

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE PRÓ-REITORIA DE PÓS GRADUAÇÃO PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE PROCESSOS

VALDECIR ALVES DOS SANTOS JÚNIOR

ESCOAMENTO DE FLUIDO EM DUTOS DE SEÇÃO ARBITRÁRIA UTILIZANDO O MÉTODO INTEGRAL BASEADO EM GALERKIN. ESTUDO DE CASO: ÓLEO PESADO

CAMPINA GRANDE 2018

ESCOAMENTO DE FLUIDO EM DUTOS DE SEÇÃO ARBITRÁRIA UTILIZANDO O MÉTODO INTEGRAL BASEADO EM GALERKIN. ESTUDO DE CASO: ÓLEO PESADO

Tese apresentada ao Programa de Pós-Graduação em Engenharia de Processos da Universidade Federal de Campina Grande como requisito para obtenção do título de Doutor em Engenharia de Processos.

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE PRÓ-REITORIA DE PÓS GRADUAÇÃO PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE PROCESSOS

Orientador: Prof. Dr. Severino Rodrigues de Farias Neto

CAMPINA GRANDE 2018

S237e	 Santos Júnior, Valdecir Alves dos. Escoamento de fluido em dutos de seção arbitrária utilizando o método integral baseado em Galerkin. Estudo de caso: óleo pesado / Valdecir Alves dos Santos Júnior. – Campina Grande, 2018. 246 f. : il. color.
	Tese (Doutorado em Engenharia de Processos) – Universidade Federal de Campina Grande, Centro de Ciências e Tecnologia, 2018. "Orientação: Prof. Dr. Severino Rodrigues de Farias Neto." Referências.
	 Engenharia de Processos. Método Integral Baseado em Galerkin. Seção Transversal. Óleo Pesado. Farias Neto, Severino Rodrigues de. II. Título.
	CDU 62-043:519.6(043)

FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECÁRIA DILENE DE FÁTIMA DE LIMA PAULO (CRB - 15/48)

VALDECIR ALVES DOS SANTOS JÚNIOR

ESCOAMENTO DE FLUIDO EM DUTOS DE SEÇÃO ARBITRÁRIA UTILIZANDO O MÉTODO INTEGRAL BASEADO EM GALERKIN. ESTUDO DE CASO: ÓLEO PESADO

Tese apresentada ao Programa de Pós-Graduação em Engenharia de Processos da Universidade Federal de Campina Grande como requisito para obtenção do título de Doutor em Engenharia de Processos.

Trabalho apresentado. Campina Grande, 30 de 2005to de 2018.

Prof. Dr. Severino Rodrigues de Farias Neto UFCG/PPGEP - Orientador

Prof. Dr. Antonio Gilson Barbosa de Lima UFCG/PPGEP - Examinador Interno

mete K. dos Santos

Profa. Dra. Ivonete Batista dos Santos UEPB/CCT - Examinadora Externa

Profa. Dra. Tatiana Araújo Simões UFCG/CDSA - Examinadora Externa

Vimoria

Prof. Dr. Vimario Simões Silva UFCG/CCT - Examinador Externo

CAMPINA GRANDE 2018

Dedico à minha filha Maria Luísa.

Agradecimentos

Não querendo pecar ao agradecer ou deixar de agradecer a todas as pessoas que estiveram ao meu lado e me apoiaram para que hoje eu estivesse aqui, não listarei nomes ou agradecimentos. Deixo o respeito, o carinho e meus sinceros obrigado a todas essas pessoas. Sei que cada uma sabe o quão valioso foi seu papel em cada fase de minha vida. Obrigado!

"Seja sincero com você mesmo acima de tudo."

Resumo

O presente trabalho apresenta um estudo analítico/numérico do escoamento laminar de fluidos através de dutos retos de seção transversal arbitrária, obtendo resultados para parâmetros fluidodinâmicos de interesses, tais como: fator de atrito de Fanning, intervalos de números de Reynolds, assim como valores para tensão de cisalhamento e gradiente de pressão. Em cada duto é escolhido a melhor parametrização para as curvas que representam a geometria da seção transversal e a partir delas encontra-se um conjunto de funções bases que são utilizadas para apresentar as soluções analíticas das equações de momento linear e energia utilizando o método integral baseado em Galerkin. Para a simulação numérica é utilizado o *software Maple 17* que possibilita apresentar soluções para o perfil de velocidade e temperatura, velocidade média, temperatura média e aproximações numéricas para o número de Poiseuille e Nusselt médio e local para cada número de funções bases escolhidas. Os resultados são realizados para três tipos de óleos pesados com densidades relativa e API de 0,9648 e 14,6 °API e viscosidades dependentes da temperatura que variam entre 1715 - 13000 cP.

Palavras-chave: Método Integral Baseado em Galerkin. Seção transversal. Óleo pesado.

Abstract

This work presents an analytical/numerical study of the laminar flow of fluid through straight ducts of arbitrary cross sections, obtaining results for fluid dynamics parameters of interest, such as: Fanning attrition factor, Reynolds number ranges, as well the values for the shear stress and pressure gradient. In each duct is chosen the best parameterization for the curves that represent the geometry of the cross section and from them it is find a set of base functions that the are used to present the analytical solution of the linear momentum and energy equation using the Galerkin-based integral method. For the numerical simulation the Maple 17 software is used, which allows to present solutions for the velocity and temperature profile, mean velocity, mean temperature and numerical approximations for the Poiseuille and Nusselt average and local numbers, for each number of chosen base functions. The results are performed for three types of heavy oils with relative densities and API of 0,9648 and 14,6° API and temperature dependent viscosities ranging from 1715-13000 cP.

Keyword: Galerkin-based Integral Method. Cross section. Heavy oil.

Lista de ilustrações

1	Perfis de velocidade	47
2	Perfis de temperatura	48
3	Condições de fronteira T e H_1	49
4	Duto genérico	50
5	Representação de uma geometria do primeiro tipo	77
6	Representação de uma geometria do segundo tipo	77
7	Representação de uma geometria do segundo tipo modificada	78
8	Interface da ferramenta de software Maple 2017 Student Edition.	79
9	Interface da ferramenta de software Maple 2017 Student Edition com gráficos	
	plotados	79
10	Procedimento de cálculo utilizando o método integral baseado em Galerkin.	80
11	Valores da viscosidade dependente da temperatura para os óleos, OL1, OL2	
	e OL3	84
12	Perfil de velocide em um duto circular reto.	87
13	duto circular com raio $R = 1$.	88
14	Perfil de velocidade adimensional e curva de superfície, respectivamente,	
	para $R = 1, U_{max} = 1,9999999355799$	89
15	Contornos de velocidade para $R = 1$	89
16	Contornos de temperatura T_{H_1} e T_T , respectivamente, para $R = 1$	90
17	Comportamento do número de Nusselt $N_{u_{T,Z}}$, para $R = 1$ em relação à distância	
	adimensional Z	91
18	Perfil de velocidade em um duto circular anular reto.	93
19	Duto circular anular com raios $a = 1 e b = 0,5 \dots \dots \dots \dots \dots \dots$	93
20	Perfil de velocidade adimensional e curva de superfície, respectivamente,	
	para $a = 1 e b = 0.5$	94
21	Contornos de temperatura T_{H_1} e T_T , respectivamente, para $a = 1$ e $b = 0, 5$.	95
22	Comportamento do número de Nusselt $N_{u_{T,Z}}$, para $a = 1$ e $b = 0, 5$ em relação	
	à distância adimensional Z.	96
23	Dados comparados graficamente para os valores de fRe	96
24	Dados comparados graficamente para os valores de $N_{u_{\rm T}}$	96
25	Dados comparados graficamente para os valores de $N_{u_{\rm H1}}$	97
26	Perfil de velocide em um duto elíptico.	98
27	Duto elíptico com valores $a = 1$ e $b = 0,5$	98
28	Perfis de velocidade adimensional e curva de superfície, respectivamente,	
	para $a = 1 e b = 0,5$	99

29	Contornos de temperatura $T_{\rm H_1}$ e $T_{\rm T}$, respectivamente, para $a = 1$ e $b = 0, 5$.	100
30	Comportamento do número de Nusselt, $N_{u_{\rm T}}$ para $\beta = 0,5$ em relação à	
	distância adimensional Z.	100
31	Dados comparados graficamente para os valores de fRe	101
32	Dados comparados graficamente para os valores de $N_{\mu_{\rm T}}$	101
33	Dados comparados graficamente para os valores de $N_{u_{\rm HI}}$	101
34	Perfil de velocidade em um duto semi elíptico.	103
35	Duto semi elíptico com valores $a = 1$ e $b = 0,5$	103
36	Perfis de velocidade adimensional e curva de superfície, respectivamente,	
	para $a = 1 e b = 0,5$	104
37	Contornos de temperatura T_{H1} para $a = 1$ e $b = 0,5$	105
38	Contornos de temperatura $T_{\rm T}$ para $a = 1$ e $b = 0,5$	105
39	Comportamento do número de Nusselt, $N_{u_{\rm T}}$ para $\beta = 0,5$ em relação à	
	distância adimensional Z.	106
40	Dados comparados graficamente para os valores de fRe	106
41	Dados comparados graficamente para os valores de $N_{u_{\rm T}}$	106
42	Dados comparados graficamente para os valores de $N_{u_{\rm HI}}$	107
43	Perfil de velocidade entre placas paralelas.	108
44	Placas paralelas	108
45	Perfil de velocidade adimensional e curva de superfície, respectivamente,	
	para $b=1$	109
46	Contornos de temperatura T_{H_1} e T_T , respectivamente, para $b = 1$	110
47	Comportamento do número de Nusselt, $N_{u_{T,Z}}$ para $b = 1$ em relação à distância	
	adimensional Z	110
48	Perfil de velocidade em um duto retangular.	112
49	Duto retangular com valores $a = 1 e b = 0,5$	112
50	Perfis de velocidade adimensional e curva de superfície, respectivamente,	
	para $a = 1 e b = 0,5$	113
51	Contornos de temperatura T_{H1} para $a = 1$ e $b = 0,5$	114
52	Contornos de temperatura $T_{\rm T}$ para $a = 1$ e $b = 0, 5$	114
53	Comportamento do número de Nusselt, $N_{u_{T,Z}}$ para $\beta = 0,5$ em relação à	
	distância adimensional Z.	115
54	Dados comparados graficamente para os valores de <i>fRe</i>	115
55	Dados comparados graficamente para os valores de $N_{u_{\rm T}}$	115
56	Dados comparados graficamente para os valores de $N_{u_{\rm HI}}$	116
57	Perfil de velocidade em um duto tipo seno.	116
58	Duto tipo seno com valores $a = 1$ e $b = 0,5$	117
59	Perfis de velocidade adimensional e curva de superfície, respectivamente,	
	para $a = 1 e b = 0,5$	118

60	Contornos de temperaturas T_{H_1} e T_T , respectivamente, para $a = 1$ e $b = 0, 5$.	118
61	Comportamento do número de Nusselt, $N_{u_{T,Z}}$, para $\beta = 0,5$ em relação à	
	distância adimensional Z	119
62	Dados comparados graficamente para os valores de fRe	119
63	Dados comparados graficamente para os valores de $N_{u_{\rm T}}$	120
64	Dados comparados graficamente para os valores de $N_{u_{\rm HI}}$	120
65	Perfil de velocidade em um duto tipo duplo seno	121
66	Duto duplo seno com valor $\beta = \frac{b}{a} = 0,5$	121
67	Perfis de velocidade adimensional e curva de superfície, respectivamente,	
	para $a = 1 e b = 0,5$	122
68	Contornos de temperatura $T_{\rm H1}$ e $T_{\rm T}$, respectivamente, para $\beta = \frac{b}{a} = 0,5$	123
69	Comportamento do número de Nusselt, $N_{u_{T,Z}}$, para $\beta = 0,5$ em relação à	
	distância adimensional Z.	124
70	Dados comparados graficamente para os valores de fRe	124
71	Dados comparados graficamente para os valores de $N_{u_{\rm T}}$	124
72	Dados comparados graficamente para os valores de $N_{u_{\rm HI}}$	125
73	Perfil de velocidade em um duto triangular direito.	125
74	Duto triangular direito com valores $a = 1 e \alpha = \frac{\pi}{6}$	126
75	Perfis de velocidade adimensional e curva de superfície, respectivamente,	
	para $a = 1$ e $\beta = \frac{b}{a} = tg(\alpha) \operatorname{com} \alpha = \frac{\pi}{6}$	127
76	Contornos de temperatura $T_{\rm H_1}$ e $T_{\rm T}$ para $a = 1$ e $\beta = \frac{b}{a} = tg(\alpha) \mathrm{com} \alpha = \frac{\pi}{6}$.	128
77	Comportamento do número de Nusselt, $N_{u_{\rm T,Z}}$, para $\alpha = \frac{\pi}{6}$ em relação à	
	distância adimensional Z.	129
78	Dados comparados graficamente para os valores de fRe	129
79	Dados comparados graficamente para os valores de $N_{u_{\rm T}}$	129
80	Dados comparados graficamente para os valores de $N_{u_{\rm HI}}$	130
81	Perfil de velocidade em um duto triangular equilátero.	131
82	Duto triangular equilátero com lado $2a = 2$	131
83	Perfis de velocidade adimensional e curva de superfície, respectivamente,	
	para $2a = 2$.	132
84	Contornos de temperatura $T_{\text{H1}} \in T_{\text{T}}$, respectivamente, para $2a = 2$	133
85	Comportamento do número de Nusselt, $N_{u_{T,Z}}$, para $\beta = \frac{b}{a} = \sqrt{3}$, com <i>a</i> e <i>b</i>	
	a metade do lado e a altura do triângulo equilátero, em relação à distância	
	adimensional Z	134
86	Perfil de velocidade em um duto triangular isósceles.	134
87	Duto triangular isosceles com valores $a = 1$ e $\alpha = \frac{\pi}{6}$	135

88	Perfis de velocidade adimensional e curva de superfície, respectivamente,	
	para $a = 1, b = \frac{a}{2tg\left(\frac{\alpha}{2}\right)} e \alpha = \frac{\pi}{6}$ 1	136
89	Contornos de temperatura $T_{\rm H1}$ e $T_{\rm T}$, respectivamente, para $a = 1, b = \frac{a}{2tg\left(\frac{\alpha}{2}\right)}$	
	$e \alpha = \frac{\pi}{6}$.	137
90	Comportamento do número de Nusselt, $N_{u_{\rm T,Z}}$, para $\alpha = \frac{\pi}{6}$ em relação à	
	distância adimensional Z	138
91	Dados comparados graficamente para os valores de fRe	138
92	Dados comparados graficamente para os valores de $N_{u_{\rm T}}$	138
93	Dados comparados graficamente para os valores de $N_{u_{\rm H1}}$	139
94	Perfil de velocidade em um duto corrugado.	140
95	Duto corrugado tipo seno com valor $\beta = \frac{b}{a} = 0,08$ e N=8	140
96	Razão de aspecto em um duto corrugado	141
97	Perfis de velocidade adimensional e curva de superfície, respectivamente,	
	para $\beta = \frac{b}{a} = 0,08$ e N=8	142
98	Contornos de temperatura $T_{\rm H1}$, para $\beta = \frac{b}{a} = 0,08$	142
99	Dados comparados graficamente para os valores de $fRe \operatorname{com} N = 8$ 1	143
100	Dados comparados graficamente para os valores de $fRe \operatorname{com} N = 12$	143
101	Dados comparados graficamente para os valores de $fRe \operatorname{com} N = 16$	143
102	Dados comparados graficamente para os valores de $fRe \operatorname{com} N = 24$ 1	144
103	Dados comparados graficamente para os valores de $N_{u_{\text{H1}}}$ com $N = 8$ 1	144
104	Dados comparados graficamente para os valores de $N_{u_{H1}}$ com $N = 12$ 1	144
105	Dados comparados graficamente para os valores de $N_{u_{\text{H1}}}$ com $N = 16$ 1	145
106	Dados comparados graficamente para os valores de $N_{u_{\text{HI}}}$ com $N = 24$ 1	145
107	Variação do gradiente de pressão do óleo OL1 com o número de Reynolds,	
	viscosidade, temperatura e tensão de cisalhamento médio para um duto cir-	
	$cular \operatorname{com} r = 1.$	149
108	Variação do gradiente de pressão do óleo OL2 com o número de Reynolds,	
	viscosidade, temperatura e tensão de cisalhamento médio para um duto cir-	
	$\frac{\text{cular com } r = 1.}{1}$	149
109	Variação do gradiente de pressão do óleo OL3 com o número de Reynolds,	
	viscosidade, temperatura e tensão de cisalhamento médio para um duto cir-	
	$\frac{cular \operatorname{com} r = 1}{1} \dots \dots$	150
110	Variação do gradiente de pressão do óleo OL1 com o número de Reynolds,	
	viscosidade, temperatura e tensão de cisalhamento médio para um duto cir-	
	cular anular com $\beta = 0, 1; 0, 2; 0, 3 \in 0, 4$	151

111	Variação do gradiente de pressão do óleo OL2 com o número de Reynolds,
	viscosidade, temperatura e tensão de cisalhamento médio para um duto cir-
	cular anular com $\beta = 0, 1; 0, 2; 0, 3 \in 0, 4$
112	Variação do gradiente de pressão do óleo OL3 com o número de Reynolds,
	viscosidade, temperatura e tensão de cisalhamento médio para um duto cir-
	cular anular com $\beta = 0, 1; 0, 2; 0, 3 \in 0, 4$
113	Variação do gradiente de pressão do óleo OL1 com o número de Reynolds,
	viscosidade, temperatura e tensão de cisalhamento médio para um duto elíptico
	$\cos \beta = 0.9; 0.75; 0.5 e 0.25.$
114	Variação do gradiente de pressão do óleo OL2 com o número de Reynolds,
	viscosidade, temperatura e tensão de cisalhamento médio para um duto elíptico
	$\cos \beta = 0.9; 0.75; 0.5 e 0.25.$
115	Variação do gradiente de pressão do óleo OL3 com o número de Reynolds,
	viscosidade, temperatura e tensão de cisalhamento médio para um duto elíptico
	$\cos \beta = 0,9; 0,75; 0,5 e 0,25$
116	Variação do gradiente de pressão do óleo OL1 com o número de Reynolds,
	viscosidade, temperatura e tensão de cisalhamento médio para um duto semi
	elíptico com $\beta = 1$; 0,5 e 0,25
117	Variação do gradiente de pressão do óleo OL2 com o número de Reynolds,
	viscosidade, temperatura e tensão de cisalhamento médio para um duto semi
	elíptico com $\beta = 1; 0, 5 e 0, 25$
118	Variação do gradiente de pressão do óleo OL3 com o número de Reynolds,
	viscosidade, temperatura e tensão de cisalhamento médio para um duto semi
	elíptico com $\beta = 1$; 0,5 e 0,25
119	Variação do gradiente de pressão do óleo OL1 com o número de Reynolds,
	viscosidade, temperatura e tensão de cisalhamento médio para um escoa-
	mento entre placas paralelas com $b = 1$
120	Variação do gradiente de pressão do óleo OL2 com o número de Reynolds,
	viscosidade, temperatura e tensão de cisalhamento médio para um escoa-
	mento entre placas paralelas com $b = 1$
121	Variação do gradiente de pressão do óleo OL3 com o número de Reynolds,
	viscosidade, temperatura e tensão de cisalhamento médio para um escoa-
	mento entre placas paralelas com $b = 1$
122	Variação do gradiente de pressão do óleo OL1 com o número de Reynolds,
	viscosidade, temperatura e tensão de cisalhamento médio para um duto re-
	tangular com $\beta = 1; 0,9; 0,75; 0,5; 0,25; 0,125$
123	Variação do gradiente de pressão do óleo OL2 com o número de Reynolds,
	viscosidade, temperatura e tensão de cisalhamento médio para um duto re-
	tangular com $\beta = 1; 0,9; 0,75; 0,5; 0,25; 0,125$

124	Variação do gradiente de pressão do óleo OL3 com o número de Reynolds,	
	viscosidade, temperatura e tensão de cisalhamento médio para um duto re-	
	tangular com $\beta = 1; 0,9; 0,75; 0,5; 0,25; 0,125.$	162
125	Variação do gradiente de pressão do óleo OL1 com o número de Reynolds,	
	viscosidade, temperatura e tensão de cisalhamento médio para um duto tipo	
	seno com $\beta = 1; 0, 75; 0, 5 \in 0, 25.$	163
126	Variação do gradiente de pressão do óleo OL2 com o número de Reynolds,	
	viscosidade, temperatura e tensão de cisalhamento médio para um duto tipo	
	seno com $\beta = 1$; 0,75; 0,5 e 0,25.	163
127	Variação do gradiente de pressão do óleo OL3 com o número de Reynolds,	
	viscosidade, temperatura e tensão de cisalhamento médio para um duto tipo	
	seno com $\beta = 1; 0, 75; 0, 5 \in 0, 25.$	164
128	Variação do gradiente de pressão do óleo OL1 com o número de Reynolds,	
	viscosidade, temperatura e tensão de cisalhamento médio para um duto tipo	
	seno duplo com $\beta = 1; 0, 5; 0, 25; 0, 125$	165
129	Variação do gradiente de pressão do óleo OL2 com o número de Reynolds,	
	viscosidade, temperatura e tensão de cisalhamento médio para um duto tipo	
	seno duplo com $\beta = 1; 0, 5; 0, 25; 0, 125$	166
130	Variação do gradiente de pressão do óleo OL3 com o número de Reynolds,	
	viscosidade, temperatura e tensão de cisalhamento médio para um duto tipo	
	seno duplo com $\beta = 1; 0, 5; 0, 25; 0, 125$	166
131	Variação do gradiente de pressão do óleo OL1 com o número de Reynolds,	
	viscosidade, temperatura e tensão de cisalhamento médio para um duto tipo	
	triangular direito com $\alpha = 5^{\circ}$; 20°; 30°; 45°	167
132	Variação do gradiente de pressão do óleo OL2 com o número de Reynolds,	
	viscosidade, temperatura e tensão de cisalhamento médio para um duto tipo	
	triangular direito com $\alpha = 5^{\circ}$; 20°; 30°; 45°	168
133	Variação do gradiente de pressão do óleo OL3 com o número de Reynolds,	
	viscosidade, temperatura e tensão de cisalhamento médio para um duto tipo	
	triangular direito com $\alpha = 5^{\circ}$; 20°; 30°; 45°	169
134	Variação do gradiente de pressão do óleo OL1 com o número de Reynolds,	
	viscosidade, temperatura e tensão de cisalhamento médio para um duto tri-	
	angular equilátero com $\alpha = 60^{\circ}$.	170
135	Variação do gradiente de pressão do óleo OL2 com o número de Reynolds,	
	viscosidade, temperatura e tensão de cisalhamento médio para um duto tri-	
	angular equilátero com $\alpha = 60^{\circ}$.	170
136	Variação do gradiente de pressão do óleo OL3 com o número de Reynolds,	
	viscosidade, temperatura e tensão de cisalhamento médio para um duto tri-	
	angular equilátero com $\alpha = 60^{\circ}$.	171

137	Variação do gradiente de pressão do óleo OL1 com o número de Reynolds,	
	viscosidade, temperatura e tensão de cisalhamento médio para um duto tipo	
	triangular isósceles com $\alpha = 5^{\circ}$; 20°; 30°; 120°.	172
138	Variação do gradiente de pressão do óleo OL2 com o número de Reynolds,	
	viscosidade, temperatura e tensão de cisalhamento médio para um duto tipo	
	triangular isosceles com $\alpha = 5^{\circ}$; 20°; 30°; 120°.	173
139	Variação do gradiente de pressão do óleo OL3 com o número de Reynolds,	
	viscosidade, temperatura e tensão de cisalhamento médio para um duto tipo	
	triangular isosceles com $\alpha = 5^{\circ}$; 20°; 30°; 120°.	173
140	Seções transversais com número de corrugações $N = 8$; 12; 16; e 24	174
141	Variação do gradiente de pressão do óleo OL1 com o número de Reynolds,	
	viscosidade, temperatura e tensão de cisalhamento médio para um duto tipo	
	corrugado com $\beta = 0,02$.	175
142	Variação do gradiente de pressão do óleo OL1 com o número de Reynolds,	
	viscosidade, temperatura e tensão de cisalhamento médio para um duto tipo	
	corrugado com $\beta = 0,06$.	175
143	Variação do gradiente de pressão do óleo OL2 com o número de Reynolds,	
	viscosidade, temperatura e tensão de cisalhamento médio para um duto tipo	
	corrugado com $\beta = 0,02$.	176
144	Variação do gradiente de pressão do óleo OL2 com o número de Reynolds,	
	viscosidade, temperatura e tensão de cisalhamento médio para um duto tipo	
	corrugado com $\beta = 0,06$.	177
145	Variação do gradiente de pressão do óleo OL3 com o número de Reynolds,	
	viscosidade, temperatura e tensão de cisalhamento médio para um duto tipo	
	seno com $\beta = 0,02$.	177
146	Variação do gradiente de pressão do óleo OL3 com o número de Reynolds,	
	viscosidade, temperatura e tensão de cisalhamento médio para um duto tipo	
	corrugado com $\beta = 0,06$.	178
147	Variação do gradiente de pressão do óleo OL1 com o número de Reynolds,	
	viscosidade, temperatura e tensão de cisalhamento médio para dutos tipo	
	seno, duplo seno, retangular, elíptico e semi elíptico com $\beta = 0, 5$.	179
148	Variação do gradiente de pressão do óleo OL2 com o número de Reynolds,	
	viscosidade, temperatura e tensão de cisalhamento médio para dutos tipo	
	seno, duplo seno, retangular, elíptico e semi elíptico com $\beta = 0, 5$.	180
149	Variação do gradiente de pressão do óleo OL3 com o número de Reynolds,	
	viscosidade, temperatura e tensão de cisalhamento médio para dutos tipo	
	seno, duplo seno, retangular, elíptico e semi elíptico com $\beta = 0, 5$	181
150	Sobreposição das seções transversais de um duto circular com um duto cor-	
	rugado com $N = 12 e \beta = 0,02.$	181

151	Sobreposição das seções transversais de um duto circular com um duto cor-	
	rugado com $N = 12 e 0,06$.	182
152	Variação do gradiente de pressão dos oleos OL1, OL2 e OL3 com a viscosi-	
	dade para valores de $\beta = \rightarrow 0$; 0,02 e 0,06	182
153	Variação do gradiente de pressão dos oleos OL1, OL2 e OL3 com a viscosi-	
	dade para valores de $\beta = 0,02$. e $N \rightarrow 0$; 8; 12; 16 e 24	183
154	Dutos com parafinas incrustadas.	185
155	Seções transversais com geometrias simulando incrustações em oleodutos.	185

Lista de tabelas

1	Composição do Petróleo	41
2	Valores para a viscosidade cinemática dependente da temperatura para os	
	óleos OL1, OL2 e OL3	85
3	Coeficientes d_N para a distribuição de velocidade em um duto circular com	
	$R = 1$ para a quantidade N de funções bases $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	90
4	Coeficientes d_N para a distribuição de temperatura em um duto circular com	
	R = 1 e condição de fronteira H ₁ para a quantidade N de funções bases	91
5	Valores de fR_e , para a quantidade N de funções bases escolhidas	92
6	Valores de $N_{u_{H_1}}$, para a quantidade N de funções bases escolhidas	92
7	Valores de $N_{u_{\rm T}}$, para a quantidade N de funções bases escolhidas	92
8	Coeficientes d_n para a distribuição de velocidade em um duto circular anular	
	para a quantidade <i>n</i> de funções bases.	94
9	Coeficientes d_n para a distribuição de temperatura T_{H_1} em um duto circular	
	anular para a quantidade <i>n</i> de funções bases.	95
10	Coeficientes d_n para a distribuição de velocidade em um duto elíptico para a	
	quantidade <i>n</i> de funções bases.	99
11	Coeficientes d_n para a distribuição de temperatura T_{H_1} em um duto elíptico	
	para a quantidade <i>n</i> de funções bases.	100
12	Coeficientes d_n para a distribuição de velocidade em um duto semi elíptico	
	para a quantidade n de funções bases.	104
13	Coeficientes d_n para a distribuição de temperatura T_{H_1} em um duto semi	
	elíptico para a quantidade <i>n</i> de funções bases.	105
14	Coeficientes d_n para a distribuição de velocidade entre placas paralelas com	
	$b = 1$ para a quantidade <i>n</i> de funções bases $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	109
15	Coeficientes d_j para a distribuição de temperatura entre placas paralelas com	
	b = 1 e condição de fronteira H ₁ para a quantidade <i>n</i> de funções bases	110
16	Valores de fR_e , para a quantidade <i>n</i> de funções bases escolhidas	111
17	Valores de $N_{u_{H_i}}$, para a quantidade <i>n</i> de funções bases escolhidas	111
18	Valores de $N_{u_{\rm T}}$, para a quantidade <i>n</i> de funções bases escolhidas	111
19	Coeficientes d_n para a distribuição de velocidade em um duto retangular para	
	a quantidade <i>n</i> de funções bases.	113
20	Coeficientes d_n para a distribuição de temperatura em um duto retangular	
	com condição de fronteira H ₁ para a quantidade n de funções bases	114
21	Coeficientes d_n para a distribuição de velocidade em um duto tipo seno para	
	a quantidade <i>n</i> de funções bases.	118

22	Coeficientes d_n para a distribuição de temperatura em um duto tipo seno com	
	condição de fronteira T_{H_1} para a quantidade <i>n</i> de funções bases	.9
23	Coeficientes d_n para a distribuição de velocidade em um duto tipo duplo	
	seno para a quantidade <i>n</i> de funções bases	22
24	Coeficientes d_n para a distribuição de temperatura em um duto tipo duplo	
	seno com condição de fronteira H_1 para a quantidade <i>n</i> de funções bases 12	23
25	Coeficientes d_n para a distribuição de velocidade em um duto triangular di-	
	reito para a quantidade <i>n</i> de funções bases	27
26	Coeficientes d_n para a distribuição de temperatura em um duto triangular	
	direito com condição de fronteira H_1 para a quantidade <i>n</i> de funções bases. 12	28
27	Coeficientes d_n para a distribuição de velocidade em um duto triangular	
	equilátero com $\beta = \sqrt{3}$ para a quantidade <i>n</i> de funções bases	\$2
28	Coeficientes d_n para a distribuição de temperatura em um duto triangular	
	equilátero com $\beta = \sqrt{3}$ e condição de fronteira H ₁ para a quantidade <i>n</i> de	
	funções bases	;3
29	Coeficientes d_n para a distribuição de velocidade em um duto triangular	
	isósceles para a quantidade <i>n</i> de funções bases	6
30	Coeficientes d_n para a distribuição de temperatura em um duto triangular	
	isósceles com condição de fronteira H_1 para a quantidade <i>n</i> de funções bases. 13	;7
31	Valores para o número de funções bases escolhidas para cada valor da razão	
	de aspecto β , $fR_e \in N_{u_{H_1}}$	-6
32	Valores para o perímetro, P, para cada seção trasversal de um duto corrugado	
	tipo seno	-6
33	Novos valores para fR_e e $N_{u_{H_1}}$ para duto de seção transversal corrugado tipo	
	seno	7
34	Valores para fR_e , $N_{u_{\rm T}}$ e $N_{u_{\rm H_1}}$ para um duto de seção transversal circular 19)7
35	Valores para fR_e , $N_{u_{\rm T}}$, e $N_{u_{\rm H_1}}$ para um duto de seção transversal circular anular.)7
36	Valores para fR_e , $N_{u_{\rm T}}$ e $N_{u_{\rm H_1}}$ para um duto de seção transversal elíptica 19)7
37	Valores para fR_e , $N_{u_{\rm T}}$ e $N_{u_{\rm H_1}}$ para duto de seção transversal semi elíptico 19)8
38	Valores para fR_e , $N_{u_{\rm T}}$ e $N_{u_{\rm H_1}}$ para escoamento entre placas paralelas 19)8
39	Valores para fR_e , $N_{u_{\rm T}}$ e $N_{u_{\rm H_1}}$ para duto de seção transversal retangular 19	18
40	Valores para fR_e , $N_{u_{\rm T}}$ e $N_{u_{\rm H_1}}$ para um duto de seção transversal tipo seno 19	19
41	Valores para fR_e , $N_{u_{\rm T}}$ e $N_{u_{\rm H_1}}$ para um duto de seção transversal tipo duplo	
	seno	19
42	Valores para fR_e , $N_{u_{\rm T}}$ e $N_{u_{\rm H_1}}$ para um duto de seção transversal triangular	
	direito)0
43	Valores para fR_e , $N_{u_{\rm T}}$ e $N_{u_{\rm H_1}}$ para um duto de seção transversal Triangular	
	Equilátero)0

44	Valores para fR_e , $N_{u_{\rm T}}$ e $N_{u_{\rm H_1}}$ para duto de seção transversal Triangular	
	Isósceles.	200
45	Valores para fR_e e $N_{u_{\rm H_1}}$ para duto de seção transversal corrugado tipo seno.	201
46	Valores obtidos nas simulações para um duto circular com $r = 1$ e OL1	203
47	Valores obtidos nas simulações para um duto circular com $r = 1$ e OL2	203
48	Valores obtidos nas simulações para um duto circular com $r = 1$ e OL3	203
49	Valores obtidos nas simulações para um duto circular anular com $\beta = 0, 1$ e	
	OL1	204
50	Valores obtidos nas simulações para um duto circular anular com $\beta = 0, 2$ e	
	OL1	204
51	Valores obtidos nas simulações para um duto circular anular com $\beta = 0,3$ e	
	OL1	204
52	Valores obtidos nas simulações para um duto circular anular com $\beta = 0, 4$ e	
	OL1	205
53	Valores obtidos nas simulações para um duto circular anular com $\beta = 0, 1$ e	
	OL2	205
54	Valores obtidos nas simulações para um duto circular anular com $\beta = 0, 2$ e	
	OL2	205
55	Valores obtidos nas simulações para um duto circular anular com $\beta = 0, 3$ e	
	OL2	206
56	Valores obtidos nas simulações para um duto circular anular com $\beta = 0, 4$ e	
	OL2	206
57	Valores obtidos nas simulações para um duto circular anular com $\beta = 0, 1$ e	
	OL3	206
58	Valores obtidos nas simulações para um duto circular anular com $\beta = 0, 2$ e	
	OL3	207
59	Valores obtidos nas simulações para um duto circular anular com $\beta = 0,3$ e	
	OL3	207
60	Valores obtidos nas simulações para um duto circular anular com $\beta = 0, 4$ e	
	OL3	207
61	Valores obtidos nas simulações para um duto elíptico com $\beta = 0,9$ e OL1.	208
62	Valores obtidos nas simulações para um duto elíptico com $\beta = 0,75$ e OL1.	208
63	Valores obtidos nas simulações para um duto elíptico com $\beta = 0,5$ e OL1.	208
64	Valores obtidos nas simulações para um duto elíptico com $\beta = 0,25$ e OL1.	209
65	Valores obtidos nas simulações para um duto elíptico com $\beta = 0,9$ e OL2.	209
66	Valores obtidos nas simulações para um duto elíptico com $\beta = 0,75$ e OL2.	209
67	Valores obtidos nas simulações para um duto elíptico com $\beta = 0,5$ e OL2.	210
68	Valores obtidos nas simulações para um duto elíptico com $\beta = 0,25$ e OL2.	210
69	Valores obtidos nas simulações para um duto elíptico com $\beta = 0.9$ e OL3.	210

70	Valores obtidos nas simulações para um duto elíptico com $\beta = 0,75$ e OL3. 211
71	Valores obtidos nas simulações para um duto elíptico com $\beta = 0,5$ e OL3. 211
72	Valores obtidos nas simulações para um duto elíptico com $\beta = 0,25$ e OL3. 211
73	Valores obtidos nas simulações para um duto semi elíptico com $\beta = 0, 1$ e
	OL1
74	Valores obtidos nas simulações para um duto semi elíptico com $\beta = 0,5$ e
	OL1
75	Valores obtidos nas simulações para um duto semi elíptico com $\beta = 0,25$ e
	OL1
76	Valores obtidos nas simulações para um duto semi elíptico com $\beta = 0, 1$ e
	OL2
77	Valores obtidos nas simulações para um duto semi elíptico com $\beta = 0,5$ e
	OL2
78	Valores obtidos nas simulações para um duto semi elíptico com $\beta = 0,25$ e
	OL2
79	Valores obtidos nas simulações para um duto semi elíptico com $\beta = 0, 1$ e
	OL3
80	Valores obtidos nas simulações para um duto semi elíptico com $\beta = 0,5$ e
	OL3
81	Valores obtidos nas simulações para um duto semi elíptico com $\beta = 0,25$ e
	OL3
82	Valores obtidos nas simulações para um escoamento entre placas paralelas
	com b = 1 e OL1.
83	Valores obtidos nas simulações para um escoamento entre placas paralelas
	com b = 1 e OL2.
84	Valores obtidos nas simulações para um escoamento entre placas paralelas
	com b = 1 e OL3.
85	Valores obtidos nas simulações para um duto retangular com $\beta = 1$ e OL1. 216
86	Valores obtidos nas simulações para um duto retangular com $\beta = 0.9$ e OL1. 216
87	Valores obtidos nas simulações para um duto retangular com $\beta = 0,75$ e OL1.216
88	Valores obtidos nas simulações para um duto retangular com $\beta = 0,5$ e OL1. 217
89	Valores obtidos nas simulações para um duto retangular com $\beta = 0,25$ e OL1.217
90	Valores obtidos nas simulações para um duto retangular com $\beta = 0,125$ e
	OL1
91	Valores obtidos nas simulações para um duto retangular com $\beta = 1$ e OL2. 218
92	Valores obtidos nas simulações para um duto retangular com $\beta = 0.9$ e OL2. 218
93	Valores obtidos nas simulações para um duto retangular com $\beta = 0,75$ e OL2 218
94	Valores obtidos nas simulações para um duto retangular com $\beta = 0,5$ e OL2. 219
95	Valores obtidos nas simulações para um duto retangular com $\beta = 0,25$ e OL2 219

96	Valores obtidos nas simulações para um duto retangular com $\beta = 0,125$ e
	OL2
97	Valores obtidos nas simulações para um duto retangular com $\beta = 1$ e OL3. 220
98	Valores obtidos nas simulações para um duto retangular com $\beta = 0.9$ e OL3. 220
99	Valores obtidos nas simulações para um duto retangular com $\beta = 0,75$ e OL3.220
100	Valores obtidos nas simulações para um duto retangular com $\beta = 0,5$ e OL3. 221
101	Valores obtidos nas simulações para um duto retangular com $\beta = 0,25$ e OL3.221
102	Valores obtidos nas simulações para um duto retangular com $\beta = 0,125$ e
	OL3
103	Valores obtidos nas simulações para um duto tipo seno com $\beta = 1$ e OL1. 222
104	Valores obtidos nas simulações para um duto tipo seno com $\beta = 0,75$ e OL1. 222
105	Valores obtidos nas simulações para um duto tipo seno com $\beta = 0,5$ e OL1. 222
106	Valores obtidos nas simulações para um duto tipo seno com $\beta = 0,25$ e OL1. 223
107	Valores obtidos nas simulações para um duto tipo seno com $\beta = 1$ e OL2. 223
108	Valores obtidos nas simulações para um tipo seno com $\beta = 0,75$ e OL2 223
109	Valores obtidos nas simulações para um duto tipo seno com $\beta = 0,5$ e OL2. 224
110	Valores obtidos nas simulações para um duto tipo seno com $\beta = 0,25$ e OL2. 224
111	Valores obtidos nas simulações para um duto tipo seno com $\beta = 1$ e OL3. 224
112	Valores obtidos nas simulações para um duto tipo seno com $\beta = 0,75$ e OL3. 225
113	Valores obtidos nas simulações para um duto tipo seno com $\beta = 0,5$ e OL3. 225
114	Valores obtidos nas simulações para um duto tipo seno com $\beta = 0,25$ e OL3. 225
115	Valores obtidos nas simulações para um duto tipo seno duplo com $\beta = 1$ e
	OL1
116	Valores obtidos nas simulações para um duto tipo seno duplo com $\beta = 0,5$
	e OL1
117	Valores obtidos nas simulações para um duto tipo seno duplo com $\beta = 0,25$
	e OL1
118	Valores obtidos nas simulações para um duto tipo seno duplo com $\beta = 0, 125$
	e OL1
119	Valores obtidos nas simulações para um duto tipo seno duplo com $\beta = 1$ e
	OL2
120	Valores obtidos nas simulações para um duto seno duplo com $\beta = 0,5$ e OL2. 227
121	Valores obtidos nas simulações para um duto tipo seno duplo com $\beta = 0,25$
	e OL2
122	Valores obtidos nas simulações para um tipo seno duplo com $\beta = 0,125$ e
	OL2
123	Valores obtidos nas simulações para um duto tipo seno duplo com $\beta = 1$ e
	OL3

124	Valores obtidos nas simulações para um duto tipo seno duplo com $\beta = 0,5$	
	e OL3.	229
125	Valores obtidos nas simulações para um duto tipo seno duplo com $\beta = 0,25$	
	e OL3.	229
126	Valores obtidos nas simulações para um duto tipo seno duplo com $\beta = 0, 125$	
	e OL3.	229
127	Valores obtidos nas simulações para um duto tipo triangular direito com	
	$\alpha = 5^{\circ} \text{ e OL1.}$	230
128	Valores obtidos nas simulações para um duto tipo triangular direito com	
	$\alpha = 20^{\circ} \text{ e OL1.}$	230
129	Valores obtidos nas simulações para um duto tipo triangular direito com	
	$\alpha = 30^{\circ} \text{ e OL1.}$	230
130	Valores obtidos nas simulações para um duto tipo triangular direito com	
	$\alpha = 45^{\circ} \text{ e OL1.}$	231
131	Valores obtidos nas simulações para um duto tipo triangular direito com	
	$\alpha = 5^{\circ} e OL2.$	231
132	Valores obtidos nas simulações para um duto triangular direito com $\alpha = 20^{\circ}$	
	e OL2.	231
133	Valores obtidos nas simulações para um duto tipo triangular direito com	
	$\alpha = 30^{\circ} \text{ e OL2.}$	232
134	Valores obtidos nas simulações para um tipo triangular direito com $\alpha = 45^{\circ}$	
	e OL2.	232
135	Valores obtidos nas simulações para um duto tipo triangular direito com	
	$\alpha = 5^{\circ} e OL3.$	232
136	Valores obtidos nas simulações para um duto tipo triangular direito com	
	$\alpha = 20^{\circ} \text{ e OL3.}$	233
137	Valores obtidos nas simulações para um duto triangular direito com $\alpha = 30^{\circ}$	
	e OL3.	233
138	Valores obtidos nas simulações para um duto tipo triangular direito com	
	$\alpha = 45^{\circ} \text{ e OL3.}$	233
139	Valores obtidos nas simulações para um duto de seção transversal triangular	
	equilátero com $\alpha = 60^{\circ}$ e OL1.	234
140	Valores obtidos nas simulações para um duto de seção transversal triangular	
	equilátero com $\alpha = 60^{\circ}$ e OL2.	234
141	Valores obtidos nas simulações para um duto de seção transversal triangular	
	equilátero com $\alpha = 60^{\circ}$ e OL3.	234
142	Valores obtidos nas simulações para um duto tipo triangular isósceles com	
	$\alpha = 5^{\circ} e OL1.$	235

143	Valores obtidos nas simulações para um duto tipo triangular isósceles com
	$\alpha = 20^{\circ} \text{ e OL1.}$
144	Valores obtidos nas simulações para um duto tipo triangular isósceles com
	$\alpha = 30^{\circ} \text{ e OL1.}$
145	Valores obtidos nas simulações para um duto tipo triangular isósceles com
	$\alpha = 120^{\circ} \text{ e OL1.}$
146	Valores obtidos nas simulações para um duto tipo triangular isósceles com
	$\alpha = 5^{\circ} \text{ e OL2.} \qquad \qquad$
147	Valores obtidos nas simulações para um duto triangular isósceles com $\alpha =$
	<u>20° e OL2.</u>
148	Valores obtidos nas simulações para um duto tipo triangular isósceles com
	$\alpha = 30^{\circ} \text{ e OL2.}$
149	Valores obtidos nas simulações para um tipo triangular isósceles com $\alpha =$
	120° e OL2.
150	Valores obtidos nas simulações para um duto tipo triangular isósceles com
	$\alpha = 5^{\circ} \text{ e OL3.} \qquad \qquad$
151	Valores obtidos nas simulações para um duto tipo triangular isósceles com
	$\alpha = 20^{\circ} \text{ e OL3.}$
152	Valores obtidos nas simulações para um duto triangular isósceles com $\alpha =$
	<u>30° e OL3.</u>
153	Valores obtidos nas simulações para um duto tipo triangular isósceles com
	$\alpha = 120^{\circ} \text{ e OL3.}$
154	Valores obtidos nas simulações para um duto tipo corrugado com $\beta = 0,02, N =$
	<u>8 e OL1.</u>
155	Valores obtidos nas simulações para um duto tipo corrugado com $\beta = 0,02, N =$
	<u>12 e OL1.</u>
156	Valores obtidos nas simulações para um duto tipo corrugado com $\beta = 0,02, N =$
	<u>16 e OL1.</u>
157	Valores obtidos nas simulações para um duto tipo corrugado com $\beta = 0,02, N =$
	<u>24 e OL1.</u>
158	Valores obtidos nas simulações para um duto tipo corrugado com $\beta = 0,06, N =$
	<u>8 e OL1.</u>
159	Valores obtidos nas simulações para um duto tipo corrugado com $\beta = 0,06, N =$
	<u>12 e OL1.</u>
160	Valores obtidos nas simulações para um duto tipo corrugado com $\beta = 0,06, N =$
	<u>16 e OL1</u>
161	Valores obtidos nas simulações para um duto tipo corrugado com $\beta = 0,06, N =$
	24 e OL1

162	Valores obtidos nas simulações para um duto tipo corrugado com $\beta = 0,02, N =$
	<u>8 e OL2.</u>
163	Valores obtidos nas simulações para um duto tipo corrugado com $\beta = 0,02, N =$
	<u>12 e OL2.</u>
164	Valores obtidos nas simulações para um duto tipo corrugado com $\beta = 0, 02, N =$
	<u>16 e OL2.</u>
165	Valores obtidos nas simulações para um duto tipo corrugado com $\beta = 0,02, N =$
	<u>24 e OL2.</u>
166	Valores obtidos nas simulações para um duto tipo corrugado com $\beta = 0,06, N =$
	<u>8 e OL2.</u>
167	Valores obtidos nas simulações para um duto tipo corrugado com $\beta = 0,06, N =$
	<u>12 e OL2.</u>
168	Valores obtidos nas simulações para um duto tipo corrugado com $\beta = 0,06, N =$
	<u>16 e OL2.</u>
169	Valores obtidos nas simulações para um duto tipo corrugado com $\beta = 0,06, N =$
	<u>24 e OL2.</u>
170	Valores obtidos nas simulações para um duto tipo corrugado com $\beta = 0,02, N =$
	<u>8 e OL3.</u>
171	Valores obtidos nas simulações para um duto tipo corrugado com $\beta = 0,02 N =$
	<u>12 e OL3.</u>
172	Valores obtidos nas simulações para um duto tipo corrugado com $\beta = 0,02 N =$
	<u>16 e OL3.</u>
173	Valores obtidos nas simulações para um duto tipo corrugado com $\beta = 0,02 N =$
	<u>24 e OL3.</u>
174	Valores obtidos nas simulações para um duto tipo corrugado com $\beta = 0,06, N =$
	<u>8 e OL3.</u>
175	Valores obtidos nas simulações para um duto tipo corrugado com $\beta = 0,06 N =$
	<u>12 e OL3.</u>
176	Valores obtidos nas simulações para um duto tipo corrugado com $\beta = 0,06 N =$
	<u>16 e OL3.</u>
177	Valores obtidos nas simulações para um duto tipo corrugado com $\beta = 0,06 N =$
	<u>24 e OL3.</u>

Lista de símbolos

a,b	dimensões geométricas [m];
a _{ij}	elementos da matriz A [constantes];
A_c	área da seção transversal do duto. Sem perda de generalidade também representa área adimensional $[m^2]$, [<i>adimensional</i>];
A_n	constantes de integração. Equação (4.70) [constantes];
A, B, C, D	matrizes
A^{-1}	matriz inversa de A
b_{ij}, b_j	elementos da matriz B [constantes];
<i>c</i> ₁	parâmetro taxa de pressão [$(m/s)^{-1}$];
c _p	calor específico $[J.kKg^{-1}.K^{-1}];$
C _i	constantes. Equação (3.80) [constantes]
<i>C</i> _n	coeficiente da Equação (4.5) [<i>constante</i>]
Cf	fator de atritio
d_h	diâmetro hidráulico [<i>m</i>];
d_{ij}	elementos da matriz D [constante];
d_j	constantes a serem avaliadas [constantes];
d_n	constantes. Na Equação (5.34) representa autovetor associado ao auto valor γ_n
$\bar{d_n}$	vetor coluna. Equação (5.45);
D	matriz. Equação (5.51);
D_h	diâmetro hidráulico adimensional [adimensional];
Ε	matriz. Equação (<mark>4.64</mark>);
E^{-1}	inversa da matriz E. Equação (5.67);
E[*]	integral elíptica completa de segundo tipo;

e_{ij}	elementos da matriz E. Equação (4.63) [constantes];
f	fator de atrito de Fanning;
F(,)	autofunções;
f_i	funções bases;
fRe	número de Poiseuille [adimensional]
h	coeficiente de transferência de calor $[W/m^2.^{\circ}F \text{ ou } W/m^2.K];$
H ₁	condição de fronteira: fluxo de calor na parede constante com temperatura na parede constante
Ι	Matriz identidade. Equação (5.45);
i, j, k	índices;
L	comprimento caracterísitico. Matriz Equação (5.46) [m];
L^t	matriz transposta da matriz L. Equação (5.46);
L^{-t}	matriz inversa da matriz L^t ;
L_h	comprimento hidrodinâmico de entrada [m];
L_t	comprimento de entrada térmico [m];
L[*]	operador linear. Equação (3.79);
N _u	número de Nusselt [adimensional];
$\bar{N_u}$	número de Nusselt médio [adimensional]
$N_{u_{\mathrm{H}_{1}}}$	número de Nusselt. Condição de fronteira H_1 [<i>adimensional</i>];
N_{u_L}	número de Nusselt local. Equação (3.43) [adimensional];
$N_{u_{\mathrm{T}}}$	número de Nusselt. Condição de fronteira T [adimensional];
$N_{u,Z}$	número de Nusselt local [adimensional];
Р	perímetro [m]
р	pressão [Pa];
P_e	número de Péclet [adimensional];
Pr	Número de Prandtl [adimensioanl];

\bar{P}	inversa da matriz $[DB]^t$;
$q^{\prime\prime}$	fluxo de calor, Figura <mark>4</mark> ;
Q_w	taxa de transferência de calor na parede $[W.m^{-2}]$;
r	raio [<i>m</i>];
R_e	número de Reynolds [adimensional];
S	superfície;
t	temperatura $[K; {}^{o}F];$
<i>t</i> ₀	temperatura inicial $[K; {}^{o}F];$
t _b	temperatura do meio (<i>bulk</i>) $[K; {}^{o}F];$
t_m	temperatura média $[K; {}^{o}F];$
t _s	temperatura da superfície $[K; {}^{o}F];$
t_w	temperatura na parede $[K; {}^{o}F];$
Т	temperatura adimensional [adimensional];
T_0	temperatura inicial adimensional [adimensional];
\bar{T}_0	limite de \overline{T} . Equação (4.79) [adimensional];;
T_b	temperatura média adimensional [adimensional];
$ar{T}$	temperatura adimensional. Satisfaz parte homogênea das condições de fron- teira de <i>T</i> [<i>adimensional</i>];
T_Z	temperatura adimensional. Satisfaz parte não homogênea das condições de fronteira de <i>T</i> [<i>adimensional</i>];
$t _{\Gamma}$	temperatura na fronteira $\Gamma [K; {}^{\circ}F];$
T_S	temperatura adimensional na superfície [adimensional];
и	velocidade axial local $[m/s]$;
<i>u</i> _m	velocidade média $[m/s];$
<i>u</i> _{max}	velocidade máxima $[m/s];$
ū	solução da Equação (3.79) $[m/s];$

$u _{\Gamma}$	velocidade na fronteira Γ [m/s];
U	velocidade adimensional axial. $U = \frac{W}{W_m}$ [adimensional];
v	função escalar;
x, y, z	coordenadas cartesianas [m]
X, Y, Z	coordenadas adimensionais [adimensional];
w	vetor. Equação (4.39);
W	velocidade adimensional [adimensional];
W_m	velocidade média adimensional [adimensional];
α	difusividade térmica $[m^2/s]$;
β	aspecto do raio [adimensional];
γ_n	n-ésimo autovalor ;
$ar{\gamma}$	autovalor. Equação (4.83);
Δt	variação de temperatura $[K; {}^{o}F];$
3	erro diferente de zero. Equaçao (3.81);
η	direção normal à superfície;
κ	condutividade térmica $[W/m.K]$;
μ	viscosidade dinâmica [Pa.s];
ν	viscosidade cinemática [cS];
ρ	densidade $[kg/m^3]$;
$ au_w$	tensão de cisalhamento [Pa];
ϕ_i	funções de Galerkin;
Ψ_i	elementos da matriz ψ. Equação (4.66);
χ	matriz. Equação (<mark>4.67</mark>);
ω_i	funções. Equação (4.82);
Γ	fronteira do duto;
Ω	seção transversal do duto com fronteira Γ ;
∇^2	operador Laplaciano;

Sumário

1	INTRODUÇÃO	34
2	OBJETIVOS	37
2.1	OBJETIVO GERAL	37
2.2		37
3	REVISÃO DA LITERATURA	38
3.1	ESCOAMENTO EM GEOMETRIA ARBITRÁRIA	38
3.2	O PETRÓLEO	40
3.2.1	Definição, composição e transporte do Petróleo	40
3.2.2	Pesquisas aplicadas a sistemas ligados ao transporte de petróleo	43
3.2.3	Óleo pesado e escala de gravidade API	44
3.3		46
3.3.1	Camada limite	46
3.3.2	Escoamento completamente desenvolvido	48
3.3.3	Condições de fronteira	48
3.3.3.1	Condição de fronteira T	49
3.3.3.2	Condição de fronteira H ₁	49
3.3.4	Equações de conservação	49
3.3.4.1	Equação da quantidade de movimento	50
3.3.4.2	Equação de energia	50
3.3.5	Parâmetros adimensionais	51
3.3.5.1	Adimensionalização da equação de movimento	51
3.3.5.2	Adimensionalização da equação de energia	52
3.3.5.3	Adimensionalização para condição de fronteira H_1	53
3.3.5.4	Adimensionalização para condição de fronteira T	55
3.3.5.5	Diâmetro hidráulico	56
3.3.5.6	Fator de atrito	56
3.3.5.7	Número de Nusselt	57
3.3.5.8	Número de Nusselt para condição de fronteira H_1	60
3.3.5.9	Número de Nusselt para condição de fronteira T	61
3.4	MÉTODO DE BORIS GRIGORYEVICH GALERKIN	62
3.4.1	Método Integral de Galerkin	63
4	METODOLOGIA	65
4.1	MODELAGEM MATEMÁTICA	65

