

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE

CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA
UNIDADE ACADÊMICA DE SISTEMAS E COMPUTAÇÃO

CURSO DE BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

VICTOR EDUARDO BORGES DE ARAÚJO

USING A THESAURUS IN TRACEABILITY RECOVERY

BETWEEN BUG REPORTS AND TEST CASES

CAMPINA GRANDE ­ PB

2020

VICTOR EDUARDO BORGES DE ARAÚJO

USING A THESAURUS IN TRACEABILITY RECOVERY

BETWEEN BUG REPORTS AND TEST CASES

Trabalho de Conclusão Curso
apresentado ao Curso Bacharelado em
Ciência da Computação do Centro de
Engenharia Elétrica e Informática da
Universidade Federal de Campina
Grande, como requisito parcial para
obtenção do título de Bacharel em Ciência
da Computação.

Orientador: Professor Dr. Franklin de Souza Ramalho.

CAMPINA GRANDE ­ PB

2020

Elaboração da Ficha Catalográfica:

Johnny Rodrigues Barbosa

Bibliotecário-Documentalista

CRB-15/626

 A663u Araújo, Victor Eduardo Borges de.
 Using a thesaurus in traceability recovery between

bug reports and test cases. / Victor Eduardo Borges de

Araújo. – 2020.

 10 f.

 Orientador: Prof. Dr. Franklin de Souza Ramalho.

 Trabalho de Conclusão de Curso - Artigo (Curso de

Bacharelado em Ciência da Computação) - Universidade

Federal de Campina Grande; Centro de Engenharia Elétrica

e Informática.

 1. Software artifacts. 2. Bug reports. 3. Test cases.

4. Traceability. 5. Thesaurus. 6. Bug reports. 7.

Wordnet. 8. Coceptnet. 9. Information retrieval. 10.

Machine learning. 11. Vocabulary unifier. 12. Vocabulary

encountered I. Ramalho, Franklin de Souza. II. Título.

 CDU:004(045)

VICTOR EDUARDO BORGES DE ARAÚJO

USING A THESAURUS IN TRACEABILITY RECOVERY

BETWEEN BUG REPORTS AND TEST CASES

Trabalho de Conclusão Curso
apresentado ao Curso Bacharelado em
Ciência da Computação do Centro de
Engenharia Elétrica e Informática da
Universidade Federal de Campina
Grande, como requisito parcial para
obtenção do título de Bacharel em Ciência
da Computação.

BANCA EXAMINADORA:

Professor Dr. Franklin de Souza Ramalho

Orientador – UASC/CEEI/UFCG

Professor Dr. Eanes Torres Pereira
Examinador – UASC/CEEI/UFCG

Professor Dr. Tiago Lima Massoni
Disciplina TCC – UASC/CEEI/UFCG

Trabalho aprovado em: 2020.

CAMPINA GRANDE ­ PB

Using a Thesaurus in Traceability Recovery Between Bug
Reports and Test Cases

Victor Eduardo Borges de Araújo
Federal University of Campina Grande

Campina Grande, Brazil

victor.araujo@ccc.ufcg.edu.br

Franklin Ramalho
Federal University of Campina Grande

Campina Grande, Brazil

franklin@computacao.ufcg.edu.br

ABSTRACT

The software development process generates several textual
artifacts that are mostly written in natural language. Establishing
connections between these artifacts can have a positive impact on
performing a variety of tasks, including code understanding and
maintaining. The use of Information Retrieval (IR) and Machine
Learning (ML) techniques in order to recover the traceability
between bug reports and test cases has already been proposed,
however, the results indicated the need for improvements,
especially to deal with the differences in vocabulary. In this paper,
we created a Vocabulary Unifier using a ​thesaurus to expand the
vocabulary encountered in bug reports, aiming to unify their terms
in line with the terms from the test cases. We evaluated the
techniques comparing its recall, precision and f2-score rates with
those reached by previous works, observing slight improvements
in its values.
Keywords

software artifacts, bug reports, test cases, traceability, thesaurus,
wordnet, conceptnet

1. INTRODUCTION
Most of the documentation that comes with a software system,
such as requirements and design documents, bug reports, test
cases, and system features, is written in natural language.
Establishing traceability links between these artifacts can be of
great help in a variety of tasks, such as code understanding,
system maintaining, requirements tracking, impact analysis and
code reuse [1].

