

UFCG

Universidade Federal de Campina Grande

Centro de Engenharia Elétrica e Informática

CURSO DE GRADUAÇÃO EM ENGENHARIA ELÉTRICA

HIAGO RICHARD SANTA CRUZ MARTINS BARBOSA

Relatório de Estágio Integrado Energisa Borborema Distribuidora de Energia S. A.

> Campina Grande 2018

HIAGO RICHARD SANTA CRUZ MARTINS BARBOSA

RELATÓRIO DE ESTÁGIO INTEGRADO

Relatório de Estágio Integrado submetido à Coordenação do Curso de Graduação em Engenharia Elétrica da Universidade Federal de Campina Grande como parte dos requisitos necessários para a obtenção do grau de Bacharel em Ciências no Domínio da Engenharia Elétrica.

Área de Concentração: Eletrotécnica

Professor Célio Anésio da Silva, D.Sc. Orientador

Campina Grande 2018

HIAGO RICHARD SANTA CRUZ MARTINS BARBOSA

RELATÓRIO DE ESTÁGIO INTEGRADO

Relatório de Estágio Integrado submetido à Coordenação do Curso de Graduação em Engenharia Elétrica da Universidade Federal de Campina Grande como parte dos requisitos necessários para a obtenção do grau de Bacharel em Ciências no Domínio da Engenharia Elétrica.

Área de Concentração: Eletrotécnica

Aprovado em 10 / 05 / 2018

Professor Antonio Barbosa de Oliveira Neto, M.Sc. Universidade Federal de Campina Grande Avaliador, UFCG

> **Professor Célio Anésio da Silva, D.Sc.** Universidade Federal de Campina Grande Orientador, UFCG

Dedico esse trabalho a meus pais e à minha irmã, que sempre acreditaram em mim e me apoiaram. E à minha noiva, que sempre me acalmou e motivou em todos os momentos dessa jornada.

AGRADECIMENTOS

Agradeço a Deus, em primeiro lugar, que sempre me deu forças para que eu conseguisse vencer todos os desafios que essa jornada me impôs.

Agradeço também a meus pais, Jakelline e Ulisses, por tanto amor e me ensinarem o valor do conhecimento e se sacrificarem diariamente para que eu pudesse ter uma boa educação e tivesse esperança em dias melhores, além de me acolher e aconselhar nos momentos que busquei sua sabedoria. À minha irmã, Laryssa, por sempre torcer por mim e ser inspiração de profissionalismo e carinho, ao mesmo tempo.

Agradeço à minha noiva, Maria Helena, por ser porto seguro em todos os momentos dessa caminhada, cuidando de mim e sendo materialização da minha vontade de me tornar uma pessoa melhor a cada dia. Obrigado por ser presença de Deus na minha vida e buscar os mesmos ideais que eu.

Agradeço também a toda minha família, que sempre me incentivou e me fez acreditar que tudo isso era possível, em especial à minha avó, Nilza Santa Cruz, por ser minha inspiração de inteligência e sagacidade.

Agradeço a meus tios Conceição Santa Cruz e João Batista, bem como seus filhos, por me acolherem em sua casa para que eu pudesse estudar e não fazerem distinção entre mim e os seus.

Agradeço ao professor Célio Anésio, por todos os conhecimentos passados durante o estágio e pela paciência em me ouvir e aconselhar para o melhor resultado desse trabalho.

Agradeço aos engenheiros Christiano Telles, Erick Lucena e Deyd Jackson pela oportunidade e confiança em repassar as atividades. Por todos os conhecimentos passados e pela abertura em ouvir minhas ideias e propostas.

A todos os colaborados do departamento, em especial: Thiago Lira, Ronney César, Danilo Sobral e Leones Maranhão. A este último, meu agradecimento especial por todo o aprendizado de campo e constante preocupação com segurança e resultados.

Enfim, agradeço a todos que de alguma forma, passaram pela minha vida e contribuíram para a construção de quem sou hoje.

"A mente que se abre à uma nova ideia Jamais volta ao tamanho original."

Albert Einstein.

RESUMO

Neste relatório são descritas as atividades realizadas por Hiago Richard Santa Cruz Martins Barbosa, estudante de engenharia elétrica pela Universidade Federal de Campina Grande, durante o estágio na Energisa Borborema Distribuidora de Energia S.A. no período de 03/10/2017 a 02/04/2018. O estágio foi realizado no Departamento de Construção e Manutenção da Distribuição (DCMD) e supervisionado pelo engenheiro eletricista Erick de Miranda Lucena. As principais atividades desenvolvidas foram elaboração de instruções técnicas, acompanhamento de ocorrências significativas, controle e desenvolvimento de planilhas em Excel, programação em VBA (*Visual Basic for Applications*) e acompanhamento de atividades de campo.

Palavras-chave: Distribuição de Energia Elétrica, Inspeções Preventivas, Microsoft Excel, VBA, Energisa Borborema.

ABSTRACT

This report describes the activities carried out by Hiago Richard Santa Cruz Martins Barbosa, an electrical engineering student at the Federal University of Campina Grande, during the internship at Energisa Borborema Distribuidora de Energia S.A. from 03/10/2017 to 02 / 04/2018. The internship was held in the DCMD and supervised by the electrical engineer Erick de Miranda Lucena. The main activities developed were elaboration of technical instructions, monitoring of significant occurrences, control and development of spreadsheets in Excel, programming in Visual Basic for Applications (VBA) and monitoring of field activities.

Keywords: Electric Power Distribution, Preventive Inspections, Microsoft Excel, VBA, Energisa Borborema.

LISTA DE ILUSTRAÇÕES

Figura 1 - Mapa de atuação do grupo Energisa.	15
Figura 2 - Regional Centro.	16
Figura 3 - Simulação de defeito no NIX.	21
Figura 4 - Menu principal de acompanhamento semanal de obras	22
Figura 5 - Planilha de Construção em Início Físico	23
Figura 6 - Planilha de Obras em Conclusão Física.	23
Figura 7 - Obras fora do prazo por status.	24
Figura 8 - Percentual mensal de obras fora do prazo por status.	24
Figura 9 - Simulação de falta ABR V2.	26
Figura 10 - Chaves Atuadas no ABR V2	27
Figura 11 - Linha desligada e aterrada para trabalho	28
Figura 12 - Colaboradores trocando isoladores e conexões	29
Figura 13 - Equipe de LV trocando isolador.	31
Figura 14 - Isolador Danificado.	31
Figura 15 - Relatório de Religamentos da Distribuição	34
Figura 16 - Relatório de Ocorrências Significativas.	35
Figura 17 - Rotina de Inspeções	37
Figura 18 - Religamentos em GBA L4.	38
Figura 19 - Treinamento prático do TripSaver® II	40
Figura 20 - Planilha de Orçamento PCM 2018	41
-	

LISTA DE ABREVIATURAS E SIGLAS

ANEEL	Agência Nacional de Energia Elétrica
EBO	Energisa Borborema
EPB	Energisa Paraíba
EPI	Equipamento de Proteção Individual
IT	Instrução Técnica
Nec.	Necessário
OS	Ordem de Serviço
RL	Religador de Linha
ROS	Relatório de Ocorrências Significativas
RRD	Relatório de Religamentos da Distribuição
RT	Regulador de Tensão
VBA	Visual Basic for Applications

Sumário

Agradecimentos
Resumovi
Abstract vii
Lista de Ilustraçõesiz
Lista de Abreviaturas e Siglas
Sumário x
l Introdução12
1.1 Objetivo do Estágio
1.2 Estrutura do Trabalho
2 A Empresa14
2.1 Energisa Paraíba e Energisa Borborema
3 Atividades Executadas pelo DCMD 17
4 Atividades Desenvolvidas
4.1 Instruções Técnicas
4.2 Acompanhamento de Ocorrências Significativas
4.2.1 Tratativas de Ocorrências Significativas
4.3 Indicadores de Obras
4.4 Atividades de Campo
4.4.1 Atendimento Emergencial
4.4.2 Desligamento Programado
4.4.3 Levantamento de Trechos Sem Cabo com Alma de Aço
4.4.4 Atividades com Linha Viva
4.5 Rotina de Inspeções Preventivas
4.6 Treinamentos
4.7 Planilha de Programação e Orçamento 40
5 Conclusão
Referências42
APÊNDICE A – Instruções Técnicas para Reguladores de Tensão 44
APÊNDICE B – Instruções Técnicas para Religadores de Linha
APÊNDICE C – Rotina de Inspeções

1 INTRODUÇÃO

O estágio integrado, cujas atividades são descritas neste relatório, teve duração de 720 horas e foi realizado no Departamento Construção e Manutenção da Distribuição (DCMD) da Energisa Borborema, durante o período de 03 de outubro de 2017 até 02 de abril de 2018, sob a supervisão do engenheiro Erick de Miranda Lucena.

O estágio integrado tem como objetivo o cumprimento das exigências da disciplina integrante da grade curricular, Estágio Curricular, do Curso de Engenharia Elétrica da Universidade Federal de Campina Grande (UFCG). Essa disciplina é indispensável para a formação profissional, já que consolida os conhecimentos adquiridos durante o curso além de ser obrigatória para obtenção do diploma de Engenheiro Eletricista.

1.1 OBJETIVO DO ESTÁGIO

O estágio tem por finalidade proporcionar ao aluno experiências profissionais que lhes confiram um portfólio para atuar no mercado de trabalho. É desejável que se tenha contato com a rotina e organização de um ambiente de trabalho de forma que o aluno tenha uma interação mais rápida em um futuro emprego.

Durante o estágio, foram realizadas atividades diversas no DCMD da Energisa Borborema, tais como: elaboração de instruções técnicas, acompanhamento de ocorrências significativas e indicadores de obras, acompanhamento de atividades de campo como desligamento programado e atendimento emergencial, além da criação de uma sistemática de inspeções preventivas.

Além disso, foi possível aprender sobre equipamentos e rotinas da empresa, bem como o gerenciamento de equipes e atividades, assim como dar sugestões de gestão dentro do departamento.

1.2 ESTRUTURA DO TRABALHO

No Capítulo 1 foi apresentado o estágio e seus objetivos.

No Capítulo 2 apresenta-se a empresa Energisa e o departamento onde foi realizado o estágio.

No Capítulo 3 discorre-se sobre as atividades desenvolvidas pelo DCMD.

No Capítulo 4 descreve-se as atividades desenvolvidas no estágio.

Por fim, são apresentadas as conclusões do período do estágio no Capítulo 5.

2 A Empresa

O grupo Energisa foi fundado em 1905 com o nome de Companhia de Força e Luz Cataguases – Leopoldina (CFLCL) por José Monteiro Ribeiro Junqueira, João Duarte Ferreira e Noberto Custódio Ferreira. A empresa foi estabelecida na cidade de Cataguases, Minas Gerais.

Ao longo dos anos, o Grupo Cataguases – Leopoldina expandiu sua atuação, construindo hidroelétricas e termelétricas, adquirindo concessões e se firmando no setor de distribuição de energia elétrica.

A partir da década de 1990 começou a comprar outras distribuidoras e alcançou diferentes regiões do Brasil. Até que, em 1999 adquiriu a Companhia Energética da Borborema (CELB), com sede em Campina Grande, por 87,4 milhões de reais. Aproximadamente um ano depois, em novembro de 2000, adquiriu a SAELPA (Sociedade Anônima de Eletrificação da Paraíba) por 360 milhões de reais.

Em 2008, o grupo Cataguases Leopoldina se mudou o nome para Grupo Energisa, e todas as empresas receberam o prefixo Energisa além do nome que identifica a região de atuação ou atividade. Os valores que representam a empresa são: Compromisso, Clientes, Pessoas, Resultados, Segurança e Inovação.

Um passo importante para a atuação do grupo foi à aquisição, em 2014, do grupo Rede, que estava em recuperação judicial desde 2012. Com a incorporação, o grupo superou concorrentes como a CPFL e Equatorial, que juntas tinham um faturamento 6,5 vezes mais. As duas concorrentes tiveram suas propostas recusadas pelos credores do grupo que aceitaram a proposta da Energisa no valor de 3,2 bilhões de reais.

Com isso, o faturamento do grupo triplicou, de 2,9 bilhões para 8,4 bilhões. O número de concessionários sob controle passou de 5 para 13 distribuidoras, localizadas nos estados: Minas Gerais, Paraíba, Sergipe, Rio de Janeiro, Mato Grosso, Mato Grosso do Sul, Tocantins, Paraná e São Paulo. Presente em 788 municípios, que representam uma área de 142,385 km², emprega mais de 10 mil colaboradores e atende 6 milhões de unidades consumidoras, o que corresponde a 16 milhões de pessoas – 7% da população brasileira. Juntas, as empresas respondem por um sistema elétrico composto por mais de 4 mil quilômetros de linhas de transmissão, mais de 132 mil quilômetros de redes de distribuição e 144 subestações com a capacidade total de 2,830 MVA.

Na Figura 1 mostra-se a atuação do Grupo Energisa no Brasil, que engloba não só a distribuição de energia.

Figura 1 - Mapa de atuação do grupo Energisa.

Fonte: (Energisa, 2018).

Em 2017, a Energisa Paraíba foi premiada como melhor distribuidora de energia do país pela Associação Brasileira de Distribuidores de Energia Elétrica (ABRADEE). Em 2018, a Agência Nacional de Energia Elétrica (ANEEL) divulgou os índices de qualidade de serviço de distribuição de energia elétrica em que o Grupo Energisa teve destaque nos segmentos tanto de grandes distribuidoras quanto em pequenas distribuidoras, que compreendem empresas com mais de 400 mil clientes e menos de 400 mil clientes, respectivamente. A Energisa Minas Gerais ficou em 1º lugar, e a Energisa Paraíba em 3º lugar entre as grandes distribuidoras, enquanto que a Energisa Borborema ficou em 1º lugar e a Energisa Nova Friburgo em 5º lugar entre as pequenas distribuidoras.

