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ABSTRACT 

The software development process generates several textual       
artifacts that are mostly written in natural language. Establishing         
connections between these artifacts can have a positive impact on          
performing a variety of tasks, including code understanding and         
maintaining. The use of Information Retrieval (IR) and Machine         
Learning (ML) techniques in order to recover the traceability         
between bug reports and test cases has already been proposed,          
however, the results indicated the need for improvements,        
especially to deal with the differences in vocabulary. In this paper,           
we created a Vocabulary Unifier using a ​thesaurus to expand the           
vocabulary encountered in bug reports, aiming to unify their terms          
in line with the terms from the test cases. We evaluated the            
techniques comparing its recall, precision and f2-score rates with         
those reached by previous works, observing slight improvements        
in its values. 
Keywords 

software artifacts, bug reports, test cases, traceability, thesaurus,        
wordnet, conceptnet 

1. INTRODUCTION 
Most of the documentation that comes with a software system,          
such as requirements and design documents, bug reports, test         
cases, and system features, is written in natural language.         
Establishing traceability links between these artifacts can be of         
great help in a variety of tasks, such as code understanding,           
system maintaining, requirements tracking, impact analysis and       
code reuse [1]. 

In particular, the recovery of traceability between bug        
reports and test cases can help the software team in several tasks,            
such as classifying bug priority, bug fixing and analyzing the          
impact of implementing improvements in a system [2]. 

The use of Information Retrieval (IR) [3] and Machine         
Learning (ML) [4] techniques for recovering traceability between        
test cases and bug reports has still reached incipient results. [2]           
applied three IR techniques (Latent Semantic Index, Latent        
Dirichlet Allocation and Best Match 25) and one Deep Learning          
(DL) technique (Word Vector) in the traceability recovery process         
between the aforementioned artifacts. The obtained results were:        
an average recall below 40%, and an average precision below          
30%. The author points out possible reasons for these results,          
such as the difference in terms used in the description of test cases             
compared to the terms used in bug reports. The quality of the            
writing of the bug reports can also be one of the impasses for the              
use of the techniques. For instance, when small and not precisely           

descriptive, the bug reports can obstruct (both for humans and for           
the semi-automatic techniques) the traceability of test cases. 

Aiming to minimize these issues concerning differences in        
vocabulary, we propose in this work, an approach to unify the           
vocabularies through a ​thesaurus in the context of traceability         
recovery between bug reports and test cases extracted from         
Mozilla's QA Team. The ​thesaurus is created using either         
WordNet or ConceptNet to fetch synonyms for the words inside          
bug reports, for the purpose of expanding its terms, increasing the           
likelihood of the IR techniques to match a larger quantity of           
words with the terms from the target documents, the test cases.           
For evaluating the approach, we extracted its recall, precision and          
f2-score rates and compared them with those reached by the          
baseline work. 

The task of recovering traceability links between bug        
reports and test cases remains an arduous and error-prone work.          
Minimizing the issues encountered in the previous works, aiming         
to get better results, could help in the automation of this task.            
With the ​vocabulary unifier​, we expect to increase the recall          
values extracted from the techniques, once it would help         
recovering traces that were not recovered due to differences in          
vocabulary. 

This paper is organized as follows. Section 2 introduces         
basic concepts to better comprehend this work. Section 3 presents          
the baseline study. Section 4 introduces our approach. Section 5          
describes the experiment, whereas Section 6 discusses its results.         
Section 7 shows related works, whereas Section 8 states our          
conclusions. 

2. BACKGROUND 
2.1 Bug Reports 
Bug reports allow users to inform developers of the problems they           
experience while using a software [5]. The main objective of a           
bug report is to offer details about a failure identified and then            
help developers investigate and fix the bug once its presence is           
confirmed [6]. Typically, a bug report contains some fields, such          
as ​Bug Number​, ​Summary​, ​Platform​, ​Component​, ​Version​,       
Creation Time​, ​First Comment Text​, ​First Comment Text Creation         
Time​, ​Status​, ​Product​, ​Priority​, ​Resolution​, ​Severity and ​Is        
Confirmed​. 

Table 2.1 illustrates an example of a bug report extracted          
from Mozilla's Bugzilla page , containing its ID, Title and         1

Description. Bug report 1276120 describes an error related to         
autocomplete suggestions in the url bar of Mozilla's Firefox. 

