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Resumo

Neste trabalho estudamos alguns problemas relacionados a geometria de hipersuper-
ficies Riemannianas imersas em variedades semi-Riemannianas (com indice zero ou
um) equipadas com uma fung¢éo densidade e que podem ser modeladas por uma certa
classe de produtos warped. Inicialmente, assumindo condicGes razoaveis na curvatura
média ponderada de tais hipersuperficies e considerando certas restricoes no espaco
ambiente, estabelecermos alguns resultados de unicidade e nao-existéncia. Também
estabelecermos resultados de estabilidade, bifurcacao e rigidez local associados & pro-
blemas variacionais que envolvem o funcional 1-4rea e o funcional area ponderada de

tais hipersuperficie.

Palavras-chave: variedades ponderadas; produtos warped; hipersuperficies Rieman-
nianas; tensor de Bakry-Emery-Ricci; curvatura média ponderada; f-Lapaciano; f-

parabolicidade; estabilidade, bifurcagdo; rigidez local.
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Abstract

In this work we study some problems related to the geometry of Riemannian hypersur-
faces immersed in semi-Riemannian manifolds (with index zero or one) equipped with
a density function and that can be modeled by a certain class of warped products.
Initially, assuming reasonable conditions in the weighted mean curvature of such hy-
persurfaces and considering certain restrictions in the ambient space, we establish some
results of uniqueness and non-existence. We also establish results of stability, bifur-
cation and local rigidity associated with variational problems involving the functional

1-area and the functional weighted area of such a hypersurface.

Keywords: wighted manifolds; warped products; Riemannian hypersurfaces; Bakry-
Emery-Ricci tensor, weighted mean curvature; f-Lapacian; f-parabolicity; estability,

bifurcation; local rigidity.
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Introduction

A weighted manifold M;LH is a semi-Riemannian manifold (M”H, g ) endowed
with a weighted volume form dp = e /dv, where the weight function f is a real-valued
smooth function on M """ and dv is the volume element induced by the metric ¢ (for
details see, for instance, [13],[60]). In this setting, as a crucial ingredient to understand
the geometry of a weighted manifold M;LH, the so-called Bakry-Emery-Ricci tensor
Ric; is introduced as being the following extension of the standard Ricci tensor Ric of
——n+1

M
mf = Ric + Hess f,

where Hess is the Hessian tensor in A7 . Other weighted objects, such as the weighted
mean curveture and the f-divergence can also be considered. A natural line of investi-
gation that appears into this thematic is the problem of extend results stated in terms
of the Ricci curvature, the mean curvature or the divergence, for example, to ana-
logous results for the Bakry-Emery-Ricci tensor, the weghted mean curvature or the
f-divergence.

It is also interesting to remark that weighted manifolds are closely related to
some classical mathematical concepts, as they can be used as a powerful mathematical
tool in order to obtain new results related to them. For some results of geometric
investigations concerning these weighted manifolds, we also refer the reader to the
articles of Morgan [61] and Wei-Wylie [68].

A theme that has been widely approached in isometric immersion theory in re-
cent years is the study of the geometry of semi-Riemannian manifolds that can be

regarded as warped products of the tipe (M ™ X o I, Ty ({-, ) asn) + (a0 marm)* 7 (edt?))



or (I x, M", mf(edt?) + (cvomg)*mhym({+, )aan)), where M" is a Riemannian manifold,
I C R is an open interval, 7~ and ng denote the canonical projections from A" x I
or I x M" onto each factor, (-, -)y~ is the Riemannian metric of M", « is a positive
function defined at the base (i.e. at the first factor) of the product and € € {—1,1}
is a constant that defines the causal character of the product (the warped product is
a Lorentzian manifold when ¢ = —1 and a Riemannian manifold when ¢ = 1). These
ambient spaces are naturaly foliated by a family of totally umbilical (spacelike, in the
Lorentzian case) hypersurfaces X7 := X" x {t} or X := {t} x X", ¢t € I, that will be
called slices. In this setting, an interesting question is to investigate the uniqueness of
such slices among (spacelike) hypersurfaces of the warped product, under reasonable
assumptions on their geometric data.

This branch of study, currently known as Bernstein (Calabi-Bernstein, in the
Lorentzian case) tipe results or also rigidity results, had its beginnings when Berns-
tein [I5] proved that the only entire minimal graphs in the 3-dimensional Euclidean
space R? are the planes. In the Lorentzian setting, there is an analogue result to Berns-
tein’s theorem, which states that the only entire maximal graphs in the 3-dimensional
Lorentz-Minkowski space I are the spacelike planes. This result was firstly proved by
Calabi [I8], and extended to the general n-dimensional case by Cheng and Yau [26].
A natural extension to the Benstein and Calabi-Bernstein problems is to determine a,
reasonable set of sufficient conditions which guarantee the uniqueness (or nonexistence)
of complete (spacelike) hypersurfaces immersed into a certain ambient space.

Another theme that has ben aroused the interest of some geometers it is the study
of variational questions associated to the area functional in Riemannian manifolds. A
example of this branch is the study of stability of hypersurfaces with constant mean
curvature H (shortly, H-hypersurfaces) in Riemannian manifolds T (n > 2), wich
began with Barbosa and do Carmo in [9], and Barbosa, do Carmo and Eschenburg
in [8]. In these papers, they introduced the notion of stability and proved that any
closed H-hypersurface immersed into M"™ is a critical point of the variational problem
of minimizing the area functional for volume-preserving variations.

In this thesis we will present unicity and nonexistence results related to spacelike
hypersurfaces immesed in semi-Riemannian manifolds that can be regarded as one of

the weighted warped products decribed above. We will also do a study of stability, local



rigidity and bifurcation for variational problems associated with the functional 1-area
and the functional weighted area in Riemannian spaces. The results that integrate the
present work correspond to the contents of papers [27], [31] [32], [33], [34] and [35].

In the Chapter [l we describe the ambient spaces that will appear throughout
this work, recall some facts about hypersurfaces immersed in such spaces and we have
also establish most of the notations that will be used.

In the Chapter 2| based in the paper [35], done in collaboation with H. F. de
Lima, A. M. Oliveira, M. S. Santos and M. A. L. Velasquez, we investigate the geo-
metry of conformal Killing graphs in a weighted Riemannian manifold M;LH endowed
with a complete conformal Killing vector field V', which are defined via the global
flow associated to V over an integral leaf of the distribution V+ (for more details see
Section . Taking into account the Cheeger-Gromoll type splitting theorems due
to Wei and Wylie [68], we assume that the weight function f does not depend on the
parameter of the flow associated to unit vector field v = —V/|V| (see Remark [1.5). In
these circumstances, we calculate a formula for the f-Laplacian of the support function
g(N,V) (cf. Lemma 2.4), where N is the Gauss map of the conformal Killing graph
Y(2). Afterwards, in Section under a suitable restriction on the norm of the
gradient of the function z, which determines such a graph ¥(z), we establish sufficient
conditions to ensure that X(z) is totally umbilical and, in particular, an integral leaf of
V+ (cf. Theorems and and Corollaries and . Our
approach is based on the use of the f-Laplacian of the supported function g(N, V),
the f-divergence of the tangent part of V' on X(z), jointly with a weighted version
of Stoke’s Theorem to the context of complete weighted Riemannian manifolds (see
Lemma .

In Section we study the stability of f-minimal conformal Killing graphs of
W;LH according to the behavior of the derivative of the conformal factor ¥y of V,
obtaining sufficient conditions to guarantee that an f-minimal conformal Killing graphs
be Ly-stable, where L; stands for the weighted Jacobi operator (cf. Theorem [2.16]
and Corollary . Finally, in Section our goal is to investigate the strong f-
stability of closed conformal Killing graphs in M;LH with constant f-mean curvature.
More specifically, we get sufficient conditions to a strong f-stable closed conformal

Killing graphs be either f-minimal or isometric to a leaf of V+ (cf. Theorem and



Corollary [2.20]).

As it is well known, an (n + 1)-dimensional Riemannian space (M”H, (-,-)) en-
dowed with a suitable Killing vector field Y can be regard as a Killing warped product
(M™ x4, R,(-,-)), for an appropriate n-dimensional Riemannian manifold M" and a
certain warping function o (for more details, see Section . In the Chapter (3]
based in the paper [32], caried out in collaboation with H. F. de Lima and M. A. L.
Velasquez, we obtain uniqueness results related to the mean curvature equation for
entire Killing graphs X" (z) constructed over the base M" of a weighted Killing warped
product My X, R with warping function o and whose weight function f does not de-
pend on the parameter ¢ € R, that is, (V f,0/0t) = 0 (see Theorem [3.9] Theorem
Theorem and Corollary in Section [3.3). For this, in Section we esta-
blish a suitable f-parabolicity criterion (see Proposition and Corollary and,
under appropriate constraints on the Bakry-Emery-Ricci tensor and on the f-mean
curvature, in Section we prove some rigidity results concerning complete two-sided
hypersurfaces immersed into M7 x, R (see Theorem Corollary Theorem
and Theorem [3.8]).

In the ChapterEI, based in the paper [33], which was done in collaboration with E.
L. de Lima, H. F. de Lima and M. A. L. Velasquez, our objective is to carry out a study
on the uniqueness, nonexistence and stability of spacelike hypersurfaces immersed into
a weighted standard static spacetime M}L X o Ry, the Lorentzian dual of the weighted
Killing warped product space dealt with in the Chapter [3] endowed with a weighted
function f does not depend on the parameter ¢ € R.

We start by obtaining explicit formulas for the Laplacian of the height function
h (see Proposition and the drift Laplacian of the angle function © (see Proposi-
tion , both functions naturally related to a spacelike hypersurface X" immersed
into M} X, R;. Then, applying some analytical results to subharmonic smooth func-
tions on complete Riemannian manifolds (for example: some parabolocity criteria, a
weak form of the Omori-Yau maximum principle and an extension of the Hopf’s The-
orem due to Yau) and considering suitable constraints on the f-mean curvature of X",

on the height function h, sometimes on angle function © and on the Bakry-Emery-

Ricci tensor of M™, we establish some uniqueness results (see Theorems 4.10]
and and Corollary and some nonexistence results (see Corollaries
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and [4.18)). In Remark we exhibit a large family of standard static spacetimes
that verify the hypotheses adopted in Theorem and also in their corollary. Next,
in Corollaries [£.11], £.16] and .19 we make a particular study on the Calabi-Bernstein

type properties of entire Killing graphs ¥"(z) constructed from a smooth function z
defined on the base M™ of M}L X Ry.

Proceeding, in Section we show that closed spacelike hypersurfaces immersed
with constant f-mean curvature in a weighted standard static spacetime M} x, R,
are solutions of the variational problem of maximizing the weighted area functional for
all variations that keeps the balance of weighted volume equal to zero (see Proposi-
tion . As a consequence, we establish the notion of f-stability for such hypersur-
faces (Definition and provide an appropriate stability criterion (Proposition [4.24).
Finally, in Theorem we obtain a characterization of f-stable closed spacelike hy-
persurfaces of M}L X o Ry through the first nonzero eigenvalue of the drift Laplacian.

In the Chapter |5, based in the paper [34], carried out in collaboration with H.
de Lima and M. A. L. Velasquez, we obtain uniqueness results related to the mean
curvature equation for entire Killing graphs constructed over the Riemannian base M"
of a weighted standard static spacetime M}L X« Ry. As in the Riemannian case, dealt
with in the Chapter |3] in Section |5.1| we establish a suitable f-parabolicity criterion
and, in the Section assuming certain control over the Bakry-Emery Ricci tensor and
over the f-mean curvature, we study the rigidity of spacelike hypersurfaces immersed
in M} X4 Ry. Finally, we point out that, in Section applications of our main results
to weighted standard static spacetimes of the type G" x, R;, where G" stands for the

so-called Gaussian space which is nothing but that the Euclidian space R" endowed

ntl _ |yl?

with the Gaussian probability density e /® = (27) "2 ¢ "2, y € R", are also given.

As observed in [3] [I6] [I7], the set of trial maps for the variational problem of
minimizing the area functional for volume-preserving variations should be a collection
of embeddings of H-hypersufcaces >" into M”H; in order to detect solutions that
are not isometrically congruent, one should take into consideration the action of the
diffeomorphism group of >", acting by right composition in the space of embeddings,
and the action of the isometry group of M”H, acting by left composition on the space
of embeddings. The action of the diffeomorphism group of 3" on any set of embeddings

of H-hypersufcaces X" into M s free, which suggests that one should consider a



quotient of the space of embeddings by this action. This means that two embeddings of
H-hypersufcaces z;, : 37 9 M and - ¥7 9 " will be considered equivalent if
there exists a diffeomorphism ¢ : X7 — X7 such that x5 = 210¢. As to the left action of
the isometry group of H”H, this is not free; nevertheless, the group is compact and one
can study a bifurcation problem for its critical orbits. Thus, the variational problem
described above provides us with a framework where we can study the equivariant
bifurcation (cf. [3, 16l [I7, [66]) in a set of equivalence classes of embeddings of H-
hypersufcaces X7 into M " .

In this context, our purpose in the Chapter []is to study the notions of local rigidi-
ty, bifurcation instants and stability associated with the 1-area and f-area functional for
a family of open sets in certain warped products, using equivariant bifurcation theory
in order to establish sufficient conditions that allow us to guarantee the existence of
bifurcation instants or the local rigidity of such families.

In Section based in the paper [27], which is a collaboration with J. Q. Oliveira,
J. F. da Silva and M. A. L. Velasquez, considering a warped product I x, M" with
compact (without boundary) Riemannian fiber M", our purpose is to investigate the
existence of bifurcation instants or the local rigidity of a certain family {€2,} . _, of
open sets whose boundaries are H,-hypersurfaces. For this, initially, in a Riemannian
manifold 77" we consider the space of open subsets () C M with compact closure
and whose smooth compact boundary 0f) is an orientable hypersurface and we study

the variational problem of

(VP-1): minimizing the 1-area functional A(t) for all variations of

0} that preserve the volume of ).

We assemble the Jacobi functional F*(t) = A, (t) + A\V(t) (see (6.6)) associated with
the variational problem, where V(¢) (see (6.4)) is the balance of volume and A is a real
constant, we calculate its first variation £ 7*(0) (see (6.12)), and as a consequence we
get that the open subsets €2 of M"" whose boundary 0f is a compact Ho-hypersurface
are characterized as critical points of (VP-1) since the Ricci curvature Ricz( , ) of at
in the normal directions N; of the volume-preserving variations is constant (full details
can be found in Proposition and its subsequent comments). It is immediate to

note that any Einstein manifold verifies the adopted condition on the Ricci curvature,



and thus we are obtaining a type of extension for the variational characterization of
compact Ho-hypersurfaces obtained in [I] and [44]. When we change our variational

problem for the of

(VP-2) : minimizing the 1-area functional Ai(t) for all variations of

0%2, not necessarily volume-preserving variations of €1,

in Proposition we observed that the respective critical points of (VP-2) coincide
with the same critical points of the initial variational problem (VP-1). For each of
these critical points, in Proposition we calculate the second variation g—; F*0) in
terms of the Jacobi differential operator J (see (6.18])). Furthermore, for a family
of critical points {Q,} C " associated with our variational problem (VP-2), in
Subsection [6.2.2| we use the equivariant bifurcation theory to establish our notions of
bifurcation instants and local rigidity, as well as to relate these two concepts to the
Morse index Ind (f ’\(7), QT) of each (2., which in turn can be understood as the number
of negative eigenvalues (counted with multiplicity) of the Jacobi operator 7, on Q..

We begin the Section[6.2.3]by listing in Table[6.I]all Riemmanian warped products
of the type I x, M"™ that satisfy the condition on the Ricci curvature that we are
assuming. Then, in these products, we consider the family {Q,}
of (I xq M™,dr* + a(7)?(-,-)n) given by

re(r,m) Of Open subsets

Qr = (m,7) x M",  with 7€ (m,7],

where 71 and 7, are fixed numbers in / C R. Thus, assuming M™ to be compact
(without boundary), we have that the boundary 92, of each ), is the disjoint union
00, = X7 U X7 of two compact hypersurfaces ¥ = {m} x M" (fixed) and ¥7 =
{7} x M". Since the variations of OS2, only affects ¥” and taking into account that X" is
a compact I -hypersurface with constant second mean curvature Hy = (f'(7)/f(7))?,
we have that each element of {2}
(VP-2).

