

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE

CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA
UNIDADE ACADÊMICA DE SISTEMAS E COMPUTAÇÃO

CURSO DE BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

GUSTAVO DINIZ MONTEIRO

IMPLEMENTING FAIR SHARING OF RESOURCES WITH

FOGBOW MIDDLEWARE

CAMPINA GRANDE ­ PB

2019

GUSTAVO DINIZ MONTEIRO

IMPLEMENTING FAIR SHARING OF RESOURCES WITH

FOGBOW MIDDLEWARE

Trabalho de Conclusão Curso
apresentado ao Curso Bacharelado em
Ciência da Computação do Centro de
Engenharia Elétrica e Informática da
Universidade Federal de Campina
Grande, como requisito parcial para
obtenção do título de Bacharel em Ciência
da Computação.

Orientador: Professor Dr. Francisco Vilar Brasileiro.

CAMPINA GRANDE ­ PB

2019

Elaboração da Ficha Catalográfica:

Johnny Rodrigues Barbosa

Bibliotecário-Documentalista

CRB-15/626

 M775i Monteiro, Gustavo Diniz.
 Implementing fair sharing of resources with fogbow

middleware. / Gustavo Diniz Monteiro. – 2019.

 11 f.

 Orientadores: Prof. Dr. Francisco Vilar Brasileiro.

 Trabalho de Conclusão de Curso - Artigo (Curso de

Bacharelado em Ciência da Computação) - Universidade

Federal de Campina Grande; Centro de Engenharia Elétrica

e Informática.

 1. P2P Systems. 2. Arquitetura de redes Peer-to-peer.

3. Fairness. 4. Cloud federation. 5. Fogbow middleware.

6. FD-Nof algorithms. I. Brasileiro, Francisco Vilar. II.

Título.

 CDU:004.(045)

GUSTAVO DINIZ MONTEIRO

IMPLEMENTING FAIR SHARING OF RESOURCES WITH

FOGBOW MIDDLEWARE

Trabalho de Conclusão Curso
apresentado ao Curso Bacharelado em
Ciência da Computação do Centro de
Engenharia Elétrica e Informática da
Universidade Federal de Campina
Grande, como requisito parcial para
obtenção do título de Bacharel em Ciência
da Computação.

BANCA EXAMINADORA:

Professor Dr. Francisco Vilar Brasileiro

Orientador – UASC/CEEI/UFCG

Professor Dr. Carlos Wilson Dantas Almeida

Examinador – UASC/CEEI/UFCG

Professor Dr. Tiago Lima Massoni
Disciplina TCC – UASC/CEEI/UFCG

Trabalho aprovado em: 02 de julho de 2019.

CAMPINA GRANDE ­ PB

Implementing fair sharing of resources with Fogbow
middleware

Gustavo Diniz Monteiro∗
gustavo.monteiro@ccc.ufcg.edu.br

Federal University of Campina Grande
Campina Grande, Paraiba, Brazil

Francisco Brasileiro†
fubica@computacao.ufcg.edu.br

Federal University of Campina Grande
Campina Grande, Paraiba, Brazil

ABSTRACT
Nowadays most companies use cloud, and a good fraction of them
use private clouds. On many occasions, these organizations have
extreme fluctuations in their demand, and during these peaks, they
have to resort to public clouds to meet demand. The cost of such an
action in itself can be expensive, which combined with a possible
underutilization of resources can generate high costs. The objec-
tive of this work is to present a tool to implement and incentive
justice on resource sharing in P2P systems, initially using the direct
reciprocity Network of Favors model. The direct reciprocity justice
model that will be used for small and medium-sized networks, for
scenarios where repeated peer interaction is most likely and where
these organizations could meet their demand at peak times and
offer favors in underutilization, with the guarantee of protection
against uncooperative members. Also, the network focuses on be-
ing a lightweight solution, designed to be a pluggable and adaptable
element to the provider or middleware used, using firsthand knowl-
edge gained by each member through direct interaction with other
peers.

KEYWORDS
federation, p2p networks, fairness
ACM Reference Format:
Gustavo Diniz Monteiro and Francisco Brasileiro. 2019. Implementing fair
sharing of resources with Fogbow middleware. In Proceedings of . ACM,
New York, NY, USA, 8 pages.

1 INTRODUCTION
Organizations with varying patterns of demand and peaks of use
often resort to public clouds (cf. âĂĲcloud burstingâĂĲ [10]) to
meet unexpected or short-term needs, thus escaping from failures
to meet business demands and service quality.

However, outside of peak hours, the resources of these organi-
zations may become inactive, which is a loss of efficiency and a
financial loss.

