

CURSO DE GRADUAÇÃO EM ENGENHARIA ELÉTRICA

Universidade Federal de Campina Grande

Centro de Engenharia Elétrica e Informática

ARTHUR FELIPE GADELHA ALBUQUERQUE

Relatório de Estágio M.R. Instalações Elétricas

> Campina Grande 2019

ARTHUR FELIPE GADELHA ALBUQUERQUE

M.R. INSTALAÇÕES ELÉTRICAS

Relatório de Estágio Integrado submetido à CCGEE de Engenharia Elétrica da Universidade Federal de Campina Grande como parte dos requisitos necessários para a obtenção do grau de Bacharel em Ciências no Domínio da Engenharia Elétrica.

Área de Concentração: Eletrotécnica

Professor Célio Anésio da Silva, D.Sc. Orientador

Campina Grande 2019

ARTHUR FELIPE GADELHA ALBUQUERQUE

M.R. INSTALAÇÕES ELÉTRICAS

Relatório de Estágio Integrado submetido à CCGEE de Engenharia Elétrica da Universidade Federal de Campina Grande como parte dos requisitos necessários para a obtenção do grau de Bacharel em Ciências no Domínio da Engenharia Elétrica.

Área de Concentração: Eletrotécnica

Aprovado em 31/07/2019

Professor Ronimack Trajano de Souza Universidade Federal de Campina Grande Avaliador

Professor Célio Anésio da Silva, D.Sc. Universidade Federal de Campina Grande Orientador, UFCG

Dedico este trabalho aos meus pais, que me apoiaram em todos os momentos da minha caminhada, sempre dispostos e presentes.

AGRADECIMENTOS

Agradeço, em primeiro lugar, a Deus que é o motivo e a razão de tudo, sem ele nada disso seria possível, nem nada disso teria sentido algum.

Agradeço à meus pais Vagner Farias e Fabiana Gadelha, que sempre me deram todo o amor, e sacrificaram muitas coisas para que eu conseguisse chegar onde cheguei hoje, agradeço por toda educação que me foi dada por eles, por sempre me colocarem no caminho certo, sem meus pais nada seria possível.

Agradeço aos meus familiares que me acolheram na cidade de campina grande, os quais cito Vera Lucia, Valeria Diniz, Vanessa Diniz, Lívia Gabrielle e Ana Luiza, por sempre me apoiarem e encontrarem alguma maneira de me ajudar. Nesse momento, eu lembro com carinho de todos aqueles que torcem por mim. Muito obrigado.

Aos meus amigos e colegas de curso, em especial aos mais próximos, dos quais cito Samuel Melo, Vitor Ramos, Leonardo Magno, Ariosto Sales, Jorge Luiz, Raphael Galdino, Júlio Cesar, Matheus Braga e Thiago Henriques e os demais, no qual tive a oportunidade de conviver durante a graduação. Foram fundamentais para deixar de certa maneira a passagem pela universidade mais leve e para minha formação como engenheiro e como ser humano.

Agradeço, especialmente, ao professor Célio Anésio por aceitar o convite de me orientar neste trabalho. E a todos os professores que de alguma forma contribuíram para minha formação.

Assim como à coordenação do curso, nas pessoas de Adail Paz e Tchaikowisky Oliveira, pelo apoio. E a todas as pessoas que, de forma direta ou indireta, contribuíram para a realização desse trabalho e pela minha formação acadêmica.

RESUMO

O presente relatório objetiva descrever de maneira concisa as principais atividades realizadas pelo estagiário Arthur Felipe Gadelha Albuquerque, estudante de Engenharia Elétrica pela Universidade Federal de Campina Grande, durante o período entre o dia 28 de fevereiro de 2019 até o dia 29 de julho de 2019 no estágio que fora realizado na M.R. Instalações Elétricas, na cidade de João Pessoa, Paraíba. O estágio foi realizado sob a supervisão do engenheiro Oton Mathews Cardoso e Dantas. O relatório foi escrito demonstrando a importância do estágio no desenvolvimento pessoal e profissional do estagiário. Explicitando os principais desafios enfrentados durante o estágio e os principais conhecimentos consolidados e desenvolvidos durante esse período.

Palavras-chave: Geração Distribuída, Energia Solar, ILUMISOL, Estágio.

ABSTRACT

This report aims to concisely describe the main activities performed by Arthur Felipe Gadelha Albuquerque, Eletrical Engineering student at Universidade Federal de Campina Grande, from February 28, 2019 to July 29, 2019 held at M.R. Instalações Elétricas in the city of João Pessoa, Paraíba. The internship was conducted under the supervision of engineer Oton Mathews Cardoso e Dantas. The report was written demonstrating the importance of the internship in the trainee's personal and professional development. Explaining the main challenges faced during the internship and the main knowledge consolidated and developed during this period.

Keywords: Distributed Generation, Solar Energy, ILUMISOL, Internship.

LISTA DE ILUSTRAÇÕES

Figura 1 – Fachada ILUMISOL João Pessoa	14
Figura 2 – Interface do AutoCAD 2018	16
Figura 3 – Modelo de formulário de Solicitação de Acesso	
Figura 4 – Vista da instalação visitada em Mataraca-PB	
Figura 5 – Subestação na usina geradora em Mataraca-PB	
Figura 6 – Fachada do restaurante com poste da Energisa	
Figura 7 – Aba "A Enviar" da planilha de status dos projetos	
Figura 8 – Formulário de cadastro de projetos ainda não enviados	
Figura 9 – Aba "A aprovar" da planilha de status dos projetos	
Figura 10 – Formulário de projeto aprovado	
Figura 11 – Aba "Aprovados" da planilha de status dos projetos	
Figura 12 – Visão geral da planilha de acompanhamento de projetos	
Figura 13 – Visão da engenharia na planilha de acompanhamento de projetos	
Figura 14 – Visão da instalação na planilha de acompanhamento de projetos	
Figura 15 – Visão básica na planilha de acompanhamento de projetos	

LISTA DE ABREVIATURAS E SIGLAS

AC	Alternating Current
ANEEL	Agência Nacional de Energia Elétrica
CA	Corrente Alternada
CAD	Computer Aided Design
CC	Corrente Continua
DC	Direct Current
DPS	Dispositivo de Proteção Contra Surto
GD	Geração Distribuida
MPPT	Maximum Power Point Tracker
NBR	Norma Brasileira
NDU	Norma de Distribuição Unificada
ONS	Operador Nacional do Sistema Elétrico
RN	Resolução Normativa
SAF	Serviço de Atendimento ao Franqueado
SAT	Serviço de Atendimento Técnico
SIN	Sistema Interligado Nacional
UFCG	Universidade Federal de Campina Grande
VBA	Visual Basic for Applications

SUMÁRIO

1	Intro	odução	11
	1.1	Estrutura do trabalho	11
2	Aer	npresa	13
	2.1	Estrutura da empresa	14
	2.2	Atividades executadas	15
3	Ativ	vidades desenvolvidas	16
	3.1	Software utilizado	16
	3.2	Projetos de geração distribuída	17
	3.3	Visita a usina em Mataraca-PB	
	3.4	Casos problemas	
	3.4.1	1 Restaurante no Conde	
	3.4.2	2 Academia em Santa Rita	
	3.4.3	3 Casa em Rio Tinto	
	3.5	Desenvolvimento de ferramentas de controle	
	3.5.1	1 Planilha de acompanhamento de Status de Projetos	
	3.5.2	2 Planilha de Acompanhamento de Projetos	
4	Con	clusão	
Re	eferênc	cias	

1 INTRODUÇÃO

Desde o dia 17 de abril de 2012, quando a Resolução Normativa ANEEL nº 482/2012 entrou em vigor, as portas para geração legal de energia própria a partir de fontes renováveis foram abertas. Esse tipo de geração é conhecido como micro e minigeração distribuída.

A grande vantagem em relação a geração convencional, é que as perdas devido as longas linhas de transmissão se tornam mínimas, e também proporciona a redução do investimento nessas linhas. Entre os benefícios da geração distribuída também é importante ressaltar o baixo impacto ambiental, a redução no carregamento das redes e a diversificação da matriz energética.

Analisando o contexto da geração distribuída, a fonte energética que mais se destaca é a geração solar fotovoltaica. De acordo com a ONS (2019) hoje se tem 1780 MW de geração solar no SIN, e a previsão é que em 2023 a geração solar esteja na faixa de 3626 MW, o que é quase o dobro do valor atual. Para dobrar a geração atual em 5 anos pode se observar que o crescimento dessa matriz energética no Brasil é muito grande.