In particular, the recovery of traceability between bug
reports and test cases can help the software team in several tasks,
such as classifying bug priority, bug fixing and analyzing the
impact of implementing improvements in a system [2].

The use of Information Retrieval (IR) [3] and Machine
Learning (ML) [4] techniques for recovering traceability between
test cases and bug reports has still reached incipient results. [2]
applied three IR techniques (Latent Semantic Index, Latent
Dirichlet Allocation and Best Match 25) and one Deep Learning
(DL) technique (Word Vector) in the traceability recovery process
between the aforementioned artifacts. The obtained results were:
an average recall below 40%, and an average precision below
30%. The author points out possible reasons for these results,
such as the difference in terms used in the description of test cases
compared to the terms used in bug reports. The quality of the
writing of the bug reports can also be one of the impasses for the
use of the techniques. For instance, when small and not precisely

descriptive, the bug reports can obstruct (both for humans and for
the semi-automatic techniques) the traceability of test cases.

Aiming to minimize these issues concerning differences in
vocabulary, we propose in this work, an approach to unify the
vocabularies through a ​thesaurus in the context of traceability
recovery between bug reports and test cases extracted from
Mozilla's QA Team. The ​thesaurus is created using either
WordNet or ConceptNet to fetch synonyms for the words inside
bug reports, for the purpose of expanding its terms, increasing the
likelihood of the IR techniques to match a larger quantity of
words with the terms from the target documents, the test cases.
For evaluating the approach, we extracted its recall, precision and
f2-score rates and compared them with those reached by the
baseline work.

The task of recovering traceability links between bug
reports and test cases remains an arduous and error-prone work.
Minimizing the issues encountered in the previous works, aiming
to get better results, could help in the automation of this task.
With the ​vocabulary unifier​, we expect to increase the recall
values extracted from the techniques, once it would help
recovering traces that were not recovered due to differences in
vocabulary.

This paper is organized as follows. Section 2 introduces
basic concepts to better comprehend this work. Section 3 presents
the baseline study. Section 4 introduces our approach. Section 5
describes the experiment, whereas Section 6 discusses its results.
Section 7 shows related works, whereas Section 8 states our
conclusions.

2. BACKGROUND
2.1 Bug Reports
Bug reports allow users to inform developers of the problems they
experience while using a software [5]. The main objective of a
bug report is to offer details about a failure identified and then
help developers investigate and fix the bug once its presence is
confirmed [6]. Typically, a bug report contains some fields, such
as ​Bug Number​, ​Summary​, ​Platform​, ​Component​, ​Version​,
Creation Time​, ​First Comment Text​, ​First Comment Text Creation
Time​, ​Status​, ​Product​, ​Priority​, ​Resolution​, ​Severity and ​Is
Confirmed​.

Table 2.1 illustrates an example of a bug report extracted
from Mozilla's Bugzilla page , containing its ID, Title and 1

Description. Bug report 1276120 describes an error related to
autocomplete suggestions in the url bar of Mozilla's Firefox.

1 ​https://bugzilla.mozilla.org/

https://bugzilla.mozilla.org/

Table 2.1: Bug Report Example

2.2 Manual Test Cases
A manual test case (MTC) denes a textual sequence of steps to
reproduce that should occur as described, each of which including
the expected results, allowing a tester to determine if a software is
following the stakeholder’s requirements [7].

Table 2.2 shows a Mozilla Firefox's test case example
linked to the bug report depicted in Table 2.1, describing steps to
ensure that a star appears if the drop down displays a result that is
marked as favorite in Mozilla's Firefox browser. It also expects
that, when the favorite is clicked, its link will correctly open.