Next, in Proposition we collect all the elements that are sufficient to get

re(m .7 18 a critical point for the variational problem

an explicit expression for the eigenvalues of the Jacobi operator 7. of each element of
{27}, ¢ (s ,]» a0 expression that we will allow to calculate the Morse index Ind (F2™, Q).
Then, in Theorem [6.9] considering appropriate conditions of the spectrum of the
Laplacian on M" and the warped function «, we establish the local rigidity of the
family {Q,} | © I xq M" (see also Corollary . Furthermore, in Theo-
rem [6.11] and in Theorem [6.13] we establish some sufficient conditions in terms of «

76(7'1,7'2

and the behavior of eigenvalues of the Laplacian on M" to obtain bifurcation instants

of {Q:}, ¢y C I Xo M™ (see also Corollary and Corollary 6.14). Finally, in
Tables and [6.4] we list examples that verify all the conditions we are assuming.

7



In Section[6.3] we based in the paper [31], also carried out in collaboration with H.
F. de Lima and M. A. L. Velasquez. There, our purpose is to study the notions of local
rigidity, bifurcation instants and stability for a family of open sets {€2, }, of a weighted
Killing warped product M} x, R whose boundaries 0€2, are closed hypersurfaces with
constant weighted mean curvature H(7) (in abbreviation, we say that 0(1, is a closed
H ¢(7)-hypersufcace), where ~ varies on a prescribed interval I C R.

For this we consider the variational problems:

(VP-3): Minimizing the weighted area functional A; (see (6.36)) for

all variations of O€), that preserve the weighted volume of €1,

(VP-4): Minimizing the weighted area functional Ay (see (6.36)) for all
variations of 0, not necessarily weighted volume-preserving

variations of {1,.

By an analysis of the first variation of the associated weighted Jacobi functional
FYO = Ap + A()Vy,  with A(y) € R

(see (6.37))), where V; is the weighted volume functional (see (6.35)), we obtain in
Proposition that the critical points of (VP-3) and (VP-4) are the open sets €,
whose boundary 0f), is a closed H/(v)-hypersurface with constant weighted mean
curvature Hy(v) = A(7)/n. For these critical points, in Proposition [6.21] we obtain the
formula of the second variation of }";(7).

Concerning the variational problem (VP-4), in Subsection we use the equi-
variant bifurcation theory (cf. [3], 17, [16, 66]) to establish our notions of bifurcation
instants and local rigidity in terms of the Morse index of the weighted Jacobi operator
T~ (see (6.52)). Then, in Section we get some results of local rigidity and
bifurcation instants in M7 x, R via the analysis the number of negative eigenvalues of

jfw'



Chapter 1
Preliminaries

In this chapter, our aim is to establish the major part of the notations that will
be used and describe the ambient spaces that will be appear throughout this work.

1.1 Riemannian setting

Let " ' bea (n+ 1)-dimensional orientable Riemannian manifold (n > 2) with
metric tensor (-,-), Levi-Civita connection V and curvature tensor R. We denote by

X (1) the set of vector fields of class C° on 37", by C**(7) the ring of real functions

of class C= on M """ and by Cs°(M) the set of all smooth functions defined in et
with compact support. In this context, we consider hypersurfaces x : " ¢ W”H,
namely, isometric immersions from a connected, n-dimensional orientable Riemannian
manifold £ into M """, Since %" is orientable, one can choose a globally defined unit
normal vector field N on X", which will be called the Gauss map of x : X" — M;LH

The shape operator of z : X" ¢ M with respect to IV is given by

A XEY) - x(E)
Y = AY) = -VyN.

Since, for each fixed p € £", A, : T, — T,X is a self-adjoint linear map, the spectral

theorem allows us to choose on 7,% an orthonormal basis {ei,...,e,} of eigenvectors
of A,, with corresponding eigenvalues x1(p),...,kx,(p), respectively. The functions
Ki,...,h, on X" thus defined are called principal curvatures of x : ¥" % M

Moreover, it is well known that the curvature tensor R of " is described in terms of
A and R by the so called Gauss equation, which can be written as

RU VYW = (RU,VYW)T + (AU),W)AV) — (A(V), WYA(U) (1.1)

for all U, V,W € X(X), where (-)" stands for tangential components on "



We will deal with the first three mean curvatures of the hypersurface = : X" ¢

M”H, namely

(

1 T
o, = -~ ;f%
2
Hy = ——— KiKj, 1.2
n(n —1) ; I (1.2)
6
Hy = KikK;Kk.
n(n—1)(n — 2) <Z<k 7
\ <J

We have that H, is the mean curvature of z : 3" ¢ H”H, which is the main extrinsic
curvature of X" and when there is no danger of confusion it will be denote simply by H.
On the other hand, the second mean curvature H, defines a geometric quantity which is
related to the scalar curvature S of z: X" o ", Indeed, it follows from the Gauss
equation that the (non-normalized) Ricci curvature Ricy of = : X" ¢ M s
given by

Ricx(U, V) = Ricy(U, V) — (R(U, N)V,N) + nH{A(U), V) — (AU), A(V)),

for U,V € X(¥"), where Ricy; stands for the Ricci curvature of T Therefore, S
obeys the relation
S = S —2Ricy (N, N) +n(n — 1)Hs, (1.3)

where S stands for the scalar curvature of 37" . For instance, if there is one 7 € R
such that the Ricci curvature of 37" verifies the condition

Ricy7(N,N) = 3 = const. on xm (1.4)
we get from (1.3]) and (|1.4) that S and H, are related by
S=(n-1)(o+nH,). (1.5)

When required, if a hypersurface z : ¥ 3 M""" has constant second mean
curvature H,, for short we will simply say that z : X" & " s an I 2-hypersurface.
One also let the Newton transformation T : X(X") — X(X") associated with
= n+l . .
x: X" M be given by setting

T = nH 1d — A, (1.6)
where Id : X(X") — X(X") denotes the identity map.

Associated to the Newton transformation 7" one has the well known Cheng-Yau’s

square operator [25]

O . O — C=(Z")

u — O(u) = tr (T o Hessx u), (1.7)

that is a second order differential operator, where Hessy; stands for the Hessian operator
on X",

10



1.2 Lorentzian setting

Let (M”H, (-,-)) be a (n + 1)-dimentional Lorentzian manifold. We mean by

C>(F) the ring of real functions of class C on M " and by X(3) the C=(7)-
module of vector fields of class C*° on 3""". We recall (cf. [62, Chapter 3|) that
a vector field X € X(M) is said to be timelike if (X, X) < 0 on M”H; spacelike if
(X, X)>0on """ and a unit vector field if (X, X)==+1on M Furthermore, a
Lorentzian manifold 37" is said to be time-orientable if there exist a timelike vector
field globaly defined on 3" Consider a spacelike hypersurface  : X" < M;LH. It
means that the induced metric on X" via the immersion z is a Riemannian metric.
When 3" is time-orientable by a timelike vector field (cf. [6Z, Lemma 5.32]), say
a certain K € X(M), and £" is a spacelike hypersurface, then ¥" is orientable and
one can choose a globally defined unit normal vector field N on X" having the same
time-orientation of W”H, that is, (K, N) < 0. Such N is said the future-pointing

Gauss map of 7. If we let

A X(EY - X(EY

_ (1.8)
Y = AY) = —VyN

denote the shape operator of X" with respect to NV, then the mean curvature H of X"

is defined by
H: > —- R

oo HE) = (4. 9

The choice of the sign in our definition of H is motivated by the fact that in that case
the mean curvature vector is given by H = HN and, therefore, H(p) > 0 at a point
p € X" if; and only if, H(p) is in the same time-orientation as N(p), and hence as

K(p).

1.3 Weighted manifolds

On a complete Riemannian manifold M”H, let us remember that the classical
Laplace operator A on WM™ can be defined as the differential operator associated to
the standard Dirichlet form

M

QM=/|WWawHWMCﬂM,

where | - | is the norm induced by the Riemannian metric of M”H, dv is the volume
element on 3 """ and £2(dv) denotes the set of measurable functions « on 7" such
that the Lebesgue integral (with respect to dv) of |¢|? exists and is finite.

Now let f € C(M) be a real valued smooth function, that will be referred as a

weight function (or density function). If we replace the measure dv with the weighted

11



measure
dp = e fdv (1.10)

in the definition of O, we obtain a new quadratic form Q;, and we will denote by A
the elliptic operator on C°(M) C L%(dp) induced by Q;. In this sense, A; arises
as a natural generalization of the Laplacian. It is clearly symmetric and positive and
extends to a positive operator on £?(dyu). By Stokes theorem,

Ap(p) = Ap—(Vo,Vf), e C&(M).

The triple (M i

acting in C>°(M) will be called, respectively, the weighted manifold associated with
M and f, which we simply denote by W;LH, and the f-Laplacian (or drift Lapla-

cian).

,(-,+),dp) and the differential operator A; defined above and

Let us remember that a Riemannian manifold " is parabolic if every bounded
solution of Au > 0 must be identically constant. We recall that a smooth function u
on a weighted manifold M;LH is said to be f-superharmonic if Ay(u) < 0. Taking this
into account, the weighted manifold M;LH is called f-parabolic if the only nonnegative
and f-superharmonic functions on W;LH are the constant ones.

Let us remember that a notion of curvature for weighted manifolds goes back to
Lichnerowicz [58, [57] and it was later developed by Bakry and Emery in their seminal
work [6], where they introduced the following modified Ricci curvature

Ric; = Ric + Hess f, (1.11)

where Ric and Hess are the standard Ricci tensor and the Hessian on W;LH, respec-
tively. As it is common in the current literature, we will refer to this tensor as being the
Bakry-Emery-Ricci tensor of M;LH. We note that the interplay between the geometry
of """ and the behavior of the weighted function f is mostly taken into account by
means of its Bakry-Emery-Ricci tensor Ric; (cf. [68]).

1.3.1 Hypersurfaces in a class of weighted warped products

Let M}LH be a weighted warped product of the tipe

(M7 %o T, (o) = mhn (5 dare) + (00 gt (edt?) , dp)
or
(1 Mo M, (-, = s (edt) + (a0 mn)2mhpm (- Yagm) du).

We will often refer to the first factor of the product as being the base and the second
factor as being the fiber of the warped product. Here M" is a Riemannian manifold,
I € R is an open interval, my» and nr denote the canonical projections from W;LH

12



onto each factor, o is a positive function defined at the base of the product, e € {—1,1}
and du = e /dv is the weighted volume form associated with the real-valued smooth
function f, where dv is the volume element induced by the metric (-, ).

In the case that 7" is a Riemannian manifold (i.e. when ¢ = 1), we will
consider two-stded hypersurfaces x : X" — W;LH. This condition means that there is
a globally defined unit normal vector field N. On the other hand, in the Lorentzian
case (i.e., when ¢ = —1), X" will be considered a spacelike hypersurface and, in this
case, there exist a normal timelike vector field NV globaly defined on 3.

Let us denote by V, V and V the Levi-Civita connections of HHH, 3™ and M",
respectively. The f-mean curvature of X" is the function H; given by

nH; =nH +e(Vf,N), (1.12)

where I/ = e+ tr(A) denotes the classical mean curvature of ¥ with respect to N.
The f-divergence on ¥", for any X € X(X), is defined by

div, X = divX — (Vf, X), (1.13)

where div(X) = trace{Y — Vy X} denotes the divergence relative to ¥". A direct
calculation assures us that

divf(ch) = pdivy X + (Vip, X) (1.14)

for all X € X(X) and any ¢ € C*°(X). We define the f-Laplacian (or drift Laplacian)
relative to X" by

Ap(p) = divy (V) = Ap = (V [, V), (1.15)

for all ¢ € C°(X), where A is the standard Laplacian relative to X". From ([1.14])
and ([1.15) we can obtain the expression

Af(op) = 05 (p) + ¢Ar(0) +2(Vo, V), (1.16)

which is valid for any pair of functions o, p € C>*(X).

We recall that a slice of M is a hipersurface My obtained by fixing some ¢, € I,
that is, M = M™ x {to} or M = {t,} x M"; and a slab of M" is the region lying
between two slices, that is, a region of the type

M" Xa[tl,tg] = {(q,t)GMn XQI : tlftftg}

or
[tl,tg] XaMn = {(t,Q)GIXaMn . tlftftg}

13



1.4 Ambient spaces and immersed hypersurfaces

In what follows we will introduce the ambient spaces that will appear throughout
the forthcoming chapters. Namely, we will describe certain weighted semi-Riemannian
manifolds with index zero or one that can be regarded as weighted warped products
for which one of the factors is a n-dimensional Riemannian manifold M" and the other
is an open interval I C R whose metric defines the causal character of the product.

1.4.1 Weighted Riemannian spaces furnished wiht a conformal
Killing vector field

Let us consider an (n + 1)-dimensional weighted Riemannian manifold W;LH

endowed with a conformal Killing vector field V whose orthogonal distribution D is
integrable. Thus, there exists a smooth function 1y, € C°(M) such that

Ly (o) =2¢v (), (1.17)

where Ly stands for the Lie derivative in the direction of V. The function ¢y is called
the conformal factor of V.

In this setting, we denote by & : I x M" — W;LH the flow generated by V', where
I = (—00,a) is an interval with a > 0 and M"™ is an arbitrarily fixed integral leaf of D
labeled as t = 0, which we will suppose to be connected and complete. It may happen
that a = 400, i.e., the vector field V' is complete. Since &, = P(t,.) is a conformal
map for any fixed ¢t € R, there exists a positive function A € C°(I x M") such that
AO,u) =1 and &7 (-,-)(u) = N2(t,u)(-,-)(u), for any u € M".

We restrict ourselves to the case where the function A depends only on the variable
t, that is, A € C°°(I). Geometrically, as it was already observed in [28], this hypothesis
allows us to relate the induced metrics in distinct leaves of the foliation orthogonal to
V, which we will denote by V=.

From we deduce the conformal Killing equation

<VXV7 Y> + <vaYV> = 2¢V<X7 Y>7

for any X, Y € X(M).
An interesting particular case of a conformal Killing vector field V' is that in
which
VxV =4y X (1.18)

for all X € X(M); in this case we say that V is closed, an allusion to the fact that its
dual 1-form is closed. Yet more particularly, a closed and conformal Killing vector field
V' is said to be parallel if its conformal factor 1y, vanishes identically, and homothetic
if 4y, is constant.

14



Let M7 = ®,(M") be a leaf of V* furnished with the induced metric. From
(L.18) we get

V{V,V) =2y V. (1.19)

Consequently, |V'|? is constant on the leaves of V+. Moreover, computing covariant
derivatives in (|1.19)), we have that

and, since both Hess and the metric (-, -) are symmetric tensors, we get
X(¢V)<Vv Y> = Y(¢V)<Vv X>7

for all X,Y € ¥(M). Now, taking Y = V we arrive at

= Vv
Vipy = |$/}|§)V = v(Wv)v, (1.20)
Vv ) N
where v = ——— and, hence, 1y is also constant on the leaves of V.