O estágio integrado, que é descrito no presente relatório, foi realizado na equipe de engenharia da empresa M.R. Instalações Elétricas, que tem o foco em projetos e execução de sistemas de geração solar fotovoltaica. O estágio teve duração de 660 horas e contou com a supervisão do engenheiro eletricista Oton Mathews Cardoso e Dantas. O estágio integrado tem como objetivo a fixação e experiencia pratica dos conhecimentos adquiridos durante o curso de Engenharia Elétrica na Universidade Federal de Campina Grande. O estágio integrado também é uma disciplina que é necessária para o fechamento da grade curricular e consequentemente, a obtenção do diploma.

1.1 ESTRUTURA DO TRABALHO

No capítulo 1 se apresentou os aspectos introdutórios com uma breve apresentação da área de atuação.

No capítulo 2 foi apresentada a empresa onde o estágio foi realizado, assim como o departamento de realização do estágio e a estrutura da empresa em questão. Também foi discutido a respeito das atividades executadas pela empresa.

No capítulo 3 foram expostas as atividades realizadas no estágio pelo aluno em questão. Desde atividades práticas, como visitas ao campo, até a realização de projetos e desenvolvimento de ferramentas para o auxílio dos processos dentro da empresa em questão.

No capítulo 4 foi realizada uma análise conclusiva a respeito das atividades desenvolvidas, juntamente com as considerações finais do autor.

2 A EMPRESA

A M.R. Instalações Elétricas é a razão social da empresa que é popularmente conhecida como ILUMISOL ENERGIA SOLAR. A empresa fica localizada na rua Clarice Justa, nº 59, no bairro da Torre em João Pessoa-PB. A ILUMISOL onde foi realizado o estágio integrado é uma franquia, sua sede fica na cidade de Cascavel no Paraná. A franquia de João pessoa está em funcionamento desde o segundo semestre de 2018 e foi fundada a partir de uma sociedade entre Mauricio Kepler e Rafael de Oliveira.

A empresa é especializada em projeto e execução de sistemas de geração solar fotovoltaica e atua em toda área coberta pela Energia Paraíba, já na área da Energisa Borborema, existe outra franquia da empresa responsável. Só são executados projetos conectados a rede da concessionária, também conhecidos como *grid-tie*. Sistemas *off-grid*, munidos de baterias para armazenamento de energia fogem do escopo de trabalho da empresa.

Em seu curto período de funcionamento, a empresa já conta com cerca de 40 contratos fechados, entre eles, 21 projetos já foram executados e aprovados pela Energisa, e já se encontram em plena operação cumprindo seu objetivo de gerar energia. Os demais projetos se encontram em processo de tramitação dentro da concessionária de energia local.

A empresa é comandada por uma sociedade composta por Rafael de Oliveira Barros e Mauricio Kepler Alcoforado Costa. Esses, são responsáveis pela maioria das tomadas de decisão dentro da empresa, e também fazem um acompanhamento em cada projeto para garantir uma melhor excelência no serviço prestado.

A ILUMISOL conta com um uma equipe de vendedores, que consiste em cerca de 12 pessoas que são responsáveis por fechar novos contratos, assim como auxiliar o cliente no pós-venda, e também, auxiliar o setor de engenharia no contato com o cliente, quando este se faz necessário. Conta também com 3 equipes de montagem, que são compostas cada uma, por um eletricista especializado em instalações fotovoltaicas e 3 montadores para auxiliar. E ainda, a empresa conta com a equipe de engenharia, sendo essa onde o estágio foi realizado, que conta com o engenheiro responsável da empresa, Oton Mathews Cardoso e Dantas, e o estagiário, Arthur Felipe Gadelha Albuquerque.

Figura 1 - Fachada ILUMISOL João Pessoa.

Fonte: Autoria própria.

2.1 ESTRUTURA DA EMPRESA

A empresa conta com um sistema próprio de dimensionamento de propostas integrado, chamado CRM. No sistema o vendedor pode ter uma noção aproximada do dimensionamento do sistema, sendo que, este ainda deve passar pelo setor de engenharia para um dimensionamento exato. E o vendedor pode produzir um *checklist* inicial dentro do próprio sistema, esse *checklist* exige que sejam alimentados no sistema todas as informações vitais para elaboração e tramite do projeto. Essas informações vão direto para análise do setor de engenharia para que se dê início ao projeto elétrico.

A matriz também conta com vários setores que podem auxiliar as franquias a qualquer momento, entre eles, existe o setor administrativo/financeiro, um setor de engenharia própria, um SAT (Serviço de Atendimento Técnico), o SAF (Serviço de Atendimento ao Franqueado), setor de expedição e logística, suporte pré e pós-instalação, departamento de marketing e departamento de engenharia civil. Todos esses setores servem de suporte a franquia.

2.2 ATIVIDADES EXECUTADAS

O foco principal da empresa está em produção de sistemas solares fotovoltaicos, sendo assim, todo processo visando esse fim, é desenvolvido pela empresa. Desde projetos elétricos dos sistemas geradores, até sua instalação. Contando com serviços intermediários que são eventualmente necessários, como por exemplo, a criação de estruturas civis para sustentação dos módulos para instalações no solo. Assim como eventuais adequações no padrão de entrada de energia do cliente para seguir as normas da Energisa.

Eventualmente, podem se fazer necessários projetos de subestações, a necessidade de tais projetos fica a critério da concessionaria de energia local. O projeto em si, fica a cargo da empresa realizar, porem a execução necessita de uma empresa especializada na área.

De acordo com as normas da concessionaria de energia local, muitas vezes antes de fazer o projeto de geração distribuída para uma instalação, é necessário que seja feito um estudo e projeto de aumento de carga para o local, para que o padrão de entrada da instalação comporte a geração a ser instalada no local. Esse projeto, assim como a execução, também é realizado pela empresa.

3 ATIVIDADES DESENVOLVIDAS

No presente capítulo serão apresentadas as atividades de maior relevância desenvolvidas durante o estágio no departamento de engenharia da M.R. Instalações Elétricas.

3.1 SOFTWARE UTILIZADO

O *software* mais utilizado durante o estágio foi o AutoCAD, que é um programa de CAD (*Computer Aided Design*) ou de desenho assistido por computador. É um *software* muito utilizado por arquitetos, profissionais da construção e engenheiros usam para criar desenhos em 2D e 3D. O AutoCAD foi criado pela Autodesk, seu lançamento é de dezembro de 1982.

Figura 2 – Interface do AutoCAD 2018.

O AutoCAD é provavelmente o *software* mais utilizado quando se trata de desenho técnico digital. É bastante completo, e permite ao projetista uma liberdade e

Fonte: Autoria própria.

praticidade para elaboração de projetos com a precisão necessária aos projetos de engenharia. O *software* também conta com diversas funções de modelagem em 3D, que não foram utilizadas durante o estágio.

O AutoCAD é um *software* pago, que exige uma assinatura. Até o momento que esse trabalho foi escrito, a assinatura mensal custa R\$ 747,34, a assinatura anual custa R\$ 4.782,98, e já a assinatura referente a 3 anos de uso, custa R\$ 12.100,30. Na Figura 2 ilustra-se a interface da versão do AutoCAD utilizado durante o estágio.

O pacote office foi muito usado durante o estágio também, entre todos os programas do pacote, pode se destacar o Excel. Produzido pela Microsoft, teve seu lançamento no ano de 1987, e domina o mercado de *softwares* de planilhas eletrônicas atualmente.

O Excel proporciona uma praticidade grande para organizar dados que precisam ser organizados em pouco tempo. E por meio do uso da linguagem de programação VBA foi possível desenvolver atividades cada vez mais complexas dentro do Excel.

3.2 PROJETOS DE GERAÇÃO DISTRIBUÍDA

A principal atividade desenvolvida durante o período de estagio foi a elaboração de projetos de geração distribuída fotovoltaica. Foram realizados 25 projetos elétricos de sistemas de geração fotovoltaica inteiramente pelo estagiário, e ainda, foi dado suporte a outros 10 projetos, esses não foram de inteira responsabilidade do estagiário, porém teve a participação do mesmo em diversas etapas do projeto. Dos 25 projetos elaborados, 24 já se encontram aprovados pela concessionária de energia local, com apenas um projeto que fica no bairro de Portal do Sol em João Pessoa-PB. Essa UC (Unidade Consumidora) se encontra com pendências junto a Energisa, por esse motivo, não se pode aprovar o projeto até o momento.

