker is a component responsible for executing tasks and
providing their outputs. It runs in a node previously setup by the
ResourcesManager. To do its job, it communicates with the server
through the REST API. This communication occurs in the joining,
the task request and the task results reporting processes.
4.2.3 REST Apis

The REST APIS are the server’s gateway to both the users and the
others components. In order to serve the users’ requests, the API
uses the QueuesManager. When it comes to the other
components’ requests, the API might use directly the
QueuesManager, the WorkerManager and the JobsHandler.

4.2.4 WorkerManager
This entity authenticates the incoming workers and decides which
queue they will be attached to. To do so, it either uses a tag in the
worker’s configuration that indicates the queue it must be attached
to, or it uses the QueuesManager to get information about the
queues’ workload and chooses one. Thus, the component can

make the system able to balance the load of the queues, by
allocating more workers to those that have more jobs than others,
or even to prioritize a specific queue that may be more important
at the moment. The WorkerManager keeps the state of the
workers available per queue.

4.2.5 QueuesManager
The QueuesManager is the entity that has knowledge about the
queues. As such, it is responsible for all the operations that
concern queues. These operations include: queues’ creation;
queues’ retrieval; jobs’ insertion; and the attachment of a
JobsHandler to each queue.

4.2.6 Scheduler
The Scheduler has a buffer to keep some ready-to-run tasks. Its
job is to feed this buffer, when it is convenient, and to provide
tasks to workers. The Scheduler works according to its policy. It
can, for example, schedule an available task to a requesting
worker based on the task deadline. The task’s requirements are
also important and considered before the dispatching; they must
match with the worker’s configuration, ensuring that the worker is
able to execute that task, from a resource viewpoint.

4.2.7 JobsHandler
The responsibility of this component is to manage the jobs’ state.
To do so, it first gets the jobs from the queue and extracts their
tasks. Then, the JobsHandler split the PENDING tasks, which are
ready-to-run, to be able to send them to the scheduler, when it
asks for them. The JobsHandler also resolves report requests, in
which it can change the state of the reported task and of its job, if
all tasks of this job have already finished. There is only one more
thing the component must be aware of. Some tasks can never end,
which may lead to a never ending job as well. To deal with this
problem, the JobsHandler assigns a report interval time to each
task it has sent to the scheduler. The worker needs to report the
current task’s status after each report interval time. The
JobsHandler then verifies periodically if there is a RUNNING task
that has not been reported for a period greater than its report
interval. If that is the case, the task is sent to the scheduler again
and its state set to PENDING. Thus, every task is able to reach a
final state (FINISHED or FAILED), preventing the previous
problem.

4.2.8 ResourcesManager
Just like the workers, it is a separated component. As described in
the architecture general description and as its name suggests this
entity aims to solve a possible unbalance between the resources
available and the system’s workload. The ResourcesManager
communicates with the server to decide whether workers need to
be added or removed. The scaling is performed by interacting
with resource providers. The component stores state about which
providers are available and which workers have been acquired
with each provider. It is also in charge of setting up the worker
after it is provisioned. This autoscaling feature brings efficiency

and resilience to the whole system, once it is totally dependent on
the workers.

4.3 Protocols
Once the architecture’s main components have been described, it
is important to detail how they interact with each other in order to
guarantee the correct functioning of the system. Thus, this section
describes the core protocols of interaction between the
components, which include the balance checking protocol,
resource creation protocol, resource removal protocol, worker's
get task protocol and the task execution protocol.