Table 2.2: Test Case Example

Mozilla Firefox's Test Case's template has the following
fields: ​TC Number​, ​Test Day​, ​Feature ID​, ​Firefox Feature​,
Generic Title​, ​Ctr Nr (Control Number), ​Title​, ​Preconditions​,
Steps​ and ​Expected Result​.

2.3 WordNet
WordNet is an online lexical database designed for computational
purposes. English nouns, verbs, adjectives, and adverbs are

organized into sets of synonyms (synsets), representing a
lexicalized concept [8].

In this paper, we use WordNet as a synonyms source in
order to expand the artifacts vocabulary, as it provides ​synonymy
relations, its basic relation that represents a symmetric relation
between word forms.

WordNet also has a web application where a user can
fully use its features. Figure 2.1, shows an partial example
extracted from its web application for the term 'switch'. It brought
out 14 synsets, divided into two categories, Nouns and Verbs,
each one containing seven synsets, as can be partially seen in
Figure.

Figure 2.1: Example extracted from WordNet's web application 2

Alongside with ​synonyms​, ​antonyms​, ​hyponyms​,
meronyms and other types of relations, Wordnet API also returns
whether a term is described as a ​noun or not, a feature that we also
use in this work.

2.4 ConceptNet
ConceptNet is a knowledge graph that connects words and
phrases of natural language with labeled edges. Its knowledge is
collected from many sources that include expert-created
resources, crowd-sourcing, and games with a purpose. It is
designed to represent the general knowledge involved in
understanding language, improving natural language applications
by allowing the application to better understand the meanings
behind the words people use [9].

ConceptNet's feature set includes multi-language support
as well as other types of relations than the ones from WordNet,
such as ​Related Terms​, ​Derived Terms​, ​Context of This Term​,
Ways of This Term​, etc. Although it has a wider range of features
than WordNet, it should be emphasized that ConceptNet's list of
sources includes WordNet.

Figure 2.2 displays a partial example of the features from
ConceptNet taken from its web application. As we can observe in
the image, for the term 'switch', it brings out a list of synonyms (in
several languages), terms defined as ​types of 'switch' and ​related
terms​.

2 ​http://wordnetweb.princeton.edu/perl/webwn

ID 1276120

Title Autocomplete suggestions just don't go away after
Win+Down

Description STR:
1. Open new window, switch it to normal

(not maximized) mode
2. Focus urlbar, type "a"
3. Press Win+Down
4. Click button on Windows Taskbar to open

the window again
5. (bonus) Focus searchbar, type "b". Move

the window a bit (drag-n-drop)
AR: After step 4 autocomplete suggestions are open.
They don't hide/move in Step 5.
ER: Either no autocomplete suggestions after step 4,
or something more smart.
This is regression from bug 1264983.

TC Number 16

TestDay 20160603 + 20160624 + 20161014

Generic Title Awesome Bar Search

Ctr Nr 4

Title Search State - Favorites

Steps 1. Ensure the star appears if the drop down
displays a result that is marked as a favorite
2. Ensure clicking the link for the favorite opens
the appropriate site

Expected Result 1. Search result has the star icon displayed
2. The link is correctly opened.

http://wordnetweb.princeton.edu/perl/webwn

Figure 2.2: Example extracted from ConceptNet's web
application 3

3. BASELINE STUDY
[2] proposes an approach to recover traceability links between
bug reports and test cases applying three Information Retrieval
(LSI, LDA and BM25) techniques and one Deep Learning (Word
Vector) technique. The data used in this study came from the
Mozilla Firefox Quality Assurance Team. Aiming to enable a
comparison between the IR and DL techniques, the same input
and evaluation process was used for every technique, in which a
comparison was made at the end with an oracle that is used as a
reference for judging the effectiveness of the applied techniques.

The results encountered in the baseline study have shown
that a couple of improvements could be made in order to increase
its effectiveness and use the techniques in a semi-automatized
traceability recovery process. The methodology from [2] provides
a trustworthy way to compare recall, precision and f2-score
metrics extracted from the techniques, enabling us to compare the
impact of the introduction of the ​vocabulary unifier​ module.

