

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE

CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA
UNIDADE ACADÊMICA DE SISTEMAS E COMPUTAÇÃO

CURSO DE BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

RONAN DE ARAÚJO SOUZA

PERFORMANCE ANALYSIS BETWEEN APACHE KAFKA AND

RABBITMQ

CAMPINA GRANDE PB

2020

RONAN DE ARAÚJO SOUZA

PERFORMANCE ANALYSIS BETWEEN APACHE KAFKA AND

RABBITMQ

Trabalho de Conclusão Curso
apresentado ao Curso Bacharelado em
Ciência da Computação do Centro de
Engenharia Elétrica e Informática da
Universidade Federal de Campina
Grande, como requisito parcial para
obtenção do título de Bacharel em Ciência
da Computação.

Orientador: Professor Dr. Thiago Emmanuel Pereira da Cunha Silva.

CAMPINA GRANDE PB

2020

Elaboração da Ficha Catalográfica:

Johnny Rodrigues Barbosa

Bibliotecário-Documentalista

CRB-15/626

 S729p Souza, Ronan de Araújo.
 Performance analysis between Apache Kafka and

RabbitMQ. / Ronan de Araújo Souza. – 2020.

 11 f.

 Orientador: Prof. Dr. Thiago Emmanuel Pereira da

Cunha Silva.

 Trabalho de Conclusão de Curso - Artigo (Curso de

Bacharelado em Ciência da Computação) - Universidade

Federal de Campina Grande; Centro de Engenharia Elétrica

e Informática.

 1. Distributed systems. 2. Apache Kafka. 3. RabbitMQ.

I. Silva, Thiago Emmanuel Pereira da Cunha. II. Título.

 CDU:004.6(045)

RONAN DE ARAÚJO SOUZA

PERFORMANCE ANALYSIS BETWEEN APACHE KAFKA AND

RABBITMQ

Trabalho de Conclusão Curso
apresentado ao Curso Bacharelado em
Ciência da Computação do Centro de
Engenharia Elétrica e Informática da
Universidade Federal de Campina
Grande, como requisito parcial para
obtenção do título de Bacharel em Ciência
da Computação.

BANCA EXAMINADORA:

Professor Dr. Thiago Emmanuel Pereira da Cunha Silva

Orientador – UASC/CEEI/UFCG

Professor Dr. Francisco Vilar Brasileiro
Examinador – UASC/CEEI/UFCG

Professor Dr. Tiago Lima Massoni
Disciplina TCC – UASC/CEEI/UFCG

Trabalho aprovado em: 2020.

CAMPINA GRANDE PB

Performance analysis between
Apache Kafka and RabbitMQ

Ronan de Araújo Souza

ronan.souza@ccc.ufcg.edu.br

 Thiago Emmanuel Pereira

temmanuel@computacao.ufcg.edu.br

ABSTRACT

This paper aims to compare two of the most used
publish/subscribe systems: Apache Kafka and RabbitMQ.

Publish/Subscribe (pub/sub) is a pattern that is used to enable
asynchronous communication between different applications, it
usually is implemented in the form of a message queue that holds
the content sent by producers and delivers it to consumers.

With Apache Kafka and RabbitMQ being the most common
pub/sub platforms, each one having its characteristics, the
question of how to properly compare them and how to choose the
best fit for a specific application always comes up to mind.

To answer this question, we define the core functionalities of
pub/sub systems and compare how each platform implements it,
as well as present the results of a benchmark to measure
quantitative metrics and point out distinct aspects of each one. In
the end, we list the main use cases for publish/subscribe systems
and which tool is best suited based on all results previously
obtained.

Keywords

Distributed systems, publish/subscribe platforms, Apache Kafka,
RabbitMQ

1. INTRODUCTION
With distributed solutions being increasingly adopted from
startups to traditional business, the need for tools to work as
middlewares that provide decoupled and asynchronous
communication between multiple services geographically
distributed.

From this scenario, publish/subscribe platforms such as Apache
Kafka and RabbitMQ are widely adopted to provide reliable,
efficient, and safe message exchange between parts.