Para elaborar os projetos se fez necessário o conhecimento adquirido na disciplina de instalações elétricas e seu laboratório. Inicialmente, para elaboração de projetos elétricos de geração distribuída, se fazia a checagem do inversor a ser utilizado e a quantidade de módulos fotovoltaicos necessária para suprir a demanda energética do local, observado se foi corretamente escolhido pelo vendedor, ou se as placas causariam alguma sobrecarga no inversor. Reconhecendo que esse dimensionamento inicial está correto, era feita a distribuição de módulos por entrada do inversor. Sempre levando em consideração que cada MPPT (*Maximum Power Point Tracker*) deve conter placas ligadas em uma única orientação de telhado e suas *strings* devem conter o mesmo número de placas, para que o rastreador de máxima potência possa funcionar adequadamente, era feita a distribuição de placas por *string* e por MPPT, levando em consideração todos os limites de tensão, corrente e potência do inversor em questão.

Com o dimensionamento inicial feito, pode se iniciar os dimensionamentos de cabos, eletrodutos e disjuntores, sempre seguindo a NBR 5410 e NDU 001. Os cabos usados para conexão da parte CC do circuito normalmente são sempre os mesmos, pois a corrente dos módulos é a mesma, independente de quantas placas estejam ligadas em série, portanto, normalmente se utilizam cabos de 6 mm². Em seguida eram realizados os dimensionamentos dos demais equipamentos de proteção, como DPS CC e CA por exemplo.

1 - IDENTIFICAÇÃO DA UNIDADE CON	SUMIDORA - UC									
Código da UC:		Classe:								
Titular da UC:		100								
Rua/Av.:		Nº.	CEP:							
Bairro:	Cidade:									
E-mail:	UF:									
Telefone: Celular:										
CNPJ/CPF:										
2 - DADOS DA UNIDADE CONSUMIDOR	A									
Potência Instalada (kW):		Tensão de A	Atendimento (V):							
Tipo de Conexão: Monofásio	a Bifá:	sica	Trifásica							
3 - DADOS DA GERAÇÃO										
Potência Instalada de Geração (kWp):										
Tipo da Fonte de Geração:										
Hidráulica 🔲 🛛 Solar 🛄	Eólica 🛄 Biom	assa 🛄	Cogeração Qualificada 🔲							
Outra (Especificar):										
4 - DOCUMENTAÇÕES A SEREM ANEXA	ADAS									
1. ART do Responsável Técnico pelo P	rojeto elétrico e instala	ição do sistem	na de microgeração; 🛛 🗖							
 Diagrama unifilar contemplando Ge memorial descritivo da instalação; 	ração/Proteção (invers	or, se for o ca	iso)/Medição e							
 Certificado de Conformidade do(s) do Inmetro do(s) Inversor(es) para a te 	Inversor(es) ou número ensão nominal de conex	de registro da ão com a red	a concessão e:							
4. Dados Necessários ao Registro da Co www.aneel.gov.br/scg	entral geradora conform	ne disponível	no site da ANEEL:							
5. Lista de Unidades Consumidoras par	ticipantes do sistema o	ompensação	(se houver) indicando a							
porcentagem de rateio dos créditos e Normativa nº 482/2012;	o enquadramento confe	orme incisos \	I e VIII do art. 2º da Resolução							
6. Cópia de Instrumento jurídico que o	comprove o compromise	io de solidarie	dade entre							
os integrantes (se houver);	20 UA									
Documento que comprove o reconh	ecimento, pela ANEEL,	da cogeração	qualíficada (se houver)							
5 - CONTATOS NA DISTRIBUIDORA (PR	REENCHIDO PELA DISTI	RIBUIDORA)								
Responsável/Área:										
Endereço:										
Telefone:										
E-mail:										
6 - SOLICITANTE										
Nome/Procurador Legal:										
Telefone:										
E-mail:										
	1 1	111								
Local	Data		Assinatura do Responsável							

Figura 3 – Modelo de formulário de Solicitação de Acesso.

Fonte: Energisa – NDU 013.

A Energisa exige que seja elaborada uma série de documentos para o envio do projeto, a elaboração de todos esses documentos ficou a cargo do estagiário. O primeiro

documento a ser elaborado era o memorial descritivo. A Energisa tem o seu modelo próprio de memorial feito no Excel, e a partir do dia 01/04/2019 passou a somente ser aceito projetos com o memorial próprio. A definição de rateio da energia excedente gerada também se encontra no memorial descritivo.

Também era necessário o preenchimento do documento da solicitação de acesso, que também foi uma atividade realizada pelo estagiário. O modelo disponibilizado pela Energisa de solicitação na NDU 013 se encontra na Figura 3. Para assinar esse documento em nome do cliente, é feita uma procuração, que é elaborada e autenticada pelos vendedores responsáveis.

Para sistemas com potência igual ou inferior a 10 kW, a Energisa de acordo com a NDU 013, que é a norma que regulamenta a microgeração distribuída na Paraíba, exige que o projeto contenha única e exclusivamente o diagrama unifilar, que deve contemplar o sistema de geração, a carga, a proteção e a medição da instalação. Esse diagrama é elaborado com auxílio do *software* AutoCAD, conforme descrito anteriormente. Uma grande parte dos projetos elaborados se encontram nessa categoria. Normalmente são projetos mais simples de elaborar.

Já para sistemas com potência acima de 10 kW, a Energisa faz maiores exigências. Além do diagrama unifilar também são necessárias outras quatro pranchas, todas a critério de elaboração do estagiário. A primeira é a planta de localização ou planta de situação, onde devem ser apresentadas as coordenadas geográficas do local onde a instalação deve ser feita, assim como sua localização em um mapa, onde a rua do local e suas ruas adjacentes devem estar claras. Também é exigida a apresentação do diagrama trifilar ou multifilar da instalação, que é composto dos mesmos itens do diagrama unifilar, porém, contemplando da planta geradora ao ponto de entrega, mostrando as ligações de cada condutor individualmente, e a conexão dos elementos de proteção da geração, assim como os mais diversos equipamentos. Normalmente é a prancha mais útil para o eletricista fazer a ligação das placas. A próxima prancha exigida pela Energisa é referente ao padrão de entrada da instalação. A própria Energisa na NDU 001 disponibiliza vários modelos de padrão de entrada, bastando utilizar o que mais condiz com a realidade da instalação e adequar a situação. É exigido que nessa prancha fique clara a localização da placa escrito "CUIDADO - RISCO DE CHOQUE ELÉTRICO – GERAÇÃO PRÓPRIA". A quinta e última prancha é composta pela planta baixa ou *layout*, contemplando a localização do padrão de entrada e o arranjo físico do sistema de geração, incluindo, localização física dos equipamentos elétricos relacionados a geração e proteção da mesma na unidade

consumidora, planta geradora, inversor, quadro de distribuição, *stringbox* e o ponto de medição.

Em resumo, os projetos elaborados pelo estagiário, 10 foram de sistemas com potência superior a 10 kW, os 15 projetos restantes, foram de sistemas com geração inferior a 10 kW.

3.3 VISITA A USINA EM MATARACA-PB

No dia 03 de julho de 2019 foi realizada uma visita para inspeção técnica da usina de geração fotovoltaica que está sendo construída na cidade de Mataraca-PB. A usina conta com 1.600 módulos fotovoltaicos da marca Risen do modelo RSM72-6-330P de 330 Wp cada módulo. Conta também com 8 inversores SOFAR 50000TL de 50 kWp cada.

A geração foi separada em 4 conjuntos de 400 placas cada. Cada conjunto precisou de uma subestações de 112,5 kVA, totalizando 4 subestações, como pode se notar com mais detalhes na Figura 5, e também na Figura 4. As subestações foram projetadas e executadas pela empresa WA Engenharia.

Figura 4 – Vista da instalação visitada em Mataraca-PB.

Ao lado de cada subestação foi construída um pequeno deposito como pode se observar na Figura 4 e Figura 5. Cada deposito desse é responsável por armazena dois inversores e os quadros CC e CA referentes as ligações das 400 placas em 2 inversores.

Fonte: Autoria própria.

Como a instalação é no solo, foi utilizada uma estrutura para manter as placas elevadas e a uma inclinação de 10°, onde pode se obter uma maior eficiência na geração. A estrutura de concreto consiste em colunas quadradas, uma coluna tem 1,5 metros de altura e a coluna a sua frente tem 1 metro, criando assim a inclinação desejada. Em cima das colunas de concreto foram colocados trilhos de metal para fixação dos módulos fotovoltaicos.

A visita teve o intuito de vistoriar a obra, sanando possíveis dúvidas dos instaladores e do eletricista presentes no local, observando os equipamentos instalados, se tudo estava conforme os padrões do projeto.