3.1 Architecture
The baseline study consists in four steps: (i) the parse of the
documents being traced, extracting the most relevant words; (ii)
the creation of a ​term-by-document matrix that supports the
traceability recovery made by a computational technique; (iii) the
ranking of the most similar target documents by the computational
technique based on the source document; and, at the end, (iv) the
comparison between the rankings and the ground truth in order to
get an evaluation of the technique.

Figure 3.1 extracted from [2] gives a general overview of
the baseline study architecture. The Traces Builder module
receives a set of bug reports and maps them to a subset of the
provided test cases by applying (in isolation) each IR and DL
technique. As a result, it is built a Recovered BR-TC Trace Links
Matrix for each executed technique [2].

3 ​http://conceptnet.io/

Figure 3.1: The General Overview of the Baseline Study
Architecture extracted from [2] .

3.2 Results
The results obtained by the baseline study revealed the strengths
and weaknesses of each applied technique in the task of
traceability recovery between bug reports and test cases, showing
that only one of them, LSI, has had satisfactory results, being
feasible to be used in a semi-automatized traceability recovery
process. Further details on the baseline results will be given in
Section 6.

4. OUR APPROACH
In order to deal with the differences in vocabulary encountered
between source and target documents during the traceability
recovery process, we propose the use of a thesaurus, that we call
Vocabulary Unifier​, as a plugin module to the baseline study
architecture.

The thesaurus plays the role of adding synonyms to the
source document in order to unify the vocabulary used by the
Mozilla Firefox QA Team and the testers. In our approach, we
adopt WordNet as a synonyms source in order to expand our
vocabulary, as it provides ​synonymy relations, its basic relation
that represents a symmetric relation between word forms.We also
adopt the ConceptNet as an alternative to WordNet when fetching
synonyms for terms, as well as to check whether a term is scope
related to the Computer Science/Programming field, as it provides
an API that lists all the related terms to a given word.

As Figure 4.1 shows, the Vocabulary Unifier works as a
plugin in the baseline study architecture, acting as an intermediary
module between the input artifacts and the Traces Builder module.
Therefore, the ​Vocabulary Unifier module receives the list of bug
reports and test cases as input and delivers them to the traces
builder module, with changes provided to the bug reports, by
adding synonyms to the selected terms contained by them.

Figure 4.1: The partial architecture of the baseline research [2]
with the addition of the Vocabulary Unifier plugin

http://conceptnet.io/

4.1 The Vocabulary Unifier
The Vocabulary Unifier module receives two inputs: the source
and the target documents. They then pass through a preprocessing
phase where we tokenize them and remove stopwords that would
be later also removed in the Traces Builder module from the
baseline study. We chose to repeat that removal of stopwords to
improve the algorithm's performance, given that it will handle
considerably fewer words.

The Vocabulary Unifier module changes only the source
documents (bug reports), once that the target documents (test
cases) will be used strictly to create a corpus (on which the query
will be applied) with their terms and frequencies.

In the expansion step, we iterate through the terms of the
source documents and expand them according to the chosen API
(either WordNet or ConceptNet) and the expansion techniques
adopted. It is important to highlight that one synonym would only
be added to the source document if it has a frequency above 0 on
the created corpus. Therefore, the corpus created with the test
cases are crucial, because it plays the role of a synonyms ranker,
limiting the number of ​synonyms per term that will be added to
the source documents.

We convert the tokenized expanded list of terms to a csv
file, the format that is accepted as an input in the evaluation
method from the baseline study. Notice that the only documents
that were modified are the source ones. We used the target
documents only to create the corpus on which the search is
applied during the information retrieval task.