V]
Furthermore, with a straightforward computation, we verify that the shape ope-

rator A; of a leaf M € V+ with respect to v is given by

= Yy
A(X) =Vxvr=—X
for any X € X(M7) and, hence, the leaves A} are totally umbilical hypersurfaces with

constant mean curvature H = H(t) with respect to v given by

_ Yy

H=r
Vi

(1.21)

Under the additional condition that the weight function f of M;LH does not
depend on the parameter of the flow associated to the unit vector field v, which means
that (Vf,v) = 0 on W;LH, we obtain from (1.12) and (1.21) that the f-mean curvature
of a leaf M7 € V7 is given by

Yy

(1.22)
Remark 1.1 We observe that the following result is a consequence of a Cheeger-
Gromoll type splitting theorem due to G. Wei and W. Wylie (c¢f. Theorem 6.1 of
of [68], , see also Theorem 1.1 of [{7]):

“Let H;LH be a weighted Riemannian manifold that contains a
line. If the Bakry-Emery-Ricci tensor of H;LH s nonnegative and
the weight function f is bounded then f must be constant along the

line.”
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Taking into account the Remark in any weighted Riemannian manifold H;LH

endowed with complete closed conformal Killing vector field V', having nonnegative
Bakry-Emery-Ricci tensor and with bounded weight function f, we have that f does
not depend on the parameter of the flow associated with the unit vector field v.

A particular class of Riemannian manifolds provided with a closed conformal
Killing vector field is the so-called warped product of the type I x, M", that is, the
product manifold M™ x R endowed with the warping metric

() = mp(dt®) + (oo e ) mhpn ({5 D are)-

A warped product I x, M"™ endowed with a weight function f will be called a weighted
warped product and it will be denoted by

(I xaM™),;.

For such a space, if 7; is the canonical projection onto I, then the vector field V' =
(av o 7r) O is conformal Killing and closed, with conformal factor ¢y = o' o 77, where
the line denotes differentiation with respect to ¢ € I. Moreover (see [59]), for ¢ € I, the
slice M = {t} x M" is totally umbilical, with constant mean curvature with respect
to —0; given by

Conversely, let M;LH be a weighted Riemannian manifold endowed with closed
conformal Killing vector field V. If p € M;LH and M)’ is the leaf of V+ passing through
p, then we can find a neighborhood i), of p in M} and an open interval I C R containing
0 such that the flow ® of V' is defined on U/, for every ¢ € I. Besides, if V is complete,
following the ideas in Section 3 of [59], one can prove that

(Rx M), — ;" (123
(t,u) = D(t,u)

is a global parametrization on M;LH, so that M;LH is isometric to the weighted warped
product
(R Xq M;)f , (1.24)

where a(t) = |[V(®(t,u))|, t € R and v € M, is an arbitrary point.
When the weight function f considered in a warped product of the type I x, M"
does not depend on the parameter ¢ € R, we will explicit this condition simply writing

I x, M} (1.25)

and, in what follows, this notation will be used without further comments. In this case,
from (|1.22) we get that the f-mean curvature of the slice {¢{} x M™ with respect to the
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orientation given by —0; is given by

(1.26)

At the end of this section, our purpose will be to give a description of one of
our objects of study: conformal Killing graphs immersed in a weighted Riemannian
manifoldf W;LH endowed with closed conformal Killing vector field V. In this sense,
following the ideas established in [28], given a domain Q in M" = M}, we define the
conformal Killing graph ¥(z) of a smooth function 2 on ) as the hypersurface of H;LH
given by

Y(z) = {®(z(u),u) : ucQ},
where ® is the flow generated by V. When 2 = M™, ¥(z) is said to be entire.

If we assign coordinates zo = t,21,...,7, to points in M;LH of the form @ =
®(t,u), where x4, . .., x, arelocal coordinates in A", then the corresponding coordinate
vector fields are

Dlz=V(t) and Oi|lz = ®w0ily, forallie {1,... n}.

Thus, the conformal Killing graph ¥(z) is parameterized in terms of local coordinates

by z(z1,...,%,),x1,..., 2, and the tangent space to X(z) is spanned by the vectors
gxzz Dla(z(w)w) + Oil o2y, forallie {1,...,n}. (1.27)
Hence, from we see that the metric induced on 3(z) is given by
22(2(u)) (1 dz? 4 da2) ,
Y
where v = W and do? stands for the metric of the leaf M™.

Moreover, denoting by Dz the gradient of the function 2 with respect the metric
do?, with a straightforward computation we verify that
1
N = ((IDZ(“)*DZ(U) — ’7(90|<I>(z(u),u)) (1.28)
A(z(u)) /7 + [Dz(u)]?

gives an orientation on ¥(z) such that (V, V) < 0.

In this scenario, we will consider the support function 7y on a conformal Killing
graph X(z) immersed in H;LH, which is defined by
nyX(z) - R
p = avip) = {V(p),Np),

where N is the Gauss map of X(z) given in (1.28]). We have that 7y is negative and

(1.29)

Vi = —A(VT), (1.30)

where A is the shape operator of Y(z) with respect to N and V' is the projection of
vector field V' on the tangent bundle of X(2).
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1.4.2 Generalized Robertson-Walker Spacetime

According to the terminology introduced in [4], a particular class of time-oriented
Lorentzian manifolds is that of generalized Robertson- Walker (GRW) spacetimes de-
noted by I x, M™ (n > 2), namely, product manifolds I x M" endowed with warped
metric tensor

() = —mr(dt?) + (a o mam ) mhpn (- D aan)-
In other words, I; x, M"™ is nothing but a warped product with Lorentzian base
(I, —dt?), Riemannian fiber (M", (- ,-))/) and warping function a.

1.4.3 Weighted Killing warped products
Let (3"
Killing vector field Y which never vanishes. We recall that Y is a Killing vector field

,g) be a (n 4+ 1)-dimensional Riemannian manifold endowed with a

Killing if £y g = 0, where Ly stands for the Lie derivative in the direction of Y. Let us
suppose in addition that ¥ has complete flow lines and that the associated orthogonal
distribution D is integrable. In this setting, we denote by ® : M" xR — M the
flow generated by Y, where M™ is an arbitrarily fixed integral leaf of D, labeled as
t = 0, which we will suppose to be connected.

In this setting, M " can be regarded as the Killing warped product M" x, R,
that is, the product manifold M™ x R endowed with the warping metric

(o) = ma(( ) an) + (oo mag ) m (dt?), (1.31)

where the warping function is given by o = |Y'| > 0. In particular, when oo = 1 in ([1.31])
we have that the space (M" x R, (-,-)) is just a standard product space.

Now, let (M"™ x, R) F be a weighted Killing warped product associated with the
density function f. We say that = : ¥" & (M" x, R) ;s f-minimal when its f-mean
curvature vanishes identically. It is a well-known fact that minimal hypersurfaces of
M™ x, R arise as critical points of the area functional (under compactly supported

variations)
Vol(2") = / dv,

where dv is the volume element of the hypersurface >" induced via immersion z. Since
the weighted structure on M" x, R also induces a weighted structure on >", we can

consider the similar variational problem for the weighted area functional
Vol (27) = / e dv.

From variational formulas (see for instance [I3]) one can see that 2 : " 9 (M" x, R),
is f-minimal, namely a critical point of the weighted area functional, if and only if H;
vanishes identically.
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Remark 1.2 We observe that the Killing vector field Y determines in M™ x, R a
codimension one foliation by totally geodesic slices M™ x {ly}, to € R, with respect
to orientation determined by Y. Moreover, assuming that the weighted function f €
C®(M™ x, R) is invariant along the flow determinate by Y, that is, (Vf,Y) = 0,
from we get that each slice M™ x {t} is f-minimal.

As a consequence of Remark in any weighted Killing warped product
(M" x4 R), having nonnegative Bakry-Emery-Ricci tensor and with bounded weighted
function f, we have that f does not depend on the parameter of the flow associated
to the Killing vector field Y. For sake of simplicity, in what follows, Killing warped
products M"™ x, R endowed with a weighted function f which does not depend on the
parameter ¢ € R will denoted by

MJ? X4 R

and this notation will be used without further comments.

Associated to a two-sided hypersurface z : X" & (M" X, R),, we will consider
two particular smooth functions, namely, the (vertical) height function

h = (7g) o ¥ = R (1.32)

and the angle function

©O: ¥ - R

(1.33)
p = O(p) = (N(p),Y(p),
where N is the Gauss map of X" and Y is the Killing vector field on M" x, R.
We have that .
Vh = — YT, (1.34)

where (-)7 denotes the projection of a smooth vector field in X(M" x,R) onto X(Z").

Moreover, we have
. 1
N* = N — = oY, (1.35)

where (-)* denotes the projection of a smooth vector field in X(M™ x,R) onto X(M").
From (1.34) and (|1.35]) we get the following relation:

1 *
|Vh|? = ¥|N |2n- (1.36)
Indeed, we have that
1 T T
(Vh,Vh) = —{YT,Y7) = —(Y —ON,Y - ON)
1 ©2 1 ) )
- @(1—5) =@ @t V=g
1 * * 1 * *
= ¥<N7N>_¥<N7N>M”



In what follows, we define the entire Killing graph ¥"(z) associated to a smooth
function z € C*°(M™"), according to [30], as being the hypersurface of M} x, R given
by

Y'2) = {P(y,2(y)) : yeM"} € M" x,R.

The induced metric on M™ from the Riemannian metric (1.39)) via ¥"(z) is given by
<.7.>Z e <.7.>M_|_a2d22‘
On the other hand, the function

G: M"xR — R
(yvt) = G(yvt) Z:t—Z(y),

is such that
Y'(z) = z(GH0)).

Then, for all X € X(M"™ x, R) we have

. 1 1
X(@) = X'(G)+ = (X0 w(@) = <¥ v Dz,X>,
where v is the unit vector field given by v = |—¥|, Dz denotes the gradient of a function

z with respect to the metric (-,-)3; of M™ and X* is the orthogonal projection of X

on X(M"). Thus,

VG = iIJ—DZ

o

is a normal vector field on G~1(0) and, consequently,

= 1
No = 2.(VG) = =Y —x.(Dz)

o

is a normal vector field on ¥"(z). Since,

it follows that

No ! (Y — o*z,(Dz)) (1.37)

N =
INol o (14 a2|Dz2)"?

gives an unit normal vector field on ¥"(z), which we will consider as being its Gauss
map, for which the angle function © defined in (1.33)) is given by

«
O = NY) = mrapmyE > " (1.38)
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1.4.4 Weighted standard static spacetimes

Consider an (n + 1)-dimensional Lorentzian manifold M""" with Lorentzian me-
tric ¢ = ¢g(-, -) and endowed with a timelike Killing vector field Y. Here timelike referred
to a vector field means that Y, € T, M is a timelike vector (and so nonzero) for each
peM.

We observe that the distribution D of all smooth vector fields of 37" that are

orthogonal to Y, defined at each point by

M"'sp — Dp)={veT, M : g(v,Y,) =0},
is of constant rank and integrable. Given a Riemannian integral leaf A" of that
distribution D, let ¥ : I x M" — M be the flow generated by Y with initial values
in M™, where I is a maximal interval of definition. Without loss of generality, in what
follows we will consider / = R. In this setting, our space " can be regarded as the
standard static spacetime M™ x, R, (cf. Proposition 12.38 of [62]), that is, the product
manifold M" x R endowed with the Lorentzian warping metric

<'7'> :W}kwn(<7>M”) + (O‘OWM”)zwlT%(_dtz)v (139)
where a = |Y| = /—(Y,Y) > 0 is the warping function.

Remark 1.3 The importance of standard static spacetimes comes from the fact that

they include some classical spacetimes. In what follows we list some of them:

(a) A simple example is given by the Lorentz-Minkowski space ", which is isomel-
ric to the warped product (R" x Ry, mh. (grn) + mh(—dt?) ).

(b) The Einstein static universe (S" x Ry, wd:(gsn) + m(—dt?)) is also a standard
static space (cf. Example 5.11 of [T)).

(¢) Another example is given by the exterior Schwarzschild spacetime, which is de-
fined as follows. Let R* be given coordinates (t,r,0,p), where (r,0,p) are the
usual spherical coordinates on R>. Given a positive constant m, the exterior
Schwarzschild spacetime is defined on the subset r > 2m of R*, a subset which is
topologically R? x S?. The Schwarzschild metric for the region r > 2m is given

in (t,7,0, ) coordinates by

2 om\ "
ds? — (1 _ ﬂ) di? + (1 _ ﬂ) dr? + r? (d92 + sin? ngoz) .

T T

Since the metric for this spacetime 1s invariant under time translations t — t+a,
the coordinate vector field 0/0t is a (globally defined) timelike Killing vector field
(cf. Section 5.2 of [I4] or Chapter 18 of [62] ). Consequently, the exterior
Schwarzschild spacetime is a standard static spacetime.
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(d) A model that also presents static regions (which appeared shortly after the Schwarzschild
spacetime) is the Reissner-Nordstrém spacetime, whose metric in (t,r,0, ) coor-

dinates admits the representation

2 2 2 2\ !
ds® = — (1 — ﬂ+ 6—2) dt* + (1 _ + 6—2) dr® +r? (d92+sin29dg02) .
rooor rooor
This metric has singularities inr =0, 7 =1, andr = r_, where r. = m=+(m?—
e2)'/2 and in regions corresponding to +o0o0 > r > r, and r_ > r > 0 we have
that the Reissner-Nordstrom spacetime is static (cf. Section 5.5 of [52]).

Now, in the configuration described above, let (M" x, R;), be a weighted stan-
dard static spacetime. We will consider complete spacelike hypersurfaces

:L‘ZY“—)(M" XaRl)f7

namely, isometric immersions from a (connected) n-dimensional Riemannian manifold
Y. into weighted standard static spacetime. As (M" x, Ry) ; 1s time-orientable by the
timelike vector field Y and x : ¥" < (M" X, Ry), is a spacelike hypersurface, then
¥ is orientable (cf. Proposition 5.26 of [62]) and one can choose a globally defined
unit normal vector field /V on X" having the same time-orientation of (M" X, Ry); (cf.
Proposition 5.29 of [62]), that is,

(Y,N) <0. (1.40)

Such N is said the future-pointing Gauss map of = : ¥" — (M" x, Rl)f. We say that
X" = (M" x,R) ;s f-mazimal when its f-mean curvature vanishes identically.

Remark 1.4 Since the timelike Killing vector field Y has identically zero conformal
factor ¢ (more precisely, ¢ = %HdivY = 0, where div stands for the divergence on
M™ x, Ry, it follows from Proposition 1 of [59] that Y determines in M™ x, Ry a

codimension one Riemannian foliation by totally geodesic slices X = M" x {1y},

0
to € R, with respect to the orientation determined by — = Y. Moreover, assuming
that the weighted function f € C°(M™ x, R) is invariant along the flow determinate
by Y, that is, (Vf,Y) =0, from ([1.12) we get that each slice i is f-mazimal.

Remark 1.5 We observe that the following result is a consequence of a splitting theo-
rem due to Case (see Theorem 1.2 of [22]):

“Let H;LH be a weighted timelike geodesically complete spacetime that contains
a timelike line with mf(X, X) > 0 for all timelike vector fields X, and whose
weighted function f is bounded. Then f must be constant along timelike line of
=—n+l ,

M
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From Remark 1.5} in any weighted standard static spacetime (M" x, R;) having
nonnegative Bakry-Emery-Ricci tensor for timelike vector fields and with bounded
weighted function f, we have that f does not depend on the parameter of the flow
associated to the Killing vector field % =Y. Hence, we can see that it is reasonable
to consider static spacetimes M"™ x, R; endowed with a weighted function f does not
depend on the parameter ¢ € R. For sake of simplicity, we will denote such an ambient
space by

My xa Ry
and from now on this notation will be used without further comments.