4.1.1	Campo de velocidade pelo método integral de Galerkin	65
4.1.2	Campo de temperatura pelo método de Galerkin	67
4.1.2.1	Campo de temperatura para condição de fronteira H ₁	67
4.1.2.2	Campo de temperatura para condição de fronteira T	68
4.1.3	Cálculo dos autovalores e autovetores	71
4.1.4	Solução geral para a equação de energia	72
4.1.5	Método para encontrar um conjunto de funções bases	76
4.1.5.1	Condição de contorno do primeiro tipo:	77
4.1.5.2	Condições de fronteira do segundo tipo:	77
4.2	PROCEDIMENTO NUMÉRICO	78
4.2.1	FERRAMENTA DE <i>SOFTWARE MAPLE</i>	78
4.2.2	METODOLOGIA NUMÉRICA	79
4.2.3	Algorítmo de cálculo: Fator de atrito e número de Nusselt médio em condições	
	de fronteira H ₁ - $fRe e N_{u_{H_1}}$	80
4.2.4	Algorítmo de cálculo: Número de Nusselt médio e local com condição de	
	fronteira T - $N_{u_{\rm T}}$	82
4.2.5	Algorítmo de cálculo: Fator de atrito, número de Reynolds, tensão de cisalha-	
	mento e gradiente de pressão.	84
5	RESULTADOS E DISCUSSÕES	87
		07
5.1	ESCOAMENTO DE FLUIDO NEWTONIANO EM DUTOS DE GEOMETRIA	
5.1	ESCOAMENTO DE FLUIDO NEWTONIANO EM DUTOS DE GEOMETRIA ARBITRÁRIA	87
5.1 5.1.1	ESCOAMENTO DE FLUIDO NEWTONIANO EM DUTOS DE GEOMETRIA ARBITRÁRIA	87 87
5.1 5.1.1 5.1.1	ESCOAMENTO DE FLUIDO NEWTONIANO EM DUTOS DE GEOMETRIA ARBITRÁRIA DUTO CIRCULAR Geometria e parametrizações	87 87 88
5.1 5.1.1 5.1.1 5.1.1.1 5.1.1.2	ESCOAMENTO DE FLUIDO NEWTONIANO EM DUTOS DE GEOMETRIA ARBITRÁRIA DUTO CIRCULAR Geometria e parametrizações Perfil de velocidade	87 87 88 88
5.1 5.1.1 5.1.1 5.1.1.1 5.1.1.2 5.1.1.3	ESCOAMENTO DE FLUIDO NEWTONIANO EM DUTOS DE GEOMETRIA ARBITRÁRIA DUTO CIRCULAR Geometria e parametrizações Perfil de velocidade Perfil de temperatura	87 87 88 88 88 90
5.1 5.1.1 5.1.1 5.1.1.1 5.1.1.2 5.1.1.3 5.1.1.4	ESCOAMENTO DE FLUIDO NEWTONIANO EM DUTOS DE GEOMETRIA ARBITRÁRIA DUTO CIRCULAR Geometria e parametrizações Perfil de velocidade Perfil de temperatura Fator de atrito e número de Nusselt	87 87 88 88 90 91
5.1 5.1.1 5.1.1.1 5.1.1.2 5.1.1.3 5.1.1.4 5.1.1.5	ESCOAMENTO DE FLUIDO NEWTONIANO EM DUTOS DE GEOMETRIA ARBITRÁRIA DUTO CIRCULAR Geometria e parametrizações Perfil de velocidade Perfil de temperatura Fator de atrito e número de Nusselt Discussões dos resultados	87 87 88 88 90 91 92
5.1.1 5.1.1.1 5.1.1.2 5.1.1.3 5.1.1.4 5.1.1.5 5.1.2	ESCOAMENTO DE FLUIDO NEWTONIANO EM DUTOS DE GEOMETRIA ARBITRÁRIA DUTO CIRCULAR Geometria e parametrizações Perfil de velocidade Perfil de temperatura Fator de atrito e número de Nusselt Discussões dos resultados ARUTO CIRCULAR ANULAR	87 87 88 88 90 91 92 92
5.1 5.1.1 5.1.1.1 5.1.1.2 5.1.1.3 5.1.1.3 5.1.1.4 5.1.1.5 5.1.2 5.1.2.1	ESCOAMENTO DE FLUIDO NEWTONIANO EM DUTOS DE GEOMETRIA ARBITRÁRIA DUTO CIRCULAR Geometria e parametrizações Perfil de velocidade Perfil de temperatura Fator de atrito e número de Nusselt DUTO CIRCULAR ANULAR Geometria e parametrizações	87 87 88 88 90 91 92 92 92 93
5.1 5.1.1 5.1.1.1 5.1.1.2 5.1.1.2 5.1.1.3 5.1.1.4 5.1.1.5 5.1.2 5.1.2.1 5.1.2.2	ESCOAMENTO DE FLUIDO NEWTONIANO EM DUTOS DE GEOMETRIA ARBITRÁRIA DUTO CIRCULAR Geometria e parametrizações Perfil de velocidade Perfil de temperatura Fator de atrito e número de Nusselt DUTO CIRCULAR ANULAR Geometria e parametrizações	87 87 88 88 90 91 92 92 92 93 94
5.1.1 5.1.1 5.1.1.2 5.1.1.3 5.1.1.3 5.1.1.4 5.1.1.5 5.1.2 5.1.2 5.1.2.1 5.1.2.2 5.1.2.3	ESCOAMENTO DE FLUIDO NEWTONIANO EM DUTOS DE GEOMETRIA ARBITRÁRIA DUTO CIRCULAR Geometria e parametrizações Perfil de velocidade Perfil de temperatura Discussões dos resultados DUTO CIRCULAR ANULAR Geometria e parametrizações	87 87 88 88 90 91 92 92 92 93 94 95
5.1 5.1.1 5.1.1.1 5.1.1.2 5.1.1.3 5.1.1.3 5.1.1.4 5.1.1.5 5.1.2 5.1.2.1 5.1.2.1 5.1.2.2 5.1.2.3 5.1.2.4	ESCOAMENTO DE FLUIDO NEWTONIANO EM DUTOS DE GEOMETRIA ARBITRÁRIA DUTO CIRCULAR Geometria e parametrizações Perfil de velocidade Perfil de temperatura Discussões dos resultados DUTO CIRCULAR ANULAR Geometria e parametrizações	87 87 88 88 90 91 92 92 93 94 95 95
5.1 5.1.1 5.1.1 5.1.1.2 5.1.1.3 5.1.1.3 5.1.1.4 5.1.1.5 5.1.2 5.1.2 5.1.2.1 5.1.2.1 5.1.2.2 5.1.2.3 5.1.2.3 5.1.2.4 5.1.2.5	ESCOAMENTO DE FLUIDO NEWTONIANO EM DUTOS DE GEOMETRIA ARBITRÁRIA DUTO CIRCULAR Geometria e parametrizações Perfil de velocidade Perfil de temperatura Fator de atrito e número de Nusselt DUTO CIRCULAR ANULAR Geometria e parametrizações Perfil de velocidade Perfil de velocidade Perfil de temperatura Discussões dos resultados Perfil de temperatura Fator de atrito e número de Nusselt Discussões dos resultados Perfil de temperatura Geometria e parametrizações Perfil de temperatura DUTO CIRCULAR ANULAR Geometria e parametrizações Perfil de temperatura Discussões dos resultados	87 87 88 88 90 91 92 92 92 93 94 95 95 95
5.1 5.1.1 5.1.1.1 5.1.1.2 5.1.1.2 5.1.1.3 5.1.1.4 5.1.1.5 5.1.2 5.1.2 5.1.2.1 5.1.2.2 5.1.2.1 5.1.2.2 5.1.2.3 5.1.2.4 5.1.2.5 5.1.3	ESCOAMENTO DE FLUIDO NEWTONIANO EM DUTOS DE GEOMETRIA ARBITRÁRIA DUTO CIRCULAR Geometria e parametrizações Perfil de velocidade Perfil de temperatura Discussões dos resultados DUTO CIRCULAR ANULAR Geometria e parametrizações Perfil de velocidade Perfil de velocidade Discussões dos resultados DUTO CIRCULAR ANULAR Geometria e parametrizações Perfil de temperatura Geometria e parametrizações DUTO CIRCULAR ANULAR Discussões dos resultados DUTO ELÍPTICO	87 87 88 88 90 91 92 92 92 93 94 95 95 95 97 97
5.1 5.1.1 5.1.1.2 5.1.1.3 5.1.1.3 5.1.1.4 5.1.1.5 5.1.2 5.1.2 5.1.2.1 5.1.2.1 5.1.2.2 5.1.2.3 5.1.2.3 5.1.2.4 5.1.2.5 5.1.3 5.1.3.1	ESCOAMENTO DE FLUIDO NEWTONIANO EM DUTOS DE GEOMETRIA ARBITRÁRIA DUTO CIRCULAR Geometria e parametrizações Perfil de velocidade Perfil de temperatura Fator de atrito e número de Nusselt DUTO CIRCULAR ANULAR Geometria e parametrizações Perfil de temperatura Discussões dos resultados Perfil de temperatura Geometria e parametrizações Perfil de temperatura DUTO CIRCULAR ANULAR Geometria e parametrizações Perfil de temperatura DUTO CIRCULAR ANULAR DUTO CIRCULAR ANULAR DUTO CIRCULAR ANULAR DUTO ELÍPTICO Discussões dos resultados DUTO ELÍPTICO Geometria e parametrizações	87 87 88 88 90 91 92 92 92 93 94 95 95 97 97 97 98
5.1 5.1.1 5.1.1.2 5.1.1.3 5.1.1.3 5.1.1.3 5.1.1.4 5.1.1.5 5.1.2 5.1.2 5.1.2.1 5.1.2.1 5.1.2.2 5.1.2.3 5.1.2.4 5.1.2.4 5.1.2.5 5.1.3 5.1.3 5.1.3.1 5.1.3.2	ESCOAMENTO DE FLUIDO NEWTONIANO EM DUTOS DE GEOMETRIA ARBITRÁRIA DUTO CIRCULAR Geometria e parametrizações Perfil de velocidade Perfil de temperatura Fator de atrito e número de Nusselti DUTO CIRCULAR ANULAR Geometria e parametrizações Perfil de velocidade Perfil de velocidades Partin de velocidades Perfil de velocidades Discussões dos resultados DUTO CIRCULAR ANULAR Geometria e parametrizações Perfil de temperatura Fator de atrito e número de Nusselti Discussões dos resultados DUTO CIRCULAR ANULAR Geometria e parametrizações Perfil de velocidade Perfil de velocidade Perfil de velocidade Discussões dos resultados DUTO ELÍPTICO Geometria e parametrizações Perfil de velocidade	87 87 88 88 90 91 92 92 93 94 95 95 97 97 97 98 99
5.1 5.1.1 5.1.1.1 5.1.1.2 5.1.1.3 5.1.1.3 5.1.1.4 5.1.1.5 5.1.2 5.1.2.1 5.1.2.1 5.1.2.1 5.1.2.2 5.1.2.3 5.1.2.3 5.1.2.4 5.1.2.5 5.1.3 5.1.3.1 5.1.3.2 5.1.3.3	ESCOAMENTO DE FLUIDO NEWTONIANO EM DUTOS DE GEOMETRIA ARBITRÁRIA DUTO CIRCULAR Geometria e parametrizações Perfil de velocidade Perfil de temperatura Fator de atrito e número de Nusselt Discussões dos resultados DUTO CIRCULAR ANULAR Geometria e parametrizações Perfil de temperatura Discussões dos resultados DUTO CIRCULAR ANULAR Geometria e parametrizações Perfil de temperatura Discussões dos resultados DUTO CIRCULAR ANULAR Geometria e parametrizações Perfil de temperatura Discussões dos resultados Perfil de temperatura Perfil de temperatura Perfil de temperatura Perfil de velocidade Perfil de velocidade	87 87 88 88 90 91 92 92 93 94 95 95 97 95 97 97 97 98 99 100

5.1.3.5	Discussões dos resultados	2
5.1.4	DUTO SEMI ELÍPTICO	2
5.1.4.1	Geometria e parametrizações	3
5.1.4.2	Perfil de velocidade	4
5.1.4.3	Perfil de temperatura	5
5.1.4.4	Fator de atrito e número de Nusselt	5
5.1.4.5	Discussões dos resultados	7
5.1.5	PLACAS PARALELAS	7
5.1.5.1	Geometria e parametrizações	8
5.1.5.2	Perfil de velocidade	9
5.1.5.3	Perfil de temperatura	9
5.1.5.4	Fator de atrito e número de Nusselt	0
5.1.5.5	Discussões dos resultados	1
5.1.6	DUTO RETANGULAR	1
5.1.6.1	Geometria e parametrizações	2
5.1.6.2	Perfil de velocidade	3
5.1.6.3	Perfil de temperatura	3
5.1.6.4	Fator de atrito e número de Nusselt	4
5.1.6.5	Discussões dos resultados	6
5.1.7	<u>DUTO SENO</u>	6
5.1.7.1	Geometria e parametrizações	7
5.1.7.2	Perfil de velocidade	7
5.1.7.3	Perfil de temperatura	8
5.1.7.4	Fator de atrito e número de Nusselt	9
5.1.7.5	Discussões dos resultados	0
5.1.8	DUTO DUPLO SENO	1
5.1.8.1	Geometria e parametrizações	1
5.1.8.2	Perfil de velocidade	2
5.1.8.3	Perfil de temperatura	3
5.1.8.4	Fator de atrito e número de Nusselt	3
5.1.8.5	Discussões dos resultados	5
5.1.9	DUTO TRIANGULAR DIREITO	5
5.1.9.1	Geometria e parametrizações	6
5.1.9.2	Perfil de velocidade	6
5.1.9.3	Perfil de temperatura	7
5.1.9.4	Fator de atrito e número de Nusselt	8
5.1.9.5	Discussões dos resultados	0
5.1.10	DUTO TRIANGULAR EQUILÁTERO	0
5.1.10.1	Geometria e parametrizações	1

5.1.10.2	Perfil de velocidade
5.1.10.3	Perfil de temperatura
5.1.10.4	Fator de atrito e número de Nusselt
5.1.10.5	Discussões dos resultados
5.1.11	DUTO TRIANGULAR ISÓSCELES
5.1.11.1	Geometria e parametrizações
5.1.11.2	Perfil de velocidade
5.1.11.3	Perfil de temperatura
5.1.11.4	Fator de atrito e número de Nusselt
5.1.11.5	Discussões dos resultados
5.1.12	DUTO CORRUGADO
5.1.12.1	Geometria e parametrizações
5.1.12.2	Perfil de velocidade
5.1.12.3	Perfil de temperatura
5.1.12.4	Fator de atrito e número de Nusselt
5.1.12.5	Discussões dos resultados
5.2	ESCOAMENTO DE ÓLEO PESADO
5.2.1	GEOMETRIA CIRCULARI
5.2.2	GEOMETRIA CIRCULAR ANULAR
5.2.3	GEOMETRIA ELÍPTICA
5.2.4	GEOMETRIA SEMI ELÍPTICA
5.2.5	GEOMETRIA PLACAS PARALELAS
5.2.6	GEOMETRIA RETANGULAR
5.2.7	<u>GEOMETRIA SENO</u>
5.2.8	GEOMETRIA SENO DUPLO
5.2.9	GEOMETRIA TRIANGULAR DIREITO
5.2.10	GEOMETRIA TRIANGULAR EQUILÁTERO
5.2.11	GEOMETRIA TRIANGULAR ISÓSCELES
5.2.12	GEOMETRIA TIPO CORRUGADA
5.2.13	DISCUSSÕES DOS RESULTADOS
6	CONCLUSÕES E SUGESTÕES PARA TRABALHOS FUTUROS 184
6.1	CONCLUSÕES
6.2	SUGESTÕES PARA TRABALHOS FUTUROS

REFERÊNCIAS	186
APÊNDICE A - Tabelas dos valores obtidos nas simulações para fRe , $N_{u_{T}}$, $e N_{u_{H_{1}}}$	197
APÊNDICE B - Tabelas dos valores obtidos nas simulações para os óleos OL1, OL2 e OL3.	203

1 INTRODUÇÃO

O transporte de fluidos geralmente é realizado por meio de dutos. Este tipo de transporte é responsável pelo deslocamento de fluidos entre os tanques de estocagem e as unidades de processamento, nas plantas de indústrias e entre grandes distâncias como os minerodutos, oleodutos e gasodutos. Segundo Silva (1999), um dos investimentos mais altos na estruturação da capacidade de escoamento de petróleo está na fase de construção dos dutos.

Vários trabalhos têm sido reportados na literatura, teórico e experimental, visando obter a solução de escoamento de fluido no interior de dutos de seção transversal arbitrária. Irvine (1963) estudou a transferência de calor convectiva em dutos de seção transversal triangular isósceles. Schenk e Han (1966) estudaram numericamente o resfriamento de um fluido quente em fluxo laminar newtoniano através de dutos elípticos. Rao *et al.* (1969), examinaram o problema da transferência de calor laminar de convecção forçada em dutos elípticos com temperatura uniforme e fluxo de calor prescrito na parede do duto usando a teoria de Lévêque. Foram definidas algumas considerações para variações de inclinação do perfil de velocidade linear, expressões para o número de Nusselt médio e local, temperaturas na parede e é incluído um fator de correção da temperatura dependente da viscosidade. Kakaç e Ozgu (1969), apresentaram uma solução numérica para transferência de calor de escoamento laminar, incompressível e de fase única na região de entrada para um tubo circular. Números de Nusselt são encontrados e comparados com o trabalho de Ulrichson e Schmitz (1965).

Utilizando-se da técnica de mínimos quadrados, Shah e London (1978) analisaram o escoamento laminar completamente desenvolvido e transferência de calor em dutos de seção transversal arbitrária. Como aplicação do método os autores apresentaram resultados de escoamento de transferência de calor para dutos de geometria triangular isósceles, triangular equilátero de cantos arredondados, seno, rômbico e trapezoidal.

Mais recentemente, Shahmardan *et al.* (2012) obteram uma solução analítica exata para transferência de calor convectiva em dutos retos com seção transversal retangular. O número de Nusselt médio e local são obtidos em funções da razão de aspécto da geometria.

Shahmardan, Dedaghat e Norouzi (2015) apresentaram uma solução analítica exata para transferência de calor convectiva completamente desenvolvida em duto triangular equilátero sobre fluxo constante. Este estudo é a primeira solução analítica exata sobre convecção de calor em dutos triangulares apresentada até então. A solução analítica apresentada pode ser útil em análises de convecção de calor em microfluidos e projetos de permutadores de calor compactos. Alassar (2016), apresentou uma solução exata do problema de convecção forçada completamente desenvolvida através de dutos semi elípticos sobre fluxo de calor axial constante e temperatura uniforme periférica.

Assim, observa-se uma gama de trabalhos no intuito de desenvolver soluções analíticas ou

numéricas para transporte de fluidos em dutos com geometrias arbitrárias. Trabalhos estes que se empossam de várias técnicas para obtenção dos elementos que caracterizam a transferência de calor. Dentre essas técnicas, destacam-se os trabalhos que utilizam-se do método integral de Gelerkin. Essa técnica tem se mostrada bem eficaz em encontrar soluções para diversos problemas envonlvendo escoamento de fluidos, equação de difusão, transferência de massa, assim como soluções numéricas e analíticas para equação da onda (DOGAN, 2005), equação de Schrodinger (ISMAIL, 2008), equação integral de Fredholm-Volterra, (SHIRIN; ISLAM, 2010), dentre outros.

Lecroy e Eraslan (1969), utilizam-se do método integral de Galerkin para resolver problemas de autovalores associados aos problemas matemáticos de região de entrada térmica, incluindo dissipação viscosa e o efeito de condução axial. Haji-Sheikh, Mashena e Haji-Sheikh, M. (1983), aplicaram o método integral de Galerkin para cálculos do coeficiente de transferência de calor em dutos de seção transversal arbitrária, tais como, circulares, retangulares, triangular isósceles e triângular direito. Neste trabalho o escoamento é considerado laminar e completamente desenvolvido, hidrodinâmica e termicamente.

Haji-Sheikh e Beck (1990), apresentaram o método integral baseado em Galerkin como procedimento para obter soluções precisas para muitos problemas de condução transiente em geometrias complexas. Lakshminarayanan e Heji-Sheikh (1992), apresentaram um estudo sobre transferência de calor em dutos isosceles e triangular direito para fluido incompressível com propriedades constantes. O escoamento considerado é laminar, completamente desenvolvido hidrodinamicamente. Degheidy *et al.* (2016), resolveram o problema de transferência de calor radioativa através de placas paralelas finitas que apresentam uma variação espacial transversal contínua no índice de refração. O método de Galerkin é usado para ter a solução analítica na forma integral da equação de transferência de calor radioativa.

A transferência de calor e massa de óleo pesado através de dutos é um processo muito complexo, pois há muitos parâmetros de fluxo que afetam o perfil de transporte. Para entender melhor o comportamento do fluxo de óleo pesado em dutos, o conhecimento em dinâmica de fluidos computacional (CFD) é necessário para prever tais fenômenos (RUKTHONG, *et al.*, 2016). Desta forma, qualquer contribuição de dados analisados e apresentados sobre o escoamento de óleo pesado traz um grande ganho para o entendimento de qual técnica melhor utilizar. Neste intuito, este trabalho vem apresentar, por meio de dados numéricos, o comportamento deste tipo de óleo em dutos retos de geometrias arbitrárias. Tomando como ponto de partida as soluções analíticas encontradas a partir do método integral baseado em Galerkin aplicadas às equações de momento linear e energia. Por seguinte, são apresentados dados como fator de atrito, número de Reynolds, tensão de cisalhaento e gradiente de pressão de três amostras de óleos pesados que apresentam viscosidade dependente da temperatura, que é a maior motivação deste trabalho já que valores para alguns parâmetros fluidodinâmicos para escoamento em dutos de seção tranversal arbitrária deste tipo de óleo são escassos.

O restante deste trabalho está organizado da seguinte forma, no Capítulo 2, é apresentado

rítulo aproco

36

os objetivos geral e específicos. No Capítulo 3, a revisão bibliográfica. Este capítulo apresenta uma revisão da literatura mostrando os conhecimentos necessários para entendimento deste trabalho. Vai desde a apresentação de escoamento, passando por definições e algumas questões relevantes sobre petróleo, equações governantes e parâmetros de intereses. Também é apresentado o método integral baseado em Galerkin e em que condições pode-se aplicá-lo. No Capítulo 4, é apresentada a modelagem matemática ao qual aplica-se o método para apresentar soluções analíticas para as equações de momento linear e energia. Também é apresentado a metodologia computacional para as soluções numéricas das equações em estudo. No Capítulo 5, são apresentados os resultados do trabalho: estudos das equações na forma adimensional em cada geometria escolhida; parâmetros como número de Poiseuille e número de Nusselt médio e local; valores para número de Reynold, fator de atrito, tensão de cisalhamento e gradiente de pressão para três tipos de óleos pesados. O Capítulo 6, é reservado à apresentação das conclusões e as sugestões para trabalhos futuros. E por fim, a bibliografia utilizada e dois apêndices com tabelas dos valores obtidos nas simulações deste trabalho.
2 OBJETIVOS

2.1 OBJETIVO GERAL

Apresentar um estudo analítico/numérico de escoamento de fluidos em dutos de seção transversal arbitrária.

2.2 OBJETIVOS ESPECÍFICOS

- Aplicar o método integral baseado em Galerkin para obter soluções analíticas das equações de momento linear e energia apresentando valores para número de Poiseuille e número de Nusselt médio e local;
- Propor uma modelagem matemática para simular e comparar os valores obtidos com os dados e/ou resultados disponibilizados na literatura;
- Avaliar o comportamento do escoamento de óleo pesado em geometria arbitrária apresentando valores para fator de atrito, número de Reynolds, tensão de cisalhamento e gradiente de pressão.

3 REVISÃO DA LITERATURA

3.1 ESCOAMENTO EM GEOMETRIA ARBITRÁRIA

Diversos trabalhos na literatura vêm ao longo dos anos apresentando soluções analíticas e numéricas para os problemas voltados ao transporte de fluidos ao longo de tubulações. Tais trabalhos dão ênfase na geometria do duto. Várias técnicas foram utilizadas para apresentar resultados de forma a prevê o comportamento de fluidos em geometrias simples e complexas e tais resultados vêm sendo comparados e discutidos, pois os mesmos dão tanto vantagens computacionais como analíticas, dando assim aos autores uma melhor escolha a que método aplicar e a que propriedades considerar em cada situação.

Utilizando-se da técnica de Transformada Integral Generalizada, diversos trabalhos foram apresentados por R. M. Cotta, M. N. Ozisik e J. B. Aparecido. Dentre eles podem-se citar: Cotta e Ozisik (1986), que empregaram a técnica de Integral Generalizada para reduzir o problema original de convecção laminar forçada, em canais de placas paralelas e dutos circulares, para um sistema de equações diferenciais lineares de primeira ordem que é então resolvido utilizando o problema matricial de autovalor; Aparecido, Cotta e Ozisik (1989) apresentaram soluções analíticas para problemas tipo difusão bi-dimensional. O modelo também é aplicado para determinar a distribuição de velocidade completamente desenvolvida em dutos retos de seção transversal arbitrária; Aparecido e Cotta (1990a) e (1990b) aplicaram as técnicas de Integral Generalizada para encontrar soluções para convecção laminar forçada sobre dutos retangulares e hexagonais. Resultados de referência são estendidas para quantidades de interesse práticos com a região de entrada térmica para uma ampla variedade de variáveis axial e várias razão de aspécto. A precisão de resultados relatados anteriormente para abordagem numérica diretas são examinadas criticamente para regiões completamente desenvolvida e m desenvolvimento.

Zhang, Ebadian e Campo (1991) apresentaram soluções analítica/numérica para transferência de calor convectiva na região de entrada térmica de dutos irregulares: quadrada, retangulares e triangular equilátero. O desenvolvimento do campo de temperatura nestes dutos são obtidos analiticamente para soluções da equação de energia aplicando o método de linhas (MOL). O sistema resultante da equação é realmente resolvido analiticamente e numericamente em um computador pessoal.

Fischer e Martin (1997) utilizam-se do método de elementos finítos para o estudo de escoamento laminar completamente desenvolvido para dutos tipo sinusoidal. Dois tipos de seção transversal formadas por duas paredes paralelas sinusoidal, com amplitude \hat{a} , com comprimento de onda Λ e a distância $2\hat{a}$ são consideradas.

Syrjala (1998) conduz um estudo numérico no comportamento de transferência de calor e fluxo laminar de fluidos viscoelásticos em dutos retangulares usando o estudo de elemento finitos. O procedimento de elementos finitos empregado produz essencialmente precisões independentes da malha com um esforço computacional bastante moderado. Neste trabalho o autor apresenta e discute resultados computacionais em termos de campo de escoamento secundário, campo de temperatura, fator de atrito e número de Nusselt.

Aparecido e Lindquist (1999) estudaram analiticamente fluxo laminar hidrodinâmica e termicamente desenvolvido de um fluido newtoniano sobre dutos retangulares retos com vizinhança axial uniforme e fluxo de calor periférico, usando técnicas generalizadas de transformada integral. Fluxo de fluido laminar, fluido com propriedades constantes, número de Péclet e hipóteses de dissipação viscosas são empregadas. A equação de energia para distribuição de temperatura desconhecida é transformada para o uso das técnicas de transformada integral resultante num sistema acoplado de equações diferenciais ordinárias de primeira ordem.

Morini (1999) usou o método de Transformada Integral finita para obter uma solução, rigorosa, para campos de temperatura e números de Nusselt na região de entrada completamente desenvolvida em dutos retangulares. A distribuição de temperatura bidimensional e número de Nusselt são apresentados e discutidos em tabelas e gráficos, considerando todas as combinações possíveis de paredes aquecidas e adiabáticas na seção transversal retangular.

Sadasivam, Manglik e Jog (1999) usando o método de diferenças finitas, modelaram o escoamento laminar completamente desenvolvido através de dutos hexagonal ou duplo trapezoidal. Uma transformação de coordenadas é empregada para mapear o escoamento irregular na seção transversal em um domínio retangular computacional. As condições de fronteira H_1 e T são consideradas no problema. Soluções para variações de velocidade e temperatura são obtidas para uma vasta gama de relações do duto e quatro diferentes ângulos trapezoidal. Os resultados apresentados mostram que o fator de atrito e o número de Nusselt apresentam uma forte dependência sobre a geometria do duto.

Damean e Regtien (2001) constroem uma forma analítica aproximada para o campo de velocidade sobre dutos hexagonais. Neste trabalho é discutido duas abordagens: uma é baseada no método de correspondência de pontos, a outra é baseada no método de transformação integral generalizada.

Cadé, *et al.* (2010) dão uma atenção maior ao escoamento de fluidos em duto com seção transversal elíptica. Neste trabalho é apresentado um estudo matemático para prever escoamento de gás em dutos cilíndricos com seção transversal elíptica na região de entrada hidro-dinâmica.

Ding e Manglik (1996) apresentaram uma solução analítica utilizando o método integral de Galerkin para escoamento laminar, de propriedades constantes, completamente desenvolvido em dutos com forma duplo seno. As condições de fronteiras térmicas analizadas são T e H₁.

Lee e Lee (1998) aplicaram o método de Galerkin para o cálculo do número de Nusselt para fluxo laminar em dutos anulares com temperatura constante na parede do duto. O fluxo é assumido completamente desenvolvido, laminar e newtoniano. Soluções com três ou dois termos fornecem informações precisas para dutos anulares tendo uma relação da razão de aspécto $\frac{b}{a}$. Além disso para dutos com uma relação menor um número maior de funções bases, para o método, devem ser empregadas.

Na mesma linha de trabalho, Lee e Lee (2001) aplicaram o mesmo método para o cálculo do número de Nusselt para fluxo laminar em dutos elípticos imposto a temperatura na parede do duto constante. O valor de $C_f R_e$ são também encontrados para dutos elípticos com e sem núcleo circular central. Neste trabalho o fluido é considerado completamente desenvolvido hidrodinamicamente, laminar e Newtoniano.

Gray (2003) obteve expressões para a equação de difusão em estado permanente, em duas ou três dimensões. As correspondentes formulações das equações integrais de contorno para esse problema são derivadas, e os casos tridimensionais são resolvidos numericamente usando aproximações de Galerkin. Observa-se que os resultados dos cálculos testes estão em excelente concordância com soluções exatas e simulações de elementos finitos.

Muitos destes trabalhos nos deram embazamento teórico pra entendimento do escoamento em dutos de geometria arbitrária e os mesmos também serão utilizados para comparar dados encontrados e discutidos nesta tese.

3.2 O PETRÓLEO

3.2.1 Definição, composição e transporte do Petróleo

O Petróleo é uma fonte de energia não renovável que foi descoberta a milhões de anos. A partir de então o homem passou a utilizá-lo para pavimentação de estradas, embalsamarem os mortos, entre tantas outras utilidades (JESUS *et al.*, 2011). A palavra Petróleo é originada do latim *Petroleum*, *Petra* (pedra)+ *Oleum* (óleo) que, por sua vez, deriva de um vocábulo grego que significa óleo de rocha. O petróleo é um líquido natural oleaginoso que é formado por uma mistura de hidrocarbonetos que obtém-se a partir de camadas geológicas, sejam estas continentais ou marítimas (THOMAS, 2004). O petróleo bruto possui em sua composição uma cadeia de hidrocarbonetos, cujas frações leves formam os gases e as frações pesadas o óleo cru. É uma complexa mistura líquida de compostos orgânicos e inorgânicos em que predominam os hidrocarbonetos, desde os alcanos mais simples até os aromáticos mais complexos. A distribuição destes percentuais de hidrocarbonetos é que define os diversos tipos de petróleo existentes no mundo (WISNIEWSKI, 2010).

A composição elementar média do petróleo é apresentada como:

Elemento	Percentagem em peso (%)
Carbono	83,9 a 86,8
Hidrogênio	11,4 a 14,0
Enxofre	0,06 a 9,00
Nitrogênio	0,11 a 1,70
Oxigênio	0,5
Metais (Fe, Ni, V etc.)	0,30

Tabela 1 - Composição do Petróleo

Fonte: Adaptada pelo autor (NETO; GURGEL, 2007. p. 11)

Embora conhecido desde os primórdios da civilização humana, somente em meados do século XIX tiveram início a exploração de campos e a perfuração de poços de Petróleo. A partir de então, a indústria petrolífera teve grande expansão, principalmente nos Estados Unidos e na Europa. Apesar da forte concorrência do carvão e de outros combustíveis considerados nobres naquela época, o petróleo passou a ser utilizado em larga escala, especialmente após a invenção dos motores a gasolina e a óleo diesel (PAFFENBARGER, 1997).

Existem duas etapas de transporte do Petróleo: a primeira que é de transportar o petróleo desde o poço até as refinarias, e a segunda que consiste em transportar os seus derivados até o consumidor final (SILVA, 1999). Para isso, se faz necessário um bom planejamento juntamente com a logística, analisando qual modal mais aceitável e que poderá garantir o melhor custo/benefício para a empresa e seus clientes, o que irá depender em muitas ocasiões das cargas e produtos a serem transportados, a distância, os pontos de fabricação e de distribuição, entre vários outros fatores. Os modais de transporte são: o ferroviário, o aéreo, o dutoviário, o hidroviário e o rodoviário (JESUS, 2011).

Dutovia é a designação genérica de uma instalação constituída por tubos ligados entre si para o transporte de determinados produtos. Pode ser definida ainda como uma tubulação destinada a conduzir a grandes distâncias produtos ou materiais. A dutovia deve ser constituída de três elementos essenciais: os terminais, com os equipamentos de propulsão dos produtos, os tubos e as juntas de união destes (DUTOVIA, 2017).

Segundo Cardoso (2004),

Oleoduto ou, simplesmente duto, é o nome genérico dado às tubulações utilizadas para transportar grandes quantidades de petróleo e derivados. Consiste no meio mais econômico e seguro de movimentação de cargas líquidas derivadas de petróleo, através de um sistema que interliga as fontes produtoras, refinarias, terminais de armazenagem, bases distribuidoras e centros consumidores. A análise dos custos de transporte por este modal indica expressiva vantagem econômica, permitindo-se a redução de custos com fretes que influenciam os preços finais dos derivados, diminuição do tráfego de caminhões e vagões-tanque e o aumento da segurança nas estradas e vias urbanas.

Para Ribeiro e Ferreira (2002),

Como vantagens, o transporte dutoviário se apresenta como mais confiável de todos, pois existem poucas interrupções para causar variabilidade nos tempos e os fatores meteorológicos não são significativos. Além disso, os danos e perdas de produtos são baixos. Como desvantagem está a lentidão na movimentação dos produtos, o que inviabiliza seu uso para o transporte de perecíveis.

Na indústria de Petróleo, uma das grandes preocupações na produção e transporte é a perda de carga ou queda de pressão, que estão associadas aos altos custos do escoamento. Isto ocorre em virtude do atrito com as paredes internas do duto e do efeito de viscosidade dos fluidos. Visto que um dos principais obstáculos na utilização de óleo pesado é a sua viscosidade relativamente elevada, tornando difícil o seu transporte, aumentando o custo de refino. Ao longo de seu escoamento, esta mistura pode desenvolver vários padrões ou regimes e esses podem apresentar diferentes configurações, pois estão relacionadas com as condições operacionais, características do sistema de transporte e das propriedades físicas das fases de escoamento (VARA, 2001). A técnica de Fluidodinâmica Computacional (CFD) vem sendo amplamente utilizada para compreender e descrever o escoamento multifásico, como por exemplos, estudos realizados por Ghosh *et al.* (2010), Balakhrisna *et al.* (2010), Ghosh; Das e Das (2011), Kaushik *et al.* (2012), Gadelha *et al.* (2013), Jiang *et al.* (2014), entre outros. O conhecimento da simulação fluidodinâmica computacional é considerado de grande importância, pois pode fornecer informações para controlar e garantir um projeto seguro e eficiente nos processos que envolvem o escoamento (GARIMELLA *et al.*, 2005).

Existem diversas técnicas que são empregadas para o transporte de óleos pesados em dutos. Dentre elas pode-se citar:

 i) Isolamento térmico: consiste em um pré-aquecimento do óleo a uma temperatura que permita transportar o óleo sem excessiva pressão de bombeio. Essa técnica tem sido instalada em um número pequeno de dutos. Muitas dessas linhas foram construídas para prevenir a formação de hidratos ou para permitir bombear óleos crus muito viscosos;

 ii) Aquecimento externo: essa técnica tem como finalidade o aquecimento externo do duto, bombeando um líquido (óleo) quente através de uma linha concêntrica ou por meio de aquecimento. É uma técnica que proporciona calor e reaquecimento ao duto, além de ser um método caro para instalar e está limitada a curtas distâncias;

iii) Produção fria: é constituída por métodos que melhoram as características do óleo sem a adição de calor. Consiste basicamente em duas etapas, a primeira etapa trata em misturar 90% de óleo pesado com 10% de uma solução de surfactante diluída para formar emulsões. A segunda etapa é agregada mais água na mistura para proporcionar uma emulsão transportável contendo próximo de 65 % de óleo pesado;

iv) Elevação artificial: essa técnica consiste em transmitir energia ao fundo do poço para suprir a energia natural do reservatório, quando esta não é suficiente para vencer a pressão da coluna hidrostática. Os mais utilizados são: bombeio mecânico, bombeio centrífugo submerso e gás lift; v) Injeção de água (core flow): consiste em injetar água no duto, para criar uma configuração anular onde o óleo ocupa o centro do duto e a água as partes laterais, convertendo-se como uma espécie de lubrificante que reduz a queda de pressão, assegurando um transporte mais econômico. Esta técnica torna-se atrativa não só no transporte, como também na elevação de óleos pesados (VARA, 2001).

De acordo com Prada (1999), cada uma dessas técnicas tem suas limitações, devido às condições dos reservatórios e/ou as propriedades dos fluidos que são injetados.

3.2.2 Pesquisas aplicadas a sistemas ligados ao transporte de petróleo

Flanigan (1972) realizou a otimização na operação de compressores empregando as seguintes ferramentas matemáticas: o Método de Newton-Raphson e a Interpolação Lagrangeana, para a modelagem e otimização do modelo, tendo utilizado-se da fórmula de Panhandle para efetuar o cálculo de perda de carga. Com o programa desenvovido conseguiu minimizar as perdas de cargas necessárias para o transporte do gás através de uma rede de dutos.

Goldberd (1989) empregou um sistema de regras de aprendizagem e algorítimos genéticos para acompanhar a operação de uma rede de dutos, onde foi avaliado o fluxo de gás e seu comportamento durante alterações na operação no conjunto de compressores utilizados.

Bobok e Udvardi (1996) utilizaram-se de um sistema de fluxo anular, onde mesclava água com reagentes químicos a um petróleo de densidade pesada, minimizando os gastos envolvidos no tranporte em dutos de uma jazida petrolífera na Hungria. O modelo possibilitou uma diminuição no esforço realizado pelas bombas no envio do fluido até o ponto de processamento.

Velusamy e Garg (1996) estudaram o escoamento em regime permanente completamente desenvolvido de um fluido Newtoniano no interior de dutos elípticos verticais. Utilizaram o sistema de coordenadas cilíndricas elípticas e o método de discretização de volumes finitos. O sistema de coordenadas consiste de uma família ortogonal de elipses confocais e hipérboles em um plano transladado na terceira direção. Dados como perfil de velocidade, fator de atrito e número de Nusselt foram apresentados. Observaram que fator de atrito é maior em tubos de seção elíptica comparados à seções circulares.

Sun, Chan e Tontwiachwuthikul (1997) empregaram um sistema para otimizar a operação de gasodutos, utilizando regressão linear, lógica fuzzy e técnicas de inteligência artificial. O modelo decide qual o melhor momento para ligar ou desativar determinado compressor na rede de dutos, diminuindo assim custos com o transporte.

Reis, Porto e Chaudhry (1997) utilizaram algorítmos genéticos na resolução de problemas de configuração na localização de válvulas utilizadas no tansporte de fluidos em dutos, assegurando um melhor controle operativo no sistema de bombeamento.

Foi proposto por Ishii, Tsoukalas e Kim (1998) a identificação do regime de fluxo bifásico, onde realizando a análise das imagens captadas por um sensor, determinaram a partir de redes neurais com maior precisão a melhor forma de operação para um sistema de controle de bombeamento vertical.

Soares, Naccache e Mendes (1999) apresentaram a análise de transferência de calor na região de entrada de escoamentos de fluidos viscoplásticos. O escoamento é laminar e a viscosidade é modelada segundo a equação de Herschel-Bulkley. As equações da conservação são resolvidas numericamente via método de volumes finitos. O efeito da dependência da temperatura nas propriedades reológicas é também investigado e o número de Nusselt, por exemplo, é obtido como função da coordenada axial e do campo de tensões.

Escudier e Presti (1996) estudaram o escoamento de fluido *Power-Law* em tubo anular excêntrico com cilindro interno em rotação. Apresentaram em extenso números de cálculos numéricos, utilizando um método de volumes finitos altamente preciso, para o escoamento laminar completamente desenvolvido de um fluído *Power-law* inelástico *shear-thinning*.

Huilgol e You (2005) estudaram escoamentos em regime permanente para os fluídos de Bingham, Casson e Herschel-Bulkley em tubos de diferentes seções transversais, como a circular e a quadrada, aplicando o método dos multiplicadores de Lagrange. Os resultados revelaram o efeito da não linearidade da viscosidade nos escoamentos examinados.

Alegria (2011) apresentou um estudo analítico e numérico do escoamento de fluido viscoplástico tipo Herschel-Bulkley usando três configurações de tubos de seções transversais elípticas: tubo elíptico, elíptico anular concêntrico e excêntrico. O objetivo desse estudo foi analisar o efeito dos parâmetros geométricos do tubo, cinemáticos do escoamento e reológicos do fluido na perda de carga. Os resultados para o duto anular circular concêntrico e excêntrico são corretamente reproduzidos quando a seção anular elíptica tende para a razão de aspecto unitária.

Prado *et al.* (2012) apresentaram uma simulação numérica do escoamento axial, laminar e completamente desenvolvido em tubos elípticos. Os autores utilizam-se de um modelo diferencial dando um estudo inicial para posterior solução de um escoamento não newtoniano tridimensional e em desenvolvimento.

3.2.3 Oleo pesado e escala de gravidade API

A indústria do petróleo é um dos principais participantes do setor de energia no mundo. A maior demanda por reservas leves de petróleo nas últimas décadas levou ao seu esgotamento. Como resultado, o petróleo pesado é cada vez mais um tópico de interesse, recebendo considerável atenção com relação ao seu transporte eficiente (JADID; SALEH, 2017).

Apesar da grande quantidade de reservas produtivas de petróleo bruto pesado, o transporte de petróleo pesado é complexo e caro, devido à sua alta viscosidade. Por exemplo, o fluxo de óleo pesado em um tubo pode levar a quedas de pressão que torna o fluido impossível de ser bombeabo, mesmo através de tubos de grandes diâmetros (BENSAKHRIA, et al., 2004). Devido a essa característica, esse tipo de óleo requer uma grande quantidade de energia para bombeá-lo (JADID; SALEH, 2017). Atualmente, diferentes métodos são empregados para

transportar óleo pesado do campo de produção para as refinarias e para o mercado. Embora muitas outras opções estejam disponíveis, os oleodutos são o meio mais seguro e eficiente e financeiramente viável de transportar este tipo de petróleo (MARTÍNEZ-PALOU. et al. 2011). Diferentes técnicas e tecnologias têm sido propostas para reduzir a viscosidade do óleo pesado. No entanto, esses métodos convencionais têm limitações e as soluções atuais são caras (PRADA, 1999);(GADELHA, et al. 2013);(JADID; SALEH, 2017).

Em 1921, o *American Petroleum Institute* criou a API *Gravity Scale*, inicialmente para medir a gravidade específica de líquidos menos densos que a água, especialmente o petróleo. Hoje, o uso da Escala de Gravidade API é estendido a toda a faixa de gravidade específica, e reconhecido pela indústria do petróleo e é amplamente usada (ARGYROPOULOU,2017). De acordo com a escala API os tipos de petróleo são separados em (SANIERE, 2004), (ARGYROPOU-LOU,2017),(LAMMOGLIA; SOUZA FILHO, 2012):

- Bruto leve, que tem gravidade API maior que 31,1 °API e densidade específica menor que 0,87;
- Bruto médio, que tem gravidade API entre 22,3 e 31,1 °API e gravidade específica entre 0,87 e 0,92;
- Bruto pesado, que possui gravidade API inferior a 22,3 °API e densidade específica maior que 0,92.

A maneira de calcular o °API de óleos como função de sua massa específica é dada por(LAMMOGLIA; SOUZA FILHO, 2012) :

$$API = \frac{141,5}{d_{60/60}} - 131,5$$

onde

$$d_{60/60} = \frac{\rho_{\text{óleo, }60^{\circ}\text{C}}}{\rho_{\text{água,}60^{\circ}\text{C}}}$$

Embora o óleo pesado seja denominado devido à sua alta densidade, sua viscosidade também é importante, pois desempenha um papel fundamental nas operações de transporte ao utilizar um oleoduto. Em geral, não há ligação direta entre viscosidade e gravidade. No entanto, os dois termos óleo pesado e óleo altamente viscoso são utilizados de forma intercambiável quando se define o óleo cru pesado, porque o óleo cru pesado é mais viscoso que o óleo convencional.

Apesar de se acreditar que o óleo altamente viscoso seja o futuro da produção sustentável de petróleo em todo o mundo, ainda não está claro a melhor forma de explorá-lo e transportá-lo. Segundo pesquisadores como Saniere e Pospisil (SANIERE, et al. 2004; POSPISIL, 2011), compartilhar conhecimento e tecnologia de ponta será benéfico para todos os participantes do

setor de petróleo, já que a extração de petróleo pesado, transporte e utilização representam um conjunto único de desafios. As reservas pesadas de petróleo bruto cresceram nos últimos anos e, como resultado, muitos cientistas e pesquisadores se interessaram pelo potencial do petróleo bruto pesado como um substituto apropriado para o óleo leve, bem como uma solução razoável para atender à crescente demanda global por energia (JADID; SALEH, 2017).

3.3 ESCOAMENTO EM DUTOS

Nesta seção são abordados pontos importantes que deram base ao entendimento do método integral baseado em Galerkin e em quais condições aplicá-lo. Inicia-se com os conceitos de camada limite hidrodinâmica e térmica, escoamento completamente desenvolvido, condições de fronteira e as equações de conservação da quantidade de movimento e energia. Bem como o conceito de dimensionalização, assim como alguns parâmetros adimensionais e por fim o método integral de B. G. Galerkin.

3.3.1 Camada limite

O escoamento de fluidos através de dutos é comumente usado em aplicações de aquecimento e resfriamento. No escoamento interno, o fluido está completamente confinado pelas superfícies do interior do duto, assim existe um limite sobre o qual a camada limite pode crescer. A velocidade do fluido em um duto muda de zero na superfície, em virtude da condição de não deslizamento, até o máximo no centro do duto. Assim, no escoamento de fluidos, é conveniente trabalhar com velocidade média, que se mantém constante para escoamento incompressível quando a área da seção transversal é constante (ÇENGEL, 2012). A velocidade média através de uma seção transversal é definida por:

$$u_m = \frac{\int_{A_c} \rho u(x, y) dA_c}{\rho A_c}$$
(3.1)

onde u(x,y) é a velocidade local.

A região do escoamento em que os efeitos da força de cisalhamento viscoso, causados pela viscosidade do fluido, são sentidos é chamada *camada limite hidrodinâmica* ou apenas *camada limite*. A região a partir da entrada do duto até o ponto onde a camada limite funde-se na parte central é chamada *região de entrada hidrodinâmica* e o seu comprimento é chamado *comprimento hidrodinâmico de entrada*, *L*_h. O escoamento na região de entrada é chamado *escoamento em desenvolvimento hidrodinâmico*, a região além da entrada, em que o perfil de velocidade está completamente desenvolvido, mantendo-se inalterado, é chamada *região completamente desenvolvida hidrodinamicamente* (ÇENGEL, 2012).

O perfil de velocidade na região completamente desenvolvida é parabólico para escoamento laminar em dutos de seção transversal circular. Na Figura 1, são aparesentados esses perfis de velocidade

Figura 1 – Perfis de velocidade

Fonte: Adaptado de ÇENGEL, 2012. p. 469.

A região de escoamento ao longo da qual a camada limite térmica se desenvolve e alcança o centro do duto é chamada *região de entrada térmica*, e o comprimento dessa região é chamado *comprimento de entrada térmico*, L_t . O escoamento na região de entrada térmica é chamado *escoamento termicamente em desenvolvimento*. Já a região além da região térmica de entrada, na qual o perfil adimensional de temperatura expresso como

$$\frac{t_s - t}{t_s - t_m} \tag{3.2}$$

permanece inalterado, é chamada *região completamente desenvolvida termicamente* (ÇENGEL, 2012). A temperatura média é definida como,

$$t_m = \frac{\int_{A_c} \rho c_p u(x, y) t(x, y) dA_c}{\int_{A_c} \rho c_p u(x, y) dA_c}.$$
(3.3)

A região em que o escoamento é tanto hidrodinâmica quanto termicamente desenvolvido e em ambos os perfis de velocidade e de temperatura adimensional permanecem inaterados é chamada *região completamente desenvolvida*, conforme pode se observar na Figura 2.

Figura 2 – Perfis de temperatura

Fonte: Adaptado de ÇENGEL, 2012. p. 470.

3.3.2 Escoamento completamente desenvolvido

Como resultado do desenvolvimento das camadas limite hidrodinâmica e térmica, quatro tipos de escoamento laminar ocorrem em dutos, normalmente, hidrodinamicamente em desenvolvimento, termicamente em desenvolvimento, simultaneamente em desenvolvimento (hidrodinâmica e termicamente em desenvolvimento) e completamente desenvolvido (hidrodinâmica e termicamente desenvolvidos) (SHAH; LONDON, 1978).

Em escoamento completamente desenvolvido, o perfil de velocidade e o perfil de temperatura adimensionais são constantes ao longo da direção do escoamento. O fator de atrito e o número de Nusselt também são constantes. Assim, o perfil de velocidade não depende da distância axial z, isto é,

$$\frac{\partial}{\partial z}u(x,y,z) = 0 \tag{3.4}$$

e

$$\frac{\partial}{\partial z} \left[\frac{t_s(z) - t(x, y, z)}{t_s(z) - t_m(z)} \right] = 0.$$
(3.5)

3.3.3 Condições de fronteira

Uma variedade de condições de fronteira podem ser especificadas para problemas de tranferência de calor. Estas condições de fronteira podem ser categorizadas em duas classes. Na primeira classe, a temperatura da parede periférica ou fluxo de calor na parede são uniformes. Na segunda classe, a temperatura da parede periférica ou fluxo de calor na parede são arbitrários (SHAH; LONDON, 1978). A seguir são apresentadas as codições de fronteira de primeira classe que serão denotadas por condições de fronteira T e H₁ (Figura 3).

Figura 3 – Condições de fronteira T e H1

Fonte: O autor, 2018.

3.3.3.1 Condição de fronteira T

Uma das condições de fronteira com grande importância técnica é o caso em que a temperatura da parede é uniforme e constante para todo o duto (SHAH; LONDON, 1978). Neste caso,

$$t|_{\Gamma} = t_w = \text{constante}, \text{ independente de } (x, y, z)$$
 (3.6)

onde t_w denota a temperatura na parede do duto e Γ a fronteira. Esta condição de fronteira será denotada neste trabalho por *condição de fronteira* T.

3.3.3.2 Condição de fronteira H₁

Outro caso a ser estudado é quando a distribuição de fluxo de calor na parede é especificada nas direções axial como também periférica. Quatro casos especiais desta condição de fronteira são considerados na literatura (SHAH; LONDON, 1978). Nesse trabalho é apresentado um estudo em que o fluxo de calor axial na parede é constante com temperatura na parede periférica uniforme constante. Essa condição de fronteira será denotada por H_1 . Assim, tem-se que:

$$\begin{cases} q' = h(t - t_m) = \text{constante}, \\ t|_{\Gamma} = t_w = \text{constante}, \text{ independente de } (x, y, z) \end{cases}$$
(3.7)

onde h representa o coeficiente de transferência de calor convectivo.

3.3.4 Equações de conservação

São apresentadas as equações diferenciais e condições de fronteira para problemas de velocidade e temperatura para escoamento, laminar, estado estacionário, completamente desenvolvido com fluido de fase única em um duto de seção transversal constante. Nesta parte do trabalho as propriedades do fluido, densidade, ρ , viscosidade, μ , calor específico, c_p , e condutividade térmica, κ , são consideradas constantes e independente da temperatura e as forças de corpo são negligenciadas. Nesta subseção nos baseamos nos textos de Kakaç, Shah e Bergles (1983), Ding e Manglik (1996) e Lee e Lee (2001).

3.3.4.1 Equação da quantidade de movimento

A equação da quantidade de movimento pode ser escrita como sendo:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{1}{\mu} \frac{dp}{dz} = c_1$$
(3.8)

onde u = u(x, y) é a velocidade local do fluido, p é a pressão e μ é a viscosidade do fluido, com condição de fronteira,

$$u(x,y) = 0 \text{ em } (x,y) \in \Gamma.$$
(3.9)

É considerado x e y as coordenadas da seção transversal do duto ,Figura 4, e $c_1 = \frac{1}{\mu} \frac{dp}{dz}$ que é independente de x e y.

Fonte: O autor, 2018.

3.3.4.2 Equação de energia

A equação de energia para as condições dada é da forma

$$\rho c_p u \frac{\partial t}{\partial z} = \kappa \left(\frac{\partial^2 t}{\partial x^2} + \frac{\partial^2 t}{\partial y^2} \right)$$
(3.10)

com condições de fronteira,

$$u(x,y) = 0 e t = t_w em (x,y) \in \Gamma.$$
 (3.11)

onde ρ é a densidade, c_p é o calor específico, u é a velocidade local, κ é a condutividade térmica, t a temperatura e t_w a temperatura na parede do duto.

3.3.5 Parâmetros adimensionais

Para escoamento de fluidos e transferência de calor sobre dutos, vários parâmetros adimensionais são usados. Nestes parâmetros o comprimento caracteristico L do duto é comumente utilizado. Em análise dimensional, uma grandeza adimensional ou número adimensional é um número desprovido de qualquer unidade física que o defina. Portanto é um número puro. Os números adimensionais se definem como produtos ou quocientes de quantidades cujas unidade se cancelam. Dependendo do seu valor estes números têm um significado físico que caracteriza determinadas propriedades para alguns sistemas (WHITE, 2010).

3.3.5.1 Adimensionalização da equação de movimento

Considere as seguintes variáveis em coordenadas adimensionais,

$$X = \frac{x}{L}, \quad Y = \frac{y}{L}, \quad W(X,Y) = -\frac{u(X,Y)}{\frac{L^2}{\mu}\frac{dp(z)}{dz}} e \quad U = \frac{u}{u_m} = \frac{W}{W_m},$$
 (3.12)

onde *L* é o comprimento característico, u_m é a velocidade média do fluido, *W* é a velocidade adimensional local e W_m é a velocidade média adimensional. Observe que u = u(x,y) = u(x(X), y(Y)) e W = W(X, Y).