1 ​https://bugzilla.mozilla.org/  

 

https://bugzilla.mozilla.org/


Table 2.1: Bug Report Example 

 

2.2 Manual Test Cases 
A manual test case (MTC) denes a textual sequence of steps to            
reproduce that should occur as described, each of which including          
the expected results, allowing a tester to determine if a software is            
following the stakeholder’s requirements [7]. 

Table 2.2 shows a Mozilla Firefox's test case example         
linked to the bug report depicted in Table 2.1, describing steps to            
ensure that a star appears if the drop down displays a result that is              
marked as favorite in Mozilla's Firefox browser. It also expects          
that, when the favorite is clicked, its link will correctly open. 

Table 2.2: Test Case Example 

 

Mozilla Firefox's Test Case's template has the following        
fields: ​TC Number​, ​Test Day​, ​Feature ID​, ​Firefox Feature​,         
Generic Title​, ​Ctr Nr (Control Number), ​Title​, ​Preconditions​,        
Steps​ and ​Expected Result​.  

2.3 WordNet 
WordNet is an online lexical database designed for computational         
purposes. English nouns, verbs, adjectives, and adverbs are        

organized into sets of synonyms (synsets), representing a        
lexicalized concept [8]. 

In this paper, we use WordNet as a synonyms source in           
order to expand the artifacts vocabulary, as it provides ​synonymy          
relations, its basic relation that represents a symmetric relation         
between word forms. 

WordNet also has a web application where a user can          
fully use its features. Figure 2.1, shows an partial example          
extracted from its web application for the term 'switch'. It brought           
out 14 synsets, divided into two categories, Nouns and Verbs,          
each one containing seven synsets, as can be partially seen in           
Figure. 

 

Figure 2.1: Example extracted from WordNet's web application  2

 

Alongside with ​synonyms​, ​antonyms​, ​hyponyms​,     
meronyms and other types of relations, Wordnet API also returns          
whether a term is described as a ​noun or not, a feature that we also               
use in this work. 

2.4 ConceptNet 
ConceptNet is a knowledge graph that connects words and         
phrases of natural language with labeled edges. Its knowledge is          
collected from many sources that include expert-created       
resources, crowd-sourcing, and games with a purpose. It is         
designed to represent the general knowledge involved in        
understanding language, improving natural language applications      
by allowing the application to better understand the meanings         
behind the words people use [9]. 

ConceptNet's feature set includes multi-language support      
as well as other types of relations than the ones from WordNet,            
such as ​Related Terms​, ​Derived Terms​, ​Context of This Term​,          
Ways of This Term​, etc. Although it has a wider range of features             
than WordNet, it should be emphasized that ConceptNet's list of          
sources includes WordNet. 

Figure 2.2 displays a partial example of the features from          
ConceptNet taken from its web application. As we can observe in           
the image, for the term 'switch', it brings out a list of synonyms (in              
several languages), terms defined as ​types of 'switch' and ​related          
terms​. 

2 ​http://wordnetweb.princeton.edu/perl/webwn  

 

ID 1276120 

Title Autocomplete suggestions just don't go away after 
Win+Down 

Description STR:  
1. Open new window, switch it to normal 

(not maximized) mode 
2. Focus urlbar, type "a" 
3. Press Win+Down  
4. Click button on Windows Taskbar to open 

the window again  
5. (bonus) Focus searchbar, type "b". Move 

the window a bit (drag-n-drop) 
AR:  After step 4 autocomplete suggestions are open. 
They don't hide/move in Step 5. 
ER:  Either no autocomplete suggestions after step 4, 
or something more smart.  
This is regression from bug 1264983. 

TC Number 16 

TestDay 20160603 + 20160624 + 20161014 

Generic Title Awesome Bar Search 

Ctr Nr 4 

Title Search State - Favorites 

Steps 1. Ensure the star appears if the drop down 
displays a result that is marked as a favorite  
2. Ensure clicking the link for the favorite opens 
the appropriate site 

Expected Result 1. Search result has the star icon displayed 
2. The link is correctly opened. 

http://wordnetweb.princeton.edu/perl/webwn


 

Figure 2.2: Example extracted from ConceptNet's web 
application  3

 

3. BASELINE STUDY 
[2] proposes an approach to recover traceability links between         
bug reports and test cases applying three Information Retrieval         
(LSI, LDA and BM25) techniques and one Deep Learning (Word          
Vector) technique. The data used in this study came from the           
Mozilla Firefox Quality Assurance Team. Aiming to enable a         
comparison between the IR and DL techniques, the same input          
and evaluation process was used for every technique, in which a           
comparison was made at the end with an oracle that is used as a              
reference for judging the effectiveness of the applied techniques.  