Aassociated with a spacelike hypersurface x : X" < MY x, R, we will consider

the height function
h=(mg)| : X — R (1.41)

and the angle function ’
O: ¥ —» R
p = O@p) = NpE.Yp),
where N is the future-pointing Gauss map of X" and Y is the Killing vector field on

M? x4 Ry. From 1i we note that © will be always a negative function on X"
We have that

(1.42)

1
Vh = —EYT, (1.43)

where ()T denote the projection of a smooth vector field in X(M" x, R;) on X(Z").
Furthermore,
N* =N+ %@Y, (1.44)
where (-)* denote the projection of a smooth vector field in X(M" x, R;) on X(M").
From and it is not difficult to verify that the following relation holds.
|Vh|? = $|N*|§W. (1.45)

In what follows, until the end of this section, we proceed to describe the inteire
Killing graphs in (M} X, Ry). According to [30], we define the entire Killing graph
¥.(z) associated to a smooth function z € C°°(M) as being the hypersurface given by

N(2) = {¥(y,2(y)) :y € M"} C M" xa Ry,
The metric induced on M™ from the Lorentzian metric (1.39) via X(z) is given by
()= (" )m — a?d2?. (1.46)

Moreover, Y.(z) is spacelike if, and only if, a?|Dz|%, < 1, where Dz denotes the
gradient of a function z with respect to the metric (-, )5, of M™. Indeed, if ¥(z) is
spacelike, then

0 < (Dz,Dz), = (Dz, D2)y — a*(Dz, Dz)3,
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and, hence, we conclude that a?|Dz|3, < 1. Conversely, if o?|Dz[3, < 1 and X is a

vector field tangent to 3(z), we obtain, from Cauchy-Schwarz inequality,

<X7X>Z = <X*7X*>M - O‘2<D27X*>?\4 > <X*7X*>M(1 - O‘2|DZ|?\4)7

where X* is the orthogonal projection of X onto TM™. Thus, (X, X)., > 0 and

(X, X). =0if, and only if, X = 0.

The function G : M™ x R; — R given by G(y,t) = z(y) — ¢ is such that ¥(z) =

U(G1(0)). Thus, for each vector field X tangent to M" x, R;, we have
1

o’

(X, 0)0/(C) = (=8, + Dz, X).

o’

X(G) = X*(G)

Hence,
— 1
VG = —2(9t + Dz
«

is a normal vector field on G~1(0) and, consequently,
= 1
No = ¥.(VG) = =Y + 1,(D2)

is a normal timelike vector field on ¥(z). Since,

1 — 2D 2 \1/2
|N0| — ( Q | Z|M) 7
(8%

it follows that

No _ L (Y + a20,(Dz))

N =
[Nol (1 = a?|Dz[3,)"/?

(1.47)

defines the future-pointing Gauss map of ¥(z) such that its angle function © = (N,Y’)

is given by
«

0=— <
(1 —a?[Dz[3,)"/?

0.
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Chapter 2

Conformal Killing graphs in foliated
Riemannian spaces whith density:

rigidity and stability

In this chapter we investigate the geometry of conformal Killing graphs in a
Riemannian manifold M;LH endowed with a weight function f and having a closed
conformal Killing vector field V' with conformal factor vy, that is, graphs constructed
through the flow generated by V' and which are defined over an integral leaf of the
foliation V+ orthogonal to V. For such graphs, we establish some rigidity results under
appropriate constraints on the f-mean curvature. Afterwards, we obtain some stability
results for f-minimal conformal Killing graphs of W;LH according to the behavior of
1y . Finally, related to conformal Killing graphs immersed in H;LH with constant f-
mean curvature, we study the strong stability. The results presented in this chapter
are part of [35].

2.1 Some auxiliary lemmas

This section is devoted to present the analytical machinery that will be used to
establish the main results of this chapter.

Let us denote by £(M") the set of integrable functions on the weighted Rieman-
nian manifold M} with respect to the weighted volume element dy = e 7dM, where
dM stands for the volume element induced by the metric of M;. Since from we
have that

div, X = efdiv (e 7X),

for all smooth vector field X on My, it is not difficult to see that from Proposition 2.1



of [19] we get the following extension of a result due to Yau in [71].

Lemma 2.1 Let X be a smooth vector field on an oriented n-dimensional complete
weighted Riemannian manifold My with weight function [ such that divyX does not
change sign on My. If |X| € L} (M™), then div;X = 0.

The next lemma is due to Wei and Wylie [68] and it extends Theorem 7 of [71].

Lemma 2.2 All complete noncompact Riemannian manifolds endowed with a bounded
weghted function f and with nonnegative Bakry-Emery-Ricci tensor have at least linear

f-volume growth.

In the context of conformal Killing graphs immersed in a weighted Riemannian
manifold, following the same ideals of Lemma 4.3 of [37] (see also the proof of Theorem
4.2 of [36]) we obtain the following

Lemma 2.3 Let M;LH be a weighted Riemannian manifold endowed with complete
closed conformal Killing vector field V' an let ¥(z) be an entire conformal Killing graph
n H;LH, defined on some leaf M™ of the foliation V+. If ¥(z) lies between two leaves
of the foliation V* then %(z) is complete. Moreover, if |Dz| € L}(M"), then the
projection V' of V onto X(z) satisfies [V'] € L}(E(2)).

In what follows we assume that the weight function f of M;LH does not depend
on the parameter of the flow associated with the unit vector field v = —V/|V|, that is,
(Vf,v) = 0. In our next lemma, we present a suitable formula for the drift Laplacian

of Nv-

Lemma 2.4 Let M;LH be a weighted Riemannian manifold endowed with closed con-
formal Killing vector field V' having conformal factor i and such that the weight
function [ does not depend on the parameter of the flow associated to v = —V/|V|. If

Y(z) is a conformal Killing graph in H;LH, with Gauss map N given in (1.28), and
Ny 1s the smooth function on X(2) defined in then

Ag(nv) = = {Ric; (N, N) + [AP} v — V" (Hy) = n{evHy + N(yy)},  (21)

where A and Hy are the shape operator and the f-mean curvature of X(z) with respect

to N, respectively, and mf denotes the Bakry-Emery-Ricci tensor of M;LH.

Proof. According to the digression presented in Section [1.4.1] we have that (up to iso-
metry) W;LH can be regarded locally as a weighted warped product of the type (1.24).

In this setting, we have that V = a d,, ¥y = o/, v = —0,, |V| = «, and, consequently,
<vf7 0t> =0.
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Note that, from we get

where 0 = 0, — (N, 9,)N is the projection of J, on the tangent bundle of (z).
On the other hand,

O/ (Vf,N) = (Vor VI, N) + (V[,Vor N) (2:3)
= (Vo waynV /I, N) = (V [, A0,))

Now, taking into account that (Vf,8,) = 0 and denoting by V the Levi-Civita
connection on M, we have Vf = a2V f. Then,

(Va VI, N) = (Vo a2V [),N) (2.4)
= (—204’30/6]"" + a*ﬁaﬁf, N).

Hence, applying Proposition 7.35 of [62], from (2.4]) we get

(Vo.Vf.N) = (=20 %'V f +a *a 'a'Vf,N) (2.5)
= —aa Y(V[,N) = —a'a (V. N).
Substituting in equation we get that
0 (Vf,N) = —(Vf,Nya o/ = (N,0,) Hess f(N,N) = (Vf, A9, ). (2.6)

From equation (2.2) and (2.6) we conclude that

—nal0;, VH) = —na(d] ,VH;) — o/ (V[,N) (2.7)
- <N7 0t> Hessf(N, N) - a(ﬁf, A((()t—r»
On the other hand, from Proposition 2.1 of [20] we have that
A(N,ad) = —-n{ad,VH)—n{ad'H+ N(a')} (2.8)
—(N,a9;) {Ric(N,N) + |A]*}.

So, substituting in and using we obtain
A(N,ad) = —n{ad, VH;) — (N,ad;) {Ricy(N,N) + |A]*} (2.9)
—n{a'H; + N(a')} = (Vf, Al d))).

Moreover, from (|1.30) we verify that
V(N,a8,) = —A(ad]). (2.10)
We finish the proof using the equations (2.9) and (2.10)) into (1.15). m

We conclude this section by providing an explicit expression for the f-divergence
of the tangencial component V' of V' along a conformal Killing graph.
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Lemma 2.5 Let M;LH be a weighted Riemannian manifold endowed with closed con-
formal Killing vector field V' having conformal factor i and such that the weight
function [ does not depend on the parameter of the flow associated to v = —V/|V/|,
and let X2(z) be a conformal Killing graph in H;LH. Then

dinVv—r = n?/}v + TL’I]\/'Hf, (211)

where Hy is the f-mean curvature of X(z) with respect to N and ny is the smooth

function on X(z) defined in (1.29).
Proof. Since (Vf,V) =0, then, writing V =V + 7N, we get

(V£VT) = - (V[,N). (2.12)
On the other hand, from equation (8.4) of [2] we have

divV'" = napy + nny H, (2.13)

where H is the standard mean curvature of ¥(z). Hence, from (1.13)), (2.13) and (2.12)
we obtain (2.11). m

From Remark when a weighted Riemannian manifold M;LH endowed with

complete closed conformal Killing vector field V' has bounded weight function f and
nonnegative Bakry-Emery-Ricci tensor, we have that f does not depend on the param-
eter of the flow associated with the unit vector field ». In this case, we can see that
the hypotheses adopted in Lemmas [2.4 and 2.5 on the weight function f are naturally
verified.

2.2 Rigidity results for conformal Killing graphs in
—n+1

M

In this section we establish the rigidity results related to conformal Killing graphs
—n+1

in M,

Theorem 2.6 Let M;LH be a weighted Riemannian manifold endowed with complete
closed conformal Killing vector field V' and such that the weight function f does not
depend on the parameter of the flow associated to v = —V/|V|, and let 3(z) be an entire
conformal Killing graph in M;LH, defined on some leaf M" of the foliation V*, which
lies between two leaves of V+. Suppose that the [-mean curvature H; (not necessarily
constant) of X.(z) satisfies the following inequality

0< Hf < Hf, (2.14)

where Hy is the f-mean curvature of M" given in (L.22). If |Dz| € L}(M"), then
¥(z) is isometric to a leaf of V*.
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Proof. Let 6 be the angle between v and N. From (2.11]) and (2.14), we get
dinVT =n|V|{H; — Hfcos0} > n(l —cos8)H|V| > 0. (2.15)

On the other hand, from Lemma we obtain that X(z) is complete and |[VT| €
L}(2(z)). Consequently, we can apply Lemma [2.1{to guarantee that div,V" vanishes
identically on X(z). Therefore, returning to we conclude that cosf = 1 on X(2),
that is, the unit vector fields NV and v determine the same direction on ¥(z) and, hence,
¥(2) must be isometric to a leaf of the foliation V-. =

From the analysis of the sign of div; (V'7) in the proof of Theorem we obtain
the following

Theorem 2.7 Let H;LH be a weighted Riemannian manifold endowed with complete
closed conformal Killing vector field V' and such that the weight function f does not
depend on the parameter of the flow associated to v = —V/|V|, and let X(z) be an
entire conformal Killing graph in M;LH, defined on some leaf M™ of the foliation V+,
which lies between two leaves of V*. Suppose that the f-mean curvature H; of $(z) is
constant and satisfies
0< Hy<Hy,
where H; is the f-mean curvature of M™ given in (L.22). If |Dz| € L}(M™), then

Y(z2) is either f-minimal or isometric to a leaf of V*.

In the case that the ambient space in the Theorems and 2.7 is a weighted
warped product of the type (1.25)), noting that #,; admits the expression (1.26f), we
get the following results:

Corollary 2.8 Let 3(z) be an entire conformal Killing graph in a weighted warped
product R x, M7, defined on a slice M = {to} x M", ty € R, which lies in a slab of
R x, My. Suppose that the f-mean curvature H; (not necessarily constant) of X(z)
satisfies the following inequality

O0<aH;<da.
If |IDz| € L3(M?), then X(z) is isometric to slice {t} x M", for some t € R.

Corollary 2.9 Let 3(z) be an entire conformal Killing graph in a weighted warped
product R x,, M7, defined on a slice M}, = {to} x M", ty € R, which lies in a slab of
R x, M7. Suppose that the f-mean curvature Hy of X(z) is constant and satisfies

0<aH;<d

If |Dz| € L3(M}}), then X(2) is either f-minimal or isometric to slice {t} x M", for
some t € R.
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Continuing with our study, if the f-mean curvature of the conformal Killing graph
and the conformal factor of the conformal Killing vector field have opposite signs, we
have established the following result.

Theorem 2.10 Let H;LH be a weighted Riemannian manifold with nonnegative Bakry-
Emery-Ricci tensor mf, endowed with complete closed conformal Killing vector field
V' having conformal factor ¥y and such that the weight function f is bounded. Let X(z)
be an entire conformal Killing graph in M;LH, defined on some leaf M" of the folia-
tion V*, which lies between two leaves of V*, and with Gauss map N given in .
Suppose that ¢y and the f-mean curvature H; of 3(z2) verify one of the following
conditions:

(a) Hy > 0 and ¢y <0 on X(z);
(b) Hf <0 and ¢y > 0 on X(z).

If the norm of the second fundamental form |A| of ¥(z) is bounded and |Dz| € L;(M"),
then 3(z) is totally geodesic and mf in the direction of N wvanishes tdentically. In
addition, if X(2) is noncompact and the Bakry-Emery-Ricci tensor of L(z) is also

nonnegative, then Y(z) is isometric to a totally geodesic leaf of V.

Proof. First of all, we note that f does not depend on the parameter of the flow
associated with v (see Remark [1.5)).

Since the support function 7y defined in is negative, from either item (a)
or (b) jointly with equation we obtain that div; (V') does not change sign on
%(2). Since (2) lies between two leaves of the foliation V- and |Dz| € L}(M"), from
Lemma we obtain that X(z) is complete and [V'| € £3(X(2)). So, Lemma
gives div; (VT) = 0 on X(2). Therefore, 1y = 0 and H; = 0 on (z).

Now, considering (2.1)), we obtain

Ay(ny) = — {Ricy (N, N) + [A*} v > 0
on X(z). Moreover, we note that the boundedness of |A| on X(z) gives
V| < JA[VT] € L3(2(2)).
Applying again Lemma we get As (ny) = 0 on X(2) and, consequently,
Ricy(N,N) + |A]* =0

on ¥(z). Since Ric;(N,N) > 0, we get Ric;(N,N) =0 and A = 0 on %(2), that is,
¥(2) is totally geodesic.
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Proceeding, in view of (1.30), we obtain that V7, = 0 on X(z) and, hence,
ny = (V, N} is constant and nonzero on X(z). On the order hand, since V' is parallel
on X(z), from ([1.19) we have that (V, V) is constant on M;LH. Thus,

VT2 = |V = (V,N)N]? = (V,V) — (V,N)? (2.16)

is also constant on X(z). Therefore,
+00 > / VT du = |V T vols(2(2)), (2.17)
3(z)

where vol;(X(z)) is the weighted volume of ¥(z). If, in addition, we assume X(z)
is noncompact and that the Bakry-Emery-Ricci tensor of X(z) is also nonnegative,
Lemma, gives vol;(X(z)) = 4oc and, consequently, the only possibility that we

have for validity of (2.17) is that |[V''| = 0 on X(2). Thus, from (2.16]) we get
(V. N) = VI

Therefore, Cauchy-Schwarz inequality gives that V is parallel to N and, hence, 3(z)
must be isometric to a totally geodesic leaf of V. =

When the f-mean curvature of a conformal Killing graph and the conformal factor
of the conformal Killing vector field have the same sign, we have the following

Theorem 2.11 Let H;LH be a weighted Riemannian manifold with nonnegative Bakry-
Emery-Ricci tensor Ricy, endowed with complete closed conformal Killing vector field
V' having conformal factor ¥y and such that the weight function f is bounded. Let X(z)
be an entire conformal Killing graph in M;LH, defined on some leaf M" of the folia-
tion V*, which lies between two leaves of V*, with Gauss map N given in , and
with norm of the second fundamental form |A| and f-mean curvature H; both bounded.
Suppose that |Dz| € E}(M"), Hy has the same sign as ¢y and

1 9y

Y < n(HH? 2.1

where t € R is the parameter of the flow associated with the unit vector field v =
—V/|V|. Then %(z) is totally geodesic and Ric; in the direction of N vanishes iden-
tically. In addition, if ¥(z) is noncompact, (V, V') is constant on X(z) and the Bakry-
Emery-Ricci tensor of X(2) is also nonnegative, then %(z) is isometric to a totally
geodesic leaf of V*+.