In this context, in the quest to maximize the efficiency of these
organizations, the concept of a federation of cloud providers was
created, with the purpose exchange of resources among these or-
ganizations to satisfy peak demand situations and decrease the
idleness in moments of lower demand to reduce or even ending the
problem.

From the architecture point of view, cloud federations can be
centralized or P2P [5]. In centralized architectures, source allocation
is typically performed by a trusted central entity, able to prevent
∗Responsible for research
†Mentor

free-riders(the term that we will use here to define those peers that
only seek to obtain resources and not to provide them, or to provide
them minimally) and achieve better matching between consumers
and suppliers.

In P2P federations, on the other hand, participants must commu-
nicate and negotiate directly with one another. The advantages of
decentralized topologies include extensibility, scalability, and easier
deployment and management. Disadvantages, on the other hand,
include difficulties in discovery, routing, security, and reliability,
since the participants are largely unknown to one another and can
not be considered reliable or collaborative.

Also, peers are considered selfish and have an economic incentive
to become free riders, i.e. pure resource consumers.

From the economic view, the federation model can be based on
payments or exchange of resources loans, which we will define
here by the term ‘favor‘, each model can be more beneficial for a
certain size of the organization, your purpose and financial contri-
bution among other aspects can also be classified as centralized or
decentralized. In a centralized monetary system, bids and requests
are typically collected by a central entity or market auctioneer that
decides the best matching of buyers and sellers. In decentralized
markets, on the other hand, buyers and sellers must explore the
market by themselves and bargain directly with each other. An
important question here is how efficient resource allocation can be
guaranteed so that the goals of collaborative cloud members are
met.

1.1 Business models for cloud federations
To better understand the pros and cons of each business model,
which vary according to the context of the organization in which
they would be applied these models will be described and some of
their use cases exemplified.

They divide into two niches, the payment-based ones, and the
non-monetary exchange-based that are so defined.

1.1.1 Pay as you go. Payment-based business model, in a postpaid
form, where resources are used freely during a defined time interval
and generated at the end of this payment-to-use cycle an invoice.

As a federation model, a single invoice can be generated, where
the values will be distributed to the peers, or an individual invoice
for each of the peers according to the use of their resources.

As a business model for cloud providers, it is used in large public
clouds such as AWS, Gcloud, and Azure.

1.1.2 Credit (pre-paid). A prepaid business model where the user
purchases credit from resources and makes use of the federation’s
resources so that usage is limited to those credits.

, , Gustavo Diniz Monteiro and Francisco Brasileiro

Peers providers of these resources have the values of these credits
divided according to their participation in the provisioning of these
resources.

This business model is commonly used in cloud providers, con-
tracts with educational institutions or governments for example.

1.1.3 Barter. A business model based on the exchange of favors,
not monetary payment, where suppliers lend their cloud resources
to consumers, thus generating a debt that is also paid in the form
of favors, creating a cycle of exchange of resources between peers.

In this case, each provider in the federation acts both as a resource
provider (outside peak times) and as a resource consumer (during
peak times). In particular private cloud providers, because of the
usually limited amount of own resources, would benefit greatly
from this exchange [4], thus allowing them to access a larger pool
of resources when local demand is too high and can not be met
using only local resources or this resources that simply do not exist
locally.

In this scenario, situations of dishonesty among members are
necessarily where a particular member only consumes resources
from other peers and does not provide anyone or supplies in much
smaller amounts that consumers can happen, situations that can
lead to the abandonment of members and the collapse of the net-
work. Control measures are then necessary to control the misuse
of the network by certain members and the consequent decrease of
justice in the sharing of resources.

To solve this problem, the concept of FD-Nof (Fairness Driven
Network) was defined, where a model of exchange of resources is
specified with justice seeking the maximization of the use of the
network and internal efficiency of the pairs.

This model is an evolution of the Nof [11] model, initially de-
scribed for the computational grid model and adapted to the cloud
federation model, bringing a capacity control model among other
improvements that will be explained later.

1.2 Implementations of Federation model
One tool used for managing cloud federations is Fogbow middle-
ware, an open source tool that enables the integration of multiple
public cloud providers, AWS and Azure for example, and private
cloud middleware such as OpenStack, Cloudstack and Opennebula.

2 BACKGROUND
The purpose of this work is to create an implementation of the
FD-Nof concept so that it can work for any federation provider
or cloud (public or private) generically. So for this was chosen
the Fogbow federation middleware, because it is open source and
having support for the multiple cloud providers natively, it becomes
a rather interesting choice to dock FD-Nof as default behavior so
that a Fogbow driver will also be implemented and made available
with FD-Nof.

Therefore, it is necessary to define the operating principles of
FD-Nof and Fogbow as well as its architectures.

2.1 FD-Nof Algorithms
The FD-Nof has its operation based primarily on one metric, justice,
which is defined based on the exchange of resources between the
peers.