Figura 5 - Subestação na usina geradora em Mataraca-PB

Fonte: Autoria própria

Um dos objetivos da visita foi também verificar a relação de material que necessitava para o andamento da obra, já que os instaladores vinham reclamando da falta de material. A primeira coisa observada foi que os quadros CC foram comprados do tamanho errado, assim, não cabendo os equipamentos de proteção que seriam necessários. Então se solicitou a troca desses quadros para quadros de tamanho maior, atendendo assim a instalação conforme o projeto elétrico.

Com a visita também se observou a necessidade da criação de caixas de passagens para os cabos das placas até o inversor, pois tinha um número muito elevado de cabos sendo passados em um único eletroduto, o que tornava difícil a passagem dos cabos. Sendo assim, foi criada uma caixa de passagem para cada subestação.

3.4 CASOS PROBLEMAS

Na presente seção foram apresentados os casos de maior complexidade enfrentados durante o estágio.

3.4.1 RESTAURANTE NO CONDE

O primeiro caso de dificuldade encontrado durante o estágio foi o restaurante localizado no Conde. O projeto do restaurante conta com dois inversores da marca Fronius. O primeiro é o modelo ECO 27.0-3-S, que é um inversor trifásico de 27 kW. O segundo inversor utilizado foi o modelo PRIMO 8.2-1, que é monofásico com uma potência nominal de 8,2 kW. No projeto ainda se tem 128 módulos fotovoltaicos da marca Canadian, modelo CS6U-330P, que possuem uma potência de 330 W e uma área de aproximadamente 2 m².

Figura 6 – Fachada do restaurante com poste da Energisa.

Fonte: Google Maps.

Com a carga de total de 35,2 kW de inversores, seria necessário de acordo com a NDU 001, a categoria de atendimento T3 pelo menos. No local estava o ramal de entrada referente a categoria T2, e no cadastro da Energisa, estava como categoria T1. Portanto foi necessário um projeto de aumento de carga, que foi feito e com 30 dias foi aprovado. Realizada a obra, foi solicitada a vistoria, que inicialmente foi reprovada devido à falta de massa calafetar e falta do conector *split-bolt*. Corrigido os problemas se percebeu outro problema.

Porém o restaurante ainda tinha um problema, que passava uma rede de baixa tensão em cima do telhado, o que não é permitido. O restaurante, que fica em um lugar pouco habitado, foi crescendo aos poucos, e acabou invadindo a área de um poste da Energisa, como se pode ver na Figura 6.

A Energisa exige que os postes tenham uma distância de no mínimo 15 cm da parede. Por isso estar sendo descumprido, não foi autorizada a troca do medidor, e foi exigido que fosse feito uma obra para regularizar a situação. A obra consiste no deslocamento do poste, para um ponto mais distante, fazendo com que assim, a rede de baixa tensão não passe por cima do telhado.

O local da instalação é as margens da BR 101. Como é uma rodovia federal, a obra precisa de autorização do DNIT (Departamento Nacional de Infraestrutura e Transportes). Então a Energisa faz o projeto de deslocamento de rede, e passa o projeto para o DNIT para aprovação, o que burocratiza mais o processo, e causa uma demora maior. O DNIT já aprovou o projeto, e ele foi executado, após ser executado foi feita uma vistoria no local, que também foi aprovada. No momento do fim do estágio o projeto se encontrava nessa etapa.

3.4.2 ACADEMIA EM SANTA RITA

Um dos casos que causaram maior dificuldade durante o período de estágio foi a academia localizada na cidade de Santa Rita, Paraíba. O projeto consiste em um sistema de geração fotovoltaica com 94 módulos fotovoltaicos da Risen de 330 W e um inversor da marca SOFAR modelo 30000TL.

O primeiro problema do projeto, foi uma reprova devido ao fato de todo o projeto ter sido elaborado considerando a proprietária como uma pessoa física, porém a procuração que permite que a empresa assine a solicitação de acesso para o cliente, considerava a mesma uma pessoa jurídica, o que ocasionou na reprova do projeto. Logo em seguida foi enviado um novo projeto, devidamente corrigido, que com 15 dias, o prazo máximo da Energisa, foi aprovado. Porém uma coisa que não foi notada na vistoria a instalação, foi que o ramal de entrada do local é subterrâneo, e todo o projeto foi feito considerando um ramal aéreo, o que faria com que o projeto fosse reprovado na vistoria, e então, percebendo o equívoco, foi feito um novo projeto, contendo o anexo de declaração de compromisso para ramal subterrâneo, que se encontra na NDU 001, e com o ramal de entrada correto nas pranchas. Esse projeto foi aprovado depois de 15 dias novamente.

Com o projeto de geração devidamente aprovado e executado, foi solicitada a vistoria no local. Na vistoria foi constatado pelo vistoriador que o disjuntor de entrada no local era um disjuntor de 100 A, caracterizando a categoria de atendimento T4. Porém, o cadastro da Energisa equivocadamente, registrava que no local deveria se encontrar um disjuntor trifásico de 50 A, caracterizando a categoria de atendimento T2. Esse equívoco no cadastro levou o vistoriador a erroneamente entender que houve um aumento de carga à revelia no local, já que para a categoria T3 em diante, a Energisa exige um projeto elétrico para realizar o aumento. Isso acabou culminando na necessidade de realizar um projeto de aumento de carga para o local. Projeto esse que não tem relação nenhuma com a geração, pois um disjuntor trifásico de 50 A já atenderia a geração, porém foi necessário para regularização do local.

Assim foi realizado um projeto de medição individual com aumento de carga para a instalação. Esse projeto tem um prazo de aprovação pela concessionaria local de 30 dias. Depois desse prazo, com a aprovação do projeto, a Energisa realizou um estudo a respeito da necessidade de realizar uma obra para reforço de rede para que o "aumento de carga" fosse possível. Depois de algumas semanas realizando esse estudo, a Energisa concluiu que seria necessária uma obra no valor de aproximadamente 50 mil reais para que o aumento fosse realizado, e esse valor deve ser passado ao cliente. Até o momento do fim do estágio o projeto se encontra parado nessa etapa.

3.4.3 CASA EM RIO TINTO

Um outro caso também problemático foi a casa no Rio Tinto. O projeto de lá consiste em 254 módulos fotovoltaicos da Risen modelo RSM72-6-330P, esse modelo conta com uma potência nominal de 330 W. O sistema também conta com 2 inversores

da marca SOFAR. O primeiro é um inversor de 60 kW, modelo SOFAR 60000TL. O segundo é um inversor de 12 kW, modelo SOFAR 12KTL-X.

Foi feito o projeto de geração distribuída, porém no projeto se notou que a categoria de atendimento do local era T1, com um disjuntor trifásico de 40 A, que suporta uma demanda de até 24 kW. Portanto, para nossa geração seria necessário entrar na categoria de atendimento T5, onde se tem um disjuntor de 125 A e a demanda de 75 kW, que supriria nossa geração. Para esse fim foi realizado um projeto de aumento de carga. Trinta dias após a submissão do projeto, ele foi aprovado, a vistoria também foi aprovada, porém se notou a necessidade de realizar uma obra.

A cidade da obra fica no interior, no local a rede é um pouco precária, portanto, devido a alta carga da geração, se fez necessário um reforço na rede. Então a primeira coisa a ser feita foi a instalação de uma subestação de 75 kVA unicamente para geração, pois a rede de baixa tensão não teria capacidade para escoar a produção de energia. Essa subestação, de acordo com a Resolução Normativa Nº 482 da ANEEL, como foi única e exclusivamente por causa da geração, todos os custos envolvidos ficaram por conta da Energisa. Porém em frente à casa do cliente se encontra PB 041, que é uma rodovia estadual. Então devido ao fato da rede estar passado nessa rodovia, a obra necessitou da aprovação do Departamento de Estradas de Rodagem do estado da Paraíba (DER PB), o que levou a um atraso no prazo do projeto, e ainda se encontra em andamento.

3.5 DESENVOLVIMENTO DE FERRAMENTAS DE CONTROLE

Durante o estágio se fez necessário desenvolver ferramentas de controle para otimizar a produção dentro da empresa. Essas ferramentas foram desenvolvidas por meio do uso do Excel, juntamente com o auxílio da linguagem de programação VBA.

3.5.1 PLANILHA DE ACOMPANHAMENTO DE STATUS DE PROJETOS

No início do estágio se viu a necessidade de aprimorar como era feito o acompanhamento dos projetos em andamento da empresa, pois a demanda começou a aumentar e os projetos tramitando ao mesmo tempo se tornaram muitos para uma administração única e exclusivamente por memória.