4.3.1 Balance Checking Protocol
This protocol describes the process by which the
ResourcesManager checks the current balance between resources
available and pending workload, it is needed to make the system
able to adapt the resources according to the current demand. This
process is triggered periodically. By checking this balance, the
ResourcesManager can trigger either the resource creation process
or the resource removal process, whose protocols are described
later. This protocol includes the following steps:

1. ResourcesManager requests the current state of the
system: The ResourcesManager sends a request to the
server to retrieve the current system’s state. This request
is signed with the ResourcesManager’s private key; the
server is able to verify this signature, once it keeps the
ResourcesManager’s public key, placed in deployment
time. Once the signature is verified, the server uses the
QueuesManager to get information about each queue’s
workload and uses the WorkerManager to get
information about each queue’s available resources.
Then, the server summarizes this information generating
a snapshot and returning it to the ResourcesManager.

2. ResourcesManager checks the state of the system: Now,
with the snapshot in hands, the ResourcesManager
checks the possible unbalance between the queues’
workload and the available resources. There are three
possibilities per queue here: in the first one, the
ResourcesManager figures out that the current number
of ready-to-run tasks in the queue is greater than the
number of available resources. In this situation, the
ResourcesManager triggers the resource creation
process. In the second possibility, the
ResourcesManager figures out that there are more
resources available than workload, and triggers the
resource removal process. Last, the ResourcesManager
does not find any unbalance between the queue’s
workload and the available resources and does not
trigger any other process.

4.3.2 Resource Creation Protocol
This protocol describes the process by which a worker is added in
the system. It is the result of interaction between the
ResourcesManager and the Server. This interaction is also focused
in preventing malicious workers from joining the system, and as
such it is important to highlight that the ResourcesManager’s
public key is pasted in the server in deployment time. It includes
the following steps:

1. ResourcesManager retrieves available IDs from the
server: The server keeps an allow list created in
deployment time. This allow list contains the IDs
available to new workers joining the system. In the first
step of this protocol, the ResourcesManager sends a
request signed with its private key to the server,
requesting an available id from the allow list. The server
checks if the signature is valid and, if so, it returns the
first available id of the allow list to the
ResourcesManager.

2. ResourcesManager creates a resource along with a
resource provider: With a valid id in hands, the
ResourcesManager is able to instantiate the worker
node. It chooses one of the available resource providers
and requests a new computing resource. If the request
fails, the ResourcesManager chooses another resources
provider. Once the resource is ready, the
ResourcesManager stores the resource id along with the
worker id and the responsible resource provider.

3. ResourcesManager starts the worker: After the
computing resource is ready, the ResourcesManager
sends a startup script along with a configuration file to
the resource and executes it. The configuration file
contains, besides other fields, the worker’s id and the id
of the queue to which the worker will be attached. The
script setups the machine and starts the worker’s
process. Now, the worker is ready to run.

4.3.3 Resource Removal Protocol
This protocol describes the process by which a worker is removed
from the system. It is triggered by the ResourcesManager and
includes the following steps:

1. ResourcesManager requests worker removal to the
server: Once the ResourcesManager has noticed that
there are more resources than ready-to-run tasks in a
specific queue, it requests the server to remove that
worker informing the queue’s id and the worker’s id.

2. ResourcesManager requests the resources provider to
remove the resource: At this point, the server does not
count with the worker anymore. The ResourcesManager
then requests the resource deletion to the resource
provider informing the resource id, both the resources
provider and the resource id have been stored at the
creation time.

4.3.4 Worker Get Task Protocol
This protocol describes the process by which workers get a task to
execute. We also included a sequence diagram in the Fig. 2, to
help the understanding. These are the steps:

1. Worker joins the server: First, the worker joins the
server by sending a request that contains its public key,
its configuration and its id. If the id is not a valid one,
the server returns a forbidden error. Otherwise, the
WorkerManager will check for which queue the worker
is going to be assigned to, save this association and
return the queue’s id and a token to the worker. The
queue can be chosen based on the worker’s
configuration, a predetermined scheduling policy or a
tag that explicitly informs which queue that worker has
to be attached. The token is valid during a time interval
known as lease time. With the queue’s id and the token
in hand, the worker is able to get tasks from that queue
until the lease expires. After expiration, the worker must
ask for a new one to resume operating. The server is
allowed to choose another queue to be associated with
the new token.