Although both platforms have the same primary purpose, each one
also has particular features that could either be important or not
feasible for a production environment. With different
characteristics and approaches, which one to adopt?

In this paper, we will first give a background description of the
publish/subscribe paradigm and list its functionalities (Section 2).
After, in Section 3 and 4, we will describe Kafka and RabbitMQ
implementation. Then, we provide qualitative (Section 5) and
quantitative (Section 6) comparisons of common features for both
platforms. In Section 7, we list the important features of each tool.
In section 8, we discuss the main differences between the
Philippe's and Kyumars' [1] work and the results obtained now.
Finally, in Section 9, we list the best-suited use cases for Kafka

and RabbitMQ, and in Section 10 we finish with considerations
about the changes that happened between the experiment.

The methodology used to compare the platforms is a
reimplementation of Philippe Dobbelaere and Kyumars Sheykh
Esmaili [1] work, reimplementation makes it necessary due to the
release of new features for each platform that would impact the
final result.

2. BACKGROUND
In this section, we highlight the main concepts of the pub/sub
paradigm. The concepts raised here will be used further to the
comparisons between both platforms.

Figure 1 : High-level interaction model of a publish/subscribe
system with its clients (p and s indicate a generic publisher and a
generic subscriber, respectively, while e is the message and σ is

the subscription) [15] .

2.1 Concepts
Publish/subscribe (henceforth, pub/sub) is a messaging pattern
that uses a middleware responsible for exchanging messages
between clients. The clients of pub/sub systems are divided
according to their role into publishers, which act as producers of
information, and subscribers, which act as consumers of
information [4]. Clients are not required to communicate directly
among themselves; instead, they have levels of decoupling
between services that are vital for some kinds of distributed
applications. These levels are:

2.1.1 Entity decoupling
Entity decoupling is due to neither publishers nor subscribers
being aware of the existence of the other. It happens because they
are connected only with the platform, so if the subscriber(s) are
offline, the publishers will keep sending messages to the platform.
The same occurs in the opposite direction;

2.1.2 Time and synchronization
Time and synchronization decoupling happens because the parts
do not need to be active at the same time, and they will not be
blocked while the other part is offline. E.g. if the publisher sends a
message and there are no subscribers to receive that message, the

platform will keep that to be further delivered to subscribers (or
delete, depending on the configuration).

2.1.3 Message Routing
Message routing determines how, and if, the produced messages
will be delivered to the consumers. There are two main types of
routing that are used by Kafka and RabbitMQ; they are based in:

2.1.3.1 Content
Which means that the consumers can filter the messages they
want to receive by its content. Because of the need for processing
at the consuming, this kind of routing could be more expensive
than the next one;

2.1.3.2 Topic
Where the message is sent to a topic(s) defined by the publisher
when they are produced, so consumers can subscribe to topics to
have the messages already filtered.

2.2 Quality of Service Guarantees
The lack of a direct producer/consumer relationship makes the
definition and enforcement of any end-to-end QoS policy very
hard [4]. Here we will describe the main QoS guarantees that
pub/sub systems must have. Using the same approach of [1], we
divided the guaranties into groups, as described below:

2.2.1 Correctness
Correctness behavior can be divided into two kinds of guarantees:

2.2.1.1 Delivery Guarantees
● At most once

At most once guarantees that the system will deliver no duplicate
messages, but in case of a packet loss, some message can be lost;

● At least once
At least once assures that if some packet is lost, another one will
be sent. It means that no message will be lost, but in case of a
false positive the consumer may receive the same message twice;

● Exactly once
Exactly once is the most expensive one, because of the need for
two-phase commits to assure no loss and no duplication.

2.2.1.2 Ordering Guarantees
● No ordering

No ordering no have any guarantee about message ordering, but
normally can achieve a better performance

● Partitioned Ordering
Partitioned ordering means that some partitions are ordered, but
when it comes to multiple partitions, there is no guarantee. It
costs more than the previous one, but it allows the system to scale
horizontally and if there is a need for some order to be followed it
can be kept into the same partition.

● Global Ordering
Global ordering means that every message will be delivered in the
same order of production. It needs to keep every messaging
channel synchronized, which is very expensive in a distributed
system.