Desta forma tem-se que:

$$\frac{\partial W}{\partial X} = -\frac{1}{\frac{L^2}{\mu} \frac{dp}{dz}} \frac{\partial u}{\partial X}$$

$$= -\frac{1}{\frac{L^2}{\mu} \frac{dp}{dz}} \left[\frac{\partial u}{\partial x} \frac{\partial x}{\partial X} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial X} \right]$$

$$= -\frac{1}{\frac{L^2}{\mu} \frac{dp}{dz}} L \frac{\partial u}{\partial x}$$

$$= -\frac{1}{\frac{L}{\mu} \frac{dp}{dz}} \frac{\partial u}{\partial x}$$
(3.13)

$$\frac{\partial^2 W}{\partial X^2} = -\frac{1}{\frac{L}{\mu}} \frac{\partial}{\partial z} \left(\frac{\partial u}{\partial x} \right)$$

$$= -\frac{1}{\frac{L}{\mu}} \frac{dp}{dz} \left[\frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} \right) \frac{\partial x}{\partial X} + \frac{\partial}{\partial y} \left(\frac{\partial u}{\partial x} \right) \frac{\partial y}{\partial X} \right]$$

$$= -\frac{1}{\frac{L}{\mu}} \frac{dp}{dz} L \frac{\partial^2 u}{\partial x^2}$$

$$= -\frac{1}{\frac{1}{\mu}} \frac{dp}{dz} \frac{\partial^2 u}{\partial x^2}$$
(3.14)

Analogamente tem-se que:

$$\frac{\partial^2 W}{\partial Y^2} = -\frac{1}{\frac{1}{\mu} \frac{dp}{dz}} \frac{\partial^2 u}{\partial y^2}$$
(3.15)

Assim a Equação (3.8) torna-se,

$$-\left(\frac{1}{\mu}\frac{dp}{dz}\frac{\partial^2 W}{\partial X^2} + \frac{1}{\mu}\frac{dp}{dz}\frac{\partial^2 W}{\partial Y^2}\right) = \frac{1}{\mu}\frac{dp(z)}{dz}$$
(3.16)

que nos dá,

$$\frac{\partial^2 W(X,Y)}{\partial X^2} + \frac{\partial^2 W(X,Y)}{\partial Y^2} = -1$$
(3.17)

 $\operatorname{com} W(X,Y) = 0 \operatorname{em} (X,Y) \in \Gamma.$

3.3.5.2 Adimensionalização da equação de energia

Considere as seguintes variáveis adimensionais,

$$X = \frac{x}{L}, \quad Y = \frac{y}{L}, \quad Z = \frac{zd_h}{L^2 P_e}, \quad U = \frac{u}{u_m} = \frac{W}{W_m}, \quad W(X,Y) = -\frac{u(X,Y)}{\frac{L^2}{\mu}\frac{dp(z)}{dz}}$$
(3.18)

com número de Péclet, $P_e = \frac{\rho c_p u_m d_h}{\kappa} = \frac{u_m}{\alpha} d_h$, e α é a difusividade térmica definida como

 $\alpha = \frac{\kappa}{\rho c_p}$. Considere também,

$$T = \begin{cases} \frac{t - t_0}{t_w - t_0} & \text{, para } \mathbf{T} \\ \frac{t_w - t}{L^2 \frac{u_m}{2} \frac{dt_b}{dz}} & \text{, para } \mathbf{H}_1 \end{cases}$$
(3.19)

$$T_{b} = \begin{cases} \frac{t_{b} - t_{0}}{t_{w} - t_{0}} , \text{para } T \\ \frac{t_{w} - t_{b}}{L^{2} \frac{u_{m}}{2} \frac{dt_{b}}{dz}} , \text{para } H_{1} \end{cases}$$
(3.20)

onde t_b é a temperatura da mistura, ou do meio, ou ainda temperatura "*bulk*", definida como:

$$t_b = \frac{1}{u_m A_c} \int_{A_c} ut dA_c. \tag{3.21}$$

3.3.5.3 Adimensionalização para condição de fronteira H₁

Nessa condição tem-se que,

$$\frac{\partial t}{\partial z} = \frac{dt_w}{dz} = \frac{dt_b}{dz} = \text{constante}$$
 (3.22)

Assim,

$$\frac{\partial T}{\partial X} = -\frac{1}{L^2 \frac{u_m}{\alpha} \frac{dt_b}{dz}} \frac{\partial t}{\partial X}$$

$$= -\frac{1}{L^2 \frac{u_m}{\alpha} \frac{dt_b}{dz}} \left(\frac{\partial t}{\partial x} \frac{\partial x}{\partial X} + \frac{\partial t}{\partial y} \frac{\partial y}{\partial X} \right)$$

$$= -\frac{1}{L^2 \frac{u_m}{\alpha} \frac{dt_b}{dz}} L \frac{\partial t}{\partial x}$$

$$= -\frac{1}{L \frac{u_m}{\alpha} \frac{dt_b}{dz}} \frac{\partial t}{\partial x}$$
(3.23)

$$\frac{\partial^2 T}{\partial X^2} = -\frac{1}{L \frac{u_m}{\alpha} \frac{dt_b}{dz}} \frac{\partial}{\partial X} \left(\frac{\partial t}{\partial x} \right)$$

$$= -\frac{1}{L \frac{u_m}{\alpha} \frac{dt_b}{dz}} \left[\frac{\partial}{\partial x} \left(\frac{\partial t}{\partial x} \right) \frac{\partial x}{\partial X} + \frac{\partial}{\partial y} \left(\frac{\partial t}{\partial x} \right) \frac{\partial y}{\partial X} \right]$$

$$= -\frac{1}{L \frac{u_m}{\alpha} \frac{dt_b}{dz}} L \frac{\partial^2 t}{\partial x^2}$$

$$= -\frac{1}{\frac{u_m}{\alpha} \frac{dt_b}{dz}} \frac{\partial^2 t}{\partial x^2}$$
(3.24)

Analogamente tem-se,

$$\frac{\partial^2 T}{\partial Y^2} = -\frac{1}{\frac{u_m}{\alpha} \frac{dt_b}{dz}} \frac{\partial^2 t}{\partial y^2}.$$
(3.25)

Assim a Equação (3.10) torna-se,

$$\rho c_p u \frac{\partial t_b}{\partial z} = -\kappa \frac{u_m}{\alpha} \frac{dt_b}{dz} \left(\frac{\partial^2 T}{\partial X^2} + \frac{\partial^2 T}{\partial Y^2} \right)$$
(3.26)

como
$$\alpha = \frac{\kappa}{\rho c_p}$$
, tem-se que:
$$-\frac{u}{u_m} = \frac{\partial^2 T}{\partial X^2} + \frac{\partial^2 T}{\partial Y^2}.$$
(3.27)

Logo,

$$\frac{\partial^2 T}{\partial X^2} + \frac{\partial^2 T}{\partial Y^2} = -U \tag{3.28}$$

 $\operatorname{com} U = 0 \operatorname{e} T = 0 \operatorname{em} \Gamma.$

3.3.5.4 Adimensionalização para condição de fronteira T

Tomando-se os parâmetros adimensionais definidos anteriormente tem-se:

$$\frac{\partial T}{\partial Z} = \frac{1}{t_w - t_0} \frac{\partial t}{\partial Z}
= \frac{1}{t_w - t_0} \left(\frac{\partial t}{\partial x} \frac{\partial x}{\partial Z} + \frac{\partial t}{\partial y} \frac{\partial y}{\partial Z} + \frac{\partial t}{\partial z} \frac{\partial z}{\partial Z} \right)
= \frac{1}{t_w - t_0} \frac{L^2 P_e}{d_h} \frac{\partial t}{\partial z}
= \frac{L^2 P_e}{d_h (t_w - t_0)} \frac{\partial t}{\partial z},$$
(3.29)

$$\frac{\partial T}{\partial X} = \frac{1}{t_w - t_0} \frac{\partial t}{\partial X}
= \frac{1}{t_w - t_0} \left(\frac{\partial t}{\partial x} \frac{\partial x}{\partial X} + \frac{\partial t}{\partial y} \frac{\partial y}{\partial X} + \frac{\partial t}{\partial z} \frac{\partial z}{\partial X} \right)
= \frac{1}{t_w - t_0} L \frac{\partial t}{\partial x}
= \frac{L}{t_w - t_0} \frac{\partial t}{\partial x}$$
(3.30)

~
-
v

$$\frac{\partial^2 T}{\partial X^2} = \frac{L}{t_w - t_0} \frac{\partial}{\partial X} \left(\frac{\partial t}{\partial x} \right)$$

$$= \frac{L}{t_w - t_0} \left[\frac{\partial}{\partial x} \left(\frac{\partial t}{\partial x} \right) \frac{\partial x}{\partial X} + \frac{\partial}{\partial y} \left(\frac{\partial t}{\partial x} \right) \frac{\partial y}{\partial X} + \frac{\partial}{\partial z} \left(\frac{\partial t}{\partial x} \right) \frac{\partial z}{\partial X} \right]$$

$$= \frac{L}{t_w - t_0} L \frac{\partial^2 t}{\partial x^2}$$

$$= \frac{L^2}{t_w - t_0} \frac{\partial^2 t}{\partial x^2}$$
(3.31)

Analogamente tem-se,

$$\frac{\partial^2 T}{\partial Y^2} = \frac{L^2}{t_w - t_0} \frac{\partial^2 t}{\partial y^2}$$
(3.32)

Assim, a equação de energia torna-se

$$\rho c_p u \frac{d_h(t_w - t_0)}{L^2 P_e} \frac{\partial T}{\partial Z} = \frac{t_w - t_0}{L^2} \kappa \left(\frac{\partial^2 T}{\partial X^2} + \frac{\partial^2 T}{\partial Y^2} \right)$$
(3.33)

como
$$P_e = \frac{u_m}{\alpha} d_h$$
, onde $\alpha = \frac{\kappa}{\rho c_p}$. Logo,
$$U \frac{\partial T}{\partial Z} = \frac{\partial^2 T}{\partial X^2} + \frac{\partial^2 T}{\partial Y^2}$$
(3.34)

 $\operatorname{com} U = 0 \text{ e } T = 1 \text{ em } \Gamma.$

3.3.5.5 Diâmetro hidráulico

As correlações empíricas para escoamento em tubos também podem ser empregadas para cálculos que envolvem dutos não circulares, desde que suas seções transversais não sejam demasiadamente grandes (FOX *et al.*, 2000). As correlações para escoamento em dutos são estendidas para uso com geometrias não circulares pela introdução do diâmetro hidráulico, definido como,

$$d_h = \frac{4A_c}{P} \tag{3.35}$$

onde A_c é a área da seção tranversal do duto, P é o perímetro molhado, o comprimento de parede em contato com o fluido escoando em qualquer seção transversal (EBADIAN. 1998). O fator 4 é introduzido para que o diâmetro hidráulico seja igual ao diâmetro do duto para uma seção circular (ÇENGEL, 2012).

3.3.5.6 Fator de atrito

Um dos parâmetros de escoamento comumente utilizado na prática é o fator de atrito de Fanning, f, definido por

$$f = \frac{\tau_w}{\rho \frac{u_m^2}{2}} \tag{3.36}$$

onde τ_w representa a tensão de cisalhamento, u_m é a velocidade média e ρ é a densidade do fluido (EBADIAN, 1998).

O número de Reynolds, R_e , em homenagem ao engenheiro e físico inglês *Osborne Reynolds*, é a razão das forças inércias para as forças viscosas do fluido (ÇENGEL, 2012), e é definido da forma,

$$R_e = \frac{\rho d_h u_m}{\mu}.\tag{3.37}$$

O fator de atrito, C_f , é definido como

$$C_f = -\frac{d_h \frac{dp}{\partial z}}{\rho \frac{u_m^2}{2}}.$$
(3.38)

Na região completamente desenvolvida utiliza-se a definição fRe, também chamado de número de *Poiseuille*,

$$fRe = \frac{c_1 d_h^2}{2u_m} \tag{3.39}$$

onde c_1 é a constante da Equação (3.8),

$$\nabla^2 u = c_1. \tag{3.40}$$

3.3.5.7 Número de Nusselt

O número de Nusselt é uma grandeza bastante utilizada para a determinação do coeficiente de tansferência de calor por convecção, baseada na análise dimensional, a qual é utilizada para determinar parâmetros de relações de similaridade. O número de Nusselt também é função de outro número adimensional, o número de Reynolds, assim como o número de Prandtl. Desta forma, é comum expressar o número de Nusselt por,

$$N_u = f(Re, Pr) \tag{3.41}$$

O número de Nusselt é chamado assim em honra a *Wilhelm Nusselt*, engenheiro alemão e o número de Pandtl é em honra ao físico alemão *Ludwig Prandtl* (CENGEL, 2012).

O número de Nusselt é dada pela razão entre o fluxo de calor por convecção e o fluxo de calor por condução. Assim, o número de Nusselt representa o aumento da transferência de calor através da camada de fluido como resultado da convecção em relação à condução do mesmo fluido em toda a camada. Quanto maior for ao número de Nusselt, mais eficaz será a convecção. Um número de Nusselt, $N_u = 1$, para camada de fluido representa a transferência de calor em toda a camada por condução pura (ÇENGEL, 2012). Este número representa o gradiente de temperatura adimensional na superfície e fornece uma medida do coeficiente de transmissão de calor por convecção e é definido como,

$$N_u = \frac{hL}{\kappa} \tag{3.42}$$

sendo L, o comprimento característico e h, o coeficiente de transferência de calor por convecção (ERDONGAN; IMRAK, 2005).

O número de Nusselt local em uma superfície S qualquer é definido como

$$N_{u_L} = -\frac{L}{\Delta t} \frac{\partial t}{\partial \eta} |_S \tag{3.43}$$

sendo η a direção da normal à superfície *S*. O fluxo de calor através de um elemento de fluido com fluxo laminar é dado pela Lei de Fourier (SHAH; LONDON, 1978),

$$\frac{q}{A_c} = -\kappa \frac{\partial t}{\partial \eta} \tag{3.44}$$

Assim a taxa de transferência de calor na parede do duto é dada por:

$$Q_w = \int_{A_w} \kappa \frac{\partial t}{\partial \eta} dA_w = \int_Z \int_{A_c} \rho c_p u \frac{\partial t}{\partial z} dA_c dZ$$
(3.45)

onde *w* representa a parede do duto. Na parede do duto, o calor por convecção é dado pela lei de resfriamento de Newton,

$$dQ_w = hdA_w(t_w - t_b). aga{3.46}$$

Integrando sobre o perímetro tem-se,

$$Q_w = \int_z hP(t_w - t_b)dz \tag{3.47}$$

pois
$$dA_w = dSdz$$
 e $P = \int_S dS$. Assim por (3.45) e (3.47),
$$\int_z hP(t_w - t_b)dz = \int_z \int_{A_c} \rho c_p u \frac{\partial t}{\partial z} dA_c dz$$
(3.48)

$$\int_{z} \left[hP(t_{w} - t_{b}) - \int_{A_{c}} \rho c_{p} u \frac{\partial t}{\partial z} dA_{c} \right] dz = 0$$
(3.49)

então

$$hP(t_w - t_b) - \int_{A_c} \rho c_p u \frac{\partial t}{\partial z} dA_c = 0.$$
(3.50)

Tomando as propriedades constantes,

$$hP(t_w - t_b) - \rho c_p \int_{A_c} u \frac{\partial t}{\partial z} dA_c = 0$$
(3.51)

e

$$\frac{\partial(tu)}{\partial z} = u\frac{\partial t}{\partial z} + t\frac{\partial u}{\partial z}$$
(3.52)

que torna-se

$$\frac{\partial(tu)}{\partial z} = u \frac{\partial t}{\partial z} \tag{3.53}$$

pois $\frac{\partial u}{\partial z} = 0$. Assim

$$hP(t_w - t_0) - \rho c_p \int_{A_c} \frac{\partial}{\partial z} (tu) dA_c = 0$$
(3.54)

$$hP(t_w - t_0) - \rho c_p \frac{\partial}{\partial z} \int_{A_c} t u dA_c = 0$$
(3.55)

como

$$t_b = \frac{\int_{A_c} t u dA_c}{\int_{A_c} u dA_c} \quad \Rightarrow \quad t_b \int_{A_c} u dA_c = \int_{A_c} t u dA_c \tag{3.56}$$

Logo,

$$hP(t_w - t_0) - \rho c_p \frac{\partial}{\partial z} \left(t_b \int_{A_c} u dA_c \right) = 0$$
(3.57)

como

$$\frac{\partial}{\partial z}\left(t_b \int_{A_c} u dA_c\right) = \frac{\partial t_b}{\partial z} \int_{A_c} u dA_c + t_b \frac{\partial}{\partial z}\left(\int_{A_c} u dA_c\right)$$
(3.58)

tem-se

$$hP(t_w - t_b) - \rho c_p \frac{\partial t_b}{\partial z} u_m A_c = 0$$
(3.59)

desta forma

$$h = \left(\frac{\rho c_p}{t_w - t_b}\right) \frac{\partial t_b}{\partial z} u_m \frac{A_c}{P}$$
(3.60)

Tomando $d_h = \frac{4A_c}{P}$, tem-se o coeficiente de transferência de calor, por convecção, dado por

$$h = \left(\frac{\rho c_p}{t_w - t_b}\right) \frac{\partial t_b}{\partial z} u_m \frac{d_h}{4}$$
(3.61)

Assim, o número de Nusselt, Equação (3.42), considerando $L = d_h$, é dado por,

$$N_{u} = \frac{\rho c_{p} u_{m}}{\kappa (t_{w} - t_{b})} \left(\frac{\partial t_{b}}{\partial z}\right) \frac{d_{h}^{2}}{4}$$
(3.62)

e o número de Nusselt médio,

$$\bar{N}_u = \frac{1}{z} \int_0^z N_u dz \tag{3.63}$$

3.3.5.8 Número de Nusselt para condição de fronteira H₁

Tomando-se o perfil de temperatura adimensional T e o de mistura T_b dados por,

$$T = \frac{t_w - t}{L^2 \frac{u_m}{\alpha} \frac{dt_b}{dz}}$$
(3.64)

e

$$T_b = \frac{t_w - t_b}{L^2 \frac{u_m}{\alpha} \frac{dt_b}{dz}}$$
(3.65)

e desde que:

$$N_u = \frac{hd_h}{\kappa} \quad \text{e} \quad q'' = h(t_w - t_b) \tag{3.66}$$

tem-se que,

$$N_u = \frac{q'' d_h}{\kappa(t_w - t_b)}.\tag{3.67}$$

Como na condição de fronteira H1,

$$\frac{\partial t}{\partial z} = \frac{dt_m}{dz} = \frac{dt_b}{dz} = \frac{q''P}{\rho u_m A_c c_p} = \frac{q''4}{\rho u_m c_p d_h}$$
(3.68)

segue que,

$$N_{u} = \frac{\rho u_{m}c_{p}d_{h}}{4} \frac{d_{h}}{\kappa(t_{w}-t_{b})} \frac{dt_{b}}{dz}$$

$$= \frac{u_{m}}{\alpha} \frac{d_{h}^{2}}{4} \frac{1}{t_{w}-t_{b}} \frac{dt_{b}}{dz}$$

$$= \frac{d_{h}^{2}}{4} \frac{1}{\frac{t_{w}-t_{b}}{\frac{u_{m}}{\alpha} \frac{dt_{b}}{dz}}}{\frac{1}{2}}$$

$$= \frac{d_{h}^{2}}{4} \frac{1}{L^{2}T_{b}}$$
(3.69)

Assim,

$$N_u = \frac{\left(\frac{d_h}{L}\right)^2}{4T_b} \tag{3.70}$$

Logo

$$N_u = \frac{D_h^2}{4T_h} \tag{3.71}$$

sendo $D_h = \frac{d_h}{L}$ o diâmetro hidráulico adimensional.

3.3.5.9 Número de Nusselt para condição de fronteira T

Tomando as parametrizações:

$$Z = \frac{zd_h}{L^2 P_e}, \quad P_e = \frac{\rho c_p u_m d_h}{\kappa} = \frac{u_m}{\alpha} d_h, \quad T = \frac{t - t_0}{t_w - t_0} \quad e \quad T_b = \frac{t_b - t_0}{t_w - t_0}$$
(3.72)

Como

$$h = \frac{\rho c_p u_m d_h}{4} \frac{1}{t_w - t_b} \frac{\partial t_b}{\partial z}$$
(3.73)

segue que,

$$N_u = \frac{hd_h}{\kappa} = \frac{\rho c_p u_m d_h^2}{4\kappa} \frac{1}{t_w - t_b} \frac{\partial t_b}{\partial z} = \frac{u_m}{\alpha} \frac{d_h^2}{4t_w - t_b} \frac{1}{\partial z} \frac{\partial t_b}{\partial z}$$
(3.74)

Da definição de T_b ,

$$\frac{\partial T_b}{\partial Z} = \frac{1}{t_w - t_0} \frac{\partial t}{\partial Z} = \frac{1}{t_w - t_b} \frac{\partial t}{\partial z} \frac{\partial z}{\partial Z} = \frac{1}{t_w - t_b} \frac{\partial t}{\partial z} \frac{L^2 P_e}{d_h}.$$
(3.75)

e

$$1 - T_b = 1 - \frac{t_b - t_0}{t_w - t_0} = \frac{t_w - t_0 - t_b + t_0}{t_w - t_0} = \frac{t_w - t_b}{t_w - t_0}$$
(3.76)

Assim a equação (3.75) torna-se

$$\frac{\partial T_b}{\partial Z} = \frac{1 - T_b}{t_w - t_b} \frac{L^2 P_e}{d_h} \frac{\partial t}{\partial z}$$
(3.77)

Então, das equações (3.72), (3.74) e (3.77), tem-se que:

$$N_{u_{Z,T}} = \frac{D_h^2}{4(1-T_b)} \frac{\partial T_b}{\partial Z}$$
(3.78)

que é o número de Nusselt local com condição de fronteira T.

Outra forma de encontrar este resultado é integrando a equação de energia (3.34) e usando o teorema da divergência (LEE; LEE, 2002).

3.4 MÉTODO DE BORIS GRIGORYEVICH GALERKIN

Em 1915, Boris Grigoryevich Galerkin publicou um trabalho em que a ideia principal era um método de aproximação para equações diferenciais, em particular, para problemas de valor de contorno. Ele havia aplicado seu método para um grande número de problemas de análise de pivô e placas. Essas idéias mostraram ser muito produtivas, não apenas na mecânica estrutural, mas para a física matemática em geral. O método de Galerkin pode ser considerado por dois pontos de vista: a) simplesmente como meio de aproximar soluções de equações diferenciais; b) como um método especialmente adaptado aos problemas relativos a estática e dinâmica de elasticos e outras deformações (DUNCAN, 1937). O Método Integral de Galerkin fornece uma base para algoritmos nos campos das equações diferenciais (COURANT, 1953; PETROVSKY, 1954), em Análise (BROWDER, 1966), Mecânica, Termodinâmica, Hidrodinâmica (DAUTRAY, 1998), em desenvolvimento de métodos numéricos (ASSAN, 1999; COOPER, 1998; THOMAS, 1999) e também em diversos trabalhos em engenharia, já citados na introdução deste texto.

Não será apresentado um formalismo matemático para o método de Galerkin, caso o leitor se interesse por tal formalismo e também um apanhado histórico de B. G. Galerkin, assim como a comparação e generalizações do método como: Fourier, Ritz-Galerkin, Faedo-Galerkin e outros pode-se consultar os trabalhos de Galerkin (1915) e Rezende (2005). Far-se-á uma apresentação do método necessária para o presente trabalho baseado nos seguintes textos: Galerkin (1915), Duncan (1937), Segerlind (1984) e Stolarski *et al.* (2011).

3.4.1 Método Integral de Galerkin

Considere um caso geral de uma equação diferencial da forma

$$L[u(x)] = f(x), \quad x \in \Omega$$

$$u(\Gamma) = u|_{\Gamma} \text{ com } \Gamma \text{ fronteira de } \Omega \qquad (3.79)$$

onde L[] é algum operador linear, f uma função qualquer de x e $u|_{\Gamma}$ é o valor da função u na fronteira de Ω . Desta forma procura-se uma solução aproximada para o problema na forma,

$$\bar{u} = \sum_{i=1}^{n} c_i \phi_i(x) \tag{3.80}$$

onde $\phi_i(x)$, (i = 1, 2, ..., n), é um certo sistema de funções, escolhido antecipadamente e satisfazendo as condições de fronteira, e os $c'_i s$ são coeficientes a determinar. Pode-se sempre considerar as funções $\phi_i(x)$ serem linearmente independentes, e representar as primeiras *n* funções de algum sistema de funções $\{\phi_i(x)\}$, (i = 1, 2, ..., n, ...) que é completo na região Ω dada. Para que $\bar{u}(x)$ seja uma solução aproximada da Equação (3.79), é necessário que

$$L(\bar{u}) - f(x) = \varepsilon \tag{3.81}$$

onde ϵ é um erro diferente de zero.

Assim, o método diz que a integral do erro sobre a região de interesse juntamente com as funções bases $\{\phi_i(x)\}$ deve ser zero, ou seja,

$$\int_{\Omega} \phi_i(x) \varepsilon dx = 0 \quad \forall i.$$
(3.82)

Desta forma tem-se que,

$$\int_{\Omega} \phi_i(x) \left\{ L[\bar{u}(x)] - f(x) \right\} dx = 0, \quad \forall i = 1, 2, ..., n$$
(3.83)

Assim, chega-se ao sistema de equações

$$\int_{\Omega} \phi_i(x) \left\{ L[\sum_{i=1}^n c_i \phi_i(x))] - f(x) \right\} dx = 0, \quad \forall i = 1, 2, ..., n$$
(3.84)

que possibilita encontrar os coeficientes $c'_i s$.

Por motivo de observação, considere n = 2, assim tem-se o conjunto de funções bases $\{\phi_1(x), \phi_2(x)\}$. E assim tem-se as equações

$$\int_{\Omega} \phi_1(x) \left\{ L[\sum_{i=1}^2 c_i \phi_i(x))] - f(x) \right\} dx = 0$$
(3.85)

e

$$\int_{\Omega} \phi_2(x) \left\{ L[\sum_{i=1}^2 c_i \phi_i(x))] - f(x) \right\} dx = 0$$
(3.86)

que conduz a:

$$c_1 \int_{\Omega} \phi_1(x) L[\phi_1(x)] dx + c_2 \int_{\Omega} \phi_1(x) L[\phi_2(x)] dx = \int_{\Omega} \phi_1(x) f(x) dx$$
(3.87)

e

$$c_1 \int_{\Omega} \phi_2(x) L[\phi_1(x)] dx + c_2 \int_{\Omega} \phi_2(x) L[\phi_2(x)] dx = \int_{\Omega} \phi_2(x) f(x) dx$$
(3.88)

que, na forma matricial assume a forma:

$$\begin{bmatrix} \int_{\Omega} \phi_1(x) L[\phi_1(x)] dx & \int_{\Omega} \phi_1(x) L[\phi_2(x)] dx \\ \int_{\Omega} \phi_2(x) L[\phi_1(x)] dx & \int_{\Omega} \phi_2(x) L[\phi_2(x)] dx \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} \int_{\Omega} \phi_1(x) f(x) dx \\ \int_{\Omega} \phi_2(x) f(x) dx \end{bmatrix}$$
(3.89)

ou ainda

$$AC = B \tag{3.90}$$

com os coeficientes das matrizes A e B dados respectivamente por:

$$a_{ij} = \int_{\Omega} \phi_i(x) L[\phi_j(x)] dx \tag{3.91}$$

e

$$b_i = \int_{\Omega} \phi_i(x) f(x) dx, \quad \forall i, j = 1, 2$$
(3.92)

Logo, descobrindo os c'_{is} para este sistema e substituindo então a expressão para \bar{u} , chegamos a solução aproximada desejada. Este método pode ser aplicado para diversos tipos de equações como elípticas, hiperbólicas e parabólicas.

4 METODOLOGIA

O método apresentado no capítulo anterior foi usado para encontrar o perfil de velocidade a partir da equação de momento linear, equação diferencial elíptica, e o perfil de temperatura da equação de energia, equação diferencial parabólica, considerando um escoamento completamente desenvolvido em dutos de seção transversal arbitrária. Os trabalhos de Kantorovich e Krylov(1964), Lecroy e Eraslan (1969), Beck e Haj-Sheikh (1992) e Ghariban (2013) deram base para as seguintes seções do presente trabalho.

4.1 MODELAGEM MATEMÁTICA

O método integral baseado em Galerkin foi aplicado para resolver as equações de movimento e energia para obtenção dos campos de velocidade e temperatura, assim como os números de Poiseuille e Nusselt médio e local, em condições de fronteira H_1 e T em dutos retos de seção tranversal arbitrária constante.

Foi considerado um escoamento laminar completamente desenvolvido, hidrodinâmica e termicamente, em regime permanente, Newtoniano, com condução axial e dissipação viscosa negligenciadas e com propriedades físico-químicas constantes.

4.1.1 Campo de velocidade pelo método integral de Galerkin

Considere a Equação (3.17) e uma solução da forma

$$W = \sum_{n=1}^{N} d_n f_n(X, Y)$$
 (4.1)

com $f_n \in \{f_j\}_{j=1..N}$ um conjunto de funções bases e os d_n 's são constantes a serem avaliadas. Substituindo a Equação (4.1) na Equação (3.17) chega-se a:

$$\frac{\partial^2}{\partial X^2} \left(\sum_{n=1}^N d_n f_n(X, Y) \right) + \frac{\partial^2}{\partial Y^2} \left(\sum_{n=1}^N d_n f_n(X, Y) \right) = -1$$
(4.2)

$$\sum_{j=1}^{N} d_j \left(\frac{\partial^2 f_j(X,Y)}{\partial X^2} + \frac{\partial^2 f_j(X,Y)}{\partial Y^2} \right) = -1$$
(4.3)

ou na forma compacta:

$$\sum_{j=1}^{N} d_j \nabla^2 f_j(X, Y) = -1$$
(4.4)

onde ∇^2 é o operador Laplaciano

$$\nabla^2 = \frac{\partial^2}{\partial X^2} + \frac{\partial^2}{\partial Y^2} \tag{4.5}$$

Aplicando o método de Galerkin na Equação (4.4), obtem-se:

$$\sum_{j=1}^{N} d_j \left[\frac{1}{A_c} \int_{A_c} f_i \nabla^2 f_j dA_c \right] = -\frac{1}{A_c} \int_{A_c} f_i dA_c$$
(4.6)

Assim a equação (4.6) pode ser escrita na forma matrical como:

$$AD = B \tag{4.7}$$

onde as matrizes A e B têm elementos

$$a_{ij} = \frac{1}{A_c} \int_{A_c} f_i \nabla^2 f_j(X, Y) dA_c$$
(4.8)

e

$$b_i = -\frac{1}{A_c} \int_{A_c} f_i(X, Y) dA_c \tag{4.9}$$

sendo A_c a área adimensional da seção transversal do duto. Assim, a matriz de coeficientes d_n é encontrada da seguinte forma

$$D = A^{-1}B \tag{4.10}$$

onde A^{-1} é a inversa da matriz A. A multiplicação por $\frac{1}{A_c}$ é acrescentada somente para fins de computação numérica.

A definição padrão para a velocidade média é usada para calcular W_m , assim,

$$W_m = \frac{1}{A_c} \int_{A_c} W dA_c$$

= $\frac{1}{A_c} \int_{A_c} \sum_{j=1}^N d_j f_j dA_c$
= $\sum_{j=1}^N d_j \frac{1}{A_c} \int_{A_c} f_j dA_c$ (4.11)

Logo pode-se escrever:

$$W_m = \sum_{j=1}^N d_j b_j.$$
 (4.12)

Desta forma a velocidade adimensional U pode ser dada da forma,

$$U = \frac{W}{W_m} = \frac{u}{u_m} = \frac{C_f R_e}{2\frac{d_h^2}{L^2}} \sum_{j=1}^N d_j f_j.$$
 (4.13)

Observe que o número de Poiseuille definido na Equação (3.39) agora torna-se

$$fR_e = \frac{c_1 d_h^2}{2u_m} = \frac{1}{\mu} \frac{dp}{dz} \frac{d_h^2}{2u_m} = \frac{1}{\mu} \frac{dp}{dz} \frac{d_h^2}{2\left(-\frac{L^2}{\mu} \frac{dp}{dz} W_m\right)} = \frac{D_h^2}{2W_m}$$
(4.14)

4.1.2 Campo de temperatura pelo método de Galerkin

4.1.2.1 Campo de temperatura para condição de fronteira H1

Considere uma solução para a Equação (3.28) da forma

$$T(X,Y) = \sum_{j=1}^{N} d_j f_j(X,Y)$$
(4.15)

com $f_j \in {f_i}_{i=1,...,n}$ um conjunto de funções bases e os coeficientes d_n 's são constantes a serem avaliadas.

Substituindo a Equação (4.15) na Equação (3.28) chega-se a:

$$\nabla^2 \left(\sum_{j=1}^N d_j f_j \right) = -U \quad \Rightarrow \quad \sum_{j=1}^N d_j \nabla^2 f_j = -U \tag{4.16}$$

Aplicando Galerkin obtem-se,

$$\sum_{j=1}^{N} d_j \frac{1}{A_c} \int_{A_c} f_i \nabla^2 f_j dA_c = -\frac{1}{A_c} \int_{A_c} f_i U dA_c$$
(4.17)

que na forma matricial dá,

$$AD = B \tag{4.18}$$

onde as matrizes A e B têm elementos

$$a_{ij} = \frac{1}{A_c} \int_{A_c} f_i \nabla^2 f_j dA_c \tag{4.19}$$

e

$$b_i = -\frac{1}{A_c} \int_{A_c} f_i U dA_c \tag{4.20}$$

Assim, a matriz dos coeficientes é dada por

$$D = A^{-1}B \tag{4.21}$$

e desta forma tem-se a temperatura do meio, ou da mistura ou bulk temperature, adimensional:

$$T_b = \frac{1}{A_c} \int_{A_c} UT dA_c. \tag{4.22}$$

4.1.2.2 Campo de temperatura para condição de fronteira T

Para encontrar uma solução para a Equação (3.34), a tempertatura T pode ser escrita como

$$T = \bar{T} + T_z \tag{4.23}$$

onde \overline{T} satisfaz a parte homogênea das condições de fronteira e a equação de Laplace

$$\frac{\partial \bar{T}}{\partial X^2} + \frac{\partial \bar{T}}{\partial Y^2} = 0 \tag{4.24}$$

enquanto que a solução T_Z , satisfaz a parte não homogênea das condições de fronteira e a equação

$$U(X,Y)\frac{\partial T_Z}{\partial Z} = \frac{\partial^2 T_Z}{\partial X^2} + \frac{\partial^2 T_Z}{\partial Y^2}$$
(4.25)

Assim, a solução para a Equação (4.25) pode ser escrita na forma

$$T_{Z} = \sum_{n=1}^{N} c_{n} F_{n}(X, Y) e^{-\gamma_{n} Z}$$
(4.26)

onde γ_n é o n-ésimo autovalor e é independente de $F_n(X,Y)$, c_n 's são constantes a serem avaliadas e a função $F_n(X,Y)$ é selecionada tal que:

- (i) a parte homogênea das condições de fronteira sejam satisfeitas;
- (ii) a Equação (4.26) seja solução da Equação (4.25);

(iii) $F_n(Y,Z)$ é constituída como combinação linear de um conjunto de funções bases corretamente selecionada e de forma que o conjunto de funções bases seja completo, linearmente independente e satisfaça as mesmas condições de fronteira que T_Z .

A função $F_n(X,Y)$, para n = 1, 2, ..., N, é definida como

$$F_n(Y,X) = \sum_{n=1}^{N} d_{nj} f_j(X,Y)$$
(4.27)

onde $f_j(X,Y)$ são funções bases e $d'_{nj}s$ são constantes a serem avaliadas. Substituindo a Equação (4.26) na Equação (4.25) tem-se

$$U(X,Y)\frac{\partial}{\partial Z}\left[\sum_{n=1}^{N}c_{n}F_{n}(X,Y)e^{-\gamma_{n}Z}\right] = \nabla^{2}\left[\sum_{n=1}^{N}c_{n}F_{n}(X,Y)e^{-\gamma_{n}Z}\right]$$
(4.28)

$$U(X,Y)\sum_{n=1}^{N} -\gamma_n c_n F_n(X,Y)e^{-\gamma_n Z} = \sum_{n=1}^{N} c_n \nabla^2 F_n(X,Y)e^{-\gamma_n Z}$$
(4.29)

que pode ser reescrita como sendo,

$$\sum_{n=1}^{N} c_n e^{-\gamma_n Z} \left[\nabla^2 F_n(X, Y) + \gamma_n U(X, Y) F_n(X, Y) \right] = 0$$
(4.30)

Logo,

$$\nabla^2 F_n(X,Y) + \gamma_n U(X,Y) F_n(X,Y) = 0, \quad \forall n = 1,...,N.$$
(4.31)

Substituindo a Equação (4.27) na Equação (4.31) tem-se

$$\nabla^2 \left(\sum_{n=1}^N d_{nj} f_j(X, Y) \right) + \gamma_n U(X, Y) \sum_{n=1}^N d_{nj} f_j(X, Y) = 0$$
(4.32)

que rearranjando chega-se a

$$\sum_{n=1}^{N} d_{nj} \left[\nabla^2 f_j(X,Y) + \gamma_n U(X,Y) f_j(X,Y) \right] = 0, \quad \forall n = 1, ..., N$$
(4.33)

Aplicando o método de Galerkin na Equação (4.33) obtém-se,

$$\sum_{n=1}^{N} d_{nj} \left[\frac{1}{A_c} \int_{A_c} f_i \nabla^2 f_j dA_c + \gamma_n \frac{1}{A_c} \int_{A_c} U f_i f_j dA_c \right] = 0$$
(4.34)

Assim tem-se que a forma matricial da Equação (4.34) torna-se

$$(A + \gamma_n B)d_n = 0 \tag{4.35}$$

onde A e B são matrizes quadradas de ordem N e elementos

$$a_{ij} = \int_{A_c} f_i \nabla^2 f_j dA_c$$

= $-\int_{A_c} \nabla f_i \nabla f_j dA_c$ (4.36)

e

$$b_{ij} = \frac{1}{A_c} \int_{A_c} U f_i f_j dA_c \tag{4.37}$$

onde A_c é a área adimensional da seção transversal do duto. Os coeficientes $d_{n1}, d_{n2}, ..., d_{nN}$, na Equação (4.27), são elementos membros do vetor d_n onde

$$d_{1} = (d_{11}, d_{12}, ..., d_{1N})$$

$$d_{2} = (d_{21}, d_{22}, ..., d_{2N})$$

$$\vdots$$

$$d_{N} = (d_{N1}, d_{N2}, ..., d_{NN})$$

$$(4.38)$$

Logo, o autovalor γ_n é associado ao autovetor $d_n = (d_{n1}, d_{n2}, ..., d_{nN})$ e vice-versa. Um exame da Equação (4.37) revela que a matriz *B* é simétrica, isto é,

$$b_{ij} = b_{ji} \tag{4.39}$$

Os índices *i* e *j* comutados não afetam a igualdade. A matriz *A* também é simetrica e a igualdade apresentada na Equação (4.35) é dada pelas seguintes identidades, considerando *v* uma função escalar e *w* um vetor:

Identidade 1:

$$(vw) = v(\nabla \cdot w) + (\nabla v) \cdot w; \qquad (4.40)$$

Identidade 2:

$$\nabla v \cdot \eta = \frac{\partial v}{\partial \eta}; \tag{4.41}$$

Identidade 3: Teorema de Green para integrais lineares, o teorema da Divergência ou teorema de Gauss (caso espacial)

$$\int_{V} \nabla \cdot W dV = \int_{S} W \cdot \eta dS \tag{4.42}$$

Assim,

$$\int_{A_c} f_i \nabla \cdot (\nabla f_j) dA_c = \int_{A_c} \nabla \cdot (f_i \nabla f_j) dA_c - \int_{A_c} \nabla f_i \cdot \nabla f_j dA_c$$

$$= \int_{\Gamma} f_i \nabla f_j \cdot \eta d\Gamma - \int_{A_c} \nabla f_i \cdot \nabla f_j dA_c$$

$$= \int_{\Gamma} f_i \frac{\partial f_j}{\partial \eta} d\Gamma - \int_{A_c} \nabla f_i \cdot \nabla f_j dA_c$$
(4.43)

Para a condição, $\frac{\partial f_j}{\partial \eta} = 0$,

$$\int_{A_c} f_i \nabla \cdot (\nabla f_j) dA_c = -\int_{A_c} \nabla f_i \cdot \nabla f_j dA_c.$$
(4.44)

4.1.3 Cálculo dos autovalores e autovetores

O método numérico para resolver a equação

$$(A + \gamma_n B)d_n = 0 \tag{4.45}$$

é baseado na transformação da equação acima no seguinte sistema matricial

$$(\bar{A} + \gamma_n I)\bar{d}_n = 0 \tag{4.46}$$

onde *I* é a matriz identidade de ordem *N* e \bar{d}_n é um vetor coluna com *N* elementos. Essa Equação é encontrada da seguinte forma: a natureza simétrica das matrizes *A* e *B* permite o cálculo preciso e rápido dos autovalores e autovetores. Um método preciso é o uso da decomposição de Cholesky, para decompor a matriz,

$$B = LL^t \tag{4.47}$$

onde L é uma matriz triangular inferior e L^t é a sua transporta. Assim,

$$(A + \gamma_n B)d_n = 0$$
 e $d_n = L^{-t}\bar{d_n}$ (4.48)

desta forma

$$(L^{-1}A + \gamma_n L^{-1}B)d_n = 0$$

$$(L^{-1}A + \gamma_n L^{-1}B)L^{-t}\bar{d}_n = 0$$

$$(L^{-1}AL^{-t} + \gamma_n L^{-1}BL^{-t})d_n = 0$$
(4.49)

logo,

$$(L^{-1}AL^{-t} + \gamma_n I)\bar{d_n} = 0 \tag{4.50}$$

Tomando $\bar{A} = L^{-1}AL^{-t}$, que é simétrica, o método de Jacobi é eficiente computacionalmente para calcular os autovalores e autovetores da Equação (4.50). Os autovetores d_n são encontrados depois por

$$d_n = L^{-1}\bar{d}_n \tag{4.51}$$

Assim, tem-se,

$$D = \begin{bmatrix} d_1^t \\ d_2^t \\ \vdots \\ d_N^t \end{bmatrix} = \begin{bmatrix} d_{11} & d_{12} & \cdots & d_{1N} \\ d_{21} & d_{22} & \cdots & d_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ d_{N1} & d_{N2} & \cdots & d_{NN} \end{bmatrix}$$
(4.52)

Para uma boa compreensão da decomposição de Cholesky, sugere-se as referências: Bjorck (1996), Patel (2002), Brezinski (2006), Higham (2009) e Tsuchiya (2017).

4.1.4 Solução geral para a equação de energia

A solução geral para a Equação (3.34) pode ser obtida considerando c_n uma função dependente de Z, ou seja, $c_n = c_n(Z)$. Assim, tem-se,

$$T = \bar{T} + \sum_{n=1}^{N} c_n(Z) F_n(X, Y) e^{-\gamma_n Z}$$
(4.53)

Substituindo a Equação (4.53) em (3.34) obtém-se,

$$U\frac{\partial}{\partial Z}\left[\bar{T} + \sum_{n=1}^{N} c_n(Z)F_n(X,Y)e^{-\gamma_n Z}\right] = \nabla^2\left[\bar{T} + \sum_{n=1}^{N} c_n(Z)F_n(X,Y)e^{-\gamma_n Z}\right]$$
(4.54)
$$U\frac{\partial\bar{T}}{\partial Z} + U\left\{\sum_{n=1}^{N} \left[c_n'(Z)F_n e^{-\gamma_n Z} - \gamma_n c_n(Z)F_n e^{-\gamma_n Z}\right]\right\} = \nabla^2\bar{T} + \sum_{n=1}^{N} c_n(Z)e^{-\gamma_n Z}\nabla^2 F_n \qquad (4.55)$$

Como $\nabla^2 \overline{T} = 0$, segue

$$U\frac{\partial\bar{T}}{\partial Z} + \sum_{n=1}^{N} c'_n(Z)e^{-\gamma_n Z}UF_n - \sum_{n=1}^{N} c_n(Z)e^{-\gamma_n Z}UF_n = \sum_{n=1}^{N} c_n(Z)e^{-\gamma_n Z}\nabla^2 F_n$$
(4.56)

$$U\frac{\partial \bar{T}}{\partial Z} + \sum_{n=1}^{N} c'_n(Z) e^{-\gamma_n Z} UF_n = \sum_{n=1}^{N} c_n(Z) e^{-\gamma_n Z} \left(\nabla^2 F_n + \gamma_n UF_n\right)$$
(4.57)

Como

$$\nabla^2 F_n + \gamma_n U F_n = 0, \ \forall n, \tag{4.58}$$

tem-se

$$\sum_{n=1}^{N} c'_n(Z) e^{-\gamma_n Z} U F_n = -U \frac{\partial \bar{T}}{\partial Z}.$$
(4.59)

Aplicando Galerkin chega-se a seguinte expressão:

$$\sum_{n=1}^{N} c_n'(Z) e^{-\gamma_n Z} \frac{1}{A_c} \int_{A_c} U F_n f_i dA_c = -\frac{1}{A_c} \int_{A_c} U \frac{\partial \bar{T}}{\partial Z} f_i dA_c$$
(4.60)

com i = 1, 2, ..., N. Substituindo a Equação (4.26) na Equação (4.59), obtém-se:

$$\sum_{n=1}^{N} c'_n(Z) e^{-\gamma_n Z} \frac{1}{A_c} \int_{A_c} U \sum_{j=1}^{N} d_{nj} f_j f_i dA_c = -\frac{1}{A_c} \int_{A_c} U \frac{\partial \bar{T}}{\partial Z} f_i dA_c$$
(4.61)

$$\sum_{n=1}^{N} \left[\sum_{j=1}^{N} d_{nj} \frac{1}{A_c} \int_{A_c} U f_j f_i dA_c \right] c'_n(Z) e^{-\gamma_n Z} = -\frac{1}{A_c} \int_{A_c} U \frac{\partial \bar{T}}{\partial Z} f_i dA_c \tag{4.62}$$

Assim,

$$\sum_{n=1}^{N} e_{in} c'_n(Z) e^{-\gamma_n Z} = -\frac{1}{A_c} \int_{A_c} U \frac{\partial \bar{T}}{\partial Z} f_i dA_c$$
(4.63)

onde

$$e_{in} = \sum_{j=1}^{N} d_{nj} b_{ji}, \quad i = 1, \dots, N.$$
(4.64)

Observe que e_{in} são os elementos da matriz E dada por

$$E = [DB]^t \tag{4.65}$$

Assim, pode-se tomar a Equação (4.63) da forma matricial

$$E\chi = \psi \tag{4.66}$$

com

$$\Psi_i = -\frac{1}{A_c} \int_{A_c} U \frac{\partial \bar{T}}{\partial Z} f_i dA_c.$$
(4.67)

Desta forma, a Equação (4.66) torna-se

$$\chi = E^{-1} \Psi \tag{4.68}$$

Tomando $\bar{P} = E^{-1}$, onde \bar{P} tem elementos p_{ni} . Tem-se que a Equação (4.67) pode ser escrita na forma

$$c'_{n}(Z)e^{-\gamma_{n}Z} = \sum_{n=1}^{N} p_{ni}\Psi_{i}$$
(4.69)

Assim,

$$c'_{n}(Z) = \sum_{n=1}^{N} p_{ni} \psi_{i} e^{\gamma_{n} Z}.$$
(4.70)

Integrando em relação à variável Z,

$$c_n(Z) = \sum_{n=1}^N p_{ni} \int_0^Z \psi_i(\tau) e^{\gamma_n \tau} d\tau + A_n$$
(4.71)

onde A_n 's são constantes de integração. Substituindo a Equação (4.70) na Equação (4.52) chegase a:

$$T = \bar{T} + \sum_{n=1}^{N} F_n(X, Y) e^{-\gamma_n Z} \left[A_n + \sum_{i=1}^{N} p_{ni} \int_0^Z \psi_i(\tau) e^{\gamma_n \tau} d\tau \right].$$
(4.72)

A solução da Equação (4.72) é completada com A_n e \overline{T} avaliados. A condição inicial pode ser utilizada para calcular as constantes A_n 's. Fazendo Z = 0, obtém-se:

$$T(X,Y,0) = \bar{T}(X,Y,0) + \sum_{n=1}^{N} F_n(X,Y) e^{-\gamma_n 0} \left[A_n + \sum_{i=1}^{N} p_{ni} \int_0^Z \psi_i(\tau) e^{\gamma_n \tau} d\tau |_{Z=0} \right]$$
(4.73)

e

$$T_0 - \bar{T}_0 = \sum_{n=1}^N F_n(X, Y) A_n.$$
(4.74)

Multiplicando por U(X,Y) e aplicando Galerkin,

$$\frac{1}{A_c} \int_{A_c} U(T_0 - \bar{T}_0) f_i dA_c = \sum_{n=1}^N A_n \frac{1}{A_c} \int_{A_c} UF_n(X, Y) f_i dA_c.$$
(4.75)

Tomando $F_n(X,Y)$ como na Equação (4.27), chega-se a

$$\sum_{n=1}^{N} A_n \sum_{j=1}^{N} d_{nj} \frac{1}{A_c} \int_{A_c} U f_j f_i dA_c = \frac{1}{A_c} \int_{A_c} U (T_0 - \bar{T}_0) f_i dA_c$$
(4.76)

ou ainda,

$$\sum_{n=1}^{N} A_n e_{in} = \lambda_i \tag{4.77}$$

onde

$$\lambda_{i} = \frac{1}{A_{c}} \int_{A_{c}} U(T_{0} - \bar{T}_{0}) f_{i} dA_{c}$$
(4.78)

com T_0 sendo a distribuição de temperatura inicial e \overline{T}_0 dada por

$$\bar{T}_0 = \lim_{z \to 0} \bar{T}.$$
 (4.79)

Assim

$$A_n = \sum_{i=1}^N p_{ni} \lambda_i \tag{4.80}$$

para condição de fronteira do primeiro tipo, $\overline{T} = T_s(Z)$ temperatura na superfície, \overline{T} é independente de *X* e *Y*. Logo

$$T = \bar{T} + \sum_{n=1}^{N} F_n(X, Y) e^{-\gamma_n Z} \left[\sum_{i=1}^{N} p_{ni} \lambda_i + \sum_{i=1}^{N} p_{ni} \int_0^Z \psi_i(\tau) e^{\gamma_n \tau} d\tau \right].$$
 (4.81)

Considerando agora a distribuição de temperatura encontra-se o valor de $\frac{\partial T_b}{\partial Z}$ e consequentemente o número de Nusselt local, que pode ser escrito como,

$$N_{u_{Z,T}} = \frac{D_h^2}{4} \frac{\sum_{n=1}^N \sum_{i=1}^N \sum_{j=1}^N p_{ni} d_{nj} \gamma_n e^{-\gamma_n Z} \omega_i \omega_j}{\sum_{n=1}^N \sum_{i=1}^N \sum_{j=1}^N p_{ni} d_{nj} e^{-\gamma_n Z} \omega_i \omega_j}$$
(4.82)

onde

$$\omega_i = -\frac{1}{A_c} \int_{A_c} U f_i dA_c, \quad \forall i = 1, 2, ..., N.$$
(4.83)

Quando $Z \rightarrow \infty$, a contribuição de todos os autovalores diminui exceto para o primeiro autovalor. Assim, o primeiro autovalor é proporcional ao número de Nusselt completamente desenvolvido termicamente. Tem-se que os autovalores adimensionais são dados pelo forma

$$\bar{\gamma_n} = \frac{L^2 u_m \gamma_n}{\alpha}.$$
(4.84)

Logo, o número de Nusselt médio é dado por,

$$\bar{N}_{u} = \frac{D_{h}^{2} \bar{\gamma}_{1}}{4}.$$
(4.85)

4.1.5 Método para encontrar um conjunto de funções bases

Um conjunto de funções bases é um conjunto completo, onde os seus membros são linearmente independentes, e cada membro satisfaz exatamente as mesmas condições de contorno homogêneas dadas para as funções consideradas. 4.1.5.1 Condição de contorno do primeiro tipo:

Se uma região é limitada por curvas $\phi_1, \phi_2, ..., \phi_m$, como ilustrada na Figura 5, o primeiro membro do conjunto de funções bases pode ser definido como,

$$f_1 = \phi_1 \phi_2 \dots \phi_m \tag{4.86}$$

Figura 5 - Representação de uma geometria do primeiro tipo

Assim, cada membro subsequente do conjunto de funções bases é obtido multiplicandose f_i por um elemento de um conjunto completo, por exemplo, em sistema de coordenadas cartesianas,

$$f_{2} = f_{1}x f_{5} = f_{1}x^{2} f_{8} = f_{1}y^{2}$$

$$f_{3} = f_{1}y f_{6} = f_{1}xy f_{9} = f_{1}yz ... (4.87)$$

$$f_{4} = f_{1}z f_{7} = f_{1}xy^{2} f_{10} = f_{1}z^{2}$$

Cada função base é necessária anular-se apenas nas fronteiras. Algumas, mas não todas, podem anular-se em algum ponto interior. Isto pode ser assegurado se f_1 nunca se anula dentro da região. Sempre que todas as funções bases anulem-se em um ponto interior, a região pode ser subdividida em diferentes subseções.

4.1.5.2 Condições de fronteira do segundo tipo:

Considere a geometria ilustrada na Figura 6

Figura 6 - Representação de uma geometria do segundo tipo

Assim para esta superfície plana a condição de simetria é aplicada, por exemplo, se é selecionada a ser perpendicular a $\phi_1 = 0$. Então $\phi_3 = 0$ é $\phi_2 = 0$ trocando, por exemplo, *x* por -x, como pode ser observado na Figura [7]

Figura 7 - Representação de uma geometria do segundo tipo modificada

Assim, as funções bases são obtidas usando a condição de fronteira do primeiro tipo, tomando

$$f_1 = \phi_2 \phi_3 \tag{4.88}$$

e o restante tomando a forma do método anterior e mantendo os termos com x para a potência de números pares. Isso será altomaticamente resultado de $\frac{\partial f_j}{\partial \eta} = 0$ ao longo de x em $\phi_1 = 0$, para todas as funções bases.

4.2 PROCEDIMENTO NUMÉRICO

Nesta parte do trabalho apresentamos a ferramenta de *software Maple* e a forma esquemática das simulações realizadas dos resultados obtidos neste trabalho.

4.2.1 FERRAMENTA DE SOFTWARE MAPLE

O *Maple* é um sistema algébrico computacional comercial de uso genérico. Constitui de um ambiente para a computação de expressões algébricas, simbólicas, permitindo o desenho de gráficos de duas ou três dimensões. Oferece pacotes com cálculos de integrais definidas, derivações, álgebra matricial, tais como: adição, multiplicação, transposição, inversão, cálculos de autovalores e autovetores, assim como pacotes de plotagem de dados numéricos. A versão utilizada na tese é a *Maple 2017 Student Edition* desenvolvida pela empresa *Maplesoft*.

A interface intuitiva do *Software Maple* pode ser observada nas Figuras 8 e 9,

Figura 8 – Interface da ferramenta de software Maple 2017 Student Edition.

Figura 9 – Interface da ferramenta de *software Maple 2017 Student Edition* com gráficos plotados.

Para as simulações o *software Maple 2017 Student Edition* foi instalado num computador pessoal *Dell Inspiron 14z - 5423*, processador Intel(R) Core(TM) i5-3317U CPU@ 1.70GHz, memória instalada (RAM) 6,00 GB, sistema operacional de 64 bits, Windows 10.

4.2.2 METODOLOGIA NUMÉRICA

O fluxograma, Figura 10, apresenta de forma esquemática um resumo das simulações realizadas neste trabalho:

Figura 10 – Procedimento de cálculo utilizando o método integral baseado em Galerkin.

Os detalhes desse procedimento são apresentados nos itens seguintes.