2.1 ENERGISA PARAÍBA E ENERGISA BORBOREMA

A atuação do grupo no estado da Paraíba se faz por intermédio de duas razões sociais: Energisa Paraíba e Energisa Borborema. As duas empresas atendem juntas a 222 municípios ficando somente a cidade de Pedras de Fogo sendo alimentada pela distribuidora de Pernambuco (CELPE).

A disposição geográfica do estado faz com que o território seja dividido em três regionais ou polos: leste, centro e oeste. O leste abrange toda a região próxima ao litoral, a região centro compreende o agreste e cariri, enquanto o oeste representa basicamente o sertão.

A Regional Centro é a única que possui cidades supridas pelas duas empresas, sob os cuidados da Energisa Borborema (EBO) estão: Campina Grande, Boa Vista, Queimadas, Fagundes, Massaranduba e Lagoa Seca. Desse modo, cobre assim uma área Geográfica de 1.983,75 km² com quatro unidades de serviço atendendo seis municípios. Já a Energisa Paraíba, atende através das regionais – cidades maiores na região que servem como referência tanto do ponto de vista de população, como território e carga no sistema – são elas: Campina Grande, Esperança, Guarabira e Monteiro. Possui uma área de 23.490,92 km² com 16 unidades de serviços atendendo 94 municípios. Na Figura 2 é mostrada a disposição organizacional no Regional Centro.

Fonte: Apresentação Regional Energisa 2017.

3 ATIVIDADES EXECUTADAS PELO DCMD

O DCMD é responsável pelas atividades que envolvem construção e manutenção da rede, com o intuito de manter o sistema funcionando. Entre as atividades principais pode-se listar:

- Execução de obras de extensão de rede;
- Obras emergenciais;
- Manutenção preventiva e corretiva;
- Fiscalização de obras e projetos;
- Inspeção visual e termográfica;
- Podas em árvores próximas à rede.

Para cada obra é confeccionada uma pasta contendo todas as informações necessárias para sua execução, onde os mais importantes são a ordem de serviço (OS) associada, o croqui do projeto a ser executado, orçamento contendo gastos de material e mão-de-obra. Cada pasta recebe o número de identificação da obra. Cada obra passa por algumas etapas desde sua abertura até seu encerramento. Para cada etapa, são atribuídos status à mesma, de forma que ela só possa ser passada para o status seguinte se estiver atendendo os critérios do status atual. Esse processo é descrito a seguir.

Uma vez finalizada a elaboração da pasta, esta é direcionada para que a obra seja programada. Definida a equipe que realizará o serviço, a pasta é repassada para a empreiteira com até 15 dias de antecedência a fim de que esta possa também se programar para a realização do serviço. Uma vez a obra programada, é feita a abertura contábil em João Pessoa e a obra pode ser declarada como em status de início físico. Por determinação da ANEEL, obras de baixa tensão têm prazo de 60 dias para execução enquanto que de média tensão devem ser executadas em 120 dias.

Diariamente a empreiteira envia relatório das obras executadas, não executadas ou canceladas. Após execução da obra, a empreiteira dá o passo de conclusão física no sistema e a mesma deve ficar nesse status por no máximo 15 dias. Caso a obra não seja executada é necessário que a mesma seja reprogramada. Obras canceladas são aquelas que por algum motivo já foram executas anteriormente, na maioria das vezes por equipe de manutenção emergencial.

Após recebimento da informação de conclusão, todas as obras de construção e manutenção programada são fiscalizadas por fiscais próprios da empresa. A obra que foi executada como projetado é aprovada. Caso contrário, a empreiteira é notificada sendo necessário retirar a pendência.

Obras em status de fiscalização aprovada devem permanecer nesse status por 30 dias. Após o fiscal aprovar a obra, os materiais são devolvidos ao almoxarifado sejam em forma de sucata ou investimento. Para a obra passar para o status de aprovação de obra é necessário atualizar as modificações no sistema que a obra impôs. Para isso, a nova configuração do sistema é atualizada no banco de dados.

Após a obra ser aprovada, o último passo é o encerramento técnico. É feito o pagamento à empreiteira pelo serviço realizado. Por fim, a pasta da obra é periciada, onde se verifica a presença e estado de todos os documentos relacionados. As pastas de obras finalizadas são enviadas para João Pessoa para serem arquivadas.

4 ATIVIDADES DESENVOLVIDAS

No presente capítulo são apresentadas as atividades desenvolvidas pelo estagiário no DCMD. As atividades compreenderam elaboração de instruções técnicas, acompanhamento de ocorrências significativas, desenvolvimento e controle de planilhas em Excel e acompanhamento de atividades de campo.

4.1 INSTRUÇÕES TÉCNICAS

Para se colocar alguns equipamentos em operação, é preciso se certificar que estes estejam em boas condições de funcionamento, afim de que não sejam danificados de forma permanente quando energizados. Estes defeitos podem vir de fábrica, ocasionados por danificação de partes internas devido ao transporte ou pancadas.

Sob essa ótica, a coordenação e a gerência do departamento propuseram que fossem elaboradas instruções técnicas (IT) de testes em Religadores de Linha (RL) e Reguladores de Tensão (RT) a serem realizados imediatamente antes de instalá-los na rede. Estes equipamentos foram escolhidos por serem caros e, quando inseridos no sistema contendo defeitos, causarem acidentes graves.

Os testes consistem em determinar a resistência de isolamento tanto entre partes vivas quanto entre partes vivas e carcaça do equipamento. Também foi descrito o passoa-passo para medir a resistência de contato para as partes conectadas eletricamente. Além disso, foi considerado também o teste de relação de transformação para RT.

O estagiário elaborou os documentos com a colaboração de um técnico em eletrotécnica do DCMD. Utilizou-se como base o procedimento seguido pelos eletricistas do Departamento de Manutenção da Transmissão (DEMT).

O estagiário, acompanhado do técnico do DCMD, teve a oportunidade de ver e executar os procedimentos em campo. Os testes no RL foram executados em um equipamento que foi instalado na Subestação de Aroeiras enquanto que os testes em RT foram feitos na própria sede da empresa.

Nos apêndices A e B é possível ver os documentos elaborados.

4.2 ACOMPANHAMENTO DE OCORRÊNCIAS SIGNIFICATIVAS

Ocorrências são situações que necessitem uma intervenção na linha de distribuição, seja por situações que implicam no desligamento da energia ou não, passando por situações que ofereçam risco à segurança. Cada ocorrência é documentada, recebendo um número de identificação. É possível acessar todos os dados relacionados a cada ocorrência, podendo saber desde a quantidade clientes afetados até as manobras e ações realizadas para corrigir a situação. É responsabilidade do Centro de Operações Integrado (COI) monitorar as ocorrências e fornecer os dados das mesmas.

O COI fornece a planilha das ocorrências que são consideradas significativas para os demais departamentos da empresa. Essa planilha contém informações como data e hora da ocorrência, alimentador afetado e a subestação a qual pertence, o RL que atuou na proteção, a causa do curto-circuito, as correntes por fase registradas no momento do defeito, entre outras.

A atividade consistiu em direcionar as equipes de inspeção em caso de ocorrências sem causa identificada. A motivação é de que quando o sistema de proteção desliga a linha de distribuição, esta deve ser percorrida pelas equipes afim de encontrar o defeito. Se a causa não foi encontrada, é possível que esta venha a retirar a linha de operação novamente. Logo, é importante inspecionar o alimentador para que o defeito seja retirado.

Para otimizar a inspeção, utilizando os dados de corrente de curto-circuito, era feita uma simulação para identificar o possível local do defeito. As simulações eram feitas utilizando o *software* NIX, da PROTEASY, o qual a Energisa tem uma licença corporativa.

O NIX é um *software* para coordenação de proteção de sistemas elétricos. Dentre suas funções, existe um módulo para simulação de falhas. A simulação utiliza dados da tensão do circuito e da corrente de falta para calcular os possíveis locais de falta. Na Figura 3 mostra-se um exemplo de uma simulação de falha e direcionamento na localização dos prováveis locais de defeito.

Fonte: Próprio autor.

Assim, evita-se que as equipes de inspeção tenham que percorrer todo o alimentador em busca do defeito, pois é possível direcionar os locais de inspeção com base no resultado da simulação.

4.2.1 TRATATIVAS DE OCORRÊNCIAS SIGNIFICATIVAS

Existe uma preocupação na empresa de que, uma vez que um alimentador tenha sofrido uma ocorrência significativa, sejam tomadas ações que evitem uma nova saída de operação do mesmo. Para isso, devem ser pensadas tratativas para mitigar essas chances.

Essas ações se baseiam em identificar os possíveis pontos de defeito no alimentador, seja através de uma inspeção já programada ou mesmo que tenham sido vistos pelas equipes no dia da ocorrência e, por algum motivo, não puderam retirá-lo de imediato. Cada regional é responsável por definir as tratativas para os alimentadores sob sua responsabilidade. Semanalmente, o departamento de operação faz uma reunião com representantes de cada regional para mostrar as tratativas que estão sendo utilizadas e discutir como melhorá-las ou implementá-las nos outros regionais.

Assim, ficou de responsabilidade do estagiário atualizar as informações das tratativas utilizadas no regional centro. O trabalho consistiu em contactar as pessoas que estiveram no dia da ocorrência ou que inspecionaram o alimentador recentemente. Assim, era possível saber quais ações estavam programadas ou já finalizadas.

4.3 INDICADORES DE OBRAS

É importante que se acompanhe o andamento das obras minuciosamente, de forma que estas cumpram os prazos de execução em cada status. O acompanhamento é feito através de planilhas de controle de geração automática, criadas usando a linguagem de programação VBA (*Visual Basic for Applications*). Utilizando dados do Sistema de Acompanhamento e Gerenciamento de Obras da Distribuição (SIAGO), eram extraídos dados das obras abertas a partir do ano de 2013 para planilhas em Excel. As planilhas extraídas eram utilizadas para compor arquivos de base de dados das obras (Base de Dados da EPB e Base de Dados da EBO).

Esse acompanhamento foi feito semanalmente, sendo realizada uma nova consulta toda sexta-feira. É importante dizer que quando se iniciou o estágio, o código em VBA das planilhas estava apresentando erros em sua execução. Assim, o engenheiro supervisor pediu que o estagiário consertasse os erros. Foi preciso revisar todo o código e foram feitas as correções necessárias, deixando o processo totalmente automatizado novamente.

Uma vez os dados estando disponíveis em Excel, a planilha gera automaticamente um extrato das obras que estão nos status de: Início Físico; Conclusão Física; Fiscalização Aprovada e Aprovação de Obra. Ao fim da consulta é possível saber o status de cada obra, a quanto tempo está aberta, quanto tempo está no status, além de indicar quais obras estão dentro do prazo, quais estão próximas de vencer o prazo e quais estão fora da meta. Na Figura 4 mostra-se a interface da planilha final onde é possível ver as obras separadas entre Construção e Manutenção por cada status e também os indicadores.

Figura 4 - Menu principal de acompanhamento semanal de obras.

Fonte: Próprio autor.

Clicando nos botões mostrados na Figura 4 é possível visualizar todas as obras que estão em cada um dos status. Uma parte das planilhas resultantes são mostradas nas Figuras 5 e 6. Através de programação, é possível preencher a coluna de contagem de dias, determinando há quantos dias a obra está no status. A partir dos prazos de cada status, determina-se se a obra está dentro do prazo, em atenção ou fora do prazo.

MENU			Constru	ção: início físico			
num_obra 🔽	cod_status 💌	dth_abertura6 🔽	Data do Passo 💌	Contagem de dias 💌	Dias de abertura 💌	Meta 🔽	Valor_orcado 🔽
0021800120	50	08/03/2018	12/03/2018	17	20	Dentro da meta	95.663,89
0021701686	50	19/02/2018	26/02/2018	31	37	Dentro da meta	71.602,46
0021503290	50	25/10/2016	07/11/2016	507	520	Fora da Meta	60.906,37
0021601668	50	20/04/2017	25/04/2017	338	342	Fora da Meta	60.398,15
0021701735	50	08/03/2018	13/03/2018	16	20	Dentro da meta	55.914,06
0021701565	50	19/02/2018	26/02/2018	31	37	Dentro da meta	49.901,81
0021701758	50	06/02/2018	08/02/2018	48	51	Dentro da meta	46.061,82
0021800069	50	08/03/2018	16/03/2018	13	20	Dentro da meta	43.787,56
0021800115	50	08/03/2018	12/03/2018	17	20	Dentro da meta	36.550,58
0021503335	50	30/09/2016	06/10/2016	539	545	Fora da Meta	35.168,57
0021701723	50	12/03/2018	13/03/2018	15	17	Dentro da meta	33.977,58
0021701724	50	06/02/2018	08/02/2018	48	51	Dentro da meta	33.500,34
0021701774	50	06/02/2018	08/02/2018	48	51	Dentro da meta	32.227,45
0021503630	50	05/10/2016	13/10/2016	532	539	Fora da Meta	31.857,06
0021700493	50	15/03/2018	19/03/2018	10	13	Dentro da meta	31.473,91
0021501209	50	29/01/2018	01/02/2018	56	59	Atenção	31.360,88
0021701708	50	08/03/2018	13/03/2018	16	20	Dentro da meta	30.849,76
0021602088	50	02/05/2017	11/05/2017	322	330	Fora da Meta	27.688,80
0021800118	50	08/03/2018	13/03/2018	16	20	Dentro da meta	27.512,14
0021700705	50	06/09/2017	10/09/2017	199	203	Fora da Meta	27.228,56
0021800141	50	08/03/2018	16/03/2018	13	20	Dentro da meta	26.920,11

Figura 5 - Planilha de Construção em Início Físico.