2. Worker requests a task: The worker requests a task to
the server informing its id, its queue id and its token.
The request is signed with the worker’s private key. The
server verifies the token and, if it is invalid, an error
informing this case is returned. If no problem has been
found in the token and the signature, the request
proceeds.

3. Task scheduling process: After the request validation,
the server needs to choose a task from a job that lives in
the specified queue. The Scheduler chooses based on
the scheduling policy associated with the queue and
dispatches the task to the worker as a response from the
request and changes the task’s state to RUNNING.

Fig. 2: Sequence diagram of get task protocol

4.3.5 Task Execution Protocol
A task is the executable piece of the system. The task execution
protocol happens during runtime and involves the worker and the
server. It includes the following step:

1. Worker reports execution status: When the task is
dispatched to the worker, a report interval is informed.
Its meaning stands for the time interval in which the
worker must report the task status for the server. The
report may be the current task’s state followed,
optionally, by the percentage of the task that has been
already executed. This progress information allows the
implementation of simple fault tolerance mechanisms.
For instance, if a task has been dispatched with a report
interval set for t and in an interval of t + 1 no report
about that task arrives, the server can assume that the
worker has failed. Once the server detects the failure of
a worker, it can dispatch the task to another worker. It
also allows the server to optimize the task execution in
some situations. For example, with this mechanism, the
server can spot slow tasks, which might lead it to
replicate the task and send it to another worker.
Whoever finishes the task first now is the winner. By

doing so, in the worst case, the task will be executed as
slowly as it would be if no replication had taken place.

When the worker finishes the task execution, it reports
the results to the server. The report now has a task final
state (finished or failed). When the server receives the
report it changes the task’s state to the received one and
the worker is free to execute another task.

4.4 Requirements Meeting
The first requirement, satisfactory user’s experience, describes the
need of comfortable interfaces to the users. As part of the old
HPC systems users are used to command line interfaces, we set it
as mandatory to support this kind of client in the system. On the
other hand, we believe that simpler clients, like web clients,
would result in less user-side errors, increasing the engagement,
which makes us also consider it mandatory to support them. Thus,
as we described in the architecture subsection and complemented
in the protocols subsection, the system provides a RESTFul API.
The API supports both command line based clients and web based
clients, because they are able to reach the server API by sending
HTTP requests.

The requirement of minimizing wait time is also addressed by the
proposed solution. The balance checking protocol along with the
resource creation protocol describes the process by which the
ResourcesManager provides new resources. The supply of new
resources happens as soon as the ResourcesManager realizes that
there are more tasks than workers in a queue, which in turn
decreases the waiting time for the waiting applications. However,
the ResourcesManager also worries about idle resources. When it
realizes that there are more workers than tasks in a queue, it
removes the idle resources, decreasing the cost.

As the reader can see, the system worries about both minimizing
wait time and minimizing cost requirements. By checking the
balance between workload and available resources periodically,
the ResourcesManager is able to provide new resources or to
remove the idle ones based on the current demand per queue.
Each one of these actions are taken carefully after the balancing
checking process is done, which avoids unwanted scenarios and
allows us to say that the system deals with the trade-off between
minimizing wait time and minimizing cost satisfactorily.

When it comes to resilience and availability, there are some
important aspects of the system to highlight. The workers are very
important to the system and because they are decoupled from the
server, it is easy to create or remove them. Thus, a bad
functioning worker may not be an issue to the system, once it has
mechanisms to replace that worker and run again the tasks it
eventually retrieved to execution, as described in the task

execution protocol. Besides, in case of failure of the
ResourcesManager, because the WorkerManager has a scheduling
ability, the system can still work with the current available
workers. For that, the WorkerManager gets the responsibility of
deciding for which queue a joining worker will be attached, here
the joining workers are mainly the already existent ones whose
lease time have expired. These fault-tolerant aspects can prevent
the system from having tasks that will not ever be completed, and
can prevent from bad functioning in case of failure of either the
workers or the ResourcesManager, which increases its resilience.
The server’s components have been designed with their
responsibilities well defined. Also, they are as decoupled as
possible from each other. These characteristics alongside some
adjustments, like API replication to each one, may allow them to
work separately and to be replicated, which isolates failures and
increases both resilience and availability.