Sendo assim, foi adquirido o conhecimento a linguagem de programação VBA (*Visual Basic for Applications*), que é uma implementação do *Visual Basic* nos programas do Microsoft Office. Ele substitui e estende as capacidades que anteriormente pertenciam exclusivamente as linguagens de programação, agora para controlar sua aplicação "anfitriã", que no nosso caso, foi o Excel.

4	A	В	C I	F	G	Н	1	L	к	L	MN	0	Р	A
2		CADASTRAR	PROJETOS AINDA NÃO ENVIADOS											
3 4	-	_	de la	Tipo	- Nº -	Nome	💌 Data contrato 😁	Prazo final 🔫	Status do projeto / Motivos de não envic 🔫 Coluna1	Coluna2	💌 Dias Re	st 📲		
5				Geração Distribuida Microgeração	18	MERCADINHO XICA	25/05/2019	23/08/2019	AGUARDANDO PENDENCIAS.			37.		
6	elecione o Baixio:	PROJETO A SER ENVIADO		Geração Distribuida Minigeração	19	MICHAEL PRANTE	05/06/2019	03/09/2019	 AGUARDANDO TERMINO DA OBRA DA SUBESTA 2 - PROJETO ENVIADO À MATRIZ PARA SER ANALISA 	DO.		48		
7	IICHAEL P	RANTE	*	Geração Distribuida Microgeração	40	JOSÉ CARLOS	29/05/2019	27/08/2019	AGUARDANDO ART.			41		
8 9 10 11 12 13 14 15	PR	OJETO ENVIADO												
16 17 18 19 20 21 22 23 24	E	XCLUIR PROJETO]										~	
1		A Enviar	A apro	var Aprovados C	ADASTR	KO Planilha1	÷		: [4]]	1

Figura 7 – Aba "A Enviar" da planilha de status dos projetos.

Com o conhecimento adquirido foi possível desenvolver a planilha de acompanhamento de status dos projetos. A planilha conta com 3 abas principais, sendo a primeira a aba de projetos ainda não enviados a Energisa, podemos ter uma visão geral dessa aba na Figura 7.

A tabela dentro da Figura 7 onde estão localizados os dados de interesse, conta com 7 colunas, com as informações mais importantes pertinentes a projetos que ainda não foram enviados para análise da Energisa, informações como tipo de projeto, número do projeto, nome do proprietário, data de fechamento do contrato, data de vencimento do contrato, motivos de não envio e dias restantes para o vencimento do contrato.

No lado esquerdo da planilha, pode se observar em laranja a coluna de controle da planilha, possuindo 3 botões programados em VBA. O primeiro botão é o de cadastro, clicando nele se tem acesso ao formulário da Figura 8. Nesse formulário pode se cadastrar novos projetos de novos contratos fechados, clicando no botão de comando "CADASTRAR", todas as informações dados no preenchimento do formulário se tornam uma nova linha da tabela da Figura 7.

Fonte: Autoria própria.

dos.
Ċ

Cadastro		×
Tipo de projeto: Geração Distribuio	da - Microgeração	
Número:	Data de inicio do contrato:	Dias de Prazo(90 Padão): 90
Nome:		
Status do projeto / I	Motivos de não envio:	
,		1
	CADASTRAR	
DBS: PREENCHER TO	DOS OS CAMPOS OBRIGATOR	IAMENTE

Fonte: Autoria própria.

O segundo botão é para projetos que já foram enviados a Energisa para análise. Se um projeto presente na aba de projetos "A Enviar" for enviado, basta que seja selecionado o nome do projeto a lista presente na coluna laranja da Figura 7, e pressionar o botão de "PROJETO ENVIADO". Sendo selecionado, a planilha solicitará o número de protocolo do projeto, e em seguida irá transporta o projeto para próxima aba, que é a aba de projetos "A aprovar", que pode ser vista na Figura 9.

1	А	В	C D	E	F	G	н	1	J	К	L	М	N
2	c	ADASTRAR NOVO PROJET	ro				PROJETOS	AGUARDANDO	APROVACA	0			
4				Projeto 💌	Tipo 💌	Nº ▼	Nome	Data de submissão 💌	Previsão de apr 💌	Dias Restantes 🚽	Data contrato 💌	Prazo final 💌	Dias Re 🔻
5		PROJETO APROVADO		297119	Geração Distribuida - Microgeração	30	ROBERTO HERACLIO	01/07/2019	16/07/2019	-1	13/05/2019	11/08/2019	25
6	-			297719	Geração Distribuida - Microgeração	34	ENESIO SOUSA	01/07/2019	16/07/2019	-1	24/05/2019	22/08/2019	36
7		EXCLUIR PROJETO		298319	Geração Distribuida - Microgeração	35	WASHITON	01/07/2019	16/07/2019	-1	22/05/2019	20/08/2019	34
8				300619	Geração Distribuida - Microgeração	32	PAULO ROBERTO	02/07/2019	17/07/2019	0	07/05/2019	05/08/2019	19
9				300819	Geração Distribuida - Microgeração	38	OTICA CABO BRANCO 2.0	02/07/2019	17/07/2019	0	XX		-122
10				317719	Geração Distribuida - Microgeração	39	EDMILSON	10/07/2019	25/07/2019	8	19/06/2019	17/09/2019	62
11				310119 / 246619	Medição Individual	7	POLLAYNE MED	06/07/2019	05/08/2019	19			-122
12 13													
14													
16													

Figura 9 – Aba "A aprovar" da planilha de status dos projetos.

Fonte: Autoria própria.

Na aba "A aprovar" estão presentes todos os projetos que já foram enviados para Energisa, porém aguardam o prazo de 15 dias para aprovação, caso seja um projeto de geração distribuída. Em caso de projetos de medição individual, ou aumento de carga, tem-se o prazo de 30 dias. A planilha reconhece esses prazos a partir do momento que se seleciona o tipo de projeto na coluna "F", usando esse dado para calcular os dias restantes até o fim do prazo na coluna "K".

Essa aba também possui 3 botões de controle como se pode observar na coluna laranja da Figura 9. O primeiro é também um botão de cadastrar projetos, para caso o projeto não tenha sido cadastrado antes de ser enviado. Ao pressionar esse botão irá se abrir um formulário semelhante ao da Figura 8, porém com informações mais pertinentes a ocasião, como por exemplo, o motivo de não envio já não é mais necessário, portanto não aparece no formulário. Também se faz presente o botão de Excluir Projetos. Esse botão é responsável por caso algum projeto venha sair de circulação, ou venha a ser reprovado, tirar o projeto da tabela de forma automática. Sendo selecionado será aberta uma janela perguntando qual projeto deve ser excluído, selecionando o projeto, ele será automaticamente apagado.

O segundo botão presente na planilha é o botão de "PROJETO APROVADO", quando selecionado chegaremos ao formulário da Figura 10.

Figura 10 - Formulário de projeto aprovado

APROVAR PROJETO	×
Selecionar projeto aprovado: Nome Potencia do inversor (kW) - [Não usar virgula, só ponto]:	
Potencia individual das placas (W):	
Quantidade de placas:	
ОК	

Fonte: Autoria própria

Esse formulário pede todos os dados necessários para adicionar o projeto a próxima aba da planilha, que é a aba de projetos aprovados. Nesse formulário só se precisa selecionar o nome do projeto que foi aprovado pela Energisa, e em seguida os dados da geração do projeto, como potência do inversor, potência individual das placas e a quantidade de placas. Quando o botão OK é pressionado, automaticamente o projeto passa para a aba de "Aprovados", que podemos ver na Figura 11.