4.2.3 Algorítmo de cálculo: Fator de atrito e número de Nusselt médio em condições de fronteira H₁ - fRe e $N_{u_{H_1}}$

O procedimento de cálculo para o fator de atrito e o número de Nusselt médio é descrito como segue:

```
> restart : with(student) : with(Optimization) : with(plots) : with(PDEtools) : with(LinearAlgebra) : with(powseries) :
                with(plottools) : with(plots) :
> Digits := 15:
> #GEOMETRIA A SER ESTUDADA
                                                                                                     EXEMPLO = GEOMETRIA RETANGULAR:
> \#(x^2 - a^2) \cdot (y^2 - b^2) = 0:
> #PARÂMETROS GEOMÉTRICOS DO DUTO
> a := 1 : b := 0.5 :
> #RAZÃO DE ASPÉCTO
> \beta := \frac{b}{a}:
> #ADIMENSIONALIZAÇÃO
> \#X = \frac{x}{a} Y = \frac{y}{a} -1 \le X \le 1 -\beta \le Y \le \beta \beta = \frac{b}{a}
> \#(1-X^2)\cdot(\beta^2-Y^2)=0
 > # ad = adimensional D h = diâmetro hidráulico adimensional
 > Area ad := 2 \cdot 2 \cdot \beta:
 > Perimetro_ad := 4 \cdot (1 + \beta) :
 > D_h := \frac{4 \cdot Area\_ad}{Perimetro\_ad} :
> #ESCOLHAS DAS FUNÇÕES BASES # g=primeira função base f=conjunto de funções bases
 > g := (X, Y) \rightarrow (1 - X^2) \cdot (\beta^2 - Y^2):
  > f := \left[ g(X,Y), g(X,Y) \cdot X^2, g(X,Y) \cdot Y^2, g(X,Y) \cdot X^2 \cdot Y^2, g(X,Y) \cdot X^4, g(X,Y) \cdot X^4 \cdot Y^2, g(X,Y) \cdot Y^4, g(X,Y) \cdot X^4 \cdot Y^4, g(X,Y) \cdot X^6, g(X,Y) \cdot Y^6, g(X,Y
                g(X,Y) \cdot X^{6} \cdot Y^{2}, g(X,Y) \cdot X^{6} \cdot Y^{4}, g(X,Y) \cdot Y^{6}, g(X,Y) \cdot X^{6} \cdot Y^{6}, g(X,Y) \cdot X^{8}, g(X,Y) \cdot X^{8} \cdot Y^{2}]:
 > #NÚMERO DE FUNÇÕES BASES A SEREM CALCULADAS
 > k := 3:
 > #CÁLCULO DO SISTEMA MATRICIAL AD=B
> #CÁLCULO DA MATRIZ A
> A_{ij} := (i,j) \rightarrow -\frac{1}{Area \ ad} \ int \Big( int \Big( a^2 \cdot \big( diff(f[i], X) \cdot diff(f[j], X) + diff(f[i], Y) \cdot diff(f[j], Y) \big), Y = -\beta ..\beta \Big), X = -1 ..1 \Big):
> A_ad := Matrix(k, k, A_ij):
 > evalf(A_ad) :
 > evalf (A \ ad^{-1}) :
> # CÁLCULO DA MATRIZ B
 > B_j := j \rightarrow -\frac{1}{Area \ ad} \cdot int(int(f[j] \cdot a^2, Y = -\beta ..\beta), X = -1 ..1):
>
> B_ad := Matrix(k, 1, B_j):
> evalf(B_ad) :
 > # CÁLCULO DE D = A^{-1}B
 > D_i := evalf(evalf(A_ad^{-1}).evalf(B_ad)):
 > # SOLUÇÃO DA EQUAÇÃO DE MOMENTO LINEAR
 > l\_ad := j \rightarrow evalf(D\_i[j, 1]):
 > W := k \rightarrow sum('l_ad(j) \cdot f[j]', j = 1..k):
 > # GRÁFICO DO PERFIL DE VELOCIDADE
 > plot3d(W(k), Y = -\beta ..\beta, X = -1 ..1):
 > # CÁLCULO DA VELOCIDADE MÉDIA
> Wm := \frac{1}{Area\_ad} int(int(W(k), Y=-\beta..\beta), X=-1..1):
 > # CÁLCULO DO PERFIL DE VELOCIDADE U=\frac{W(k)}{Wm}
 > U := unapply\left(\frac{W(k)}{Wm}, X, Y\right):
> U(X, Y) :
 > # CÁLCULO DO FATOR DE ATRITO fRe
 > fRe := \frac{D_h^2}{2 \cdot evalf(Wm)} :
```

```
> #CÁLCULO DO SISTEMA MATRICIAL AD=B PARA A MATRIZ B ASSOCIADA A EQUAÇÃO DE ENERGIA
> #RESTART NOS VALORES DE D E B
> D i := D i : B ad := B ad:
>
> # CÁLCULO DA MATRIZ B
> B_i := i \rightarrow -\frac{1}{Area \ ad} int(int(U(X, Y) \cdot f[i] \cdot a^2, Y = -\beta ..\beta), X = -1 ..1):
> B ad := Matrix(k, 1, B i):
> evalf(B ad) :
> # CÁLCULO DE D=A^{-1}B
> D_i := evalf(A_ad^{-1}).evalf(B_ad) :
> # SOLUÇÃO DA EQUAÇÃO DE ENERGIA - CONDIÇÃO DE FRONTEIRA HI
> m := j \rightarrow evalf(D_i[j, 1]):
> T Hl := k \rightarrow sum('m(j) \cdot f[j]', j = 1..k):
> # GRÁFICO DO PERFIL DE TEMPERATURA
> plot3d(T_H1(k), X=-1..1, Y=-\beta..\beta):
> # CÁLCULO DA TEMPERATURA MÉDIA
> T_Hlb := evalf\left(\frac{1}{Area\_ad} int(int(U(X, Y) \cdot T_Hl(k), Y = -\beta ..\beta), X = -1 ..1)\right):
> # CÁLCULO DO NÚMERO DE NUSSELT MÉDIO
> Nu_Hl := \frac{(D_h)^2}{4 \cdot T Hlb}
```

4.2.4 Algorítmo de cálculo: Número de Nusselt médio e local com condição de fronteira T - N_{u_T}

O procedimento de cálculo para o número de Nusselt médio e local é descrito como segue:

```
> restart : with(student) : with(Optimization) : with(plots) : with(PDEtools) : with(LinearAlgebra) : with(powseries) :
                      with(plottools): with(plots):
 > Digits := 15 :
 > #GEOMETRIA A SER ESTUDADA
                                                                                                                                   EXEMPLO = GEOMETRIA RETANGULAR:
 > \#(x^2 - a^2) \cdot (y^2 - b^2) = 0:
 > #PARÂMETROS GEOMÉTRICOS DO DUTO
 > a := 1 : b := 0.5 :
 > #RAZÃO DE ASPÉCTO
 > \beta := \frac{b}{a}:
 > #ADIMENSIONALIZAÇÃO
 > \#X = \frac{x}{a} Y = \frac{y}{a} -1 \le X \le 1 -\beta \le Y \le \beta \beta = \frac{b}{a}
 > \#(1-X^2) \cdot (\beta^2 - Y^2) = 0
 # ad = adimensional D h = diâmetro hidráulico adimensional
 > Area ad := 2 \cdot 2 \cdot \beta :
 > Perimetro ad := 4 \cdot (1 + \beta):
 > D_h := \frac{4 \cdot Area\_ad}{Perimetro ad} :
 > #ESCOLHAS DAS FUNÇÕES BASES # g=primeira função base f=conjunto de funções bases
 > g := (X, Y) \rightarrow (1 - X^2) \cdot (\beta^2 - Y^2):
  f := \left[ g(X,Y), g(X,Y) \cdot X^2, g(X,Y) \cdot Y^2, g(X,Y) \cdot X^2 \cdot Y^2, g(X,Y) \cdot X^4, g(X,Y) \cdot X^4 \cdot Y^2, g(X,Y) \cdot Y^4, g(X,Y) \cdot X^4 \cdot Y^4, g(X,Y) \cdot X^6, g(X,Y) \cdot Y^6, g(X,Y) 
                        g(X,Y)\cdot X^{6}\cdot Y^{2}, g(X,Y)\cdot X^{6}\cdot Y^{4}, g(X,Y)\cdot Y^{6}, g(X,Y)\cdot X^{6}\cdot Y^{6}, g(X,Y)\cdot X^{8}, g(X,Y)\cdot X^{8}\cdot Y^{2}]:
 > #NÚMERO DE FUNÇÕES BASES A SEREM CALCULADAS
> k := 3:
```

```
> #CÁLCULO DO SISTEMA MATRICIAL AD=B
> #CÁLCULO DA MATRIZ A
> A_{ij} := (i,j) \rightarrow -\frac{1}{Area\_ad} int \left( int \left( a^2 \cdot \left( diff(f[i], X) \cdot diff(f[j], X) + diff(f[i], Y) \cdot diff(f[j], Y) \right), Y = -\beta ...\beta \right), X = -1 ...1 \right):
> A\_ad := Matrix(k, k, A\_ij):
> evalf(A ad) :
\geq evalf(A_ad<sup>-1</sup>):
> # CÁLCULO DA MATRIZ B
> B_j := j \rightarrow -\frac{1}{Area\_ad} \cdot int(int(f[j] \cdot a^2, Y = -\beta ..\beta), X = -1 ..1):
> B_ad := Matrix(k, 1, B_j):
> evalf(B_ad) :
> # CÁLCULO DE D=A^{-1}B
> D_i := evalf(evalf(A_ad^{-1}).evalf(B_ad)):
> # SOLUÇÃO DA EQUAÇÃO DE MOMENTO LINEAR
> l\_ad := j \rightarrow evalf(D\_i[j, 1]):
> W := k \rightarrow sum('l_ad(j) \cdot f[j]', j = 1..k):
> # GRÁFICO DO PERFIL DE VELOCIDADE
> plot3d(W(k), Y = -\beta ...\beta, X = -1 ...1):
> # CÁLCULO DA VELOCIDADE MÉDIA
> Wm := \frac{1}{Area\_ad}int(int(W(k), Y=-\beta..\beta), X=-1..1):
> # CÁLCULO DO PERFIL DE VELOCIDADE U = \frac{W(k)}{Wm}
> U := unapply\left(\frac{W(k)}{Wm}, X, Y\right):
> U(X, Y) :
        #CÁLCULO DO SISTEMA MATRICIAL (A+γnB)d_n=0: ASSOCIAR B A EQUAÇÃO DE ENERGIA COM CODIÇÃO DE
       CONTORNO T:
> #RESTART NO VALOR DE B
> B_ad := B_ad:
> # CÁLCULO DA MATRIZ B
 > B_{ij} := (i,j) \rightarrow \frac{1}{Area_ad} int (int(U(X,Y) \cdot f[i] \cdot f[j] \cdot a^2, Y = -\beta ..\beta), X = -1 ..1) : 
> B_ad := Matrix(k, k, B_ij):
> evalf(B ad) :
> # TRASFORMAÇAO DAS MATRIZES PARA MATRIZES TRIANGULARES :
                                                                                           MÉTODO DE CHOLESKY
> L_ad := LUDecomposition(B_ad, method='Cholesky') :
> evalf(L_ad) :
> Lin := evalf(L_ad^{-1}):
> Lt := Transpose(L_ad) :
> evalf(Lt) :
> Ltin := evalf(Lt^{-1}):
> # RESOLVENDO O SISTEMA (A + \lambda nB)d n=0
> N := Lin \cdot A_a d \cdot Ltin + \lambda \cdot Matrix(k, shape = identity) :
> autovalores := Determinant(evalf(N)) = 0 :
> # AUTOVALORES ASSOCIADOS AO SISTEMA
> \lambda := evalf(solve(autovalores)):
> # CÁLCULO DO NÚMERO DE NUSSELT MÉDIO
> Nu_T := \frac{1}{4} \cdot \lambda[1] \cdot D_h^2:
> # AUTOVETORES ASSOCIADOS AO SISTEMA
> v, e := Eigenvectors(evalf(-Lin • A_ad • Ltin)) :
> Dn := Transpose(Ltin.Re(e)):
> E := Transpose(evalf(Dn \cdot B ad)):
> P := E^{-1}:
> \lambda i := i \rightarrow \frac{1}{Area\_ad} \cdot int \left( int \left( U(X, Y) \cdot (-1) \cdot f[i] \cdot a^2, Y = -\beta ..\beta \right), X = -1 ..1 \right) :
> An := n \rightarrow sum(P[n, i] \cdot \lambda i(i), i = 1..k):
> FN := n \rightarrow evalf(sum('Dn(n, j) \cdot f[j]', j = 1..k)):
> Fn := n \rightarrow unapply(FN(n), r):
> Ts := 1:
```

```
CÁLCULO DA DISTRIBUIÇÃO DE TEMPERATURA LOCAL E NÚMERO DE NUSSELT LOCAL
> #
> # DISTRIBUIÇÃO DE TEMPERATURA
> T := unapply(Ts + sum('Fn(n)(r) \cdot exp(Re(-v[n]) \cdot Z) \cdot An(n)', n = 1..k), X, Y, Z):
> plot3d(T(X, Y, 10^{-1}), X=-1..1, Y=-\beta..\beta)
> # TEMPERTURA MÉDIA
                     1
> Tb := Z \rightarrow \frac{1}{Area\_ad} int(int(U(X, Y) \cdot T(X, Y, Z), Y = -\beta ..\beta), X = -1 ..1):
>
   # NÚMERO DE NUSSELT LOCAL
> NuT := unapply\left(\frac{D_h^2}{4\cdot(1-Tb(Z))} \cdot diff(Tb(Z), Z), Z\right):
                  \frac{1}{Area\_ad} \cdot int \left( int \left( U(X, Y) \cdot f[i], Y = -\beta ..\beta \right), X = -1 ..1 \right):
> \psi i := i
> PP := n \rightarrow P[n, i] \cdot \psi(i)':
> dd := n \rightarrow Dn[n, j] \cdot \psi(j):
> SSI := n \rightarrow sum(sum(PP(n) \cdot dd(n) \cdot v[n] \cdot exp(-v[n] \cdot Z), j = 1..k), i = 1..k):
> SS2 := n \rightarrow sum(sum(PP(n) \cdot dd(n) \cdot exp(-v[n] \cdot Z), j = 1..k), i = 1..k):
                          \left(\frac{D_h^2}{4} \cdot \frac{sum(`SSI(n)', n=1..k)}{sum(`SS2(n)', n=1..k)}, Z\right):
> NuzT := unapply
```

4.2.5 Algorítmo de cálculo: Fator de atrito, número de Reynolds, tensão de cisalhamento e gradiente de pressão.

Os três óleos estudados neste trabalho apresentam comportamento de acordo com a Figura [1] e a Tabela 23. Os três tipos de óleos são classificados como pesado com ^oAPI=14,6. Adotouse a seguinte nomenclatura para os óleos estudados, óleo 1, óleo 2 e óleo 3 como OL1, OL2 e OL3, respectivamente.

Fonte: Cedida pelo departamento de Engenharia de Processos - UFCG

0	L1	С	DL2	C	DL3
T(^o F)	v(cS)	T(^o F)	v(cS)	T(°F)	v(cS)
104,7	9,397	84,60	180,219	104,8	64697,4
138,3	6,463	124,1	70,786	168,3	2698,23
168,2	4,577	178,0	25,526	190,4	1990,43
203,5	3,334	227,4	11,840	225,6	479,030
232,6	2,547	280,3	6,3270	249,4	274,250
262,5	2,083	312,0	4,4980	253,8	186,060
301,4	1,619	391,4	2,3870	289,1	91,5320
329,6	1,350	443,4	1,6520	305,0	57,0980
-	-	500,7	1,1560	355,2	22,7240
_	-	-	-	401,0	10,7060

Tabela 2 – Valores para a viscosidade cinemática dependente da temperatura para os óleos OL1, OL2 e OL3

Considerou-se uma densidade relativa, $20/4 \,^{\circ}$ C de 0,9648 para os três tipos de óleos. Assim temos o valor para a densidade $\rho = 952,175872 \, kg/m^3$. O procedimento de cálculo para o número de Reynolds, fator de atrito, tensão de cisalhamento e gradiente de pressão para os óleos OL1, OL2 e OL3 é descrito como segue:

> restart : with(student) : with(Optimization) : with(plots) : with(PDEtools) : with(LinearAlgebra) : with(powseries) : with(plottools) : with(plots) : > Digits := 15 : > #GEOMETRIA A SER ESTUDADA EXEMPLO = GEOMETRIA RETANGULAR: > $\#(x^2 - a^2) \cdot (y^2 - b^2) = 0$: > #PARÂMETROS GEOMÉTRICOS DO DUTO > a := 1 : b := 0.5 :> #RAZÃO DE ASPÉCTO > $\beta := \frac{b}{a}$: > #ADIMENSIONALIZAÇÃO > $\#X = \frac{x}{a}$ $Y = \frac{y}{a}$ $-1 \le X \le 1$ $-\beta \le Y \le \beta$ $\beta = \frac{b}{a}$ > $\#(1-X^2) \cdot (\beta^2 - Y^2) = 0$ #_ad = adimensional D_h = diâmetro hidráulico adimensional > Area_ad := $2 \cdot 2 \cdot \beta$: > Perimetro_ad := $4 \cdot (1 + \beta)$: > $D_h := \frac{4 \cdot Area_a d}{Perimetro ad}$: > #ESCOLHAS DAS FUNÇÕES BASES # g=primeira função base f=conjunto de funções bases > $g := (X, Y) \rightarrow (1 - X^2) \cdot (\beta^2 - Y^2)$: $> f := \Big[g(X,Y), g(X,Y) \cdot X^2, g(X,Y) \cdot Y^2, g(X,Y) \cdot X^2 \cdot Y^2, g(X,Y) \cdot X^4, g(X,Y) \cdot X^4 \cdot Y^2, g(X,Y) \cdot Y^4, g(X,Y) \cdot X^4 \cdot Y^4, g(X,Y) \cdot X^6, g(X,Y) \cdot Y^4, g(X,Y) \cdot Y^4, g(X,Y) \cdot Y^4, g(X,Y) \cdot Y^6, g(X,Y$ $g(X,Y)\cdot X^{6}\cdot Y^{2}, g(X,Y)\cdot X^{6}\cdot Y^{4}, g(X,Y)\cdot Y^{6}, g(X,Y)\cdot X^{6}\cdot Y^{6}, g(X,Y)\cdot X^{8}, g(X,Y)\cdot X^{8}\cdot Y^{2}]:$ > #NÚMERO DE FUNÇÕES BASES A SEREM CALCULADAS > k := 3:

```
> #CÁLCULO DO SISTEMA MATRICIAL AD=B
> #CÁLCULO DA MATRIZ A
> A_{ij} := (i, j) \rightarrow -\frac{1}{Area\_ad} int \left( int \left( a^2 \cdot (diff(f[i], X) \cdot diff(f[j], X) + diff(f[i], Y) \cdot diff(f[j], Y) \right), Y = -\beta ..\beta \right), X = -1 ..1 \right):
> A\_ad := Matrix(k, k, A\_ij):
\rightarrow evalf(A_ad) :
> evalf(A \ ad^{-1}):
> # CÁLCULO DA MATRIZ B
> B_j := j \rightarrow -\frac{1}{Area\_ad} \cdot int(int(f[j] \cdot a^2, Y = -\beta ..\beta), X = -1 ..1):
>
> B_ad := Matrix(k, 1, B_j):
> evalf(B_ad):
> # CÁLCULO DE D = A^{-1}B
> D \ i := evalf(evalf(A \ ad^{-1}).evalf(B \ ad)):
> # SOLUÇÃO DA EQUAÇÃO DE MOMENTO LINEAR
> l ad := j \rightarrow evalf(D i[j, 1]):
> W := k \rightarrow sum(l_ad(j) \cdot f[j], j = 1..k):
> # GRÁFICO DO PERFIL DE VELOCIDADE
> plot3d(W(k), Y = -\beta ..\beta, X = -1 ..1):
> # CÁLCULO DA VELOCIDADE MÉDIA
> Wm := \frac{1}{Area\_ad}int(int(W(k), Y=-\beta..\beta), X=-1..1):
> # CÁLCULO DO PERFIL DE VELOCIDADE U = \frac{W(k)}{Wm}
> U := unapply\left(\frac{W(k)}{Wm}, X, Y\right):
> U(X, Y):
> # CÁLCULO DO FATOR DE ATRITO fRe
> fRe := \frac{D_h^2}{2 \cdot evalf(Wm)} :
> Area_di := 2 \cdot a \cdot 2 \cdot b :
> Perimetro_di := 4 \cdot (a + b):
> d_h := \frac{4 \cdot Area_di}{Perimetro_di}
> # di=dimensional
> #d_h=diâmetro hidráulico adimensional
> # DADOS ATRIBUÍDOS PELOS DADOS DE CADA OLEO PESADO
> # TEMPERATURA EM GRAUS FAHRENHEIT
> T := 104.7:
> # DENSIDADE kg/m^3
> ρ := 952.175872642767 :
> # VISCOSIDADE DINÂMICA EM PASCAL - SEGUNDO Pa.s = 1 N \cdot s m^2 = 1 \frac{kg}{m \cdot s}
> \mu Pas := 8.94759667522408:
> # VELOCIDADE MÉDIA DIMENSIONAL
> um := 1 :
> # OUENTRE COM UM VALOR PARA A VAZÃO kg/s m<sup>3</sup>/s
> Q := um \cdot Area_di:
# Area_di = área da seção transversal dimensional
> # NÚMERO DE REYNOLDS
> Rey := \frac{p \cdot um \cdot d_h}{p \cdot um \cdot d_h}
             µPas
> # FATOR DE ATRITO DE FANNING
> faming := \frac{fRe}{Rey} :
> # TENSÃO DE CISALHAMENTO MÉDIO
> \tau_wm := \frac{famming \cdot \rho \cdot um^2}{2}:
> # GRADIENTE DE PRESSÃO
> \#\frac{dp}{dz} Pa Pascal
> pressao := -\frac{fRe \cdot 2 \cdot \mu Pas \cdot um}{d_{\perp}h^2} :
```

5 RESULTADOS E DISCUSSÕES

5.1 ESCOAMENTO DE FLUIDO NEWTONIANO EM DUTOS DE GEOMETRIA ARBITRÁRIA

Neste capítulo são apresentados os resultados numéricos obtidos usando o Método Integral Baseado em Galerkin nas equações de momento linear e energia com condições de fronteira T e H₁ em dutos com seção transversal arbitrária. Para cada geometria específica foram encontradas as funções bases e as parametrizações mais apropriadas usadas na parte computacional. Para atender o objetivo proposto nesta pesquisa foi definido como domínio de estudo o escoamento em dutos retos de seção transversal constante. O escoamento considerado é lamaniar, Newtoniano, regime permanente, com condução axial e dissipação viscosa negligenciadas e com propriedades, densidade ρ , viscosidade μ , calor específico c_p , condutividade térmica κ , constantes.

Os gráficos de fRe, $N_{u_{\rm T}}$ e $N_{u_{\rm H_1}}$ em função da razão de aspecto, β , foram gerados a partir dos dados tabelados no Apêndice A.

5.1.1 DUTO CIRCULAR

Inicia-se com a geometria mais comum encontrada nos processos de transporte de fluidos, a geometira circular. Nessa geometria, o perfil de velocidade toma a forma da Figura 12,

Figura 12 – Perfil de velocide em um duto circular reto.

Fonte: O autor (2017).

Resultados para esta geometria são apresentados nesta seção.

5.1.1.1 Geometria e parametrizações

Considere um duto de secção transversal circular ilustrada na Figura 13

Figura 13 – duto circular com raio R = 1.

Fonte: O autor (2017).

Considera-se as seguintes parametrizações,

$$X = r\cos(\theta); \quad Y = rsen(\theta); \quad Z = Z$$
 (5.1)

Assim, a parametrização da curva $X^2 + Y^2 = a^2$ é dada por $r^2 = a^2, Z \ge 0$. Desta forma, toma-se o conjunto de funções bases como,

$$g(r) = a^2 - r^2$$
, e $f_n = \{g(r), g(r)r^2, g(r)r^4, ..., g(r)r^N\}$ (5.2)

Logo,

$$f_n(r) = g(r)r^n, \ n = 0, 2, 4, ..., N.$$
 (5.3)

A área da secção transversal, o perímetro e o diâmetro hidráulico são dados respectivamente por,

$$A_c = \pi a^2, \quad P = 2\pi a \quad e \quad d_h = \frac{4A_c}{P} = 2a.$$
 (5.4)

5.1.1.2 Perfil de velocidade

A solução da Equação (3.17) possibilita encontrar o valor da velocidade média adimensional,

$$W_m = 0,125$$
 (5.5)

e o perfil de distribuição de velocidade adimensional dada por:

$$U = \frac{W}{W_m} = - 1,99999999355799R^2 + 1,9999999355799 + 1,80837957941549(10^{-7})(-R^2 + 1)R^2 - 1,28496367324260(10^{-6})(-R^2 + 1)R^4 + 3,57583849108778(10^{-6})(-R^2 + 1)R^6 - 4,23931214754703(10^{-6})(-R^2 + 1)R^8 + 1,79256130650174(10^{-6})(-R^2 + 1)R^{10}$$
(5.6)

onde $R = \frac{r}{a}$, com *a* o raio do duto.

Esta equação possibilitou a obtenção do perfil de velocidade ilustrada na Figura 14 e Figura 15. Observe que os gráficos estão plotados em coordenadas cartesianas adimensionais, tomando U(X,Y) e não U(R). Na Tabela 3 são apresentados os valores para d_N quando consideradas N = 1, 2 e 3 funções bases.

Fonte: O autor (2017).

Fonte: O autor (2017).

-			
	N=1	N=2	N=3
d_1	0,2500	0,2500	0,2499
d_2		$1,4759\times10^{-9}$	$2,2604\times10^{-8}$
d_3		$5 imes 10^{-10}$	$-1,6062 imes 10^{-7}$
d_4			$4,4698\times10^{-7}$
d_5			$-5,2991 imes 10^{-7}$
d_6			$2,2407\times10^{-7}$

Tabela 3 – Coeficientes d_N para a distribuição de velocidade em um duto circular com R = 1 para a quantidade N de funções bases

5.1.1.3 Perfil de temperatura

As soluções das Equações (3.28) e (3.34), permitiu obter a distribuição de temperatura para H_1 e T. Assim temos, Figura 16, os contornos de temperatura para cada condição de fronteira H_1 e T,

Figura 16 – Contornos de temperatura $T_{\rm H_1}$ e $T_{\rm T}$, respectivamente, para R = 1

Fonte: O autor (2017).

Na Tabela 4, apresenta-se os valores para os coeficientes d_N para a distribuição de temperatura em T_{H_1} .

		1	
	N=1	N=2	N=3
d_1	0,3333	0,3749	0,375
d_2		-0,1250	-0,125
d_3		$5 imes 10^{-10}$	$-2,842 imes 10^{-14}$
d_4			$-5,684 imes 10^{-14}$
d_5			$4,5474 \times 10^{-13}$
d_6			$-2,842 imes 10^{-14}$

Tabela 4 – Coeficientes d_N para a distribuição de temperatura em um duto circular com R = 1 e condição de fronteira H₁ para a quantidade N de funções bases

Para a condição de fronteira T esses valores são apresentados em forma de matrizes. Para cada linha, $d_n = (d_{n1}, d_{n2}, ..., d_{nN})$, da matriz D temos seu valor associado γ_n do sistema de equações $(A + \gamma_n B)d_n = 0$. Para N = 3 temos

 $\gamma_n = (3,656964168, 23,93809038, 161,2049455)$

e

$$D = \begin{pmatrix} 1,4215 & -20,2948 & 40,0577 \\ 1,6260 & -1,2682 & 0,4861 \\ 2,0821 & -15,4113 & 12,6152 \end{pmatrix}$$

e para N = 6 temos:

 $\gamma_n = (3,656793634, 22,28871739, 60,86991153, 94,94716681, 59,55421816, 59,55421816)$

e

	(1,262	-64,375	721,568	-2933,947	4833,177	-2735,501
	-1,485	71,092	-727,604	2627,484	-3735,291	1770,881
_ ת	-2,238	88,118	-721,989	2071,779	-2379,330	953,630
$D \equiv$	1,631	-1,351	0,757	-0,273	0,074	-0,011
	-2,576	25,947	-58,222	68,185	-43,468	11,899
	2,982	-74,402	399,588	-815,825	745,420	-255,989

5.1.1.4 Fator de atrito e número de Nusselt

Os valores de fR_e e números de Nusselt, $N_{u_{H_1}}$ e N_{u_T} , são econtrados a partir das soluções das equações de momento e energia e comparados com resultados na literatura.

Figura 17 – Comportamento do número de Nusselt $N_{u_{T,Z}}$, para R = 1 em relação à distância adimensional Z.

Tabela 5 – Valores de fR_e , para a quantidade N de funções bases escolhidas

	β	fR_e					
_		N=1	N=2	N=3	N=4	N=5	N=6
-	1	16,0000	16,0000	15,9999	15,9999	16,0000	16,0000

Tabela 6 – Valores de $N_{u_{\rm H}}$, para a quantidade N de funções bases escolhidas

β		$N_{u_{\mathrm{H}_{1}}}$				
	N=1	N=2	N=3	N=4	N=5	N=6
1	4,5000000	4,363636368	4,363636368	4,363636360	4.363636412	4.363636368

Tabela 7 – Valores de $N_{u_{\rm T}}$, para a quantidade N de funções bases escolhidas

β		$N_{u_{\mathrm{T}}}$				
	N=1	N=2	N=3	N=4	N=5	N=6
1	4,000000	3,6700683	3,6569641	3,65679497	3,6567935	3,656793459

5.1.1.5 Discussões dos resultados

Observa-se que o método integral baseado em Galerkin se mostrou eficaz nas soluções das equações de momento linear e energia considerando um duto circular. Também observa-se uma boa concordância com os dados quando comparados com os da literatura. Os parâmetros fR_e , $N_{u_{\rm H_1}}$ e $N_{u_{\rm T}}$ para alguns valores da quantidade de funções bases, N, também tiveram uma boa convergência, dando assim a escolha para N = 6 a quantidade de funções aplicadas para os valores apresentados. O comportamento do número de Nusselt local é apresentado na Figura 17, obtendo a convergência desejada, Tabela 7, a partir do valor Z = 0,69. Todos os resultados realizados no processo tiveram uma média de tempo igual a 12 segundos.

5.1.2 DUTO CIRCULAR ANULAR

O escoamento de fluidos através de dutos anulares se aplica, por exemplo, para condensadores, evaporadores e caldeiras, além de ser encontrado na indústria do petróleo. Exemplos desta utilização estão na perfuração de poços, na retirada dos cascalhos através da região anular e elevação artificial (NIRENBERG, 2017). A forma que o escoamento se desenvolve no interior de dutos anulares, ou seja, seu perfil de velocidade, pode ser visto na Figura 18,

Figura 18 – Perfil de velocidade em um duto circular anular reto.

Fonte: O autor (2017).

Compreender o comportamento do transporte e dos fatores que os regem, nessa geometria, é de grande importância para a indústria de petróleo. Com esta motivação apresentamos um estudo em dutos de geometria circular anular.

5.1.2.1 Geometria e parametrizações

Considere um duto de secção transversal circular anular ilustrado na Figura 19,

Figura 19 – Duto circular anular com raios a = 1 e b = 0,5

Fonte: O autor (2017).

Para essa geometria considere as seguintes parametrizações,

$$X = r\cos(\theta); \quad Y = rsen(\theta); \quad z = z \tag{5.7}$$

Assim as parametrizações das curvas $X^2 + Y^2 = a^2$ e $X^2 + Y^2 = b^2$ são dadas por $r^2 = a^2, r^2 = b^2$ e $z \ge 0$ com b < a. Desta forma tomamos o conjunto de funções bases como,

$$g(r) = (a^2 - r^2)(b^2 - r^2), \ e \ f_n = \{g(r), g(r)r^2, g(r)r^4, ..., g(r)r^N\}$$
 (5.8)

Logo,

$$f_n(r) = g(r)r^n, \ n = 0, 2, 4, ..., N.$$
 (5.9)

A área da secção transversal, o perímetro e o diâmetro hidráulico são dados respectivamente por:

$$A_c = \pi a^2 - \pi b^2$$
, $P = 2\pi (a - b)$ e $d_h = \frac{4A_c}{P} = 2(a - b)$. (5.10)

5.1.2.2 Perfil de velocidade

A solução da Equação (3.17) possibilita encontrar o valor da distribuição de velocidade adimensional, conforme ilustrado na Figura 20. Observe que os gráficos estão plotados em coordenadas cartesianas adimensionais, tomando U(X,Y).

Figura 20 – Perfil de velocidade adimensional e curva de superfície, respectivamente, para a = 1 e b = 0.5

Fonte: O autor (2017).

Tabela 8 – Coeficientes d_n para a distribuição de velocidade em um duto circular anular para a quantidade n de funções bases.

d_n		β	
	0,1	0,25	0,5
d_1	-0,9083	-1,1620	-0,5089
d_2	1,6436	4,2478	0,4153
d_3	-0,9762	-8,1773	0,8847
d_4		7,7896	-1,2148
d_5		-2,9285	-0,6100
d_6		0,1238	0,2922
d_7			2,1019
d_8			-1,3070

5.1.2.3 Perfil de temperatura

As soluções das Equações (3.28) e (3.34), estão representadas na forma de contornos para H_1 e T na Figura 21.

Figura 21 – Contornos de temperatura T_{H_1} e T_T , respectivamente, para a = 1 e b = 0, 5.

Fonte: O autor (2017).

Tabela 9 – Coeficientes d_n para a distribuição de temperatura T_{H_1} em um duto circular anular para a quantidade *n* de funções bases.

d_n		β	
	0,1	0,25	0,5
d_1	-1,2107	-1,4110	-0,5938
d_2	2,21642	4,59412	0,55423
d_3	-1,2497	-7,8943	-0,1903
d_4		6,85749	0,26701
d_5		-2,1396	0,00470
d_6		-0,1161	-0,0873
d_7			-0,0742
d_8			0,17693

5.1.2.4 Fator de atrito e número de Nusselt

Os valores de fR_e e números de Nusselt, N_{u_T} e $N_{u_{H_1}}$, são econtrados pelo método de Galerkin e comparados com resultados na literatura. A apresentação desses valores encontram-se na Tabela 35, Apêndice A, e Figuras 23, 24 e 25. O número de Nusselt local para a condição de fronteira T é apresentado graficamente na Figura 22. Figura 22 – Comportamento do número de Nusselt $N_{u_{T,Z}}$, para a = 1 e b = 0,5 em relação à distância adimensional Z.

Figura 23 – Dados comparados graficamente para os valores de fRe.

Tome: O autor (2017).

Figura 24 – Dados comparados graficamente para os valores de $N_{u_{\rm T}}$.

Fonte: O autor (2017).

Figura 25 – Dados comparados graficamente para os valores de $N_{u_{\rm HI}}$.

5.1.2.5 Discussões dos resultados

O método integral baseado em Galerkin se mostrou eficaz na obtenção dos valores de fR_e , $N_{u_{H_1}} e N_{u_T}$ quando considerada a geometria circular anular. Todos os valores para o número de Nusselt apresentaram uma boa concordância com um número de funções bases n = 4, conforme pode ser observado nas Figuras 24 e 25. Já para obter valores satisfatórios para fRe a quantidade de funções bases sobe para n = 15. Os resultados realizados no processo, tanto para n = 4 quanto para n = 15, tiveram uma média de tempo igual a 8 segundos. O comportamento do número de Nusselt local, apresentado na Figura 22, apresenta boa aproximação a partir de Z = 0, 2. As Tabelas 9 e 10 apresentam valores para os coefientes d_n para $\beta = 0, 1$; 0, 25 e 0, 5 com n = 3, 6e 8 respectivamente. Os gráficos foram realizados separadamente para que esse tempo fosse o mínimo possivel, dando assim um ganho computacional.

5.1.3 DUTO ELÍPTICO

Em muitas aplicações os tubos elípticos são preferíveis aos dutos circulares porque podem oferecer menor resistência ao escoamento e maior taxa de transferência de calor (KHAN *et al.*, 2005). Tubulações de seção transversal elíptica são utilizadas em diversos campos da engenharia, como na indústria alimentícia, química, farmacêutica, petroquímica, em equipamentos tais como trocadores de calor, aquecedores e resfriadores de gases e ar, condensadores de vapor, pré-aquecedores de ar através de vapor, óleo térmico ou água quente (ZHU *et al.*, 2004). Também é comum durante o processo de perfuração de poços de óleo e gás, em geral a passagem e oscilações da broca de perfuração provoca a ovalização das paredes do poço (ALEGRIA, 2011). Assim é comum encontrar esta geometria em diversos campos da industria. Em esco-amento de fluidos em dutos também tem seu papel importante para o transporte de petróleo. Nessa geometria o escoamento toma a forma da Figura 26

Figura 26 – Perfil de velocide em um duto elíptico.

Fonte: O autor (2017).

Com várias aplicações que esta geometria possui, apresentamos resultados de escoamento em dutos de seção transversal elíptica.

5.1.3.1 Geometria e parametrizações

Considere um duto de secção transversal elíptica ilustrado na Figura 27

Figura 27 – Duto elíptico com valores a = 1 e b = 0,5

Fonte: O autor (2017).

Consideremos a parametrização em coordenadas adimensionais. Desta forma toma-se o conjunto de funções bases como,

$$g(X,Y) = 1 - \frac{X^2}{a^2} - \frac{Y^2}{b^2}$$
(5.11)

e

$$f_n = \{g(X,Y), g(X,Y)X^2, g(X,Y)Y^2, g(X,Y)X^2Y^2, g(X,Y)X^4, \dots, g(X,Y)X^nY^m\}$$
(5.12)

Logo,

$$f_n(X,Y) = g(X,Y)X^nY^m$$
, com $n,m = 0,2,4,...,N.$ (5.13)

Toma-se também a área da secção transversal, o perímetro e o diâmetro hidráulico dados respectivamente por,

$$A_c = ab\pi, \quad P = 4a\mathbb{E}\left[1 - \left(\frac{b}{a}\right)^2\right] \quad e \quad d_h = \frac{4A_c}{P} = \frac{b\pi}{\mathbb{E}\left[1 - \left(\frac{b}{a}\right)^2\right]} \tag{5.14}$$

onde E[*] é a integral elíptica completa de segundo tipo.

5.1.3.2 Perfil de velocidade

A solução da Equação (3.17) nos dá o valor da distribuição de velocidade adimensional ilustrada na Figura 28

Figura 28 – Perfis de velocidade adimensional e curva de superfície, respectivamente, para a = 1 e b = 0,5

Fonte: O autor (2017).

Tabela 10 – Coeficientes d_n para a dist	ribuição de ve	elocidade em um	n duto elíptico	para a quan
tidade <i>n</i> de funções bases.				

d_n		β	
	0,75	0,5	0,25
d_1	-0,17999	-0,0999	-0,029411
d_2	$-1.7806 imes 10^{-6}$	$1,3731\times10^{-6}$	$-1,9834 imes 10^{-6}$
d_3	$-5,1620 \times 10^{-6}$	$-6,8077 \times 10^{-7}$	$-4,8839 imes 10^{-6}$
d_4		$0,4407\times 10^{-4}$	$-0,5395 imes 10^{-4}$
d_5		$-1,7119 \times 10^{-6}$	$-4,5228 imes 10^{-6}$
d_6		$-0,1509 \times 10^{-3}$	$0,2941\times10^{-4}$
d_7			$0,87188 imes 10^{-4}$
d_8			$0,2084\times 10^{-2}$

5.1.3.3 Perfil de temperatura

As soluções das Equações (3.28) e (3.34), estão representadas na forma de contornos para H_1 e T na Figura 29

Figura 29 – Contornos de temperatura T_{H_1} e T_T , respectivamente, para a = 1 e b = 0, 5.

Tabela 11 – Coeficientes d_n para a distribuição de temperatura T_{H_1} em um duto elíptico para a quantidade *n* de funções bases.

d_n		β	
	0,75	0,5	0,25
d_1	0,2712	0.1536	0,04724
d_2	-0,111	0.0853	-0,03823
d_3	-0,1354	-0.1463	-0,1585
d_4		-0.2029×10^{-4}	$-0,3181 imes 10^{-3}$
d_5		$0,1115\times 10^{-4}$	$1,6842\times10^{-6}$
d_6		$0,1059\times 10^{-3}$	$0,3574 imes 10^{-3}$
d_7			$-0,5097 imes 10^{-3}$
d_8			0,01059

5.1.3.4 Fator de atrito e número de Nusselt

Os valores de fR_e e números de Nusselt, N_{u_T} e $N_{u_{H_1}}$, são econtrados pelo método baseado em Galerkin e comparados com resultados na literatura. A apresentação desses valores encontramse na Tabela 36, Apêncice A, e figuras, Figura 31, Figura 32 e Figura 33. O comportamento do número de Nusselt local é apresentado graficamente na Figura 30.

Figura 30 – Comportamento do número de Nusselt, $N_{u_{\rm T}}$ para $\beta = 0,5$ em relação à distância adimensional *Z*.

Fonte: O autor (2017).

Figura 31 – Dados comparados graficamente para os valores de fRe

Fonte: O autor (2017).

Figura 33 – Dados comparados graficamente para os valores de $N_{u_{\rm H1}}$

Fonte: O autor (2017).

5.1.3.5 Discussões dos resultados

Os resultados discutidos nesta seção se mostraram satisfatórios quando comparados com os da literatura. Os valores para fRe quando comparados com os resultados de Marner e Suitor (1987), apresentaram um excelente ajuste, quando comparados com os resultados de Shah e London (1978). Observa-se que quando considerado $\beta = 0,9999$, Tabela 36, Apênce A, os valores para fR_e , $N_{u_{H_1}}$ e N_{u_T} se aproximam dos correspondentes valores quando considerado $\beta = 1$, Tabela 34, Apêndice A, mastrando boa definição no método aplicado, já que para esse valor a geometria elíptica converge para a circular. Os valores para $N_{u_{\rm T}}$ tiveram aproximações em poucas casas decimais quando comparados com os resultados de Lee e Kuo (2001). Poucos valores para a razão de aspecto são apresentados por Shah e London (1978) e os mesmos foram comparados com nosso trabalho dando também aproximações satisfatórias. No entanto, apresentamos catorze valores diferentes para a razão de aspecto quanto que Shah e London (1978), só apresentam cinco valores. Os valores para $N_{u_{H_1}}$, quando comparados com os resultados de Marner e Suitor (1987), mostram-se com maior aproximação quando comparados com os de Shah e London (1978). Todos os valores para fR_e , $N_{u_{H_1}}$ e N_{u_T} encontrados com o método baseado em Galerkin, mostraram-se satisfatórios para a geometria elíptica. O comportamento do número de Nusselt local, Figura 30, apresenta valores desejados a partir de Z = 0, 2. O número de funções bases considerado nas soluções foram n = 4 para os valores de fR_e , $N_{u_{H_1}}$ e quando esse valor dobra, n = 8 apresenta somente valores diferentes na 4 casa decimal fazendo com que a escolha para as simulações seja a primeira. Para as simulações de $N_{\mu_{\rm T}}$ foi considerado n = 3. Todos os resultados, na parte computacional, tiveram uma média de 56 segundos para a apresentação dos dados para cada valor n de funções bases. Esse tempo computacional tem um considerável aumento quando é tomado n > 6 quando considerado a condição de fronteira T. Este fato se dá pela forma que são definidos os coeficiente da matriz B.

5.1.4 DUTO SEMI ELÍPTICO

Quando considera-se a geometria semi elíptica poucos são os trabalhos encontrados na literatura. Em quase todos, esses poucos trabalhos, a geometria cilindrica elíptica é considerada. O leitor pode ter como referências os textos de Vesulamy *et al.*, (1995), Alassar e Abushoshah (2012), Wang (2015), Alassar (2016), Mylavarapu *et al.*, (2016) e Mukherjee *et al.*, (2017).

É observado que o perfil de velocidade em dutos com essa geometria tem o seguinte comportamento

Figura 34 – Perfil de velocidade em um duto semi elíptico.

Fonte: O autor (2017).

Nesta parte do trabalho nos deteremos a apresentar resultados considerando dutos com seção transversal semi elíptica. É considerada coordenadas cartesianas e pela primeira vez é aplicado o método integral baseado em Galerkin para encontrar resultados de escoamento completamente desenvolvido neste tipo de geometria.

5.1.4.1 Geometria e parametrizações

Considere um duto de secção transversal semi elíptico ilustrada na Figura 35, onde *a* e *b* são as dimensões eixo maior e eixo menor respectivamente.

Figura 35 – Duto semi elíptico com valores a = 1 e b = 0,5

Fonte: O autor (2017).

Considera-se a parametrização em coordenadas adimensionais. Desta forma toma-se o conjunto de funções bases como,

$$g(X,Y) = Y\left(1 - \frac{X^2}{a^2} - \frac{Y^2}{b^2}\right)$$
(5.15)

e

$$f_n = \{g(X,Y), g(X,Y)X^2, g(X,Y)Y^2, g(X,Y)X^2Y^2, g(X,Y)X^4, \dots, g(X,Y)X^nY^m\}$$
(5.16)

Logo,

$$f_n(X,Y) = g(X,Y)X^nY^m$$
, com $n,m = 0,2,4,...,N$ (5.17)

Toma-se a área da secção transversal, o perímetro e o diâmetro hidráulico dados respectivamente por,

$$A_{c} = \frac{ab\pi}{2}, \quad P = 2aE\left[1 - \left(\frac{b}{a}\right)^{2}\right] + 2a \quad e \quad d_{h} = \frac{4A_{c}}{P} = \frac{b\pi}{E\left[1 - \left(\frac{b}{a}\right)^{2}\right] + 1} \tag{5.18}$$

onde E[*] é a integral elíptica completa de segundo tipo.

5.1.4.2 Perfil de velocidade

A solução da Equação (3.17) nos possibilita encontrar o valor da distribuição de velocidade adimensional e curva de superfície ilustrados na figura 36

Figura 36 – Perfis de velocidade adimensional e curva de superfície, respectivamente, para a = 1 e b = 0,5

Fonte: O autor (2017).

Tabela 12 – Coeficientes d_n para a distribuição de velocidade em um duto semi elíptico para a quantidade n de funções bases.

d_n	β		
	0,25	0,5	1
d_1	-0,0959	-0,181782	-0,340681
d_2	-0,0430	-0,06109	-0,09553
d_3	0,77546	0,337063	0,357914
d_4		0,141881	0,200649
d_5		-0,13162	-0,15912
d_6		2,010320	1,477690
d_7			-0,22549
d_8			-2,80792

5.1.4.3 Perfil de temperatura

As soluções das Equações (3.28) e (3.34), nos permite encontrar os perfis de temperatura para H_1 e T, ilustrados nas figuras, Figura 37 e Figura 38, na forma de contornos de temperatura,

Figura 38 – Contornos de temperatura $T_{\rm T}$ para a = 1 e b = 0, 5

Fonte: O autor (2017).

Tabela 13 – Coeficientes d_n para a distribuição de temperatura T_{H_1} em um duto semi elíptico para a quantidade *n* de funções bases.

d_n		β	
	0,25	0,5	1
d_1	0,161812	0,29959	0,5145000
d_2	-0,10483	-0,1225	-0,169428
d_3	-1,36340	-0,6363	-0,430102
d_4		-0,24265	-0,037879
d_5		-0,05072	-0,024475
d_6		-0,22172	-0,204190
d_7			0,1364270
d_8			0,5230680

5.1.4.4 Fator de atrito e número de Nusselt

Os valores de fR_e e números de Nusselt, N_{u_T} e $N_{u_{H_1}}$, são econtrados pelo método baseado em Galerkin e comparados com resultados na literatura,

Figura 39 – Comportamento do número de Nusselt, $N_{u_{\rm T}}$ para $\beta = 0,5$ em relação à distância adimensional *Z*.

Figura 40 – Dados comparados graficamente para os valores de fRe

Figura 41 – Dados comparados graficamente para os valores de $N_{u_{\rm T}}$

Figura 42 – Dados comparados graficamente para os valores de $N_{u_{H1}}$

Fonte: O autor (2017).

5.1.4.5 Discussões dos resultados

Nesta seção foi considerada a geometria de um duto semi elíptico. Nessa geometria observouse que os valores para os números de Nusselt médios foram mais aproximados que os valores para o número de Poiseuille. Quando considerada a condição de fronteira T, encontra-se na literatura, para fins de comparação, somente o trabalho de Velusamy, *et al.*, (1995), e tais valores mostraram-se satisfatórios. Quando considerada a condição de fronteira H₁, tem-se os textos de Vesulamy, *et al.*, (1995), e Alassar, (2016). Também tais resultados foram satisfatórios. Para o tempo computacional, quando considerado $N_{u_{H_1}}$, os valores tiveram uma média de 30 segundos, quando o número de funções bases é tomado n = 6, e 1 minuto quando n = 9. Para N_{u_T} esse tempo computacional aumenta para 2 minutos, quando n = 6, e 8 minutos quado n = 9. O comportamento do número de Nusselt local apresentado na Figura <u>39</u> apresenta valores consideráveis a partir de Z = 0, 19.

A escolha da parametrização mostrou, nessa geometria, um aumento no tempo computacional quando comparados com outras já estudadas. No entanto, o método integral baseado em Galerkin apresentou resultados consideraveis para os valores de fRe, $N_{u_{\rm H_1}}$ e $N_{u_{\rm T}}$ quando comparados com os da literatura.

5.1.5 PLACAS PARALELAS

Nesta parte do trabalho o estudo de escoamento entre placas paralelas infinitas é considerado. As placas estão separadas por uma distância 2b, onde são consideradas infinitas na direção x sem variação de qualquer propriedade do fluido nesta direção. O escoamento, nesta geometria, toma a forma da Figura 43

Figura 43 – Perfil de velocidade entre placas paralelas.

5.1.5.1 Geometria e parametrizações

Considere o escoamento entre duas placas paralelas, ilustradas na Figura 44

Figura 44 – Placas paralelas

Fonte: O autor (2017).

Consideremos as parametrizações em coordenadas adimensionais. Desta forma toma-se o conjunto de funções bases da forma,

$$g(Y) = 1 - \frac{Y^2}{b^2} \tag{5.19}$$

e

$$f_n = \{g(Y), g(Y)Y, g(Y)Y^2, ..., g(Y)Y^n\}$$
(5.20)

Logo,

$$f_n(Y) = g(Y)Y^n$$
, com $n = 0, 1, 2, ..., N.$ (5.21)
Toma-se também a área da seção transversal, o perímetro e o diâmetro hidráulico dados respectivamente por,

$$A_c = 2b, \quad P = 2b \quad e \quad d_h = \frac{4A_c}{P} = 4$$
 (5.22)

onde 2b é a distância entre as placas.

5.1.5.2 Perfil de velocidade

A solução da Equação (3.17) nos possibilita encontrar a distribuição de velocidade adimensional, ilustrada na Figura 45

Figura 45 – Perfil de velocidade adimensional e curva de superfície, respectivamente, para b = 1

Fonte: O autor (2017).

Tabela 14 – Coeficientes d_n para a distribuição de velocidade entre placas paralelas com b = 1para a quantidade *n* de funções bases

	N=1	N=3	N=6
d_1	-0,50000	-0,5000	-0,.5000
d_2		0	0
d_3		$4,27085 imes 10^{-7}$	$0,12262 imes 10^{-4}$
d_4			0
d_5			$-6.08573 imes 10^{-6}$
d_6			0

5.1.5.3 Perfil de temperatura

As soluções das Equações (3.28) e (3.34), permitiu obter as distribuições de temperatura para H₁ e T. Assim temos, Figura 46, os contornos de temperatura para cada condição de fron-

teira H₁ e T,

Figura 46 – Contornos de temperatura T_{H_1} e T_T , respectivamente, para b = 1.

Na Tabela 15, apresenta-se os valores para os coeficientes d_j para a distribuição de temperatura em T_{H_1} .

Tabela 15 – Coeficientes d_j para a distribuição de temperatura entre placas paralelas com b = 1e condição de fronteira H₁ para a quantidade *n* de funções bases

	N=1	N=3	N=6
d_1	0,6000	0,62500	0,6250
d_2		0	0
d_3		-0,12499	-0,12500
d_4			0
d_5			$1,09476 \times 10^{-6}$
d_6			0

5.1.5.4 Fator de atrito e número de Nusselt

Os valores de fR_e e números de Nusselt, N_{u_T} e $N_{u_{H_1}}$, são econtrados pelo método baseado em Galerkin e comparados com resultados na literatura. O comportamento do número de Nusselt local pode ser observado na Figura [47].

Fonte: O autor (2017).

Tabela 16 – Valores de	fR_e , para a	quantidade <i>n</i> de	funções	bases escolhidas
------------------------	-----------------	------------------------	---------	------------------

	β	fR_e					
_		n=1	n=2	n=3	n=4	n=5	n=7
-	1	24,0002	24,0000	24,0000	24,0000	24,0002	24,0002

Tabela 17 – Valores de $N_{u_{\rm H_1}}$, para a quantidade *n* de funções bases escolhidas

β		$N_{u_{\mathrm{H}_{1}}}$					
	n=1	n=2	n=3	n=4	n=5	n=7	
1	8.33333	8,33333	8,23528	8,23528	8,23523	8,23528	

Tabela 18 – Valores de $N_{u_{\rm T}}$, para a quantidade *n* de funções bases escolhidas

β	$N_{u_{\mathrm{T}}}$					
	n=1	n=2	n=3	n=4	n=5	n=7
1	7,77775	7,77775	7,54572	7.54572	7,54072	7,54060

5.1.5.5 Discussões dos resultados

O método integral baseado em Galerkin, quando aplicado a geometria de placas paralelas, apresentou resultados com aproximações de até quatro casas decimais para números de Nusselt médios $N_{u_{\text{H}_1}}$ e $N_{u_{\text{T}}}$. Para valores de *fRe* foi obtido os mesmos apresentados por Shah e London, (1978), e Shah, (1975). Os valores para o número de Nusselt $N_{u_{\text{H}_1}}$ e *fRe* tiveram um tempo computacional médio de 7 segundos, enquanto o número de Nusselt $N_{u_{\text{T}}}$ de 13 segundos. Por apresentar uma geometria simples, observou-se que o tempo computacional não foi alterado mesmo quando aumentava-se o número de funções bases, *n*. O número de Nusselt local, $N_{u_{\text{T},Z}}$, a partir de Z = 0,32 apresentou valores satisfatórios para a convergência desejada.

5.1.6 DUTO RETANGULAR

Ao longo de décadas a geometria retangular vem sendo estudada por diversos estudiosos a fim de apresentarem soluções tanto analíticas quanto numéricas das equações de momento linear e energia. Tais pesquisas, além das citadas na introdução e na revisão bibliográfica deste trabalho, podem ser encontradas nos textos de Schmidt e Newell (1967), Hartnett e Kostic (1989), Gao e Hartnett (1993), Oztop, Dagtekin e Sahin (2009), Ostrowski e Remiorz (2013), assim como pesquisas mais recentes aboardadas por Akyildiz e Siginer (2016), Kin, B.(2016), Housiadas e Georgiou (2018) e Kotcioglu *et al.* (2018). É com esta motivação que apresentamos um estudo de escoamento completamente desenvolvido em dutos de seção transversal retangular. Nesta geometria, o escoamento toma a forma da Figura [48].

Figura 48 – Perfil de velocidade em um duto retangular.

Fonte: O autor (2017).

5.1.6.1 Geometria e parametrizações

Considere um duto de seção transversal retangular, ilustrado na Figura 49

Figura 49 – Duto retangular com valores a = 1 e b = 0,5

Fonte: O autor (2017).

Considera-se a parametrização em coordenadas adimensionais. Desta forma toma-se o conjunto de funções bases como,

$$g(X,Y) = \left(a^2 X^2 - 1\right) \left(a^2 Y^2 - \frac{b^2}{a^2}\right)$$
(5.23)

e

$$f_n = \{g(X,Y), g(X,Y)X^2, g(X,Y)Y^2, g(X,Y)X^2Y^2, g(X,Y)X^4, \dots, g(X,Y)X^nY^m\}$$
(5.24)

Logo,

$$f_n(X,Y) = g(X,Y)X^nY^m$$
, com $n,m = 0,2,4,...,N.$ (5.25)

Toma-se a área da seção transversal, o perímetro e o diâmetro hidráulico dados respectivamente por,

$$A_c = \frac{4b}{a}, \quad P = 4\left(1 + \frac{b}{a}\right) \quad e \quad d_h = \frac{4A_c}{P} = \frac{4b}{a+b}$$
 (5.26)

onde 2a e 2b são os lados do retângulo.

5.1.6.2 Perfil de velocidade

A solução da Equação (3.17) nos dá a distribuição de velocidade adimensional e curva de superfície, ilustrados na figura 50,

Figura 50 – Perfis de velocidade adimensional e curva de superfície, respectivamente, para a = 1 e b = 0,5

Fonte: O autor (2017).

Tabela 19 – Coeficientes d_n para a distribuição de velocidade em um duto retangular para a quantidade n de funções bases.

d_n		β	
	1	0,5	0,125
d_1	0,29219	0,4553	0,49447
d_2	0,05922	0,2412	0,72558
d_3	0,05922	0,0489	0,33254
d_4		-0,034	-8.0124
d_5		-0,034	-0,8011
d_6		1,2397	20,0507
d_7			-0,7217
d_8			15,9440
d_9			2,48500

5.1.6.3 Perfil de temperatura

As soluções das Equações (3.28) e (3.34), nos permite encontrar os perfis de temperatura para H₁ e T. Assim são ilustrados os contornos de temperaturas nas Figuras 51 e 52

Figura 51 – Contornos de temperatura T_{H1} para a = 1 e b = 0, 5

Figura 52 – Contornos de temperatura $T_{\rm T}$ para a = 1 e b = 0, 5

Fonte: O autor (2017).