4.5 Proof of Concept
A proof of concept implementation of the system proposed in this
manuscript is under way. So far, it contemplates the worker and
some of the server’s features, that are described in the following.
We used some technologies such as golang, docker and shell
script to develop it. The ResourcesManager is yet to be
implemented. We discuss how this component and the missing
features can be implemented. This discussion gives some
indication on the feasibility of our proposal.

4.5.1 Worker
The worker’s implementation [16], starts in a loop in which it tries
to get tasks. If the get task request fails because authorization’s
issue, the worker joins the server and tries to get the task again.
With the task in hand the worker is able to execute it. In the
execution phase, the worker instantiates a task executor, it is for
instance a docker client, but could be another driver, and triggers
the execution in another thread. It also creates a ticker which fires
an alarm each time the task interval is reached. In case of the task
execution is done, the executor also fires an alarm. The worker
waits for these two alarms and reports the task progress each time
one of them is fired.

4.5.2 Server
The server [11], exposes its apis. Currently, the join and the get
task api handlers are implemented. The join api handler invokes
the WorkerManager to add the worker. The WorkerManager first
verifies if the joining worker’s ID is available in the allow list;
then it saves the worker’s public key in such a way that it can be
retrieved by its ID; in the third step, the WorkerManager checks if
the signature is valid and generates a token; lastly it retrieves the
queues by requesting the QueuesManager and chooses the one to
which the worker will be attached, keeping state of this. After
that, the api handler returns the token and the queue’s ID.

In the get task api handler, the server authenticates the worker
checking the request signature; then it authorizes the worker by
checking its token; and lastly, it retrieves the queue’s scheduler
from the QueuesManager and asks the scheduler for a task,
returning it to the worker

Despite the api report handler hasn't been implemented, there is a
routine in the jobs handler responsible for that, it updates the
task’s progress and state, and persists it.

Another important action here stands for the JobsHandler starting
point. It started before the api got exposed. When started, the
JobsHandler starts three other threads. The first is responsible for
collecting ready-to-run tasks from the queues and for keeping
them to send to the scheduler when it asks for. The second checks
for never ending tasks by looking for tasks whose last update time
plus its report interval is greater then the current time. For each
one this is true, the JobsHandler set the state as ready-to-run
again. The third keeps tracking of the jobs’ state, updating them
every time all their tasks are done.

4.5.3 Credits
The implementation described above has been conducted by two
main developers, Raoni Matos Smaneoto and Wesley Henrique
Araújo Monte [11], [16]. While Wesley is responsible for the
implementation of the join operation, the worker’s authorization
and authentication in the server side, Raoni focused on the
worker’s implementation, the server’s get task operation and the
JobsHandler’s implementation.

4.5.4 Yet to Come
The ResourcesManager implementation is yet to come. Once the
server already keeps the states needed by the ResourcesManager,
which consists in the queues’ load and the workers attached to
them, the implementation that is to come consists mainly in the
ResourcesManager itself. This component will be the component
responsible for interacting with the resources providers, and as
such, it needs to provide a way of easy integration. A feasible one
consists in adding a configuration file for each one of the
resources providers. The configuration file contains information
about how to authenticate with the provider and the endpoints the
ResourcesManager needs to hit to reach each one of its goals. The
ResourcesManager would interact with the resources providers
each time it finds out an unbalance after analysing the snapshot
provided by the server, keeping state about the resources it has
created and the workers’ configuration attached to them.