	A	в	D	E	F	G	н	I.	J	К	L	м	N	0	P	S T U
2	PROJETOS APROVADOS															
3	1	EGENDA														
4	COR	PRAZO	Projet *	Tipo 💌	N° at	Nome 💌	Data de submi 🔫	Data de aprov. 🛩	Status 💌	Pot. Inversor 💌	Pot. Placas 💌	Quant. de Pl 💌	Data cor 😁	Prazo fin 😁	Dias 💌	st.
5		MAIOR QUE 60 DIAS	298119	Geração Distribuida - Microgeração	37	ABRAAO BATISTA	01/07/2019	16/07/2019	Solicitar Vistoria	20,00 KW	24,42 kW	74	10/05/2019	08/08/2019	22	
6		ENTRE 30 E 60 DIAS	284119	Geração Distribuida - Microgeração	36	HIRLEY NADJA	25/06/2019	10/07/2019	Vistoria Pendent	20,00 kW	21,46 kW	58	06/05/2019	04/08/2019	18	
7		ENTRE 10 E 30 DIAS	293319	Geração Distribuida - Microgeração	33	THIAGO COUTINHO	28/06/2019	15/07/2019	Solicitar Vistoria	15,00 kW	15,18 kW	46	17/05/2019	15/08/2019	29	
8		MENOR QUE 10 DIAS	297519	Geração Distribuida - Microgeração	31	JOÃO BOSCO	01/07/2019	16/07/2019	Solicitar Vistoria	5,00 kW	3,96 kW	12	24/04/2019	23/07/2019	6	
9		VENCIDO	212619	Geração Distribuida - Microgeração	29	ADAILTON SOARES	16/05/2019	30/05/2019	GD Conectada	7,50 kW	6,60 kW	20	17/12/2018	18/03/2019	OK	
10		GD CONECTADA	204119	Geração Distribuida - Microgeração	28	GIORDANO TARGINO	10/05/2019	27/05/2019	GD Conectada	7,50 kW	8,58 kW	26	17/12/2018	17/03/2019	OK	
11			203919	Geração Distribuida - Microgeração	27	FABIANO CAIAFO	10/05/2019	27/05/2019	Vistoria Aprovad	3,00 kW	3,30 kW	10	27/04/2019	26/07/2019	9	
12	EXC	LUIR PROJETO	229619	Geração Distribuida - Microgeração	26	PORTAL TELECOM	23/05/2019	07/06/2019	Solicitar Vistoria	10,00 kW	11,88 kW	36	24/04/2019	23/07/2019	6	
13			170519	Geração Distribuida - Microgeração	25	EDUCANDARIO	22/04/2019	07/05/2019	GD Conectada	25,00 kW	33,00 kW	100	26/04/2019	25/07/2019	OK	
14			154219	Geração Distribuida - Microgeração	24	RAFAEL	10/04/2019	24/04/2019	GD Conectada	8,20 kW	9,24 kW	28	09/04/2019		OK	
15			173119	Geração Distribuida - Microgeração	23	IRISNEIA(PROJETO COM MENOS PLACAS)	23/04/2019	08/05/2019	GD Conectada	5,00 kW	5,28 kW	16	12/03/2019	10/06/2019	OK	
16			221019	Geração Distribuida - Microgeração	23	IRISNEIA 50A	20/05/2019	04/06/2019	GD Conectada	12,50 kW	13,86 kW	42			OK	
17			223619	Geração Distribuida - Microgeração	23	IRISNEIA 40A	21/05/2019	06/06/2019	GD Conectada	12,50 kW	13,86 kW	42	08/04/2019	07/07/2019	OK	
18			173519	Geração Distribuida - Microgeração	22	OTICA CABO BRANCO	23/04/2019	08/05/2019	GD Conectada	5,00 kW	5,28 kW	16	12/03/2019	10/06/2019	OK	~
19			128419	Geração Distribuida - Microgeração	21	DU TRIGO	27/03/2019	10/04/2019	GD Conectada	66 50 KV	85.80 MV	260	12/03/2019	10/06/2019	OK	

Figura 11 - Aba "Aprovados" da planilha de status dos projetos

Fonte: Autoria própria

A aba de "Aprovados" contém todos os projetos já aprovados pela energisa desde a fundação da empresa. A cor presente no campo do prazo final mudará de acordo com o tempo que resta para o vencimento do contrato. Do lado esquerdo da planilha pode se observar a legenda de cores dos prazos. Então de acordo com a situação que o projeto se encontra e a quantidade de dias restantes para seu vencimento, a cor dos itens da coluna "O", referentes a data de prazo final, será alterada de acordo com a legenda. Essa aba conta com exclusivamente um botão, que é o botão de excluir projeto, também presente em todas as outras abas da planilha. Caso seja necessário excluir algum projeto da planilha, pode ser feito facilmente por meio desse botão de comando.

3.5.2 PLANILHA DE ACOMPANHAMENTO DE PROJETOS

Com o sucesso da primeira planilha, que funcionava exclusivamente na área de engenharia da empresa, os responsáveis requisitaram que fosse feita outra planilha, agora para um acompanhamento geral dos projetos, envolvendo todos os setores da empresa. E assim foi feito.

Utilizando os conceitos de VBA foi idealizado uma planilha, dessa vez mais extensa e com mais informações. Pode se ter uma visão geral da mesma na Figura 12. A planilha conta com 20 colunas, com dados referentes a todos os setores da empresa. Como é uma planilha com muita informação, foram desenvolvidas ferramentas para que cada usuário possa filtrar melhor as informação procuradas. Nos botões na parte superior pode se selecionar o setor de interesse para ver os dados, e logo abaixo dos setores, podemos filtrar os dados de projetos referentes a cada um deles.

	Α	в	С	D	E	F	G		н	1	J	К	
1							SE	TOR					
					GERAL		ENGENHARIA		TALAÇÃO	BASI	co		
		AC	OMPANH	IAMENTO DE PROJETOS	FILTRO GERAL		FILTRO ENGENHARIA	FILTRO	NSTALACÃ	0			
					GD CONECTADA	-	GD CONECTADA	AGUARDANI		-			
						12				APAGAR	FILTROS		
					Filtrar		Filtrar		Filtrar				
3					DADOS DO PROJETO						VALOR DO PROJETO		
4	NU ME	CRM	DATA CONTRATO	CLIENTE	CPF/CNPJ	Q. PL.	ESPECIFICAÇÃ	D	PRAZO 90 DIAS	STATUS	TOTAL VENDA	DEP. ENG.	S P
9	5	16101	28/02/2018	WESCLEI MEDEIROS DE SOUSA	032.331.774-02	30	MODULO 30 PLACAS, 11	NVERSOR P	29/05/2018		47.604,15	15/03/2018	co
10	6	22447	26/10/2018	FABIO KELNER ALCOFORADO COSTA ME	04.952.924/0001-49	36	MODULO 36 PLACAS, 11	NVERSOR I	24/01/2019	GD CONECTADA	55.026,96	10/11/2018	co
11	7	26072	08/11/2018	JOSÉ FLAVIO EUFRASIO DA SILVA	711.566.234-72	16	MODULO 16 PLACAS, 1 IN	IVERSOR S	06/02/2019	GD CONECTADA	24.159,18	23/11/2018	co
12	8	16290	28/11/2018	ANOTNIO CALIXTO DE OLIVEIRA NETO	979.427.904-87	46	MODULO 46 PLACAS, 11	NVERSOR I	26/02/2019	GD CONECTADA	65.033,04	13/12/2018	CO
13	9	26820	28/11/2018	FABRICIA RODRIGUES DA SILVA ROMAN ME	08.377.602/0001-74	128	MODULO 128 PLACAS, 2	INVERSOR	26/02/2019	INSTALAÇÃO OK	169.324,49	13/12/2018	CO
14	10	18161	30/11/2018	NAPOLEÃO FERREIRA LINS FILHO EIRELI	09.598.226/0002-80	338	MODULO 338 PLACAS, 2	NVERSOF	28/02/2019		430.920,92	15/12/2018	NÃ
15	11	18986	30/11/2018	JOZIRA DOS SANTOS FERREIRA	01.973.766/0001-15	34	MODULO 34 PLACAS, 21	NVERSOR	28/02/2019	GD CONECTADA	70.160,00	15/12/2018	CO
16	12	28011	05/12/2018	MASTER LAVANDERIA E TINTURARIA LITDA	06.169.094/0001-03	46	MODULO 46 PLACAS, 11	NVERSOR I	05/03/2019	GD CONECTADA	63.915,35	20/12/2018	CO
17	13	26594	17/12/2018	BEM ESTAR ACADEMIA DE GINSATICA EIRELI	19.835.970/0001-35	94	MODULO 94 PLACAS, 11	NVERSOR I	17/03/2019	INSTALAÇÃO OK	141.060,15	01/01/2019	CO
18	14	29686	18/12/2018	PASSIONE MOTEL EIRELI	17.715.354/0001-15	116	MODULO 116 PLACAS, 2	INVERSOR	18/03/2019	GD CONECTADA	241.809,00	02/01/2019	CO
19	15	15575	19/12/2018	ANTONIO FERREIRA DA SILVA - ARMAZEM	05.985.529/0001-25	254	MODULO 254 PLACAS, 2	2 INVERSOR	19/03/2019	INSTALAÇÃO OK	280.395,93	03/01/2019	CO
20	16	21592	19/12/2018	FÁBIO LÚCIO CABRAL FAGUNDES	17.226.736/0001-85	110	MODULO 116 PLACAS, 2	INVERSOR	19/03/2019		203.832,00	03/01/2019	NÃ
21	17	30889	26/12/2018	HELENO ALEXANDRE DA SILVA	113.833.804-49	10	MODULO 10 PLACAS, 1 IN	IVERSOR IL	26/03/2019	GD CONECTADA	19.000,00	10/01/2019	CO
	10	00500	1010110010	MOUNT DOANTE COD	00.004 ###00004.07	1 1000	FOTOLIOL TAIOOO DE OO		1010110010	DDO ISTO OK	0.005.000.00	0010010040	d u ue

Figura 12 – Visão geral da planilha de acompanhamento de projetos.