2.2.2 Availability
Availability is the ability of the system to keep uptime. It could be
measured as the percentage of time that the system is available

over the measurement period. It works to estimate the future
performance of this system.

2.2.3 Transactions
Transactions are used to encapsulate messages before sending
them. It is used to reduce the use of network resources, or when
it's known that the consumer needs all the messages together to
process them.

2.2.4 Scalability
Scalability is the system's ability to increase his capability to
properly handle the workload. A pub/sub system could scale to be
able to process more messages faster, or deal with a major number
of clients (consumers and producers).

2.2.5 Efficiency
Efficiency is the capacity to achieve the desired result with fewer
resources. In the experiment described in section 6, we will use
the following metrics to measure the efficiency of both systems.

2.2.5.1 Latency
Latency is the time spent to a data packet to travel from a point to
another. In this case, from the producer(s) to the consumer(s).

2.2.5.2 Throughput
Throughput the number of packets (or bytes) per time unit that
can be transported between producers and consumers. Contrary to
latency, throughput can easily be enhanced by adding additional
resources in parallel [1].

3. APACHE KAFKA
Apache Kafka was originally developed by LinkedIn but in 2011
it was donated to Apache Foundation and has been maintained by
them since.

Figure 2: Kafka Architecture

First, it is important to know that Kafka relies on Zookeeper to
manage clusters, topics, and partitions. So it's necessary to have a
Zookeeper instance running to deploy a Kafka Cluster.

ZooKeeper is a centralized service for maintaining configuration
information, naming, providing distributed synchronization, and
providing group services [10].
When a producer sends a message to a topic, it's stored into a
partition in this topic that will be consumed for all the consumer
groups that are listening to this specific topic as is visible in figure
1. At first sight, it is not clear why consumers are grouped and
topics are divided into partitions, let's have a look:

Partitions are the topic divisions to enable horizontal scaling of a
topic, so a topic could have partitions (and their replicas) over
different brokers in the cluster. As shown in Figure 2, a partition
is an ordered log of messages which makes a topic partial ordered;

Figure 3: Anatomy of a Topic [16]

As above, when it is necessary to horizontally scale a consumer is
simple. Consumers with the same consumer group ID make the
Kafka group coordinator divide the topic partitions between all
the consumers . 1

With the partitions/consumer group approach, Kafka makes
possible horizontal scaling with partial ordering and no
duplication in the ideal scenario - to increase performance, Kafka
has an option to commit the consumed offset periodically. Once it
is not necessary to commit the offset after each consumption, the
process becomes faster. But, on the other hand it only guarantees
at least once delivery due to the possibility that a crash happens
just before the consumer commits the current offset causing some
message duplication.

4. RABBITMQ
RabbitMQ is an open-source message broker developed by Rabbit
Technologies and is now maintained by Pivotal Software.
RabbitMQ is an Erlang implementation of Advanced Message
Queuing Protocol (AMQP), which is a protocol for
message-oriented communication that relies on message queuing
to store messages coming from exchanges and deliver them to
consumers.

1 It is worth mentioning that if there are more consumers than
partitions some of them will be idle.

In section we first give an explanation about the RabbitMQ core
concepts and describe a message flow since the publishing from
the producer until the reception of the consumer in 4.1. Then, in
4.2 we describe all the different ways that the message can be
routed to a queue.

4.1 Core Concepts
In RabbitMQ, exchanges are responsible for getting messages
from producers and depending on its type, choose which queue
will receive the message, to choose the correct queue it uses
bindings, that specificities rules and the criteria to define a route
between an exchange and a queue, that is where messages are
stored until they are handled by consumers. There is also the
routing key, a message attribute used by some exchanges to select
which queue will receive the message.

Figure 4: Message flow in RabbitMQ [5]

As seen in figure 4, the message flow in RabbitMQ has 5 steps,
let's look at it:

1. Producer sends a message to a RabbitMQ broker, it is
first delivered to the exchange;

2. Exchange, depending on its type, will choose which
queue will receive the message;

3. If the message is compatible with some biding, the
exchange will send it to the queue, instead, the message
is lost;

4. The queue receives the message and keeps it until some
consumer handle it;

5. The consumer finally receives the message.

4.2 Exchanges types
● Direct

The message will be sent to the queue that the binding key
matches exactly the routing key.