Proof. We have that f does not depend on the parameter of the flow associated with

v (see Remark [L.5). From (1.20) we observe that

_ 1 0
N(yy) = (N,Viyy) = —V(¢V) Ny = —m%ﬁva

T (2.19)
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where 7y is the negative support function defined in (1.29). Thus, in (2.1)) we have

ﬂ&/}\/
vl ot

Ap(nv) = —n(VH;, V) — {Riep(N, N) + A} gy — naby Iy +
From hypothesis (2.18)), we get
Ap(ny) > —n(VH;, V) — {Rics(N,N) + |A} gy — noy Hy — n?(Hy)?ny. (2.20)
Now, let us consider on ¥(z) the smooth vector field

X =Vny +nH V'

Since Y(z) lies between two leaves of the foliation V= and |Dz| € L;(M"), from
Lemma 2.3 we obtain that ¥(z) is complete and [V''| € £3(%(2)). Then, from (1.30)
we obtain

|X] < {JA]+ | Hg}V | € L3(2(2)),

since Hy and |A| are bounded on ¥(z),
Moreover, from (|1.13)), (1.14), (2.11)) and (2.20) we have

div, X = As(py) +n(VH;, V) +nH;div; (V) (2.21)
> —n(VH;, V) — {Ricy(N,N) + |A*} v

—ngpy Hy — n®(Hg)*ny +n{VH;, V)

+n*y Hy +n?(Hp )y
= — {Ric;(N,N) + |A*} v + n(n — )¢y Hy > 0,

where in the last inequality we used that 7y is negative, Ric; is nonnegative and
the assumption that H; and ¢y have the same sign on ¥". Thus, Lemma [2.1] gives
divyX = 0 on X(2). Therefore, by returning to we obtain that Ric;(N,N) =0
and X(z) is totally geodesic.

Finally, if ©(2) is noncompact, (V, V) is constant on X(z) and the Bakry-Emery-
Ricci tensor of ¥(z) is also nonnegative, then holds and we can reason as in the
last part of the proof of Theorem to conclude that X(z) is isometric to a totally
geodesic leaf of V. m

If the ambient space M;LH in Theorems [2.10[ and [2.11|is a weighted warped pro-

duct R x, M}, we observe that the hypotheses about the Bakry-Emery-Ricci tensor of
M;LH and the weight function f can be disregarded, because in this case we already
have to the weigted function f does not depend on the parameter of the flow asso-
ciated with the unit vector field —¢,. Hence, when M;LH =R x, M}L we have that
Theorems and can be rescripted, respectively, in the following way.

Corollary 2.12 Let R x, M} be a weighted warped product with bounded weight func-
tion [ and let 3(z) be an entire conformal Killing graph in R Xo M7, defined on a slice
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Mp = {to} x I, ty € R, which lies in a slab of R x, M7, and with Gauss map N
given in . Suppose that the warped function o and the f-mean curvature H; of

Y(z) verify one of the following conditions:
(a) Hf > 0 and o/ <0 on 3(2);
(b) Hy <0 and o' > 0 on 3(z).

If the norm of the second fundamental form |A| of £(2) is bounded and |Dz| € L3(M}),
then X(2) is totally geodesic and the Bakry-Emery-Ricci tensor of R X, M} in the
direction of N wvanishes identically. In addition, if () is noncompact and the Bakry-

Emery-Ricci tensor of ©(2) is nonnegative, then L(2) is isometric to a totally geodesic
slice {t} x M", for same t € R.

Corollary 2.13 Let R X, M} be a weighted warped product with bounded weight func-
tion [ and let 3(z) be an entire conformal Killing graph in R Xo M7, defined on a slice
My = {to} x M", ty € R, which lies in a slab of R x, My, with Gauss map N given
n , and with norm of the second fundamental form |A| and f-mean curvature
Hy both bounded. Suppose that |Dz| € L;(M[), H; has the same sign as the derivative
of the warped function o and

o < —na (Hp)?.

Then %.(z) is totally geodesic and the Bakry-Emery-Ricci tensor of R X, M} in the
direction of N vanishes identically. In addition, if X(2) is noncompact, (V, V') is con-
stant on X(z2) and the Bakry-Emery-Ricci tensor of (2) is nonnegative, then Y(2) is
isometric to a totally geodesic slice {t} x M", t € R.

2.3 Stability of f-minimal conformal Killing graphs

Let M;LH be a weighted Riemannian manifold, with weight function f and en-
dowed with closed conformal Killing vector field V', and let 2 : £(z) & M;LH be an
conformal Killing graph with Gauss map N defined in (1.28)). In this setting, we denote
by d¥(z) the volume element with respect to the metric induced by z : 3(2) & H;LH
and we mean by C§°(X(z)) the set of all functions of class C* on X(z) supported
compactly.

It is well known that, given a function ¢ € C§°(X(z)) there exists a normal

variation with compact support an fized boundary
xs:2(z) = H;LH, for s € (—e,€), (2.22)
of z:X(2) & H;LH, that is,
(1) x5 = Id outside a compact subset of X(z);

33



(#1) for s € (—¢,€), the map z, : X(2) — H;LH is a immersion such that z(p) = z(p)
for all p € 3(z);

(1ii) xs(p) = p for all p € 9X(2).

Moreover, associated with x, : X(z) — M;LH we have that the variational normal field
is /N and the first variation of the weighted area functional

Ap: (—e,6) - R

s —  Ays(s) = Areay <xs(2(z))) :/ dus , (2.23)
3(z)

where du, = ¢ /d%(2), and dX(z), denotes the volume element of ¥(z) with respect

to the metric induced by z, : X(2) — W;LH, is given by (see, for instance, [23], Lemma

3.2)

(A = 0 = [ el (2.24)

ds
As a consequence, x : X(2) & H;LH is a f-minimal if and only if J,, (A;) = 0 for every
smooth function ¢ € C§°(X(2)). In other words, f-minimal conformal Killing graphs
in W;LH are characterized as critical points of A;.
The stability operator of this variational problem is given by the second variation
formula for the f-area, which in our case is written as follows (see Proposition 3.5
of [23] for H; = 0)

) = G = - [ ersterin (2.25)

with
Ly = Ag + |A]* + Ricg(N, N),

where A, is the drift Laplacian operator on X(z), N is the Gauss map of X(z), |A]
denotes the length of the shape operator A of X(z) and Ric; is the Bakry-Emery-Ricci
tensor of W;LH.

For f-minimal conformal Killing graphs in W;LH, the above discussion motivates
the following notion of stability.

Definition 2.14 Let M;LH be a weighted Riemannian manifold, with weight function
[ and endowed with closed conformal Killing vector field V, and let x : X(2) M;LH
be a f-minimal conformal Killing graph. We say that x : X(2) H;LH is Ly-stable if

02 (Ag) >0 for every ¢ € C§°(X(2)).

In order to proof our main theorem in this section, we will need to use the following
auxiliary result, which gives a sufficient condition for a f-minimal hypersurfaces be L -
stable.
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Lemma 2.15 Let M;LH be a weighted Riemannian manifold, with weight function f

and endowed with closed conformal Killing vector field V, and let = : 3(z) ¢ M;LH

be a f-minimal conformal Killing graph. If there exists a positive smooth function
u € C™(X(z)) such that Ls(u) <0, then z: X(2) H;LH is Ls-stable.

Proof. Let us assume that there exists such a function u and take ¢ € C§°(X(2)).

Then, we can choose p € Ci°(X(2)) satisfying ¢ = ou. Hence, from (1.16)) and ([2.25))
we have

2 — —

52 (Af) = / L) dn /  ouLslow)dn (2.26)
- _ /E( | (gzuLf(u) + 0u*As(0) +20u(Vo, Vu}) dp
> /  (0u(0) +20u(Ve, Vi)~ 0w (Vo V1)) dp

1
= [ (0980 + 596 9 — 0029091} ) .
¢
On the other hand, we can see that
div(u®Vo?) = (Vu?, Vo?) + u*A(0?) = (Vu?, Vo) + 20u*A(p) + 2u*|Vo|*.

Therefore, from the weighted version of divergence theorem (see Lemma 2.2 of [21]),
we get from last equation together with (2.26) that

L.
637 (Ag) > —/E( | (5 div(u?V?) — u?|Vo|? — pu(Vo, Vf>) dp
1
= —/ (5din(U2V92)—U2|VQ|2) dp = / u?|Vol*dy > 0
2(z) 2(z)

and, therefore, z : ¥£(2) H;LH is Ly-stable. m
Now, analyzing the behavior of the conformal factor ¥y, along a conformal Killing
graph, we will state and prove our main result concerning L-stability. In what fol-

lows, t € R denotes the parameter of the flow associated with the unit vector field
v = =V/|V].

Theorem 2.16 Let H;LH be a weighted Riemannian manifold nonnegative Bakry-
Emery-Ricci tensor, endowed with complete closed conformal Killing vector field V
having conformal factor ¢ and whose weight function f is bounded, and let z : 3(2) ¢+

H;LH be a f-minimal conformal Killing graph.

(a) If 6(9% <0 on X(z) then x : ¥(z) M;LH is Lg-stable.

(b) If ¥(z) is compact and Iy >0 on X(z) then x : ¥(z) & H;LH is L;-stable if
and only if Yy is constant on X(z).
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3, —n
(¢) If ¥(z) is compact and Ky > 0 on X(z) then z : ¥(z) & ]\4f+1 cannot be

ot
L¢-stable.

Proof. We have that f does not depend on the parameter of the flow associated with v
(see Remark [1.5). On (z), we consider the smooth positive function u = —7y, where
ny is defined in (1.29). Then, from (2.1) and (2.19) we obtain

n (9?/)\/

L = — —— 2.27
and, with a direct application of Lemma [2.15] the result of item (a) is obtained imme-
diately.

Now, let us consider (b). Note that in this case C§°(2(z)) = C*(X(2)). So, if
x:X(z) % M;LH is Ls-stable, from Definition [2.14] and equation (2.27) we get

2 U2 (9?/)‘/
%(2) si(z) V]

0
which guarantees us % =0 on X(2). The converse follows from item (a).
=5 n+1

Finally, we prove (c). Assuming the opposite, if we would have z : 3(2) & M,
L s-stable then, from the analysis of signals studied in (2.28]), we obtain

U2 (9?/)\/
Og—n/ WY 4 <,
s V] Ot

which is absurd. m
When the ambient space is a weighted warped product of the type (1.25)), we can
apply Theorem to obtain the following result.

Corollary 2.17 Letz : X(2) + R X, M} be a f-minimal conformal Killing graph.

(a) If the warping function o satisfies o < 0 on X(z) then x : X(z) & R xo My is
L¢-stable.

(b) If X(2) compact and the warping function o satisfies o > 0 on X(z) then x :
Y(z) ¥ Rx, My is Lg-stable if and only if o = at+b on £(2), for some a,b € R.

(¢) If X(2) compact and the warping function o satisfies o > 0 on X(z) then x :
Y(z) % H;LH cannot be Ly-stable.

2.4 Stability of constant f-mean curvature conformal
Killing graphs

Let M;LH be a weighted Riemannian manifold, with weight function f and en-
dowed with closed conformal Killing vector field V', and let 2 : £(z) & M;LH be an
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closed (that is, compact and without boundary) conformal Killing graph with Gauss
map N defined in given in ([1.28]).
In what follows we consider the set

g:{wecw@(z)) : /E(z)wduﬂ}a

formed by all the smooth functions on ¥(z) with weighted integral mean equal to zero,
where du = e /dX(z) and d¥(z) is the volume element with respect to the metric
induced by z : ©(2) 3 H;LH

According the ideas established in the Lemmas 2.1 and 2.2 of [8] (see also Lemma

3.2 of [23]), every smooth function ¢ € G induces a normal variation (namely, a smooth

function of form (2.22)) checking only item (i7)) of z : £(2) % H;LH, with varia-

tional normal field ¢ N and with first variation J, (A) of the weighted area functional
A; o (—€,€) > R, defined in (2.23), given by the expression (2.24). As a consequence
of (2.24), any closed conformal Killing graph = : ¥(z) 3~ M;LH with constant f-mean

curvature H; is a critical point of A, restricted to all functions ¢ belonging to G.
Geometrically, this condition means that the variations under consideration preserve
a certain weighted volume function (for more details, see Section 3 of [23]). For these
critical points, Proposition 3.5 of [23] (see also Proposition 2.5 of [8]) asserts that the
stability of the corresponding variational problem is given by the second variation
07 (Ag) = — ) {As(9) + (|AP +Rics (N, N)) () } pdu (2.29)

where A, is the drift Laplacian operator on X(z), N is the Gauss map of X(z), |A]
denotes the length of the shape operator A of X(z) and Ric; is the Bakry-Emery-Ricci
tensor of W;LH.

From , let us now note that o7 (Ay) depends only on ¢ € C*(%(z)). The
following notion of stability now makes sense.
Definition 2.18 Let H;LH be a weighted Riemannian manifold, with weight function
[ and endowed with closed conformal Killing vector field V, and let x : X(2) H;LH
be a closed conformal Killing graph with constant f-mean curvature Hy. We say that
x:X%(z) P H;LH is strongly f-stable when 62 (Ay) > 0 for every ¢ € C=(%(z)).

We are now in position to state and prove the following rigidity result for strongly
f-stable conformal Killing graphs.

Theorem 2.19 Let H;LH be a weighted Riemannian manifold nonnegative Bakry-
Emery-Ricci tensor, endowed with complete closed conformal Killing vector field V
having conformal factor ¢, and whose weight function f is bounded. Let x : ¥(z) ¢+
M;LH be a strongly f-stable closed conformal Killing graph. Suppose that

6(;/}—2/ > maX{wva,O}, (230)
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where t € R is the parameter of the flow associated with the unit vector field v =
—V/|V|. If the set where ¥y = 0 has empty interior in X(z2), then X(2) is either

f-minimal or isometric to a leaf of the foliation V*.

Proof. As seen in Remark we have that f not depend of ¢ € R. Let us consider in
W;LH the global parametrization (|1.23). Since z : ¥(z) 3~ M;LH is strongly f-stable,

it follows from Definition and (2.29) that

s {A7(0) + {Rics (N, N) + AP} o} pdu > 0, (2.31)

for all ¢ € C*°(X(z)). In particular, since H; is constant on ¥(z), taking the negative
function 7y defined in (1.29) we get from (2.1)) that

As(ny) + {Rics (N, N) + [AP}yy = —n{uv Hy + N(dy)}.

Thus, from (2.31) we have that

o ){?/}VHf + Ny )} nv du > 0. (2.32)

On the other hand, it follows from ({1.20) that

Nliv) = (N, i) = w(wr) (N, ) = ~ 2L cosd,

where 6 is the angle between N and —v. Substituting the above into (2.32)), we finally

arrive at

/ (Q/JVHf _ v COS@) |V|cos@du > 0.

Now, from (2.30) we obtain

0 < / {Q/JVHf _ Oy COSQ} |V|cos@du
(z) ot

< / (1—0059)&/}—‘/|V|0059du < 0.

Hence,

oy oy
W =0 and o1 = —1/1va

on X(z). But, since H; is constant on X(z), 3(2) is either f-minimal or H; # 0 on

(1 — cosb)

¥(2). If this last case occurs, the condition on the zero set of ¢y on ¥(z) together with

the above give Oy # 0 on a dense subset of X(z) and, hence, cos# = 1 on this set.
By continuity, cos# = 1 on X(z). Therefore, in this case, X(z) must be a leaf of the
foliation V+. m

We close this chapter observing that, when the ambient space is a weighted
warped product of the type (L.25), we can apply Theorem 2.19| to obtain the following

result.
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Corollary 2.20 Let x : X(z) & R x, My be a strongly f-stable closed conformal
Killing graph. Suppose that the warped function o satisfies

a” > max{a'H;,0}.

If the set where o/ = 0 has empty interior in X(z), then X(z) is either f-minimal or
isometric to the slice {to} x M™, for some {3 € R.
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Chapter 3

Uniqueness for the weighted mean
curvature equation in weighted Killing

warped products

In this chapter, our purpose is to obtain uniqueness results related to the mean
curvature equation for entire Killing graphs constructed over the base M" of a weighted
warped product of the type M} x, R with warping function « and density f. For this,
we establish a suitable f-parabolicity criterion and, under appropriate constraints on
the Bakry-Emery-Ricci tensor and on the f-mean curvature, we prove some rigidity
results concerning two-sided hypersurfaces immersed in M} X,R. The results presented
in this chapter are part of [32].