4.2 Expansion Techniques
In order to explore and investigate a greater number of scenarios
in the vocabulary unifier, we adopt, in this work, eight expansion
approaches to the terms, as follows:

● WordNet Full Expansion (WFE)​: Every term is expanded
using WordNet's API to fetch the synonyms;

● ConceptNet Full Expansion (CFE)​: Every term is
expanded using ConceptNet's API to fetch the synonyms;

● WordNet Nouns Expansion (WNE)​: Only nouns are
expanded using WordNet's API to fetch the synonyms;

● ConceptNet Nouns Expansion (CNE)​: Only nouns are
expanded using ConceptNet's API to fetch the synonyms;

● WordNet Scope Expansion (WSE)​: Only technical (scope
related) terms are expanded using WordNet's API to fetch
the synonyms;

● ConceptNet Scope Expansion (CSE)​: Only technical
(scope related) terms are expanded using ConceptNet's
API to fetch the synonyms;

● WordNet Nouns and Scope Expansion (WNSE)​: Only
technical (scope related) nouns are expanded using
WordNet's API to fetch the synonyms;

● ConceptNet Nouns and Scope Expansion (CNSE)​: Only
technical (scope related) nouns are expanded using
ConceptNet's API to fetch the synonyms.

To verify if a term is a noun, we used the provided API
from WordNet that returns whether a term is a noun or not. To
check if a term is a technical term (scope related), we fetch, from
the ConceptNet API, the related terms to it and check if it has one
of the following keywords: 'computing', 'computer programming',
'computation', 'computer', 'software', 'code', 'programming',
'programming language', 'program'. These keywords were selected

by means of a manual process of searching for the most related
terms of the scope.

5. EXPERIMENT
5.1 Scenarios
Considering the amount of parameters possibilities, we delve into
eight expansion techniques besides the baseline study.

For each expansion technique, we explored a range from 1
to 5 ​synonyms per term ​in the expansion process. Therefore, we
have a total of 5 scenarios for each expansion technique. We
observed in a preliminary study that when we set this parameter
with values higher than this range, the trend was the results to get
worse.

For instance, consider the WNSE-2 from WNSE
expansion technique. In this scenario, we use WordNet as the API
to fetch synonyms, as well as we only expand one term if it is a
noun and it is related to Programming scope.

Therefore, considering the term 'switch', extracted from
the bug report 1276120 (shown in Table 2.1) the algorithm will
evaluate it and check that: (i) it is a noun (at least in some
scenarios); and (ii) it is related to the scope; In the sequel, it will
fetch the synonyms from the WordNet API and receive a list of 22
synonyms for the 'switch' term. From these 22 synonyms, it will
check which ones of them are on the corpus created with the
frequency of the terms from the target documents. It will chop the
2 (by the WNSE-2 expansion approach) of these synonyms that
appeared the most on the target documents. Therefore, for the
term 'switch', the WNSE-2 approach adds the terms 'change' and
'alternate' (that appeared a total of 32 and 12 times, respectively,
in the target documents) to the respective source document.

5.2 Evaluation
Our evaluation process is the same as the one used in the baseline
study with a few key differences. First, we got rid of the DL
technique, focusing on the IR ones.

However, we had to make a few adjustments in order to
reduce the evaluation time, once we have a total of 45 scenarios .
The main cut we did was the removal of the Word Vector
techniques, once we focused on the IR techniques, alongside with
the fact that it presented the lowest effectiveness in the baseline
study.

Another change we made when evaluating our proposal
was on the Top-N values parameters of the Traces Builder
module. Instead of using the default 10, 20 and 40 values, we used
10, 20 and 120 values to amplify the impact that the proposed
expansion approaches would have on the results, given that, the
higher the Top-N value, the biggest the differences between the
expanded scenarios and the baseline.

These adjustments made to the scope of this work are not
mandatory for the vocabulary unifier to be executed. Our
approach module can be used using the same parameters as the
baseline study, including the DL technique and Top-40 instead of
Top-120.

Even though the evaluation from the Traces Builder
module brings out every metric used in the baseline study, we
chose to focus on five of them when discussing the results:
precision, recall, f2-score, the number of traces captured by every
technique and the number of traces not captured by any of the

techniques. These metrics were chosen based on the main goal of
using the ​thesaurus​: increasing the recall values. Alongside with
the recall metric, observing the number of traces captured by all
and not captured traces will show us an in-depth look at the
changes our approach made in a real problem. The precision and
f2-score metrics will allow us to evaluate the impact of adding a
thesaurus on the original base study beyond the recall metric and
evaluate if the reached recall values are worthy.