The results encountered in the baseline study have shown         
that a couple of improvements could be made in order to increase            
its effectiveness and use the techniques in a semi-automatized         
traceability recovery process. The methodology from [2] provides        
a trustworthy way to compare recall, precision and f2-score         
metrics extracted from the techniques, enabling us to compare the          
impact of the introduction of the ​vocabulary unifier​ module. 

3.1 Architecture 
The baseline study consists in four steps: (i) the parse of the            
documents being traced, extracting the most relevant words; (ii)         
the creation of a ​term-by-document matrix that supports the         
traceability recovery made by a computational technique; (iii) the         
ranking of the most similar target documents by the computational          
technique based on the source document; and, at the end, (iv) the            
comparison between the rankings and the ground truth in order to           
get an evaluation of the technique. 

Figure 3.1 extracted from [2] gives a general overview of          
the baseline study architecture. The Traces Builder module        
receives a set of bug reports and maps them to a subset of the              
provided test cases by applying (in isolation) each IR and DL           
technique. As a result, it is built a Recovered BR-TC Trace Links            
Matrix for each executed technique [2]. 

3 ​http://conceptnet.io/  

 

Figure 3.1: The General Overview of the Baseline Study 
Architecture  extracted from [2] . 

 

3.2 Results 
The results obtained by the baseline study revealed the strengths          
and weaknesses of each applied technique in the task of          
traceability recovery between bug reports and test cases, showing         
that only one of them, LSI, has had satisfactory results, being           
feasible to be used in a semi-automatized traceability recovery         
process. Further details on the baseline results will be given in           
Section 6. 

4. OUR APPROACH 
In order to deal with the differences in vocabulary encountered          
between source and target documents during the traceability        
recovery process, we propose the use of a thesaurus, that we call            
Vocabulary Unifier​, as a plugin module to the baseline study          
architecture. 

The thesaurus plays the role of adding synonyms to the          
source document in order to unify the vocabulary used by the           
Mozilla Firefox QA Team and the testers. In our approach, we           
adopt WordNet as a synonyms source in order to expand our           
vocabulary, as it provides ​synonymy relations, its basic relation         
that represents a symmetric relation between word forms.We also         
adopt the ConceptNet as an alternative to WordNet when fetching          
synonyms for terms, as well as to check whether a term is scope             
related to the Computer Science/Programming field, as it provides         
an API that lists all the related terms to a given word. 

As Figure 4.1 shows, the Vocabulary Unifier works as a          
plugin in the baseline study architecture, acting as an intermediary          
module between the input artifacts and the Traces Builder module.          
Therefore, the ​Vocabulary Unifier module receives the list of bug          
reports and test cases as input and delivers them to the traces            
builder module, with changes provided to the bug reports, by          
adding synonyms to the selected terms contained by them. 

 

Figure 4.1: The partial architecture of the baseline  research [2] 
with the addition of the Vocabulary Unifier plugin 

 

http://conceptnet.io/


4.1 The Vocabulary Unifier 
The Vocabulary Unifier module receives two inputs: the source         
and the target documents. They then pass through a preprocessing          
phase where we tokenize them and remove stopwords that would          
be later also removed in the Traces Builder module from the           
baseline study. We chose to repeat that removal of stopwords to           
improve the algorithm's performance, given that it will handle         
considerably fewer words. 

The Vocabulary Unifier module changes only the source        
documents (bug reports), once that the target documents (test         
cases) will be used strictly to create a corpus (on which the query             
will be applied) with their terms and frequencies.  

In the expansion step, we iterate through the terms of the           
source documents and expand them according to the chosen API          
(either WordNet or ConceptNet) and the expansion techniques        
adopted. It is important to highlight that one synonym would only           
be added to the source document if it has a frequency above 0 on              
the created corpus. Therefore, the corpus created with the test          
cases are crucial, because it plays the role of a synonyms ranker,            
limiting the number of ​synonyms per term that will be added to            
the source documents. 