● Headers
The exchange will consider the message headers as a routing key.

● Fanaut
 Similar to a broadcast, the message is sent to all queues binded.

● Topic
Is quite similar to the direct type, but in this case, the binding key
could be a regular expression.

It's worth mentioning that queues keep messages in memory when
it's possible, putting them on disk only when necessary. But if the
persistent option is selected, all messages will be stored on disk
possibly causing higher latency.

5. QUALITATIVE COMPARISON
In this section we list all the primary features that both platforms
provide and the approach of each implementation, as well as
possible drawbacks/advantages.

5.1 Time decoupling
Both systems can store messages to be consumed later, but each
one deals with it in a different way.

Kafka is designed to handle a considerably high amount of data
and can scale better.

RabbitMQ stores all new messages in DRAM memory and once
there is no more memory available it starts storing in the disk
which can degrade the performance.

5.2 Routing Logic
Once that RabbitMQ inherits routing logic from AMQP with the
exchanges approach, it is already very flexible in terms of logic.
Not enough, RabbitMQ has an API making possible making the
routing logic even more customizable.

On the other hand, Apache Kafka has only the topic-based logic
natively. KsqlDB (see section 7.1.4) raised the possibility to
query from message parameters, but it adds a higher complexity
level.

5.3 Delivery Guarantees
Both Kafka and RabbitMQ have the guarantees of at least once,
which means that all messages got delivered but some messages
could get duplicated; at most once guarantee it makes sure that
there is no duplication but in case of failure some messages could
be lost. Kafka also has a specific scenario where it is possible to
guarantee exactly one message is delivered, that will explore in
7.1.

5.3.1 Apache Kafka
Same as RabbitMQ, it is possible to guarantee message durability
and acknowledgment. For durability, it is possible to replicate
partitions through many brokers into the cluster, and when the
leader goes down, one follower becomes a leader and keeps the
data available, but for this work properly, all the replicas should
be synchronized. Kafka has the concept of In Sync Replicas
(ISR). Each replica can be in or out of sync. In sync means that
they have been up-to-date with the leader within a short period
(the last 10 seconds by default) [6].

The producer can define which kind of acknowledgment it wants
to receive from the broker, that could be:

● No acknowledgment, fire and forget. Acks=0.

● The leader has received and processed the message.
Acks=1

● The leader and all In Sync Replicas have received and
processed the message. Acks=All

5.3.2 RabbitMQ
It's possible to guarantee message durability and message
acknowledgment. Durability, that is, not losing the message when
the broker fails is achieved using quorum queues [6], which
enables high availability of the data.

For acknowledgment is possible to set up a publisher to wait for
the confirmation message, that could be a basic.ack meaning that
the message was successfully received and processed or
basic.nack when something happened while sending or processing
the message. Waiting for an ack after each message could
seriously degrade the throughput, so it's possible to set up the
producer to send a steady stream of messages until it reaches a
limited number of unacknowledged messages, then it pauses and
waits for the confirmation.

5.4 Ordering Guarantees
RabbitMQ is possible to have a queue fully ordered even for
retransmitted messages, once is used a single AMQP channel.

For Kafka it is not possible to guarantee that a topic is ordered,
however is possible to achieve that into each partition.

5.5 High Availability
Both platforms provide availability using replication.

For Apache Kafka is necessary to define the replication factor in
the topic creation. It will replicate (replication factor times) each
partition in a different broker in the cluster. It's worth mentioning
that your replication factor should be at least the same size as the
available brokers.

RabbitMQ only applies high availability to mirrored or quorum
queues [6], while classic queues will not be replicated.

5.6 Multicast
When comes to the need of sending the same message to multiple
clients each platform deals in a different way:

RabbitMQ provides multicast by creating a queue for each
consumer, which depending on the number of consumers could
highly increase the number of bindings to support the individual
queues.

Kafka is completely transparent at the server-side, this is due to
the fact that the message is delivered once to each partition replica
and there is a consumer offset coordinator responsible to manage
the offset of each consumer.