The main FD-Nof metric is justice that can be generically defined
as:

f airness =
consumed

provided

The FD-Nof calculates its justice in two ways, the first of which
is the relation between what a network peer provides resources
and how much it consumes from it (global justice), and the second
is the relationship between consumption and how much was given
between two members of the federation (pairwise justice).

provided == 0 → f airness = −1

provided > 0 → f airness =
consumed

provided
The values of pairwise justice and global justice have different

importance so that in an interaction between peers global justice
will be evaluated only if the pairwise justice value is -1.

The great differential of the FD-Nof is the control of justice and
the exclusion of the free riders of the system, it does this through a
capacity controller [6] whose operation is defined below.

Algorithm 1 Capacity controller algorithm for peer A at the be-
ginning of time step t, t > 0, to the set of other peers F andC as the
maximum quota value.
increase = false
for all p ∈ F do

if fairness(A, p) > 0 then
if fairness(A, p) < TMin then
increase = false

else if fairness(A, p) > TMax then
increase = true

else if fairness(A, p, t) <= fairness(A, p, t-1) then
increase = !increase

end if
else

if fairness(A, F) < TMin then
increase = false

else if fairness(A, F) > TMax then
increase = true

else if fairness(A, F , t) <= fairness(A, F , t-1) then
increase = !increase

end if
end if
if increase then
quota(A, p, t+1) = min(C , quota(A, p, t) + E)

else
quota(A, p, t+1) = max(0, quota(A, p, t) - E)

end if
end for

The capacity control algorithm is executed for one peer A, and
for each other peer p in the federation F . At a given moment t , A
will first check if p already hear an interaction between them where
A has already provided some resources to p, and then there will be
a value of pairwise justice of members greater than 0. If this value

Implementing fair sharing of resources with Fogbow middleware , ,

is negative, i.e. A still does not yield anything for p then the global
fairness value should be used to evaluate the interaction.

Defining which of the values of justice to use, be it pairwise
justice or global justice, we arrive at the capacity control step of
peer A, where two thresholds are defined for the justice value
Tmin and Tmax (these values have no fixed definition, and can be
defined by experiment or as the user of FD-Nof wishes), where
if the justice value is less than Tmin, the peer A will reduce the
maximum amount of resources that it provides to the peer p, in
order to increase justice in the future [1], if the justice value is above
Tmax then A will increase the maximum amount of resources it
can afford to p.

As a last case, if justice is between the maximum and minimum
thresholds, thenAwill look at the past, comparing its present value
of justice with the value of justice in the last iteration t − 1, if the
value of justice has evolved from the last iteration here [7], this
means that the step following in the last iteration has had a positive
effect (whether it is to increase the maximum amount of resources
provided to the peer or decrease it) then it must be repeated, if it
has resulted in a reduction of justice, then an inverse action of the
previous step must be performed.

2.2 Fogbow - Architecture
The Fogbow federation building tool follows a distributed architec-
ture coupled to the cloud provider.

Figure 1: Fogbow Architecture

Fogbow functions as a manager, allocating and managing re-
sources in the cloud, and interacting with other members of the
federation so that each peer in a fogbow federation has its own Fog-
bow middleware deployment, thus adopting the P2P architectural
model that is the same as FD-Nof.

In addition to the provisioning/management services, Fogbow
implements a quota control mechanism and through the accounting
component, which maintains a cloud usage report by the peers of
the federation, thus allowing the implementation of a collection
system either in monetary form or in the form of exchange of loans.

Fogbow also implements through XMPP (which is a secure com-
munication protocol) client as a method of communication between
Fogbow instances in connected components to different points of
the federation, thus allowing the remote requests of resources be-
tween clouds.

Figure 2: Fogbow Resource Allocation Service Architecture

The main component of the Fogbow is the resource allocation
service, which is responsible for receiving the resource allocation re-
quests and provisioning them in the Cloud to which it is connected
using a state machine that defines step by step the provisioning
process and its failure cases. The provisioning service, as well as all
CRUD requests, is made available via a REST API, making it easy
to access.

As its most interesting feature of this component is its adapt-
ability to public and private cloud providers, defining a standard
operating interface and implementing specific behaviors of each
provider through drivers.

So everything, being a component with P2P architecture, having
an easy-to-use interface and a secure communication model makes
Fogbow a very interesting choice to be used in the standard FD-Nof
implementation.

3 A BARTER-BASED MODEL WITH FOGBOW
This repository works as a mirror for application components:

https://github.com/GustavoDinizMonteiro/fd-nof

3.1 Purpose
The goal of this work is to create an implementation from the
FD-Nof model bringing a solution to the fair resources exchange
problem in a federation and free riders control.