Fonte: Adaptado da planilha original.

MENU			Manutençâ	ăo: conclusão físio	ca		
num_obra 🔽	cod_status 💌	dth_abertura6 💌	Data do Passo 💌	Contagem de dias 💌	Dias de abertura 💌	Meta 🔽	Valor_orcado 🔽
0191700740	44	05/02/2018	20/02/2018	37	51	Fora da Meta	15.646,48
0191700290	44	04/05/2017	06/06/2017	296	329	Fora da Meta	11.981,04
0191800185	44	16/02/2018	19/03/2018	10	40	Dentro da meta	7.812,81
0191800183	44	16/02/2018	06/03/2018	23	40	Fora da Meta	7.620,30
0191800030	44	16/02/2018	20/03/2018	9	40	Dentro da meta	6.765,57
0191800222	44	16/02/2018	08/03/2018	21	40	Fora da Meta	6.142,30
0191600184	44	04/10/2016	22/07/2017	250	541	Fora da Meta	5.894,51
0191800361	44	06/03/2018	22/03/2018	7	23	Dentro da meta	5.081,87
0191800209	44	16/02/2018	16/03/2018	13	40	Atenção	4.993,98
0191800169	44	05/02/2018	28/02/2018	29	51	Fora da Meta	4.465,11
0191800182	44	16/02/2018	12/03/2018	17	40	Fora da Meta	4.201,51
0191701095	44	26/12/2017	15/01/2018	73	93	Fora da Meta	4.003,00
0191701384	44	19/01/2018	25/02/2018	32	68	Fora da Meta	3.952,88
0191800065	44	16/02/2018	27/03/2018	2	40	Dentro da meta	3.669,64
0191800044	44	16/02/2018	27/03/2018	2	40	Dentro da meta	3.455,72
0191800026	44	19/01/2018	14/02/2018	43	68	Fora da Meta	3.268,19
0191700787	44	05/01/2018	31/01/2018	57	82	Fora da Meta	3.212,70
0191800211	44	16/02/2018	14/03/2018	15	40	Atenção	3.086,30
0191701378	44	05/02/2018	26/02/2018	31	51	Fora da Meta	3.042,46
0191800210	44	16/02/2018	23/03/2018	6	40	Dentro da meta	2.972,21

Fonte: Adaptado da planilha original.

O código também atualiza a porcentagem de obras que estão fora da meta para cada status mencionado com base na data em que é realizada a consulta. Ao final do mês é feita a média aritmética das porcentagens encontradas durante o mês para se obter o panorama mensal. A tabela gerada com as porcentagens de obras atrasadas obtidas nas consultas realizadas no mês de março é mostrada na Figura 7. Na Figura 8 mostra-se as porcentagens de obras atrasadas organizadas mensalmente.

02/03/2018					
Início físico	237	0	74	311	23,79%
Conclusão física	47	3	51	101	50,50%
Fiscalização aprovada	150	26	351	527	66,60%
Aprovação de obra	35	0	13	48	27,08%
09/03/2018					
Início físico	162	2	66	230	28,70%
Conclusão física	54	6	33	93	35,48%
Fiscalização aprovada	207	4	288	499	57,72%
Aprovação de obra	82	0	12	94	12,77%
16/03/2018					
Início físico	234	4	65	303	21,45%
Conclusão física	50	9	49	108	45,37%
Fiscalização aprovada	202	25	160	387	41,34%
Aprovação de obra	95	0	11	106	10,38%
23/03/2018					
Início físico	184	4	64	252	25,40%
Conclusão física	36	7	53	96	55,21%
Fiscalização aprovada	284	25	148	457	32,39%
Aprovação de obra	63	0	11	74	14,86%
29/03/2018					
Início físico	180	9	62	251	24,70%
Conclusão física	30	6	46	82	56,10%
Fiscalização aprovada	272	13	101	386	26,17%
Aprovação de obra	139	0	10	149	6,71%

Figura 7 - Obras fora do prazo por status.

Fonte: Próprio autor.

Figura 8 - Percentual me	nsal de obras	fora do p	orazo por stat	tus.
--------------------------	---------------	-----------	----------------	------

	Percentuais mensais de todas as obras fora do prazo										
Indicadores mensais	jan/17	fev/17	mar-17	abr-17	mai-17	jun-17	jul-17	ago-17	set-17	fev-18	mar-18
Início físico	36,35%	35,84%	21,95%	28,29%	40,23%	36,70%	42,50%	48,82%	46,53%	26,86%	24,65%
Conclusão física	69,06%	74,76%	72%	76,99%	68,81%	68,61%	65,71%	63,01%	70,36%	61,45%	43,78%
Fiscalização aprovada	68,95%	66,47%	57,37%	60,73%	59,61%	63,32%	63,77%	47,55%	46,91%	66,26%	55,22%
Aprovação de obra	0,00%	0,00%	2%	6,23%	14,18%	11,98%	1,77%	3,06%	3,37%	30,00%	16,74%

Fonte: Próprio autor

É de extrema importância que as obras sejam realizadas dentro do prazo, evitando prejuízos para a empresa e para a empreiteira. Com essas informações, o arquivo contendo os dados atualizados eram enviados para os engenheiros responsáveis bem como o técnico encarregado de construção. Os resultados são mostrados nas reuniões mensais da Construção e Manutenção.

4.4 ATIVIDADES DE CAMPO

Nesta seção serão descritas algumas das atividades em campo que o estagiário teve a oportunidade de participar. Todas as ocasiões foram acompanhadas por engenheiros ou técnicos do departamento e empregados os devidos Equipamentos de Proteção Individual (EPI).

4.4.1 ATENDIMENTO EMERGENCIAL

Quando alguma linha de distribuição é retirada de operação pela proteção, o Departamento de Operação (DEOP) e o DCMD são acionados para percorrerem a rede em busca do defeito e fazer os reparos necessários.

No dia 19/01/2018, uma chave fusível retirou parte do alimentador ABR V2 de operação. Este alimentador está ligado à subestação Alto Branco, na cidade de Campina Grande. Os engenheiros Erick Lucena, coordenador do DCMD, e Bruno Duarte, coordenador do DEOP, se mobilizaram para ajudar no patrulhamento da linha. O estagiário pode participar dessa ocorrência.

O defeito foi causado pelo toque entre duas fases do alimentador, causando um curto-circuito fase-fase com correntes registradas de 707 A e 710 A nas fases A e B, respectivamente. Foi pedido que o estagiário simulasse esse defeito no *software* NIX. Na Figura 9 apresenta-se o resultado da simulação. Os prováveis locais de defeito encontrados foram próximo aos componentes de identificação 2365 e 2367.

Fonte: Próprio autor.

Essa informação foi passada para as equipes que também estavam percorrendo a linha. O estagiário e os engenheiros foram na viatura da empresa para o local indicado. Ao chegar no local constatou-se as chaves-fusível do componente 2367 estavam atuadas e o isolador de sustentação da chave-fusível da fase B havia se partido. Essa estrutura pode ser vista na Figura 10.

Fonte: Próprio autor.

A equipe de Linha Viva fez a substituição da chave-fusível da fase B e energizou a linha novamente.

4.4.2 DESLIGAMENTO PROGRAMADO

Para serviços que não sejam possíveis de serem realizados sem desligar a rede, são programados desligamentos dos trechos onde será realizado o serviço. Essa atividade tem tempo máximo de execução e o serviço deve ser pensado e organizado para não ultrapassar esse tempo. Durante o desligamento, a comunicação entre as equipes envolvidas é feita através do rádio, onde os colaboradores podem solicitar apoio, informar situações adversas ou quaisquer informações que achem válidas compartilhar para os demais envolvidos. Todos os procedimentos de segurança devem ser seguidos rigorosamente para que não ocorram acidentes durante a atividade.

O estagiário teve a oportunidade de participar de um desligamento programado no trecho do alimentador SME L3, que atende à parte da zona rural da cidade do Congo. O Serviço contou com 4 equipes, sendo uma própria e as demais da empreiteira terceirizada. O serviço envolveu implantação de postes, troca de isoladores e conexões, além da execução dos procedimentos de segurança para trabalhar em linhas desenergizadas. Esse último é chamado de DITAIS, que é a sigla para a sequência de: Desligar, Impedir, Testar, Aterrar, Isolar e Sinalizar.

Na Figura 11 é mostrada a linha desligada e aterrada, procedimento de segurança para o trabalho, enquanto que a Figura 12 mostra colaboradores realizando a troca de isoladores e conexões nos cabos.

Figura 11 - Linha desligada e aterrada para trabalho.

Fonte: Próprio autor.

Figura 12 - Colaboradores trocando isoladores e conexões.

Fonte: Próprio autor.

O serviço foi concluído no tempo determinado e o trecho desligado foi novamente colocado em operação.

4.4.3 LEVANTAMENTO DE TRECHOS SEM CABO COM ALMA DE AÇO

Os cabos com alma de aço (CAA) são bastante usados na distribuição por terem uma maior resistência à tração mecânica imposta ao cabo. Assim, estes se tornam mais seguros para trabalho com Linha Viva, pois diminui o risco do cabo se partir durante o serviço e venha a causar acidentes. Existe uma diretriz interna na empresa de que as equipes de Linha Viva só podem trabalhar em trechos energizados que possuam cabos CAA.

Existe um projeto na Energisa Paraíba de tornar os cabos dos centros urbanos todos alimentados por cabos CAA, uma vez que estes concentram maiores quantidades de clientes e não devem haver empecilhos de trabalho. Foi destinado um recurso de R\$ 1.544.751,00 para realizar o recondutoramento dos trechos encontrados. Para isso, é preciso realizar o levantamento dos trechos urbanos que estejam nessa condução para que seja feito o projeto e realizada a obra.

O estagiário acompanhou esse levantamento nas áreas centrais nas cidades de Ouro Velho e Congo. A atividade consistiu em aproximar um imã no cabo, utilizando uma vara de manobra especial. Se existir aço no cabo, o imã é atraído e fica evidenciado que este é um cabo CAA. Caso o imã não seja atraído, indica que o cabo é composto apenas por alumínio. O técnico do DCMD quem manuseou a vara de manobra. O estagiário auxiliou no desenho do projeto.

4.4.4 ATIVIDADES COM LINHA VIVA

Uma equipe de Linha Viva (LV) é composta por eletricistas que trabalham em contato direto com eletricidade, ou seja, para um serviço ser realizado por tal equipe não é necessária à interrupção do fornecimento de energia na área a ser trabalhada.

O serviço consistiu em trocar um isolador danificado que causou o desligamento de um trecho de linha na Rua João Suassuna, no bairro da Palmeira, Campina Grande. Acompanhando de um técnico do DCMD, o estagiário fez uma inspeção visual do trecho e colheu informações das pessoas que estavam trabalhando próximo ao local do desarme no momento da ocorrência. Com as informações colhidas identificou-se em qual poste ocorreu o defeito e foi chamada a equipe de LV para fazer a substituição do isolador.

Na Figura 13 é possível ver a equipe trocando o isolador. Já a Figura 14 mostra o isolador retirado.

Fonte: Próprio autor.

Figura 14 - Isolador Danificado.

Fonte: Próprio autor.

4.5 ROTINA DE INSPEÇÕES PREVENTIVAS

É de total interesse da distribuidora que o sistema permaneça funcionando indefinidamente, pois uma ocorrência traz prejuízos financeiros e operacionais. A falta de energia significa diminuição no faturamento, deslocamento de pessoal para inspecionar a rede e retirar o defeito, além de ter impactos negativos nos indicadores de qualidade do serviço de fornecimento de energia.

Os principais indicadores que medem a qualidade de serviço de uma distribuidora de energia são o DEC e o FEC. Estes foram criados pela ANEEL e são classificados como indicadores coletivos de continuidade do fornecimento de energia. Quanto menores esses índices, melhor, uma vez que se forem muito altos indicam uma alta indisponibilidade da energia. Sua definição é dada por (Agência Nacional de Energia Elétrica (ANEEL), 2018):

- DEC: Duração Equivalente de Interrupção por Unidade Consumidora;
- FEC: Frequência Equivalente de Interrupção por Unidade Consumidora.

Cada ocorrência faz aumentar os valores de DEC e FEC. Assim, é interessante que se possa encontrar os defeitos incubados nas linhas para que sejam retirados antes que causem seu desligamento. Para isso, é preciso buscar estratégias que apontem os possíveis locais de defeito de forma a direcionar as equipes de inspeção para que estas não tenham que percorrer todos os trechos da linha para encontrar os defeitos. Isso resulta na redução das ocorrências e, portanto, em ganhos de DEC e FEC e, por conseguinte, na redução de todos os efeitos citados. Além disso, uma vez indicado o provável local de defeito, diminui-se o tempo médio de execução da inspeção, permitindo uma maior agilidade na atividade.

Assim, foi levado para a coordenação a ideia de criar um sistema de inspeções preventivas semanais que permitisse identificar os defeitos antes que estes retirassem a linha de operação pela proteção. Sob orientação do engenheiro supervisor, foi montada uma logística para direcionar inspeções semanalmente, com base na atuação dos Religadores de Linha.

Religadores de Linha operam monitorando a corrente em cada fase. Caso esta exceda um parâmetro determinado, este equipamento retira o circuito de operação à

jusante, através da abertura de seus contatos internos. Após esperar cerca de 5 a 10 segundos, os contatos são fechados, numa tentativa de religar o circuito. Caso a corrente continue alta, o equipamento abre os contatos novamente. Caso a corrente de curtocircuito persista, o equipamento permanece aberto até que seja retirado o defeito e acontece a energização de forma manual ou telecomandada. O equipamento pode ser programado para realizar duas ou três tentativas de religamento antes do desligamento definitivo.