5.7 Scalability
Scaling a RabbitMQ cluster is well supported and can be done
online (there will be no downtime). For adding new nodes, those
will be able to become master for new queues and will accept
connections to publish/consume to/from any queue; for removing
existing nodes, it's quite similar, just being necessary to run a
forget_cluster_node command to remove a node from the cluster.

In Apache Kafka, the dynamic scale is not completely transparent
to the consumer, since there is a mapping for consumers to
partitions in a consumer group. For adding new nodes, it is
necessary to define which existing partitions will be replicated to
the new broker, but the process can be done with no downtime. To

remove existing brokers first is necessary to redistribute all the
present partitions on this node to existing ones before it can be
done.

6. QUANTITATIVE COMPARISON
In this section, we will compare the performance of each platform
from two essential metrics: Throughput and latency. The results
presented in this document are native from a benchmark
developed by Alok Nikhil and Vinoth Chandar [9], supported by
Confluent to compare RabbitMQ, Apache Kafka, and Apache
Pulsar. For more detailed information, it's possible to see all the
benchmark results in [11].

6.1 Test Environment
The experiment was executed using AWS EC2 instances
i3en.2xlarge (with 8 vCores, 64 GB RAM, 2 x 2,500 GB NVMe
SSDs). For these tests, four instances were used to produce the
workload, three nodes to host the Kafka/RabbitMQ brokers
(Kafka also required three nodes for Apache Zookeeper) and one
node to monitor the environment. The systems versions utilized in
the tests were 2.6 for Apache Kafka and 3.8.5 for RabbitMQ.

To run the benchmark was the OpenMessaging Benchmark
Framework with changes to add the RabbitMQ driver, once this
option is not available in the framework yet.

6.2 Latency
With the popularity of pub/sub systems in stream processing and
event-driven architecture, realtime delivery and low end-to-end
latency is a decisive factor when it comes to choosing one of those
systems.

6.2.1 Methodology
To measure the end-to-end latency it was defined as the highest
stable throughput for each system based on previous runs that
showed a throughput at 200k messages per second for Apache
Kafka and 30K messages per second for RabbitMQ. The
considerable difference in the defined throughput due to the CPU
bottleneck faced by RabbitMQ, this problem is evident in the 6.3
section.

Both systems were set up to high availability, meaning that
RabbitMQ used mirrored queues; to achieve the best performance
was defined that Kafka fsync config turned off and RabbitMQ
does not persist messages on disk.

6.2.2 Results

Chart 1: End-to-end latency between Apache Kafka and
RabbitMQ [11]

It’s possible to notice from the chart above that RabbitMQ got
better results than Kafka. Even though under a limitation that
prevents RabbitMQ from horizontal scale without a CPU
bottleneck that in this specific scenario it’s with mentioning that
the max latency of RabbitMQ was 27.572 ms against 94.178 ms
from Apache Kafka, which means more than 3 times better.

This scenario changes completely with bigger throughput, with
p99 reaching 2 seconds in RabbitMQ at 38K messages per
second.

6.3 Throughout
This test aimed to measure the peak stable throughput, which is:
The highest producer throughput average at which consumers can
handle without an ever-growing backlog.

6.3.1 Methodology
For this test the replication factor 3 was defined, which means that
all messages were replicated 3 three times across the nodes for
high availability, and to enable a higher throughput both systems
used a batch with 1 MB where each message was 1 KB size.

For Kafka was created one topic with 100 partitions, while
RabbitMQ had a single direct exchange linking to 24 queues
(since each queue required a dedicated core, was used 3 brokers
each one with 8 vCPUs), and in this case, the benchmark
framework used a round-robin to generate message keys to enable
the exchange equally route to all queues.

6.3.2 Results
Given the previously described scenario, Apache Kafka presented
the highest throughput with the following metrics:

Chart 2: Peak Stable Throughput with four producers and four
consumers [11]

To test Kafka’s throughput performance, it was chosen two
scenarios, using fsync that calls the fsync system call for each
message to write the data in the disk before acknowledging the
producer, and as expected it would have a degradation compared
with the scenario with no fsync.
RabbitMQ tested two scenarios, the first one with no replication,
while the second used mirrored queues to assure the availability of
the message. It was noticed that RabbitMQ does not handle well
with an overhead of replication, getting a CPU bound during the
workload which severely degrades the performance.