Until then there was no implementation of the concept, making
this first version a model for real test for FD-Nof and then study
possible gaps and concept improvements. The proposal is also an
adaptable, performance-oriented, resilient and designed for easy
maintenance and evolution, requirements for a modern application.

The next sections of this work explain the architectural and
design decisions that were made for implementation so that these
requirements were fully met.

3.2 Architecture
To implement the FD-Nof using Fogbow middleware as the stan-
dard tool for provisioning a federation, and to maintain the same
architectural and behavioral aspects with other possible federation

, , Gustavo Diniz Monteiro and Francisco Brasileiro

or cloud providers was defined a service interface provided by FD-
Nof, therefore the integration with the federation/cloud provider
through drivers that follow this interface.

Figure 3: NOF Architecture

The architectural model of FD-Nof is based on the definition of
two service interfaces, the first is the provisioning interface, which
defines the steps of federation favors that will be better explained
later. The second is the resource accounting interface that will be
used by the capacity controller to control justice and the quota
offered by that peer to the others.

These interfaces define that the drivers will have a communica-
tion role with the FD-Nof client so that they do not interfere in the
capacity control and provisioning choices directly, thus avoiding
deviations from the standardization of behavior among FD-Nof
members.

Figure 4: NOF Controller

The FD-Nof implementation has the requests filter at the top,
which is responsible for evaluating all resource creation requests
and passing them to the provisioning controller or the message han-
dler, to transfer it to another point on the network if necessary. The
provisioning controller will use the proprietary driver for resource
creation, triggering the persistence controller to fetch necessary
information, and then trigger the capacity controller that will take
the necessary action for quota control and fairness.

The architectural model of FD-Nof also defines that it will be an
independent component, being pluggable as a service, facilitating
its adoption.

The driver implements the following interface that will allow
FD-Nof to handle the requests.

• getRequesterFromOrder: extract order requester.
• getProviderFromOrder: extract the target member of the
order.

• createLocalResource: Create resource from order in local
member cloud.

• dispatchRemoteRequest: Resend an order to anothermem-
ber of the network.

• getCurrentOrdersFromMember: Get information on all
resources currently allocated in the cloud for a particular
other member.

• preemptOrder: Deallocate a specific feature of a remote
member.

• getCurrentQuotaUsedByMember: Get resources amount
currently being used by a remote member.

This interface that enables the implementation of drivers was
the main architectural decision of the project, even though it was
done with its default implementation with Fogbow, that name this
work, the intention is that it can be used with any other technology,
something that with the application code being made available in a
public repository and with the adequate contribution license can
have its use and its expansion made by anyone.

The Fogbow driver implements this interface in each method by
making HTTP calls to pick up the information needed in Fogbow
API directly and in the other two components as shown below,
these components are implemented in this work and are now part
of the Fogbow ecosystem, they are the message service and account-
ing service. The first one is used for sending messages between
federation peers, thus enabling remote requests for resources, the
second for monitoring the cloud’s overall quota, the quota for use
by the federation or a specific peer.

Figure 5: Fogbow Driver Architecture

This structure will be used by FD-Nof in the algorithms described
in the next session for menage resources, quota calculation, and
request routing.

3.3 Algorithms
The FD-Nof functions as a layer above the peer receiving all the
requests and passing directly to the peer all non-resource creation
requests. For re-creation requests, they can follow, according to
their requester and destination, the following cases.

Implementing fair sharing of resources with Fogbow middleware , ,

Local peer Remote peer
Local peer case 1 case 2
Remote peer case 3 X

3.3.1 Case 1. This is a request from the peer client itself for its
cloud, so it does not require any FD-Nof processing as soon as it is
directly passed on to the peer.

3.3.2 Case 2. This is a request in which the client of the local peer
is requesting a resource in a remote member, soon this request will
be passed by FD-Nof to the peer destination through the service of
transfer of requests that the driver of the provider must implement.
The transfer of this request would generate in the remote peer a
remote request that is the case 3.

3.3.3 Case 3. When there is a request for a remote peer to the
local peer, i.e. requesting a favor, FD-Nof will assume the role of
handling that request.

For this purpose, FD-Nof use the information acquired through
the quota service to calculate the maximum quota amount and
provided for each other peer of federation, as well as their values
of pairwise justice and in the case of the non existence so far from
a pairwise justice value valid for interaction to another member
(that is, the local peer is still not capable of anything to the other
so that pairwise justice is negative) then global justice is used.

With this quota information provided and maximum quota in
addition to the fair value, the exchange of resources in the federation
is defined in two parts, the first of them defined as a peer receiving
this favor request tries to allocate this resource in its cloud.

The FD-Nof works so that once a new request for resource al-
location from another peer arrives, the FD-Nof will first check if
peer has enough remaining quota within its total quota to meet the
request, if yes to FD-Nof will try to create the resources in the local
peer, in case of failure that results in resource cannot be allocated
in any way will be returned a message describing the situation.