Tabela 20 – Coeficientes d_n para a distribuição de temperatura em um duto retangular com condição de fronteira H₁ para a quantidade *n* de funções bases.

d_n		β	
	1	0,5	0,125
d_1	0,46375	0,7084	0,68054
d_2	-0,06823	0,1120	0,58956
d_3	-0,06823	-0,550	-8,6786
d_4		-0,024	-8,9077
d_5		-0,122	-10,090
d_7			2,09240
d_8			-84,622
d_9			0,00369

5.1.6.4 Fator de atrito e número de Nusselt

Os valores de fR_e e números de Nusselt, N_{u_T} e $N_{u_{H_1}}$, são econtrados pelo método integral baseado em Galerkin e comparados com os resultados na literatura,

Fonte: O autor (2017).

Figura 54 – Dados comparados graficamente para os valores de fRe.

Fonte: O autor (2017).

Figura 55 – Dados comparados graficamente para os valores de $N_{u_{\rm T}}$.

Fonte: O autor (2017).

Figura 56 – Dados comparados graficamente para os valores de $N_{u_{\rm HI}}$.

5.1.6.5 Discussões dos resultados

Na geometria retangular observamos uma boa concordância do método aplicado. Valores para fRe, $N_{u_{H1}} e N_{u_T}$ mostraram aproximações satisfatórias. Assim como os estudos de Marner e Suitor (1987) e Ebadian e Dong (1998), apresentamos um grande número de diferentes valores para a razão de aspecto. Os gráficos das Figuras 54 a 56 ilustram uma excelente concordância com os valores reportados na literatura. Para o cálculo de fRe e $N_{u_{H1}}$ apresentaram um tempo computacional de 12 segundos, considerando n = 19 funções bases. Para N_{u_T} esse tempo passa para 35 segundos, sendo considerando a mesma quantidade de funções. O número de Nusselt local, $N_{u_{TZ}}$, a partir de Z = 0,25 apresentou valores satisfatórios para a convergência desejada. Quando considerado o valor de $\beta = 0,001$ observamos que os valores de fRe, $N_{u_{H1}}$ e N_{u_T} se aproximam dos valores quando considera-se placas paralelas, veja Tabela 38 e Tabela 39, Apêndice A, monstrando a boa concordância do método empregado. Assim, o método integral baseado em Galerkin mostrou-se satisfatório para o estudo em geometria retangular.

5.1.7 DUTO SENO

Nesta seção é apresentado resultados de perfil de velocidade e temperatura para escoamento completamente desenvolvido em dutos de seção transversal tipo seno. O escoamento neste tipo de duto toma a seguinte forma,

Figura 57 – Perfil de velocidade em um duto tipo seno.

Fonte: O autor (2017).

5.1.7.1 Geometria e parametrizações

Considere um duto de seção transversal tipo seno, ilustrado na Figura 58

Figura 58 – Duto tipo seno com valores a = 1 e b = 0,5

Fonte: O autor (2017).

Consideremos a parametrização em coordenadas adimensionais e o conjunto de funções bases como,

$$g(X,Y) = Y\left(\frac{\beta}{2}\left(1 + \cos(2\pi X)\right) - Y\right), \quad \text{com } \beta = \frac{b}{a}$$
(5.27)

e

$$f_n = \{g(X,Y), g(X,Y)X^2, g(X,Y)Y^2, g(X,Y)X^2Y^2, g(X,Y)X^4, \dots, g(X,Y)X^nY^m\}$$
(5.28)

Logo,

$$f_n(X,Y) = g(X,Y)X^nY^m$$
, com $n,m = 0,2,4,...,N.$ (5.29)

Assim, a área da secção transversal, o perímetro e o diâmetro hidráulico são dados respectivamente por,

$$A_{c} = 2ab, \ P = 2 + \frac{4aE\left[\pi\sqrt{-\frac{b^{2}}{a^{2}}}\right]}{\pi} \ e \ d_{h} = \frac{4A_{c}}{P} = \frac{2aE\left[\pi\sqrt{-\frac{b^{2}}{a^{2}}}\right] + \pi}{ab\pi}$$
(5.30)

onde E[*] é a integral elíptica completa de segundo tipo.

5.1.7.2 Perfil de velocidade

A solução da Equação (3.17) possibilita encontrar o valor da distribuição de velocidade adimensional e a curva de superfície ilustrada pela Figura 59

Figura 59 – Perfis de velocidade adimensional e curva de superfície, respectivamente, para a = 1 e b = 0,5

Fonte: O autor (2017).

Tabela 21 – Coeficientes d_n para a distribuição de velocidade em um duto tipo seno para a quantidade n de funções bases.

d_n		β	
	0,125	0,5	1
d_1	0,47444	0,3350	0,2311
d_2	0	0	0
d_3		-0,3238	-0,3219
d_4		1,2558	0,7006
d_5			0
d_6			0,14793
d_7			0

5.1.7.3 Perfil de temperatura

As soluções das Equações (3.28) e (3.34), permite encontrar os perfis de temperatura para H_1 e T, e são apresentadas aqui na forma de contornos de temperatura, ilustrados na Figura 60

Figura 60 – Contornos de temperaturas T_{H_1} e T_T , respectivamente, para a = 1 e b = 0, 5

Fonte: O autor (2017).

d_n		β	
	0,125	0,5	1
d_1	0,71765	0,53773	0,31493
d_2	0	0	0
d_3		-0,5543	-0,23126
d_4		-0,83571	0,21275
d_5			0
d_6			-0,10275
d_7			0

Tabela 22 – Coeficientes d_n para a distribuição de temperatura em um duto tipo seno com condição de fronteira $T_{\rm H_1}$ para a quantidade *n* de funções bases.

5.1.7.4 Fator de atrito e número de Nusselt

Os valores de fR_e e números de Nusselt, N_{u_T} e $N_{u_{H_1}}$, são econtrados pelo método de Galerkin e comparados com resultados na literatura,

Figura 61 – Comportamento do número de Nusselt, $N_{u_{T,Z}}$, para $\beta = 0,5$ em relação à distância adimensional *Z*.

Figura 62 – Dados comparados graficamente para os valores de fRe

Fonte: O autor (2017).

Figura 64 – Dados comparados graficamente para os valores de $N_{u_{\rm H1}}$

Fonte: O autor (2017).

5.1.7.5 Discussões dos resultados

O método de Galerkin mostrou-se eficaz na obtenção dos valores de fRe, $N_{u_{H_1}}$ e N_{u_T} quando considerada a geometria tipo seno. Todos os valores encontrados mostraram-se com melhor aproximação quando considerada a razão de aspécto $\beta < 2$. Para valores da razão de aspécto, $\beta > 2$, é necessário um número maior de funções bases para obter resultados satisfatórios. O tempo computacional para valores de fRe, $N_{u_{H_1}}$ foi em média 1 minuto, considerando o número de funções bases n = 6. Para $N_{u_{\rm T}}$ esse tempo computacional torna-se, em média, 2 minutos e 15 segundos considerando-se o mesmo número de funções bases. Na Figura 61 observa-se o comportamento do número de Nusselt local, $N_{u_{TZ}}$, que a partir de Z = 0,039 apresentou valores satisfatórios para a convergência desejada Nu = 2,0949.

5.1.8 DUTO DUPLO SENO

Nesta seção são apresentados resultados de escoamento completamente desenvolvido em dutos de seção transversal tipo duplo seno. Nesta geometria o escoamento tem o seguinte aspecto,

Figura 65 – Perfil de velocidade em um duto tipo duplo seno.

Fonte: O autor (2017).

Valores para fRe, $N_{u_{H_1}}$ e N_{u_T} são paresentados e discutidos.

5.1.8.1 Geometria e parametrizações

Considere um duto de seção transversal tipo duplo seno, ilustrado na Figura 66

Figura 66 – Duto duplo seno com valor $\beta = \frac{b}{a} = 0,5$

Fonte: O autor (2017).

Consideremos a seguinte parametrização em coordenadas adimensionais e o conjunto de funções bases da forma,

$$g(X,Y) = \left(\frac{\beta}{2}(\cos(\pi X)) + Y\right) \left(\frac{\beta}{2}(\cos(\pi X)) - Y\right), \text{ com } \beta = \frac{b}{a}$$
(5.31)

e

$$f_n = \{g(X,Y), g(X,Y)X^2, g(X,Y)Y^2, g(X,Y)X^2Y^2, g(X,Y)X^4, \dots, g(X,Y)X^nY^m\}$$
(5.32)

Logo,

$$f_n(X,Y) = g(X,Y)X^nY^m$$
, com $n,m = 0,2,4,...,N.$ (5.33)

Toma-se a área da secção transversal, o perímetro e o diâmetro hidráulico dados respectivamente por,

$$A_{c} = \frac{8ab}{\pi}, \ P = \frac{8aE\left[\frac{1}{2}\pi\sqrt{-\frac{b^{2}}{a^{2}}}\right]}{\pi} \ e \ d_{h} = \frac{4A_{c}}{P} = \frac{E\left[\frac{1}{2}\pi\sqrt{-\frac{b^{2}}{a^{2}}}\right]}{b}$$
(5.34)

onde E[*] é a integral elíptica completa de segundo tipo.

5.1.8.2 Perfil de velocidade

A solução da Equação (3.17) possibilita encontrar a distribuição de velocidade adimensional e a curva de superfície, ilustrados na Figura 67

Figura 67 – Perfis de velocidade adimensional e curva de superfície, respectivamente, para a = 1 e b = 0,5

Fonte: O autor (2017).

Tabela 23 – Coeficientes d_n para a distribuição de velocidade em um duto tipo duplo seno para a quantidade n de funções bases.

d_n		β	
	0,125	0,5	1
d_1	0,48871	0,3395	1,3368
d_2	0	0	0
d_3		0	0
d_4		1,3368	1,1337
d_5			0
d_6			-0,1319

5.1.8.3 Perfil de temperatura

As soluções das Equações (3.28) e (3.34), permite encontrar os perfis de temperatura para H_1 e T, e são ilustradas como contornos de temperaturas ilustrados na Figura 68

Figura 68 – Contornos de temperatura $T_{\rm H1}$ e $T_{\rm T}$, respectivamente, para $\beta = \frac{b}{a} = 0,5$

Fonte: O autor (2017).

Tabela 24 – Coeficientes d_n para a distribuição de temperatura em um duto tipo duplo seno com condição de fronteira H₁ para a quantidade *n* de funções bases.

d_n		β	
	0,125	0,5	1
d_1	0,70367	0,51336	0,29988
d_2	0	0	0
d_3		0	0
d_4		-0,16957	0,88712
d_5			0
d_6			-0,67547

5.1.8.4 Fator de atrito e número de Nusselt

Os valores de fR_e e números de Nusselt, N_{u_T} e $N_{u_{H_1}}$, são econtrados pelo método de Galerkin e comparados com resultados na literatura. A apresentação desses valores encontram-se na Tabela 41, Apênce A, e nas Figuras 70, 71 e 72. O número de Nusselt local para a condição de fronteira T é apresentado graficamente na Figura 69

Figura 70 – Dados comparados graficamente para os valores de fRe

Figura 71 – Dados comparados graficamente para os valores de $N_{u_{\rm T}}$

Figura 72 – Dados comparados graficamente para os valores de $N_{u_{\rm H1}}$

5.1.8.5 Discussões dos resultados

Quando considerada a geometria duplo seno os valores para *fRe* teve aproximações mais satisfatórias quando comparados com os valores dos números de Nusselts médios $N_{u_{\rm T}}$ e $N_{u_{\rm H_1}}$. No entanto, os três parâmetros de interesses mostraram-se com aproximações satisfatórias, de até duas casas decimais, quando considerado a razão de aspécto $\beta \le 1$. O tempo computacional para o cálculo de *fRe* e $N_{u_{\rm H_1}}$ foram, em media, 17 segundos. Já para os valores de $N_{u_{\rm T}}$ esse tempo computacional tornou-se, em média, 40 segundos. O número de funções bases consideradas em todos os casos foi n = 6. O número de Nusselt local, $N_{u_{\rm T,Z}}$, a partir de Z = 0,05apresentou valores satisfatórios para a convergência desejada. Assim, o método de Galerkin mostrou-se eficaz quando considerada a geometria tipo duplo seno.

5.1.9 DUTO TRIANGULAR DIREITO

Nesta seção o método de Galerkin é utilizado para encontrar soluções para a equação de energia e de momento linear para escoamento em dutos de seção transversal triangular direito. Nesta geometria, o escoamento toma a forma,

Figura 73 – Perfil de velocidade em um duto triangular direito.

Fonte: O autor (2017).

Número de Poiseuille e números de Nusselt médios são apresentados.

5.1.9.1 Geometria e parametrizações

Considere um duto de seção transversal triangular direito, ilustrado na Figura 74

Fonte: O autor (2017).

onde α representa o ângulo oposto ao eixo Y.

Considera-se a parametrização em coordenadas adimensionais e tomemos o conjunto de funções bases da forma,

$$g(X,Y) = XY(\beta - \beta X - Y)$$
 onde $\beta = \frac{b}{a} = tg(\alpha)$ (5.35)

onde b e a são os catetos oposto e adjacente ao ângulo α , respectivamente, e

$$f_n = \{g(X,Y), g(X,Y)X^2, g(X,Y)Y^2, g(X,Y)X^2Y^2, g(X,Y)X^4, \dots, g(X,Y)X^nY^m\}$$
(5.36)

Logo,

$$f_n(X,Y) = g(X,Y)X^nY^m$$
, com $n,m = 0,2,4,...,N.$ (5.37)

Toma-se a área da seção transversal, o perímetro e o diâmetro hidráulico dados respectivamente por,

$$A_c = \frac{\beta}{2}, \quad P = 1 + \beta + \frac{1}{\cos(\alpha)} \quad e \quad d_h = \frac{4A_c}{P} = \frac{2\beta}{1 + \beta + \frac{1}{\cos(\alpha)}}.$$
 (5.38)

5.1.9.2 Perfil de velocidade

A solução da Equação (3.17) dá a distribuição de velocidade adimensional e a curva de superfície, ilustrados na figura 75

Figura 75 – Perfis de velocidade adimensional e curva de superfície, respectivamente, para a =

Tabela 25 – Coeficientes d_n para a distribuição de velocidade em um duto triangular direito para a quantidade n de funções bases.

d_n		α	
	30°	45°	60°
d_1	1.86838	1,12669	0,587558
d_2	-6,5200	-2,3064	-0,49449
d_3	-3,9478	-1,6985	-0,46589
d_4	14,7249	4,56155	0,295403
d_5	13,2436	4,31433	1,094000
d_6	-15,119	-5,3092	-1,54998
d_7	9,75454	1,38980	0,144888
d_8	98,4795	6,76553	2,520510
d_9	-9,3716	-3,0504	-0,78685

5.1.9.3 Perfil de temperatura

As soluções das Equações (3.28) e (3.34), nos oferecem os perfis de temperatura para H_1 e T. Apresenta-se estes perfis em forma de contornos de temperatura ilustrados na Figura 76

Figura 76 – Contornos de temperatura $T_{\rm H_1}$ e $T_{\rm T}$ para a = 1 e $\beta = \frac{b}{a} = tg(\alpha) \, \mathrm{com} \, \alpha = \frac{\pi}{6}$

Fonte: O autor (2017).

Tabela 26 – Coeficientes d_n para a distribuição de temperatura em um duto triangular direito com condição de fronteira H₁ para a quantidade *n* de funções bases.

d_n		α	
	30°	45°	60°
d_1	2,969910	1,71676	0,931691
d_2	-10,1681	-2,0978	0,2386870
d_3	-4,14559	-2,6144	-0,885675
d_4	62,69850	12,4625	0,7318320
d_5	12,66290	-2,0096	-3,06348
d_6	-64,7798	2,40491	2,816410
d_7	-16,8402	0,52335	0,2201360
d_8	-1504,88	-137,34	-6,33230
d_9	-5,58512	2,79824	2,312790

5.1.9.4 Fator de atrito e número de Nusselt

Os valores de fR_e e números de Nusselt, $N_{u_{\rm T}}$ e $N_{u_{\rm H_1}}$, são econtrados pelo método integral baseado em Galerkin e comparados com resultados na literatura. Os valores para o número de Nusselt local é apresentado na figura, Figura 77, e os valores apresentados na Tabela 42, Apêndice A, são também colocados em forma de gráficos nas figuras, Figura 78, Figura 79 e Figura 80, respectivamente, Figura 77 – Comportamento do número de Nusselt, $N_{u_{T,Z}}$, para $\alpha = \frac{\pi}{6}$ em relação à distância adimensional Z.

Figura 78 – Dados comparados graficamente para os valores de fRe

Fonte: O autor (2017).

Figura 79 – Dados comparados graficamente para os valores de $N_{u_{\rm T}}$

Figura 80 – Dados comparados graficamente para os valores de $N_{u_{\rm HI}}$

5.1.9.5 Discussões dos resultados

O método integral baseado em Galerkin se mostrou eficaz quando considerada a geometria triangular direito. Todos os valores para fRe, $N_{u_{\rm T}}$ e $N_{u_{\rm H_1}}$ estão em concordância com a literatura. Neste trabalho foi apresentado valores para o número de Nusselt $N_{u_{\rm T}}$ com razão de aspecto $\beta \ge 50$. Na literatura são encontrados resultados somente para razão de aspectos $\beta < 50$. Quando considerado valores para fRe e $N_{u_{\rm H_1}}$ somente o trabalho de Shah e London, (1978), considera os mesmos valores para a razão de aspecto. O tempo computacional para o cálculo de fRe e $N_{u_{\rm H_1}}$ foram, em media, 10 segundos. Já para os valores de $N_{u_{\rm T}}$ o tempo computacional, em média, foi de 37 segundos. O número de funções bases consideradas em todos os casos foi n = 15. Todos os gráficos e figuras foram realizados separadamente para obter o menor tempo computacional. Observa-se que o número de Nusselt local, $N_{u_{\rm TZ}}$, a partir de Z = 0,035 apresenta valores satisfatórios para a convergência desejada.

5.1.10 DUTO TRIANGULAR EQUILÁTERO

Vários trabalhos na literatura se deteram a estudar o escoamento em dutos de seção transversal triangular equilátero. Trabalhos como os de Shah e London, (1978), Haji-Sheikh, *et al.*, (1983), Rajagopal e Sadegh, (1985), Zang, *et al.*, (1991), Lakshminarayanan e Heji-Sheikh, (1992) e Shahmardan, *et al.*, (2015). Com a motivação de poder comparar os dados obtidos neste trabalho com vários apresentados na literatura, nos deteremos a obter resultados de escoamento completamente desenvolvido em dutos de seção transversal triangular equilátero. Nesta geometria o escoamento toma a forma,

Figura 81 – Perfil de velocidade em um duto triangular equilátero.

Fonte: O autor (2017).

5.1.10.1 Geometria e parametrizações

Considere um duto de seção transversal triangular equilátero, ilustrado na Figura 82

Figura 82 – Duto triangular equilátero com lado 2a = 2

Fonte: O autor (2017).

Considera-se uma parametrização em coordenadas adimensionais e o conjunto de funções bases da forma,

$$g(X,Y) = (-Ya + b)(Xb - Ya)(-Xb - Ya)$$
(5.39)

com $b = a\sqrt{3}$, a altura do triângulo, e

$$f_n = \{g(X,Y), g(X,Y)X^2, g(X,Y)Y^2, g(X,Y)X^2Y^2, g(X,Y)X^4, \dots, g(X,Y)X^nY^m\}$$
(5.40)

Logo,

$$f_n(X,Y) = g(X,Y)X^nY^m$$
, com $n,m = 0,2,4,...,N.$ (5.41)

A área da seção transversal, o perímetro e o diâmetro hidráulico são respectivamente,

$$A_c = ab, \quad P = 2b\sqrt{3} \quad e \quad d_h = \frac{4A_c}{P} = \frac{2a\sqrt{3}}{3}.$$
 (5.42)

5.1.10.2 Perfil de velocidade

A solução da equação (3.17) nos possibilita econtrar a distribuição de velocidade adimensional e a curva de superfície, ilustrados na Figura 83

Fonte: O autor (2017).

Tabela 27 – Coeficientes d_n para a distribuição de velocidade em um duto triangular equilátero com $\beta = \sqrt{3}$ para a quantidade *n* de funções bases

	N=3	N=6	N=9
d_1	0,14434	0,144337	0,144338
d_2	$-4,49938 \times 10^{-7}$	$0,115033 imes 10^{-4}$	$-0,178692^{-4}$
d_3	$-1,85303 imes 10^{-7}$	$-4,53568 \times 10^{-7}$	$-1,7736 imes 10^{-6}$
d_4		$-1,42344 imes 10^{-6}$	$0,499396 \times 10^{-4}$
d_5		$-0,424077 \times 10^{-4}$	$0,30635 imes 10^{-3}$
d_6		$-0,334684 imes 10^{-4}$	$0,488205 imes 10^{-3}$
d_7			$3,45873 imes 10^{-6}$
d_8			$-0,130567\times 10^{-3}$
d_9			$-0,909664 imes 10^{-4}$

5.1.10.3 Perfil de temperatura

As soluções das Equações (3.28) e (3.34), fornecem os perfis de temperatura para H₁ e T. Apresenta-se os contornos de temperatura para ambos os casos ilustrados na Figura 84

Figura 84 – Contornos de temperatura $T_{\rm H1}$ e $T_{\rm T}$, respectivamente, para 2a = 2

Na Tabela 4, apresenta-se os valores para os coeficientes d_n para a distribuição de temperatura em T_{H_1} .

Tabela 28 – Coeficientes d_n para a distribuição de temperatura em um duto triangular equilátero com $\beta = \sqrt{3}$ e condição de fronteira H₁ para a quantidade *n* de funções bases

	N=3	N=6	N=9
d_1	0,2237	0,21566	0,154425
d_2	-0,173	-0,0459156	-0,179872
d_3	$-0.666869 imes 10^{-3}$	0,005318	0,1118580
d_4		-0,08305	-0,001309
d_5		$0,911559 imes 10^{-3}$	0,3368290
d_6		0,0241199	-0,357615
d_7			-0,0363723
d_8			0,0909585
d_9			-0,0034901

5.1.10.4 Fator de atrito e número de Nusselt

Os valores de fR_e e números de Nusselt, N_{u_T} e $N_{u_{H_1}}$, são econtrados pelo método de Galerkin e comparados com resultados na literatura, Tabela 43 Apêndice A. Também é apresentado o

número de Nusselt local, Figura 85

Figura 85 – Comportamento do número de Nusselt, $N_{u_{T,Z}}$, para $\beta = \frac{b}{a} = \sqrt{3}$, com *a* e *b* a metade do lado e a altura do triângulo equilátero, em relação à distância adimensional *Z*.

Fonte: O autor (2017).

5.1.10.5 Discussões dos resultados

O método integral baseado em Galerkin, quando aplicado a geometria triangular equilátero, apresentou resultados satisfatórios com os apresentados na literatura. Quando considerado $N_{u_{\rm T}}$ a literatura apresenta dados diferentes, chegando a terem variância de até 1,414 para os valores apresentados. No entando todos os trabalhos mostram uma concordância quando são considerados os parâmetros *fRe* e $N_{u_{\rm H_1}}$. Os valores para o número de Nusselt $N_{u_{\rm H_1}}$ e *fRe* tiveram um tempo computacional médio de 11 segundos, enquanto para o número de Nusselt $N_{u_{\rm T}}$ esse número dobra, média de 22 segundos. Nesta geometria foi considerado o número de funções bases igual a n = 15. O número de Nusselt local, $N_{u_{\rm T,Z}}$, a partir de Z = 0, 2 apresentou valores satisfatórios para a convergência desejada.

5.1.11 DUTO TRIANGULAR ISÓSCELES

Nesta seção, apresentamos resultados de escoamento completamente desenvolvido em dutos de seção transversal triangular isósceles. A forma do escoamento nesta geometria é representada pela Figura 86:

Figura 86 – Perfil de velocidade em um duto triangular isósceles.

Fonte: O autor (2017).

5.1.11.1 Geometria e parametrizações

Considere um duto de seção transversal triangular isósceles, ilustrado na Figura 87,

Figura 87 – Duto triangular isósceles com valores
$$a = 1$$
 e $\alpha = \frac{\pi}{6}$

Fonte: O autor (2017).

Considera-se a parametrização em coordenadas adimensionais e o conjunto de funções bases da forma,

$$g(X,Y) = \left(-\frac{a^2}{2b}X - aY\right)\left(\frac{a^2}{2b} - aY\right)(2b - aX) \text{ com } b = \frac{a}{2tg\left(\frac{\alpha}{2}\right)}$$
(5.43)

onde α é o ângulo do triângulo cujo vértice está na origem dos eixos e

$$f_n = \{g(X,Y), g(X,Y)X^2, g(X,Y)Y^2, g(X,Y)X^2Y^2, g(X,Y)X^4, \dots, g(X,Y)X^nY^m\}$$
(5.44)

Logo,

$$f_n(X,Y) = g(X,Y)X^nY^m$$
, com $n,m = 0, 2, 4, ..., N.$ (5.45)

Toma-se a área da secção transversal, o perímetro e o diâmetro hidráulico dados respectivamente por,

$$A_c = 2ab, \quad P = 2a + 2\sqrt{a^2 + 4b^2} \quad e \quad d_h = \frac{4A_c}{P} = \frac{4ab}{a + \sqrt{a^2 + 4b^2}}.$$
 (5.46)

5.1.11.2 Perfil de velocidade

A solução da Equação (3.17) possibilita encontrar o valor da distribuição de velocidade adimensional e a curva de superfície, ilustrados na Figura 88,

Tabela 29 – Coeficientes d_n para a distribuição de velocidade em um duto triangular isósceles para a quantidade n de funções bases.

d_n		α	
	30°	60°	120°
d_1	-0,165293	-0,43301	-0,56929
d_2	-0,031285	$1,87967 imes 10^{-7}$	3,387081
d_3	-0,025319	$2,56702 imes 10^{-7}$	0,560086
d_4	0,0075671	$-1,5156 imes 10^{-6}$	-2,57477
d_5	$0,407723 imes 10^{-3}$	$9,39296 imes 10^{-8}$	-12,9506
d_6	$-0,93794 imes 10^{-3}$	$5,77380 imes 10^{-7}$	4,347572
d_7	0,019673	$3,13832 imes 10^{-6}$	-0,17392
d_8	$-0,31458 imes 10^{-3}$	$-5,4001 imes 10^{-7}$	0,629949
d_9	$-0,16382 \times 10^{-4}$	$-5,0345 imes 10^{-9}$	18,09857

5.1.11.3 Perfil de temperatura

As Equações (3.28) e (3.34), permite encontrar os perfis de temperatura para H_1 e T. Tais perfis são apresentados em forma de contornos de temperaturas ilustrados na Figura [89],

Figura 89 – Contornos de temperatura $T_{\rm H1}$ e $T_{\rm T}$, respectivamente, para $a = 1, b = \frac{a}{2tg(\frac{\alpha}{2})}$ e

Fonte: O autor (2017).

Tabela 30 – Coeficientes d_n para a distribuição de temperatura em um duto triangular isósceles com condição de fronteira H₁ para a quantidade *n* de funções bases.

d_n		α	
	30°	45°	60°
d_1	0,015177	-0,36646	-0,90501
d_2	-0,11418	-0,61311	3,684111
d_3	0,213787	-0,51456	2,590540
d_4	0,002859	0,037864	-8,88317
d_5	0,001438	0,317270	-9,86550
d_6	$0,43905 imes 10^{-3}$	-0,01178	11,43011
d_7	-0,01899	-0,02350	-1,24084
d_8	$0,48244 imes 10^{-3}$	0,005444	6,045197
d_9	$0,22675 imes 10^{-3}$	-0,04499	12,46344

5.1.11.4 Fator de atrito e número de Nusselt

Os valores de fR_e e números de Nusselt, N_{u_T} e $N_{u_{H_1}}$, são econtrados pelo método de Galerkin e comparados com resultados na literatura. Os valores para o número de Nusselt local é apresentado na figura, Figura 90, e os valores apresentados na Tabela 44, Apêndice A, são colocados em forma de gráficos pelas figuras, Figura 91, Figura 92 e Figura 93, respectivamente,

Figura 91 – Dados comparados graficamente para os valores de fRe

Figura 92 – Dados comparados graficamente para os valores de $N_{u_{\rm T}}$

Fonte: O autor (2017).

Figura 93 – Dados comparados graficamente para os valores de $N_{u_{H1}}$

Fonte: O autor (2017).

5.1.11.5 Discussões dos resultados

Todos os valores encontrados para $fRe e N_{u_{H_1}}$ mostraram-se com boa concordância quando comparados com os resultados apresentados na literatura. Foram encontrados resutados para 29 valores do ângulo, cujo vértice do triângulo encontra-se na origem do sistema de coordenadas. Os valores para o número de Nusselt $N_{u_{H_1}} e fRe$ tiveram um tempo computacional médio de 10 segundos, enquanto para o número de Nusselt N_{u_T} esse número dobra, média de 20 segundos. Nesta geometria foi considerado o número de funções bases igual a n = 9. Observa-se que quando o ângulo é considerado $\alpha = \frac{\pi}{6}$, duto equilátero, obtemos valores semelhantes a Tabela 43, Apêndice A, mostrando a boa concordância do método. O número de Nusselt local, $N_{u_{T,Z}}$, a partir de Z = 0,4 apresentou valores satisfatórios para a convergência desejada. Assim o método de Galerkin se mostrou eficaz quando consideramos um duto de geometria triangular isósceles.

5.1.12 DUTO CORRUGADO

Quando considera-se um duto de geometria corrugada poucos são os trabalhos encontrados na literatura. Dentre estes, pode-se citar Shah e London (1978), Hu (1973), Casallera *et al.* (1967) e Moharana e Khandekar (2013).

Alguns valores para o número de Poiseuille, fRe, e números de Nusselt médios para condições de fronteira H₁ e H₂ são encontrados em Shah e London (1978). Nesse trabalho os valores apresentados são atribuídos a Hu (1975), que empregou a técnica de funções de Green para apresentar tais resultados. Outros autores a considerar esta geometria foram Moharana e Khandekar (2013). Os autores apresentam uma formulação generalizada no estudo de escoamento completamente desenvolvido em dutos de seção transversal corrugada, corrugada com ânulo circular e circular com ânulo corrugado. Os resultados são apresentados utilizando técnicas semi-analíticas bidimensional. Gráficos da razão de aspecto versus função tensão de cisalhamento e contornos de velocidade adimensional são também apresentados.

Nesta geometria o escoamento toma a forma

Figura 94 – Perfil de velocidade em um duto corrugado.

Tendo observado que o método de Galerkin mostrou-se eficaz e apresentou resultados satisfatórios em outras geometrias estudadas nesta tese, foi realizado um estudo de escoamento completamente desenvolvido em um duto de seção transversal corrugada. Valores para o número de Poiseuille, *fRe* e número de Nusselt médio, condição de contorno H₁, são calculados pelo método de Galerkin.

5.1.12.1 Geometria e parametrizações

Considere um duto de seção transversal corrugada tipo seno, ilustrado na Figura 95

Fonte: O autor (2017).

onde N é o número de corrugações, tipo seno, da seção transversal. A razão de aspecto, em um duto corrugado, é definidada como na Figura 96:

Figura 96 – Razão de aspecto em um duto corrugado.

Fonte: Adaptado de SHAH; LONDON, 1978. pp. 275.

Considerando a seguinte parametrização em coordenadas polar e o conjunto de funções bases da forma,

$$g(r, \theta) = a + bsen(N\theta) - r$$
, com aspecto do raio $\beta = \frac{b}{a}$ (5.47)

e

$$f_n = \{g(r,\theta), g(r,\theta)r^2, g(r,\theta)\theta^2, g(r,\theta)r^2\theta^2, g(r,\theta)r^4, \dots, g(r,\theta)r^n\theta^m\}$$
(5.48)

Logo,

$$f_n(r,\theta) = g(r,\theta)r^n\theta^m$$
, com $n,m = 0,2,4,...,N$. (5.49)

Toma-se a área da secção transversal como

$$A_c = \frac{1}{2} \int_0^{2\pi} (a + bsen(N\theta)) d\theta, \qquad (5.50)$$

Para o perímetro usamos a definição de comprimento de arco:

$$P = \int_0^{2\pi} \sqrt{(a + bsen(N\theta))^2 + \left(\frac{d}{d\theta}(a + bsen(N\theta)\right)^2} d\theta,$$
(5.51)

e o diâmetro hidráulico é dado pela equação (3.35).

5.1.12.2 Perfil de velocidade

A solução da Equação (3.17) possibilita encontrar a distribuição de velocidade adimensional e a curva de superfície, ilustrados na Figura 97

Figura 97 – Perfis de velocidade adimensional e curva de superfície, respectivamente, para $\beta = \frac{b}{a} = 0,08$ e N=8.

5.1.12.3 Perfil de temperatura

A solução da Equação (3.28), permite encontrar o perfil de temperatura para H₁ e é aparesentado como contornos de temperatura ilustrado na Figura 98

Fonte: O autor (2017).

5.1.12.4 Fator de atrito e número de Nusselt

Os valores de fR_e e número de Nusselt, $N_{u_{H_1}}$, são econtrados pelo método de Galerkin e comparados com resultados na literatura. A apresentação desses valores encontram-se na Tabela 45 e Figuras 99 a 106.

Figura 99 – Dados comparados graficamente para os valores de fRe com N = 8.

Figura 100 – Dados comparados graficamente para os valores de fRe com N = 12.

Fonte: O autor (2017).

Figura 101 – Dados comparados graficamente para os valores de fRe com N = 16.

Fonte: O autor (2017).

Figura 102 – Dados comparados graficamente para os valores de fRe com N = 24.

Figura 103 – Dados comparados graficamente para os valores de $N_{u_{H1}}$ com N = 8.

Fonte: O autor (2017).

Figura 104 – Dados comparados graficamente para os valores de $N_{u_{\text{H1}}}$ com N = 12.

Fonte: O autor (2017).
Figura 105 – Dados comparados graficamente para os valores de $N_{u_{\rm H1}}$ com N = 16.

Fonte: O autor (2017).

Figura 106 – Dados comparados graficamente para os valores de $N_{u_{\text{H1}}}$ com N = 24.

Fonte: O autor (2017).

5.1.12.5 Discussões dos resultados

Nesta seção foi considerado um duto de seção transversal corrugada tipo seno. Os valores comparados com a literatura, Shah e London, (1978), se deram em boa concordância. No entanto em alguns casos a escolha do número de funções bases se deu de n = 3 a n = 52, tendo este último um tempo computacional significativo. O tempo mínimo para alguns valores foram em média, 1 minuto, o quanto o tempo máximo médio foi igual a 2 horas e 15 minutos. As escolhas do número de funções bases para cada valor do número *N* de corrugações e para cada razão de aspecto são dados na Tabela 31,

		fR_e	$N_{u_{\mathrm{H}_{1}}}$
N	ß	n funções	n funções
11	р	bases	bases
8	0,02	12	12
	0,04	13	13
	0,06	11	10
	0,08	7	5
	0,10	5	5
	0,12	5	3
12	0,02	30	30
	0,04	52	30
	0,06	10	8
	0,08	11	7
	0,10	10	9
16	0,02	12	12
	0,04	15	12
	0,06	15	3
	0,08	5	3
24	0.02	15	15
<i>4</i> 1	0.04	15	5
	0,06	6	3

Tabela 31 – Valores para o número de funções bases escolhidas para cada valor da razão de aspecto β , $fR_e \in N_{u_{H_1}}$.

Fonte: O autor (2017)

Todos os valores da Tabela 45, Apêndice A, foram encontradas a partir do diâmetro hidráulico dado na literatura, Shah e London (1978). No entanto foi observado que esses valores são distintos quando considerados com nosso trabalho. Tal discordância se dá pelo fato da forma de calcular o perímetro da geometria do duto, que se deu pelo comprimento de arco, Equação 5.51. A área foi calculada da mesma forma para ambos os tabalhos. Os valores para o perímetro em cada razão de aspecto, β , são dados na Tabela 32,

Tabela 32 – Valores para o perímetro, *P*, para cada seção trasversal de um duto corrugado tipo seno.

N	β	P - Estudo	<i>P</i> - Ref[◊]
8	0,02	6,323210651	6,293252496
	0,04	6,441131182	6,323624152
	0,06	6,631076141	6,374817744
	0,08	6,884887363	6,447720436
	0,10	7,193650870	6,543628220
	0,12	7,548815178	6,660798064

N	β	P - Estudo	<i>P</i> - Ref[◊]
12	0,02	6,372717429	6,305881944
	0,04	6,630921362	6,375556988
	0,06	7,032287825	6,496537352
	0,08	7,547081585	6,677922980
	0,10	8,148799342	6,933788552
16	0,02	6,441086317	6,323648564
	0,04	6,884293569	6,451433112
	0,06	7,546476989	6,683473180
	0,08	8,363463236	7,055396800
24	0.02	6 620828621	7 034208124
24	0,02	0,030828024	7,034296124
	0,04	7,546045816	7,038517860
	0,06	8,813086962	7,045550748

Ref [\circ] - (SHAH; LONDON, 1978) - Dado pelo diâmetro hidraulico $\frac{D_h}{2a}$

Para estes valores do perímetro, P - Estudo, e considerando o mesmo número n de funções bases, Tabela 31, apresentam-se novos valores para o número de Poiseuille, fRe, e para o número de Nusselt médio, $N_{u_{\rm H_1}}$, dados na Tabela 33,

Tabela 33 – Novos valores para $fR_e e N_{u_{H_1}}$ para duto de seção transversal corrugado tipo seno.

N	β	fR_e	$N_{u_{\mathrm{H_1}}}$
0	0.02	15 20726215	1 246640424
0	0,02	15,09750215	4,540040424
	0,04	15,44/5/550	4,202087401
	0,06	14,71207855	3,965809934
	0,08	13,90804204	3,710844449
	0,10	12,97825066	3,406796223
	0,12	12,12997706	3,180321461
12	0.02	15 69505895	4 262728537
14	0,02	14 ((210724	2,020727207
	0,04	14,00210724	3,932737897
	0,06	13,30977373	3,586292568
	0,08	11,91370335	3,108050019
	0,10	10,52830289	2,812247430
	0,12	9,299198490	2,453405016

N	β	fR_e	$N_{u_{\mathrm{H_{1}}}}$
16	0,02	15,68129843	4,310210798
	0,04	13,95885285	3,626062291
	0,06	11,77779390	3,127342929
	0,08	10,11854326	2,495133012
	0,10	8,096380885	1,861825838
	0,12	6,661055823	1,478586205
24	0,02	14,83509606	3,926492585
	0,04	11,67971692	3,064374950
	0,06	8,890965492	2,241552861
	0,08	6,651192556	1,507654796
	0,10	5,051105009	1,099017675
	0,12	3,916049589	0,824174627

Fonte: O autor (2017)

Logo, a partir da concordância do método aplicado em todas as geometrias anteriores, os valores da Tabela 33 podem ser considerados para a geometria tipo corrugada, dando assim novos valores para os números de *Poiseuille*, *fRe*, e Nusselt médio, $N_{u_{\rm H}}$.

5.2 ESCOAMENTO DE ÓLEO PESADO.

Neste item apresenta-se resultados de escoamento completamente desenvolvido hidrodinamicamente de óleo pesado em dutos de seções transversais arbitrárias. A partir dos resultados adimensionais encontrados pelo método integral baseado em Galerkin, foi realizado um estudo do comportamento de três tipos de óleos pesados escoando nas geometrias já estudadas. O escoamento é considerado isotérmico. No entanto, é realizado um estudo para diferentes valores da temperatura em cada óleo. Valores para o fator de atrito, tensão de cisalhamento, gradiente de pressão e número de Reynolds são apresentados. Todos os dados são apresentados em forma de tabelas, Apêndice B, e gráficos para melhor entendimento do comportmento de cada óleo em cada geometria. Todos os gráficos nesta seção foram produzidos pelo autor.

5.2.1 GEOMETRIA CIRCULAR

Nesta seção é considerado um escoamento em um duto reto de seção transversal circular com os seguintes dados de entrada:

- a) Geometria circular com valores para o valor do raio r = 1;
- **b**) Velocidade média $u_m = 1 m/s$;
- c) Densidade $\rho = 952, 175872 \ kg/m^3$.

Para os dados adotados tem-se os seguintes resultados:

Figura 107 – Variação do gradiente de pressão do óleo OL1 com o número de Reynolds, viscosidade, temperatura e tensão de cisalhamento médio para um duto circular com r = 1.

Figura 108 – Variação do gradiente de pressão do óleo OL2 com o número de Reynolds, viscosidade, temperatura e tensão de cisalhamento médio para um duto circular com r = 1.

Figura 109 – Variação do gradiente de pressão do óleo OL3 com o número de Reynolds, viscosidade, temperatura e tensão de cisalhamento médio para um duto circular com r = 1.

5.2.2 GEOMETRIA CIRCULAR ANULAR

Nesta seção é considerado um escoamento em um duto reto de seção transversal circular anular com os seguintes dados de entrada:

- a) Geometria circular anular com valores para a razão de aspecto $\beta = 0, 1; 0, 2; 0, 3; 0, 4;$
- **b**) Velocidade média $u_m = 1 m/s$;
- c) Densidade $\rho = 952, 175872 \ kg/m^3$.

Para os dados adotados temos os seguintes resultados:

Figura 110 – Variação do gradiente de pressão do óleo OL1 com o número de Reynolds, viscosidade, temperatura e tensão de cisalhamento médio para um duto circular anular com $\beta = 0, 1; 0, 2; 0, 3 \in 0, 4$.

Figura 111 – Variação do gradiente de pressão do óleo OL2 com o número de Reynolds, viscosidade, temperatura e tensão de cisalhamento médio para um duto circular anular com $\beta = 0,1;0,2;0,3 e 0,4.$

Figura 112 – Variação do gradiente de pressão do óleo OL3 com o número de Reynolds, viscosidade, temperatura e tensão de cisalhamento médio para um duto circular anular com $\beta = 0, 1; 0, 2; 0, 3 \text{ e } 0, 4.$

5.2.3 GEOMETRIA ELÍPTICA

Nesta seção é considerado um escoamento em um duto reto de seção transversal elíptica com os seguintes dados de entrada:

- a) Geometria elíptica com valores para a razão de aspecto $\beta = 0,9; 0,75; 0,5; 0,25;$
- **b**) Velocidade média $u_m = 1 m/s$;
- c) Densidade $\rho = 952, 175872 \ kg/m^3$.

Para os dados adotados temos os seguintes resultados:

Figura 113 – Variação do gradiente de pressão do óleo OL1 com o número de Reynolds, viscosidade, temperatura e tensão de cisalhamento médio para um duto elíptico com $\beta = 0.9$; 0.75; 0.5 e 0.25.

Figura 114 – Variação do gradiente de pressão do óleo OL2 com o número de Reynolds, viscosidade, temperatura e tensão de cisalhamento médio para um duto elíptico com $\beta = 0.9$; 0.75; 0.5 e 0.25.

Figura 115 – Variação do gradiente de pressão do óleo OL3 com o número de Reynolds, viscosidade, temperatura e tensão de cisalhamento médio para um duto elíptico com $\beta = 0.9$; 0.75; 0.5 e 0.25

5.2.4 GEOMETRIA SEMI ELÍPTICA

Nesta seção é considerado um escoamento em um duto reto de seção transversal semi elíptica com os seguintes dados de entrada:

- a) Geometria semi elíptica com valores para a razão de aspecto $\beta = 1$; 0,5; 0,25;
- **b**) Velocidade média $u_m = 1 m/s$;
- c) Densidade $\rho = 952, 175872 \ kg/m^3$.

Para os dados adotados temos os seguintes resultados:

Figura 116 – Variação do gradiente de pressão do óleo OL1 com o número de Reynolds, viscosidade, temperatura e tensão de cisalhamento médio para um duto semi elíptico com $\beta = 1$; 0,5 e 0,25.

Figura 117 – Variação do gradiente de pressão do óleo OL2 com o número de Reynolds, viscosidade, temperatura e tensão de cisalhamento médio para um duto semi elíptico com $\beta = 1$; 0,5 e 0,25

Figura 118 – Variação do gradiente de pressão do óleo OL3 com o número de Reynolds, viscosidade, temperatura e tensão de cisalhamento médio para um duto semi elíptico com $\beta = 1$; 0,5 e 0,25.

5.2.5 GEOMETRIA PLACAS PARALELAS

Nesta seção é considerado um escoamento entre placas paralelas com os seguintes dados de entrada:

- a) Geometria placas paralelas com valor para b = 1;
- **b**) Velocidade média $u_m = 1 m/s$;
- c) Densidade $\rho = 952, 175872 \ kg/m^3$.

Para os dados adotados temos os seguintes resultados:

Figura 119 – Variação do gradiente de pressão do óleo OL1 com o número de Reynolds, viscosidade, temperatura e tensão de cisalhamento médio para um escoamento entre placas paralelas com b = 1.

Figura 120 – Variação do gradiente de pressão do óleo OL2 com o número de Reynolds, viscosidade, temperatura e tensão de cisalhamento médio para um escoamento entre placas paralelas com b = 1.

Figura 121 – Variação do gradiente de pressão do óleo OL3 com o número de Reynolds, viscosidade, temperatura e tensão de cisalhamento médio para um escoamento entre placas paralelas com b = 1.

5.2.6 GEOMETRIA RETANGULAR

Nesta seção é considerado um escoamento em um duto reto de seção transversal retangular com os seguintes dados de entrada:

- a) Geometria retangular com valores para a razão de aspecto $\beta = 1; 0,9; 0,75; 0,5; 0,25; 0,125;$
- **b**) Velocidade média $u_m = 1 m/s$;
- c) Densidade $\rho = 952, 175872 \ kg/m^3$;

Para os dados adotados temos os seguintes resultados:

Figura 122 – Variação do gradiente de pressão do óleo OL1 com o número de Reynolds, viscosidade, temperatura e tensão de cisalhamento médio para um duto retangular com $\beta = 1; 0,9; 0,75; 0,5; 0,25; 0,125.$

Figura 123 – Variação do gradiente de pressão do óleo OL2 com o número de Reynolds, viscosidade, temperatura e tensão de cisalhamento médio para um duto retangular com $\beta = 1; 0,9; 0,75; 0,5; 0,25; 0,125.$

Figura 124 – Variação do gradiente de pressão do óleo OL3 com o número de Reynolds, viscosidade, temperatura e tensão de cisalhamento médio para um duto retangular com $\beta = 1; 0,9; 0,75; 0,5; 0,25; 0,125.$

5.2.7 GEOMETRIA SENO

Nesta seção é considerado um escoamento em um duto reto de seção transversal tipo seno com os seguintes dados de entrada:

- a) Geometria seno com valores para a razão de aspecto $\beta = 1$; 0,75; 0,5; 0,25;
- **b**) Velocidade média $u_m = 1 m/s$;
- c) Densidade $\rho = 952, 175872 \ kg/m^3$.

Para os dados adotados temos os seguintes resultados:

Figura 125 – Variação do gradiente de pressão do óleo OL1 com o número de Reynolds, viscosidade, temperatura e tensão de cisalhamento médio para um duto tipo seno com $\beta = 1$; 0,75; 0,5 e 0,25.

Figura 126 – Variação do gradiente de pressão do óleo OL2 com o número de Reynolds, viscosidade, temperatura e tensão de cisalhamento médio para um duto tipo seno com $\beta = 1$; 0,75; 0,5 e 0,25.

Figura 127 – Variação do gradiente de pressão do óleo OL3 com o número de Reynolds, viscosidade, temperatura e tensão de cisalhamento médio para um duto tipo seno com $\beta = 1$; 0,75; 0,5 e 0,25.

5.2.8 GEOMETRIA SENO DUPLO

Nesta seção é considerado um escoamento em um duto reto de seção transversal tipo seno duplo com os seguintes dados de entrada:

- a) Geometria seno duplo com valores para a razão de aspecto $\beta = 1$; 0,5; 0,25; 0,125
- **b**) Velocidade média $u_m = 1 m/s$;
- c) Densidade $\rho = 952, 175872 \ kg/m^3$.

Para os dados adotados temos os seguintes resultados:

Figura 128 – Variação do gradiente de pressão do óleo OL1 com o número de Reynolds, viscosidade, temperatura e tensão de cisalhamento médio para um duto tipo seno duplo com $\beta = 1$; 0,5; 0,25; 0,125

Figura 129 – Variação do gradiente de pressão do óleo OL2 com o número de Reynolds, viscosidade, temperatura e tensão de cisalhamento médio para um duto tipo seno duplo com $\beta = 1$; 0,5; 0,25; 0,125

Figura 130 – Variação do gradiente de pressão do óleo OL3 com o número de Reynolds, viscosidade, temperatura e tensão de cisalhamento médio para um duto tipo seno duplo com $\beta = 1$; 0,5; 0,25; 0,125

5.2.9 GEOMETRIA TRIANGULAR DIREITO

Nesta seção é considerado um escoamento em um duto reto de seção transversal tipo triangular direito com os seguintes dados de entrada:

- a) Geometria tipo triangular direito com valores para o do ângulo $\alpha = 5^{\circ}$; 20°; 30°; 45°
- **b**) Velocidade média $u_m = 1 m/s$;
- c) Densidade $\rho = 952, 175872 \ kg/m^3$.

Para os dados adotados temos os seguintes resultados:

Figura 131 – Variação do gradiente de pressão do óleo OL1 com o número de Reynolds, viscosidade, temperatura e tensão de cisalhamento médio para um duto tipo triangular direito com $\alpha = 5^{\circ}$; 20°; 30°; 45°

Figura 132 – Variação do gradiente de pressão do óleo OL2 com o número de Reynolds, viscosidade, temperatura e tensão de cisalhamento médio para um duto tipo triangular direito com $\alpha = 5^{\circ}$; 20°; 30°; 45°

Figura 133 – Variação do gradiente de pressão do óleo OL3 com o número de Reynolds, viscosidade, temperatura e tensão de cisalhamento médio para um duto tipo triangular direito com $\alpha = 5^{\circ}$; 20°; 30°; 45°

5.2.10 GEOMETRIA TRIANGULAR EQUILÁTERO

Nesta seção é considerado um escoamento duto de seção transversal triangular equilátero com os seguintes dados de entrada:

- a) Geometria triangular equilátero com valor para $\alpha = 60^{\circ}$;
- **b**) Velocidade média $u_m = 1 m/s$;
- c) Densidade $\rho = 952, 175872 \ kg/m^3$.

Para os dados adotados temos os seguintes resultados:

Figura 134 – Variação do gradiente de pressão do óleo OL1 com o número de Reynolds, viscosidade, temperatura e tensão de cisalhamento médio para um duto triangular equilátero com $\alpha = 60^{\circ}$.

Figura 135 – Variação do gradiente de pressão do óleo OL2 com o número de Reynolds, viscosidade, temperatura e tensão de cisalhamento médio para um duto triangular equilátero com $\alpha = 60^{\circ}$.

Figura 136 – Variação do gradiente de pressão do óleo OL3 com o número de Reynolds, viscosidade, temperatura e tensão de cisalhamento médio para um duto triangular equilátero com $\alpha = 60^{\circ}$.

5.2.11 GEOMETRIA TRIANGULAR ISÓSCELES

Nesta seção é considerado um escoamento em um duto reto de seção transversal tipo triangular isósceles com os seguintes dados de entrada:

- a) Geometria triangular isósceles com valores para o ângulo $\alpha = 5^{\circ}$; 20°; 30°; 120°;
- **b**) Velocidade média $u_m = 1 m/s$;
- c) Densidade $\rho = 952, 175872 \ kg/m^3$.

Para os dados adotados temos os seguintes resultados:

Figura 137 – Variação do gradiente de pressão do óleo OL1 com o número de Reynolds, viscosidade, temperatura e tensão de cisalhamento médio para um duto tipo triangular isósceles com $\alpha = 5^{\circ}$; 20°; 30°; 120°.

Figura 138 – Variação do gradiente de pressão do óleo OL2 com o número de Reynolds, viscosidade, temperatura e tensão de cisalhamento médio para um duto tipo triangular isósceles com $\alpha = 5^{\circ}$; 20°; 30°; 120°.

Figura 139 – Variação do gradiente de pressão do óleo OL3 com o número de Reynolds, viscosidade, temperatura e tensão de cisalhamento médio para um duto tipo triangular isósceles com $\alpha = 5^{\circ}$; 20°; 30°; 120°.

5.2.12 GEOMETRIA TIPO CORRUGADA

Nesta seção é considerado um escoamento em um duto reto de seção transversal tipo corrugada com os seguintes dados de entrada:

- a) Geometria corrugada com valores para a razão de aspecto $\beta = 0,02 \text{ e } 0,06$;
- **b**) Valores para o número de corrugações N = 8; 12; 16; e 24;
 - Figura 140 Seções transversais com número de corrugações N = 8; 12; 16; e 24.

c) Velocidade média $u_m = 1 m/s$;

d) Densidade $\rho = 952, 175872 \ kg/m^3$.

Para os dados adotados temos os seguintes resultados:

Figura 141 – Variação do gradiente de pressão do óleo OL1 com o número de Reynolds, viscosidade, temperatura e tensão de cisalhamento médio para um duto tipo corrugado com $\beta = 0,02$.

Figura 142 – Variação do gradiente de pressão do óleo OL1 com o número de Reynolds, viscosidade, temperatura e tensão de cisalhamento médio para um duto tipo corrugado com $\beta = 0,06$.

Figura 143 – Variação do gradiente de pressão do óleo OL2 com o número de Reynolds, viscosidade, temperatura e tensão de cisalhamento médio para um duto tipo corrugado com $\beta = 0,02$.

Figura 144 – Variação do gradiente de pressão do óleo OL2 com o número de Reynolds, viscosidade, temperatura e tensão de cisalhamento médio para um duto tipo corrugado com $\beta = 0,06$.

Figura 145 – Variação do gradiente de pressão do óleo OL3 com o número de Reynolds, viscosidade, temperatura e tensão de cisalhamento médio para um duto tipo seno com $\beta = 0,02$.

Figura 146 – Variação do gradiente de pressão do óleo OL3 com o número de Reynolds, viscosidade, temperatura e tensão de cisalhamento médio para um duto tipo corrugado com $\beta = 0,06$.

5.2.13 DISCUSSÕES DOS RESULTADOS

Analisando os resultados apresentados nas seções anteriores observa-se que os três tipos de óleos, OL1, OL2 e OL3, possuem comportamentos semelhantes quando consideradas cada geometria: quanto maior a temperatura, menor a viscosidade, maior o número de Reynolds, menor o fator atrito, menor a tensão de cisalhamento e menor o gradiente de pressão. Todos os

gráficos apresentaram comportamento semelhantes.

O escoamento permanece laminar em todas as geometrias para cada óleo. A única excessão é a geometria de placa paralelas que apresenta um comportamento diferente a partir das temperaturas 262,5 °F para o óleo OL1 e 319,4 °F para o óleo OL2, mantendo-se laminar para todos os valores da temperatura quando considerado o óleo OL3. O menor valor encontrado para o número de Reynolds foi para a geometria triangular direito com ângulo $\alpha = 5^{\circ}$ e o maior valor para um duto circular. Estes valores para essas geometrias, triangular direito e circular, são dadas respectivamente por:

- Para o óleo OL1: *Re* = 8,90378 e *Re* = 1481,48148;
- Para o óleo OL2: Re = 0,46426 e Re = 1730,1038;
- Para o óleo OL3: Re = 0,001293 e Re = 186,8111.

Considerando a razão de aspecto e a geometria do duto observa-se que o gradiente de pressão possui os seguintes comportamentos:

- Variando-se a razão de aspecto, β, em cada geometria observa-se que quanto menor a razão de aspecto, maior o gradiente de pressão. Este comportamento pode ser observado nas Figuras 110 a 146;
- Fixando a razão de aspecto, por exemplo β = 0,5, e variando a geometria do duto, considere: duto seno, duplo seno, retangular, elíptico e semi elíptico, observa-se que o gradiente de pressão é maior na seguinte ordem:
 - Para os óleos OL1 e OL2: geometria semi elíptico seno duplo seno elíptico retangular. Observe Figuras 5.2.13 e 148;
- Figura 147 Variação do gradiente de pressão do óleo OL1 com o número de Reynolds, viscosidade, temperatura e tensão de cisalhamento médio para dutos tipo seno, duplo seno, retangular, elíptico e semi elíptico com $\beta = 0,5$.