7. DISTINCT FEATURES
7.1 Apache Kafka
7.1.1 Long Term Storage
Don't fear the filesystem![2] Kafka relies heavily on the
filesystem for storing and caching messages, and due to the way
it’s done - linear writes - it takes the best from disk, so it enables
to store huge amounts of data. Each topic has a retention time that
is used to purge messages older than that (or when the topic’s disk
quota is exceeded).

7.1.2 Kafka Connect
Kafka Connect is a reliable open-source framework for
connecting Kafka with external systems such as databases,
key-value stores, search indexes, and file systems[7]. Connect
runs with streaming and batch-oriented and it's a solution that
reduces the development time in some cases.

7.1.3 Kafka Streams
Kafka Streams is a lightweight client library to perform data
processing, is an interesting option because it is fault-tolerant,
elastic (client-side), equally viable for different scenarios (from a
local test to a production cluster). Kafka stream is available in
Java and Scala.

7.1.4 KsqlDB
KsqlDB is an event streaming database, that is, is a particular kind
of database to develop processing applications. With ksqlDB is
possible to, for example, query from a topic filtering by some
parameter using SQL syntax.

7.2 RabbitMQ
7.2.1 AMQP
RabbitMQ is an open-source implementation of a standardized
protocol (AMQP), and because of that, there is a higher level of
similarity between other platforms based on the same protocol,
which could be beneficial in a case of substitution, for example.

7.2.2 Message TTL
A “time to live” could be essential in some real-time scenarios,
where the message delivery could be nonsense after some time.

7.2.3 Publisher Flow Control
RabbitMQ can stop publishers from sending messages, in order to
keep the rate of messages being received to avoid a server being
overwhelmed.

7.2.4 Message Prioritization
RabbitMQ has priority queues, where publishers then can publish
prioritized messages using the priority field (between 0 and 255)
on the message body, larger numbers indicate higher priority. It’s
with mentioning that there is some in-memory and on-disk cost
per priority level per queue. There is also an additional CPU cost,
especially when consuming, so you may not wish to create huge
numbers of levels[3].

7.2.5 UI and monitoring tools
It comes with an easy-to-use interface attached that allows the
user to monitor connections, queues, exchanges, clustering,
resource consumption in a self-explanatory dashboard.

8. DISCUSSION
From the 2017 experiment until now, there have been some
releases for both Apache Kafka and RabbitMQ, more specifically
Kafka comes from 0.10.0.1 to 2.6 and RabbitMQ from 3.5.3 to
3.8.5. In this section, we aim to discuss the main features added to
both platforms, as well as the differences found between both
benchmarks.

8.1 Apache Kafka
For Apache Kafka, some important features were released in the
last years, especially from Confluent that is an event Streaming
Platform based on Kafka. One noteworthy feature is the
transactions that were added in the 1.0.0 release. Transactions are
specially util in cases of, for example, financial institutions use
stream processing applications to process debits and credits on
user accounts. In these situations, there is no tolerance for errors
in processing: we need every message to be processed exactly
once, without exception [14].

Another considerable feature is the ksqlDB, which is an event
streaming database, for more information, see section 7.1.4.

8.2 RabbitMQ
For RabbitMQ, on the 3.6.0 release was added the Lazy queues,
which attempts to move messages to disk as early as practically
possible. This means significantly fewer messages are kept in
RAM in the majority of cases under normal operation. This comes
at a cost of increased disk I/O [3]. It differs from the default queue
approach, that tries to keep in-cache message data whenever is
possible.

But the most important feature since then is the Quorum queues.
This new kind of queue comes to improve the model

synchronization and consequently the performance of mirrored
queues without losing any of the high availability present on that.
Quorum Queues are a kind of mirrored queues that use the Raft
Consensus Algorithm [13] to replicate messages through the
cluster. One message is acknowledged when a quorum master and
a defined number of followers nodes receive it, assuring the high
availability of the message. This also solves some problems from
the classic mirrored queues such as when a node goes down and
gets back online, it's not necessary a whole synchronization with
the master, which its mirrored queues were a blocking process
that would keep the entire queue unavailable. For more about
quorum queues, see [12].