If the attempt to create the resource locally is successful, infor-
mation about the resource will be returned to the requesting peer,
but if for lack of resources available in the cloud was not able to
create resource, it will check if there are other pairs that have a
pairwise justice balance smaller than the peer owner of the new
request, if there are other peers in such a situation then their re-
sources will be preempted one by one, in order of the lowest value
of justice for the greater and each preemption will be tried again
create requested resource, this operation will be repeated until the
request is answered or there are no more resources allocated from
those peers with a lower justice value.

I even with the preemption of these resources, there is still insuf-
ficient quota for allocating this resource, the members with lesser
value of justice will be listed again and will be sequentially passed
on to each one the request as a remote request, that remote request
will receive a special markup that says it’s a forwarding.

In the second algorithm, it is demonstrated how the allocation of
a remote request marked as forwarding is made. It is defined differ-
ently so that a request is not passed on more than once, to avoid a
flood of the network, cases of indefinite forwarding times may also
cause a large delay in obtaining a request response affecting the

Algorithm 2 Describe how to FD-Nof allocate a resource on local
peer.

if requester has quota then
success = createResource()
if success then

executeCapacityController()
return RESOURCE

else
members = getMemberWithSmallerQuota()
for member in members do

for resource in member.resources do
preempt(resource)
success = createResource()
if success then

executeCapacityController()
return RESOURCE

end if
end for

end for
members = getMembersWithHigherDebts()
for member in members do

success = createRemote()
if success then

executeCapacityController()
return RESOURCE

end if
end for
return ERROR

end if
else

return ERROR
end if

service quality, it was decided for this implementation, with better
response instead infinite allocation attempts is more desirable.

When the FD-NOF receives a remote request marked as for-
warding, creating this resource also alters the fairness between the
peer receiving the request and the remote peer, if it can handle
the request. Upon receiving the request, it checks whether the first
recipient of the request has a quota available within its maximum
quota to meet that request, if yes, attempts to create the resource, if
not, return to the original peer of request a message saying cannot
attend to it.

If the creation attempt was made and failed because of insuffi-
cient quota in the cloud, the same process of preemption member
resources with the value of justice less than justice between the
peer who forwarded the request, in the same way as if even with
the preemption of these resources it is still not possible to allocate
resource of the request, it will return to the original peer a message
saying that cannot be attended to.

These two algorithms are complementary and describe how the
application works, using driver services interface to manage the
resources reactively, that is, only when a request for resources leads
to this.

, , Gustavo Diniz Monteiro and Francisco Brasileiro

Algorithm 3 Describe how to FD-Nof allocate a resource from a
forwarded request on local peer.

if has quota then
success = createResource()
if success then

executeCapacityController()
return RESOURCE

else
members = getMemberWithSmallerQuota()
for member in members do

for resource in member.resources do
preempt(resource)
success = createResource()
if success then

executeCapacityController()
return RESOURCE

end if
end for

end for
return ERROR

end if
else
return ERROR

end if

3.4 Technologies
The FD-Nof controller implementation was developed using Python
language, which was chosen for its flexibility and development
agility.

The application was built with Flask microframework, which has
stability characteristics needed, un-opinionated, that is, bringing
a minimum set of features needed and allows the developer and
trusts the developer to make the right decisions and puts more
control in their hands.

In the data layer the database used is PostgreSQL, a relational
solution was chosen for all security that this brings the transac-
tions and structuring of the data that are desired characteristics in
the context of the application. PostgreSQL was chosen especially
for being open source and very performance oriented, meeting
high demands if necessary. To connect to the database was used
SQLAlchemy tool, a SQL toolkit and Object Relational Mapper that
allows structure tables and queries with the flexibility and good
performance.

The Python language used to build FD-Nof, that although it is
very flexible and high abstraction level, paid for it in its performance,
however, the python community itself developed strategies to make
the language more performative, one of them is the use Pypy of
an alternative to the standard language interpreter CPython. Pypy
is a Just In Time compiler that makes code execution much faster
according to several benchmarks and is the recommended tool for
execution in case the performance requirements are higher or there
is a federation with several peers very large, with the consideration
that this should add the Pypy to deploy the stack. CPython, however,
is a built-in option present on UNIX systems and does not need
additions to deploy stack with acceptable performance.

FD-Nof offers 3 deployments ways, the first through Docker
container that makes the application work in the same way as the
development environment whatever the deploy environment, this
alternative has many advantages because of its system flexibility
and environment configurations in which deploy and the current
popularization of the containers will be done besides that the im-
age created for application is more performative for using Pypy.
The second through the Pipenv environment, which unites the
application isolation of the Virtualenv python with the dependency
management of Pip which facilitates the deployment of the appli-
cation and can be done with a few commands, and the third in a
native way in the machine, using common Python tools.