O religamento com sucesso acontece quando a linha é colocada novamente em operação sem que se esgote as tentativas de religamento. Porém, apesar de não gerar uma ocorrência, a quantidade de religamentos com sucesso pode ser usada como um indicador de que um defeito está prestes a desligar o circuito definitivamente.

O departamento de Operação de João Pessoa fornece a Relatório de Religamentos da Distribuição (RRD), que é uma planilha em Excel contendo todos os religamentos com sucesso que aconteceram, bem como as informações atreladas a esses eventos. Essa planilha pode ser vista na Figura 15. Também é utilizado Relatório de Ocorrências Significativas (ROS), que pode ser vista na Figura 16.

A atividade consiste em determinar um índice com prioridade de alimentadores a serem inspecionados. São utilizadas Macros no Excel que contam a quantidade de Ocorrências Significativas no período de 30 dias antes do dia da consulta e de Religamentos com Sucesso durante os 7 dias anteriores ao dia da consulta. As contagens são organizadas em função de cada alimentador e do equipamento que atuou na proteção do circuito, através de consultas ao RRD e ao ROS.

De posse dessas quantidades, é aplicado um cálculo com pesos de 60% para a contagem de religamentos e 40% para a contagem de ocorrências. Esses pesos foram utilizados dado a natureza da contagem. Como a consulta é feita semanalmente, a quantidade de religamentos é de maior importância. A quantidade de ocorrências é usada como forma de desempate, de forma que, se dois alimentadores tiverem a mesma quantidade de religamentos contabilizados e um deles tiver ocorrências significativas registradas, este último deve ter uma maior prioridade de inspeção. Os valores de 60% e 40% foram determinados de forma arbitrária, sugeridos pelo estagiário e aprovados pela coordenação.

Tipo de Religamento	Desarme com religamento automático com sucesso na 1ª tentativa	Desarme com religamento automático com sucesso na 1ª tentativa	Desarme com religamento automático com sucesso na 1ª tentativa	Desarme com religamento automático com sucesso na 2ª tentativa	Desarme com religamento automático com sucesso na 1ª tentativa	Desarme com religamento automático com sucesso na 1ª tentativa	Desarme com religamento automático com sucesso na 1ª tentativa	Desarme com religamento automático com sucesso na 2ª tentativa	Desarme com religamento automático com sucesso na 1ª tentativa	Desarme com religamento automático com sucesso na 1ª tentativa	Desarme com religamento automático com sucesso na 1ª tentativa	Desarme com religamento automático com sucesso na 2ª tentativa
iccN (A)		ı	I	ı	ı	ı	ı		ı	ı	I	
iccC (A)		ı	ı	1	-	ı	-		-	-		
iccB (A)		ı	ı	1		ı	-		-	-		
iccA (A)	-		T	-	ı		ı	-	ı	ı	I	
Horário Final	-	-	-	-		-	ı	-			ı	
Horário Inicial	85:32:38	08:48:45	65:09:71	20:18:04	10:01:46	12:05:26	12:18:27	10:20:81	23:47:00	04:52:58	12:32:57	14:16:49
Equip.	100173	21L7	92117	2115	100339	17833	21L4	102630	69669	21L4	17833	105369
Tipo Equip	Ы	RL SE	Ъ	RL SE	Ы	Ы	RL SE	Ы	Я	RL SE	Ч	Ъ
Gircuito	01L4 LCN	01L7 SPE	01L2 MNT	01L5 CPX	01L1 PLT	01L3 SPE	01L4 PTS	01ר3 גוד	01L7 DST	01L4 ПО	01L3 SPE	01L4 MAA
Tensão	13.8 kV	13.8 kV	13.8 kV	13.8 kV	13.8 kV	13.8 kV	13.8 kV					
SE	ILCN	SPE	MNT	СРХ	РLT	SPE	PTS	RIT	DST	ШО	SPE	MAA
Regional	LESTE	LESTE	CENTRO	LESTE	OESTE	LESTE	OESTE	LESTE	LESTE	OESTE	LESTE	LESTE
Empresa	88	88	88	88	88	88	EPB	843	88	EPB	EPB	Ħ
Data	01/01/2018	01/01/2018	01/01/2018	01/01/2018	02/01/2018	02/01/2018	02/01/2018	02/01/2018	02/01/2018	03/01/2018	03/01/2018	03/01/2018

Figura 15 - Relatório de Religamentos da Distribuição.

Fonte: Próprio autor.

	IccN (A)	12		1820	81	190		211		458	88	13	19	44	62	0	
o do Evento	IccC (A)	454		732		88		4574		4292	1132	629	069	0	74	184	3300
e Descrição	IccB (A)	445	2935	1929	•	82	•	4666	•	3966	1171	662	18	0	14	183	
oteções	+ IccA (A)	56	2859	-	1	103	1	4503	1	606£	333	715	488	0	14	0	1
Ē	Proteção	50 N	ТОН	50/51 N	50/51 N	51 C/N	-	50/51 B	51 A/B/C	50/51 A/B	SEF / PICKUP DE FASE	51 A/C	NEUTRO	51 N	51 N	51 C	51 C
	Realizado teste no alimentador?	Teste com êxito	Sem Informação	Não foi realizado teste	Teste sem êxito	Não foi realizado teste	Não foi realizado teste	Teste com êxito	Teste sem êxito	Não foi realizado teste	Teste com êxito	Teste com êxito	Teste com êxito	Teste com êxito	Sem Informação	Teste sem êxito	Sem Informação
	Componente de referência	-	-	96345	20795		44121	5845	31042	58341	1617	6725	974	-	46759	-	15792
	Condutor partido (S/N)	NÃO	NÃO	NÃO	NÃO	NÃO	NIS	NÃO	NÃO	NÃO	SIM	NÃO	NÃO	NÃO	NÃO	NÃO	SIM
	Causa Aparente	CAUSA NÃO DENTIFICADA	POSTEABALROADO	CONDUTOR DESNIVELADO	ANMAL NA REDE	CAUSA NÃO DENTIFICADA	CONDUTOR PARTIDO	CAUSA DO POR TERCEIRO	DEFEITO EM CONEXÃO	OBJETO ESTRA NHO NA REDE	CONDUTOR PARTIDO	anmal na rede	DEFEITO EM CONEXÃO	ÁRVORE NA REDE	ISOLA DOR DANIFICADO	DESCARGA ATMOSFERICA	CONDUTOR PARTIDO
is atuados	Equip.	21L5	17885	21L6	21L5	19969	21L3	21L1	21L1	21L5	3772	2112	6905	60093	102954	89479	21L5
uipam ento	Tipo Equip.	RL SE	Ы	RL SE	RL SE	RL	RL SE	RL SE	RL SE	RL SE	RL	RL SE	교	R	님	Ъ	RL SE
ticas equ	Tipo (U/B) ♦	Л	Л	Л	n	щ	Н	∍	n	n	n	Я	ے	н	æ	н	n
Caracteris	Circuito	01L5 PBL	01L5 CPX	01L6 CBD	01L5 PBL	01L5 BNR	01L3 LCN	01L1 MRU	01L1 ARN	01L5 PTS	01Y2 CGD	01L2 LCN	01M2 BVT	01L1 SLD	01L4 IBR	01L2 SZA	01L5 CRI
	Tensão	13.8 kV	13.8 kV	13.8 kV	13.8 kV	13.8 kV	13.8 kV	13.8 kV	13.8 kV	13.8 kV	13.8 kV	13.8 kV	13.8 kV	13.8 kV	13.8 kV	13.8 kV	13.8 kV
	SE	PBL	ХЧО	CBD	PBL	BNR	ron	MRU	ARN	PTS	CGD	rcn	BVT	SLD	IBR	AZA	CRI
	Regional	OESTE	LESTE	LESTE	OESTE	CENTRO	LESTE	LESTE	CENTRO	OESTE	EBO	LESTE	EBO	CENTRO	OESTE	OESTE	LESTE
	Empresa	EPB	EPB	EPB	EPB	EPB	EPB	86	EPB	EPB	ШO	EPB	0 Ħ	843	86	EPB	EPB
	Data	01/01/2018	01/01/2018	02/01/2018	02/01/2018	02/01/2018	02/01/2018	03/01/2018	03/01/2018	03/01/2018	19/01/2018	03/01/2018	19/01/2018	04/01/2018	05/01/2018	06/01/2018	06/01/2018
	Ocorrência	72	270	490	804	811	1034	1221	1299	1491	1494	1639	1655	1659	2717	2967	3410

Figura 16 - Relatório de Ocorrências Significativas.

Fonte: Próprio autor.

Todas essas operações são feitas de forma automática utilizando programação em VBA pela planilha Rotina de Inspeções. Na Figura 17 mostra-se este arquivo com o resultado de uma consulta.

Este mesmo arquivo contém outras planilhas: a planilha "Início" contém os botões de execução das Macros; "Religamentos" e "Ocorrências" mostram os dados consultados de RRD e ROS, respectivamente; "Final" apresenta as tabelas de contagem de ocorrências e religamentos bem como a de prioridade de inspeção; por fim, a planilha "Controle" é utilizada para documentar os resultados das consultas. As interfaces de cada planilha são mostradas no Apêndice C.

Uma vez gerada a lista de alimentadores a serem inspecionados, os que tivessem os maiores números de religamentos eram repassados para o técnico do DCMD responsável por programar as inspeções. Este gerava as OS de inspeção, com o prazo de 1 semana para execução, e retornava para o estagiário o número das ordens de serviço geradas, bem como a quantidade de estruturas a serem inspecionadas e a quilometragem a ser percorrida. Quando os dados de corrente de curto-circuito registrados pelos Religadores de Linha eram disponibilizados, era feita uma simulação de falta utilizando o *software* NIX, segundo descrito anteriormente. Com isso, podia-se diminuir a quantidade de estruturas a serem inspecionadas, otimizando a inspeção.

Por fim, os serviços eram direcionados para aparecem nos *tablets* dos técnicos responsáveis por realizar a inspeção. Feita a inspeção, estes repassavam para o estagiário se haviam encontrado algum defeito ou não. Em caso de defeito encontrado, seguia-se o curso normal de uma obra. Não eram programadas inspeções para todos os alimentadores por não haver equipes suficiente e por não representarem um risco tão alto quanto os primeiros da lista.

100% 60% 60%			
m	m = = = = = =	n	m = = = = = = = = = = = = = = = = = = =
3 CTL 6667 1 BQR 78409	3 CTL 6667 1 BQR 78409 1 BQR 78413 1 PLS 61427 2 BQR 19639 2 PLT 2112	3CTL 6667 18Q.R 78413 18Q.R 78413 18Q.R 78413 61427 28Q.R 19639 2 PLT 2112 3 ARA 60553 3 ARA 75521 4 ARA 19627 4 ARA 19657	3CTL 6667 18Q.R 78409 18Q.R 78413 18Q.R 78413 18Q.R 78413 61427 28Q.R 19639 2 PLT 2112 3 ARA 60553 3 ARA 75521 4 ARA 19627 4 ARA 19627 4 ARA 19697 4 ARA 19697 4 BNR 30095 4 BNR 19697 5 BNR 19969 5 PLS 78443
01L1 BQR	0111 BQR 0111 BQR 0111 PLS 0112 BQR 0112 BUR	0111 BQR 0111 BQR 0111 PLS 0112 BQR 0112 BQR 0112 PLT 21 212 PLT 21 212 PLT 21 214 ARA 0114 ARA	0111 BQR 0111 BQR 0111 BLS 0112 BQR 0112 BQR 0112 PLT 21 212 PLT 21 213 ARA 0113 ARA 0114 ARA 0114 ARA 0114 GBA 0114 GBA 0114 GBA 0115 PLS 0115 PLS
-			
	19639 LL2 60553 7521	19639 LL2 60553 75521 LL3 19627 19697 30095	19639 LL2 60553 75521 LL3 19627 19697 30095 61443 96447 19969 78443
	01L2 BQR 1 01L2 PLT 21L2 01L3 ARA 6 01L3 ARA 7	0112 BOK 1 0112 PtT 2112 0113 ARA 6 0113 ARA 7 0113 ARA 7 0114 ARA 1 0114 ARA 1 0114 BNR 5	0112 BOR 1 0112 PLT 2112 0113 PLT 2112 0113 ARA 6 0113 ARA 7 0114 ARA 1 0114 ARA 1 0114 ARA 1 0114 ARA 1 0114 BNR 3 0114 GBA 2 0114 GBA 2 0115 PLS 2 0115 PLS 7
	। त त त		
60325	60086	60086	60086 19981 96447
			տ տ տ տ տ տ տ 4
			<u></u>

Fonte: Próprio autor.

Figura 17 - Rotina de Inspeções.

Ao longo de cerca de 3 meses foi possível verificar alguns resultados. O primeiro caso aplicado foi do alimentador GBA L4, que havia sofrido com 9 religamentos no período de 06/01/2018 a 27/01/2018, segundo pode ser visto na Figura 18, indicando um defeito eminente. Foi direcionada a inspeção, onde encontrou-se estruturas com isoladores danificados. Foi feita a troca dos equipamentos danificados e, até 02/04/2018, data do fim do estágio, não aconteceram mais religamentos nesse alimentador, o que indica que o defeito foi definitivamente retirado.