The ​precision​, ​recall and ​f2-score metrics, very common
in the field of traceability recovery [10], they are defined as
follows:

Precision = T P
T P + F P

Recall =​ T P
T P + F N

F2-Score = 4 × P recision + Recall
5 × P recision × Recall

Where ​TP is the number of True Positives, ​FP is the
number of False Positives and ​FN is the number of False
Negatives.

6. RESULTS
In this section, we present the results extracted from the execution
of each one of the cenarios, using mainly their average value in
comparison to the baseline. We must point out that we also
executed the baseline scenario without the Word Vector
technique, using only the 3 IR techniques, once it would affect the
recall, precision and f2-score final values.

When talking about expansion techniques, we will be
aggregating its scenarios values in an average metric. It is
important to point out that only the scenarios can be executed by
the ​vocabulary unifier module. The expansion technique is just an
entity to group out scenarios by its common parameters.

The results analysis were particularly complicated to be
made. Although the differences between the values of the metrics
were very relevant in several scenarios, tracking what was really
decisive for these changes in metrics values was a challenge.

6.1 Traces Captured By All
When looking at the average number of traces captured by all
techniques, as shown in Figure 6.1, four expansion techniques
reached better values than the baseline: CSE, CNSE, WSE and
WNSE. They all have in common the use of expansion, but only
when the term has any relation with Computer
Science/Programming (the scope conditional).

In fact, every scenario from CSE, CNSE, WSE and
WNSE have higher values than the baseline scenario. In addition
to them, the scenario WFE-1 also reached a higher number of
traces captured by all techniques: 42.

Figure 6.1: The average number of traces captured by all
techniques for each expansion technique for Top-10

6.2 Not Captured Traces
Figure 6.2 depicts the number of not captured traces - by any of
the techniques, applying 10 as the cut value for Top-N, where two
expansion techniques reached equal or better values than the
baseline using the average number of no captured traces.

Figure 6.2: The average number of not captured traces for each
expansion technique for Top-10

However, we must point out that WSE expansion
technique has two scenarios, WSE-1 and WSE-2, that beat out the
baseline, with 210 and 212, respectively, as the average number of
not captured traces. In addition, the scenarios from WNSE that
beat the baseline value are WNSE-1 and WNSE-2: 210 and 211,
respectively.

When using the largest cut (Top-120), we can observe that
75% of the expansion techniques that use Vocabulary Unifier
module have a lower average number of not captured traces than
baseline scenario (that was also executed using the largest cut), as
shown in Figure 6.3. This implies saying that 100% of the traces
were found by at least one of the techniques in every CNSE, CSE,
WNSE and WSE scenario using 120 as Top-N value. Each one of
the 3 traces that were not captured by the baseline scenario under
Top 120 value was captured using Vocabulary Unifier module
with the scope conditional.

Figure 6.3: The average number of not captured traces for each
expansion technique for Top-120

6.3 Precision, Recall And F2-Score
Figure 6.4 shows the results for recall, precision and f2-score
average values under BM25 technique.

Figure 6.4: The average values of Recall, Precision and F2-Score
for each one of the expansion techniques using BM25 technique.

Using the BM25 technique, four expansion techniques
reached better average recall values than the baseline: WNSE (the
highest one), WSE, CNSE and CSE - all of them using the scope
conditional as an expansion criteria. The highest value
encountered from WNSE expansion technique was 32.79, using 1
as the ​synonyms per term value (scenario WNSE-1), an increase
of 1.95% over the baseline recall value.

When looking at the average recall, precision and f2-score
values for the LDA model, as shown in Figure 6.5, we also
observe higher values in four expansion techniques, the same ones
as using the BM25 model.

Figure 6.5: The average values of Recall, Precision and F2-Score
for each one of the expansion techniques using LDA technique.

This time, WSE has the highest average recall value,
having WSE-2 as its best scenario with a recall value of 38.77,

increasing by 4.9% baseline scenario's value, the highest increase
we encountered when looking at all of the three techniques.