The Fogbow specific implementation of messaging and account-
ing services used by his driver was developed in Java with the
SpringBoot framework, this choice was made to keep up with the
stack of Fogbow project technologies that are completely made
with Java technologies.

The SpringBoot Framework brings a convention load on con-
figuration and platform popularity itself, which makes it a good
choice of technology to maintain and expand the application, as
well as being within the Java ecosystem that is quite complete.
The Spring Boot was used to create the API rest that exposes the
system functionalities implemented in a stateless service layer to
allow greater scalability and uses an abstracted DAO by SpringBoot
through JPA Repositories, this service layer brings the whole logic
of the applications modularized.

In the data layer of this services PostgreSQL database was chosen,
which besides the reasons mentioned above for choosing it in the
FD-Nof controller it is also the one used in Fogbow, which makes
it the ideal choice.

The Fogbow messaging component uses the XMPP protocol,
which defines a secure private communication method provided by
Jamppa client, an open source java tool that enables communication
through this protocol.

4 CASE STUDY
The tool has been deployed and is now available for use, with its
Fogbow driver it becomes a service most available to the organi-
zations that use the platform, with the expectation that it will be
used soon. But before that, at the end of the process of developing
the scope of this work was together with the Fogbow team tested
the following use cases.

4.0.1 Case 1. This is the optimal situation in FD-Nof, where one
peer receives a resource request from another and there is a cloud
quota to fulfill a request without the need to delete any other re-
source.

4.0.2 Case 2. FD-Nof receives a resource request from another
peer and there is not enough cloud quota to meet the request, so is
the need to preempt resources from other peers.

4.0.3 Case 3. FD-Nof receives a resource request from another
peer and there is not enough quota in the cloud to fulfill the request
even after preempting resources from other peers, thus having to
pass on to other peers the request.

These other peers, in this case, will have enough quota to fulfill
the request without preempting resources.

Implementing fair sharing of resources with Fogbow middleware , ,

4.0.4 Case 4. FD-Nof receives a request and because of a lack of
resources forward request, the peer receiving this transfer is also
suffering from a lack of resources in the cloud and has to delete
resources from other peers to fulfill this request.

The simulation of these cases was successful and made with two
different cloud providers (OpenStack and Opennebula), both using
Fogbow middleware.

This case study showed how useful the tool can be to expand
the resources to which it has access, in cases such as high demands
or in low demands where resources can be borrowed, it is effective.
In this case study, the study of the functioning of justice control
algorithms with the implementation was also planned, but this test
was reconsidered since the formal proof of the correctness of this
concept already existed.

5 EXPERIENCE AND LESSONS LEARNED
In this work i was able to learn a lot from the research work, some-
thing i had never done before that way, searching for scientific
publications and references, testing comparing implementations
of concepts, something different from the routine of implementing
commercial applications with a predefined scope to which I was
accustomed.

Something new for me and what I consider great learning was
the study of new technologies such as the XMPP protocol and the
use of new architectural models, such as the polyglot architecture
used in the implementation of the Fogbow driver for FD-Nof, using
different technologies into separate components and communicat-
ing through HTTP requests.

Other learning experiences that I can highlight in the planning
and production of an article, a relatively long-term work that re-
quired planning, mainly due to unforeseen during the work and
the learning about the planning of this type of work was valuable
as well as the experience of writing and review the article.

6 DEVELOPMENT PROCESS
The FD-Nof development process can be described in 3 steps, in
the first step the research was done on the concepts that involve
NF-Nof, such as justice and provisioning algorithms and the P2P
architectural model. At this stage, the work was focused on docu-
mentation of concepts to make it easier to use them later in both
the implementation and the description of them in the article.

In the second stage, the architectural model of the application
was elaborated, choosing technologies to be used, planning the
integration between the components and how to meet the non-
functional requirements of the application, such as performance.

In the third stage was where the development of the application
code happened, together with the Fogbow team who helped a lot
in the process of building the Driver, working on a gradual cycle of
implementation and testing of the application paused sometimes
for replanning in the face of some difficulties or changes in the
scope of the solution..

7 KEY CHALLENGES AND THEIR SOLUTIONS
During the development process, there were significant delays in
the development of the driver in this step compared to the planned,

due to the communication model initially planned between the
peers of the Federation had to be replaced by a more secure one,
which was the XMPP protocol. This added a new difficulty, be-
cause the known client meeting the requirements for XMPP was
developed only for Java platform and FD-Nof is built in Python,
the solution to this was to reshape the driver by extracting part of
its functionality into separate components that were developed in
Java, replacing those implementations in the driver for HTTP calls
to those services that provide the functionality. Thus the planning
of the development stage had to be redone.