F (· · ·		•
Fonte	Autoria	nro	nria
i onte.	1 Iutoriu	pro	pria.

O primeiro botão, "GERAL", vai trazer a visão da planilha de todos os setores reunidos. Essas informações ainda podem ser filtradas de acordo com o *status* do projeto, no botão logo abaixo. Os possíveis *status* são: Venda finalizada, Projeto OK, Instalação OK, Vistoria OK, GD Conectada.

Já o segundo botão de comando de setor é referente a área de engenharia. Quando pressionado, se tem a tela presente na Figura 13, resumindo todas as informações da planilha a informações pertinentes ao setor de engenharia. As colunas em verde claro representam o primeiro momento que o projeto vai para o setor de engenharia, logo após a venda, para confecção do projeto elétrico e envio do mesmo pra energisa. Depois disso o projeto vai para o setor de instalação para que possa se dar andamento a montagem, e só depois de concluída a montagem, o projeto volta a engenharia para solicitação da vistoria e o acompanhamento final do projeto. Essa segunda vinda para parte de engenharia é representada por as colunas verde musgo. As informações ainda podem ser filtradas pelo status que o projeto se encontra junto a Energisa.

	Α	D	F	G		К	L	M	N	R	S	т	U
1							SE	TOR					
	ACOMPANHAMENTO DE PROJETO:												
						GERAL		HARIA	INSTALAÇÃO	BASICO			
						FILTRO GERAL		GENHARIA	FILTRO INSTALAÇÃO				
				GD CO	ONECTADA	-	GD CONECTADA	•	AGUARDANDO	APAGAR FI	LTROS		
					Filtrar		Filt	rar	Filtrar				
2													
											DIAS		
3		DADOS DO PR)		DEPTO, ENGENHARIA (PROJETO)				Di	s			
	NU	CLIENTE	Q. Di	ESPECIFICAÇÃO		DEP ENG	STATUS	DEP ENG	STATUS HOMOLOGAÇÃO ENERGISA	HOMOLOG.	RESPONSA	STATUS	
5	1		18	MODULO 18 PLACAS 1 INV	VERSOR F	18/10/2018	CONCLUÍDO	17/10/2018		15/02/2019		GD CONFCTADA	ак
6	2	NEWTON SOLIZA DA SILVA	8	MODULO 8 PLACAS 1 NV	FRSORSI	10/11/2018	CONCLUÍDO	20/11/2018		24/01/2019	ENERGISA	GD CONECTADA	OK
7	3	MABIA DA LUZ CALBUQUERQUE ME	22	MODULO 22 PLACAS 1IN	VERSORS	04/12/2018	CONCLUÍDO	14/12/2018		24/01/2019	ENERGISA	GD CONECTADA	OK
8	4	JOSÉ CLAUDEMY TAVABES SDARES	12	MODULO 12 PLACAS, 11N	VERSORE	27/11/2018	CONCLUIDO	07/12/2018		20/01/2019		GD CONFCTADA	
9	5	VESCI EI MEDEIROS DE SOLISA	30	MODULO 30 PLACAS, 1IN	VERSOR	15/03/2018	CONCLUÍDO	OTTIERED ID	APROVADO	15/02/2019	HOMOLOGA	GD CONECTADA	OK
10	6		36	MODULO 36 PLACAS 1IN	VERSOBI	10/11/2018	CONCLUÍDO	20/11/2018	APROVADO	15/02/2019	IL LIMISOL	GD CONECTADA	OK
11	7	JOSÉ FLAVIO EUFRASIO DA SILVA	16	MODULO 16 PLACAS, 1 INV	VERSORS	23/11/2018	CONCLUÍDO	03/12/2018	APROVADO	06/02/2019	ILUMISOL	GD CONECTADA	OK
12	8	ANOTNIO CALIXTO DE OLIVEIRA NETO	46	MODULO 46 PLACAS, 1 IN	VERSORI	13/12/2018	CONCLUÍDO	01/04/2019	APROVADO		ILUMISOL	GD CONECTADA	ОК
13	9	FABRICIA RODRIGUES DA SILVA ROMAN ME	128	MODULO 128 PLACAS, 2 IN	NVERSOR	13/12/2018	CONCLUÍDO	27/03/2019	APROVADO		ILUMISOL	AGUARDANDO VISTORIA	-141
14	10	NAPOLEÃO FERREIRA LINS FILHO EIRELI	338	MODULO 338 PLACAS, 21	INVERSOR	15/12/2018	NÃO INICIADO	25/12/2018	NÃO ENVIADO				PARADO
15	11	JOZIRA DOS SANTOS FERREIRA	34	MODULO 34 PLACAS, 2 IN	IVERSOR	15/12/2018	CONCLUÍDO	09/04/2019	APROVADO	09/04/2019	Oton	GD CONECTADA	OK
16	12	MASTER LAVANDERIA E TINTURARIA LTDA	46	MODULO 46 PLACAS, 1 INV	VERSORI	20/12/2018	CONCLUÍDO	12/03/2019	APROVADO	12/03/2019	ILUMISOL	GD CONECTADA	ОК
17	13	BEM ESTAR ACADEMIA DE GINSATICA EIRELI I	94	MODULO 94 PLACAS, 1IN	VERSORI	01/01/2019	CONCLUÍDO	14/03/2019	APROVADO		ILUMISOL	AGUARDANDO VISTORIA	-122
10	14		116	MODULO HERLACAS, 2IN		0201/2019	CONCLUÍDO	02/03/2019	100000100			CD CONFECTADA	OK.

Figura 13 – Visão da engenharia na planilha de acompanhamento de projetos.

Fonte: Autoria própria.

O próximo botão de comando de setor é o referente a área de montagem e instalação da empresa. Quando o botão é pressionado a planilha fica como pode se observar na Figura 14.

Com a planilha nessa modalidade pode se observar unicamente as informações pertinentes ao setor de instalação da empresa, como a equipe responsável, a data de instalação e o *status* da instalação. A planilha ainda pode ser filtrada pelo *status* de instalação.

A	Α	D	F	G	0	P	Q	U	V	W X Y Z
1							SET	OR		
				GERA		AL ENGENH		INSTAL	AÇÃO	BASICO
COMPANHAMENTO DE PROJETO			FILT		ILTRO GERAL FILTRO E		ENHARIA	FILTRO INSTALAÇÃO		
				GD CONECTADA	-	GD CONECTADA	-	AGUARDANDO 💌		
				Filtr	ar	Filtrar		Flitrar		APAGAR FILTROS
2								DIAS		
2			JUETO	1				RESTATE		
Ů.	NU	BABOODOTTI	Q.		INSTALAÇÃ	EQUIPE				
4	ME	CLIENTE	PL.	ESPECIFICAÇÃO	0	RESPONSÁV	STATUS			
5	1	ANTONIO DE OLIVEIRA	18	MODULO 18 PLACAS, 1 INVERSOR	F 01/11/2018	NILTON	CONCLUÍDO	ОК		
6	2	NEWTON SOUZA DA SILVA	8	MODULO 8 PLACAS, 1 INVERSOR S	05/12/2018	NILTON	CONCLUÍDO	ОК		
7	3	MARIA DA LUZ C ALBUQUERQUE ME	22	MODULO 22 PLACAS, 1 INVERSOR	29/12/2018		CONCLUÍDO	ОК		
8	4	JOSÉ CLAUDEMY TAVARES SOARES	12	MODULO 12 PLACAS, 1 INVERSOR	F 22/12/2018		CONCLUÍDO	ОК		
9	5	WESCLEI MEDEIROS DE SOUSA	30	MODULO 30 PLACAS, 1 INVERSOR	F 15/02/2019		CONCLUÍDO	ОК		
10	6	FABIO KELNER ALCOFORADO COSTA ME	36	MODULO 36 PLACAS, 1INVERSOR	II 05/12/2018	NILTON	CONCLUÍDO	ОК		
11	7	JOSÉ FLAVIO EUFRASIO DA SILVA	16	MODULO 16 PLACAS, 1 INVERSOR	18/12/2018		CONCLUÍDO	ОК		
12	8	ANOTNIO CALIXTO DE OLIVEIRA NETO	46	MODULO 46 PLACAS, 1 INVERSOR	08/02/2019	JUNIOR	CONCLUÍDO	ОК		
13	9	FABRICIA RODRIGUES DA SILVA ROMAN ME	128	MODULO 128 PLACAS, 2 INVERSO	05/02/2019	ILUMISOL	CONCLUÍDO	-141		
14	10	NAPOLEÃO FERREIRA LINS FILHO EIRELI	338	MODULO 338 PLACAS, 2 INVERSO	RILUMISOL SO	OFAR 6000TL E	AGUARDANE	DO PARADO	5	
15	11	JOZIRA DOS SANTOS FERREIRA	34	MODULO 34 PLACAS, 2 INVERSOR	31/01/2019	JUNIOR	CONCLUÍDO	ОК		
16	12	MASTER LAVANDERIA E TINTURARIA LTDA	46	MODULO 46 PLACAS, 1 INVERSOR	11/02/2019	JUNIOR	CONCLUÍDO	ОК		
17	13	BEM ESTAR ACADEMIA DE GINSATICA EIRELI I	94	MODULO 94 PLACAS, 1 INVERSOR	LUMISOL SOF	AR 30000TL	CONCLUÍDO	-122		
10	14		116	MODULO 116 DLACAS, 2 INVEDSOL	19/02/2019	ILLIMISOL		OK		