In Figure 6.6 we can observe recall, precision and f2-score
average values for each expansion technique under LSI technique.
It is noteworthy that the LSI technique had the best results in the
baseline study.

Once again, WNSE appeared as the best expansion
technique, with its average value increasing recall baseline's value
by 1.7%. The highest recall value was obtained by WNSE-1
scenario: 51.09, an increase of 3.4% over the baseline scenario's
value.

Figure 6.6: The average values of Recall, Precision and F2-Score
for each one of the expansion techniques using LSI technique

Every WSE, WNSE and CNSE scenario, in addition to the
CSE-1 scenario, reached higher values than the baseline study
under LSI technique.

The full set of results, including the execution of the
techniques for every scenario (and the baseline scenario) can be
found in a repository hosted on GitHub . 4

7. RELATED WORK
Santos ​et al. [11] also implemented improvements techniques to
the research made by Gadelha ​et al. [2], such as text and
information cleaning, spell-checking, terms weighting, similarity
matrices merging and traceability matrices merging, achieving a
recall of 93%. We can also cite a variety of previous studies that
carried out comparisons between the effectiveness of IR and ML
techniques in the traceability recovery context, such as Merten ​et
al.​ [12] and Nilam Kaushit ​et al.​ [13].

As for the use of WordNet in the text retrieval context,
Voorhees ​et al. [14] investigated the use of WordNet to enhance
access to collections of text, exploiting its knowledge to
ameliorate the effects synonyms and homographs have on text
retrieval systems that use word matching. Loupy et al. [15] also
used synonyms (as well as hyponyms) given by WordNet in order
to enrich queries in the context of document retrieval.

Hsu et al. [16] compared the use of ConceptNet and
WordNet in query expansion, which has been widely used to deal
with paraphrase problems in information retrieval. In the
conclusion, it showed that WordNet is good at proposing kernel
words and ConceptNet is useful to find cooperative concepts,
recommending the two resources as complementary tools to
improve IR performance.

4 ​https://github.com/victorrborges/thesaurus-traceability-study

https://github.com/victorrborges/thesaurus-traceability-study

8. CONCLUSIONS
This work evaluated the use of a ​Vocabulary Unifier when
creating links between bug reports and test cases using IR
techniques, focusing on recall, precision and f2-score metrics.

The main goal of this work was to investigate how a
unifier vocabulary deals with IR techniques applied on the
traceability recovery between bug reports and test cases. Although
the results have shown that the use of a ​thesaurus made a slight
impact over a baseline study recall values, we understand that,
when applied with improvements made by other works (such as
[11]), it could allow automatization when creating links between
software artifacts or at least improve by a large margin the results
obtained by the base study.

We believe that the Vocabulary Unifier can be used in
other contexts than recovering traceability links between software
artifacts. In fact, its use can be spread to any kind of textual
artifacts, once there is a difference between the terms used in
these artifacts (as well as differences in vocabulary, making it an
issue). In cases where the textual artifacts do not belong to the
Computer Science/Programming field, we would have to change
the terms we used when verifying if a term belongs to the scope,
using specific terms from the chosen field.

As future work, we suggest applying the Vocabulary
Unifier module with the improvements made in [11]. We also
recommend the study of other parameters to be used when
applying the expansion further than the ones we used in this work
(applying other expansion criterias) and the use of other APIs to
fetch synonyms. Another path to follow is to modify the weight of
the synonyms that were added to the source documents using the
thesaurus when applying the IR techniques, in order to amplify or
decrease their importance.

9. ACKNOWLEDGMENTS
I would like to express my sincere gratitude to my research
supervisor, Professor Dr. Franklin Ramalho (Federal University of
Campina Grande), for providing me with invaluable guidance
throughout this research.

I would also like to thank Professor Dr. Tiago Massoni
(Federal University of Campina Grande) for the assistance in the
construction of this research project.

I am extending my gratitude to my family and friends, for
all the support they gave me during not only this research project
but throughout my entire academic journey.