Another point that could be put as a difficulty for the job was the
infrastructure required to test the application, a Fogbow deploywith
a cloud with resources available for management, which was solved
by the Fogbow team and the Laboratory support team distributed
systems that provided this structure.

8 RELATEDWORK
From the conceptual model perspective of the network of favors,
many approaches have already been explored to promote collab-
oration in peer-to-peer systems. One is based on the reputation
that by recording information about the past behavior of other
peers, one can make decisions about collaboration. In P2PRep [9]
and EigenRep [8], each pair locally stores information about its
interactions with other pairs and also collects information from
other pairs, which are then used to determine your reputation or
credit. Such strategies are sufficient to promote collaboration and
discriminate against free riders.

Satsiou and Tassiulas [13] also proposed the reputation-based
scheme that dynamically controls the availability of file-sharing
systems in which the bandwidth of the peers is shared between the
download and upload resources. This ensures the fairness of fellow
collaborators by ensuring that they receive resources in proportion
to their contributions.

To federated clouds, similar to our strategy to maximize benefits,
Goiri et al. [3] have attempted to achieve the same goal of estimation
if it is better to outsource, insourcing or simply deactivate idle
resources. Mihailescu [10] and Teo and Gomes et al. [4], Adopt the
strategy of dynamic prices to improve the benefits of the federation.
In bothworks, there is in freeriding since the approaches aremarket-
based. As their main objective is to maximize benefits, they share
ideas similar to those of FD-Nof, but as the FD-Nof mechanism is
completely non-monetary, costs are reduced, benefits increase and
free riders are isolated by regulation resources.

The RESERVOIR [12] project uses policy-oriented strategies to
ideally find the best positioning of virtual machines for physical
machines, considering economic, performance and availability as-
pects. This work does not address the problem of free riding since
past interactions do not leverage future negotiation decisions. In
addition, while our approach is P2P, and therefore two private
clouds need to unite autonomously to the federation to be able to
exchange resources, in the RESERVOIR the collaboration between
two clouds is established in advance by a structured agreement that
specifies the capacity in terms of number and size of virtual ma-
chines available along with other restrictions, such as cost, quality
of service, and security level. These characteristics bring limitations
to the federation, a significant disadvantage, because the larger the

, , Gustavo Diniz Monteiro and Francisco Brasileiro

federation, the greater the chances that the peak and peak patterns
of different members will match.

In order to define a reciprocity model and to encourage the ex-
change of resources, we can cite works such as that of E. FalcÃčo [2],
where a technique of reciprocity is defined that inspired resource al-
location algorithms 2 3 where we have the transfer requests among
peers as way to improve service quality and to increase justice
among all the peers involved, because in this work there is still no
known implementation in use, making this work an adaptation of
it together with the FD-Nof concept.

In view of these points and given that the concept of FD-Nof
was already defined, this work differentiates itself by bringing an
implementation, defining an architectural model that is easy to
deploy and adding the minimum elements to the customer’s stack
and new points in the resource allocation algorithms that increase
the interaction between peers in the network and which can lead
to better values of fairness among peers.

9 CONCLUSION
In this work, an implementation was developed for the FD-Nof con-
cept previously defined, with addition of algorithms for reciprocal
provisioning of resources by the network, enabling the implemen-
tation of a cloud federation with a non-monetary financial model,
which simplifies the application and requisition of resources be-
tween the federation pairs makes it feasible for small and medium
organizations that could not afford monetary costs.

With this tool, which focuses on its ability to support any cloud
or federation provider, bringing beyond its default implementa-
tion with Fogbow middleware the possibility of client implements
proprietary drivers for other federation middleware providers as
directly cloud providers, it becomes possible to implement FD-Nof
and leverage resource switching model to maximize cloud efficiency
and service quality in high demand and maintain and regulate the
exchange resources in a fair way to stop free riders actions.

Through the chosen technologies, the tool also ensures a good
performance with requests service time limited by infrastructure
aspects, such as network and database, with FD-Nof itself having a
small impact on performance as suggested, a large poll of requests
can be solved with the horizontal scale application and dividing
the requests between the nodes of the cluster with a load balancer,
for example, in an easy way, since the FD-Nof is a stateless applica-
tion, making possible application could attend large dimensions of
requests even though they cause request forwarding, which are the
cases with the longest response delay due to the routing process.

10 LIMITATIONS AND FUTURE
ENHANCEMENTS

The main pending point in FD-Nof is the provision of a public de-
ploy of the publication, given that for a real situation it needs a
Fogbow deployment and resources to be managed. Also are miss-
ing implementation of a management tool where it is possible to
manage registers, visualize statistics of interaction in the network,
quota values, and justice of other peers.