Figura 148 – Variação do gradiente de pressão do óleo OL2 com o número de Reynolds, viscosidade, temperatura e tensão de cisalhamento médio para dutos tipo seno, duplo seno, retangular, elíptico e semi elíptico com $\beta = 0,5$.

 Para o óleo OL3 a ordem torna-se: geometria duplo seno - semi elíptico - seno elíptico - retangular. Observe Figura 149.
Figura 149 – Variação do gradiente de pressão do óleo OL3 com o número de Reynolds, viscosidade, temperatura e tensão de cisalhamento médio para dutos tipo seno, duplo seno, retangular, elíptico e semi elíptico com $\beta = 0,5$.

Para um duto corrugado pode-se observar que quando toma-se o valor para a razão de aspecto, por exemplo, $\beta = 0,02$, o gradiente de pressão aumenta quando aumenta-se o número de corrugações. Isto ocorre para os três tipos de óleos, OL1, OL2 e OL3. Estes resutados podem ser observados nas Figuras141, 143, 144 e Tabelas 154 a 157, 162 a 165 e 170 a 174, Apêndice B.

Quando compara-se diferentes razões de aspecto, $\beta = 0,02$ e 0,06 para o mesmo número de corrugações também existe o aumento do gradiente de pressão com o aumento da razão de aspecto. Para isto, considere um duto circular como um duto corrugado com razão de aspecto próximo de zero e valores para a razão de aspecto $\beta = 0,02$ e 0,06. Assim temos:

Figura 150 – Sobreposição das seções transversais de um duto circular com um duto corrugado com N = 12 e $\beta = 0,02$.

Figura 151 – Sobreposição das seções transversais de um duto circular com um duto corrugado com N = 12 e 0,06.

Desta forma, as Figuras 152 e 153 apresentam estes valores,

Figura 152 – Variação do gradiente de pressão dos oleos OL1, OL2 e OL3 com a viscosidade para valores de $\beta = \rightarrow 0$; 0,02 e 0,06.

Figura 153 – Variação do gradiente de pressão dos oleos OL1, OL2 e OL3 com a viscosidade para valores de $\beta = 0,02$. e $N \rightarrow 0$; 8; 12; 16 e 24

Observa-se também, pelas Figuras 152 e 153, que a variação do gradiente de pressão é maior quando é considerada a razão de aspecto ao número de corrugações.

6 CONCLUSÕES E SUGESTÕES PARA TRABALHOS FUTUROS

6.1 CONCLUSÕES

Neste trabalho foi realizado um estudo analítico/numérico do escoamento laminar completamente desenvolvido em dutos de seção transversal arbitrária utilizando-se do método integral baseado em Galerkin.

Os principais resultados deste trabalho podem ser sintetizados da seguinte forma:

- a) O método integral baseado em Galerkin, aplicado a escoamento de fluidos em dutos de seção trasversal arbitrária, apresentou resultados satisfatórios. Os mesmos foram comparados com os resultados apresentados na literatura dando assim, a validação do método na forma que foi proposto neste trabalho.
- b) Apresentou-se resultados para o número de Poiseuille, fRe, e números de Nusselt médios, $N_{u_{\rm T}}$ e $N_{u_{\rm H_1}}$, para as condições de fronteira T e H₁, respectivamente, para um total de doze geometrias: circular, circular anular, elíptica, semi elíptica, placas paralelas, retangular, seno, seno duplo, triangular direito, triangular equilátero, triangular isósceles e corrugado. Várias razões do aspecto, β , foram utilizadas para caracterizar a variação geométrica de cada duto.
- c) Aplicou-se o método integral baseado em Galerkin para apresentar valores para o número de Poiseuille, fRe, e Número de Nusselt médio em condição de fronteira H₁ para dutos reto corrugados. Novos valores para fRe e Nu_{H_1} foram propostos tendo visto a concordância do método em outras geometrias. Tais valores são importantes pois contribuem para dados na literatura para escoamento em dutos corrugados.
- d) Foi apresentado valores para o número de Reynolds, fator de atrito de Fanning, tensão de cisalhamento e gradiente de pressão para escoamento de três tipos de óleos pesados, OL1, OL2 e OL3, com viscosidade dependente da temperatura. Os valores encontrados foram apresentados em forma de tabelas e gráficos dando a este trabalho um documento de consulta e possíveis validações de novos experimentos. Esses dados possibilitam entender melhor o comportamento de óleo pesado em dutos de geometrias não convencionais.
- e) Este é o primeiro trabalho a apresentar informações de parâmetros como número de Reynolds, fator de atrito, tensão de cisalhamento e gradiente de pressão para óleos pesados em geometrias arbitrárias dando assim um caráter importante a esta tese.

6.2 SUGESTÕES PARA TRABALHOS FUTUROS

Como sugestões para continuidade da pesquisa, podem-se indicar:

- a) Aprofundar o estudo analítico/numérico do método integral baseado em Galerkin, se possível em conjunto com outros métodos, para soluções da equação de momento linear e energia considerando os parâmetros fluidodinâmicos não constantes;
- b) Construir um software comercial que apresente resultados para fator de atrito, gradiente de pressão e mais parâmetros de interesses em engenharia para escoamento de óleos pesados em geometrias não convencionais;
- c) A partir do estudo realizado neste trabalho, parametrizar curvas que se aproximam de incrustações em oleodutos, dando assim, informações de escoamento em seções transversais mais gerais. Para melhor entendimento seguem figuras, Figura 154 e Figura 155.

Figura 154 – Dutos com parafinas incrustadas.

Fonte: SOTOMAYOR, J. C.; LIJÓ, A. GPA Estudios y Servicios Petroleros SRL, 2010.Disponível em: http://oilproduction.net/reservorios/caracterizaciondefluidos/item/1645-las-parafinas-y-los-asfaltenos-parte-n-1-que-son-y-cuales-son-sus-propiedades-mas-importantes.html>.Acesso em 30 de maio de 2018

Figura 155 – Seções transversais com geometrias simulando incrustações em oleodutos.

Fonte: O autor (2017).

Referências

AKYILDIZ, F. T.; SIGINER, D. A note on the steady flow of Newtonian fluids with pressure dependent viscosity in a rectangular duct. International Journal of Engineering Science, v. 104, p. 1-4, 2016.

ALAGBE, S. O. **CFD Prediction of High Viscosity Oil-Water, Water-Assist, Flow Behavior in Horizontal Pipe**. International Journal of Scientific and Engineering Research, v. 7, Issue 5, May, 2016

ALASSAR, R. S.; ABUSHOSHAH, M. Hagen-Poiseuille Flow in Semi-Elliptic Microchnnels. Journal of fluids Engineering, v. 134, 2012.

ALASSAR, R. S. Fully developed forced convection through semi-elliptic ducts. Appl. Mth, Mech. - Engl., Ed. 37. p. 37-44, 2016.

ALCÂNTARA, M. L. **Desenvolvimento de um modelo para a perda de carga em escoamento de óleos parafínicos**. Universidade Federal da Bahia. Escola Politécnica. Salvador, 2016.

ALEGRIA, L. M. C. Soluções analíticas e numéricas para o escoamento laminar desenvolvido de fluído viscoplástico em dutos anulares elípticos. Universidade Tecnológica Federal do Paraná. Programa de Pós-graduação em Engenharia Mecânica e de Materiais, Curitiba, 2011.

ANGAITKAR, J. N.; SHENDE, A. T. **Temperature dependent Dynamic (Absolute) scosity of Oil**. International Journal of Engineering and Innovative Technology, 2013.

APARECIDO, J. B.; COTTA, R. M.; OZISIK, M. N. Analytical Solutions to Twodimensional Diffusion Type Problems in Irregular Geometries. Journal of the Franklin Institute Pergammon Press plc, v. 326. n. 3. p. 421-434, 1989.

APARECIDO, J. B.; COTTA, R. M,. **Thermally developing laminar flow inside rectangular ducts**. Int. J. Heat Mass Transfer. v. 33. n. 2. p. 341-347, 1990a.

APARECIDO, J. B.; COTTA, R. M. Laminar Flow Inside Hexagonal Ducts. Computational Mechanic, v. 6. pp 93-100, 1990b.

APARECIDO, J. B.; LINDQUIST, C. Laminar Forced Convection Through Rectangular Ducts With Uniform Axial And Peripheral Heat Flux. XV Congresso Brasileiro de Engenharia Mecânica,22-26 de Novembro, Águas de Lindóia, São Paulo, 1999. ARGYROPOULOU,C. K. Heavy and extra heavy oil: Midstream processes and transportation. Dissertação de Mestrado. Department of Mineral Resources Engineering, 2017

ASSAN A. E. Métodos dos Elementos Finitos: Primeiros Passos. UNICAMP, Campinas, 1999.

BALAKHRISNA, T.; GHOSH, S.; DAS, G.; DAS, P.K. **Oil water flows through sudden contraction and expansion in a horizontal pipe Phase distribution and pressure drop**. International Journal of Multiphase Flow. v.36, p.13-24; 2010.

BECK, J, V.; HAJ-SHEIKH, A. Heat Conduction Using Green's Functions, Chapter 11, Hemisfere Publishing, Washington D. C. 1992.

BENNISON, T. **Prediction of heavy oil viscosity**. Presented at the IBC Heavy Oil Field Development Conference. p. 4, 1998.

BENSAKHRIA, A.; PEYSSON, Y.; ANTONINI, G. **Experimental study of the pipeline lubrication for heavy oil transport**. Oil and gas science and technology, v. 59, n. 5, p. 523-533, 2004.

BESSA, M. G. Estudo experimental do escoamento laminar em dutos de óleos pesados com viscosidade dependente da temperatura. Tese de Doutorado. Dissertação de Mestrado, Pontifícia Universidade Católica (PUC)-RIO, 2013

BOBOK, E.; UDVARDI, G. Heavy Oil Transfer Through Lubrirated Pipeline. U. of Miskoic. Society of Petroleum Engineers Paper, 1996.

BORDALO, S. N.; DE CASTRO OLIVEIRA, R. Estudo Experimental do Escoamento Óleo-Água com Precipitação de Parafinas em Dutos Submarinos. Rio de Janeiro: Anais do XI ENCIT, v. 1. 2006.

BJORCK, A. Numerical Methods for Least Squares Problems. Society for Industrial and Applied Mathematics; Manchester, UK, 1996.

BREZINSKI, C. **The life and work of André Cholesky**. Numerical Algorithms, v. 43, n. 3, p. 279-288, 2006.

BROWDER, F. E. **problèmes non-linèaires**. Les Presses de L'Université de Montréal, Montréal, 1966.

CADÉ, M. A.; LIMA, W, . C. P. B.; FARIAS NETO, S. R.; LIMA, A. G. B. **Natural Gas Laminar Flow in Elliptic Cylindrical Pipes: A Numerical Study**. Brazilian Journal of Petroleum and Gas. v. 4, n. 1, p. 19-33, 2010. CARDOSO, L. C. S. Logística do Petróleo: Transporte e Armazenamento. Rio de Janeiro: Interciência, 2004.

CASARELLA, M. J.; LAURA, P. A.; and CHI, M. On the approximate solution of flow and heat transfer through non-circular conduits with uniform wall temperature. Br. J. Appi. Phys. 18, 1327-1335, 1967.

ÇENGEL, Y. A.; GHAJAR, A. J. **Transferência de Calor e Massa: Uma Abordagem Prática**, 4 Edição. Porto Alegre, RS: Editora McGrawHill, 2012.

COOPER, J. M., Introduction to Partial Differential Equations with Matlab, Birkhauser, 1998.

COURANT, R.; Hilbert, D. Methods of Mathematical Physics. v. 1, p. 174, Wiley-Intercience, 1953.

COTTA, R. M.; OZISIK, M. N. Laminar forced convection inside ducts with periodic variation of inlet temperature. Computational Mechanic, v. 29. n. 10. p. 1495-1501, 1986.

DAMEAN, N.; REGTIEN, P. P. L. Velocity field of the fully developed laminar flow in a hexagonal duct. Sensors and Atctuators A, v. 92. p. 144-151, 2001.

DAUTRAY R.; Lions J.-L. Mathematical Analysis and Numerical Methods for Science and Technology. v. 1, Springer-Verlag, 1998.

DEGHEIDY, A. R.; SALLAH, M.; ATTIA, M. T. and ATTALA, M. R. **On Galerkin method for solving radiative heat transfer in finite slabs with spatially-variable refractive index**. International Journal of Thermal Sciences. 100, p. 416-422, 2016.

DING, J.; MANGLIK, R. M. Analytical Solutions for Laminar Fully Developed Flows in Double-sine Shaped Ducts. Heat and Mass Transfer 31, 269-277, 1996.

DOGAN, Abdulkadir. **Application of Galerkin's Method to Equal Width Wave Equation**. Applied Mathematics and Computation 160, 65-76, 2005

DUNCAN, W. J. Galerkin's Method in Mechanics and Differential Equations. No. ARC-R/M-1798. AERONAUTICAL RESEARCH COUNCIL LONDON (ENGLAND), 1937.

DUTOVIA. Disponivel em: <https://portogente.com.br/portopedia/78814-dutovia>. Acesso em: 25/07/2017, 15:22. 2017

EBADIAN, M. A.; Dong, z. F. Forced Convection, Internal Flow In Ducts. Handbook of Heat Transfer. FLorida International University, 1998.

ERDOGAN, M. E.; IMRAK, C. E. On the axial flow of an incompressible viscous fluid in a pipe with a porous boundary. Acta Mechanica, v. 178, n. 3-4, p. 187-197, 2005.

ESCUDIER, M. P.; PRESTI, F. **Pipe Flow of a Thixotropic Liquid** J. Non-Newtonian Fluid Mech., 62, 291-306, 1996.

FISCHER, L.; MARTIN, H. Friction factors for fully developed laminar flow in ducts confined by corrugated parallel walls. Int. Comm. Heat Mass Transfer, v. 40. n. 3. p. 635-639, 1997.

FLANIGAN, O. Constrained Derivatives in Natural Gas Pipeline System Optmization. Arkansas Lovisiana Gas Co, Society of Petroleum Engineers Paper, 1972.

FOX, R. W.; PHILIP, J. Pritchard, and Alan T. McDonald. Introdução À Mecânica Dos Fluidos. Grupo Gen-LTC, 2000.

GADELHA, A. J. F.; NETO, S. R. de F.; SWARNAKAR, R.; LIMA, A. G. B de. **Thermo-Hydrodynamics of Core-Annular Flow of Water, Heavy Oil and Air Using CFX**. Advances in Chemical Engineering and Science. v.3, p. 37-45, 2013.

GALERKIN B. G. **Barras e placas, As séries em algumas questões de equilíbrio elástico de barras e placas**. Notícias dos Engenheiros, v. 1. (1915) 897-908 (em Russo, Sterzhni i plástinki. Riady v nekotorykh voprosah uprugogo ravnovesia sterzhnei iplastinok, Vestnik Ingenerov, v. 1, 1915, 897-908)

GAO, S. X.; HARTNETT, J. P. Analytical Nusselt number predictions for slug flow in rectangular duct. International Communications in Heat and Mass Transfer;(United States), v. 20, n. 5, 1993.

GARIMELLA, R. V.; DYADECHKO, V.; SWARTZ, B. K.; SHASHKOV, M. J. Interface **Reconstruction in Multi-fluid, Multi-phase Flow Simulations**. Proceedings of the 14th Internacional Meshing Roundtable, p. 19-32, 2005.

GHARIBAN, M. A Galerkin Method Solution of Heat Transfer Problems in Closed Channels: Fluid Flow Analysis. Springer, Chapter 10, Scienc+Business, New York, 2013.

GHOSH, S.; DAS, G.; DAS, P. K. Simulation of core annular downflow through CFD: A comprehensive study. Chemical Engineering and Processing. v.49, p. 1222-1228, 2010.

GHOSH, S.; DAS, G.; DAS, P. K. Simulation of core annular in return bends - A comprehensive CFD study. Chemical Engineering Research and Design. v. 89, p. 2244-2253. 2011.

GOLDBERD, D. E. Genetic Algorithms in Search, Otimization and Machine Learning. Addison-Wesley, Reading MA, 1989.

GRAY, L. J. Green's Functions and Boundary Integral Analysis for Exponentially Graded Materials: Heat Conduction. Transactions of the ASME. v. 70, july 2003.

GUEVARA, E.; NINEZ, G.; GONZALES, J. **Highly viscous oil transportation methods in the Venezuelan oil industry**. Paper presented at the 15th World Petroleum Congress, Beijing, China, 1997.

HAJI-SHEIKH, A.; MASHENA, M.; HAJI-SHEIKH, M. J. Heat Transfer Coefficient in Ducts With Constant Wall Temperature. Journal of Heat Transfer. v. 105, p. 878-883, 1983.

HAJI-SHEIKH, A.; BECK, J. V. Green's Function Partitioning in Galerkin-Based Integral Solution of the Difusion Equation. Journal of Heat Transfer. v. 112, p. 28-34, 1990.

HARTNETT, J. P.; KOSTIC, M. Heat transfer to Newtonian and non-Newtonian fluids in rectangular ducts. In: Advances in heat transfer. Elsevier, p. 247-356, 1989.

HIGHAM, N. J. **Cholesky factorization**. Wiley Interdisciplinary Reviews: Computational Statistics, v. 1, n. 2, p. 251-254, 2009.

HOUSIADAS, K. D.; GEORGIOU, G. C. Analytical solution of the flow of a Newtonian fluid with pressure-dependent viscosity in a rectangular duct. Applied Mathematics and Computation, v. 322, p. 123-128, 2018.

HU, M. H., Flow and Thermal Analysis for Mechanically Enhanced Heat Transfer Tubes. Ph.D. Thesis. Dep. Mech. Eng., State University of New York at Buffalo, 1973.

HUILGOL, R.R.; YOU, Z. Application of the Augmented Lagrangian Method to Steady Pipe Flows of Bingham, Casson and Herschel-Bulkley Fluids. J. Non-Newtonian Fluid Mech., 128, 126-143, 2005.

ISHII, M.; MI, Y.; TSOUKALAS, L. H.; KIM, S. New Objective Approaches for Characterization of Interfacial Strutures in Two-plase Flow. Proceedings of the ASME Heat Transfer Division v. 5, 1998.

ISMAIL, M. S. Numerical Solution of Coupled Nonlinear Schrodinger Equation by Galerkin Method. Mathematics and Computers in Simulation 78, 532-547, 2008.

IRVINE JR, T. F. Noncircular Duct Convective Heat Transfer. Modern Developments in Heat Transfer. Academic Press. p. 1-17, 1963.

JADID, Al; SALEH, Salim Jadid. Lubricated Transport of Heavy Oil Investigated by CFD. Tese de Doutorado. Department of Engineering, 2017.

JESUS, A. R. *et al.* Sistema Logístico do Transporte de Petróleo no Brasil. Faculadade Capixaba de Nova Venécia. Nova Venécia, 2011.

JIANG, F.; WANG, Y.; JIAJIE, O.; XIAO, Z. Numerical Simulation on Oil-Water Annular Flow through the Bend. Industrial e Engineering Chemistry Research. v. 53, p. 8235-8244, 2014.

KAKAÇ, S.; OZGU, M. R. Analysis of Laminar Flow Forced Convection Heat Transfer in the Entrance Region of Circular Pipe. Warme-und Stoffubertragung, v. 2. p. 240-245, 1969.

KAKAÇ, S.; SHAH, R. K. and BERGLES, A. E. Low Reynolds number flow heat exchangers: advanced study institute book. Hemisphere publishing corporation, 1983.

KANTOROVICH, L. V.; KRYLOV, V. I. Approximate Methods of Higher Analysis. New York, p. 261, 1964.

KAUSHIK, V.V.R.; GHOSH, S; DAS, G.; DAS, P. K.**CFD simulation of core annular flow through sudden contraction and expansion**. Journal of Petroleum Science and Engineering. 86?87, p. 153?164, 2012.

KHAN, W. A.; CULHAM, R. J.; YOVANOVICH, M. M. Fluid flow around and heat transfer from elliptical cylinders: analytical approach. Journal of thermophysics and heat transfer, v. 19, n. 2, p. 178-185, 2005.

KIM, B. An experimental study on fully developed laminar flow and heat transfer in rectangular microchannels. International Journal of Heat and Fluid Flow, v. 62, p. 224-232, 2016.

KOTCIOGLU, I.; KHALAJI, M. N.; CANSIZ, A. Heat transfer analysis of a rectangular channel having tubular router in different winglet configurations with Taguchi method. Applied Thermal Engineering, 2018.

LAKSHMINARAYANAN, R.; HAJI-SHEIK, A. Entrance Heat Transfer in Isosceles and Right Triangular Ducts. Technical Notes. J. Themophysics. v. 6, n. 1, p. 167-171, 1992.

LAMMOGLIA, T.; DE SOUZA FILHO, C. R. Mapping and characterization of the API gravity of offshore hydrocarbon seepages using multispectral ASTER data. Remote sensing of environment, v. 123, p. 381-389, 2012.

LECROY, R C.; ERASLAN, A. H. The Solution of temperature Development in the Entrance Region of an MHD Channel by the B. G. Galerkin Method. Journal Heat Transfer, p. 212-220, 1969.

LEE, Y. M.; Kuo, Y. M. Laminar flow in annuli ducts with constant wall temperature. Int. Comm. Heat Mass Transfer, v. 25. n. 2. pp 227-236, 1998.

LEE, Y. M.; LEE, P. C. Laminar flow in elliptic ducts with and without central circular cores for constant wall temperature. Int. Comm. Heat Mass Transfer, v. 28. n. 8. pp 1115-1124, 2001.

LEE, Y. M.; LEE, P. C. *Heat transfer coefficients of laminar flow in a rhombic duct with constant wall temperature.* Numerical Heat Transfer: Part A: Applications, v. 42, n. 3, p. 285-296, 2002.

LO, S. and TOMASELLO, A. **Recent progress in CFD modelling of multiphase flow in horizontal and near-horizontal pipes**. Paper presented at the 7th North American Conference on Multiphase Technology, Banff, 2010

MARNER, W. J.; SUITOR, J.W. **Fouling with convective heat transfer**. In S. Kakac, R. K. Shah, and W. Aung, editors, Handbook of Single-Phase Convective Heat Transfer, chapter 3. Wiley-Interscience, New York, 1987.

MARTÍNEZ-PALOU, R. *et al.* **Transportation of heavy and extra-heavy crude oil by pipeline: A review**. Journal of Petroleum Science and Engineering, v. 75, n. 3-4, p. 274-282, 2011.

MCKIBBEN, M. J.; SANDERS, R. S. and GILLIES, R. G. A new method for predicting friction losses and solids deposition during the water-assisted pipeline transport of heavy oils and co-produced sand. Paper presented at the SPE Heavy Oil Conference-Canada, Alberta, 2013.

MOHARANA, M. K.; KHANDEKAR, S. Generalized formulation for estimating pressure drop in fully-developed laminar flow in singly and doubly connected channels of non-circular cross-sections. Computer Methods in Applied Mechanics and Engineering, v. 259, p. 64-76, 2013.

MORINI, G. L. Analytical determination of the temperature distribution and Nusselt numbers in rectangular ducts with constant axial heat flux. Int. Comm. Heat Mass Transfer, v. 43. p. 741-755, 1999.

MUKHERJEE,S.; GUPTA, A. K.; CHHABRA, R. A. Laminar forced convection in power-law nd Bringham plastic fluid in ducts semicircular and other cross sections. International journal of heat and mass transfer. v. 104. p. 112-141, 2017.

MYLAVARAPU, S. K.; SUN, X.; CHRISTENSEN, R. N. Hydrodynamically Developing and Fully Developed Laminar Flows in a Semicircular Duct: Analytical and computational Analyses. Nuclear Science and Engineering. v. 182. p. 319-331, 2016.

NETO, A. A. D.; GURGEL, A. **Refino de Petróleo e Petroquímica**. Universidade Federal do Rio Grande do Norte. Departamento de Engenharia Química. Rio Grande do Norte, 2007.

NIRENBERG, H. **Correção do fator de atrito para região anular excentrica**.Tese de Doutorado. Universidade Federal do Rio de Janeiro, Rio de Janeiro,2017.

NÚÑEZ, G. A.; RIVAS, H. J.; JOSEPH, D. D. Drive to produce heavy crude prompts variety of transportation methods. Oil and Gas Journal, 96(43), 59-68, 1998.

OLIVEIRA, L. M. T. M. *et al.* Modelagem e simulação da recuperação secundária em reservatórios de petróleo utilizando configuração Five-Spots. Departamento de Engenharia Química. Maceió, 2015.

OSTROWSKI, P.; REMIORZ, L. Measurement of gas flow in short ducts, also rectangular. Flow Measurement and Instrumentation, v. 30, p. 1-9, 2013.

ÖZTOP, H. F.; DAGTEKIN, I.; SAHIN, A. Z. Second law analysis of fully developed laminar flow for rectangular ducts with semicircular ends. International Communications in Heat and Mass Transfer, v. 36, n. 7, p. 725-730, 2009.

PADULA, L. **Modificações reológicas de óleos pesados**. Tese de doutorado. Instituto de Química da Unicamp, 2013.

PAFFENBARGER, J. Oil in Power Generation. International Energy Agency, 1997

PATEL, Harikrishna. Solving the Indefinite Least Squares Problems. University of Manchester, 2002

PETROVSKY, I. G. Lectures on Partial Differential Equations. Interscience Publishers, N. Y., 1954.

POESIO, P.; SOTGIA, G and STRAZZA, D. Experimental investigation of three-Phase oil-water-air flow through a pipeline. Multiphase Science and Technology, v. 21, n. 1-2, p. 107-122, 2009.

POSPISIL, G. Heavy Oil Challenges and Opportunities North Slope Alaska. Retrieved December, v. 1, p. 2016, 2011.

PRADA, J. W. V. Estudo experimental do escoamento anular óleo-água (core flow) na elevação de óleo ultraviscosos. Universidade Federal de Campinas- Faculdade de Engenharia Mecânica. Campinas-SP, 1999

PRADO, R.; CHAVES, A. A.; LAMAS, W. Q.; CORRÊA, V. A. **Simulação Numérica do Escoamento Laminar de Fluido Não Newtoniano Através de Tubos Elípticos**. The 4th International Congress on University-Industry Cooperation - Taubate, SP - Brasil - 5 a 7 de dezembro, 2012.

RAJAGOPAL, K. R.; SADEGH, A. M. A Boundary Integral Equation Method for the Study of Some Laminar Forced Convection Problems. Numerical Heat Transfer, 8, p. 485, 1985

RAO, S. S. et al. Laminar Forced Convection in Elliptic Ducts. Appl. Sci. Res., v. 17. n. 21. p. 185-193, Octuber, 1969.

REIS, L. R.; PORTO, R. M.; CHAUDHRY, F. H. **Optimal Location of Control Valves in Pipe Networks by Genetic Algorithm**. USP, Journal of Water Resources Planning and Managment, 1997.

REZENDE, V. **O método de Galerkin**. Dissertção apresentada ao departamento de Mátemática da Universidade Estadual de Maringá, 2005.

RIBEIRO, P. C. C.; FERREIRA, K. A. Logística e Transportes: Uma discussão sobre os modais de transporte e o panorama brasileiro. Curitiba: [s.n.], 2002.

RUSHD, S.; SANDERS, R. S. A parametric study of the hydrodynamic roughness produced by a wall coating layer of heavy oil. Petroleum Science, v. 14, n. 1, p. 155-166, 2017.

RUKTHONG, W. *et al.* Computational Fluid Dynamics Simulation of a Crude Oil Transport Pipeline: Effect of Crude Oil Properties. Engineering Journal (Eng. J.), v. 20, n. 3, p. 145-154, 2016.

SADASIVAM, R.; MANGLIK, R. M.; JOG, M. A. Fully developed forced convection through trapezoidal and hexagoanl ducts. Int. Comm. Heat Mass Transfer, v. 42. p. 4321-4331, 1999.

SANIERE, A.; HÉNAUT, I.; ARGILLIER, J. F. **Pipeline transportation of heavy oils, a strategic, economic and technological challenge**. Oil and Gas Science and Technology, v. 59, n. 5, p. 455-466, 2004.

SCHENK, J.; HAN, B. S. Heat Transfer from Laminar Flow in Ducts whit Elliptic Cross-Section. Appl. Sci. Res., v. 17. p. 96-114, 1966.

SCHMIDT, F. W.; NEWELL, M. E. Heat transfer in fully developed laminar flow through rectangular and isosceles triangular ducts. International journal of heat and mass transfer, v. 10, n. 8, p. 1121-1123, 1967.

SEGERLIND, L. J. Applied finite element analysis. John Wiley Sons Inc, 1984.

SHAH, R. K. Laminar Flow Friction and Forced Convection Heat Transfer in Ducts of Arbitrary Geometry. Int. J. Heat Mass Transfer. Vol 18, pp. 849-862. Pergamon Press, 1975.

SHAH, R. K.; LONDON, A. L. Laminar Flow Friction and Forced Convection in Ducts. Supplement 1 to Advences in Heat Transfer. Academic Press, Inc., New York, 1978.

SHAHMARDAN, M. M. et al. An exact analytical solution for convective heat transfer in rectangular ducts. J Zhejiang Univ-Sci A (Appl Phys & Eng, v. 13. n. 10. p. 768-781, 2012.

SHAHMARDAN, M. M.; DEDAGHAT, M. H.; NOROUZI, M. An Analytical Solution for Fully Developed Forced Convection in Triangular Ducts. Heat Transfer - Asian Research, v. 44. n. 6. p. 489-498, 2015.

SHERONY, D. F.; SOLBRIG, C. W. Analytical Investigation of Heat or Mass Transfer and Friction Factors in Corrugated Duct Heat or Mass Exchanger. Int. J. Heat Mass Transfer. 13, 145-159, 1970.

SHIRIN, A.; ISLAM, M. S. Numerical olutions of Fredholm Integral Equations Using Bernstein Polynomials. Journal of Scientific Research 2, 264-272, 2010.

SILVA, A. **Otimização do transporte em oleodutos utilizando algoritmos genéricos e programação linear**. Dissertação (Mestrado em Engenharia Elétrica) - Faculdade de Engenharia Elétrica e de Computação. Universidade Estadual de Campinas, Campinass, abril de 1999.

SILVALINGAN, T. Thermal Conduction Equations for a Medium With Inclusion Using Galerkin Method. The University of Texas at Arlington, 2009.

SOARES, M.; NACCACHE, M.; MENDES, P.R.S. Heat Transfer to Viscoplastic Materials Flowing Laminarly in the Entrance Region of Tubes. International Journal of Heat and Fluid Flow, 20,60-67, 1999.

SUN, C.; CHAN, C. W.; TONTWIACHWUTHIKUL, P. A fuzzy expert System for **Optmizing Pipeline Geration**. Canadian Conf. On Electrical and Computer Engineering, v. 2, Veja pag 777-780, 1997.

SYRJALA, S. Laminar Flow of Viscoelastic Fluids in Rectangular Ducts with Heat Transfer: A finite Element Analysis. Int. Comm. Heat Mass Transfer, v. 25. n. 2. p. 191-204, 1998.

STOLARSKI, T.; NAKASONE, Y.; YOSHIMOTO, S. Engineering analysis with ANSYS software. Butterworth-Heinemann, 2011.

THOMAS J. W. Numerical Partial Differential Equations: Finite Difference Methods. Springer-Verlag, New York, 1999.

THOMAS, J. E. organizador. **Fundamentos de engenharia de petróleo**. 2. ed. Rio de Janeiro, Interciência: PETROBRAS, 2004.

TREVISAN, F. E.**Flow patterns and pressure drop in three phase horizontal flow of heavy oil, water and air**. Master?s Thesis, Petroleum Science and Engineering, Faculty of Mechanical Engineering, State University of Campinas (UNICAMP), 2013. TSUCHIYA, L. Y. **Fatorações incompletas de Cholesky na solução direta de sistemas lineares oriundos de métodos de pontos interiores**. Universidade Estadual de Campinas, Instituto de Matemática. Tese de doutorado, Campinas, 2017.

ULRICHSON, D. L.; SCHMITZ, R. A. Laminar-flow heat transfer in the entrance region of circular tubes. International journal of heat and mass transfer, v. 8, n. 2, p. 253-258, 1965.

VARA, R. M. O. **Hidrodinâmica do escoamento bifásico óleo pesado - água em um duto horizontal**. Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica, depto Engenharia do Petróleo. Campinas-SP, 2001.

VELUSAMY, K.; GARG, V.K.; VAIDYANTHAN, G. Fully Developed Flow and Heat Transfer in Semi-Elliptical Ducts. International Journal of Heat and Fluid Flow, 16, 145-152. 1995.

VELUSAMY, K.; GARG, V. K. Laminar Mixed Convection in Vertical Elliptic Ducts. Int. J. Heat Mass Transfer, v.39, n. 4, p. 745-752, 1996.

WANG, C. Y., **On Viscous Flow in Semi-Elliptic Ducts**. Journal of Fluids Engineering, 137, 114502. 2015.

WANG, W.; GONG, J. and ANGELI, P. **Investigation on heavy crude-water two phase flow and related flow characteristic**. International journal of multiphase flow, 37(9), 1156-1164, 2011.

WHITE, F. M. Mecânica dos fluidos. Sexta edição. McGraw Hill Brasil, 2010.

WISNIEWSKI, A. Geologia do Petróleo. Petroleum Geoscience Technology p. 5-24, 2010.

YANG, L.; AZZOPARDI, B.J.; BAKER, G.; BELZHAGI, A. and GIDDINGS, D. **The approach to stratification of a dispersed liquid?liquid flow at a sudden expansion**. In 3rd International Symposium on Two Phase Flow Modelling and Experimentation, Pisa, 2004

ZHANG, H. Y.; EBADIAN, M. A.; CAMPO, A. **An Analytical/Numerical Solution of Convective Heat Transfer in the Thermal Entrance Region of Irregular Ducts**. Int. Comm. Heat Mass Transfer, v. 18. p. 273-291, 1991.

ZANG, H. Q.; VUONG, D. H. and SARICA, C. Modeling high-viscosity oil/water concurrent flow in horizontal and vertical pipes. SPE J, 17, 243-250, 2012.

ZHU, Y. D.; SHU, C.; QIU J.; TANI, J. Numerical simulation of natural convection between two elliptical cylinders using DQ method International Journal of Heat and Mass Transfer, v. 47, p. 797?808, 2004.

APÊNDICE A - Tabelas dos valores obtidos nas simulações para $fR_e, N_{u_{\rm T}}, e N_{u_{\rm H_1}}.$

Tabela 34 – Valores para fR_e , $N_{u_{\rm T}}$ e $N_{u_{\rm H_1}}$ para um duto de seção transversal circular.

β		fR_e			$N_{u_{\mathrm{T}}}$		$N_{u_{\mathrm{H}_{1}}}$		
	Estudo	Ref[\$]	Ref[*]	Estudo	Ref[◊]	Ref[*]	Estudo	Ref[◊]	Ref[*]
1	16,0	16	16	3,6567	3,6567	3,657	4,3636	4,3636	4,364

Ref[\$] - (SHAH; LONDON, 1978) Ref[*] - (EBADIAN, 1998)

Tabela 35 – Valores para fR_e , $N_{u_{\rm T}}$, e $N_{u_{\rm H_1}}$ para um duto de seção transversal circular anular.

$\beta = \frac{b}{a}$	fR_e			N _{uT}			$N_{u_{ m H1}}$		
	Estudo	Ref [\$]	Ref [*]	Estudo	Ref [\$]	Ref [*]	Estudo	Ref [◊]	Ref [*]
0,02	22,5262	-	20,629	5,699	-	5,636	6.1563	-	6,383
0,1	22,4176	22,7928	22,3430	6,73121	6,6206	6,5170	7,36422	-	7,257
0,2	23,1656	23,1136	23,0880	7,03437	6,9542	-	7,68968	-	7,678
0,25	23,3304	-	23,302	7,04632	-	7,084	7,80192	-	7,804
0,3	23,4470	23,4622	23,4610	7,10657	7,1851	-	7,8724	-	7,900
0,4	23,7093	23,6784	23,6780	7,27178	7,3260	-	8,02380	-	8,033
0,5	23,8476	-	23,8130	7,40718	-	7,4140	8,1072	-	8,117

Ref[\circ] - (LEE; KUO, 1998) Ref[\circ] - (SHAH; LONDON, 1978)

Tabela 36 – Valores para fR_e , $N_{u_{\rm T}}$ e $N_{u_{\rm H_1}}$ para um duto de seção transversal elíptica.

$\beta = \frac{b}{a}$		fR_e			$N_{u_{\mathrm{T}}}$			$N_{u_{\mathrm{H_1}}}$	
	Estudo	Ref[◊]	Ref[*]	Estudo	Ref[†]	Ref[*]	Estudo	Ref[◊]	Ref[*]
0,9999	15,9983	-	16,000	3,69932	-	3,657	4,36317	-	4,364
0,9	14,7466	14,7468	16,022	3,38062	3,660	-	4,02111	4,02118	4,369
0,8	14,0375	14,0375	16,098	3,21158	3,669	3,669	3,82558	3,82556	4,369
0,75	13,8424	13,8424	16,161	3,15241	3,676	-	3,77050	3,77054	4,402
0,7	13,7405	13,7404	16,244	3,12110	3,686	-	3,74028	3,74037	4,422
2/3	13,7216	13,7217	16,311	3,11017	3,693	-	3,73325	3,73324	4,438
0,6	13,7984	13,7981	16,479	3,11021	3,711	-	3,74902	3,74897	4,477
0,5	14,1938	14,1939	16,823	3,16057	3,742	3,742	3,84549	3,84546	4,558
0,4	14,9318	14,9319	17,294	3,26260	3,774	-	4,02890	4,02895	4,666
1/3	15,6167	15,6163	17,681	3,35246	3,790	-	4,19914	4,19910	4,754

0,3	16,0135 16,0137 17,896	3,40143 3,794 -	4,20776 4,29771 4,803
0,25	16,6722 16,6721 18,240	3,47682 3,792 3,792	4,46081 4,46077 4.880
0,2	17,3884 17,3885 18,602	3,55031 3,779 -	4,63799 4,63803 4,962
1/6	17,8840 17,8839 18,847	3,59639 3,761 -	4,76067 4,76062 5,017
1/7	18,2378 18,2378 19,020	3,62747 3,743 -	4,84842 4,84839 5,056
1/8	18,4983 18,4982 19,146	3,64957 3,725 3,725	4,91301 4,91309 5,085
1/9	18,6954 18,6950 19,241	3,66579 3,710 -	4,96205 4,96209 5,107
1/10	18,8478 18,8477 19,314	3,67839 3,696 -	5,00022 5,00020 5,124
1/16	19,3130 19,3128 19,536	3,63843 3,638 3,647	5,11674 5,11681 5,176
1/20	19,4432 19,4432 19,598	3,64532 3,616 -	5,14966 5,14972 5,191

Ref [\$] - (MARNER; SUITOR, 1987); Ref [*] - (SHAH; LONDON, 1978); Ref [†] - (LEE; KUO, 2001)

Tabela 37 – Valores para fR_e , $N_{u_{\rm T}}$ e $N_{u_{\rm H_1}}$ para duto de seção transversal semi elíptico.

$\beta = \frac{b}{a}$	fR_e				Ν	N _{uT}			N_{μ}	^t H ₁		
	Estudo	Ref[\$]	Ref[*]	Ref[†]	Estudo	Ref[◊]	Ref[*]	Ref[†]	Estudo	Ref[◊]	Ref[*]	Ref[†]
0,25	18,2007	18,766	-	18,7335	3,41343	-	-	3,612	4,59103	-	4,945	4,939
0,5	16,1698	17,470	-	17,438	3,15588	-	-	3,533	4,03616	-	4,567	4,562
1	16,1101	15,767	-	15,7655	3,24866	-	-	3,318	3,95011	-	4,088	4,082

Ref [\$] - (WANG, 2015) Ref [*] - (ALASSAR, 2016); Ref [†] - (VELUSAMY; GARG; VAIDYANTHAN, 1995)

Tabela 38 – Valores para fR_e , $N_{u_{\rm T}}$ e $N_{u_{\rm H_1}}$ para escoamento entre placas paralelas.

β	fR_e			$N_{u_{\mathrm{T}}}$			$N_{u_{\mathrm{H_1}}}$		
	Estudo	Ref[*]	Ref[◊]	Estudo	Ref[*]	Ref[◊]	Estudo	Ref[*]	Ref[◊]
1	24	24	24	7,54072	7,5407	7,541	8,23528	8,23529	8,235

Ref [*] - (SHAH; LONDON 1978); Ref [\$] - (SHAH, 1975)

Tabela 39 – Valores para fR_e , $N_{u_{\rm T}}$ e $N_{u_{\rm H_1}}$ para duto de seção transversal retangular.

$\beta = \frac{b}{a}$	fR_e					N _{uT}				N	u _{H1}	
	Estudo	Ref[◊]	Ref[*]	Ref[†]	Estudo	Ref[\$]	Ref[*]	Ref[†]	Estudo	Ref[\$]	Ref[*]	Ref[†]
1	14,2886	14,2296	14,22708	14,22	2,97989	2,97873	2,976	2,97	3,60774	3,61015	3,607949	3,60795
0,9	14,2622	14,2696	14,26098	14,261	2,98980	2,97232	-	2,980	3,61998	3,62313	3,620452	3,62045
1/1,2	14,3288	14,3338	14,32808	14,328	3,00962	2,99243	-	-	3,64482	3,64800	3,645310	3,64531
0,8	14,3787	14,3818	14,37780	14378	3,02431	3,00920	-	3,014	3,66340	3,66644	3,663823	3,66382
0,75	14,4764	14,4782	-	14,476	3,05355	3,04227	-	-	3,70012	3,70301	-	3,70052
1/1,4	14,5654	14,5670	14,56422	14,565	3,08043	3,07193	3,077	3,077	3,73375	3,73647	3,734193	3,73419
0,7	14,6062	14,6078	14,60538	14,605	3,09277	3,08529	-	3,083	3,74925	3,75170	3,749608	3,74961
2/3	14,7127	14,7148	14,71184	14,701	3,12535	3,11985	3,117	3,117	3,79000	3,79229	3,790327	3,79033
0,6	14,9806	14,9855	14,97996	14,980	3,20911	3,20544	-	3,198	3,89420	3,89633	3,894556	3,89456
0,5	15,5486	15,5573	15,54806	15,548	3,39460	3,38875	3,391	3,383	4,12288	4,12580	4,123303	4,12330
0,4	16,3693	16,3767	16,36810	16,368	3,68348	3,67356	-	3,670	4,47128	4,47559	4,471852	4,47185
1/3	17,0916	17,0949	17,08967	17,090	3,95988	3,94948	3,956		4,79410	4,79838	4,794796	4,79480
0,3	17,5144	17,5154	17,51209	17,512	4,13178	4,12223	-	4,11	4,98880	4,99286	4,989888	4,98989
0,25	18,2374	18,2340	18,23278	18,233	4,44181	4,43531	4,439	4,439	5,32898	5,33265	5,331064	5,33106
0,2	19,0804	19,0716	19,07050	19,071	4,82804	4,82621	-	4,803	5,73138	5,73826	5,737689	5,73769

1/6	19,7217	19,7045	19,70220	19,702	5,13481	5,13821	5,137	5,137	6,03500	6,05007	6,049456	6,04946
1/7	20,2274	20,1970	20,19310	20,193	5,38057	5,38986	-	-	6,26782	6,29552	6,294041	6,29404
0,125	20,6368	20,5898	20,58464	20,585	5,57923	5,59580	5,597	5,597	6,44942	6,49215	6,490334	6,49033
1/9	20,9764	20,9101	20,90385	20,904	5,74184	5,76690	-	-	6,59400	6,65347	6,651060	6,65107
1/12	21,7250	21,5913	-	21,583	6,07876	6,13972	-	-	6,89055	6,99866	-	6,99507
1/15	22,2303	22,0275	-	22,019	6,26981	6,38439	-	-	7,07422	7,22094	-	7,21683
1/20	22,7868	22,4854	22,47701	22,477	6,42070	6,64590	-	-	7,26465	7,45518	7,450827	7,45083
1/50	23,9610	23,3679	-	23,363	6,68848	7,16204	-	-	7,64542	7,90867	-	7,90589
1/1000	24,08	-	-	-	7,410839	91 -	-	-	8,142191	-	-	-

Ref [◊] - (MARNER; SUITOR, 1987) Ref [*] - (SHAH; LONDON 1978); Ref [†] - (EBADIAN; DONG, 1998)

Tabela 40 – Valores para fR_e , $N_{u_{\rm T}}$ e $N_{u_{\rm H_1}}$ para um duto de seção transversal tipo seno.

$\beta = \frac{b}{a}$		fR_e			$N_{u_{\mathrm{T}}}$			$N_{u_{\mathrm{H}_{1}}}$	
	Estudo	Ref[◊]	Ref[*]	Estudo	Ref[\$]	Ref[†]	Estudo	Ref[◊]	Ref[*]
0,125	9,7408	9,7428	9,743	1,5519	1,454	-	2,0191	2,017	2,017
0,25	10,119	10,123	10,123	1,7321	1,730	1,800	2,2131	2,213	2,213
0,5	11,206	11,207	11,207	2,0948	2,120	2,120	2,6198	2,617	2,617
0,75	12,266	12,234	12,234	2,3529	2,353	2,330	2,9181	2,916	2,916
1	12,982	13,023	13,023	2,4767	2,472	2,450	3,0811	3,102	3,120
1,5	14,162	14,023	14,022	2,6504	2,545	2,600	3,2316	3,267	3,267
2	15,082	14,575	14,553	2,7016	2,515	-	3,2810	3,292	3,311
4	16,455	15,340	-	2,7336	2,276	-	3,2924	3,230	-
8	18,205	15,719	-	0,71184	1,967	-	3,2478	2,992	-

Ref [\$] - (DING; MANGLIK, 1996) Ref [*] - (SHAH; LONDON, 1978); Ref [†] - (SHERONY; SOLBRIG 1970)

Tabela 41 – Valores para fR_e , $N_{u_{\rm T}}$ e $N_{u_{\rm H_1}}$ para um duto de seção transversal tipo duplo seno.

$\beta = \frac{b}{a}$	fR_e	$N_{\mu_{\mathrm{T}}}$	$N_{u_{\mathrm{H}_{1}}}$
	Estudo Ref[◊]	Estudo Ref[\$]	Estudo Ref[\$]
0,125	14,640 14,6426	2,4410 2,4412	3,3357 3,3418
0,25	14,765 14,7658	2,7290 2,7302	3,5259 3,5274
0,5	15,052 15,0527	3,1672 3,1676	3,8683 3,8059
1	15,594 15,5744	3,4657 3,4461	4,1553 4,1575
2	16,394 16,2861	3,3627 3,3163	4,1715 3,8840
4	17,019 16,8140	3,0356 2,9096	3,9998 3,6057
8	17,336 17,0669	2,8433 2,5492	3,8921 3,3500

Ref [\o] - (DING; MANGLIK, 1996)

α	Ĵ	R_e		$N_{u_{\mathrm{T}}}$		N_{ι}	$t_{\rm H_1}$
	Estudo Ref[*]	Ref[\$]	Ref[†]	Estudo Ref	†]Ref[‡]	Estudo	Ref[*]
5°	13,1628 12,2700) 12,2556 1	2,2800	1,57092 1,46	0 1,486	2,26185	2,260
10 ^o	12,8704 12,4900) 12,4734 1	2,4750	1,69748 1,70	0 1,725	2,37004	2,430
15°	12,8476 12,6800) 12,6587 1	2,6595	1,87390 1,89	6 1,896	2,52595	2,570
20°	12,9036 12,8300) 12,8127 1	2,8132	2,03397 2,04	8 2,046	2,67068	2,690
25°	13,0092 12,9400) 12,9366 1	2,9370	2,15600 2,16	4 2,162	2,77470	2,800
30°	13,0810 13,0340) 13,0319 1	3,0322	2,25017 2,25	0 2,249	2,86188	2,888
35°	13,1350 13,0900) 13,0992 1	3,0995	2,31460 2,30	9 2,310	2,91890	2,940
40 ^o	13,1854 13,1300) 13,1394 1	3,1395	2,35101 2,34	5 2,345	2,94952	2,970
45°	13,1549 13,1540) 13,1528 1	3,1570	2,36954 2,35	7 2,357	2,96168	2,982
50°	13,1694 13,1300) -	-	2,35625 -	-	2,94782	2,970
60°	13,1088 13,0340) -	-	2,25320 -	-	2,84705	2,888
70 ^o	13,0046 12,8300) -	-	2,06600 -	-	2,64560	2,690
80°	13,1230 12,4900) -	-	1,89868 -	-	2,40716	2,430

Tabela 42 – Valores para fR_e , N_{u_T} e $N_{u_{H_1}}$ para um duto de seção transversal triangular direito.

Ref [◊] - (APARECIDO; COTTA; OZISIK, 1989) Ref [★] - (SHAH; LONDON, 1978); Ref [†] - (HAJI-SHEIKH; MASHENA; HAJI-SHEIKH, 1983); Ref [‡] - (LAKSHMINARAYANAN; HAJI-SHEIKH, 1992)

Tabela 43 – Valores para fR_e , $N_{u_{\rm T}}$ e $N_{u_{\rm H_1}}$ para um duto de seção transversal Triangular Equilátero.

β*	fR_e	$N_{u_{\mathrm{T}}}$	$N_{u_{\mathrm{H}_{1}}}$
	Estudo Ref[*] Ref	†] Estudo $\operatorname{Ref}[\star] \operatorname{Ref}[\dagger] \operatorname{Ref}[\ddagger] \operatorname{Ref}[\diamond] H$	$Ref[*] Estudo Ref[*] Ref[\circ] Ref[\diamond]$
$\sqrt{3}$	13,347 13,333 13,3	33 2,4783 2,47 2,495 2,517 3,884	2,77 3,1083 3,111 3,11 3,11

Ref [*] - (SHAH; LONDON, 1978); Ref [†] - (HAJI-SHEIKH; MASHENA; HAJI-SHEIKH, 1983); Ref [‡] - (LAKSHMI-NARAYANAN; HAJI-SHEIKH, 1992); Ref $[\circ]$ - (RAJAGOPAL; SADEGH, 1985); Ref[*] - (ZANG; EBADIAN; CAMPO, 1991); Ref $[\circ]$ (SHAHMARDAN; SEDAGHAT; NOROUZI, 2015)

* $\beta = \frac{b}{a}$, onde *a* e *b* são a metade do lado e a altura do triângulo equailátero

Tabela 44 – Valores para fR_e , $N_{u_{\rm T}}$ e $N_{u_{\rm H_1}}$ para duto de seção transversal Triangular Isósceles.

α	fR_e			$N_{u_{\mathrm{T}}}$			N_{ι}	$\iota_{\mathrm{H}_{1}}$
	Estudo Ref[*]	Ref[†]	Estudo	Ref[*]	Ref[†]	Ref[‡]	Estudo	Ref[*]
2,5000°	12,965 -	-	1,258	-	-	1,363	2,1763	-
5,0000°	12,702 -	12,265	1,453	-	1,468	1,537	2,02019	-
7,1500°	12,598 12,352	2 -	1,577	1,460	-	-	2,2668	2,348
10,000°	12,574 12,474	4 12,475	1,702	1,610	1,702	1,751	2,3828	2,446
14,250°	12,656 12,630	5 -	1,872	1,810	-	-	2,5570	2,575

15,000°	12,677	-	12,662	1,900	-	1,900	-	2,5841	-
20,000°	12,823	12,822	12,822	2,057	2,000	2,053	2,081	2,7306	2,722
25,000°	12,956	-	12,955	2,177	-	2,175	-	2,8323	-
28,070°	13,025	13,026	-	2,237	2,220	-	-	2,8825	2,880
30,000°	13,065	13,065	13,065	2,272	2,260	2,272	2,315	2,9110	2,910
36,870°	13,182	13,181	-	2,371	2,360	-	-	2,9985	2,998
40,000°	13,223	13,222	13,222	2,405	2,390	2,405	2,438	3,0314	3,029
50,000°	13,308	13,307	13,307	2,474	2,450	2,475	2,501	3,1034	3,092
53,130°	13,321	13,321	-	2,486	2,460	-	-	3,1150	3,102
60,000°	13,333	13,333	13,333	2,495	2,470	2,479	2,517	3,1226	3,111
67,380°	13,322	13,321	-	2,485	2,450	-	-	3,1066	3,102
70,000°	13,313	13,311	13,310	2,477	2,450	2,479	-	3,0959	3,095
80,000°	13,264	13,248	13,247	2,429	2,400	2,430	-	3,0361	3,050
90,000°	13,198	13,153	13,152	2,354	2,340	2,357	2,357	2,9553	2,982
100,00°	13,121	-	13,049	2,259	-	2,256	-	2,8626	-
110,00°	13,040	-	12,894	2,149	-	2,152	-	2,7651	-
120,00°	12,959	12,744	12,745	2,027	2,000	2,027	2,053	2,6681	2,680
126,87°	12,905	12,622	-	1,939	1,900	-	-	2,6042	2,603
130,00°	12,881	-	12,590	1,898	-	1,892	-	2,5764	-
140,00°	12,809	-	12,439	1,770	-	1,740	-	2,4941	-
150,00°	12,748	12,226	12,303	1,652	1,500	1,600	1,599	2,4253	2,325
151,93°	12,738	12,196	-	1,631	1,470	-	-	2,4139	2,302
160,00°	12,701	-	12,187	1,555	-	-	1,48	2,3735	-
170,00°	12,672	-	12,110	1,490	-	1,373	1,390	2,3412	-

Ref [*] - (SHAH; LONDON, 1978); Ref [†] - (HAJI-SHEIKH; MASHENA; HAJI-SHEIKH, 1983); Ref [‡] - (LAKSHMINARAYANAN; HAJI-SHEIKH, 1992)

Tabela 45 – Valores para	$fR_e e N_{u_{H_1}}$	para duto o	de seção	transversal	corrugado	tipo	seno.
	111						

		fR_e		$N_{u_{\mathrm{H_{1}}}}$	
N	β	Estudo	Ref[◊]	Estudo	Ref[\$]
8	0,02	16,04907677	15,990	4,388122080	4,356
	0,04	16,04603467	15,962	4,365562105	4,334
	0,06	15,91866044	15,915	4,291057954	4,297
	0,08	15,85795846	15,850	4,231107221	4,244
	0,10	15,74108677	15,765	4,132041856	4,176
	0,12	15,57991305	15,678	4,084849591	4,090
12	0,02	16,02952317	15,952	4,353567965	4,340
	0,04	15,86017164	15,806	4,254088244	4,267
	0,06	15,59552748	15,559	4,202184459	4,142
	0,08	15,21675542	15,200	3,969751099	3,962
	0,10	14,54134006	14,711	3,884182156	3,723

16	0,02	16,26914785	15,887	4,471788930	4,316
	0,04	15,89483760	15,542	4,128969038	4,168
	0,06	15,01578480	14,943	3,987122615	3,912
	0,08	14,21829137	14,051	3,506090478	3,540
24	0,02	16,04330804	15,679	4,24627719	4,245
	0,04	14,86816445	14,671	3,900919089	3,875
	0,06	12,83989491	12,872	3,237140354	3,231

Ref [\$] - (SHAH; LONDON, 1978)

APÊNDICE B - Tabelas dos valores obtidos nas simulações para os óleos OL1, OL2 e OL3.

DUTO CIRCULAR

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_w$ (Pa)	$\frac{dp}{dz} (\text{Pa}/m)$
104,7	8,9476	212,833883	0,07517	35,7903	71,5807
138,3	6,1539	309,453814	0,05170	24,6156	49,2313
168,2	4,3581	436,967446	0,03661	17,4324	34,8648
203,5	3,1745	599,880024	0,02667	12,6982	25,3964
232,6	2,4252	785,237534	0,02037	9,70076	19,4015
262,5	1,9833	960,153624	0,01666	7,93353	15,8670
301,4	1,5415	1235,33045	0,01295	6,16629	12,3325
329,6	1,2854	1481,48148	0,01080	5,14175	10,2834

Tabela 46 – Valores obtidos nas simulações para um duto circular com r = 1 e OL1.

Tabela 47 – Valores obtidos nas simulações para um duto circular com r = 1 e OL2.