5. CONCLUSION
With the proposed solution, we provide an alternative to the
conventional HPC systems, focusing on the users’ experience,
resilience, performance and cost. Thus, the users can work with
HPC, interacting with an interface that is able to support both
command line clients, which pleases the users that are used to the

conventional systems, and modern clients, which pleases
newcomers users who are not comfortable with command line
interfaces. Besides, the system ability of dealing with failures, by
isolating them, improves the system’s resilience, making some of
the main components capable of working regardless of the others.

When it comes to performance, the system leaves nothing to be
desired, it takes advantage of the cloud’s elasticity and provides
resources everytime that the load is greater than the resources
available per queue. Minimizing the cost is also an issue the
system cares about, the ResourcesManager removes idle resources
as soon as it realizes that there are more resources available than
ready-to-run tasks per queue.

Therefore, the cloud infrastructure has been a key player in
providing such characteristics and has shown itself very promisor
to the brief future of high performance computing. We conclude
that the proposed system is an important initiative in bringing high
performance computing to the cloud infrastructure.

6. ACKNOWLEDGMENTS
I thank my parents for always believing in me and for always
being there. I thank my brother, Tiaraju, who also always believed
in me, who is always present regardless of the circumstances and
who presented computer science for me. I thank my cousin Kauê
for all the support he gives me. I thank all my family for being so
lovely with me. I thank all my friends, Gustavo Ribeiro, Emerson,
Ignácio, Isabelle, Erilânia, Ana Beatriz, Leonara, Gustavo Melo,
Caíque, Wesley and Vinícius. I thank my advisors Francisco and
Thiago for their patience, wisdom and all opportunities they have
given me during the graduation.

7. REFERENCES
[1] Alameda, J. Supporting Modern User Interfaces for High

Performance Computing. Available at:
https://cpb-us-w2.wpmucdn.com/sites.udel.edu/dist/6/8980/fi
les/2019/03/Supporting-Modern-User-Interfaces-for-High-Pe
rformance-Computing.pdf

[2] Amazon. Amazon CloudWatch. Available at:
https://aws.amazon.com/pt/cloudwatch/

[3] Amazon. Elastic Load Balancing. Available at:
https://aws.amazon.com/pt/elasticloadbalancing/?sc_channel
=PS&sc_campaign=acquisition_BR&sc_publisher=google&
sc_medium=english_load_balancing_b&sc_content=aws_loa
d_balancer_e&sc_detail=aws%20load%20balancer&sc_cate
gory=load_balancing&sc_segment=159751609434&sc_matc
htype=e&sc_country=BR&s_kwcid=AL!4422!3!159751609
434!e!!g!!aws%20load%20balancer&ef_id=CjwKCAjw_sn8
BRBrEiwAnUGJDq8hFkdUifcNlaD3rCw1DancGGMKmqT
JvTl2twP2nl0wL9YA1KAELhoCrzUQAvD_BwE:G:s&s_k
wcid=AL!4422!3!159751609434!e!!g!!aws%20load%20bala
ncer

[4] Barbosa, J. G. and Moreira, B. Dynamic scheduling of a
batch of parallel task jobs on heterogeneous clusters.
Available at:
https://www.sciencedirect.com/science/article/pii/S01678191
11000020

[5] Cholia, S., Skinner, D. and Boverhof, J. NEWT: A RESTful
Service for Building High Performance Computing Web
Applications. Available at:
https://www.researchgate.net/publication/224208203_NEWT
_A_RESTful_service_for_building_High_Performance_Com
puting_web_applications

[6] Freeh, V. W., Lowenthal, D. K, Pan, F., Kappiah, N.,
Springer, R., Rountree, B. L. and Femal, M. E. Analyzing the
Energy-Time Trade-Off in High-Performance Computing
Applications, (June 2007)

[7] HASHICORP. Introduction to Nomad.
<https://www.nomadproject.io/intro>. Last access: April
30th, 2020