Another pending point is to create richer documentation of tools,
to understand all the points described in this work.

Other limitations are the non-support for Python 2.7, which al-
though it is about to become deprecated is still widely used and
comes as standard on various Linux distributions, testing, and pos-
sible fixes to support other database systems as well as testing the
adaptations necessary for full operation on a Windows system.

At future study points, we can add security tests that were not in
the scope of this work and a detailed analysis of how FD-Nof per-
formance with many large networks, and also with the possibility
of a greater number or an infinite number of forwarding requests.

11 ACKNOWLEDGEMENTS
I thank my family first for supporting me at all times and for all
my fellow graduates who have often helped and supported me,
especially my mother, for all the effort she devoted to my education.

Thanks also to teachersMatheus Gaudencio and Thiago E. Pereira
for believing in my work and taking me to make my first experi-
ence in a development project, a high-level work, in which I learned
immensely.

I also have a lot to thank everyone I worked with on development
projects especially Walter A. Alves, Saulo S. Toledo, and Ricardo A.
Santos, for all the knowledge they gave and the patience to do so.

And finally, I thank the Fogbow team and the Support team at the
Distributed Systems Laboratory, which provided me the technical
and infrastructure support needed to complete this work.

REFERENCES
[1] Cirne W Mowbray M. Andrade N, Brasileiro F. 2004. Discouraging free riding in

a peer-to-peer cpu-sharing grid. In: High performance distributed computing.
IEEE international symposium 13, 13 (2004), 129 – 37.

[2] Jose Luis Vivas. Eduardo de Lucena Falcao. Francisco Brasileiro, Andrey Brito.
2016. Enhancing P2P Cooperation through Transitive Indirect Reciprocity. Inter-
national Conference on Distributed Computing Systems Workshops 16 (2016), 189 –
198.

[3] Torres J Goiri I, Guitart J. 2012. Economic model of a cloud provider operating in
a federated cloud. Inf Syst Front 14, 4 (2012), 827 – 43.

[4] Kowalczyk R. Gomes ER, Vo QB. 2012. Pure exchange markets for resource
sharing in federated clouds. Concurrency Compute 24, 9 (2012), 91–977.

[5] Buyya R. Grozev N. 2014. Inter-cloud architectures and application brokering:
taxonomy and survey: taxonomy and survey. Software 44, 3 (2014), 369–90.

[6] Parekh S Tilbury DM. Hellerstein JL, Diao Y. 2004. Feedback control of computing
systems. New Jersey: John Wiley Sons (2004).

[7] Staddon JER. Hinson JM. 1983. Matching, maximizing, and hill-climbing. J Exp
Anal Behav 40, 3 (1983), 321 – 31.

[8] Garcia-Molina H Kamvar SD, Schlosser MT. 2002. The eigentrust algorithm
for reputation management in p2p networks. Working Paper - Stanford InfoLab
(2002), 2002 – 56.

[9] Managing and sharing servents’ reputations in p2p systems. 2003. Inter-cloud
architectures and application brokering: taxonomy and survey. IEEE Trans Data
Knowl Eng 15, 4 (2003), 840 – 54.

[10] Teo YM Mihailescu M. 2010. Dynamic resource pricing on federated clouds. In:
Cluster, cloud and grid computing (CCGrid). IEEE/ACM international 10 (2010),
513 – 17.

[11] W. Cirne N. Andrade, F. Brasileiro and M. Mowbray. 2007. Automatic grid
assembly by promoting collaboration in peer-to-peer grids. J. Parallel and Distrib.
Comput. 67, 8 (2007), 957–966.

[12] Epstein AHadas D Loy I Nagin K et al Rochwerger B, Breitgand D. 2011. Reservoir
- when one cloud is not enough. Computer 44, 3 (2011), 44 – 51.

[13] Tassiulas L Satsiou A. 2010. Reputation-based resource allocation in p2p systems
of rational users. IEEE Trans 21, 4 (2010), 466 – 79.

	42b7f55955473cd115abde4b79316f685ade7205b4b054e3fede284a86348e25.pdf
	Implementing fair sharing of resources with Fogbow middleware
	Abstract
	1 Introduction
	1.1 Business models for cloud federations
	1.2 Implementations of Federation model

	2 Background
	2.1 FD-Nof Algorithms
	2.2 Fogbow - Architecture

	3 A barter-based model with Fogbow
	3.1 Purpose
	3.2 Architecture
	3.3 Algorithms
	3.4 Technologies

	4 Case study
	5 Experience and lessons learned
	6 Development Process
	7 Key challenges and their solutions
	8 Related Work
	9 Conclusion
	10 Limitations and future enhancements
	11 Acknowledgements
	References