We convert the tokenized expanded list of terms to a csv           
file, the format that is accepted as an input in the evaluation            
method from the baseline study. Notice that the only documents          
that were modified are the source ones. We used the target           
documents only to create the corpus on which the search is           
applied during the information retrieval task. 

4.2 Expansion Techniques 
In order to explore and investigate a greater number of scenarios           
in the vocabulary unifier, we adopt, in this work, eight expansion           
approaches to the terms, as follows: 

● WordNet Full Expansion (WFE)​: Every term is expanded        
using WordNet's API to fetch the synonyms; 

● ConceptNet Full Expansion (CFE)​: Every term is       
expanded using ConceptNet's API to fetch the synonyms; 

● WordNet Nouns Expansion (WNE)​: Only nouns are       
expanded using WordNet's API to fetch the synonyms; 

● ConceptNet Nouns Expansion (CNE)​: Only nouns are       
expanded using ConceptNet's API to fetch the synonyms; 

● WordNet Scope Expansion (WSE)​: Only technical (scope       
related) terms are expanded using WordNet's API to fetch         
the synonyms; 

● ConceptNet Scope Expansion (CSE)​: Only technical      
(scope related) terms are expanded using ConceptNet's       
API to fetch the synonyms; 

● WordNet Nouns and Scope Expansion (WNSE)​: Only       
technical (scope related) nouns are expanded using       
WordNet's API to fetch the synonyms; 

● ConceptNet Nouns and Scope Expansion (CNSE)​: Only       
technical (scope related) nouns are expanded using       
ConceptNet's API to fetch the synonyms. 

To verify if a term is a noun, we used the provided API             
from WordNet that returns whether a term is a noun or not. To             
check if a term is a technical term (scope related), we fetch, from             
the ConceptNet API, the related terms to it and check if it has one              
of the following keywords: 'computing', 'computer programming',       
'computation', 'computer', 'software', 'code', 'programming',     
'programming language', 'program'. These keywords were selected       

by means of a manual process of searching for the most related            
terms of the scope. 

5. EXPERIMENT 
5.1 Scenarios 
Considering the amount of parameters possibilities, we delve into         
eight expansion techniques besides the baseline study. 

For each expansion technique, we explored a range from 1          
to 5 ​synonyms per term ​in the expansion process. Therefore, we           
have a total of 5 scenarios for each expansion technique. We           
observed in a preliminary study that when we set this parameter           
with values higher than this range, the trend was the results to get             
worse. 

For instance, consider the WNSE-2 from WNSE       
expansion technique. In this scenario, we use WordNet as the API           
to fetch synonyms, as well as we only expand one term if it is a               
noun and it is related to Programming scope.  

Therefore, considering the term 'switch', extracted from       
the bug report 1276120 (shown in Table 2.1) the algorithm will           
evaluate it and check that: (i) it is a noun (at least in some              
scenarios); and (ii) it is related to the scope; In the sequel, it will              
fetch the synonyms from the WordNet API and receive a list of 22             
synonyms for the 'switch' term. From these 22 synonyms, it will           
check which ones of them are on the corpus created with the            
frequency of the terms from the target documents. It will chop the            
2 (by the WNSE-2 expansion approach) of these synonyms that          
appeared the most on the target documents. Therefore, for the          
term 'switch', the WNSE-2 approach adds the terms 'change' and          
'alternate' (that appeared a total of 32 and 12 times, respectively,           
in the target documents) to the respective source document. 

5.2 Evaluation 
Our evaluation process is the same as the one used in the baseline             
study with a few key differences. First, we got rid of the DL             
technique, focusing on the IR ones. 

However, we had to make a few adjustments in order to           
reduce the evaluation time, once we have a total of 45 scenarios .             
The main cut we did was the removal of the Word Vector            
techniques, once we focused on the IR techniques, alongside with          
the fact that it presented the lowest effectiveness in the baseline           
study. 

Another change we made when evaluating our proposal        
was on the Top-N values parameters of the Traces Builder          
module. Instead of using the default 10, 20 and 40 values, we used             
10, 20 and 120 values to amplify the impact that the proposed            
expansion approaches would have on the results, given that, the          
higher the Top-N value, the biggest the differences between the          
expanded scenarios and the baseline. 

These adjustments made to the scope of this work are not           
mandatory for the vocabulary unifier to be executed. Our         
approach module can be used using the same parameters as the           
baseline study, including the DL technique and Top-40 instead of          
Top-120. 