Data 🛫	Empresa	Regional	SE .	Tensão	Circuito	Tipo Equip	Equip.	Horărio Inicial	Horário Final	iccA (A)	iccB (A)	iccC (A)	iccN (A)	Tipo de Religamento
06/01/2018	EPB	CENTRO	GBA	13.8 kV	01L4 GBA	RL	96447	22:29:03	e.	1	4	4	4	Desarme com religamento automático com sucesso na 1ª tentativa
09/01/2018	EPB	CENTRO	GBA	13.8 kV	01L4 G8A	RL	96447	19.57:34	19:57:39	8	3			Desarme com religamento automático com sucesso na 1ª tentativa
12/01/2018	EPB	CENTRO	GBA	13.8 kV	01L4 GBA	RL	96447	18:29:18	18:29:23	05	æ		17	Desarme com religamento automático com sucesso na 1ª tentativa
13/01/2018	EPB	CENTRO	GBA	13.8 KV	01L4 GBA	RL	96447	21:11:22	21:11:27	्य	<i></i>		a.	Desarme com religamento automático com sucesso na 1ª tentativa
15/01/2018	EPB	CENTRO	GBA.	13.8 KV	01L4 GBA	RL	96447	19:42:20	19:42:25	at .	2	8	15	Desarme com religamento automático com sucesso na 1ª tentativa
15/01/2018	EPB	CENTRO	GBA	13.8 kV	01L4 GBA	RL	96447	20:01:16	20.01:21	27	2	2		Desarme com religamento automático com sucesso na 1ª tentativa
17/01/2018	EPB	CENTRO	GBA	13.8 kV	01L4 GBA	RL	96447	00:11:00	00:11:05	ä.	3	*	*	Desarme com religamento automático com sucesso na 1ª tentativa
18/01/2018	EPB	CENTRO	GBA	13.8 KV	01L4 GBA	ାଷା	96447	21:42:30	21:42:36	SR	SR	SR	SR	Desarme com religamento automático com sucesso na 1ª tentativa
27/01/2018	EPB	CENTRO	GBA	13.8 kV	01L4 G8A	RL	96447	20:42:39	20:42:44	SR	SR	SR	SR	Desarme com religamento automático com sucesso na 1ª tentativa

Figura 18 - Religamentos em GBA L4.

Fonte: Próprio autor.

Outro caso interessante aconteceu no alimentador BQR L3. O departamento de operação teve uma alta demanda de serviço após o carnaval e não conseguiu enviar o RRD entre os dias 09/02/2018 e 21/02/2018. Assim, não foi possível direcionar as inspeções referentes aos religamentos ocorridos nesse período, de forma que, no dia 22/02/2018, foi enviada a atualização do RRD e percebeu-se que o alimentador citado tinha sofrido 8 religamentos com sucesso no período em que não foi repassado o RRD. Na madrugada do dia 22/02 para o dia 23/02, aconteceu uma ocorrência no BQR L3. Isto indica que, se o RRD tivesse sido enviado, a inspeção teria sido feita e o defeito teria sido retirado antes da ocorrência.

4.6 TREINAMENTOS

Existe uma preocupação constante da empresa em investir em equipamentos para melhorar a segurança e a operação do sistema, como também adequar os *softwares* utilizados para que tornem o trabalho mais eficiente. Assim, são ministrados treinamentos

quando são comprados novos equipamentos e quando os *softwares* recebem atualizações significativas.

Recentemente, a Energisa Paraíba comprou 10 unidades do equipamento TripSaver® II da S&C, contabilizando R\$ 105.670,00. Este equipamento é um Religador montado em chave-fusível. É destinado a proteger uma fase por equipamento, embora possa ser configurado para operar em comunicação com outros dois equipamentos próximos, tornando uma operação trifásica.

O TripSaver® II atua como um Religador de Linha, isto é, possui a capacidade de executar ciclos de religamentos antes de se desconectar completamente da rede. Seu objetivo é substituir chaves-fusível, pois, uma vez que o fusível se rompe, é necessário deslocar uma equipe para procurar a chave atuada e realizar a substituição do elo-fusível para reenergização da linha de distribuição. Porém, cerca de 80% das faltas são temporárias, de forma que essas situações causam o desligamento definitivo sem necessidade.

Assim, o TripSaver® II se apresenta como uma alternativa de aplicar a lógica de religamentos para trechos monofásicos. Essa condição possibilita a diminuição dos custos operacionais para reestabelecimento da energia, pois o trecho protegido pelo equipamento só será efetivamente desligado apenas se o defeito for permanente, e não mais para condições temporárias.

No dia 31 de janeiro deste ano, os representantes da S&C ministraram o treinamento do TripSaver® II para os colaboradores da Energisa Borborema na sede da empresa, onde foi feita uma explanação teórica pela parte da manhã, com discussões sobre os detalhes da operação do equipamento, e a demonstração prática na parte da tarde. Na Figura 19 mostra-se o funcionário da Energisa instalando o equipamento na base da chave-fusível. A parte prática foi realizada no centro de treinamento, também na sede da empresa. O estagiário participou de todo o treinamento.

Figura 19 - Treinamento prático do TripSaver® II.

Fonte: Próprio autor.

4.7 PLANILHA DE PROGRAMAÇÃO E ORÇAMENTO

Logo no início do estágio, foi proposto ao estagiário criar uma planilha em Excel para se poder ter o controle do orçamento da manutenção. O controle se dá pelo cadastro das obras de manutenção, especificando-se informações de quantidades de equipes destacadas para o serviço, orçamento de material e mão-de-obra, mês que o dinheiro será disponibilizado, status de execução, entre outras.

Além da organização das informações em forma de tabela, foi feita uma Macro para organizar as obras em diferentes planilhas secundárias dos projetos relacionados. Cada projeto tem um orçamento definido para ser aplicado em um tipo de obra específica. Alguns exemplos de projetos são transformadores queimados e reforço de rede. A interface da tabela pode ser vista na Figura 20.

Figura 20 - Planilha de Orçamento PCM 2018.

Fonte: Próprio autor.

5 CONCLUSÃO

O estágio integrado se mostra como ferramenta de extrema importância para a formação profissional do estudante de engenharia, uma vez que possibilita o contato com a vivência prática da profissão, permitindo o exercício dos conhecimentos teóricos aprendidos durante a graduação.

Durante a realização do estágio, ficou evidente a importância de disciplinas como Instalações Elétricas, Equipamentos Elétricos, Distribuição de Energia, Materiais Elétricos, Sistemas Elétricos e Proteção de Sistemas Elétricos. Porém, também foi possível enxergar a deficiência do currículo do curso de Engenharia Elétrica ofertado pela UFCG, a falta de prática em campo, ausência de disciplinas que abordem a utilização da ferramenta Excel, além da ausência de visão de como é o dia a dia do engenheiro no mercado de trabalho, onde o mesmo se depara com decisões que envolve muito mais Gestão do que conhecimento técnico.

Um aspecto positivo que merece ser destacado foi a liberdade dada pela coordenação em transmitir conhecimentos e estar sempre aberta a ouvir idéias e discutir melhorias nos processos do departamento, além da confiança depositada no estagiário para resolver os problemas que lhe foram propostos, atribuindo-lhe um sentimento de confiança em suas habilidades e decisões.

Portanto, de forma geral, pode-se concluir que a execução do estágio foi bastante proveitosa para o aluno, que pôde ter contato com a rotina de uma das maiores distribuidoras de energia do país, mostrando-se como uma oportunidade de crescimento profissional valiosíssima. Foi possível ganhar autoconfiança para lutar pela entrada no mercado de trabalho. Encerra-se o estágio com o sentimento de dever cumprido e gratidão pela oportunidade, na certeza de ter construído uma relação sadia com a empresa e os colaboradores durante esse tempo.

REFERÊNCIAS

- Agência Nacional de Energia Elétrica (ANEEL). (2018). Procedimentos de Distribuição de Energia Elétrica no Sistema Elétrico Nacional – PRODIST. Módulo 8 – Qualidade da Energia Elétrica.
- Associoação Brasileira de Normas Técnicas (ABNT). (2015). Segurança em Instalações e Serviços em Eletricidade. Norma Regulamentadora 10, Brasil.
- Energisa. (10 de Abril de 2018). *Regiões de Atuação*. Fonte: http://holding.grupoenergisa.com.br/Paginas/grupo-energisa/mapa-atuacao.aspx
- S&C. (12 de Abril de 2018). S&C TripSaver ® II S&C Electric Company. Fonte: https://www.sandc.com/globalassets/sac-electric/documents/sharepoint/documents---alldocuments/descriptive-bulletin-461-32.pdf

APÊNDICE A – INSTRUÇÕES TÉCNICAS PARA

REGULADORES DE TENSÃO

• RESISTÊNCIA DE CONTATO

ENSAIO DE RESISTÊNCIA DE CONTATO EM REGULADOR DE TENSÃO

NORMA DE REFERÊNCIA: NORMAS INTERNAS E RECOMENDAÇÕES DE FABRICANTES

Figura 1 - Medidor de Resistência de Contato (Micro-Ohmímetro)

NÚMERO DE COLABORADORES E TEMPO PARA EXECUÇÃO

N° de Técnicos	Tempo Previsto
02	3 0 minutos

INSTRUMENTOS E EQUIPAMENTOS NECESSÁRIOS

Descrição	Quantidade
EPIs	Nec.
Medidor de resistência de contato	01
Multímetro	01
Extensão elétrica monofásica	01
Caixa de ferramentas	02
Escada/andaime ou cesto	01
Escova de aço	Nec.
Lixa d'água	Nec.

Procedimentos passo a passo

Lesões físicas e Queda – Ataque de animais e insetos – Curto Circuito – Choque mecânico -Choque elétrico – Queda de escada

- ⇒ 1- Executar as tarefas preliminares APR
- ⇒ 2- Anotar as características do equipamento
- ⇒ 3- Posicionar adequadamente o instrumento de ensaio, de preferência em cima de uma mesa articulada de madeira
- ⇒ 4- Desconectar todos os cabos externos ligados ao RT (inclusive o aterramento da carcaça)
- ⇒ 5- Executar limpeza das buchas com álcool isopropílico e dos contatos externos do RT

NOTA: Para desconectar todos os cabos externos ligados ao RT utilizar escada de madeira ou fibra isolante ou andaime com a base corretamente posicionada.

- ➡ 6- Conectar o cabo de alimentação do instrumento de ensaios, observando suas características nominais de tensão
- ➡ 7- Efetuar a calibração do instrumento de acordo com as recomendações do fabricante, sem qualquer ligação dos cabos de ensaio ao RT
- ⇒ 8- Conectar o gerador ao painel de controle do RT na parte de alimentação externa.
 Certificar-se se o controle do RT é atendido em 127 volts.
- ⇒ **9-** Medição do RT:
 - 9.1- Conectar os cabos P1 (tensão) e C1 (corrente) do instrumento o mais próximo possível do terminal de fonte (F) do RT;

- 9.2- Conectar os cabos P2 (tensão) e C2 (corrente) do instrumento o mais próximo possível ao terminal de carga (C) do RT;
- 9.3- Aplicar 1 A entre os terminais primários do RT de acordo com os procedimentos de ajuste de cada aparelho, permanecendo aplicando até a estabilização da leitura;

Figura 2 - Medidor de Resistência de Contato Mostrando a Resistência Medida

- 9.4- Anotar as leituras no Impresso de Ensaios em RT conforme os Taps indicados na folha de ensaio
- ⇒ **10-** Determinação da EQUALIZAÇÃO:
 - 10.1- Colocar o RT no Tap 0;
 - 10.2- Conectar os cabos P1 (tensão) e C1 (corrente) do instrumento o mais próximo possível do terminal de carga (C) do RT;
 - 10.3- Conectar os cabos P2 (tensão) e C2 (corrente) do instrumento o mais próximo possível ao terminal de fonte/carga (FC) do RT;
 - 10.4- Utilizando o multímetro, medir a tensão entre os terminais C e FC do RT;
 - 10.5- Utilizando a Lei de Ohm (R=V / I), calcular o valor da resistência;
 - 10.6- Anotar o resultado na folha de ensaio.