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_w$ (Pa)	$\frac{dp}{dz} (\text{Pa}/m)$
84,6	171,6001	11,097609	1,441752	686,4007	1372,8014
124,1	67,40072	28,254174	0,566288	269,6028	539,20577
178	24,30524	78,351484	0,204208	97,22096	194,44193
227,4	11,27376	168,91891	0,094720	45,09505	90,190098
280,3	6,024416	316,10558	0,050616	24,09766	48,195334
312	4,282887	444,64206	0,035984	17,13154	34,263096
319,4	2,272843	837,87180	0,019096	9,091375	18,182750
443,4	1,572994	1210,6537	0,013216	6,291978	12,583956
500,7	1,100715	1730,1038	0,009248	4,402861	8,8057224

Tabela 48 – Valores obtidos nas simulações para um duto circular com r = 1 e OL3.

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz}$ (Pa/m)
104,8	61603,3033	0,030913	517,579	246413,2132	492826,4264
168,3	2569,18950	0,741226	21,5858	10276,75802	20553,51604
190,4	1895,23942	1,004808	15,9234	7580,957691	15161,91538
225,6	456,120808	4,175103	3,83224	1824,483233	3648,966466
249,4	261,134233	7,292616	2,19400	1044,536932	2089,073864
253,8	177,161842	10,74922	1,48848	708,6473715	1417,294743
289,1	87,1545619	21,85028	0,73225	348,6182478	697,2364960
305,0	54,3673379	35,02749	0,45678	217,4693519	434,9387038
355,2	21,6372445	88,01267	0,18179	86,54897813	173,0979562
401,0	10,1939948	186,8111	0,08564	40,77597955	81,55195910

DUTO CIRCULAR ANULAR

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_w$ (Pa)	$\frac{dp}{dz} (\text{Pa}/m)$
104,7	8,9476	191,55049	0,11703	55,7176	125,0524
138,3	6,1539	278,50843	0,08049	38,3211	86,00766
168,2	4,3581	393,27070	0,05700	27,1384	60,90934
203,5	3,1745	539,89202	0,04152	19,7683	44,36787
232,6	2,4252	706,71378	0,03172	15,1019	33,89471
262,5	1,9833	864,13826	0,02594	12,3507	27,71993
301,4	1,5415	1111,7974	0,02016	9,59954	21,54516
329,6	1,2854	1333,3333	0,01681	8,00456	17,96539

Tabela 49 – Valores obtidos nas simulações para um duto circular anular com $\beta = 0, 1$ e OL1.

Tabela 50 – Valores obtidos nas simulações para um duto circular anular com $\beta = 0, 2$ e OL1.

T (^o F)	μ (Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz} (\text{Pa}/m)$
104,7	8,9476	170,26710	0,13605	64,7738	161,7221
138,3	6,1539	247,56305	0,09357	44,5497	111,2280
168,2	4,3581	349,57395	0,06626	31,5494	78,77003
203,5	3,1745	479,90402	0,04827	22,9814	57,37804
232,6	2,4252	628,19002	0,03687	17,5565	43,83379
262,5	1,9833	768,12289	0,03015	14,3582	35,84837
301,4	1,5415	988,26436	0,02344	11,1598	27,86294
329,6	1,2854	1185,1851	0,01954	9,30560	23,23346

Tabela 51 – Valores obtidos nas simulações para um duto circular anular com $\beta = 0,3$ e OL1.

T (^o F)	μ (Pa.s)	R_e	f	$\bar{\tau}_w$ (Pa)	$\frac{dp}{dz}$ (Pa/m)
104,7	8,9476	148,983718	0,15738	74,9265	212,9138
138,3	6,1539	216,617669	0,10824	51,5324	146,4363
168,2	4,3581	305,877212	0,07665	36,4945	103,7040
203,5	3,1745	419,916016	0,05583	26,5835	75,54056
232,6	2,4252	549,666274	0,04265	20,3083	57,70900
262,5	1,9833	672,107537	0,03488	16,6087	47,19585
301,4	1,5415	864,731315	0,02711	12,9090	36,68271
329,6	1,2854	1037,03703	0,02261	10,7641	30,58781

T (°F)	μ (Pa.s)	R _e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz} (\text{Pa}/m)$
104,7	8,9476	127,7003	0,18566	88,3921	294,7210
138,3	6,1539	185,6722	0,12769	60,7937	202,7011
168,2	4,3581	262,1804	0,09043	43,0532	143,5499
203,5	3,1745	359,9280	0,06587	31,3610	104,5653
232,6	2,4252	471,1425	0,05032	23,9581	79,88236
262,5	1,9833	576,0921	0,04115	19,5935	65,32978
301,4	1,5415	741,1982	0,03198	15,2290	50,77720
329,6	1,2854	888,8888	0,02667	12,6986	42,34047

Tabela 52 – Valores obtidos nas simulações para um duto circular anular com $\beta = 0,4$ e OL1.

Tabela 53 – Valores obtidos nas simulações para um duto circular anular com $\beta = 0, 1$ e OL2.

T (°F)	μ (Pa.s)	R _e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz} (\text{Pa}/m)$
84,6	171,6001	9,98784811	2.244487	1068,5734	2398,30031
124,1	67,40072	25,4287571	0.881584	419,71178	941,998825
178	24,30524	70,5163362	0.317906	151,35143	339,692340
227,4	11,27376	152,027027	0.147458	70,202970	157,563163
280,3	6,024416	284,495021	0.078797	37,514712	84,1978154
312	4,282887	400,177856	0.056019	26,670013	59,8580328
319,4	2,272843	754,084625	0.029728	14,153251	31,7654789
443,4	1,572994	1089,58837	0.020574	9,7952117	21,9843197
500,7	1,100715	1557,09342	0.014397	6,8542765	15,3837007

Tabela 54 – Valores obtidos nas simulações para um duto circular anular com $\beta = 0, 2$ e OL2.

T (°F)	μ (Pa.s)	R _e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz} (\text{Pa}/m)$
84,6	171,6001	8,87808721	2,609300	1242,2566	3101,56379
124,1	67,40072	22,6033396	1,024875	487,93067	1218,22502
178	24,30524	62,6811878	0,369578	175,95171	439,301724
227,4	11,27376	135,135135	0,171425	81,613584	203,766059
280,3	6,024416	252,884463	0,091605	43,612259	108,887487
312	4,282887	355,713650	0,065124	31,004890	77,4104504
319,4	2,272843	670,297444	0,034560	16,453684	41,0802012
443,4	1,572994	968,523002	0,023918	11,387300	28,4308724
500,7	1,100715	1384,08304	0,016737	7,6835320	19,8947267

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz}$ (Pa/m)
84,6	171,6001	7,76832631	3,01828	1436,9676	4083,3365
124,1	67,40072	19,7779221	1,18551	564,40882	1603,8434
178	24,30524	54,8460393	0,42750	203,53035	578,35882
227,4	11,27376	118,243243	0,19829	94,405680	268,26641
280,3	6,024416	221,273905	0,10596	50,448035	143,35486
312	4,282887	311,249444	0,07533	35,864590	101,91404
319,4	2,272843	586,510264	0,03997	19,032631	54,083778
443,4	1,572994	847,457627	0,02766	13,172144	37,430415
500,7	1,100715	1211,07266	0,01936	9,2173113	26,192227

Tabela 55 – Valores obtidos nas simulações para um duto circular anular com $\beta = 0, 3$ e OL2.

Tabela 56 – Valores obtidos nas simulações para um duto circular anular com $\beta = 0, 4$ e OL2.

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz}$ (Pa/m)
84,6	171,6001	6,65856541	3,56072	1695,21676	5652,26548
124,1	67,40072	16,9525047	1,39857	665,843300	2220,08370
178	24,30524	47,0108908	0,50433	240,108440	800,580009
227,4	11,27376	101,351351	0,23393	111,372088	371,341663
280,3	6,024416	189,663347	0,12500	59,5144599	198,435701
312	4,282887	266,785237	0,08887	42,3101060	141,072196
319,4	2,272843	502,723083	0,04716	22,4531398	74,8642357
443,4	1,572994	726,392251	0,03264	15,5394164	51,8121983
500,7	1,100715	1038,06228	0,02284	10,8738289	36,2559935

Tabela 57 – Valores obtidos nas simulações para um duto circular anular com $\beta = 0, 1$ e OL3.

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_w$ (Pa)	$\frac{dp}{dz}$ (Pa/m)
104.8	61603,3033	0,0278218	805,7557	383610,6144	860973,5652
168.3	2569,18950	0,6671039	33,60435	15998,62851	35907,23434
190.4	1895,23942	0,9043272	24,78925	11801,86646	26488,04455
225.6	456,120808	3,7575934	5,965946	2840,314953	6374,787348
249.4	261,134233	6,5633546	3,415570	1626,111884	3649,636620
253.8	177,161842	9,6742986	2,317232	1103,206480	2476,030591
289.1	87,1545619	19,665253	1,139959	542,7211412	1218,080361
305	54,3673379	31,524747	0,711111	338,5514544	759,8430327
355.2	21,6372445	79,211406	0,283009	134,7375258	302,4041661
401	10,1939948	168,13002	0,133335	63,47913886	142,4722321

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_w$ (Pa)	$\frac{dp}{dz} (\text{Pa}/m)$
104.8	61603,3033	0,024730	936,7213	445961,7134	1113440,3906
168.3	2569,18950	0,592981	39,06632	18599,00512	46436,460588
190.4	1895,23942	0,803846	28,81844	13720,11198	34255,242973
225.6	456,120808	3,340083	6,935635	3301,972561	8244,0925035
249.4	261,134233	5,834093	3,970728	1890,415996	4719,8346013
253.8	177,161842	8,599376	2,693869	1282,518871	3202,0872413
289.1	87,1545619	17,48022	1,325246	630,9336627	1575,2630838
305	54,3673379	28,02199	0,826693	393,5787514	982,65493552
355.2	21,6372445	70,41014	0,329009	156,6374224	391,07938552
401	10,1939948	149,4489	0,155006	73,79687752	184,24995165

Tabela 58 – Valores obtidos nas simulações para um duto circular anular com $\beta = 0, 2$ e OL3.

Tabela 59 – Valores obtidos nas simulações para um duto circular anular com $\beta = 0,3$ e OL3.

T (°F)	μ (Pa.s)	R _e	f	$\bar{\tau}_w$ (Pa)	$\frac{dp}{dz} (\text{Pa}/m)$
104.8	61603,3033	0,021639	1083,5428	515861,6616	1465890,16825
168.3	2569,18950	0,518858	45,189570	21514,20940	61135,5143900
190.4	1895,23942	0,703365	33,335437	15870,59954	45098,4393129
225.6	456,120808	2,922572	8,0227260	3819,523068	10853,6875871
249.4	261,134233	5,104831	4,5930998	2186,719415	6213,85679555
253.8	177,161842	7,524454	3,1161063	1483,540617	4215,67983730
289.1	87,1545619	15,29519	1,5329648	729,8260766	2073,89877925
305	54,3673379	24,51924	0,9562691	455,2682048	1293,70572584
355.2	21,6372445	61,60887	0,3805783	181,1887401	514,872130618
401	10,1939948	130,7677	0,1793025	85,36378508	242,572655800

Tabela 60 – Valores obtidos nas simulações para um duto circular anular com $\beta = 0,4$ e OL3.

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_w$ (Pa)	$\frac{dp}{dz}$ (Pa/m)
104.8	61603,3033	0,0185478	1278,27505	608571,3329	2029125,01306
168.3	2569,18950	0,4447359	53,3109537	25380,70197	84625,4406515
190.4	1895,23942	0,6028848	39,3264183	18722,83334	62426,4854500
225.6	456,120808	2,5050623	9,46455498	4505,960449	15023,9693559
249.4	261,134233	4,3755697	5,41856293	2579,712446	8601,38946593
253.8	177,161842	6,4495324	3,67612696	1750,159700	5835,45861087
289.1	87,1545619	13,110169	1,80846637	860,9890234	2870,74705778
305	54,3673379	21,016498	1,12812801	537,0881359	1790,78262799
355.2	21,6372445	52,807604	0,44897511	213,7516340	712,699997170
401	10,1939948	112,08668	0,21152647	100,7052013	335,775663162

DUTO ELÍPTICO

T (°F)	μ (Pa.s)	R _e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz} (\text{Pa}/m)$
104,7	8,9476	193,30708	0,07628	36,3187	79,9760
138,3	6,1539	281,06245	0,05246	24,9790	55,0053
168,2	4,3581	396,87713	0,03715	17,6898	38,9539
203,5	3,1745	544,84302	0,02706	12,8857	28,3750
232,6	2,4252	713,19459	0,02067	9,84398	21,6770
262,5	1,9833	872,06271	0,01691	8,05065	17,7280
301,4	1,5415	1121,9929	0,01314	6,25732	13,7789
329,6	1,2854	1345,5604	0,01096	5,21766	11,4895

Tabela 61 – Valores obtidos nas simulações para um duto elíptico com $\beta = 0.9$ e OL1.

Tabela 62 – Valores obtidos nas simulações para um duto elíptico com $\beta = 0,75$ e OL1.

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz} (\text{Pa}/m)$
104,7	8,9476	167,9776	0,0824	39,2326	99,4177
138,3	6,1539	244,2342	0,0566	26,9831	68,3768
168,2	4,3581	344,8734	0,0401	19,1090	48,4234
203,5	3,1745	473,4510	0,0292	13,9195	35,2728
232,6	2,4252	619,7431	0,0223	10,6337	26,9465
262,5	1,9833	757,7944	0,0182	8,69655	22,0375
301,4	1,5415	974,9757	0,0141	6,75934	17,1285
329,6	1,2854	1169,248	0,0118	5,63626	14,2826

Tabela 63 – Valores obtidos nas simulações para um duto elíptico com $\beta = 0,5$ e OL1.

T (°F)	μ (Pa.s)	R _e	f	$\bar{\tau}_w$ (Pa)	$\frac{dp}{dz} (\text{Pa}/m)$
104,7	8,9476	126,7826	0,1119	53,2998	178,9519
138,3	6,1539	184,3379	0,0769	36,6582	123,0782
168,2	4,3581	260,2963	0,0545	25,9607	87,16217
203,5	3,1745	357,3414	0,0397	18,9104	63,49108
232,6	2,4252	467,7566	0,0303	14,4466	548,5038
262,5	1,9833	571,9521	0,0248	11,8148	39,66764
301,4	1,5415	735,8716	0,0192	9,18298	30,83145
329,6	1,2854	882,5009	0,0160	7,65721	14,28263

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz}$ (Pa/m)
104,7	8,9476	74,51870	0,2237	106,5159	608,4365
138,3	6,1539	108,3478	0,1538	73,25878	418,4660
168,2	4,3581	152,9937	0,1089	51,88077	296,3514
203,5	3,1745	210,0336	0,0793	37,79124	215,8697
232,6	2,4252	274,9321	0,0606	28,87051	164,9130
262,5	1,9833	336,1748	0,0496	23,61102	134,8699
301,4	1,5415	432,5214	0,0385	18,35153	104,8269
329,6	1,2854	518,7053	0,0321	15,30239	87,40974

Tabela 64 – Valores obtidos nas simulações para um duto elíptico com $\beta = 0,25$ e OL1.

Tabela 65 – Valores obtidos nas simulações para um duto elíptico com $\beta = 0,9$ e OL2.

T (°F)	μ (Pa.s)	R _e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz} (\text{Pa}/m)$
84,6	171,6001	10,079440	1,463037	696,5345	1533,8090
124,1	67,40072	25,661947	0,574648	273,5832	602,44595
178	24,30524	71,162996	0,207222	98,65630	217,24684
227,4	11,27376	153,42117	0,096118	45,76082	100,76795
280,3	6,024416	287,10394	0,051363	24,45343	53,847873
312	4,282887	403,84763	0,036515	17,38447	38,281608
319,4	2,272843	760,99985	0,019377	9,225597	20,315295
443,4	1,572994	1099,5803	0,013411	6,384871	14,059852
500,7	1,100715	1571,3725	0,009384	4,467863	9,8384923

Tabela 66 – Valores obtidos nas simulações para um duto elíptico com $\beta = 0,75$ e OL2.

T (°F)	μ (Pa.s)	R _e	f	$\bar{\tau}_w$ (Pa)	$\frac{dp}{dz}$ (Pa/m)
84,6	171,6001	8,7587089	1,58041	752,4168	1906,6687
124,1	67,40072	22,299406	0,62075	295,5325	748,89690
178	24,30524	61,838351	0,22384	106,5714	270,05823
227,4	11,27376	133,31805	0,10383	49,43216	125,26402
280,3	6,024416	249,48407	0,05548	26,41531	66,937963
312	4,282887	350,93058	0,03944	18,77921	47,587634
319,4	2,272843	661,28435	0,02093	9,965757	25,253820
443,4	1,572994	955,49985	0,01448	6,897122	317,47771
500,7	1,100715	1365,4721	0,01013	4,826315	12,230170

T (°F)	μ (Pa.s)	R _e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz} (\text{Pa}/m)$
84,6	171,6001	6,6107137	2,14709	1022,2038	3432,0036
124,1	67,40072	16,830676	0,84333	401,49884	1348,0144
178	24,30524	46,673048	0,30411	144,78370	486,10482
227,4	11,27376	100,62299	0,14106	67,156589	225,47524
280,3	6,024416	188,30033	0,07537	35,886802	120,48833
312	4,282887	264,86799	0,05358	25,512697	85,657741
319,4	2,272843	499,11027	0,02843	13,539086	45,456876
443,4	1,572994	721,17205	0,01968	9,3701592	17,477717
500,7	1,100715	1030,6022	0,01377	6,5568426	22,014306

Tabela 67 – Valores obtidos nas simulações para um duto elíptico com $\beta = 0,5$ e OL2.

Tabela 68 – Valores obtidos nas simulações para um duto elíptico com $\beta = 0,25$ e OL2.

T (^o F)	μ (Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz}$ (Pa/m)
84,6	171,6001	3,885563	4,29080	2042,8013	11668,8125
124,1	67,40072	9,892525	1,68533	802,36677	4583,24905
178	24,30524	27,43290	0,60774	289,33990	1652,75641
227,4	11,27376	59,14292	0,28189	134,20764	766,615839
280,3	6,024416	110,6768	0,15063	71,717212	409,660339
312	4,282887	155,6808	0,10709	50,985304	291,236321
319,4	2,272843	293,3608	0,05683	27,056896	154,553379
443,4	1,572994	423,8815	0,03933	18,725594	106,963629
500,7	1,100715	605,7545	0,02752	13,103381	74,8486410

Tabela 69 – Valores obtidos nas simulações para um duto elíptico com $\beta = 0,9$ e OL3.

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_w$ (Pa)	$\frac{dp}{dz}$ (Pa/m)
104,8	61603,3033	0,028077	525,2205	250051,1838	550627,05660
168,3	2569,18950	0,673221	21,90452	10428,48098	22964,113600
190,4	1895,23942	0,912620	16,15852	7692,880668	16940,164710
225,6	456,120808	3,792052	3,888818	1851,419355	4076,9316700
249,4	261,134233	6,623543	2,226391	1059,958161	2334,0887020
253,8	177,161842	9,763015	1,510455	719,1096283	1583,5206700
289,1	87,1545619	19,84559	0,743066	353,7651429	6779,0111464
305	54,3673379	31,81384	0,463527	220,6800040	485,95003320
355,2	21,6372445	79,93780	0,184476	87,82676121	193,39956840
401	10,1939948	169,6718	0,086912	41,37798387	91,116695040

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz} (\text{Pa}/m)$
104,8	61603,3033	0,024398	567,3584	270112,5307	684481,1480
168,3	2569,18950	0,585007	23,66190	11265,14719	28546,55006
190,4	1895,23942	0,793037	17,45491	8310,072499	21058,21580
225,6	456,120808	3,295171	4,200813	1999,956808	5068,008982
249,4	261,134233	5,755645	2,405012	1144,997504	2901,491480
253,8	177,161842	8,483745	1,631637	776,8030473	1968,464922
289,1	87,1545619	17,24518	0,802682	382,1473530	968,3840218
305	54,3673379	27,64520	0,500716	238,3849316	604,0815332
355,2	21,6372445	69,46337	0,199276	94,87301111	240,4138282
401	10,1939948	147,4393	0,093885	44,69769656	113,2666099

Tabela 70 – Valores obtidos nas simulações para um duto elíptico com $\beta = 0,75$ e OL3.

Tabela 71 – Valores obtidos nas simulações para um duto elíptico com $\beta = 0,5$ e OL3.

T (°F)	μ (Pa.s)	R _e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz}$ (Pa/m)
104,8	61603,3033	0,0184146	770,7909	366964,2494	1232066,0660
168,3	2569,18950	0,4415399	32,14613	15304,38544	51383,790100
190,4	1895,23942	0,5985521	23,71355	11289,73731	37904,788440
225,6	456,120808	2,4870597	5,707060	2717,062578	9122,4161660
249,4	261,134233	4,3441248	3,267355	1555,548529	5222,6846620
253,8	177,161842	6,4031829	2,216678	1055,334036	3543,2368580
289,1	87,1545619	13,015953	1,090492	519,1703482	1743,0912390
305	54,3673379	20,865463	0,680253	323,8603826	604,08153320
355,2	21,6372445	52,428103	0,270728	128,8907376	432,74489060
401	10,1939948	1111,2811	0,127549	60,72453074	203,87989780

Tabela 72 – Valores obtidos nas simulações para um duto elíptico com $\beta = 0,25$ e OL3.

T (^o F)	μ (Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz}$ (Pa/m)
104,8	61603,3033	0,01082	1540,3705	733351,8484	4189024,6300
168,3	2569,18950	0,25952	64,241748	30584,72146	174704,88650
190,4	1895,23942	0,35181	47,389845	22561,73385	128876,28080
225,6	456,120808	1,46181	11,405152	5429,855544	31016,215000
249,4	261,134233	2,55333	6,5295766	3108,652658	17757,127870
253,8	177,161842	3,76358	4,4298743	2109,009712	12047,005330
289,1	87,1545619	7,65035	2,1792715	1037,524868	5926,5102200
305	54,3673379	12,2640	1,3594376	647,2118484	3696,9789860
355,2	21,6372445	30,8155	0,5410322	257,5789353	1471,3326300
401	10,1939948	65,4074	0,2548975	121,3536384	693,19165320

DUTO SEMI ELÍPTICO

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz} (\text{Pa}/m)$
104,7	8,9476	130,0447	0,1238	58,9783	190,5640
138,3	6,1539	189,0810	0,0852	40,5636	131,0647
168,2	4,3581	266,9938	0,0603	28,7266	92,81811
203,5	3,1745	366,5359	0,0439	20,9251	67,61101
232,6	2,4252	479,7922	0,0335	15,9857	51,65124
262,5	1,9833	586,6687	0,0274	13,0735	42,24167
301,4	1,5415	754,8060	0,0213	10,1613	32,83210
329,6	1,2854	905,2081	0,0178	8,47299	27,37698

Tabela 73 – Valores obtidos nas simulações para um duto semi elíptico com $\beta = 0, 1$ e OL1.

Tabela 74 – Valores obtidos nas simulações para um duto semi elíptico com $\beta = 0,5$ e OL1.

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_w$ (Pa)	$\frac{dp}{dz} (\text{Pa}/m)$
104,7	8,9476	72,09892	0,2242	106,7734	623,7348
138,3	6,1539	104,8295	0,1542	73,43582	428,9877
168,2	4,3581	148,0256	0,1092	52,00615	303,8027
203,5	3,1745	203,2134	0,0795	37,88256	221,2974
232,6	2,4252	266,0045	0,0607	28,94028	169,0595
262,5	1,9833	325,2585	0,0497	23,66808	138,2611
301,4	1,5415	418,4765	0,0386	18,39588	107,4626
329,6	1,2854	501,8619	0,0322	15,33937	89,60754

Tabela 75 – Valores obtidos nas simulações para um duto semi elíptico com $\beta = 0,25$ e OL1.

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz}$ (Pa/m)
104,7	8,9476	39,39476	0,4620	219,9564	2353,3250
138,3	6,1539	57,27876	0,3177	151,2800	1618,5526
168,2	4,3581	80,88106	0,2250	107,1342	1146,2348
203,5	3,1745	111,0355	0,1639	78,03925	834,94579
232,6	2,4252	145,3445	0,1252	59,61786	637,85451
262,5	1,9833	177,7209	0,1024	48,75697	521,65329
301,4	1,5415	228,6551	0,0796	37,89608	405,45208
329,6	1,2854	274,2167	0,0663	31,59957	338,08542

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz} (\text{Pa}/m)$
84,6	171,6001	6,7808108	2,3758	1131,1072	3654,7056
124,1	67,40072	17,263737	0,9331	444,27367	1435,4868
178	24,30524	47,873969	0,3365	160,20865	517,64807
227,4	11,27376	103,21207	0,1560	74,311309	240,10629
280,3	6,024416	193,14539	0,0834	39,710106	128,30679
312	4,282887	271,68318	0,0593	28,230766	91,216054
319,4	2,272843	511,95263	0,0314	14,981511	48,406563
443,4	1,572994	739,72817	0,0217	10,368436	33,501316
500,7	1,100715	1057,1202	0,0152	7,2553947	23,442809

Tabela 76 – Valores obtidos nas simulações para um duto semi elíptico com $\beta = 0, 1$ e OL2.

Tabela 77 – Valores obtidos nas simulações para um duto semi elíptico com $\beta = 0,5$ e OL2.

T (°F)	μ (Pa.s)	R _e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz} (\text{Pa}/m)$
84,6	171,6001	3,759390	4,3011	2047,7380	11962,2083
124,1	67,40072	9,571293	1,6894	804,30579	4698,48839
178	24,30524	26,54209	0,6092	290,03912	1694,31264
227,4	11,27376	57,22243	0,2825	134,53197	785,891314
280,3	6,024416	107,0829	0,1510	71,890525	419,960671
312	4,282887	150,6255	0,1073	51,108516	298,559048
319,4	2,272843	283,8347	0,0569	27,122283	158,439406
443,4	1,572994	410,1171	0,0394	18,770846	109,653078
500,7	1,100715	586,0844	0,0275	13,135047	76,7306046

Tabela 78 – Valores obtidos nas simulações para um duto semi elíptico com $\beta = 0,25$ e OL2.

T (°F)	μ (Pa.s)	R _e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz}$ (Pa/m)
84,6	171,6001	2,054126	8,86055	4218,4030	45132,9024
124,1	67,40072	5,229743	3,48022	1656,8945	17727,1965
178	24,30524	14,50257	1,25499	597,48947	6392,56941
227,4	11,27376	31,26627	0,58212	277,13999	2965,13444
280,3	6,024416	58,50997	0,31107	148,09668	1584,49371
312	4,282887	82,30160	0,22114	105,28510	1126,45056
319,4	2,272843	155,0869	0,11735	55,872733	597,785128
443,4	1,572994	224,0875	0,08122	38,668519	413,716393
500,7	1,100715	320,2358	0,05683	27,058600	289,501302

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_w$ (Pa)	$\frac{dp}{dz}$ (Pa/m)
104,8	61603,3033	0,018888	852.9093	406059,8400	1312014,5806
168,3	2569,18950	0,452901	35,57091	16934,88211	54718,073707
190,4	1895,23942	0,613953	26,23994	12492,52191	40364,422399
225,6	456,120808	2,551053	6,315078	3006,532645	9714,3678812
249,4	261,134233	4,455901	3,615452	1721,273360	5561,5835989
253,8	177,161842	6,567940	3,615452	1167,767079	3773,1567709
289,1	87,1545619	13,35086	1,206671	574,4816526	1856,2000728
305,0	54,3673379	21,40234	0,752726	358,3637788	1157,9044679
355.2	21,6372445	53,77710	0,299571	142,6224825	460,82561788
401,0	10,1939948	114,1445	0,141137	67,19399306	217,10962264

Tabela 79 – Valores obtidos nas simulações para um duto semi elíptico com $\beta = 0, 1$ e OL3.

Tabela 80 – Valores obtidos nas simulações para um duto semi elíptico com $\beta = 0,5$ e OL3.

T (°F)	μ (Pa.s)	R _e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz} (\text{Pa}/m)$
104,8	61603,3033	0,01047	1544,0930	735124,0848	4.294351,7494
168,3	2569,18950	0,25109	64,369960	30658,63325	179097,594661
190,4	1895,23942	0,34038	47,504369	22616,25709	132116,693291
225,6	456,120808	1,41434	11,432714	5442,977466	31796,0740079
249,4	261,134233	2,47042	6,5453561	3116,165104	18203,6058215
253,8	177,161842	3,64137	4,4405796	2114,106397	12349,9102977
289,1	87,1545619	7,40193	2,1845379	1040,032176	6075,52396738
305,0	54,3673379	11,8658	1,3627228	648,7759167	3789,93431247
355,2	21,6372445	29,8149	0,5423397	258,2014069	1508,32721490
401,0	10,1939948	63,2835	0,2555135	121,6469047	710,620980583

Tabela 81 – Valores obtidos nas simulações para um duto semi elíptico com $\beta = 0,25$ e OL3.

T (°F)	μ (Pa.s)	R _e	f	$\bar{\tau}_w$ (Pa)	$\frac{dp}{dz}$ (Pa/m)
104,8	61603,3033	0,00572	3180,8789	1514378,1105	16202406,1792
168,3	2569,18950	0,13719	132,65978	63157,722709	675727,5937668
190,4	1895,23942	0,18598	97,860454	46590,181716	498470,6546370
225,6	456,120808	0,77279	23,551741	11212,700144	119965,2324828
249,4	261,134233	1,34983	13,483633	6419,3954752	68681,42915561
253,8	177,161842	1,98964	9,1477299	4355,1238728	46595,68535530
289,1	87,1545619	4,04440	4,5002150	2142,4981098	22922,69306644
305,0	54,3673379	6,48346	2,8072508	1336,4982419	14299,26068159
355,2	21,6372445	16,2908	1,1172364	531,90279955	5690,854315887
401,0	10,1939948	34,5780	0.5263656	250,59634624	2681,142682005

DUTO PLACAS PARALELAS

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz} (\text{Pa}/m)$
104,7	8,9476	425,66776	0,05638	26,8428	26,84279
138,3	6,1539	618,90762	0,03877	18,4617	18,46173
168,2	4,3581	873,93489	0,02746	13,0743	13,07432
203,5	3,1745	1199,7600	0,02000	9,52366	9,523663
232,6	2,4252	1570,4750	0,01528	7,27557	7,275575
262,5	1,9833	1920,3072	0,01249	5,95014	5,950147
301,4	1,5415	2470,6609	0,09714	4,62471	4,624718
329,6	1,2854	2962,9629	0,00809	3,85631	3,856312

Tabela 82 – Valores obtidos nas simulações para um escoamento entre placas paralelas com b = 1 e OL1.

Tabela 83 – Valores obtidos nas simulações para um escoamento entre placas paralelas com b = 1 e OL2.

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz} (\text{Pa}/m)$
84,6	171,6001	22,195218	1,081314	514,8005	514,8005
124,1	67,40072	56,508349	0,424716	202,2021	202,2021
178	24,30524	156,70297	0,153156	72,91572	72,91572
227,4	11,27376	337,83783	0,071040	33,82128	33,82128
280,3	6,024416	632,21115	0,037962	18,07325	18,07325
312	4,282887	889,28412	0,026988	12,84866	12,84866
319,4	2,272843	1675,7436	0,014322	6,818531	6,818531
443,4	1,572994	2421,3075	0,009912	4,718983	4,718983
500,7	1,100715	3460,2076	0,006936	3,302146	3,302146

Tabela 84 – Valores obtidos nas simulações para um escoamento entre placas paralelas com b = 1 e OL3.

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz}$ (Pa/m)
104,8	61603,3033	0,061826	388,1844	184809,9099	184809,9099
168,3	2569,18950	1,482453	16,18938	7707,568514	7707,568516
190,4	1895,23942	2,009616	11,94258	5685,718265	5685,718266
225,6	456,120808	8,350207	2,874180	1368,362425	1368,362425
249,4	261,134233	14,58523	1,645500	783,4026993	783,4026992
253,8	177,161842	21,49844	1,116360	531,4855286	531,4855288
289,1	87,1545619	43,70056	0,549192	261,4636859	261,4636858
305,0	54,3673379	70,05499	0,342588	163,1020139	163,1020139
355,2	21,6372445	176,0253	0,136344	64,91173360	64,91173358
401,0	10,1939948	373,6222	0,064236	30,58198467	30,58198468

DUTO RETANGULAR

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz} (\text{Pa/m})$
104,7	9,397	212,8338	0,06713	31,96215	63,6551
138,3	6,463	309,4538	0,04617	21,98269	43,7802
168,2	4,577	436,9674	0,03269	15,56781	31,0045
203,5	3,334	599,8800	0,02381	11,33998	22,5844
232,6	2,547	785,2375	0,01819	8,663149	17,2533
262,5	2,083	960,1536	0,01488	7,084939	14,1102
301,4	1,619	1235,330	0,01156	5,506729	10,9670
329,6	1,35	1481,481	0,00964	4,591775	9,14488

Tabela 85 – Valores obtidos nas simulações para um duto retangular com $\beta = 1$ e OL1.

Tabela 86 – Valores obtidos nas simulações para um duto retangular com $\beta = 0,9$ e OL1.

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz} (\text{Pa}/m)$
104,7	9,397	201,6321	0,07073	33,6755	71,0922
138,3	6,463	293,1667	0,04864	23,1610	48,8953
168,2	4,577	413,9691	0,03445	16,4023	34,6269
203,5	3,334	568,3074	0,02509	11,9478	25,2231
232,6	2,547	7743,909	0,01917	9,12754	19,2691
262,5	2,083	909,6192	0,01568	7,46473	15,7587
301,4	1,619	1170,313	0,01218	5,80191	12,2484
329,6	1,350	1403,508	0,01016	4,83791	10,2133

Tabela 87 – Valores obtidos nas simulações para um duto retangular com $\beta = 0,75$ e OL1.

T (^o F)	μ (Pa.s)	R_e	f	$\bar{\tau}_w$ (Pa)	$\frac{dp}{dz}$ (Pa/m)
104,7	9,397	182,4290	0,07935	37,7792	88,1526
138,3	6,463	265,2461	0,05457	25,9835	60,6289
168,2	4,577	374,5435	0,03865	18,4011	42,9365
203,5	3,334	514,1828	0,02815	13,4038	31,2760
232,6	2,547	673,0607	0,02150	10,2398	23,8932
262,5	2,083	822,9888	0,01759	8,37440	19,5404
301,4	1,619	1058,854	0,01367	6,50895	15,1877
329,6	1,350	1269,841	0,01140	5,42748	12,6642
T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz} (\text{Pa}/m)$
--------	--------------	----------	---------	-----------------------	-------------------------------
104,7	9,397	141,8892	0,10958	52,1709	156,5153
138,3	6,463	206,3025	0,07536	35,8817	107,6469
168,2	4,577	291,3116	0,05337	25,4109	76,23398
203,5	3,334	399,9200	0,03888	18,5099	55,53071
232,6	2,547	523,4916	0,02970	14,1406	42,42253
262,5	2,083	640,1024	0,02429	11,5645	34,69420
301,4	1,619	823,5536	0,01888	8,98848	26,96587
329,6	1,350	987,6543	0,01574	7,49503	12,66426

Tabela 88 – Valores obtidos nas simulações para um duto retangular com $\beta = 0,5$ e OL1.

Tabela 89 – Valores obtidos nas simulações para um duto retangular com $\beta = 0,25$ e OL1.

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz}$ (Pa/m)
104,7	9,397	85,1335	0,2142	101,9880	509,9300
138,3	6,463	123,781	0,1473	70,14460	350,7159
168,2	4,577	174,787	0,1043	49,67536	248,3718
203,5	3,334	239,952	0,0760	36,18476	180,9201
232,6	2,547	314,095	0,0580	27,64324	138,2134
262,5	2,083	384,061	0,0474	22,60733	113,0344
301,4	1,619	494,132	0,0369	17,57142	87,85535
329,6	1,350	592,592	0,0307	14,65189	173,2580

Tabela 90 – Valores obtidos nas simulações para um duto retangular com $\beta = 0, 125$ e OL1.

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz} (\text{Pa}/m)$
104,7	9,397	47,2964	0,4276	203,6099	1869,5286
138,3	6,463	68,7675	0,2941	140,0373	1285,8107
168,2	4,577	97,1038	0,2083	99,17236	910,59193
203,5	3,334	133,306	0,1517	72,23960	663,29768
232,6	2,547	174,497	0,1159	55,18724	506,72441
262,5	2,083	213,367	0,0948	45,13350	414,41184
301,4	1,619	274,517	0,0736	35,07976	322,09926
329,6	1,350	329,218	0,0614	29,25119	268,58184

T (°F)	μ (Pa.s)	R _e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz} (\text{Pa}/m)$
84,6	171,6001	11,09761	1,2875	612,9815	1220,8009
124,1	67,40072	28,25417	0,5057	240,7654	479,50334
178	24,30524	78,35148	0,1823	86,82196	172,91275
227,4	11,27376	168,9189	0,0845	40,27157	80,203990
280,3	6,024416	316,1055	0,0452	21,52012	42,859007
312	4,282887	444,6420	0,0321	15,29911	30,469387
319,4	2,272843	837,8718	0,0170	8,118939	16,169503
443,4	1,572994	1210,653	0,0118	5,618972	11,190624
500,7	1,100715	1210,653	0,0082	3,931920	7,8307274

Tabela 91 – Valores obtidos nas simulações para um duto retangular com $\beta = 1$ e OL2.

Tabela 92 – Valores obtidos nas simulações para um duto retangular com $\beta=0,9$ e OL2.

T (^o F)	μ (Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz}$ (Pa/m)
84,6	171,6001	10,5135	1,3565	645,8406	1363,4323
124,1	67,40072	26,7671	0,5328	253,6717	535,52580
178	24,30524	74,2277	0,1921	91,47608	193,11490
227,4	11,27376	160,0284	0,0891	42,43034	89,574570
280,3	6,024416	299,4684	0,0476	22,67371	47,866411
312	4,282887	421,2398	0,0338	16,11922	34,029258
319,4	2,272843	793,7732	0,0179	8,554157	18,058657
443,4	1,572994	1146,935	0,0124	5,920179	12,498073
500,7	1,100715	1639,045	0,0087	4,142691	8,7456253

Tabela 93 – Valores obtidos nas simulações para um duto retangular com $\beta=0,75$ e OL2

T (°F)	μ (Pa.s)	R _e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz} (\text{Pa/m})$
84,6	171,6001	9,512236	1,5218	724,5445	1690,6229
124,1	67,40072	24,21786	0,5977	284,5849	664,03894
178	24,30524	67,15841	0,2155	102,6236	239,45777
227,4	11,27376	144,7876	0,0999	47,60101	111,07028
280,3	6,024416	270,9476	0,0534	25,43679	59,353183
312	4,282887	381,1217	0,0379	18,08356	42,195450
319,4	2,272843	718,1758	0,0201	9,596590	22,392294
443,4	1,572994	1037,703	0,0139	6,641628	15,497306
500,7	1,100715	1482,946	0,0097	4,647532	10,844362

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz} (\text{Pa}/m)$
84,6	171,6001	7,3984060	2,1016	1000,5534	3001,7068
124,1	67,40072	188361163	0,8254	392,99507	1179,0034
178	24,30524	52,234323	0,2976	141,71717	425,15811
227,4	11,27376	112,61261	0,1380	65,734207	197,20567
280,3	6,024416	210,73705	0,0737	35,126717	105,38178
312	4,282887	296,42804	0,0524	24,972336	74,918169
319,4	2,272843	558,58120	0,0278	13,252327	39,757597
443,4	1,572994	807,10250	0,0192	9,1716986	15,497306
500,7	1,100715	1153,4025	0,0134	6,4179682	19,254202

Tabela 94 – Valores obtidos nas simulações para um duto retangular com $\beta = 0,5$ e OL2.

Tabela 95 – Valores obtidos nas simulações para um duto retangular com $\beta=0,25$ e OL2

T (^o F)	μ (Pa.s)	R_e	f	$\bar{\tau}_w$ (Pa)	$\frac{dp}{dz} (\text{Pa}/m)$
84,6	171,6001	4,439043	4,1084	1955,9632	9779,6191
124,1	67,40072	11,30167	1,6137	768,25869	3841,2160
178	24,30524	31,34059	0,5819	277,04025	1385,1733
227,4	11,27376	67,56756	0,2699	128,50257	642,49990
280,3	6,024416	126,4422	0,1442	68,668561	343,33588
312	4,282887	177,8568	0,1025	48,817953	244,08484
319,4	2,272843	335,1487	0,0544	25,906726	129,53102
443,4	1,572994	484,2615	0,0376	17,929581	89,646101
500,7	1,100715	692,0415	0,0263	12,546365	62,730565

Tabela 96 – Valores obtidos nas simulações para um duto retangular com $\beta = 0, 125$ e OL2.

T (°F)	μ (Pa.s)	R _e	f	$\bar{\tau}_w$ (Pa)	$\frac{dp}{dz} (\text{Pa}/m)$
84,6	171,6001	2,466135	8,2020	3904,9037	35854,4829
124,1	67,40072	6,278705	3,2215	1533,7590	14082,8404
178	24,30524	17,41144	1,1617	553,08581	5078,38536
227,4	11,27376	37,53753	0,5388	256,54376	2355,56227
280,3	6,024416	70,24568	0,2879	137,09057	1258,75359
312	4,282887	98,80934	0,2047	97,460628	894,874926
319,4	2,272843	186,1937	0,1086	51,720436	474,892496
443,4	1,572994	269,0341	0,0751	35,794788	328,664601
500,7	1,100715	384,4675	0,0526	25,047685	229,985641

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz} (\text{Pa}/m)$
104.8	61603,3033	0,03090	462,217	220056,239	438259,2602
168.3	2569,18950	0,74120	19,2769	9177,53020	18277,77134
190.4	1895,23942	1,00480	14,2202	6770,0795	13483,14429
225.6	456,120808	4,17510	3,42230	1629,3319	3244,942353
249.4	261,134233	7,29260	1,95930	932,8106	1857,765569
253.8	177,161842	10,7492	1,32920	632,8486	1260,367773
289.1	87,1545619	21,8502	0,65390	311,3291	620,0364560
305	54,3673379	35,0274	0,40790	194,2082	386,7810335
355.2	21,6372445	88,0126	0,16230	77,2914	153,9320502
401	10,1939948	186,811	0,07640	36,4144	72,52229054

Tabela 97 – Valores obtidos nas simulações para um duto retangular com $\beta = 1$ e OL3.

Tabela 98 – Valores obtidos nas simulações para um duto retangular com $\beta = 0,9$ e OL3.

T (°F)	μ (Pa.s)	R _e	f	$\bar{\tau}_w$ (Pa)	$\frac{dp}{dz}$ (Pa/m)
104.8	61603,3033	0,0292	486.9949	231852,4168	489462,9935
168.3	2569,18950	0,7022	20.31031	9669,494396	20413,24277
190.4	1895,23942	0,9519	14.98250	7132,991528	15058,43861
225.6	456,120808	3,9553	3.605789	1716,672745	3624,063066
249.4	261,134233	6,9088	2.064354	982,8142294	2074,816391
253.8	177,161842	10,1834	1.400524	666,7727093	1407,622015
289.1	87,1545619	20,7002	0.688986	328,0180567	692,4780088
305	54,3673379	33,1839	0.429792	204,6188764	431,9703420
355.2	21,6372445	83,3804	0.171049	81,43471485	171,9166004
401	10,1939948	176,978	0.080587	38,36648729	80,99538480

Tabela 99 – Valores obtidos nas simulações para um duto retangular com $\beta = 0,75$ e OL3.

T (^o F)	$\mu(\text{Pa.}s)$	R _e	f	$\bar{\tau}_w$ (Pa)	$\frac{dp}{dz} (\text{Pa}/m)$
104.8	61603,3033	0,026497	546.3415	260106,6008	606922,1796
168.3	2569,18950	0,635337	22.78538	10847,84602	25311,92339
190.4	1895,23942	0,861264	16.80831	8002,237825	25311,92339
225.6	456,120808	3,578660	4.045200	1925,871286	4493,749852
249.4	261,134233	6,250814	2.315922	1102,582720	2572,721744
253.8	177,161842	9,213617	1.571196	748,0274964	1745,416983
289.1	87,1545619	18,72881	0.772948	367,9912544	858,6558493
305	54,3673379	30,02356	0.482167	229,5543050	535,6326933
355.2	21,6372445	75,43943	0.191894	91,35857695	213,1723935
401	10,1939948	160,1238	0.090407	43,04193473	100,4323026

T (°F)	μ (Pa.s)	R _e	f	$\bar{\tau}_w$ (Pa)	$\frac{dp}{dz} (\text{Pa}/m)$
104.8	61603,3033	0,020608	754,4654	359191,9206	1077592,4394
168.3	2569,18950	0,494151	31,46527	14980,23747	44941,407968
190.4	1895,23942	0,669872	23,21129	11050,61987	33152,372726
225.6	456,120808	2,783402	5,586184	2659,514999	7978,6684823
249.4	261,134233	4,861744	3,198152	1522,601901	4567,8763987
253.8	177,161842	7,166147	2,169729	1032,981986	3098,9939206
289.1	87,1545619	14,56685	1,067395	508,1742833	1524,5464449
305	54,3673379	23,35166	0,665845	317,0009967	535,63269335
355.2	21,6372445	58,67511	0,264994	126,1608226	378,48832555
401	10,1939948	124,5407	0,124847	59,43838087	178,31790236

Tabela 100 – Valores obtidos nas simulações para um duto retangular com $\beta = 0,5$ e OL3.

Tabela 101 – Valores obtidos nas simulações para um duto retangular com $\beta = 0,25$ e OL3.

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz}$ (Pa/m)
104.8	61603,3033	0,012365	1474,8904	702177,5522	3510817,0150
168.3	2569,18950	0,296492	61,510874	29284,58542	146419,97660
190.4	1895,23942	0,40192	45,375335	21602,64964	108011,07171
225.6	456,120808	1,67004	10,920327	5199,036018	25994,656272
249.4	261,134233	2,91704	6,2520086	2976,505913	14882,229677
253.8	177,161842	4,29968	4,2415633	2019,357120	10096,582147
289.1	87,1545619	8,74011	2,0866321	993,4203803	4967,0018117
305	54,3673379	14,0109	1,3016488	619,6993060	3098,4340935
355.2	21,6372445	35,2050	0,5180333	246,6294271	1233,1222869
401	10,1939948	74,7244	0,2440620	116,1949765	580,96317568

Tabela 102 – Valores obtidos nas simulações para um duto retangular com $\beta = 0, 125$ e OL3.

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz}$ (Pa/m)
104.8	61603,3033	0,00687	2944,4854	1401833,9893	312871516,4608
168.3	2569,18950	0,16471	122,800899	58464,026763	536811,5544074
190.4	1895,23942	0,22329	90,5877535	43127,736624	395995,0864971
225.6	456,120808	0,92780	21,8014456	10379,405291	95302,78697805
249.4	261,134233	1,62058	12,4815700	5942,3249093	54561,90495111
253.8	177,161842	2,38871	8,46789759	4031,4638928	37016,54707458
289.1	87,1545619	4,85561	4,16577234	1983,2739602	18210,24716129
305	54,3673379	7,78388	2,59862419	1237,1736287	11359,61950373
355.2	21,6372445	19,5583	1,03420673	492,37335000	4520,928817170
401	10,1939948	41,5135	0,48724772	231,97276382	2129,953525639

DUTO TIPO SENO

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz} (\text{Pa/m})$
104,7	8,9476	128,7992	0,1008	47,9861	159,8936
138,3	6,1539	187,2701	0,0693	33,0035	109,9704
168,2	4,3581	264,4367	0,0491	23,3726	77,87942
203,5	3,1745	363,0254	0,0357	17,0251	56,72930
232,6	2,4252	475,1969	0,0273	13,0063	43,33819
262,5	1,9833	581,0498	0,0223	10,6369	35,44305
301,4	1,5415	747,5767	0,0173	8,26747	27,54791
329,6	1,2854	896,5383	0,0144	6,89382	22,97077

Tabela 103 – Valores obtidos nas simulações para um duto tipo seno com $\beta = 1$ e OL1.

Tabela 104 – Valores obtidos nas simulações para um duto tipo seno com $\beta = 0,75$ e OL1.

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz} (\text{Pa}/m)$
104,7	8,9476	111,3806	0,1101	52,4300	200,2763
138,3	6,1539	161,9439	0,0757	36,0599	137,7445
168,2	4,3581	228,6746	0,0536	25,5371	97,54866
203,5	3,1745	313,9303	0,0390	18,6018	71,05685
232,6	2,4252	410,9319	0,0298	14,2108	54,28368
262,5	1,9833	502,4693	0,0244	11,6219	44,39455
301,4	1,5415	646,4754	0,0189	9,03312	34,50541
329,6	1,2854	775,2916	0,0158	7,53225	28,77227

Tabela 105 – Valores obtidos nas simulações para um duto tipo seno com $\beta = 0,5$ e OL1.

T (°F)	μ (Pa.s)	R _e	f	$\bar{\tau}_w$ (Pa)	$\frac{dp}{dz} (\text{Pa}/m)$
104,7	8,9476	86,38806	0,1297	61,7566	304,4153
138,3	6,1539	125,6055	0,0892	42,4745	209,3685
168,2	4,3581	177,3626	0,0631	30,0798	148,2717
203,5	3,1745	243,4878	0,0460	21,9109	108,0047
232,6	2,4252	318,7234	0,0351	16,7387	82,50994
262,5	1,9833	389,7209	0,0287	13,6893	67,47869
301,4	1,5415	501,4136	0,0223	10,6400	52,44743
329,6	1,2854	601,3249	0,0186	8,87214	43,73318

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz} (\text{Pa/}m)$
104,7	8,9476	49,73129	0,2034	96,8712	829,5527
138,3	6,1539	72,30774	0,1399	66,6254	570,5437
168,2	4,3581	102,1028	0,0991	47,1831	404,0505
203,5	3,1745	140,1694	0,0721	34,3693	294,3204
232,6	2,4252	183,4805	0,0551	26,2563	224,8452
262,5	1,9833	224,3518	0,0451	21,4731	183,8840
301,4	1,5415	288,6503	0,0350	16,6898	142,9228
329,6	1,2854	346,1666	0,0292	13,9168	119,1759

Tabela 106 – Valores obtidos nas simulações para um duto tipo seno com $\beta = 0,25$ e OL1.

Tabela 107 – Valores obtidos nas simulações para um duto tipo seno com $\beta = 1$ e OL2.

T (°F)	μ (Pa.s)	R _e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz} (\text{Pa/m})$
84,6	171,6001	6,7158665	1,9330	920,2942	3066,4961
124,1	67,40072	17,098391	0,7592	361,4710	1204,4512
178	24,30524	47,415449	0,2738	130,3493	434,33478
227,4	11,27376	102,22354	0,1269	60,46135	201,46218
280,3	6,024416	191,29552	0,0678	32,30903	107,65635
312	4,282887	269,08109	0,0482	22,96918	76,535212
319,4	2,272843	507,04933	0,0256	12,18929	40,615729
443,4	1,572994	732,64331	0,0177	8,435992	28,109420
500,7	1,100715	1046,9954	0,0124	5,903152	19,669788

Tabela 108 – Valores obtidos nas simulações para um tipo seno com $\beta = 0,75$ e OL2.

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz}$ (Pa/m)
84,6	171,6001	5,807621	2,1120	1005,5225	3840,9704
124,1	67,40072	14,78602	0,8295	394,94682	1508,6474
178	24,30524	41,00304	0,2991	142,42099	544,03038
227,4	11,27376	88,39896	0,1387	66,060667	252,34348
280,3	6,024416	165,4249	0,0741	35,301169	134,84604
312	4,282887	232,6909	0,0527	25,096358	95,864948
319,4	2,272843	438,4766	0,0279	13,318143	50,873639
443,4	1,572994	633,5616	0,0193	9,2172484	35,208736
500,7	1,100715	905,4011	0,0135	6,4498421	24,637590

T (°F)	μ (Pa.s)	R _e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz} (\text{Pa}/m)$
84,6	171,6001	4,504456	2,4877	1184,3918	5838,1863
124,1	67,40072	11,46820	0,9771	465,20266	2293,1092
178	24,30524	31,80242	0,3523	167,75581	826,91361
227,4	11,27376	68,56323	0,1634	77,811990	383,55626
280,3	6,024416	128,3054	0,0873	41,580782	204,96287
312	4,282887	180,4776	0,0621	29,560670	145,71250
319,4	2,272843	340,0874	0,0329	15,687265	77,326756
443,4	1,572994	491,3974	0,0228	10,856875	53,516465
500,7	1,100715	702,2393	0,0159	7,5971842	37,448567

Tabela 109 – Valores obtidos nas simulações para um duto tipo seno com $\beta = 0,5$ e OL2.

Tabela 110 – Valores obtidos nas simulações para um duto tipo seno com $\beta = 0,25$ e OL2.

T (°F)	μ (Pa.s)	R _e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz} (\text{Pa}/m)$
84,6	171,6001	2,593094	3,9022	1857,8317	15909,4569
124,1	67,40072	6,601940	1,5327	729,71483	6248,87953
178	24,30524	18,30780	0,5527	263,14102	2253,39613
227,4	11,27376	39,47001	0,2563	122,05554	1045,21704
280,3	6,024416	73,86201	0,1369	65,223430	558,537858
312	4,282887	103,8961	0,0973	46,368735	397,076542
319,4	2,272843	195,7792	0,0516	24,606974	210,720699
443,4	1,572994	282,8843	0,0357	17,030047	145,836026
500,7	1,100715	404,2603	0,0250	11,916909	102,049907

Tabela 111 – Valores obtidos nas simulações para um duto tipo seno com $\beta = 1$ e OL3.

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_w$ (Pa)	$\frac{dp}{dz}$ (Pa/m)
104,8	61603,3033	0,018707	693,9461	330379,4129	1100851,3286
168,3	2569,18950	0,448563	28,94129	13778,60073	45911,428905
190,4	1895,23942	0,608073	21,34941	10164,19662	33867,937661
225,6	456,120808	2,526619	5,138089	2446,182538	8150,8810547
249,4	261,134233	4,413224	2,941613	1400,466695	4666,4700107
253,8	177,161842	6,505034	1,995685	950,1215438	3165,8829907
289,1	87,1545619	13,22299	0,981774	467,4111853	1557,4524449
305,0	54,3673379	21,19735	0,612434	291,5728254	971,54459316
355.2	21,6372445	53,26204	0,243738	116,0408575	386,65766463
401,0	10,1939948	113,0512	0,114832	54,67054309	182,16673814

T⁰F	µ(Pas)	R _e	f	$\bar{\tau}_{\scriptscriptstyle W}$	$\frac{dp}{dz}$
104.8	61603,3033	0,01617	758,2124	360975,7939	1378882,3713
168.3	2569,18950	0,38790	31,62154	15054,63459	57506,820689
190.4	1895,23942	0,52583	23,32657	11105,50114	42421,624955
225.6	456,120808	2,18492	5,613927	2672,723085	10209,467804
249.4	261,134233	3,81638	3,214035	1530,163677	5845,0338088
253.8	177,161842	5,62530	2,180505	1038,112137	3965,4584884
289.1	87,1545619	11,4347	1,072696	510,6980554	1950,8026785
305	54,3673379	18,3306	0,669152	318,5753350	1216,9179231
355.2	21,6372445	46,0589	0,266310	126,7873815	484,31193535
401	10,1939948	97,7623	0,125467	59,73357275	228,17477468

Tabela 112 – Valores obtidos nas simulações para um duto tipo seno com $\beta = 0,75$ e OL3.

Tabela 113 – Valores obtidos nas simulações para um duto tipo seno com $\beta = 0,5$ e OL3.

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz}$ (Pa/m)
104,8	61603,3033	0,01254	893,0884	425188,6400	2095869,3343
168,3	2569,18950	0,30086	893,0884	17732,65609	87409,038293
190,4	1895,23942	0,40784	27,47606	13081,02373	64479,889442
225,6	456,120808	1,69465	6,612571	3148,165370	15518,155091
249,4	261,134233	2,96003	3,785770	1802,359670	8884,3162932
253,8	177,161842	4,36304	2,568388	1222,778633	6027,4052489
289,1	87,1545619	8,86890	1,263515	601,5445227	2965,1749825
305,0	54,3673379	14,2174	0,788185	375,2456972	1849,6871165
355,2	21,6372445	35,7238	0,313684	149,3411892	736,14294785
401,0	10,1939948	75,8255	0,147786	70,35938972	346,82038372

Tabela 114 – Valores obtidos nas simulações para um duto tipo seno com $\beta = 0,25$ e OL3.