Figura 14 - Visão da instalação na planilha de acompanhamento de projetos.

Fonte: Autoria própria.

O último botão gerado em VBA foi o "BASICO". Normalmente é usado por setores mais superficiais da empresa, como a secretaria por exemplo, onde só são necessárias as informações mais rasas a respeito dos projetos e seus respectivos andamentos. Quando o botão é pressionado, a planilha fica conforme pode se observar na Figura 15.

A	Α	в	С	D	E	Н	1	V V	X	Y	Z	AA
1							SI	TOR				
				GERAL		ENGENHARIA	INSTALAÇÃO		BASICO			
	ACOMPANHAMENTO DE PROJETOS				FILTRO GERAL	FILT	RO ENGENHARIA	FILTRO INSTAL	ACÃO			
					GD CONECTADA	GDC	ONECTADA 🗸	AGUARDANDO	•			
					Filtrar		Filtrar	Filtrar		APAGAR FILIRUS		72
2	2						T ILLIA					
3				DADOS DO PROJE	то							
4	NU ME	CRM		CLIENTE	CPF/CNPJ	PRAZO S	0 STATUS					
5	1	22789	03/10/2018	ANTONIO DE OLIVEIRA	025.458.104-87	01/01/20	19 INSTALAÇÃO OK					
6	2	22085	26/10/2018	NEWTON SOUZA DA SILVA	116.875.337-68	24/01/20	19					
7	3	25159	19/11/2018	MARIA DA LUZ C ALBUQUERQUE ME	12.609.284/0001-05	17/02/20	19					
8	4	26701	12/11/2018	JOSÉ CLAUDEMY TAVARES SOARES	373.889.324-53	10/02/20	19 GD CONECTADA					
9	5	16101	28/02/2018	WESCLEI MEDEIROS DE SOUSA	032.331.774-02	29/05/20	18					
10	6	22447	26/10/2018	FABIO KELNER ALCOFORADO COSTA ME	04.952.924/0001-49	24/01/20	19 GD CONECTADA					
11	7	26072	08/11/2018	JOSÉ FLAVIO EUFRASIO DA SILVA	711.566.234-72	06/02/20	19 GD CONECTADA					
12	8	16290	28/11/2018	ANOTNIO CALIXTO DE OLIVEIRA NETO	979.427.904-87	26/02/20	19 GD CONECTADA					
13	9	26820	28/11/2018	FABRICIA RODRIGUES DA SILVA ROMAN ME	08.377.602/0001-74	26/02/20	19 INSTALAÇÃO OK					
14	10	18161	30/11/2018	NAPOLEÃO FERREIRA LINS FILHO EIRELI	09.598.226/0002-80	28/02/20	19					
15	11	18986	30/11/2018	JOZIRA DOS SANTOS FERREIRA	01.973.766/0001-15	28/02/20	19 GD CONECTADA					
16	12	28011	05/12/2018	MASTER LAVANDERIA E TINTURARIA LTDA	06.169.094/0001-03	05/03/20	19 GD CONECTADA					
17	13	26594	17/12/2018	BEMESTAR ACADEMIA DE GINSATICA EIRELI	19.835.970/0001-35	17/03/20	19 INSTALAÇÃO OK					
10	14	29686	18/12/2018	DASSIONE MOTEL FIDELL	17 715 354/0001_15	19/03/20						

Figura 15 - Visão básica na planilha de acompanhamento de projetos.

Fonte: Autoria própria.

4 CONCLUSÃO

Diante de tudo que foi exposto no relatório, é nítido como o estágio integrado é essencial a formação do aluno de Engenharia Elétrica. O estágio possibilita que o aluno pratique e desenvolva os conhecimentos mais práticos aprendidos durante o curso, e ainda, traz a possibilidade de adquirir novos conhecimentos de cunho prático, diferente do conhecimento teórico adquirido durante o curso.

Durante o estágio ficaram evidentes as disciplinas da graduação que mais contribuíam para o ramo de trabalho do estágio. Se destacam as matérias de: Instalações Elétricas e seu laboratório, Equipamentos Elétricos e seu laboratório, Sistemas Elétricos e Distribuição de Energia.

O desenvolvimento de ferramentas de controle no Excel trouxe consigo o domínio da linguagem de programação VBA, que é uma excelente ferramenta para um engenheiro, com diversas possíveis aplicações.

Do ponto de vista de formação do estagiário, ainda foram oferecidos pela empresa cursos de NR 10 (Segurança em instalações e serviços de eletricidade) e NR 35 (Trabalho em altura). Cursos esses que contribuíram imensamente para formação do estagiário como um profissional.

Portanto, se pode concluir que inúmeros conhecimentos das mais diversas fontes foram adquiridos e consolidados durante o estágio, conhecimentos esses que nunca seriam ganhos permanecendo unicamente na universidade, portanto, foi uma experiencia de grande valor na formação do estagiário como profissional.

REFERÊNCIAS

- ANEEL. (17 de Abril de 2012). *Resolução Normativa Nº* 482. Acesso em 20 de Abril de 2019, disponível em AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA ANEEL: http://www2.aneel.gov.br/cedoc/ren2012482.pdf
- ANEEL. (28 de 09 de 2015). *Geração Distribuida*. Acesso em 25 de 06 de 2019, disponível em http://www.aneel.gov.br/geracao-distribuida
- ANEEL. (24 de Novembro de 2015). *Resolução Normativa Nº* 687. Acesso em 20 de Abril de 2019, disponível em AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA – ANEEL: http://www2.aneel.gov.br/cedoc/ren2015687.pdf
- ANEEL. (2016). Micro e minigeração distribuída: sistema de compensação de energia elétrica / Agência Nacional de Energia Elétrica. Brasilia.
- ANEEL. (2017). PRODIST Procedimentos de Distribuição de Energia Elétrica no Sistema Elétrico Nacional - Módulo 3: Acesso ao Sistema de Distribuição. Acesso em 07 de Junho de 2019, disponível em http://www.aneel.gov.br/modulo-3
- ANEEL. (17 de Outubro de 2017). *Resolução Normativa Nº 786*. Acesso em 20 de Abril de 2019, disponível em AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA ANEEL: http://www2.aneel.gov.br/cedoc/ren2017786.pdf
- Autodesk. (s.d.). *Autodesk*. Acesso em 01 de 07 de 2019, disponível em https://www.autodesk.com.br/products/autocad
- Energisa. (2017). *MICRO E MINIGERAÇÃO DISTRIBUÍDA*. Acesso em 29 de Abril de 2019, disponível em Energisa: https://www.energisa.com.br/Paginas/informacoes/outras-informacoes/micro-geracao-ess.aspx
- Energisa. (2017). *Norma de Distribuição Unificada NDU 015*. Acesso em 29 de Abril de 2019, disponível em https://www.energisa.com.br
- Energisa. (Setembro de 2018). *Norma de Distribuição Unificada NDU 013*. Acesso em 29 de Abril de 2019, disponível em https://www.energisa.com.br
- ONS. (s.d.). *O Sistema em Números*. Acesso em 30 de 06 de 2019, disponível em Capacidade Instalada do SIN 2018/2023: http://www.ons.org.br/paginas/sobre-o-sin/o-sistema-em-numeros