Figura 3 - Teste de resistência de contatos

Figura 4 - Teste de equalização

1			-	F		EENSA	AIO		Identificação	o:			
l er	rergisa	-	and the second division of the second divisio					Revisão: 1					
P. alier			R	EGULADOR	DE TENS	ÃO MONO	FASICO	IPO B	Data:				
		L				NO MONO	ST AGIOO	III O B	Pagina:	1/1			
1. Identificaç	ao do Equipamente	0		A PERCENTION AND A PERCENT									
		Potén	cla	Fabricante	Ano Fab.	Tipo Reg.	Tipo Rele	Nº Rele	Tensão Nom.	Peso(kg)			
						Tino B	and the second second						
2. Local e Aj	ustes de Origem	the same states				T Tipo D	<u> </u>						
SE	Cód. Opera	Ligac	ão	Tancio Palar	Insensib	Tours	N Daniela B	lun a	1				
		1		Tensao Nerer.	machana.	tempo	% Regulação	Nº Operação	Vr	lvx			
3. Avaliação	de Funcionamento												
Comandy	Contract		-	1		r				r			
Manual	Automático	Luz	Neutro	Indicar Eleva Baixar	r Indicador Posição	Bioqueio Mecanico	Bloqueio Eletrico	LimiteTensão Minimo	LimiteTensão Máximo	Contador Operação			
Apro	v. Aprov	DAI	Aprov.	Anno	ADROW			Arrow	[] Ann				
Repro	w. Reprov	1	Reprov		E Denter								
4. Condiçõe	s do Equipamento		tichtoa.	III Repto	C Reprov		Keprov		Reprov	Repro			
Pintura	Bucha F	Bu	cha C	Bush- FC	Dáss sels	N de Ále				r			
				Bucha PC	Para-raio	N. do Oleo	valvula A. P.	Estrutura	Cx.Controle	Aterramento			
Apro	V L Aprov		Aprov.	Aprov	Aprov	Aprov	Aprov	Aprov	Aprov	Apro			
Repro	NV. Beprov		Reprov.	Reprov	Reprov	Reprov	Reprov	Reprov	Reprov	Repro			
Aspecto do	Óleo Isolanto:						Γ.			1000			
5. Ensaios E	létricos Finais		Jiaro	La Esculo	· · Com I	Particulas		m visibilidade					
Relação d	e Tensão (TTR)				Resist	tência dos l	Enrolamentos	: (mΩ)	Resistência de	Isol. (MQ)			
Tap Rea	Encontrada	Tap	Tap Real Encontrada Temperatura = 29.9 %							211			
0 1,000	10 1 1003	0	1,0000	1 003	Tap	Tap F/C C/FC				= <u>>!0</u> .c			
1 1,006	3 1 0066	-1	0,9938	0.9942	16	16 31/17 00 0			F+G+FC	Imassa			
2 1,012	5 1.0129	-2	0,9875	0 9280	15	20 70	MIC		iempo(s)	Leitura			
3 1,018	18 1.0195	-3	0,9813	09220	8	12 60	1 49.0		50	100 052			
4 1,025	0 1.0.759	-4	0.9750	1 9360	1	2 20	MIL		00	40002			
5 1.031	3 1 13.25	-5	0 9688	19201	0	2,17	mn	2.11	600	5.36 GN			
6 1.037	5 1 0203		0,0000	006/17	4	5,00	mr	2,54r	1.10				
7 1 043	a h alici		0,0020	00000	-1	5,85	mn	10 - 1 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5	Ind. Abs.				
1 1,043	1 1 05 212	-/	0,9563	0,1509	-8	17.00	Ima		l abs = 60	seg/30seg			
8 1,050	1,0500	-8	0,9500	0,9500	-15	21,9	3mr		Ind. Pol.				
9 1,056	31,0544	-9	0,9438	0,9943	-16	31,59	mn	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	l polariz = 6	00seg/60seg			
10 1,062	5 1,0660	-10	0,9375	0,9416	Second Second		anayao	2.13 miles 1819	Serie -	1000			
11 1,068	1,0745	-11	0,9313	0,9360	TTR: Conform	ie valores de	referência citad	os ao lado	Rigidez [Dielétrica			
12 1,075	1,0812	-12	0,9250	0,9307	com variação	de +/-0,5%			Norma As	SMT-D877			
13 1,081	1,0887	-13	0,9188	0,9252	Resistência d	os Enrolame	antos Valores de	referên	L1=	1.2=			
14 1,087	5 1.0960	-14	0,9125	0.9200	cia encontrado	s no ensalo d	de comissionam	ento	1.3=	1.4=			
15 1,093	1.10.35	-15	0,9063	0.9140	Resistência d	e Isolamento	p= 1.000 mega	hms	1.5=				
16 1.1000	1. 1112	-16	0.9000	n anas	Nº de Operaç	ões p/ Manut	tenção: \$00.00)					
bs: No Ens	ajo de Relação de	Transfe	ormação	as garras de evoi	tacăn X1/nreto	A X2/uarreal	bo) do TTO C	m Enodes	media de 5 =				
arras do ser	undário H1(preto)	a H2/m	ermelhe	do TTR foom line	adae nas bur	a contraction of the second	ino) uo 1 IR ilca	in igadas nas bu	Kmae Feas				
	and an (piero)	- 112/14	o. monoj	so in readining	uuda rida DUCIN								
Observaçõ	es:							1					
the second se			1122-5-5										
			eyeend.	19									
		1	-					and the second					
Drgăo:	Data:								Data				

Figura 5- Folha de Ensaio preenchida

⇒ 11- Desfazer as Tarefas Preliminares

- ⇒ 12- A análise dos resultados obtidos deverá ser feita comparando-os com:
 - 12.1- Ensaios de recebimento em fábrica;
 - 12.2- Comparação entre fases do equipamento;
 - 12.3- Ensaios em RTES similares;
 - 12.4- Ensaios anteriores do mesmo equipamento.

• RESISTÊNCIA DE ISOLAMENTO

ENSAIO DE RESISTÊNCIA DE ISOLAMENTO EM REGULADOR DE TENSÃO (MEGA)

NORMA DE REFERÊNCIA: NORMAS INTERNAS V0001/13 E CPM 0001/13

Figura 1- Medidor de Resistência de Isolamento (Megôhmetro)

NÚMERO DE COLABORADORES E TEMPO PARA EXECUÇÃO

N° de Técnicos/eletricistas	Tempo Previsto
02	40 minutos

INSTRUMENTOS E EQUIPAMENTOS NECESSÁRIOS

Descrição	Quantidade
EPIs	Nec.
Medidor de resistência de isolamento em corrente contínua	01
Multímetro	01
Termohigrômetro	01

Lesões físicas e Queda – Ataque de animais e insetos – Curto Circuito – Choque elétrico -Choque mecânico – Queda de escada

- ⇒ 1- Executar as tarefas preliminares APR
- ⇒ 2- Anotar as características do equipamento
- ⇒ 3- Anotar condições climáticas
- ⇒ 4- Posicionar adequadamente o instrumento de ensaio, de preferência em cima de uma mesa articulada de madeira
- ⇒ 5- Desconectar todos os cabos externos ligados ao REGULADOR de TENSÃO;

NOTA: Ao desconectar todos os cabos externos ligados ao regulador utilizar escada de fibra isolante ou cesto com a base corretamente posicionada.

- ➡ 6- Conectar o cabo de alimentação do instrumento de ensaio, observando suas características nominais de tensão, caso não se utilize fonte externa verificar a indicação de tensão da bateria
- ⇒ 7- Sem efetuar a interligação dos cabos ao REGULADOR de TENSÃO, proceder à calibração do instrumento ou acompanhar seu autodiagnose de acordo com as recomendações do fabricante;

NOTA: Não tocar nos terminais de saída do instrumento devido, o risco de choque elétrico.

- ⇒ 8- Limpar todas as buchas do REGULADOR de TENSÃO com álcool isopropílico;
- ⇒ 9- Medição da Resistência de Isolamento entre Núcleo e Carcaça:
 - 9.1- Interligar os terminais (F, C e FC) externamente;
 - 9.2- Conectar o cabo *linha* (VERMELHO) do instrumento nos terminais do RT;
 - 9.3- Conectar cabo *terra* (PRETO) do instrumento na carcaça do RT;
 - 9.4- Aplicar uma tensão de 5kV e aguarda a estabilização da leitura da resistência de isolamento de 30 segundos a 10 minutos.
 - 9.5- Anotar na folha de ensaio o resultado.

Figura 2 - Foto das Ligações dos Terminais Do RT

-						F C						-	-	Iden	lificação		-
Conercisa			FOLHA DE ENSAIO									Revisão 1					
Cheruisa promise													Data:		N		
REGULADOR						LADOR	DE TENSAO MONO FASICO TIPO B							Data		1/1	-
1. Ide	ntificação	do Equipamento	-						-	-		-		Fayi	ild.	1/1	
			Potér	ncla	Eshel											-	
					rautic	ante	Ano	ab.	Tipo Reg.	Tipo	Rele	Nº Re	le	Tens	ião Nom.	Peso	(kg)
2. Loc	al e Ajus	tes de Origem		-	1				Тіро В	I		1		-			
SE		Cód, Opera	Lina	căo	1				-	1	- 11 - 11	-					-
			aiga	çuo	Tensa	io Refer.	Inse	ISID.	Tempo	% Re	gulação	Nº Op	eração	Compe	ensação	his	
3. Ava	aliação de	Funcionamento	_					10000							waneed)		a
Co	manda	- shoren annen to	-		1	-	_	-				-	-				
M	anual	Comando Automático	Luz	z Neutro	Indic	ar Elevar Baixar	Ind Pe	licador osição	Bloquelo Mecanico	BI	oleupo letrico	Lim	iteTensão Ainimo	Limit M	eTensão áximo	0	ontador peração
Ø	Aprov.	Aprov	U	Aprov.	N	Aprov	TH	Aprov	Aprov		Aprov	In	Aprov	Π	Aorov	In	Apr
Ú)	Reprov.	Reprov	III	Reprov.		Reprov	F	Reprov	Reprov	In	Renrou		Renrou		Reprov	F	Parr
4. Cor	ndições d	o Equipamento				Tiopior		reprov	L_ Reploy		Reprov		Repiov		Reploy		Kepit
P	intura	Bucha	P	ucha C	-						-			-			
	and and a second			uona C	B	ucha FC	Pá	ra-raio	N. do Oleo	Vál	vula A. P.	Es	trutura	Cx.C	ontrole	Ate	rramento
	Aprov.	Aprov	Ш	Aprov,		Aprov		Aprov,	Aprov.		Aprov		Aprov		Aprov		Apro
HIN!	Reprov.	Reprov		Reprov.		Reprov		Reprov	Reprov		Reprov		Reprov		Reprov		Repro
Aspe	cto do Ó	leo Isolante:		Claro		Escuro	П	Com	Dartículos	61	Γ.		3-10-1				
5. Ens	aios Elét	ricos Finais		Ularo	-	LSCUID		COMP	anticulas	-		m vis	ibilidade				
Rela	ção de	Tensão (TTR)	100	1			-	Resist	Áncia dos I	Enrol	amentos	(mC	1	Declet	Amala da		
Tan	Real	Encontrada	Ton	Deal		100	-			LINU	20 4	. (1112.	/	Resist	encia de	ISOI.	(M12)
0	1.0000	A ANA	0	1 0000	En	contrada	Tap					Te	mnoratura	-5	1.6.0		
1	1,0063	1 MGG	-1	0.9938	7.0	20/11	16 71/5 C/FC					F+C+FC	/ mas	sa			
2	1,0125	100029	-2	0.9875	21	1220		15	51,44	MI	2			Ten	npo(s)	L	eitura
3	1.0188	1 1195	-3	0 9813	20	1010	1	8	12 10	o mj	2	1	- manager		30	330	GGR
4	1.0250	10.750	-4	0.9750	1	1360	anese anese	4	17.00	ms	2				60	400	1Gr
5	1 0313	1 13.25		0,0700	50	12/1		-	3,89	m	2		1	6	00	5.3	GGN
6	1 0375	10203	-0	0,0000	20	16/17		-	5,00	mu	n	3	542	1.12			1.000000000
7	4 0420	house	-0	0,3625	00	1045		-1	5,83	m.	n			Ind.	Abs.		
-	1,0430	10403	-/	0,9563	0,1	507	1	-8	11.04	m	n	1		Contra Contra	l abs = 60	seg/30	seg
8	1,0500	1,0000	-8	0,9500	49	1500		15	27,9	3m	r	12000		Ind.	Pol.		
9	1,0563	1,0599	-9	0,9438	4	1473		16	31,59	1 m.	n		distant.	1,	oolariz = 6	00seg/	60seg
10	1,0625	1,0000	-10	0,9375	0,9	416	Criter	los de A	ceitação/Av	aliaçă	0		035346				Stor.
11	1,0688	1,0745	-11	0,9313	0,4	360	TTR:	Conform	e valores de	referê	ncia citado	os ao l	ado	R	igidez D	lelét	rica
12	1,0750	1,0812	-12	0,9250	0,9	1307	com v	ariação d	le +/-0,5%					N	orma AS	SMT-0	0877
13	1,0813	1,0887	-13	0,9188	0,9	1252	Resis	tência d	os Enrolame	entos/	valores de	refere	n	L1=		L2=	
14	1,0875	1.0460	-14	0,9125	0,9	1200	cia en	contrado	s no ensalo o	de con	nissionam	ento		L3=		L4=	
15	1,0938	1,1035	-15	0,9063	0,9	148	Resis	tência di	e Isolamento	r= 1.0	000 megac	hms		L5=		2.15	Mar Internet
16	1,1000	1,1112	-16	0,9000	0.4	096	Nº de	Operaçõ	bes p/ Manut	tenção	00.00k :0	5		Media	de 5 =	-	
)bs: N	lo Ensaio	de Relação de 1	Fransi	formação	as gar	ras de excit	ação l	X1(preto)	e X2(vermel	lho) do	TTR fica	m liga	das nas bu	Rittine F	e as		
arras	do secun	dário H1(preto) e	H2(vermelho)	do TT	R ficam liga	das n	as bucha	SeC								
_										-			-				
Obse	rvações	:								_							
								11	12.11								C
10			57.111.5			5.00	-				1114					21	122
	-			n doorse		Sec. 1.										-	
	1		1													-	
)rgão:		Data:					1						1	Data	100		

Figura 3 - Folha de Ensaio Preenchida

• TESTE DE RELAÇÃO DE TRANSFORMAÇÃO (TTR)

ENSAIO DE RELAÇÃO DE TRANSFORMAÇÃO EM REGULADOR DE TENSÃO

NORMA DE REFERÊNCIA: NORMAS INTERNAS E RECOMENDAÇÕES DE FABRICANTES

Figura 1 - Medidor de Relação de Transformação (TTR)

NÚMERO DE COLABORADORES E TEMPO PARA EXECUÇÃO

N° de Técnicos	Tempo Previsto
02	40 minutos

INSTRUMENTOS E EQUIPAMENTOS NECESSÁRIOS

Descrição	Quantidade
EPIs	Nec.
TTR Monofásico	01
Multímetro	01
Calculadora	01
Escada de Fibra Isolante	01

Lesões físicas e Queda – Ataque de animais e insetos – Choque elétrico – Queda de escada – Queda de material, ferramentas e equipamentos

- \Rightarrow 1- Executar as tarefas preliminares APR
- ⇒ 2- Anotar as características do equipamento
- ⇒ 3- Posicionar adequadamente o instrumento de ensaio, de preferência em cima de uma mesa articulada de madeira
- ➡ 4- Desconectar todos os cabos externos ligados ao REGULADOR (inclusive o aterramento da carcaça)
- ⇒ 5- Executar limpeza das buchas com álcool Isopropílico e dos contatos externos do REGULADOR

NOTA: Para desconectar todos os cabos externos ligados ao regulador utilizar escada de madeira ou fibra isolante ou andaime com a base corretamente posicionada.