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz}$ (Pa/m)
104,8	61603,3033	0,0072	1400,8945	666949,0085	5711387,2656
168,3	2569,18950	0,1732	58,424848	27815,36543	238195,606962
190,4	1895,23942	0,2347	43,098835	20518,83561	175712,108295
225,6	456,120808	0,9755	10,372449	4938,198189	42288,0338604
249,4	261,134233	1,7040	5,9383427	2827,173357	24210,3694679
253,8	177,161842	2,5116	4,0287622	1918,045122	16425,0914975
289,1	87,1545619	5,1056	1,9819449	943,5800611	8080,30460579
305,0	54,3673379	8,1846	1,2363445	588,6087306	5040,52388652
355,2	21,6372445	20,565	0,4920434	234,2559248	2006,03987525
401,0	10,1939948	74,724	0,1354175	64,47064644	580,963175686

DUTO TIPO DUPLO SENO

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_w$ (Pa)	$\frac{dp}{dz}$ (Pa/m)
104,7	8,9476	185,13995	0,0842	40,1000	92,1900
138,3	6,1539	269,18771	0,0579	27,5797	63,4058
168,2	4,3581	380,10928	0,0410	19,5315	44,9030
203,5	3,1745	521,82368	0,0298	14,2272	32,7084
232,6	2,4252	683,06249	0,0228	10,8688	24,9875
262,5	1,9833	835,21851	0,0186	8,88883	20,4354
301,4	1,5415	1074,5893	0,0145	6,90879	15,8833
329,6	1,2854	1288,7112	0,0121	5,76088	13,2442

Tabela 115 – Valores obtidos nas simulações para um duto tipo seno duplo com $\beta = 1$ e OL1.

Tabela 116 – Valores obtidos nas simulações para um duto tipo seno duplo com $\beta = 0,5$ e OL1.

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz}$ (Pa/m)
104,7	8,9476	118,8714	0,1266	60,2842	215,8821
138,3	6,1539	172,8353	0,0870	41,4618	148,4778
168,2	4,3581	244,0539	0,0616	29,3626	105,1498
203,5	3,1745	335,0434	0,0449	21,3885	76,59371
232,6	2,4252	438,5688	0,0343	16,3396	58,51355
262,5	1,9833	536,2625	0,0280	13,3629	47,85384
301,4	1,5415	689,9536	0,0218	10,3863	37,19413
329,6	1,2854	827,4332	0,0181	8,66060	31,01425

Tabela 117 – Valores obtidos nas simulações para um duto tipo seno duplo com $\beta=0,25$ e OL1.

T (°F)	μ (Pa.s)	R _e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz} (\text{Pa}/m)$
104,7	8,9476	65,29815	0,2261	107,6514	701,8008
138,3	6,1539	94,94147	0,1555	74,03970	482,6794
168,2	4,3581	134,0630	0,1101	52,43381	341,8263
203,5	3,1745	184,0452	0,0802	38,19408	248,9948
232,6	2,4252	240,9135	0,0612	29,17826	190,2188
262,5	1,9833	294,5783	0,0501	23,86271	155,5657
301,4	1,5415	379,0035	0,0389	18,54715	120,9125
329,6	1,2854	454,5235	0,0324	15,46551	100,8227

T (°F)	µ(Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz}$ (Pa/m)
104,7	8,9476	33,55247	0,4363	207,7321	2635,8806
138,3	6,1539	48,78425	0,3001	142,8724	1812,8867
168,2	4,3581	68,88630	0,2125	101,1801	1283,8592
203,5	3,1745	94,56887	0,1548	73,70213	935,19484
232,6	2,4252	123,7898	0,1182	56,30453	714,43949
262,5	1,9833	151,3646	0,0967	46,04725	584,28640
301,4	1,5415	194,7452	0,0751	35,78996	454,13331
329,6	1,2854	233,5500	0,0626	29,84339	378,67817

Tabela 118 – Valores obtidos nas simulações para um duto tipo seno duplo com $\beta = 0,125$ e OL1.

Tabela 119 – Valores obtidos nas simulações para um duto tipo seno duplo com $\beta = 1$ e OL2.

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz}$ (Pa/m)
84,6	171,6001	9,6535891	1,6153	769,0523	1768,05352
124,1	67,40072	24,577743	0,6344	302,0666	694,451952
178	24,30524	68,156396	0,2288	108,9276	250,424950
227,4	11,27376	146,93920	0,1061	50,52508	116,157306
280,3	6,024416	274,97394	0,0567	26,99934	62,0715608
312	4,282887	386,78527	0,0403	19,19441	44,1280039
319,4	2,272843	5728,8479	0,0214	10,18609	23,4178624
443,4	1,572994	1053,1236	0,0148	7,049614	16,2070836
500,7	1,100715	1504,9828	0,0103	4,933023	11,3410343

Tabela 120 – Valores obtidos nas simulações para um duto seno duplo com $\beta = 0,5$ e OL2.

T (°F)	μ (Pa.s)	R _e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz} (\text{Pa}/m)$
84,6	171,6001	6,198208	2,4284	1156,1527	4140,2649
124,1	67,40072	15,78045	0,9538	454,11100	1626,2036
178	24,30524	43,76067	0,3439	163,75607	586,42209
227,4	11,27376	94,34416	0,1595	75,956746	272,00648
280,3	6,024416	176,5504	0,0852	40,589386	145,35346
312	4,282887	248,3403	0,0606	28,855865	103,33489
319,4	2,272843	467,9660	0,0321	15,313239	54,837794
443,4	1,572994	676,1712	0,0222	10,598019	37,952256
500,7	1,100715	966,2931	0,0155	7,4160472	26,557390

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz}$ (Pa/m)
84,6	171,6001	3,404784	4,3365	2064,5769	13459,3857
124,1	67,40072	8,668476	1,7033	810,91973	5286,54626
178	24,30524	24,03850	0,6142	292,42416	1906,37103
227,4	11,27376	51,82489	0,2849	135,63825	884,252645
280,3	6,024416	96,98226	0,1522	72,481693	472,522507
312	4,282887	136,4176	0,1082	51,528790	335,926385
319,4	2,272843	257,0619	0,0574	27,345314	178,269515
443,4	1,572994	371,4326	0,0397	18,925202	123,377142
500,7	1,100715	530,8016	0,0278	13,243059	86,3341265

Tabela 121 – Valores obtidos nas simulações para um duto tipo seno duplo com $\beta=0,25$ e OL2.

Tabela 122 – Valores obtidos nas simulações para um tipo seno duplo com $\beta = 0, 125$ e OL2.

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz}$ (Pa/m)
84,6	171,6001	1,749497	8,3681	3983,9604	50551,8535
124,1	67,40072	4,454166	3,2868	1564,8107	19855,6395
178	24,30524	12,35182	1,1852	564,28330	7160,10306
227,4	11,27376	26,62944	0,5497	261,73761	3321,14785
280,3	6,024416	49,83288	0,2937	139,86603	1774,73838
312	4,282887	70,09618	0,2088	99,433766	1261,69958
319,4	2,272843	132,0874	0,1108	52,767541	669,559116
443,4	1,572994	190,8551	0,0767	36,519471	463,389887
500,7	1,100715	272,7444	0,0536	25,554787	324,260719

Tabela 123 – Valores obtidos nas simulações para um duto tipo seno duplo com $\beta = 1$ e OL3.

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz}$ (Pa/m)
104,8	61603,3033	0,026890	579,9024	276084,5794	634719,2349
168,3	2569,18950	0,644778	24,18505	11514,21378	26471,21030
190,4	1895,23942	0,874062	17,84083	8493,803914	19527,27941
225,6	456,120808	3,631839	4,293691	2044,174821	4699,563740
249,4	261,134233	6,343701	2,458186	1170,312808	2690,552482
253,8	177,161842	9,350533	1,667712	793,9777617	1825,357137
289,1	87,1545619	19,00712	0,820429	390,5964339	897,9823148
305,0	54,3673379	30,46972	0,511786	243,6554995	560,1646879
355.2	21,6372445	76,56047	0,203682	96,97060442	222,9356959
401,0	10,1939948	162,5032	0,095961	45,68593957	105,0321053

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz}$ (Pa/m)
104,8	61603,3033	0,017265	871,7948	415051,0152	1486327,0673
168,3	2569,18950	0,413988	36,35854	17309,86254	61987,843143
190,4	1895,23942	0,561202	26,82096	12769,13743	45727,185091
225,6	456,120808	2,331868	6,454909	3073,104758	11005,005689
249,4	261,134233	4,073053	3,695507	1759,386635	6300,4880911
253,8	177,161842	6,003627	2,507151	1193,624348	4274,4532879
289,1	87,1545619	12,20376	1,233390	587,2021059	2102,8123097
305,0	54,3673379	19,56346	0,769393	366,2988445	1311,7420930
355,2	21,6372445	49,15661	0,306205	145,7804992	522,05028763
401,0	10,1939948	104,3372	0,144263	68,68183526	245,95451414

Tabela 124 – Valores obtidos nas simulações para um duto tipo seno duplo com $\beta = 0,5$ e OL3.

Tabela 125 – Valores obtidos nas simulações para um duto tipo seno duplo com $\beta=0,25$ e OL3.

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_w$ (Pa)	$\frac{dp}{dz}$ (Pa/m)
104,8	61603,3033	0,00948	1556,7904	741169,1317	4831828,3047
168,3	2569,18950	0,22741	64,926543	30910,74427	201513,26153
190,4	1895,23942	0,30827	47,895005	22802,23432	148652,27988
225,6	456,120808	1,28093	11,526727	5487,735970	35775,637240
249,4	261,134233	2,23739	6,5991797	3141,789846	20481,950009
253,8	177,161842	3,29789	4,4770952	2131,491043	13895,612101
289,1	87,1545619	6,70374	2,2025018	1048,584533	6835,9301669
305,0	54,3673379	10,7465	1,3739287	654,1109083	4264,2785110
355,2	21,6372445	27,0025	0,5467994	260,3246397	1697,1078651
401,0	10,1939948	57,3142	0,2576146	122,6472273	799,56155626

Tabela 126 – Valores obtidos nas simulações para um duto tipo seno duplo com $\beta = 0,125$ e OL3.

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz}$ (Pa/m)
104.8	61603,3033	0,00487	3004,0979	1430214,7941	18147772,9284
168.3	2569,18950	0,11685	125,28706	59647,659163	756859,863744
190.4	1895,23942	0,15840	92,421746	44000,878438	558320,298341
225.6	456,120808	0,65819	22,242826	10589,541354	134369,042123
249.4	261,134233	1,14965	12,734265	6062,6301410	76927,7702908
253.8	177,161842	1,69457	8,6393342	4113,0828224	52190,2677860
289.1	87,1545619	3,44461	4,2501104	2023,4262974	25674,9413683
305	54,3673379	5,52195	2,6512346	1262,2208050	16016,1233475
355.2	21,6372445	13,8748	1,0551447	502,34168578	6374,13546796
401	10,1939948	29,4500	0,4971122	236,66916423	3003,05819046

DUTO TRIANGULAR DIREITO

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz}$ (Pa/m)
104,7	8,9476	8,90378	1,4783	703,8190	33668,6026
138,3	6,1539	12,9458	1,0167	484,0675	23156,3455
168,2	4,3581	18,2802	0,7200	342,8093	16398,9777
203,5	3,1745	25,0956	0,5245	249,7108	11945,4210
232,6	2,4252	32,8499	0,4007	190,7659	9125,67105
262,5	1,9833	40,1674	0,3277	156,0131	7463,20094
301,4	1,5415	51,6793	0,2547	121,2603	5800,73083
329,6	1,2854	61,9769	0,2123	101,1126	4836,92812

Tabela 127 – Valores obtidos nas simulações para um duto tipo triangular direito com $\alpha = 5^{\circ}$ e OL1.

Tabela 128 – Valores obtidos nas simulações para um duto tipo triangular direito com $\alpha = 20^{\circ}$ e OL1.

T (^o F)	μ (Pa.s)	R _e	f	$\bar{\tau}_w$ (Pa)	$\frac{dp}{dz} (\text{Pa}/m)$
104,7	8,9476	31,90299	0,4044	192,5602	2571,7399
138,3	6,1539	46,38596	0,2781	132,4376	1768,7725
168,2	4,3581	65,49977	0,1970	93,79037	1252,6182
203,5	3,1745	89,91975	0,1435	68,31922	912,43811
232,6	2,4252	89,91975	0,1096	52,19228	697,05455
262,5	1,9833	143,9234	0,0896	42,68415	570,06856
301,4	1,5415	185,1713	0,0696	33,17601	443,08257
329,6	1,2854	222,0684	0,0581	27,66375	369,46354

Tabela 129 – Valores obtidos nas simulações para um duto tipo triangular direito com $\alpha = 30^{\circ}$ e OL1.

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz}$ (Pa/m)
104,7	8,9476	44,97709	0,2908	138,4639	1309,9570
138,3	6,1539	65,39528	0,2000	95,23173	900,95267
168,2	4,3581	92,34208	0,1416	67,44169	638,04121
203,5	3,1745	126,7695	0,1031	49,12619	464,76500
232,6	2,4252	165,9402	0,0788	37,52982	355,05592
262,5	1,9833	202,9043	0,0644	30,69282	290,37357
301,4	1,5415	261,0560	0,0501	23,85582	225,69122
329,6	1,2854	313,0738	0,0417	19,89213	188,19218

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz} (\text{Pa}/m)$
104,7	8,9476	62,33760	0,2110	100,4672	687,7173
138,3	6,1539	90,63692	0,1451	69,09865	472,9932
168,2	4,3581	127,9848	0,1027	48,93463	334,9667
203,5	3,1745	175,7008	0,0748	35,64519	243,9980
232,6	2,4252	229,9907	0,0572	27,23104	186,4016
262,5	1,9833	281,2224	0,0467	22,27023	152,4439
301,4	1,5415	361,8199	0,0363	17,30941	118,4861
329,6	1,2854	433,9158	0,0303	14,43341	98,79945

Tabela 130 – Valores obtidos nas simulações para um duto tipo triangular direito com $\alpha = 45^{\circ}$ e OL1.

Tabela 131 – Valores obtidos nas simulações para um duto tipo triangular direito com $\alpha = 5^{\circ}$ e OL2.

T (°F)	µ(Pa.s)	R _e	f	$\bar{\tau}_w$ (Pa)	$\frac{dp}{dz} (\text{Pa}/m)$
84,6	171,6001	0,46426	28,3521	13498,0912	645708,4067
124,1	67,40072	1,18199	11,1360	5301,74891	253619,8474
178	24,30524	3,27778	4,01575	1911,85323	91457,35349
227,4	11,27376	7,06662	1,86267	886,795512	42421,65107
280,3	6,024416	13,2241	0,99536	473,881352	22669,06979
312	4,282887	18,6013	0,70762	336,892416	16115,92791
319,4	2,272843	35,0518	0,37552	178,782169	8552,405500
443,4	1,572994	50,6469	0,25989	123,731941	5918,966856
500,7	1,100715	72,3778	0,18186	86,5823997	4141,843635

Tabela 132 – Valores obtidos nas simulações para um duto triangular direito com $\alpha = 20^{\circ}$ e OL2.

					1
T (^o F)	μ (Pa.s)	R_e	f	$\bar{\tau}_w$ (Pa)	$\frac{dp}{dz}$ (Pa/m)
84,6	171,6001	1,663489	7,7569	3692,9883	49321,74090
124,1	67,40072	4,235194	3,0467	1450,5233	19372,47877
178	24,30524	11,74459	1,0986	523,07037	6985,871403
227,4	11,27376	25,32031	0,5096	242,62137	3240,332109
280,3	6,024416	47,38303	0,2723	129,65079	1731,552470
312	4,282887	66,65011	0,1936	92,171533	1230,997789
319,4	2,272843	125,5938	0,1027	48,913617	653,2662790
443,4	1,572994	181,4724	0,0711	33,852239	452,1139057
500,7	1,100715	259,3360	0,0497	23,688371	316,3702633

T (°F)	μ (Pa.s)	R _e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz} (\text{Pa}/m)$
84,6	171,6001	2,345200	5,5777	2655,5109	25122,8206
124,1	67,40072	5,970809	2,1908	1043,0254	9867,68309
178	24,30524	16,55761	0,7900	376,12334	3558,36576
227,4	11,27376	35,69676	0,3664	174,46135	1650,51518
280,3	6,024416	66,80096	0,1958	93,227783	881,994051
312	4,282887	93,96392	0,1392	66,277631	627,028488
319,4	2,272843	177,0631	0,0738	35,172233	332,751667
443,4	1,572994	255,8412	0,0511	24,342073	230,291476
500,7	1,100715	365,6139	0,0357	17,033557	161,148273

Tabela 133 – Valores obtidos nas simulações para um duto tipo triangular direito com $\alpha = 30^{\circ}$ e OL2.

Tabela 134 – Valores obtidos nas simulações para um tipo triangular direito com $\alpha = 45^{\circ}$ e OL2.

T (°F)	μ (Pa.s)	R _e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz} (\text{Pa/m})$
84,6	171,6001	3,250414	4,0471	1926,7971	13189,2874
124,1	67,40072	8,275456	1,5896	756,80289	5180,45767
178	24,30524	22,94861	0,5732	272,90920	1868,11463
227,4	11,27376	49,47520	0,2658	126,58642	866,507767
280,3	6,024416	92,58518	0,1420	67,644618	463,040088
312	4,282887	130,2326	0,1010	48,090009	329,185129
319,4	2,272843	245,4069	0,0536	25,520421	174,692064
443,4	1,572994	354,5922	0,0371	17,662226	120,901252
500,7	1,100715	506,7356	0,0259	12,359282	84,6016029

Tabela 135 – Valores obtidos nas simulações para um duto tipo triangular direito com $\alpha = 5^{\circ}$ e OL3.

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz}$ (Pa/m)
104,8	61603,3033	0,001293	10178,2106	4845723,3096	231804943,2810
168,3	2569,18950	0,031008	424,486198	202092,75806	9667514,492223
190,4	1895,23942	0,042035	313,134930	149079,76282	7131530,992819
225,6	456,120808	0,174663	75,3611158	35878,518101	1716321,242892
249,4	261,134233	0,305082	43,1450765	20540,850446	982612.9905502
253,8	177,161842	0,449687	29,2710043	13935,572047	666636.1823947
289,1	87,1545619	0,914093	1439983644	6855,5884159	327950.8924377
305,0	54,3673379	1,465354	8,98267121	4276,5413994	204576.9791592
355.2	21,6372445	3,681958	3,57494519	1701,9882791	81418.04046403
401,0	10,1939948	7,815134	1,68427051	801,86087467	38358.63145608

T (°F)	μ (Pa.s)	R _e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz}$ (Pa/m)
104,8	61603,3033	0,004633	2784,6910	1325757,7921	17706170,8265
168,3	2569,18950	0,111107	116,13661	55291,239640	738442,677902
190,4	1895,23942	0,150617	85,671642	40787,235379	544734,310780
225,6	456,120808	0,625832	20,618302	9816,1248392	131099,348830
249,4	261,134233	1,093135	11,804207	5619,8405886	75055,8345340
253,8	177,161842	1,611267	8,0083528	3812,6801820	50920,2865028
289,1	87,1545619	3,275274	3,9396998	1875,6435688	25050,1755572
305,0	54,3673379	5,250489	2,4575993	1170,0333926	15626,3921247
355,2	21,6372445	13,19276	0,9780813	465,65271663	6219,02929426
401,0	10,1939948	28,00228	0,4608052	219,38382257	2929,98273298

Tabela 136 – Valores obtidos nas simulações para um duto tipo triangular direito com $\alpha = 20^{\circ}$ e OL3.

Tabela 137 – Valores obtidos nas simulações para um duto triangular direito com $\alpha = 30^{\circ}$ e OL3.

1)
876
387
704
161
360
468
107
145
191
466

Tabela 138 – Valores obtidos nas simulações para um duto tipo triangular direito com $\alpha = 45^{\circ}$ e OL3.

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_w$ (Pa)	$\frac{dp}{dz}$ (Pa/m)
104.8	61603,3033	0,00905	1452,8978	691707,1159	4734864,8335
168.3	2569,18950	0,21710	60,593662	28847,91183	197469,36260
190.4	1895,23942	0,29430	44,698726	21280,52432	145669,17697
225.6	456,120808	1,22285	10,757490	5121,511215	35057,704038
249.4	261,134233	2,13595	6,1587826	2932,122102	20070,925270
253.8	177,161842	3,14837	4,1783157	1989,245719	13616,759729
289.1	87,1545619	6,39979	2,0555175	978,6071114	6698,7490679
305	54,3673379	10,2593	1,2822394	610,4587341	4178,7044343
355.2	21,6372445	25,7783	0,5103087	242,9518419	1663,0508873
401	10,1939948	54,7157	0.2404227	114,4623490	783,51622952

DUTO TRINAGULAR EQUILÁTERO

T (°F)	μ (Pa.s)	R _e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz} (\text{Pa}/m)$
104,7	8,9476	122,8797	0,108624	51,7146	178,9517
138,3	6,1539	178,6632	0,074708	35,5679	123,0781
168,2	4,3581	252,2832	0,052907	25,1886	87,16207
203,5	3,1745	346,3409	0,038539	18,3480	63,49101
232,6	2,4252	453,3571	0,029442	14,0169	48,50378
262,5	1,9833	554,3449	0,024078	11,4634	39,66759
301,4	1,5415	713,2183	0,018714	8,90986	30,83141
329,6	1,2854	855,3337	0,015605	7,42947	25,70871

Tabela 139 – Valores obtidos nas simulações para um duto de seção transversal triangular equilátero com $\alpha = 60^{\circ}$ e OL1.

Tabela 140 – Valores obtidos nas simulações para um duto de seção transversal triangular equilátero com $\alpha = 60^{\circ}$ e OL2.

T (^o F)	μ (Pa.s)	R _e	f	$\bar{\tau}_w$ (Pa)	$\frac{dp}{dz} (\text{Pa/m})$
84,6	171,6001	6,407207	2,08323	991,8016	3431,9980
124,1	67,40072	16,31255	0,81824	389,5575	1348,0122
178	24,30524	45,23625	0,29506	140,4775	486,10402
227,4	11,27376	97,52538	0,13686	65,15923	225,47487
280,3	6,024416	182,5036	0,07313	34,81946	120,48813
312	4,282887	256,7142	0,05199	24,75390	85,657599
319,4	2,272843	483,7455	0,02759	13,13641	45,456801
443,4	1,572994	698,9712	0,01909	9,091473	31,459838
500,7	1,100715	998,8759	0,01336	6,361830	22,014269

Tabela 141 – Valores obtidos nas simulações para um duto de seção transversal triangular equilátero com $\alpha = 60^{\circ}$ e OL3.

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz}$ (Pa/m)
104,8	61603,3033	0,178477	747,8661	356050,0684	1232064,030
168,3	2569,18950	0,427947	31,19004	14849,20531	51383,70520
190,4	1895,23942	0,580126	23,00827	10953,96009	37904,72582
225,6	456,120808	2,410497	5,537322	2636,252218	9122,401094
249,4	261,134233	4,210394	3,170178	1509,283700	5222,676032
253,8	177,161842	6,206065	2,150750	1023,946491	3543,231004
289,1	87,1545619	12,61526	1,058059	503,7292822	1743,088360
305,0	54,3673379	20,22313	0,660021	314,2281884	1087,344963
355,2	21,6372445	50,81414	0,262676	125,0572937	432,7441756
401,0	10,1939948	107,8554	0,123755	58,91847326	203,8795610

DUTO TRIANGULAR ISÓSCELES

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz} (\text{Pa}/m)$
104,7	8,9476	203,74411	0,06234	29,6807	62,0102
138,3	6,1539	296,23758	0,04287	20,4135	42,6489
168,2	4,3581	418,30532	0,03036	14,4566	30,2033
203,5	3,1745	574,26019	0,02211	10,5305	22,0008
232,6	2,4252	751,70140	0,01689	8,04477	16,8075
262,5	1,9833	919,14713	0,01382	6,57921	13,7455
301,4	1,5415	1182,5716	0,01074	5,11366	10,6836
329,6	1,2854	1418,2099	0,00895	4,26401	8,90856

Tabela 142 – Valores obtidos nas simulações para um duto tipo triangular isósceles com $\alpha = 5^{\circ}$ e OL1.

Tabela 143 – Valores obtidos nas simulações para um duto tipo triangular isósceles com $\alpha = 20^{\circ}$ e OL1.

T (^o F)	μ(Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz} (\text{Pa}/m)$
104,7	8,9476	178,58883	0,0718	34,1839	81,48307
138,3	6,1539	259,66258	0,0493	23,5108	56,04183
168,2	4,3581	366,65922	0,0349	16,6499	39,68799
203,5	3,1745	503,35910	0,0254	12,1282	28,90971
232,6	2,4252	658,89252	0,0194	9,26535	22,08549
262,5	1,9833	805,66455	0,0159	7,57744	18,06206
301,4	1,5415	1036,5653	0,0123	5,88952	14,03864
329,6	1,2854	1243,1105	0,0103	4,91096	11,70609

Tabela 144 – Valores obtidos nas simulações para um duto tipo triangular isósceles com $\alpha = 30^{\circ}$ e OL1.

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_w$ (Pa)	$\frac{dp}{dz}$ (Pa/m)
104,7	8,9476	163,31318	0,07999	38,0868	99,2769
138,3	6,1539	237,45226	0,05502	26,1951	68,2799
168,2	4,3581	335,29691	0,03896	18,5509	48,3548
203,5	3,1745	460,30413	0,02838	13,5129	35,2228
232,6	2,4252	602,53395	0,02168	10,3232	26,9084
262,5	1,9833	736,75178	0,01773	8,44258	22,0063
301,4	1,5415	947,90239	0,01378	6,56195	17,1043
329,6	1,2854	1136,7807	0,01149	5,47167	14,2624

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz}$ (Pa/m)
104,7	8,9476	57,02866	0,2272	108,1846	807,5234
138,3	6,1539	82,91789	0,1562	74,06414	555,3925
168,2	4,3581	117,0850	0,1106	52,69351	393,3207
203,5	3,1745	160,7373	0,0806	38,38325	286,5045
232,6	2,4252	210,4037	0,0616	29,32278	218,8743
262,5	1,9833	257,2723	0,0503	23,98090	179,0009
301,4	1,5415	331,0057	0,0391	18,63902	139,1274
329,6	1,2854	396,9617	0,0326	15,54211	116,0111
203,5 232,6 262,5 301,4 329,6	3,1745 2,4252 1,9833 1,5415 1,2854	160,7373 210,4037 257,2723 331,0057 396,9617	0,0806 0,0616 0,0503 0,0391 0,0326	38,38325 29,32278 23,98090 18,63902 15,54211	286,5045 218,8743 179,0009 139,1274 116,0111

Tabela 145 – Valores obtidos nas simulações para um duto tipo triangular isósceles com $\alpha = 120^{\circ}$ e OL1.

Tabela 146 – Valores obtidos nas simulações para um duto tipo triangular isósceles com $\alpha = 5^{\circ}$ e OL2.

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_w$ (Pa)	$\frac{dp}{dz} (\text{Pa}/m)$
84,6	171,6001	10,623649	1.19563	569,2270	1189,2540
124,1	67,40072	27,047488	0.46961	223,5796	467,11245
178	24,30524	75,005229	0.16934	80,62463	168,44450
227,4	11,27376	161,70468	0.07855	37,39699	78,131431
280,3	6,024416	302,60526	0.04197	19,98401	41,751483
312	4,282887	425,65217	0.02984	14,20706	29,682025
319,4	2,272843	802,08776	0.01583	7,539410	15,751666
443,4	1,572994	1158,9488	0.01095	5,217891	10,901446
500,7	1,100715	1656,2140	0.00767	3,651260	7,6283728

Tabela 147 – Valores obtidos nas simulações para um duto triangular isósceles com $\alpha = 20^{\circ}$ e OL2.

T (°F)	μ (Pa.s)	R _e	f	$\bar{\tau}_w$ (Pa)	$\frac{dp}{dz} (\text{Pa}/m)$
84,6	171,6001	9,3119996	1,37704	655,5923	1562,7113
124,1	67,40072	23,708067	0,54087	257,5020	613,79813
178	24,30524	65,744702	0,19504	92,85730	221,34053
227,4	11,27376	141,73980	0,09046	43,07100	102,66676
280,3	6,024416	265,24407	0,04834	23,01606	54,862554
312	4,282887	373,09899	0,03436	16,36261	39,002966
319,4	2,272843	703,05792	0,01823	8,683318	20,698106
443,4	1,572994	1015,8591	0,01262	6,009569	14,324789
500,7	1,100715	1451,7294	0,00883	4,205243	10,023883

T (^o F)	μ (Pa.s)	R_e	f	$\bar{\tau}_w$ (Pa)	$\frac{dp}{dz} (\text{Pa}/m)$
84,6	171,6001	8,5154949	1,53426	730,4436	1903,9688
124,1	67,40072	21,680190	0,60262	286,9019	747,83645
178	24,30524	60,121208	0,21731	103,4591	269,67583
227,4	11,27376	129,61604	0,10079	47,98857	125,08665
280,3	6,024416	242,55634	0,05386	25,64389	66,843178
312	4,282887	242,55634	0,03829	18,23079	47,520249
319,4	2,272843	642,92164	0,02032	9,674723	25,218060
443,4	1,572994	928,96729	0,01406	6,695702	17,452968
500,7	1,100715	1327,5553	0,00984	4,685370	12,212851

Tabela 148 – Valores obtidos nas simulações para um duto tipo triangular isósceles com $\alpha = 30^{\circ}$ e OL2.

Tabela 149 – Valores obtidos nas simulações para um tipo triangular isósceles com $\alpha = 120^{\circ}$ e OL2.

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz} (\text{Pa}/m)$
84,6	171,6001	2,973595	4,3580	2074,8026	15486,9715
124,1	67,40072	7,570683	1,7117	814,93616	6082,93667
178	24,30524	20,99421	0,6172	293,87252	2193,55581
227,4	11,27376	45,26168	0,2863	136,31006	1017,46065
280,3	6,024416	84,70023	0,1529	72,840690	543,705539
312	4,282887	119,1414	0,1087	51,784009	386,531929
319,4	2,272843	224,5070	0,0577	27,480753	205,124881
443,4	1,572994	324,3936	0,0399	19,018938	141,963261
500,7	1,100715	463,5799	0,0279	13,308651	99,3399089

Tabela 150 – Valores obtidos nas simulações para um duto tipo triangular isósceles com $\alpha = 5^{\circ}$ e OL3.

T (^o F)	μ (Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz} (\text{Pa/}m)$
104,8	61603,3033	0,029592	429,2246	204348,6650	426934,1591
168,3	2569,18950	0,709570	17,90097	8522,439829	17805,45363
190,4	1895,23942	0,961894	13,20519	6286,832445	13134,72501
225,6	456,120808	3,996792	3,178048	1513,030524	3161,089476
249,4	261,134233	6,981161	1,819468	866,2267943	1809,758864
253,8	177,161842	10,29014	1,234385	587,6760523	1227,798484
289,1	87,1545619	20,91709	0,607254	289,1065485	604,0140323
305,0	54,3673379	33,53153	0,378807	180,3457338	376,7861864
355.2	21,6372445	84,25380	0,150758	71,77443089	149,9542768
401,0	10,1939948	178,8327	0,071027	33,81521990	70,64823483

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz}$ (Pa/m)
104,8	61603,3033	0,025939	494.3481	235353,2074	561002,7872
168,3	2569,18950	0,621963	20.61698	9815,496216	23396,83743
190,4	1895,23942	0,843134	15.20873	7240,694134	17259,37638
225,6	456,120808	3,503328	3.660233	1742,593163	4153,755253
249,4	261,134233	6,119231	2.095524	997,6539573	2378,071056
253,8	177,161842	9,019667	1.421671	676,8404569	1613,359711
289,1	87,1545619	18,33456	0.699389	332,9708733	793,6904283
305,0	54,3673379	29,39156	0.436281	207,7084618	495,1070235
355,2	21,6372445	73,85140	0.173632	82,66431550	197,0438895
401,0	10,1939948	156,7531	0.081803	38,94579131	92,83365080

Tabela 151 – Valores obtidos nas simulações para um duto tipo triangular isósceles com $\alpha = 20^{\circ}$ e OL3.

Tabela 152 – Valores obtidos nas simulações para um duto triangular isósceles com $\alpha = 30^{\circ}$ e OL3.

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz}$ (Pa/m)
104,8	61603,3033	0,023720	550,789	262224,3092	683511,9115
168,3	2569,18950	0,568763	22,9709	10936,16587	28506,12768
190,4	1895,23942	0,771016	16,9451	8067,389600	21028,39703
225,6	456,120808	3,203669	4,07813	1941,551142	5060,832599
249,4	261,134233	5,595821	2,33477	1111,559611	2897,382920
253,8	177,161842	8,248167	1,58398	754,1177077	1965,677542
289,1	87,1545619	16,76631	0,77924	370,9873268	967,0127747
305,0	54,3673379	26,87754	0,48609	231,4232660	603,2261439
355,2	21,6372445	67,53449	0,19345	92,10239057	240,0733983
401,0	10,1939948	143,3452	0,09114	43,39236901	113,1062225

Tabela 153 – Valores obtidos nas simulações para um duto tipo triangular isósceles com $\alpha = 120^{\circ}$ e OL3.

T (°F)	μ(Pa. <i>s</i>)	R _e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz}$ (Pa/m)
104.8	61603,3033	0,008283	1564,5010	744840,09473	5559717,8437
168.3	2569,18950	0,198611	65,248120	31063,843196	231870,17526
190.4	1895,23942	0,269237	48,132226	22915,172321	171045,96456
225.6	456,120808	1,118715	11,583818	5514,9163734	41165,048961
249.4	261,134233	1,954050	6,6318650	3157,3509288	23567,448129
253.8	177,161842	2,880245	4,4992700	2142,0481816	15988,913032
289.1	87,1545619	5,854765	2,2134106	1053,7781047	7865,7271184
305	54,3673379	9,385589	1,3807337	657,35067760	4906,6696566
355.2	21,6372445	23,58292	0,5495077	261,61401096	1952,7682454
401	10,1939948	50,05589	0,2588905	123,25469113	920,01130238

DUTO CORRUGADO

T (^o F)	µ(Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz}$ (Pa/m)
104,7	8,9476	211,52896	0,07515	35,78003	71,6944
138,3	6,1539	307,55649	0,05169	24,60852	49,3094
168,2	4,3581	434,28832	0,03660	17,42739	34,9202
203,5	3,1745	596,20205	0,02666	12,69454	25,4367
232,6	2,4252	780,42310	0,02037	9,697960	19,4323
262,5	1,9833	954,26675	0,01666	7,931233	15,8922
301,4	1,5415	1227,7564	0,01294	6,164506	12,3521
329,6	1,2854	1472,3982	0,01079	5,140262	10,2998

Tabela 154 – Valores obtidos nas simulações para um duto tipo corrugado com $\beta = 0,02, N = 8$ e OL1.

Tabela 155 – Valores obtidos nas simulações para um duto tipo corrugado com $\beta = 0,02, N = 12$ e OL1.

T (°F)	μ (Pa.s)	R _e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz}$ (Pa/m)
104,7	8,9476	209,88568	0,07477	35,6012	73,2350
138,3	6,1539	305,16723	0,05143	24,4856	50,3690
168,2	4,3581	430,91453	0,03642	17,3403	35,6706
203,5	3,1745	591,57043	0,02653	12,6311	25,9833
232,6	2,4252	774,36035	0,02026	9,64951	19,8499
262,5	1,9833	946,85348	0,01657	7,89161	16,2337
301,4	1,5415	1218,2185	0,01288	6,13371	12,6176
329,6	1,2854	1460,9598	0,01074	5,11458	10,5211

Tabela 156 – Valores obtidos nas simulações para um duto tipo corrugado com $\beta = 0,02, N = 16$ e OL1.

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz} (\text{Pa}/m)$
104,7	8,9476	207,65785	0,07551	35,9516	74,2138
138,3	6,1539	301,92803	0,05193	24,7265	51,0422
168,2	4,3581	426,34059	0,03678	17,5109	36,1473
203,5	3,1745	585,29120	0,02679	12,7554	26,3306
232,6	2,4252	766,14090	0,02046	9,74446	20,1152
262,5	1,9833	936,80311	0,01674	7,96926	16,4507
301,4	1,5415	1205,2877	0,01301	6,19406	12,7862
329,6	1,2854	1445,4525	0,01084	5,16490	10,6617

					1
T (^o F)	μ (Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz} (\text{Pa/}m)$
104,7	8,9476	201,71569	0,07354	35,01346	75,8659
138,3	6,1539	293,28831	0,05058	24,08130	52,1785
168,2	4,3581	414,14078	0,03582	17,05401	36,9520
203,5	3,1745	568,54299	0,02609	12,42256	26,9167
232,6	2,4252	744,21765	0,01993	9,490186	20,5630
262,5	1,9833	909,99633	0,01630	7,761311	16,8169
301,4	1,5415	1170,7982	0,01267	6,032435	13,0708
329,6	1,2854	1404,0906	0,01056	5,030134	10,8991

Tabela 157 – Valores obtidos nas simulações para um duto tipo corrugado com $\beta = 0,02, N = 24$ e OL1.

Tabela 158 – Valores obtidos nas simulações para um duto tipo corrugado com $\beta = 0,06$, N = 8 e OL1.

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz} (\text{Pa}/m)$
104,7	8,9476	202,03083	0,07282	34,6689	72,5717
138,3	6,1539	293,74651	0,05008	23,8443	49,9128
168,2	4,3581	414,78779	0,03546	16,8862	35,3475
203,5	3,1745	569,43122	0,02583	12,3003	25,7480
232,6	2,4252	745,38033	0,01973	9,39682	19,6701
262,5	1,9833	911,41801	0,01614	7,68495	16,0867
301,4	1,5415	1172,6273	0,01254	5,97308	12,5033
329,6	1,2854	1406,2842	0,01046	4,98064	10,4258

Tabela 159 – Valores obtidos nas simulações para um duto tipo corrugado com $\beta = 0,06$, N = 12 e OL1.

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz} (\text{Pa}/m)$
104,7	8,9476	190,50440	0,06986	33,2621	77,18847
138,3	6,1539	276,98745	0,04805	22,8768	53,08812
168,2	4,3581	391,12298	0,03403	16,2010	37,59621
203,5	3,1745	536,94358	0,02478	11,8012	27,38601
232,6	2,4252	702,85430	0,01893	9,01550	20,92147
262,5	1,9833	859,41906	0,01548	7,37310	17,11009
301,4	1,5415	1105,7257	0,01203	5,73070	13,29872
329,6	1,2854	1326,0517	0,01003	4,77853	11,08911

T (^o F)	μ (Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz} (\text{Pa}/m)$
104,7	8,9476	177,52413	0.066344	31,5856	80,2698
138,3	6,1539	258,11454	0.045629	21,7237	55,2073
168,2	4,3581	364,47330	0.032314	15,3844	39,0970
203,5	3,1745	500,35822	0.023538	11,2064	28,4792
232,6	2,4252	654,96439	0.017982	8,56110	21,7566
262,5	1,9833	800,86141	0.014706	7,00148	17,7931
301,4	1,5415	1030,3856	0.011430	5,44186	13,8296
329,6	1,2854	1235,6994	0.009531	4,53769	11,5318

Tabela 160 – Valores obtidos nas simulações para um duto tipo corrugado com $\beta = 0,06, N = 16$ e OL1

Tabela 161 – Valores obtidos nas simulações para um duto tipo corrugado com $\beta = 0,06$, N = 24 e OL1.

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz} (\text{Pa}/m)$
104,7	8,9476	152,01050	0,058488	27,8457	85,07484
138,3	6,1539	221,01852	0,040227	19,1515	58,51215
168,2	4,3581	312,09148	0,028488	13,5628	41,43743
203,5	3,1745	428,44713	0,020751	9,87951	30,18405
232,6	2,4252	560,83342	0,015853	7,54742	23,05902
262,5	1,9833	685,76223	0,012965	6,17247	18,85824
301,4	1,5415	882,29940	0,010077	4,79752	14,65746
329,6	1,2854	1058,1057	0,008402	4,00040	12,22209

Tabela 162 – Valores obtidos nas simulações para um duto tipo corrugado com $\beta = 0,02, N = 8$ e OL2.

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz}$ (Pa/m)
84,6	171,6001	11,029567	1,441334	686,2021	1374,9813
124,1	67,40072	28,080943	0,566124	269,5248	540,06199
178	24,30524	77,871098	0,204149	97,19283	194,75069
227,4	11,27376	167,88324	0,094692	45,08200	90,333314
280,3	6,024416	314,16748	0,050601	24,09069	48,271865
312	4,282887	441,91588	0,035973	17,12659	34,317504
319,4	2,272843	832,73466	0,019090	9,088744	18,211623
443,4	1,572994	1203,2310	0,013212	6,290157	12,603938
500,7	1,100715	1719,4962	0,009245	4,401587	8,8197053

T (°F)	µ(Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz} (\text{Pa}/m)$
84,6	171,6001	10,943883	1,434134	682,7740	1404,5272
124,1	67,40072	27,862795	0,563296	268,1784	551,66695
178	24,30524	77,266152	0,203129	96,70729	198,93553
227,4	11,27376	166,57903	0,094219	44,85678	92,274414
280,3	6,024416	311,72685	0,050348	23,97034	49,309140
312	4,282887	438,48284	0,035793	17,04103	35,054925
319,4	2,272843	826,26552	0,018995	9,043340	18,602958
443,4	1,572994	1193,8836	0,013146	6,258734	12,874774
500,7	1,100715	1706,1382	0,009199	4,379598	9,0092249

Tabela 163 – Valores obtidos nas simulações para um duto tipo corrugado com $\beta = 0,02$, N = 12 e OL2.

Tabela 164 – Valores obtidos nas simulações para um duto tipo corrugado com $\beta = 0,02$, N = 16 e OL2.

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz}$ (Pa/m)
84,6	171,6001	10,8277200	1,448245	689,4923	1423,2989
124,1	67,40072	27,5670455	0,568838	270,8172	559,04007
178	24,30524	76,4460112	0,205127	97,65885	201,59434
227,4	11,27376	164,810885	0,095146	45,29816	93,507677
280,3	6,024416	308,418031	0,050843	24,20620	49,968165
312	4,282887	433,828564	0,036146	17,20871	35,523440
319,4	2,272843	817,495133	0,019182	9,132323	18,851590
443,4	1,572994	1181,21118	0,013275	6,320317	13,046848
500,7	1,100715	1688,02844	0,009289	4,422692	9,1296347

Tabela 165 – Valores obtidos nas simulações para um duto tipo corrugado com $\beta = 0,02$, N = 24 e OL2.

T (^o F)	μ (Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz} (\text{Pa}/m)$
84,6	171,6001	10,5178829	1,410455	671,5005	1454,9840
124,1	67,40072	26,7782097	0,553995	263,7504	571,48526
178	24,30524	74,2584954	0,199775	95,11052	206,08217
227,4	11,27376	160,094793	0,092663	44,11614	95,589319
280,3	6,024416	299,592596	0,049517	23,57456	51,080542
312	4,282887	421,414485	0,035202	16,75966	36,314253
319,4	2,272843	794,102369	0,018681	8,894022	19,271259
443,4	1,572994	1147,41062	0,012929	6,155394	13,337293
500,7	1,100715	1147,41062	0,009047	4,307285	9,3328761

T (°F)	μ (Pa.s)	R _e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz} (\text{Pa}/m)$
84,6	171,6001	10,534315	1,396578	664,8942	1391,8059
124,1	67,40072	26,820045	0,548545	261,1556	546,67030
178	24,30524	74,374509	0,197809	94,17481	197,13370
227,4	11,27376	160,34490	0,091752	43,68212	91,438651
280,3	6,024416	300,06064	0,049030	23,34263	48,862529
312	4,282887	422,07285	0,034856	16,59477	34,737420
319,4	2,272843	795,34299	0,018497	8,806522	18,434464
443,4	1,572994	1149,2032	0,012802	6,094836	12,758163
500,7	1,100715	1642,2869	0,008958	4,264909	8,9276250

Tabela 166 – Valores obtidos nas simulações para um duto tipo corrugado com $\beta = 0,06$, N = 8 e OL2.

Tabela 167 – Valores obtidos nas simulações para um duto tipo corrugado com $\beta = 0,06$, N = 12 e OL2.

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_w$ (Pa)	$\frac{dp}{dz}$ (Pa/m)
84,6	171,6001	9,9333028	1,339906	637,9134	1480,348038
124,1	67,40072	25,289886	0,526285	250,5581	581,4476620
178	24,30524	70,131235	0,189782	90,35328	209,6746958
227,4	11,27376	151,19678	0,088029	41,90954	97,25567648
280,3	6,024416	282,94134	0,047040	22,39541	51,97100214
312	4,282887	397,99242	0,033442	15,92137	36,94730008
319,4	2,272843	749,96644	0,017747	8,449161	19,60720438
443,4	1,572994	1083,6379	0,012282	5,847513	13,56979541
500,7	1,100715	1548,5898	0,008594	4,091843	9,495571122

Tabela 168 – Valores obtidos nas simulações para um duto tipo corrugado com $\beta = 0,06$, N = 16 e OL2.

T (°F)	μ(Pa. <i>s</i>)	R _e	f	$\bar{\tau}_w$ (Pa)	$\frac{dp}{dz} (\text{Pa/m})$
84,6	171,6001	9,25648418	1,272373	605,7614	1539,4429
124,1	67,40072	23,5667268	0,499759	237,9295	604,65881
178	24,30524	65,3527510	0,180217	85,79930	218,04482
227,4	11,27376	140,894791	0,008359	39,79722	101,13808
280,3	6,024416	263,662766	0,004467	21,26664	54,045663
312	4,282887	370,874683	0,003175	15,11890	38,422221
319,4	2,272843	698,866495	0,016852	8,023307	20,389916
443,4	1,572994	1009,80286	0,011663	5,552787	14,111496
500,7	1,100715	1443,07467	0,008161	3,885606	9,8746304

μ (Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz} (\text{Pa}/m)$
171,6001	7,9261495	1,121717	534,03613	1631,5955
67,40072	20,179735	0,440585	209,75747	640,85430
24,30524	55,960304	0,158878	75,640228	231,09720
11,27376	120,64550	0,073694	35,085023	107,19231
6,024416	225,76936	0,039380	18,748559	572808914
4,282887	317,57286	0,027996	13,328753	40,722214
2,272843	598,42594	0,014857	7,0733066	21,610477
1,572994	864,67478	0,010282	4,8953089	14,956224
1,100715	1235,6771	0,007195	3,4255309	10,465735
	μ(Pa.s) 171,6001 67,40072 24,30524 11,27376 6,024416 4,282887 2,272843 1,572994 1,100715	μ (Pa.s) R_e 171,60017,926149567,4007220,17973524,3052455,96030411,27376120,645506,024416225,769364,282887317,572862,272843598,425941,572994864,674781,1007151235,6771	μ (Pa.s) R_e f 171,60017,92614951,12171767,4007220,1797350,44058524,3052455,9603040,15887811,27376120,645500,0736946,024416225,769360,0393804,282887317,572860,0279962,272843598,425940,0148571,572994864,674780,0102821,1007151235,67710,007195	μ (Pa.s) R_e f $\bar{\tau}_w$ (Pa)171,60017,92614951,121717534,0361367,4007220,1797350,440585209,7574724,3052455,9603040,15887875,64022811,27376120,645500,07369435,0850236,024416225,769360,03938018,7485594,282887317,572860,02799613,3287532,272843598,425940,0148577,07330661,572994864,674780,0102824,89530891,1007151235,67710,0071953,4255309

Tabela 169 – Valores obtidos nas simulações para um duto tipo corrugado com $\beta = 0,06$, N = 24 e OL2.

Tabela 170 – Valores obtidos nas simulações para um duto tipo corrugado com $\beta = 0,02, N = 8$ e OL3.

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz}$ (Pa/m)
104,8	61603,3033	0,030723	517.4294	246341,9136	493609,0018
168,3	2569,18950	0,736682	21.57959	10273,78444	20586,15364
190,4	1895,23942	0,998647	15.91883	7578,764142	15185,99148
225,6	456,120808	4,149505	3.831131	1823,955320	3654,760780
249,4	261,134233	7,247903	2.193365	1044,234696	2092,391174
253,8	177,161842	10,68331	1.488049	708,4423249	1419,545312
289,1	87,1545619	21,71631	0.732044	348,5173754	698,3436606
305,0	54,3673379	34,81273	0.456651	217,4064272	435,6293572
355.2	21,6372445	87,47305	0.181739	86,52393523	173,3728242
401,0	10,1939948	185,6657	0.085623	40,76418105	81,68145818

Tabela 171 – Valores obtidos nas simulações para um duto tipo corrugado com $\beta = 0,02 N = 12$ e OL3.

T (°F)	μ (Pa.s)	R _e	f	$\bar{\tau}_w$ (Pa)	$\frac{dp}{dz} (\text{Pa}/m)$
104,8	61603,3033	0,030485	514,8445	245111,2657	504215,7676
168,3	2569,18950	0,730959	21,47179	10222,45979	21028,51290
190,4	1895,23942	0,990889	15,83930	7540,902982	15512,31101
225,6	456,120808	4,117269	3,811992	1814,843404	3733,294988
249,4	261,134233	7,191598	2,182407	1039,018022	2137,352880
253,8	177,161842	10,60032	1,480615	704,9031662	1450,048777
289,1	87,1545619	21,54761	0,728387	346,7762904	713,3498044
305,0	54,3673379	34,54229	0,454370	216,3203320	444,9902454
355.2	21,6372445	86,79351	0,180831	86,09168842	177,0982930
401,0	10,1939948	184,2234	0,085195	40,56053582	83,43664518

T (°F)	μ (Pa.s)	R _e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz}$ (Pa/m)
104,8	61603,3033	0,030161	519,9104	247523,0819	510954,6974
168,3	2569,18950	0,723200	21,68306	10323,04552	21309,56256
190,4	1895,23942	0,980371	15,99516	7615,103048	15719,63569
225,6	456,120808	4,073567	3,849500	1832,700880	3783,191112
249,4	261,134233	7,115263	2,203882	1049,241627	2165,918968
253,8	177,161842	10,48780	1,495184	711,8391873	1469,428926
289,1	87,1545619	21,31889	0,735554	350,1884578	722,8838460
305,0	54,3673379	34,17564	0,458841	218,4488547	450,9376158
355.2	21,6372445	85,87224	0,182610	86,93880302	179,4652419
401,0	10,1939948	182,2679	0,086033	40,95963849	84,55179018

Tabela 172 – Valores obtidos nas simulações para um duto tipo corrugado com $\beta = 0,02 N = 16$ e OL3.

Tabela 173 – Valores obtidos nas simulações para um duto tipo corrugado com $\beta = 0,02 N = 24$ e OL3.

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz}$ (Pa/m)
104,8	61603,3033	0,0292982	506,3437	241064,1589	522329,4284
168,3	2569,18950	0,7025058	21,11726	10053,67365	21783,95010
190,4	1895,23942	0,9523180	15,57778	7416,392837	16069,58184
225,6	456,120808	3,9570013	3,749051	1784,877971	3867,411458
249,4	261,134233	6,9116585	2,146373	1021,862479	2214,136052
253,8	177,161842	10,187694	1,456168	693,2642952	1502,140943
289,1	87,1545619	20,708848	0,716360	341,0505615	738,9764850
305,0	54,3673379	33,197701	0,446868	212,7486011	460,9762634
355.2	21,6372445	83,414995	0,177845	84,67020234	183,4604471
401,0	10,1939948	177,05234	0,083788	39,89082846	86,43405856

Tabela 174 – Valores obtidos nas simulações para um duto tipo corrugado com $\beta = 0,06$, N = 8 e OL3.

T (°F)	$\mu(\text{Pa.}s)$	R _e	f	$\bar{\tau}_w$ (Pa)	$\frac{dp}{dz} (\text{Pa}/m)$
104,8	61603,3033	0,029344	501,3623	238692,5392	499648,9024
168,3	2569,18950	0,703603	20,90950	9954,764335	20838,05004
190,4	1895,23942	0,953805	15,42452	7343,429423	15371,81037
225,6	456,120808	3,963183	3,712167	1767,318116	3699,481180
249,4	261,134233	6,922456	2,125257	1011,809267	2117,994100
253,8	177,161842	10,20361	1,441842	686,4438731	1436,915159
289,1	87,1545619	20,74120	0,709312	337,6952628	706,8887362
305,0	54,3673379	33,24956	0,442471	210,6555534	440,9598072
355.2	21,6372445	83,54531	0,176096	83,83720614	175,4942495
401,0	10,1939948	177,3289	0,082964	39,49837744	82,68092916

T (°F)	$\mu(\text{Pa.}s)$	R_e	f	$\bar{\tau}_w$ (Pa)	$\frac{dp}{dz}$ (Pa/m)
104,8	61603,3033	0,027669	481,01746	229006,61004	531434,9160
168,3	2569,18950	0,663460	20,061018	9550,8089278	22163,69798
190,4	1895,23942	0,899388	14,798609	7045,4396448	16349,71420
225,6	456,120808	3,737072	3,5615309	1695,6019321	3934,829960
249,4	261,134233	6,527511	2,0390160	970,75095471	2252,733892
253,8	177,161842	9,621465	1,3833339	658,58859676	1528,326958
289,1	87,1545619	19,55785	0,6805295	323,99189206	751,8586642
305,0	54,3673379	31,35258	0,4245168	202,10734003	469,0122142
355.2	21,6372445	78,77882	0,1689502	80,435167527	186,6586143
401,0	10,1939948	167,2118	0,0795978	37,895568715	87,94081694

Tabela 175 – Valores obtidos nas simulações para um duto tipo corrugado com $\beta = 0,06 N = 12$ e OL3.

Tabela 176 – Valores obtidos nas simulações para um duto tipo corrugado com $\beta = 0,06 N = 16$ e OL3.

T (°F)	μ (Pa.s)	R _e	f	$\bar{\tau}_{w}$ (Pa)	$\frac{dp}{dz}$ (Pa/m)
104,8	61603,3033	0,025784	456,7732	217464,2410	552649,5794
168,3	2569,18950	0,618255	19,04990	9069,429983	23048,46368
190,4	1895,23942	0,838107	14,05273	6690,336078	17002,38808
225,6	456,120808	3,482442	3,382023	1610,140368	4091,906754
249,4	261,134233	6,082750	1,936245	921,8232592	2342,662104
253,8	177,161842	8,965894	1,313611	625,3944781	1589,337141
289,1	87,1545619	18,22525	0,646229	307,6620841	781,8725530
305,0	54,3673379	29,21633	0,403120	191,9207454	487,7349890
355.2	21,6372445	73,41112	0,160434	76,38108200	194,1099494
401,0	10,1939948	155,8186	0,075585	35,98555991	91,45137818

Tabela 177 – Valores obtidos nas simulações para um duto tipo corrugado com $\beta = 0,06 N = 24$ e OL3.

T (°F)	μ (Pa.s)	R_e	f	$\bar{\tau}_w$ (Pa)	$\frac{dp}{dz} (\text{Pa}/m)$
104,8	61603,3033	0,022078	402,6889	191715,3536	585731,7446
168,3	2569,18950	0,529399	16,79429	7995,562704	24428,16814
190,4	1895,23942	0,717655	12,38881	5898,165787	18020,16830
225,6	456,120808	2,981948	2,981574	1419,491445	4336,852450
249,4	261,134233	5,208542	1,706984	812,6746317	2482,896236
253,8	177,161842	7,677323	1,158073	551,3445469	1684,476477
289,1	87,1545619	15,60593	0,569712	271,2333068	828,6762380
305,0	54,3673379	25,01738	0,355388	169,1963395	516,9313010
355.2	21,6372445	62,86053	0,141438	67,33716802	205,7295682
401,0	10,1939948	133,4245	0,066636	31,72468406	96,92575058