Even though the evaluation from the Traces Builder        
module brings out every metric used in the baseline study, we           
chose to focus on five of them when discussing the results:           
precision, recall, f2-score, the number of traces captured by every          
technique and the number of traces not captured by any of the            

 



techniques. These metrics were chosen based on the main goal of           
using the ​thesaurus​: increasing the recall values. Alongside with         
the recall metric, observing the number of traces captured by all           
and not captured traces will show us an in-depth look at the            
changes our approach made in a real problem. The precision and           
f2-score metrics will allow us to evaluate the impact of adding a            
thesaurus on the original base study beyond the recall metric and           
evaluate if the reached recall values are worthy. 

The ​precision​, ​recall and ​f2-score metrics, very common        
in the field of traceability recovery [10], they are defined as           
follows: 

Precision = T P
T P  + F P  

Recall =​ T P
T P  + F N  

F2-Score = 4 × P recision + Recall
5 × P recision × Recall  
 

Where ​TP is the number of True Positives, ​FP is the           
number of False Positives and ​FN is the number of False           
Negatives. 

6. RESULTS 
In this section, we present the results extracted from the execution           
of each one of the cenarios, using mainly their average value in            
comparison to the baseline. We must point out that we also           
executed the baseline scenario without the Word Vector        
technique, using only the 3 IR techniques, once it would affect the            
recall, precision and f2-score final values. 

When talking about expansion techniques, we will be        
aggregating its scenarios values in an average metric. It is          
important to point out that only the scenarios can be executed by            
the ​vocabulary unifier module. The expansion technique is just an          
entity to group out scenarios by its common parameters. 

The results analysis were particularly complicated to be        
made. Although the differences between the values of the metrics          
were very relevant in several scenarios, tracking what was really          
decisive for these changes in metrics values was a challenge. 

6.1 Traces Captured By All 
When looking at the average number of traces captured by all           
techniques, as shown in Figure 6.1, four expansion techniques         
reached better values than the baseline: CSE, CNSE, WSE and          
WNSE. They all have in common the use of expansion, but only            
when the term has any relation with Computer        
Science/Programming (the scope conditional). 

In fact, every scenario from CSE, CNSE, WSE and         
WNSE have higher values than the baseline scenario. In addition          
to them, the scenario WFE-1 also reached a higher number of           
traces captured by all techniques: 42. 

 

Figure 6.1: The average number of traces captured by all 
techniques for each expansion technique for Top-10  

 

6.2 Not Captured Traces 
Figure 6.2 depicts the number of not captured traces - by any of             
the techniques, applying 10 as the cut value for Top-N, where two            
expansion techniques reached equal or better values than the         
baseline using the average number of no captured traces. 

 

Figure 6.2: The average number of not captured traces for each 
expansion technique for Top-10 

 

However, we must point out that WSE expansion        
technique has two scenarios, WSE-1 and WSE-2, that beat out the           
baseline, with 210 and 212, respectively, as the average number of           
not captured traces. In addition, the scenarios from WNSE that          
beat the baseline value are WNSE-1 and WNSE-2: 210 and 211,           
respectively. 

When using the largest cut (Top-120), we can observe that          
75% of the expansion techniques that use Vocabulary Unifier         
module have a lower average number of not captured traces than           
baseline scenario (that was also executed using the largest cut), as           
shown in Figure 6.3. This implies saying that 100% of the traces            
were found by at least one of the techniques in every CNSE, CSE,             
WNSE and WSE scenario using 120 as Top-N value. Each one of            
the 3 traces that were not captured by the baseline scenario under            
Top 120 value was captured using Vocabulary Unifier module         
with the scope conditional. 

 



 

Figure 6.3: The average number of not captured traces for each 
expansion technique for Top-120 

 

6.3 Precision, Recall And F2-Score 
Figure 6.4 shows the results for recall, precision and f2-score          
average values under BM25 technique. 

 

Figure 6.4: The average values of Recall, Precision and F2-Score 
for each one of the expansion techniques using BM25 technique. 

 

Using the BM25 technique, four expansion techniques       
reached better average recall values than the baseline: WNSE (the          
highest one), WSE, CNSE and CSE - all of them using the scope             
conditional as an expansion criteria. The highest value        
encountered from WNSE expansion technique was 32.79, using 1         
as the ​synonyms per term value (scenario WNSE-1), an increase          
of 1.95% over the baseline recall value. 