- ➡ 6- Conectar o cabo de alimentação do instrumento de ensaios, observando suas características nominais de tensão
- ➡ 7- Efetuar a calibração do instrumento de acordo com as recomendações do fabricante, sem qualquer ligação dos cabos de ensaio ao REGULADOR
- ➡ 8- Conectar o gerador ao painel de controle do REGULADOR na parte de alimentação externa. Certificar-se se o controle do RT é atendido em 127 volts.
- ⇒ 9- Medição da Relação de Transformação:
 - 9.1- Conectar as garras de excitação X1 (preto) e X2 (vermelho) do TTR nos terminais FC e F, respectivamente;
 - 9.2- Conectar as garras de excitação H1 (preto) e H2 (vermelho) do TTR nos terminais FC
 - e C, respectivamente;
 - 9.3- Aplicar o teste conforme os Taps indicados na folha de ensaio e anotar os resultados

	W.		1				FC)LH	A DI	EENS	AIO			Identifica	ção	:	4
1	er	nerg	Isa	-	Children and south of the	-						-		Revisão:	_	1	
F.30	ilin.		estre addate		R	EGU	LADOR	DE	TENS		DEA	SICO	IPO B	Data:			
				-							A	5100		Pagina:		1/1	
1. Ide	entificaç	ao do Equ	pamento	W BACAN				-		0.0000000		and the second party of					
				Potén	ncla	Fabrie	ante	Ano	Fab.	Tipo Reg.	Tipo R	tele	Nº Rele	Tensão No	m.	Peso(k	a)
										Tino B	1						
2. Lo	cal e Aji	ustes de O	rigem	-	-	L					-		-		. B		
SE	V	Cód. O	pera	Liga	căo	1		lines	naib		1	10-11-	1				-
			-		,	Tensa	o Keter.	inser	naib.	Tempo	% Reg	ulação	Nº Operação	Compensaçã	io	Viv	_
3. Av	aliação	de Funcior	namento						-	L	-		l				-
Co M	omando Ianual	Com	ando nático	Luz	Neutro	Indic	ar Elevar Baiyar	Ind	licador	Bioqueio	Blo	oleupo	LimiteTensão	LimiteTens	30	Co	ntador
R	Anro	the state	-	H/		-	Daixa		Jaiyau	Mecanico	EI	etrico	Minimo	Maximo		Op	eraçao
×1	Aprov	X	Aprov	4	Aprov.	K	Aprov	P	Aprov	Aprov		Aprov	Aprov	Ap	rov		Apro
-	Repro	V.	Reprov	Ц	Reprov.		Reprov	白	Reprov	Reprov		Reprov	Reprov	Rep	rov		Repro
4. Co	ndições	do Equip	amento				CARD & CALL & CARD			Characteristic Budger with Budger of							
P	intura	Bu	cha F	Bu	ucha C	В	ucha FC	Pá	ra-raio	N. do Óleo	Válv	ula A. P	Estrutura	Cx.Contro	le	Aten	amente
	Anroy		Aprov		Apreu		(*******										
		1.	-think		Aprov,	12	Aprov		Aprov	Aprov		Aprov	Aprov		rov	<u> </u>	Apro
119	Repro	v. []	Reprov		Reprov.		Reprov		Reprov	Reprov		Reprov	Reprov	C Rep	rov		Repro
Aspe	ecto do	Óleo Isol	ante:		Claro		Escuro		Com	Particulas			m visibilidada	(
5. En	saios El	étricos Fir	nais	-	-	SCHOOL ST				artioulda	1		an visioliioade		-		
Rela	ação de	e Tensão	(TTR)	10) - r =	(Reelet	Ancia doc	Encolo	monter	(mO)	Deslatt	-		
Tan		1 -	1		in granns		all the same	-	Resist	encia dos	enrola	amentos	(m12)	Resistência	de	isol. (h	IΩ)
ap	Real	Enco	ntrada	Тар	Real	En	contrada	Temperatura = <u>J4, 4</u> °C				Tempera	tura	-31	6.c		
-	1,000	10	05	0	1,0000	1.0	003	Tap F/C C/FC				F+C	+FC	/ massa			
1	1,006	3 1,00	166	-1	0,9938	0,9	1942	_	16	31,47 mr		CASE OF AN	Tempo(s) [Le	itura	
Z	1,012	1,0	124	-2	0,9875	0,4	880		15	28.38	Bms	ι		30	1	3.26	GA
3	1,018	8 1,0	145	-3	0,9813	0,0	1820		8	17.60	mn			60	1	400	G.A.
4	1,025	1,00	759	-4	0,9750	0,4	1760	du Sta Comp	1	3.89	m	1		600	1	5.86	GA
5	1,031	3 1.0	325	-5	0,9688	0.0	1701		0	302	7 -	-	2560	THE PARTY OF	-1	0.14	Lesiles.
6	1,037	5 1.1	393	-6	0,9625	00	643	-	-1	7 82		-	0,3956	Ind At-	-1	10.00	1914
7	1.043	3 1.0.	461	-7	0.9563	14	599	-	.8	11 6	11	2		ing. Abs	•		-
8	1 050	110	520		0,0000	2	1520	-	45	17,00	7 m.	r		l abs	= 601	eg/30s	g
-	4,000	10	can	-0	0,9500	41	24.20		10	21,9	Dm.	n		Ind. Pol.			
9	1,056	110	219	-9	0,9438	4	473		16	31,50	1 m-	2	a a distance	I polariz	= 60	Oseg/6	seg
10	1,062	1,00	60	-10	0,9375	0,9	416	ritér	rios de A	ceitação/Av	aliação	• •		100	1188 11751		Section 1
11	1,0688	1,0	745	-11	0,9313	0,4	360	TR:	Conform	e valores de	referên	ncia citado	os ao lado	Rigide	z D	ielétri	ca
12	1,0750	1.0	812	-12	0,9250	0,9	307	om v	rariação i	de +/-0,5%		2417-01		Norma	AS	MT-D	377
13	1,0813	1.0	P87	-13	0,9188	0.9	1252	Resis	tência d	os Enrolame	entosV	alores de	referên	1 1=	T	2=	110
14	1,0875	ADO	160	-14	0,9125	50	200	ia en	contrado	s no ensalo e	de com	issionam	ento	1.2-	-	-4-	
15	1.0939	1 Al	35	.15	0.9063	h	140	Resis	tência d	e Isolamente	o= 1.0	00 megar	hms	LJ=	-	_4=	-
10	4.4000	110	111	40	0,0003	019	1000	lo de	Operaci	oes n/ Manu	tencão	100.00		L5=			1
16	1,1000	11.11	110	-16]	0,9000	0 9	196		shoraði	soo primattu	conçeo	. 400.00	,	Media de 5	-		
bs; l	NO Ensa	no de Rela	ação de T	ransf	ormação	as gar	ras de excit	ação l	X1(preto	e X2(verme	lho) do	TTR fica	m ligadas nas bu	RMCas Feas			
arras	do sec	undário H	I (preto) e	H2(v	ermelho)	do TT	R ficam liga	das n	as bucific	IS e C					0.028		
		22033		-			and here to the second					100			-		
DSe	ervaçõi	es:									_						
													201 BEELEN				
		New York		2.411-5		-	5700	-				0.254			5007	5/	
					101000			1									-
rgão):	Data:												Data	160	0.1783	
	100	-					and an and set			and the second	ung Ma						
	- 37:45			A	Ass: Técr	ico R	esponsáve	l <u>s</u>		Ass: Engenl	heiro R	lesponsa	ivel				

Figura 2 - Folha de Ensaio preenchida

10- Desfazer as Tarefas Preliminares

- ⇒ 11- A análise dos resultados obtidos deverá ser feita comparando-os com:
 - 11.1- Ensaios de recebimento em fábrica;
 - 11.2- Comparação entre fases do equipamento;
 - 11.3- Ensaios em REGULADORES similares;
 - 11.4- Ensaios anteriores do mesmo equipamento.

APÊNDICE B – INSTRUÇÕES TÉCNICAS PARA

RELIGADORES DE LINHA

• RESISTÊNCIA DE CONTATO

ENSAIO DE RESISTÊNCIA DE CONTATO EM RELIGADOR DE LINHA

NORMA DE REFERÊNCIA: NORMAS INTERNAS E RECOMENDAÇÕES DE FABRICANTES

Figura 1 - Medidor de Resistência de Contato (Micro-Ohmímetro)

NÚMERO DE COLABORADORES E TEMPO PARA EXECUÇÃO

N° de Técnicos	Tempo Previsto
02	3 0 minutos

INSTRUMENTOS E EQUIPAMENTOS NECESSÁRIOS

Descrição	Quantidade
EPIs	Nec.
Medidor de resistência de contato	01
Multímetro	01
Extensão elétrica monofásica	01
Caixa de ferramentas	02
Escada/andaime ou cesto	01
Escova de aço	Nec.
Lixa d'água	Nec.

Procedimentos passo a passo

Lesões físicas e Queda – Ataque de animais e insetos – Curto Circuito – Choque mecânico -Choque elétrico – Queda de escada

- \Rightarrow **1-** Executar as tarefas preliminares APR
- ⇒ 2- Anotar as características do equipamento e dados do contador de operações
- ⇒ 3- Posicionar adequadamente o instrumento de ensaio, de preferência em cima de uma mesa articulada de madeira
- ⇒ 4- Desconectar todos os cabos externos ligados ao RELIGADOR
- ⇒ 5- Executar limpeza dos contatos externos do religador

NOTA: Para desconectar todos os cabos externos ligados ao religador utilizar escada de madeira ou fibra isolante ou andaime com a base corretamente posicionada.

- ➡ 6- Conectar o cabo de alimentação do instrumento de ensaios, observando suas características nominais de tensão
- ⇒ 7- Efetuar a calibração do instrumento de acordo com as recomendações do fabricante, sem qualquer ligação dos cabos de ensaio ao Religador
- ⇒ 8- Medição do RELIGADOR;
 - 8.1- Conectar os cabos P1 (tensão) e C1 (corrente) do instrumento o mais próximo possível do terminal da fase A1 do polo do RELIGADOR;
 - 8.2- Conectar os cabos P2 (tensão) e C2 (corrente) do instrumento o mais próximo possível ao terminal da fase A2 do polo do RELIGADOR;

 8.3- Aplicar 100 A entre os terminais primários do RELIGADOR de acordo com os procedimentos de ajuste de cada aparelho, permanecendo aplicando até a estabilização da leitura;

Figura 2 - Medidor de Resistência de Contato Mostrando a Resistência Medida

- 8.4- Anotar as leituras no Impresso de Ensaios em RELIGADOR
- 8.5- Repetir as ligações e ensaios nos polos das fases B1/B2 e C1/C2
- ⇒ 9- Desfazer as Tarefas Preliminares
- \Rightarrow 10- A análise dos resultados obtidos deverá ser feita comparando-os com:
 - 10.1- Ensaios de recebimento em fábrica;
 - 10.2- Comparação entre fases do equipamento;
 - 10.3- Ensaios em RELIGADORES similares;
 - 10.4- Ensaios anteriores do mesmo equipamento.

Figura 3 - Folha de Ensaio preenchida. Destaque para o campo referente ao ensaio de Resistência de Contato

• RESISTÊNCIA DE ISOLAMENTO

ENSAIO DE RESISTÊNCIA DE ISOLAMENTO EM RELIGADOR DE LINHA DE MT (MEGA)

NORMA DE REFERÊNCIA: NORMAS INTERNAS V0001/13 E CPM 0001/13

Figura 1 - Medidor de Resistência de Isolamento (Megôhmetro)

NÚMERO DE COLABORADORES E TEMPO PARA EXECUÇÃO

Nº de Técnicos/eletricistas	Tempo Previsto
02	40 minutos

INSTRUMENTOS E EQUIPAMENTOS NECESSÁRIOS

Descrição	Quantidade
EPIs	Nec.
Medidor de resistência de isolamento em corrente contínua	01
Multímetro	01
Termohigrômetro	01

Procedimentos passo a passo

Lesões físicas e Queda – Ataque de animais e insetos – Curto Circuito – Choque mecânico - Choque elétrico – Queda de escada

- \Rightarrow 1- Executar as tarefas preliminares APR
- ⇒ 2- Anotar as características do equipamento
- ⇒ 3- Anotar condições climáticas
- ➡ 4- Posicionar adequadamente o instrumento de ensaio, de preferência em cima de uma mesa articulada de madeira
- ⇒ 5- Desconectar todos os cabos externos ligados ao RELIGADOR;

NOTA: Ao desconectar todos os cabos externos ligados ao religador utilizar escada de fibra isolante ou cesto com a base corretamente posicionada.

- ➡ 6- Conectar o cabo de alimentação do instrumento de ensaio, observando suas características nominais de tensão, caso não se utilize fonte externa verificar a indicação de tensão da bateria
- ⇒ 7- Sem efetuar a interligação dos cabos ao RELIGADOR, proceder à calibração do instrumento ou acompanhar seu autodiagnose de acordo com as recomendações do fabricante;

NOTA: Não tocar nos terminais de saída do instrumento devido, o risco de choque elétrico.