3.1 A f-parabolicity criterion for two-sided hypersur-
faces in (M" x, R);

Following the ideas of [40, Subsection 4.3], our aim in this section is just to obtain
a f-parabolicity criterion for two-sided hypersurfaces immersed in a Killing warped
product.

Given a weighted manifold M;LH, we define, for any compact subset K C X7,
the f-capacity of K as being

cap;(K) = inf{ /_|Vu|2du . u € Lipy(M) and u|x =1 },
17

where dy is the volume element in VA given in (1.10) and Lip,(M) is the set of all
compactly supported Lipschitz functions on M. The following statement relates



the notion of f-capacity to the concept of f-parabolicity (cf. [50, Proposition 2.1]).

Lemma 3.1 The weighted manifold M;LH is f-parabolic if and only if cap;(K) = 0

for any compact set K C H”H.

Let us recall that given two Riemannian manifolds (M ™', (-, )5 ) and (A", (-, 57
a diffeomorphism ¢ from M "' onto M s called a quast-isometry if there exists a
constant ¢ > 1 such that

¢ Moty < ldep()] g < vl g

for all v € T,M and any p € M ™" (see [565] for more details). In this case, given
a smooth function f : A R, we can reason as in [49, Corollary 5.3] to verify
that the (f o y)-capacity of compact subsets in M "*! changes under a quasi-isometry
at most by a constant factor of the f-capacity of compact subsets in M"". From
Lemma it is not difficult to see that we obtain the following result (for a proof, see

[38, Lemma 2]).
Lemma 3.2 Keeping the same notation above, we have:

(a) Given a quasi-isometry ¢ : M" — M and a smooth function f : A
R, M s f-parabolic if and only if M "™ is (f o )-parabolic;

(b) Let M be the universal Riemannian covering of M ™ with canonical projection
s M — ML If M ois (f o wa)-parabolic, then M ™ is f-parabolic.

Recall that every connected manifold M " has universal covering, that is, there
exist a simply connected manifold M (called the universal covering of M ""!) and a
smooth map 7y : M — M1 (called the covering map) such that each point p € M ™"
has a connected neighborhood U that is evenly covered by m,,, that is, m); maps each
component of 7,/ (U) diffeomorphically onto U (for more details, see [62, Appendix
A]). Moreover, if M ™! is a Riemannian manifold, then it is possible to give M a
Riemannian structure such that the covering map 7, : M — M™'is alocal isometry.
In this case, M is said the universal Riemannian covering of M "1 (cf. [43} page 152]).

From now on, we will denote by M the universal Riemannian covering of the
base M"™, with projection 7 : M > M " and f will denote the composition f o 7.
In this setting, we have the following f-parabolicity criterion for complete two-sided
hypersurfaces into weighted Killing warped products.

Proposition 3.3 Let (M" x,R); be a weighted Killing warped product and let
z: X" (M xo R); be a complete two-sided hypersurface such that the function

n = (3.1)

@l e
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15 bounded and strictly positive on X", where © is the angle function of x : X"
(M" x4 R); defined in (1.33). If M" has f-parabolic universal Riemannian covering,
then X" s f-parabolic.

Proof. From Lemma [3.2] we have that
(1) f-parabolicity is invariant under a quasi-isometry;

(#) if the universal Riemannian covering S of I" is (f o my)-parabolic, then X" is
also f-parabolic.

Denoting m = 7y o x, m, = dm and h, = dh, for any tangent vector v € T),> and
some p € X", from Cauchy-Schwartz inequality we have that

(v,0) = (mov, )y + a*(ho, haog < (T, 7o)y + 2| Vh|[*(v,v),

and then
(1= ®|Vh]?) (v,v) < (mou, mo)u.

By definition of the function 1 and from we get
—(v,v) < (M, T0) .
Taking into account our hypothesis, we have that
c Hu,v) < (mow, Ty, (3.2)
where

c = supn® > L
»n

Consequently, 7 is a local diffeomorphism and we can reason as in the proof of [43]
Lemma 7.3.3] (see also [56, Lemma 8.8.1]) to conclude that = is a covering map.
On the other hand, we see that

(v,v) = (mu, Ty + & {(hao, hao)p > (T, ).

Since ¢ > 1, we obtain that

(mov, m)y < (v, v). (3.3)
It follows from (3.2)) and (3.3) that
c Yo, mw) < (v,0) < clmo, o). (3.4)

So, let 3. be the universal Riemannian covering of X" with projection 7y : I

3", Then, the map 7y = momny : ¥ — M" is a covering map. Now, if M is the
universal Riemannian covering of M"™ with projection 7 : M — M™, then there exists
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a diffeomorphism ¢ : > — M such that 7 o @ = my. Moreover, ¢ is a quasi-isometry.
Indeed, if v is a tangent vector at some point of ¥, from (3.4) we have that

{(pov, pu0)p = (Tulpuv), Tl = ((70)s, (m0)w0) ua

= (ml(mo)wv), ml(mo)v)lu < e{(ms), (me)v)s = e(v,v)s,

Analogously, we obtain
(P, 0u0) 37 2 c Hu, U)s.
Therefore, since the universal Riemannian covering of M ™ is f—parabolic, it follows
that the universal Riemannian covering of 3" is ( f o7y; )-parabolic and, hence, X" must
be also f-parabolic. m

When the ambient space is just a weighted product space (M" xR), from Propo-
sition [3.3] we get the following f-parabolicity criterion.

Corollary 3.4 Let (M" xR); be a weighted product space and let x : X" & (M"™ xR);
be a complete two-sided hypersurface such that the angle function © given in 8
bounded away from zero. If M" has f—pambolic universal Riemannian covering, then
¥" is f-parabolic.

3.2 Rigidity results for two-sided hypersurfaces in
M} %o R

In our first rigidity theorem for two-sided hypersurfaces immersed in My x, R,
we deal with a specific weighted function f = loga?. We note that it will not be
assumed the constancy of the log a?>-mean curvature Hiog o2 of the hypersurface.

Theorem 3.5 Let M"

log

has log & ?-parabolic universal Riemannian covering. Let x : ¥" 9 M{égag Xqo R be

a complete two-sided hypersurface such that the function n = a/© defined in (3.1)
is bounded and strictly positive. Suppose that the log a*-mean curvature H,z,2 and

42 Xa R be a weighted Killing warped product whose base M"

the function (Va,Vh) have opposite signs on X", where h is the height function of
r X" ]\41"ga2 Xqo R given in (1.32). If X" is contained in a slab of M ., X, R,

o log o

then x(X") is a slice M™ x {ty}, for some ty € R.
Proof. From [39, Lemma 2|, we have
Ah = na ?0 Hygae. (3.5)
Then, from and ,
Ajpgarh = na 20 Hypg 2 — (Vloga®, Vi) = na 20 Hygor — %(Voz,Vh}.
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Taking into account that M., and the function (Va, Vi) have opposite signs on X7,
we conclude that Ay, ,2h does not change sing on X". But, since X" is contained in a

slab of Mg, 2 %R, Propositionguarantees the log a’>-parabolicity of ¥". Therefore,

h must be constant and, consequently, x(X") is a slice M" x {{y}, for some {, € R. =
From Theorem We obtain the following rigidity result for log a?-minimal com-

i1

plete hypersurfaces immersed into ]\4log o2 Xa R

Corollary 3.6 Let M, e Xa R be a weighted Killing warped product whose base M"

O,

has log & 2-parabolic universal Riemannian covering. Let x : X" & M" , X, R be a

log a

log a®-minimal complete two-sided hypersurface contained in a slab and such that the
function n = /O defined in 1s bounded and strictly positive. If the function
(Va,Vh) does not change sign on X", where h is the height function of x : ¥"
M, 2 %o R given in ([1.32), then 2(3") is a slice M x {to}, for some ty € R.

log a

We can obtain an equation similar to (3.5) involving the log a?-Laplacian and
the standard mean curvature of x : ¥" & M

log o

_5 X4 R to get the following result for
minimal complete hypersurfaces.

Theorem 3.7 Lei M"

log

has log & ~2-parabolic universal Riemannian covering. Let x : X" & Mg, 2 xa R

o2 Xa R be a weighted Killing warped product whose base M"

be a minimal complete two-sided hypersurface such that the angle function © defined
in (1.33) is strictly positive, the function n = a/© given in (3.1)) is bounded and
infa > 0. (3.6)

¥

If the Bakry—Emery—Ricci tensor Riciog o2 of 21 X" &= M{Lga,Q X R satisfies Ricipg o2 >

O,

Kk, for some positive constant k € R, then x(X") is a slice M™ x {ty}, for some ty € R.

Proof. Firstly, observe that

Ah = Div(Vh) = a2<Voz*2,Vh>+na*2H@ = <Vloga*2,Vh> +na ?HO.

So, from this last equation and from ((1.15) we get
Aoga—2h = na?HO (3.7)

On the other hand, from Bochner’s formula applied in 3" with density log a2 (see [68]
page 378]) we have that

1
5 Ajoga-2|VR]* = |Hess h|> + Ricioga-2(Vh, Vh) + (VApga-2h, VA). (3.8)

44



Now, taking into account our restriction on Ricjg,-2 and the the minimality of x :
X" % M 2 Xa R, from (3.7) and (3.8) we obtain

1
5AlogaszhF > Ricioga-2(Vh,Vh) > k|Vh]* > 0. (3.9)

Moreover, from ([L.36), the condition implies in the boundedness of |[VA|? on
3. Thus, since Proposition assures us that X" is log o 2-parabolic, from we
must have that |[Vh|? is constant on £". Returning to (3.9), we obtain that |[VA| =0
on X" and, therefore, there exists ¢ty € R such that z(X") = M"™ x {tq}. =

When the ambient space is a weighted product space M} x R, we obtain the
following rigidity result which can be regarded as an extension of [40), Theorem 7].

Theorem 3.8 Let M} X R be a weighted product space whose base M™ has f pambolzc
universal Rzemanman covering and Bakry-Emery-Ricci tensor Ric 7 satisfying Rle
—k, for some positive constant k € R. Let x : X" & M} X R be a complete two-sided
hypersurface with constant f-mean curvature, such that the angle function © defined
in (1.33) is bounded away from zero. If the height function h of x : X" % My xR
satisfies

VA < £|A|2, (3.10)

for some constant ¢ € (0,1), then x(X") is a slice M™ x {tq}, for some ty € R.
Proof. Since H; is assumed to be constant, from [39, Lemma 1] we get
AO = — (fﬁcf(N*,N*) n |A|2) o. (3.11)

Moreover, since we are assuming that © is bounded away from zero, for an appropriate
choice of Gauss map N of z: ¥" & M7 x R we get that © > 0 on X"
Thus, taking into account our constraint on Ric, from ([1.36]) and (3.11)) we obtain

Ar© < —(JA]? — k|VR[?) ©. (3.12)
Using hypothesis (3.10)), from (3.12)) we have that
AO < —(1-0o)APO < 0. (3.13)

Consequently, from we get that the angle function © is a positive f-superharmonic
function on X". Hence, we can apply Corollary [3.4) to guarantee that © must be con-
stant on ¥". So, returning to we see that X" is totally geodesic. Therefore,
hypothesis assures that h is constant on X" and, consequently, there exists
to € R such that 2(X") = M" x {t;}. =
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3.3 Entire Killing graphs and the f-mean curvature
equation in My x, R

In this section we present the main results of this chapter, namely, uniqueness
results for the f-mean curvature equation of entire Killing graphs constructed over the
base M" of a weighted Killing warped product M} X, R.

The shape operator A : X(X"(z)) — X(X"(2)) of the entire Killing graphs ¥"(z),
presented in section with respect to Gauss map N given in is

3(DxDz,D 2(Da, X)|Dz|?
AX = > DxDz - a{Dx Dz, Z:;>/2D2’—a< @, X)| Zl%
(1+a?|Dz[3)) (1+a?|Dz[3)) (1+a?|Dz[3))
Da, X Dz, X
(1+a?[Dz[3)) (1+a?[Dz[3))

for every X € X(¥"(z)). It follows from (3.14) that the mean curvature H(z) of an
entire Killing graph ¥"(z) is given by

(3.15)

nH(z) = div( aDz ) (Dz, Da)

(1+a2[D22)Y? ) (1 +a?|Dz2)

where div(-) stands for the divergence on M™ with respect to the metric (-,-)p. A
direct computation shows that the f-mean curvature H(z) of £"(z) is given by

nH,(z) = divf< aDz ) (Dz, Da)

(L+a2Dz)"” ) (L+ 02Dzl
where div(-) is the f-divergence on M™.

In particular, an entire Killing graph ¥(z) have constant f-mean curvature if
and only if the function z € C*°(M) satisfies the following elliptic partial differential

iy, (( aDz ) N ( (Dz, Da) _c (3.16)

1+a2Dz3)? ) (14 a2(Dzf2)"?

for some constant C' € R.

equation:

In what follows, we will use the results of Section [3.2]to obtain uniqueness results
for equation (3.16)). We start by applying a consequence of Theorem to get the
following uniqueness result for log a?-minimal entire Killing graph in a weighted Killing
warped product M . x,R.

log o

Theorem 3.9 Let Mﬁgag Xq R be a weighted Killing warped product whose base M"
has log & ?-parabolic universal Riemannian covering. Suppose that the entire Killing

graph ¥"(z) associated to z € C*(M™) is such that (Va,z.(Dz)) does not change

46



stgn. Then, for all positive constant ¢ € R, the only bounded solutions of the problem

div 1oy o2 abz LDz Da) — 0. in M
TN+ aD)? ) L+ a2D2)

2Dz}, < e,
are the constant ones.

Proof.
We observe that the boundness of a?|Dz|%, is equivalent to the boundenes of

function 7 defined in (3.1f). Indeed, from (1.38]),
n = (1+a?Dz2)"*. (3.17)

Furthermore, from ([1.37) we have that

N* = No Nt = ——2%(D3) . (3.18)
(1+a?|Dzf3)"
On the other hand, we observe that
_ Ly = Ly 1
(Va,Vh) = Vh(a) = =¥T(a) = =V ((.Y)}) (3.19)
— i l<Y YY2Y YY) ) = LYWY Y)
a? \ 2 203
1 — 1 —
= 5 (VyVY) = = (Vy_ent'Y)
1 [ = — 1 —
= S5 | (VYY) —(Ven.Y) | = —— (VenYY)
0
0 — S S )
= —§<VNY,Y> = —ﬁNﬁ/,W = —ﬁN(a)
© . © .
—ﬁQQN (o) = —¥<VQ,N>

Hence, from (3.19) and (3.18) follows that

(Va,Vh) = 9<VQ ( 2.(Dz) > = ( © 1/2<6a,x*(Dz)>.

a (14 a2|Dz|2)"? a(l+a?|Dz2,)
Therefore, (Va, Vh) does not change of sign on ¥"(z) if and only if (Va, z,(Dz))

does not change of sign on ¥"(z), and the result follows from Corollary n
In our next result, we will apply Theorem [3.7] to study a problem related to

the usual mean curvature equation for minimal entire Killing graphics immersed into
M loga? Xa R.
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Theorem 3.10 Let M{égag Xq R be a weighted Killing warped product whose base M™
has log & ?-parabolic universal Riemannian covering. Suppose that the entire Killing
graph 3" (2) associated to z € C°(M") is such that infsn.)a > 0 and that the Bakry-
Emery-Ricci tensor Ricioga2 of 37 (2) satisfies Riciga2 > K, for some positive constant

k. Then, for all positive constant ¢ € R, the only solutions of the problem

) aDz (Dz, Da) B _ .
div ; vl 5 S 0, m M
(1+a?[Dzy,) (1+a?[Dzy,)

2Dz}, < o,
are the constant ones.