When looking at the average recall, precision and f2-score         
values for the LDA model, as shown in Figure 6.5, we also            
observe higher values in four expansion techniques, the same ones          
as using the BM25 model.  

 

Figure 6.5: The average values of Recall, Precision and F2-Score 
for each one of the expansion techniques using LDA technique. 

 

This time, WSE has the highest average recall value,         
having WSE-2 as its best scenario with a recall value of 38.77,            

increasing by 4.9% baseline scenario's value, the highest increase         
we encountered when looking at all of the three techniques. 

In Figure 6.6 we can observe recall, precision and f2-score          
average values for each expansion technique under LSI technique.         
It is noteworthy that the LSI technique had the best results in the             
baseline study.  

Once again, WNSE appeared as the best expansion        
technique, with its average value increasing recall baseline's value         
by 1.7%. The highest recall value was obtained by WNSE-1          
scenario: 51.09, an increase of 3.4% over the baseline scenario's          
value. 

 

Figure 6.6: The average values of Recall, Precision and F2-Score 
for each one of the expansion techniques using LSI technique 

 

Every WSE, WNSE and CNSE scenario, in addition to the          
CSE-1 scenario, reached higher values than the baseline study         
under LSI technique. 

The full set of results, including the execution of the          
techniques for every scenario (and the baseline scenario) can be          
found in a repository hosted on GitHub . 4

7. RELATED WORK 
Santos ​et al. [11] also implemented improvements techniques to         
the research made by Gadelha ​et al. [2], such as text and            
information cleaning, spell-checking, terms weighting, similarity      
matrices merging and traceability matrices merging, achieving a        
recall of 93%. We can also cite a variety of previous studies that             
carried out comparisons between the effectiveness of IR and ML          
techniques in the traceability recovery context, such as Merten ​et          
al.​ [12] and Nilam Kaushit ​et al.​ [13]. 

As for the use of WordNet in the text retrieval context,           
Voorhees ​et al. [14] investigated the use of WordNet to enhance           
access to collections of text, exploiting its knowledge to         
ameliorate the effects synonyms and homographs have on text         
retrieval systems that use word matching. Loupy et al. [15] also           
used synonyms (as well as hyponyms) given by WordNet in order           
to enrich queries in the context of document retrieval. 

Hsu et al. [16] compared the use of ConceptNet and          
WordNet in query expansion, which has been widely used to deal           
with paraphrase problems in information retrieval. In the        
conclusion, it showed that WordNet is good at proposing kernel          
words and ConceptNet is useful to find cooperative concepts,         
recommending the two resources as complementary tools to        
improve IR performance. 

4 ​https://github.com/victorrborges/thesaurus-traceability-study  

 

https://github.com/victorrborges/thesaurus-traceability-study


8. CONCLUSIONS 
This work evaluated the use of a ​Vocabulary Unifier when          
creating links between bug reports and test cases using IR          
techniques, focusing on recall, precision and f2-score metrics. 

The main goal of this work was to investigate how a           
unifier vocabulary deals with IR techniques applied on the         
traceability recovery between bug reports and test cases. Although         
the results have shown that the use of a ​thesaurus made a slight             
impact over a baseline study recall values, we understand that,          
when applied with improvements made by other works (such as          
[11]), it could allow automatization when creating links between         
software artifacts or at least improve by a large margin the results            
obtained by the base study. 

We believe that the Vocabulary Unifier can be used in          
other contexts than recovering traceability links between software        
artifacts. In fact, its use can be spread to any kind of textual             
artifacts, once there is a difference between the terms used in           
these artifacts (as well as differences in vocabulary, making it an           
issue). In cases where the textual artifacts do not belong to the            
Computer Science/Programming field, we would have to change        
the terms we used when verifying if a term belongs to the scope,             
using specific terms from the chosen field. 

As future work, we suggest applying the Vocabulary        
Unifier module with the improvements made in [11]. We also          
recommend the study of other parameters to be used when          
applying the expansion further than the ones we used in this work            
(applying other expansion criterias) and the use of other APIs to           
fetch synonyms. Another path to follow is to modify the weight of            
the synonyms that were added to the source documents using the           
thesaurus when applying the IR techniques, in order to amplify or           
decrease their importance. 
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