10. REFERENCES
[1] Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., &

Merlo, E. (2002). Recovering traceability links between code
and documentation. IEEE transactions on software
engineering, 28(10), 970-983.

[2] Guilherme Monteiro Gadelha. 2019. An Approach for
Traceability Recovery between Bug Reports and Test Cases.
Masters Dissertation in Computer Science - Federal
University of Campina Grande (UFCG) (2019).

[3] Büttcher, S., Clarke, C. L., & Cormack, G. V. (2016).
Information retrieval: Implementing and evaluating search
engines. Mit Press.

[4] Alpaydin, E. (2020). Introduction to machine learning. MIT
press.

[5] Nicolas Bettenburg, Sascha Just, Adrian Schröter, Cathrin
Weiss, Rahul Premraj, and Thomas Zimmermann. 2008.
What makes a good bug report? In Proceedings of the 16th
ACM SIGSOFT International Symposium on Foundations of
software engineering (SIGSOFT '08/FSE-16). Association
for Computing Machinery, New York, NY, USA, 308–318.
DOI:​https://doi.org/10.1145/1453101.1453146​.

[6] Dennis Lee. How to write a bug report that will make your
engineers love you, 2016. Retrieved May 30, 2019 from
https://testlio.com/blog/the-ideal-bug-report​.

[7] Ian Sommerville. 2011. Software engineering 9th Edition.
ISBN-10 137035152 (2011).

[8] George A. Miller (1995). WordNet: A Lexical Database for
English. Communications of the ACM Vol. 38, No. 11:
39-41.

[9] Robyn Speer, Joshua Chin, and Catherine Havasi. 2017.
"ConceptNet 5.5: An Open Multilingual Graph of General
Knowledge." In proceedings of AAAI 31.

[10] Jane Huffman Hayes, Alex Dekhtyar, and Senthil
Karthikeyan Sundaram. Advancing candidate link generation
for requirements tracing: The study of methods. IEEE
Transactions on Software Engineering, 32(1):4–19, 2006.

[11] Lucas Raniére Juvino Santos, Guilherme Gadelha, Franklin
Ramalho and Tiago Massoni. 2020. Improving Traceability
Recovery Between Bug Reports and Manual Test Cases. In
the 34th Brazilian Symposium on Software Engineering
(SBES ’20), October 21–23, 2020, Natal, Brazil. DOI:
https://doi.org/10.1145/3422392.3422424​.

[12] Thorsten Merten, Daniel Krämer, Bastian Mager, Paul
Schell, Simone Bürsner, and Barbara Paech. 2016. Do
information retrieval algorithms for automated traceability
perform effectively on issue tracking system data?. In
International Working Conference on Requirements
Engineering: Foundation for Software Quality. Springer,
45–62.

[13] Nilam Kaushik, Ladan Tahvildari, and Mark Moore. 2011.
Reconstructing traceability between bugs and test cases: an
experimental study. In 2011 18th Working Conference on
Reverse Engineering. IEEE, 411–414

[14] Voorhees, E. M. (1998). Using WordNet for text retrieval.
WordNet: an electronic lexical database, MIT press,
285-303.

[15] Loupy, C., & El-Bèze, M. (2002). Managing synonymy and
polysemy in a document retrieval system using WordNet. In
Proceedings of the LREC’02 Workshop on Using Semantics
for Information Retrieval and Filtering.

[16] Hsu, M. H., Tsai, M. F., & Chen, H. H. (2006, October).
Query expansion with conceptnet and wordnet: An intrinsic
comparison. In Asia Information Retrieval Symposium (pp.
1-13). Springer, Berlin, Heidelberg.

https://doi.org/10.1145/1453101.1453146
https://testlio.com/blog/the-ideal-bug-report
https://doi.org/10.1145/3422392.3422424

	f4da9ff3f73e19fbc80c4a93b1982f01c9d218237dba2d7db53ef1d1abd558f0.pdf
	40334f2127702e5be444345a3c0673d536928f056d86d0668db8db298cf69fa8.pdf