8.3 Quantitative Experiment
Before any further, it is essential to say that both experiments
were carried out in different scenarios, so some considerations
may be done. That being said, for latency matters, results seemed
quite near, with both latency quite similar and RabbitMQ showing
a small advantage.

Due to the fact of a high replication factor that caused a CPU
bottleneck to RabbitMQ, which severely impacted the benchmark
results, a proper comparison is not possible.

9. PREFERRED USE CASES
9.1 Apache Kafka
9.1.1 Analytics
It’s known that the primary use case of Apache Kafka was to track
website activity, collecting all events generated by users, storing
and processing them afterward. With big companies around the
world with applications used by millions of people, it’s clear the
need for tools that can handle high throughputs. Another
important factor is the accessibility possible because of Kafka
connect, making it easy to create streams from Kafka to big data
storage systems such as Elasticsearch and Spark.

9.1.2 Realtime
Kafka is a distributed system with high-throughput, which is
essential for systems with huge amounts of data that deals with
real-time processing. Because of that, systems like Spotify and
Shopify use Kafka to publish data in real-time.

9.1.3 Event Sourcing
Event source is a design that captures all changes to an application
state as a sequence of events[10]. With Kafka’s support for
storing large amounts of data, it’s the best choice for applications
in this scenario. Nubank and Wildlife Studios are heavy users of
Apache Kafka in this scenario.

9.2 RabbitMQ
9.2.1 Middleware in Microservices Architecture
As aforementioned, one popular application for pub/sub systems
is providing communication between microservices. RabbitMQ is
a better option for this scenario for some reasons: The First one is
that normally messages do not need to be stored for a long period,
which is a RabbitMQ’s characteristic; It’s also normal that each
message will be consumed once, another property that is better
handled by RabbitMQ.

Companies like Bloomberg and Parkster use RabbitMQ as
middleware in their microservices architecture.

10. CONCLUSION
This paper aimed to reimplement a framework comparison
between Apache Kafka and RabbitMQ that was previously
established a couple of years ago by Philippe Dobbelaere and
Kyumars Sheykh Esmaili. But beyond that, it also shows how
both platforms worked to improve known issues and develop new
features to adapt itself to the new market needs.

In terms of performance, Apache Kafka showed to be more
scalable than RabbitMQ in global scenarios, where huge
throughputs should be handled by many brokers with high
availability and deliver it at considerably low latencies.

On the other hand, for some scenarios RabbitMQ showed to be a
no-brainer choice, for instance when there is a need for global
ordering with a befitting throughput.

Another important factor that should be noticed is the
commitment of Apache Kafka to add new features to its toolbox.
Especially from Confluent, which is a company created by some
Kafka founders and provides a complete platform for streaming
data, with cost planning for cloud resources and 24/7 support.
Features like Kafka connect that provides a framework with
connectors to external services in a really easy way, or even
KsqlDB, that is an event streaming database that between other
important features it added the possibility of filtering from the
data content, that previously Kafka wasn't able to offer.

With the peculiarities of each system, a decision to each one be
used should rely on different aspects as mentioned in the previous
sections, but not only that. An aspect that should be considered is
the adaptability of new features as shown in the last paper, where
Kafka together with Confluent developed a toolkit to support new
market demands, and on the other hand RabbitMQ making use of
AMQP protocol which makes a change to another AMQP based
system a smoother change.

11. REFERENCES
[1] Philippe Dobbelaere and Kyumars Sheykh Esmaili. 2017.
Kafka versus RabbitMQ: A comparative study of two industry
reference publish/subscribe implementations: Industry Paper. In
Proceedings of the 11th ACM International Conference on
Distributed and Event-based Systems (DEBS ’17). Association for
Computing Machinery, New York, NY, USA, 227–238. DOI:
https://doi.org/10.1145/3093742.3093908

[2] Apache Kafka: https://kafka.apache.org/documentation

[3] RabbitMQ: https://www.rabbitmq.com/documentation.html

[4] A. Corsaro et al. Quality of Service in Publish/Subscribe
Middleware. Global Data Management, 19(20):1–22, 2006.