[8] Hindman, B., Konwinski, A., Zaharia, M., Ghodsi, A.
Joseph, A. D., Katz, R., Shenker, S., Stoica, I. Mesos: A
Platform for Fine-Grained Resource Sharing in the Data
Center. Available at:
https://people.eecs.berkeley.edu/~alig/papers/mesos.pdf

[9] Jeff, B. New AWS Auto Scaling – Unified Scaling For Your
Cloud Applications, 2018. Available at:
https://aws.amazon.com/pt/blogs/aws/aws-auto-scaling-unifi
ed-scaling-for-your-cloud-applications/

[10] Milne, L., Lindner, D., Bayer, M., Husmeier, D., McGuire,
G., Marshall, D. F. and Wright F. TOPALi v2: a rich
graphical interface for evolutionary analyses of multiple
alignments on HPC clusters and multi-core desktops.
Available at:
https://academic.oup.com/bioinformatics/article/25/1/126/30
2670

[11] Server’s implementation. Available at:
https://github.com/ufcg-lsd/arrebol-pb/tree/develop

[12] Solem, A. Celery - Distributed Task Queue. Available in:
<https://docs.celeryproject.org/en/stable/> . Last access:
April 30th, 2020

[13] Weik M.H. (2000) batch processing. In: Computer Science
and Communications Dictionary. Springer, Boston, MA.
Available at: https://doi.org/10.1007/1-4020-0613-6_1408

[14] Welsh, T. Perspectives on Resilience in Cloud Computing:
Review and Trends. Available at:
http://eprints.staffs.ac.uk/4420/1/8.pdf

[15] Wong, A. K. L. and Goscinski, A. M. A unified framework
for the deployment, exposure and access of HPC applications
as services in clouds

[16] Worker’s implementation. Available at:
https://github.com/ufcg-lsd/arrebol-pb-worker

https://cpb-us-w2.wpmucdn.com/sites.udel.edu/dist/6/8980/files/2019/03/Supporting-Modern-User-Interfaces-for-High-Performance-Computing.pdf
https://cpb-us-w2.wpmucdn.com/sites.udel.edu/dist/6/8980/files/2019/03/Supporting-Modern-User-Interfaces-for-High-Performance-Computing.pdf
https://cpb-us-w2.wpmucdn.com/sites.udel.edu/dist/6/8980/files/2019/03/Supporting-Modern-User-Interfaces-for-High-Performance-Computing.pdf
https://aws.amazon.com/pt/cloudwatch/
https://www.sciencedirect.com/science/article/pii/S0167819111000020
https://www.sciencedirect.com/science/article/pii/S0167819111000020
https://www.researchgate.net/publication/224208203_NEWT_A_RESTful_service_for_building_High_Performance_Computing_web_applications
https://www.researchgate.net/publication/224208203_NEWT_A_RESTful_service_for_building_High_Performance_Computing_web_applications
https://www.researchgate.net/publication/224208203_NEWT_A_RESTful_service_for_building_High_Performance_Computing_web_applications
https://people.eecs.berkeley.edu/~alig/papers/mesos.pdf
https://aws.amazon.com/pt/blogs/aws/aws-auto-scaling-unified-scaling-for-your-cloud-applications/
https://aws.amazon.com/pt/blogs/aws/aws-auto-scaling-unified-scaling-for-your-cloud-applications/
https://academic.oup.com/bioinformatics/article/25/1/126/302670
https://academic.oup.com/bioinformatics/article/25/1/126/302670
https://github.com/ufcg-lsd/arrebol-pb/tree/develop
https://doi.org/10.1007/1-4020-0613-6_1408
http://eprints.staffs.ac.uk/4420/1/8.pdf

	bee64d2d163acfe7aaeadc0d8558c6029310b357a09813fa37fd7bb61d98f612.pdf
	792c7ffd299d5cf247bab7bcd45c84aa9d06f861c0ec7dddb6582b9d8766baa2.pdf