Proof. By the previous digression, we can conclude that an entire weighted Killing
graph X"(2) is minimal if and only if 2 € C°°(M™") satisfies the equation for
H(z) identically zero. From equation (3.17), the condition o?|Dz|3; < c ensures that
the function 7 defined in is bounded and our choice of the Gauss map
guarantees that n has strict sign. Hence, the result follows from Theorem [

For a weighted product space M} xR, we establish the following uniqueness result
for f-minimal entire Killing graphs.

Theorem 3.11 Let M} xR be a weighted product space whose base M™ has f—pambolic
universal Riemannian covering and with its Bakry-Emery-Ricci tensor Ric 7 satisfying
];/i\i/Cf > —k, for some positive constant k. Let ¥"(z) be the entire Killing graph associ-
ated to z € C*®(M™) such that |A]* < k. For any c € (0,1), the only solutions of the

problem
4
D
divf< — 1/2) = C, in M"
(1+[Dz[3,)

are the constant ones.

Proof. We note that from (1.36) and (3.18) we obtain

Dz|?
pp = D 3.20
VAl 1+ |Dz[%, (3:20)
Hence, using (3.20)), we conclude that the hypothesis (3.10) is equivalent to
c|A]”
Dz|?, < —/— .
Dl = 7= qap

Moreover, it is not difficult to verify that this previous inequality jointly with our
constraint in |A|? and ([1.38)) imply that the angle function © of ¥"(z) is bounded away
from zero. Therefore, the result follows from Theorem |
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An important example of weighted manifold is the so-called Gaussian space G",
which corresponds to the Euclidean space R" endowed with the Gaussian probability
measure

dy = (zw)*%e*@dy? (3.21)
Concerning the weighted product space G" x R, Hieu and Nam extended in [53, Theo-
rem 4] the classical Bernstein’s theorem showing that the only weighted minimal graphs
Y¥"(z) of functions z(y1,...,Yn) = Yni1 over G" are the hyperplanes y, ., = constant.

Finally, taking into account this previous digression, from Theorem [3.11|we obtain
the following uniqueness result for f-minimal entire Killing graph in the weighted
product space G" x R.

Corollary 3.12 Consider the weighted product space G" xR, where G" s the Gaussian
space which is endowed with Gaussian density [ defined implicitly by . Let ¥'(2)
be the entire Killing graph associated to z € C*(G") such that |A| is bounded. For any
positive constants Supsa . |A|I? <k and c € (0,1), the only solutions of the problem

( Dz
divy 7] = C, i G"
(1+|Dz[3,)

c|A]”
k —c|AlZ’

2
|DZ|M <

\

are the constant ones.

Proof. We have that the f-volume of G" is equal to 1 (see, for instance, the last
equation of the proof of [563, Theorem 4]). Then, [64) Remark 3] guarantees that G"
is f-parabolic. Moreover, with a straightforward computation we get that the Bakry-
Emery-Ricci tensor ];/i\i/(?f of G" satisfies the equality Ric ¢ = 1. Therefore, since G" is
also simply connected, the result follows from Theorem [ ]
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Chapter 4

Spacelike hypersurfaces immersed in
weighted standard static spacetimes:

uniqueness, nonexistence and stability

Along this chapter, in weighted standard static spacetimes, we study some aspects
of the geometry of spacelike hypersurfaces through of drift Laplacian of two functions
support naturally related to them. For such hypersurfaces, with some restrictions on
density function and the geometry of the ambient spacetime, we begin by stating and
showing some results of uniqueness and nonexistence, several of them not assuming
that the hypersurface to be of constant weighted mean curvature. Versions of these
results are given for entire Killing graphs, that is, graphs constructed over an integral
leaf of the distribution of smooth vector fields orthogonal to timelike Killing vector
field. Finally, for closed spacelike hypersurface immersed in a weighted standard static
spacetime with constant weighted mean curvature, we study a notion of stability via
the first eigenvalue of the drift Laplacian. The results presented in this chapter are
part of [33].

4.1 Uniqueness and nonexistence results in standard

static spacetimes

We begin this section by providing a formula for the classical Laplacian of the
height function of a spacelike hypersurface immersed in a standard static space M" xR
in terms of a certain weighted mean curvature. More precisely, we have the following



Proposition 4.1 Let x : X" & M"™ x, Ry be an immersed spacelike hypersurface and
let h € C*(X") be the height function defined in . Then

Ah = —na?0 Hyga2, (4.1)

where © 1is the angle function defined in and Hyog o2 18 the log a®-mean curvature
of X,

Proof. Let {F),..., E,} be an orthonormal frame defined in a neighborhood of some
point of ¥". From (1.43]) we note that

o *div (Vh) = a *div (—a ?Y")
—a72<Voz72, YT> — o *div (YT)

Va2, Vh> — o 4div (Y + ON)

—a* i(in (Y + ON), E;)

= <Vof27Vh —at - [EZ(@) (N,E;)+0( N, E >}
i=1 ——
- <VO‘72’V’”L +aetr(d) = <V0a2 Vh> ‘7O

Therefore,
Ah = div(Vh) = a2<vof2, Vh> ~na 2HO
= <V loga 2%, —a? YT> —na 2HO
= —a? <V loga 2, YT> —na 2HO
= —a? <V loga %Y + @N> —na *HO

= 2< log a2, >—a*2<VIOga*2,N>@—na72H@

= —a %0 {nH+ <V(logofz),N>} = —na ’0 Higae,

where in the last equality we use (1.12). m

o1



In order to obtain the first rigidity result of this chapter, we will need another
key lemma. The next one corresponds to Theorem 3 of [7I]. In what follows, given a

n-dimensional Riemannian manifold 3", we use the notation
LX) = {U:Z"—HR : / lu|dX <<+oo},
where d>. denotes the standard volume element of >".

Lemma 4.2 Let u be a nonnegative smooth subharmonic function on a complete Rie-

mannian manifold X". If u € L9(X"), for some q¢ > 1, then u is constant on X".
We will apply the previous lemma to get the following result

Theorem 4.3 The only complete spacelike hypersurfaces immersed into standard static
spacetime M™ x, R, with nonnegative log a*-mean curvature and whose height function
h is nonnegative and satisfies the condition h € L7 (X"), for some q > 1, are the slices
M"™ x {t}, t e R.

Proof. In fact, let x : ¥" & M"™ x, R, be such a spacelike hypersurface. Since © < 0
and Hie2 > 0 on X7, from we have that Ah > 0 on X". From Lemma
we conclude that h is constant on X" and, hence, there is ¢y € R such that z (X") =
M"™ x {ts}. =

From the proof of Theorem we get the following

Corollary 4.4 The only parabolic complete spacelike hypersurfaces immersed into stan-
dard static spacetime M"™ x, R, with nonnegative log o*>-mean curvature and lying in
a slab of M™ x, Ry are the slices M™ x {t}, t € R.

A Riemannian manifold X" is said to be stochastically complete if, for some (and,
hence, for any) (z,¢) € " x (0, +00), the heat kernel p(x,y,t) of the Laplace-Beltrami
operator A (that is, the minimal, positive fundamental solution of the heat operator
A — 0/ 0y; for more details concerning the heat kernel of the Laplace-Beltrami operator,
see [51]) satisfies the conservation property

[ ey tdets) = . 4.2

From the probabilistic viewpoint, stochastically completeness is the property of a
stochastic process to have infinite life time. For the Brownian motion on a mani-
fold, the conservation property means that the total probability of the particle to
be found in the state space is constantly equal to one (cf. [45], 49, [67]).

Any parabolic manifold is stochastically complete but the opposite implication is
not true. For example, all Euclidean spaces R" (with Euclidean measure) are stochas-
tically complete, whereas R" is parabolic if and only if n € {1,2}. On the other hand,
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Pigola, Rigoli and Setti showed that stochastic completeness turns out to be equivalent
to the validity of a weak form of the Omori-Yau maximum principle (see Theorem 1.1
of [63] or Theorem 3.1 of [64]), as can be expressed below.

Lemma 4.5 A Riemannian manifold X" is stochastically complete if and only if, for
+oo
C

every u € C*(Z") satisfying supu < +00, there exists a sequence of points {p; =1
ZTL

X" such that

lim wu(p;) = supu and lim sup Au(p;) < 0.
J—rtoo »n j—+oo
We will also need of the next lemma, which is just a consequence of a more general
extension of Liouville’s theorem due to Yau in [70].

Lemma 4.6 The only harmonic semi-bounded functions defined on an n-dimensional
complete Riemannian manifold whose Ricct curvature s nonnegative are the constant

ones.
Applying these previous lemmas, we obtain the following result.

Theorem 4.7 Let x : X" & M" x, Ry be a stochastically complete spacelike hy-
persurface which lies in a slab of M™ x, Ry. If the loga®-mean curvature Hiog,a2
of x : X" & M" x, Ry is a nonnegative constant, then x : X" & M" x, Ry is
log a?-mazimal. Moreover, if x : ¥ & M"™ x, R, is complete with nonnegative Ricci
curvature, then x (X") is a slice M"™ x {ly}, for some tq € R.

Proof. From Proposition we have that a®?Ah = —nH.,2 © on B". So, taking
into account that the height function i of 3" is bounded, from Lemma .5 we get a
sequence {pj}j:of C X" such that

0 > limsup o®Ah(p;) = nlimsup(—Higaz O(p;)) = —nHgqz liminf O(p;) > 0.
j—+oo j—+oo J—+too
(4.3)

Then, we have that H,,,2 = 0 on X" and, hence, / is harmonic on »".
On the other hand, since " lies in a slab then there exists a constant 5 such that
h — 8 > 0. Thus, if Ric > 0, then from Lemma we can conclude that & is constant
on X". Therefore, we conclude that there is ¢y € R such that z(X") = M" x {tx}. =
In particular, from the analysis of signals realized in we can established the
following nonexistence result.

Corollary 4.8 There do not exist stochastically complete spacelike hypersurface im-
mersed into standard static spacetime M"™ X, Ry which lies in a slab of M™ xRy and

whose log a®-mean curvature is a positive constant.
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In order to establish our next result, we will need of an extension of Hopf’s
theorem on a complete noncompact Riemannian manifold due to Yau in [71].

Lemma 4.9 Let u be a smooth function on a complete Riemannian manifold X", such
that Au does not change sign on X", If [Vu| € L' (£"), then Au vanishes identically

on X",
Now, we are in a position to present the following result:

Theorem 4.10 Let M" xR, be a standard static spacetime and x : X" & M"x R, be
a complete spacelike hypersurface whose log o®-mean curvature Hogo2 does not change
sign. If the gradient Vh of the height function h of x : X" & M"™ x, R, has integrable
norm on X" then x: X" & M" x, R, is log a?-mazimal. Moreover, if z (X") lies in a
slab of M"™ X, R then x (X") is a slice M™ x {to}, for some ty € R.

Proof. Taking into account our restrictions on H,,,2 and ©, from (4.1) we get that
Ah does not change sign on ©". Moreover, since |Vh| € £ (X"), from Lemma 4.9 we
get that Ah = 0 and, returning again in we have that X" is log a?-maximal.

On the other hand, from we also note that

AR? = 2hAh+2|Vh|* = 22 2|N*|* > 0. (4.4)

If we assume that = (X") lies in a slab of M" x, R then A is bounded on X". So, since
h is bounded on ©" and using once more that |[Vh| € £! (X"), Lemma 4.9 guarantees
also that Ah? = 0. Therefore, from (4.4) we obtain that N* vanishes identically on X7,
which means that /V and the Killing vector field Y are collinear. Since Y determines in
M"™ x,R; a codimension one Riemannian foliation by totally geodesic slices M"™ x {t},
t € R, we conclude that there is ¢, € R such that z (3") = M" x {t,z}. =

As a consequence of Theorem we will obtain the following non-parametric
result concerning entire Killing graphs in M" x, R; (Cf. Subsecction [1.4.4).

Corollary 4.11 Let ¥"(z) be an entire Killing graph which lies in a slab of the stan-
dard static spacetime M™ xR, whose base M™ is complete. Suppose there is a positive
constant ¢ < 1 such that the gradient Dz of the function z € C(M™) satisfies

sup o?|Dzl3m < c. (4.5)
= (z)

If the log a*-mean curvature Hi,go2 of ©"(2) does not change sign and |Dz| € L*(M"),
then X"(z) is a slice M"™ x {to}, for some ty € R.

Proof. First, from (4.5) we observe that ¥"(z) is spacelike. Now, we claim that >"(z)
is complete. Indeed, let X be any vector field tangent to X" (z). From (|1.46) and from
the Cauchy-Schwarz inequality we get

(X, X), = (X", X n — (D2, X am > (1 — a?| D23 (X, XY am.
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Then, from (4.5) we obtain

Ku(,}/) > (1 - C)l/ng”(,y*)v

where ¢.() stands for the length of a curve v on X"(z) with respect to the induced
metric (1.46) and ¢ 5/~ (7*) denotes the length of the projection v* of v onto M"™ with
respect to its metric (-, ). Consequently, since projections onto M"™ of divergent
curves on %"(z) give divergent curves on M"™ and as we are assume that the metric
(-,-)mn is complete, we can apply Hopf-Rinow theorem to conclude that the induced

metric (|1.46)) is also complete.
On the other hand, from (1.47) we obtain

1
N* = aVv,(Dz),
(1 — a?|Dz|3.)"?

So, from (1.45) and (4.5) we have that the height function h of X"(z) satisfies

1

= ——M
VAl 1 —a?|Dz|3m

1
|Dz|3 < R |Dz|3m. (4.6)

Therefore, from Theorem we get that ¥"(2) is a slice M™ x {ty}, for some ¢, € R.
u

4.2 Uniqueness and nonexistence results in weighted

standard static spacetimes

Motivated by Remark in this section we will consider standard static space-
times M} x, R, endowed with a weight function f not depending on the parameter
t € R, that is, (Vf,Y) = 0.The following key proposition provides an explicit formula
for the drift Laplacian of the angle function © defined in ([1.42).

Proposition 4.12 Let x : " & M} X, Ry be a spacelike hypersurface and let © €
C>™(X") be the angle function defined in . Then

1 — A
ArO = nY " (Hy) + (Rlcf(N* N*) — _HQSSO‘(N* NT)+©° a( - Ao

(4.7)
Here, Y is the Killing vector field on M} x, R, a = |Y| > 0, N is the unit normal
vector ﬁeld on X", Ay and Af represent the f-Laplacians on X" and M™, respectively,
Rle and Hess are the Bakry-Emery-Ricci tensor and the Hessian operator on M",
|A|? represent the square of the norm of the shape operator A of X" with respect to the
ortentation given by N and N* is the projection of N on the tangent bundle of M™.
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Proof. Firstly, since Y is a Killing vector field for any X € X(X") we have
(v0,X) = X(6) = X((N,Y)) = (VxN,V )+(N,¥x¥) = (A0 T)-Tn¥,X),

which assures us that
VO = —AYT) - (V). (4.8)

On the other hand, from we note that
nYT(H) = YT (nH;+ (V,N)) (4.9)
= YT (H)+YT <<Vf, N>)

— nYT (Hy) + (V. Tess f(N) ) + ©TTess (N, N) = (A(YT),¥F),

where we used the decomposition Y =Y T — O N.
Moreover, since f is supposed to be invariant along the flow determinate by Y,
from (4.8]) we get that

<V@,V f> - +(VyY), Y f> (4.10)
v

nYT(H) = nY T (Hy) + ©Thoss (N, N) + (VO,VF ). (4.11)

From Proposition 2.12 of [8] we have

A® = nY " (H)+ 0O (Ric(N,N) +|A]*), (4.12)
Thus, from (1.15)), and (4.11)) we obtain that
Ay© = nYT (Hy) + (Ricy(N,N) + |A]*) ©. (4.13)

Now, if we consider the decomposition N = N* + N+ of N, where (-)* denote
the projection of a vector field in X(M" x, R;) on X(R;), we have

Hess (N, N) = <VNW, N> (4.14)
= <VN§f,N* +NL>
= Hessf(N*, N*) + é@f, %>|NH2
— Hessf(N*, N*) — %<§f, %>@2.
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From Corollary 7.43 of [62] we get that

__ —_ e A
Ric(N,N) = Ric(N*, N*) — —Hessa(N*, N*) + @2(—?) (4.15)
o o
Now, from equations (L.11)), (4.14) and (4.15)), we have that
__ __ 1 — A
Ric¢(N,N) = Ricy(N*,N*) — —Hessa(N*,N*) + @2%&) (4.16)
o o

Therefore, from equations (£.16)) and (4.13) we obtain (4.7). m

Next, we obtain the following result concerning f-parabolic spacelike hypersur-

faces immersed in a weighted static spacetime. As usual, expressions that have ( - )
correspond to objects defined on M™.