[5]CloudAMQP - RabbitMQ for Beginners:
https://www.cloudamqp.com/blog/2015-05-18-part1-rabbitmq-for
-beginners-what-is-rabbitmq.html

[6] RabbitMQ vs Kafka Part 4 - Message Delivery Semantics and
Guarantees:
https://jack-vanlightly.com/blog/2017/12/15/rabbitmq-vs-kafka-pa
rt-4-message-delivery-semantics-and-guarantees

[7] Confluent: https://docs.confluent.io/

[8]ksqlDB:
https://docs.ksqldb.io/en/latest/?_ga=2.263364876.1243017561.16
04802691-2027677595.1604802691

https://kafka.apache.org/documentation
https://www.rabbitmq.com/documentation.html
https://www.cloudamqp.com/blog/2015-05-18-part1-rabbitmq-for-beginners-what-is-rabbitmq.html
https://www.cloudamqp.com/blog/2015-05-18-part1-rabbitmq-for-beginners-what-is-rabbitmq.html
https://jack-vanlightly.com/blog/2017/12/15/rabbitmq-vs-kafka-part-4-message-delivery-semantics-and-guarantees
https://jack-vanlightly.com/blog/2017/12/15/rabbitmq-vs-kafka-part-4-message-delivery-semantics-and-guarantees
https://docs.confluent.io/
https://docs.ksqldb.io/en/latest/?_ga=2.263364876.1243017561.1604802691-2027677595.1604802691
https://docs.ksqldb.io/en/latest/?_ga=2.263364876.1243017561.1604802691-2027677595.1604802691

[9] Alok Nikhil and Vinoth Chandar, 2020. Benchmarking
Apache Kafka, Apache Pulsar, and RabbitMQ: Which is the
Fastest?
https://www.confluent.io/blog/kafka-fastest-messaging-system/

[10] Apache Zookeeper docs:
https://zookeeper.apache.org/doc/r3.6.2/index.html

[11] OpenMessaging Benchmark Results:
https://github.com/confluentinc/openmessaging-benchmark/tree/m
aster/blog/results

[12] RabbitMQ 3.8 Feature Focus - Quorum Queues:
https://www.cloudamqp.com/blog/2019-03-28-rabbitmq-quorum-
queues.html

[13]The Raft Consensus Algorithm: https://raft.github.io/

[14] Transactions in Apache Kafka:
https://www.confluent.io/blog/transactions-apache-kafka/

[15] A. Corsaro et al. Quality of Service in Publish/Subscribe
Middleware. Global Data Management, 19(20):1–22, 2006.

[16] Lawlor, Brendan & Lynch, Richard & Mac Aogáin, Micheál
& Walsh, Paul. (2018). Field of genes: using Apache Kafka as a
bioinformatic data repository. GigaScience. 7.
10.1093/gigascience/giy036.

About the authors:

Ronan de Araújo Souza is a senior Computer Science student at
UFCG that currently works as a Site Reliability Engineer intern at
Wildlife Studios.

Thiago Emmanuel Pereira is a Computer Science Professor at
UFCG that works in the Distributed Systems Laboratory (LSD)

https://www.confluent.io/blog/kafka-fastest-messaging-system/
https://zookeeper.apache.org/doc/r3.6.2/index.html
https://github.com/confluentinc/openmessaging-benchmark/tree/master/blog/results
https://github.com/confluentinc/openmessaging-benchmark/tree/master/blog/results
https://www.cloudamqp.com/blog/2019-03-28-rabbitmq-quorum-queues.html
https://www.cloudamqp.com/blog/2019-03-28-rabbitmq-quorum-queues.html
https://raft.github.io/
https://www.confluent.io/blog/transactions-apache-kafka/

	91df23029571273479ebeeaca813989589c6ed26197d3e46a55fbb0a0d0d05cb.pdf
	abfb185c650dd5d1356dc1a4863b8b3b29258774f04490ea16ccb5e053d48308.pdf