- ⇒ 8- Limpar todas as buchas do RELIGADOR álcool isopropílico;
- ⇒ 9- Aplicar uma tensão de 5kV e aguarda a estabilização da leitura da resistência de isolamento de 30 segundos a 10 minutos;

⇒ ENSAIO Nº1- RESISTÊNCIA DE ISOLAMENTO ENTRE FASES COM O RELIGADOR FECHADO (Tanque Único)

- 10.1- Conectar o cabo <u>linha</u> (VERMELHO de AT) do instrumento a um dos terminais da fase A;
- 10.2- Conectar cabo *terra* (PRETO)do instrumento a um dos terminais da fase B;
- 10.3- Conectar o cabo guarda (VERDE) na fase C;
- 10.4- Aplicar uma tensão de 5kV e aguarda a estabilização da leitura da resistência de isolamento de 30 segundos a 10 minutos;

- 10.5- Medir a resistência de isolamento entre os dois pontos;
- 10.6- Executar os mesmos procedimentos nos ensaios das fases B e C;
- 10.7- Anotar as leituras no Impresso de Ensaios em Disjuntor;

Figura 2 - Folha de Ensaio Preenchida. Destaque para o Campo Referente ao Ensaio com Contatos Fechados

⇒ ENSAIO Nº 2 - RESISTÊNCIA DE ISOLAMENTO ENTRE O TERMINAL FASE A PARA TERRA COM O RELIGADOR ABERTO

- 12.1- Conectar o cabo linha (VERMELHO) do instrumento ao terminal A1 RELIGADOR;
- 12.2- Conectar o cabo terra (PRETO) do instrumento na carcaça do RELIGADOR;
- 12.3- Conectar o cabo guarda (VERDE) no terminal A2 do RELIGADOR;

Figura 3 - Ligação do Ensaio de Resistência de Isolamento Entre a Fase A e a Carcaça (Contatos Abertos)

- 12.4- Aplicar uma tensão de 5kV e aguarda a estabilização da leitura da resistência de isolamento de 30 segundos a 10 minutos;
- 12.5- Medir a resistência de isolamento entre os dois pontos;
- 12.6- Executar os mesmos procedimentos nos ensaios das fases B e C;
- 12.7- Anotar as leituras no Impresso de Ensaios em RELIGADOR;

Figura 4 - Folha de Ensaio Preenchida. Destaque para o Campo Referente ao Ensaio com Contatos Abertos

⇒ ENSAIO Nº 3 - RESISTÊNCIA DE ISOLAMENTO ENTRE O TERMINAL A2 PARA TERRA COM O RELIGADOR ABERTO

- 13.1- Conectar o cabo linha (VERMELHO) do instrumento ao terminal A2 do RELIGADOR;
- 13.2- Conectar o cabo terra (PRETO) do instrumento na carcaça do RELIGADOR;
- 13.3- Conectar o cabo guarda (VERDE) no terminal A1 do RELIGADOR;
- 13.4- Aplicar uma tensão de 5kV e aguarda a estabilização da leitura da resistência de isolamento de 30 segundos a 10 minutos;
- 13.5- Medir a resistência de isolamento entre os dois pontos;

- 13.6- Executar os mesmos procedimentos nos ensaios das fases B e C;
- 13.7- Anotar as leituras no Impresso de Ensaios em RELIGADOR.

⇒ ENSAIO Nº 4 - RESISTÊNCIA DE ISOLAMENTO ENTRE OS TERMINAIS DA MESMA FASE COM O RELIGADOR ABERTO – Fase A2

- 14.1- Conectar o cabo linha (VERMELHO) do instrumento ao terminal A1 do RELIGADOR;
- 14.2- Conectar o cabo terra (PRETO) do instrumento no terminal A2 do RELIGADOR;
- 14.3- Conectar o cabo guarda (VERDE)na carcaça do RELIGADOR;
- 14.4- Aplicar uma tensão de 5kV e aguarda a estabilização da leitura da resistência de isolamento de 30 segundos a 10 minutos;
- 14.5- Medir a resistência de isolamento entre os dois pontos;
- 14.6- Executar os mesmos procedimentos nos ensaios das fases B e C;
- 14.7- Anotar as leituras no Impresso de Ensaios em Disjuntor;
- ⇒ 15- Desfazer as Tarefas Preliminares
- \Rightarrow 16- A análise dos resultados obtidos deverá ser feita comparando-os com:
 - 16.1- Ensaios de recebimento em fábrica;
 - 16.2- Orientação Técnica de Análise Estatística de Resultados;
 - 16.3- Ensaios em RELIGADOR similares;
 - 16.4- Comparação entre fases;
 - 16.5- Ensaios anteriores do mesmo equipamento.

APÊNDICE C – ROTINA DE INSPEÇÕES

Figura C. 1 – Planilha "Início"

>	4	0				1 1		1 1		1	1				•
	F	ccB (A)	450	212	1093	66	400	304	2503	1437	ي م	228	6	97	
	S	cA (A)	505	710	0	170	439	0 1							
	Я	oteção lo	51 N	51 FASE	51.8	1 C/N	0 A/B	B/N	518	FASE	51 N	51 N	1 A/N	OT AN	
	ø	igamen p _r	Três erturas	Três 50/5	Três erturas	Três 5 erturas	Uma bertura	Três erturas	Três erturas	Três 51 erturas	Uma bertura	Três erturas	Uma 5 bertura 5	Uma bertura	-
	d	ACC/ Rel	ACC At	ACC AL	ACCAL	ACC At	ACC	ACCAL	ACC AL	ACCAL	ACC	ACCAL	ACC A	ACC A	
	0	tealizado teste no mentador ?	Não foi ealizado teste	este com êxito	este com êxito	este sem êxito	este com êxito	este com êxito	este com êxito	este com êxito	Não foi ealizado teste	este sem êxito	este com êxito	Não foi ealizado teste	-
	z	omponent R e de 1 eferência ali	8022071 r	263328 T	н ,	27703 7	e x	2069 T	6877	23713		30017	74590 T	1.5 1.5	_
	Σ	Condutor C partido (S/N)	NÃO	NÃO	NÃO	SIM	NÃO	SIM	NÃO	NÃO	NÃO	NÃO	NÃO	NÃO	
	Ţ	Causa Aparente	POSTE QUEBRADO	POSTE QUEBRADO	CAUSA NÃO DENTIFICADA	ANIMAL NA REDE	CAUSA NÃO JENTIFICADA	CONDUTOR PARTIDO	DEFEITO DE ARTICULAR	POSTE QUEBRADO	ARVORE NA REDE	CONDUTOR FORA DO ISOLADOR	ARVORE NA REDE	CAUSA NÃO JENTIFICADA	
	¥	elf-Healing Imteliteam ACO	<u>, 188</u>	1		0		<u>е</u> 1	0			11			
	ſ	Equip.	7093	6651	2113	19969	2113	7057	21//6	211.3	2113	60086	19981	60325	
	I	Tipo Equip.	RL	RL	RL SE	RL	RLSE	RL	RL SE	RL SE	RL SE	RL	RL	귭	
	н	Tipo (U/R)	n	n	D	æ	œ	ж	n	n	œ	œ	n	α	÷
	IJ	Circuito	01L1 CGU	01V1 ABR	01L3 MNT	01L5 BNR	01L3 SJC	01V6 ABR	01V6 ABR	01L3 GBA	01L3 ARN	01L3 BOR	01L3 SME	01L2 SME	Controle
	ш	Tensão	13.8 kV	13.8 kV	13.8 kV	13.8 kV	13.8 kV	13.8 kV	13.8 kV	13.8 kV	13.8 kV	13.8 kV	13.8 kV	13.8 kV	Final
irrência	Ш	S:	CGU	ABR	MNT	BNR	SJC	ABR	ABR	GBA	ARN	BQR	SME	SME	ligamentos
fs Occ	D	Regional	EBO	EBO	CENTRO	CENTRO	CENTRO	EBO	EBO	CENTRO	CENTRO	CENTRO	CENTRO	CENTRO	cias Re
X	U	Empresa	EBO	EBO	EPB	EPB	EPB	EBO	EBO	EPB	EPB	EPB	EPB	EBB	Ocorren
	8	Data	14/02/2018	14/02/2018	14/02/2018	17/02/2018	17/02/2018	17/02/2018	17/02/2018	21/02/2018	22/02/2018	22/02/2018	23/02/2018	23/02/2018	Início
	A	Ocorrência	3633	3769	37992	40553	40875	4114	4143	45398	46858	46980	46994	47844	4
A.	4	÷	2	m	4	'n	L.	2	00	6	10	11	12	13	

Figura C. 2 – Planilha "Ocorrências"

Fonte: Próprio autor.

>																	1	•							
	д	Ocorrência 👻	NA	MA	NA	NA	NA	MA	NA	NA	944/2018	940/2018	941/2018	942/2018	943/2018	945/2018	960/2018	947/2018	NA	AA	NA	NA	NA	ΝA	NA
	0	Tipo de Religamento 👻	Desarme com religamento automático com sucesso na 1º	Desarme com religamento automático com sucesso na 1ª	Desarme com religamento automático com sucesso na 1º	Desarme com religamento automático com sucesso na 1º	Desarme com religamento sutomático com sucesso na 1º	Desarme com religamento automático com sucesso na 1º	Desarme com religamento automático com sucesso na 1º	Desarme com religamento automático com sucesso na	Desarme com religamento automático com sucesso na 1º	Desarme com religamento automático com sucesso na 1º	Desarme com religamento automático com sucesso na 1º	Desarme com religamento automático com sucesso na	Desarme com religamento automático com sucesso na 1º	Desarme com religamento automático com sucesso na 1ª	Desarme com religamento automático com sucesso na 1º	Desarme com religamento automático com sucesso na	Desarme com religamento automático com sucesso na 1ª	Desarme com religamento					
	z	icoN(A) 👻	53	£	B	ß	ц.	8	ц,	2	216	227	222	2014	227	215	ц,	ß	ц,	135	51	20	ß	165	Ш.
	W	ieoC (A) 👻	ß	£	В	ß	ß	æ	æ	ß	0	5	ß	ß	ß	£	æ	ß	ß	æ	æ	ß	ß	£	218
	-	iooB (A) 👻	219	ß	SR	132	£	SR	B	ß	232	294	302	303	295	283	ß	В	ß	163	161	B	ß	194	222
	к	iccA (A) 💌	æ	æ	SR	133	æ	B	BS	æ	0	ß	R	æ	æ	ß	g	В	æ	æ	н	BR	æ	æ	SB
	7	Horário Final 🔻	02:55:09	02:35:41	11:34:10	12:10:58	15:34:24	10:08:11	11:28:04	10:04:52	15:13.32	15:22:24	15:27:13	15:43:16	15.52.37	16:55:57	18:13:15	21:31:12	21:47:40	02:57:39	05:47:55	13:04:38	23,44:09	12:10:14	15:28:32
	1	Horário Inicial 👻	02:55:07	02.35.39	11:34:08	12:10:53	15.34.22	10.08.09	11:27,59	12:04:20	15:13:27	15.22.18	15:27:08	15:42:47	15:52:32	15:55:52	18:13:10	21:31:07	21:47:38	02.57.37	05:47:50	13.04.36	23:43:46	12:10:11	15:28:30
	н	Equip. 💌	78443	19969	19639	60553	30095	61443	2999	61443	211.3	211.3	21L3	211.3	211.3	211.3	211.3	211.2	19697	75521	61427	61443	96447	78409	78413
	9	Tipo Equip.	냄	교	Ъ	뮫	귵	눱	귭	æ	RL SE	RLSE	BLISE	BL SE	BL SE	RL SE	BLSE	BL SE	Ъ	裙	æ	교	교	교	ы
	Ł	Circuito 👻	OIL5PLS	01L5 BNR	01L2 BQR	OIL3 ARA	OIL4 BNR	01L4 CTE	01C3 CTL	01L4 CTE	01L3 DIN	0113 DIN	01L3 DIN	01L3 DIN	0113 DIN	0113 DIN	0113 DIN	01L2 PLT	01L4 ARA	OL3 ARA	OULIPLS	01L4 CTE	01L4 GBA	OLLIBOR	OLIBOR
	ц	Tensão 👻	13.8 kV	13.8 kV	13.8 kV	13.8 kV	13.8 kV	13.8 kV	13.8 kV	13.8 kV	13.8 kV	13.8 kV	13.8 kV	13.8 kV	13.8 kV	13.8 kV	13.8 kV	13.8 kV	13.8 kV						
Data	D	SE	PLS	BNB	BQR	ARA	BNB	CTE	сц	CTE	NO	Na	NIO	NO	NIO	Nia	NIO	PLT	ARA	ARA	PLS	CTE	GBA	BQB	BQR
< fe	U	Regional 👻	CENTRO	CENTRO	CENTRO	CENTRO	CENTRO	CENTRO	EBO	CENTRO	CENTRO	CENTRO	CENTRO	CENTRO	CENTRO	CENTRO	CENTRO	CENTRO	CENTRO	CENTRO	CENTRO	CENTRO	CENTRO	CENTRO	CENTRO
×	8	Empresa 💌	EPB	EPB	EPB	843	843	EPB	EBO	EPB	EPB	EPB	EPB	EPB	EPB	EPB	EPB	EPB	EPB	EPB	EPB	EPB	EPB	EPB	EPB
	A	Data 👻	10/03/2018	11/03/2018	11/03/2018	11/03/2018	11/03/2018	12/03/2018	12/03/2018	12/03/2018	12/03/2018	1240342018	12/03/2018	12/03/2018	12/03/2018	1240342018	12/03/2018	12/03/2018	12/03/2018	13/03/2018	13/03/2018	13/03/2018	14/03/2018	15/03/2018	15/03/2018
A1	A.	1	2	m	4	S	9	7	00	6	10	н	12	Ę	14	15	16	17	18	19	20	27	22	23	VC.

Figura C. 3 – Planilha "Religamentos"

Fonte: Próprio autor.

Fonte: Próprio autor.

Figura C. 4 - Planilha "Final"

Figura C. 5 - Planilha "Controle"

Fonte: Próprio autor.