Theorem 4.13 Let M} xR, be a weighted standard static spacetime with Ric F> -
for some constant k > 0, and « being a convex warping function such that (V f,Va) <
0. Let 2 : X" & My xRy be a f-parabolic spacelike hypersurface with constant f-mean
curvature and angle function © bounded from below. If the height function h and the
shape operator A of X" satisfy

&
[Vh[* < E|A|27 (4.17)

for some constant ¢ € (0, 1), then x (X") is contained in a slice M"™ x {tq}, for some
to € R.

Proof. Let us first observe that at points where N* is different from zero we have

1 — N* 2 N* N* @2 A2 N* N*
—Hessa(N*,N*) = uHesscy (— —) = 2 "% Hessa (— —)
« «

|N*|" | N~ o |N*|7 | N~
and, taking a local orthonormal frame {El = %, B, ... ,En} tangent to M", we also
have
e? - 0% — N* N* ©?
EA(@) = EHGSS (|N*| g ) —322Hessa E;, E;).
Then,

1 0% ~ 1 ~— (N* N~ 0 = o~
——Hessa(N* N*) + —A( ) = EHessa (W,W) + 3 ;HGSSCM(Ez’,Ez’)

and, from ((1.15), we get

1 ©? ~ 1 — N* N
——Hessa(N* N*)+—A (o) = —Hessa (—,—) (4.18)
T NN
2

@2 no__ 6° ~ ~
—|—§ ZHGSS O[(EZ,EZ) - E <Vf, VOZ> > 0,
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where in the last step we use the convexity of o and the hypothesis (6 fs 604} <0.
Now, noting that H; is constant, © < 0 on X" and taking into account our

constraint on Ric, from 1i and (4.18) jointly with Proposition We obtain

A;© < (=ra®|VhH|* +|AP) 6. (4.19)
Using hypothesis (4.17)), from (4.19) we obtain that
Ap(=0) > (1-c)|AP(-0). (4.20)

Hence, from we have that —© is a bounded positive subharmonic function on
3™ and, since we are assuming that " is f-parabolic, —© must be constant on 3".
So, returning to ({.20), we see that X" is totally geodesic. Therefore, hypothesis
assures that h is constant on X", that is, there exists ¢y € R such that " C M™ x {y}.
|

As a direct consequence of Theorem we get the following

Corollary 4.14 Let M} x,R; be a weighted standard static spacetime with f{ivcf > —kK,
for some constant k > 0, and « being a convex warping function such that (V f,Va) <
0. There 1s not nonzero constant f-mean curvature f-parabolic spacelike hypersurface
immersed into M} X, Ry with angle function bounded from below and such that the
height function and the its shape operator satisfy the condition , for some constant
ce (0,1).

Remark 4.15 We note that there is a large family of weighted standard static space-
times M} x, R, that satisfy the conditions of Theorem . For ezample, if we define

on M" the smooth function f = aa + b, with a < 0 and b € R, then we obtain that
(6]‘?, %a} = a|60¢|2 < 0 and the Bakry-Emery-Ricci tensor Ricy of M™ is given by
f{ivcf = Pfhvc + aﬁgs Q.

In addition, of Ric > —r, for some positive constant k, and « is chosen such that
0 < Hessa < 8 for some constant 8, then ];/i\i/Cf > —(k + |a|B). Hence, My x, Ry
verifies the requested conditions of Theorem [{.13

Another situation happens when we define on M"™ the smooth function [ = e“*+0,
with a < 0 and b € R. In this other case, with the same constraints on o and Ric

assumed in the previous case, we have that (Vf,Va) = ae"®|Va|? < 0 and
f{ivcf = Ric + a®¢**(Va, -)? + ae® Hessaw > —(k + |a|B).
Therefore, this second ambient space also contemplates the hypothesis of Theorem[{.13

In the context of Killing graphs, from Theorem we obtain the following
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Corollary 4.16 Let M} x,R; be a weighted standard static spacetime with f{ivcf > —kK,
for some constant k > 0, and « being a convex warping function such that (%f, %a} <
0. Let ¥"(z) be a f-parabolic entire Killing graph in M} %o Ry with constant f-mean
curvature, angle function © bounded from below and whose norm of its shape operator
A satisfy

K
AP < 4.21
AP < (4.21)
for some constant ¢ € (0,1). If the gradient Dz of the function z satisfy
1—
|Dz|3m < d=ce |A]? (4.22)

ka2

then X7 (z) = M™ x {to}, for some t, € R.

Proof. From (4.21) and (.22), we get supsw,y o’|Dz[3» < ¢ So, from the first
part of the proof of the Corollay we obtain that X" (z) is spacelike and complete.

Now, from and we obtain (£.17)). Finally, the result is obtained as a direct
application of the Theorem [

In order to characterize slices of weighted standard static spacetimes M} X, Ry,
we observe that one of the hypotheses of the Theorem is exactly the inferior
limitation of the Bakry-Emery-Ricci tensor Ric 7 of M"™ by some constant. When this
limitation is given by zero, we have the following result that establishes other sufficient
conditions for an spacelike hypersurface to be a slice.

Theorem 4.17 Let My x, R, be a weighted standard static spacetime with ];/i\i-/(?f >0
and a being a convex warping function such that (V f,Va) < 0. Letz : ¥" & Mix, Ry
be a f-parabolic spacelike hypersurface with constant f-mean curvature and angle func-
tion © bounded from below. Then, X" s totally geodesic. Moreover, if ];/i\i/Cf 18 strictly
positive at some point py of X7, then x (") is contained in a slice M™ x {ty}, for some
tg € R.

Proof. Since the f-mean curvature of x : X" & M}L X4 Ry is constant, « is a concave
function such that (Vf, Va) < 0 and Ric; is nonnegative, from Proposition and

(4.18) we obtain that
A < (ﬁi:f(N*,N*)HAP)@ < 0. (4.23)

Thus, the weighted parabolicity of >" assures that © is constant on it. So, returning
to (4.23) we have that |A| = 0, that is, X" is totally geodesic.
We claim that « is constant. Indeed, first we note that all X € X(X") can be

written as
(X,Y)

X=X -3

Y.

?
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where (- )* denote the projection on X(A™). Since X" is totally geodesic, from Propo-
sition 7.35 of[62], we have that

(VO,X) = X((N,Y)) = (N,VxY)
= (N,Vx.Y) — M<N, VyY)

2
1

v

— 1 —
<X7 VOZ><N, Y> - E <X7 Y><N7 VO[>,
which implies

VO = — (6Va — (N, Va)Y).

1
o
Given that © is constant on ", since the vector fields Va and Y are linearly inde-
pendent, from the last equation, we obtain that o is also constant on X". So, our
affirmation stay showed.

On the other hand, from (1.44)) it is not difficult to see that

(O
VB = (S-1),

which implies that | N*|» is also constant. But, supposing that Ric 7 is strictly positive
at some point py of ¥", since 1} give us that ];/i\i/Cf(N*, N*)(po) = 0, it follows that
N*(pg) = 0. Therefore, N* must be vanishes on X" and, consequently, (X") must be
contained in a slice M™ x {tq}, for some t; € R. =

In particular, Theorem gives us the following result of nonexistence.

Corollary 4.18 Let MJ? Xo Ry be a weighted standard static spacetime with ];/i\i/Cf >0
and o being a conver warping function such that (Vf,Va) < 0. There is not nonzero
constant f-mean curvature f-parabolic spacelike hypersurface immersed into M} X, R,

with angle function bounded from below.

From Theorem we can reason as in the proof of Corollary in order to
obtain the following result:

Corollary 4.19 Let M} x, R, be a weighted standard static spacetime with f{ivcf >0
and a being a conver warping function such that (Vf,Va) < 0. Let ¥"(z) be a f-
parabolic entire graph with constant f-mean curvature and angle function © bounded
from below. If the norm of the gradient Dz of the function z € C*(M™") satisfies ,
then X"(z) is totally geodesic. Moreover, if ];/i\izjf 18 strictly positive at some point py of
Y"(z), then X"(z) is a slice M™ x {ty}, for some ty € R.
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4.3 A notion of stability in weighted standard static

spacetimes
For a compact spacelike hypersurface z : X" & M; x, R, with boundary 0%
(possibly empty), we define a variation of it as being the smooth mapping
X:(—6e)xX" — M? xRy
(s,p) = X(s,p)
satisfying the following two conditions:
(i) for all s € (—¢,€), the map X, : X" & M} x, R, given by X, (p) = X(s,p) is a

Riemannian immersion such that X, = z;

(i) X,

- :p‘  for all s € (—e, ¢).
0%

%
In all that follows, we let dX, for denote the volume element of the warping
metric induced on X" = X,(¥") and N, will be the future-pointing Gauss map
along of ¥'. Moreover, we also consider in X7 the weighted volume form given by do, =
e fd¥,. When s = 0 all these objects coincide with ones defined in X", respectively.
Moreover for any open subset (2 of M} x, R; with compact closure, Vol;(€2) and
Area;(€2) will denote the weighted volume and weighted area of (2, respectively.

The wvariational field associated to the variation X is the smooth vector field

0X )
——| . Letting
Js ls=0 ox
Uy = —<E,Ns>, (4.24)

we get

0X ox| \'

—_ = uglN —_— .

s ls=o 0 +((9s szo)

The balance of weighted volume and the weighted area functional associated to
the variation X are the functionals

Vit (—e€) > R
s = Vi(s) = Volp (X ([0,s] x ")) = / X*(do)
[0,s] x 2™

and

Af i (—e,6) > R

s = As(s) = Areay (X7) = / dos,
zy

respectively, where do is the volume element on induced by the warping metric (1.39).
We say that the variation X is weighted volume-preserving of ¥ if V;(s) = V;(0) = 0,
for all s € (—¢,¢).

The following result is well known and, in the context of weighted Lorentzian
manifolds, it can be found in Lemmas 1 and 2 of [42].
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Lemma 4.20 Let X : (—¢,¢) x " — M7 x, R, be a variation of the closed (that is,
compact and without boundary) spacelike hypersurface x : ¥ & My xaRy. If us is the

smooth function given in then

d d
Evf(s) = /En Us dos and %Af(S) = n/zn (Hy), usdog

where (Hy), = Hy(s,-) denotes the f-mean curvature of ¥7. In particular, X is

weighted volume-preserving of X" if and only if usdos =0 for all s € (—¢,€).
un

Remark 4.21 Applying the same topological arguments used to prove Proposition 3.2
of [, we conclude that a closed spacelike hypersurface X" immersed in a standard static
spacetime M™ x, Ry can only exist when the Riemannian base M™ 1is also compact.
On the other hand, it is not difficult to verify that Lemma 2.2 of [8] still remains valid
for the context of weighted standard static spacetimes. More specifically, given a closed
spacelike hypersurface x : X" & M7 X, Ry, if u € C(X") is such that

/ udo = 0,

then there exists a weighted volume-preserving variation X : (—e,e) X X" — M? xRy
. . 0X
of ¥ : X" % M} X, Ry whose variational field s s = uN.
S 1s=0

In order to characterize closed spacelike hypersurfaces » : X" & My x, Ry
with constant f-mean curvature, we consider the variational problem of maximizing
the weighted area functional A; for all variations X : (—€,€) x X" — M} x, Ry of
z: 3" 9% M7 X, Ry that keeps the balance of weighted volume V; equal to zero. The

Lagrange multiplier method leads us then to the associated weighted Jacobi functional

Jr:(—e¢e) - R
s = Jp(s) = Ap(s) — AVs(s),

where ) is a constant to be determined. As an immediate consequence of Lemma

(4.25)

we get that the first variation of [J; takes the following form
d
S0 = [ {nty), =3} uda, (4.26
o2

where u, is the smooth function given in (4.24). Thinking about making the best

possible choice of A, let
— 1

"= Areas(37) Jsn

be an integral mean of the f-mean curvature J; on X". We call the attention to the

Hydo (4.27)

fact that, in case H; is constant, we have
H = Hy, (4.28)
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and this notation will be used in what follows without further comments. Therefore,
if we choose A\ = nH, from ({4.26)) we arrive at

disjf(s) = n/zg {(Hf)s —ﬁ} Uus do. (4.29)

Reasoning as in the proof of Proposition 2.7 of [9] we get
Proposition 4.22 The following statements are equivalent:

(@) z : X" M}y x4 Ry is a closed spacelike hypersurface with constant f-mean

curvature Hy;

d
() d—.Af(O) = 0 for all weighted volume-preserving variation X : (—e€,€) x X" —
s
M}L Xo Ry of x: X" % M}L Xo Ry;

d
(c) %jf(O) = 0 for every variation X : (—¢€,€) x X" — M} x, Ry of x : X" &
M}L XaRl-

Proof. We will show the result making the sequence (a) = (¢), (¢) = (b), (b) = (a).

(a) = (c¢): The result follows directly from (4.28) and (4.29).
(¢) = (b): We have

d d — d

or all variation X : (—¢,¢) x X" — M7 xRy of 2+ 8" & M} x, Ry, But if

d
the variation preserves the volume of x : ¥" & M}L X Ry then T V¢(0) = 0. Hence,
S

% Ay(0) = 0 for all weighted volume-preserving variation X : (—¢,€) xX" — M7 xR,
ofx:ZJ"CHM}L X o Ry.

(b) = (a): Suppose there is p, in 3" such that (H; —H)(po) # 0. We can assume
that (H; —H)(po) > 0. From the definition of H in we can obtain another point
qo € X" such that (H; — H)(qo) < 0. Indeed, from (4.28) we have

/ (Hf —H)do = | H;do —H Area;(X") (4.30)
n Zn
1

= H;do — —/ Hda)Area ) = 0.
o f (Areaf(E“) o f f( )

So, if (Hy—H)(q) > 0 for every ¢ € £", since there is py € X" such that (H;—H)(po) >
0, then

/ (Hy —H)do > 0,

inequality that is in contradiction with (4.30).

63



Thus, the sets
St={qe¥" : (Hy—H)(q) >0} and Y ={geX": (H;—H)(q <0}

are well defined.
Now, consider nonnegative smooth functions ¢ and ¥ such that pg € suppy C
YT, suppy C ¥ and

/ (o +0)(H; —T)do = 0.
where supp ¢ and supp ¥ denote the support of o and the support of ¥, respectively. If

we consider the smooth function u = (p +v)(H; —H) then, according to Remark |4.21}
there is a weighted volume-preserving variation X : (—e¢,€) x X" — M7 x, R; of

= uN. By hypothesis and

X
r X" % M7 X, Ry whose variational field is 6—

s
Lemma

s=0
0= L 40 Hyud
_ — = N U .

ds ! fuag

ZTL

Since / udo = 0, we obtain

0 = n/ Hyudo—nH | udo = n/ (Hi—H)udo = n/ (p+)(H;—H)*do > 0,
n Zn n

n

which is a contradiction. Therefore, H; = H on ¥". m

In particular, Proposition guarantees that a closed spacelike hypersurface
X" 9 M}L Xo Ry is a critical point of the variational problem described above if
and only if its f-mean curvature I, is constant. Motivated by this fact, we establish
the following

Definition 4.23 Let z : X" & My x, Ry be a closed spacelike hypersurface having
2

d
constant f-mean curvature. We say that x : 3" & M7 X, R, is f-stable if e A (0) <
s
0, for all weighted volume-preserving variation X : X" X (—¢,€) — M? %o Ry of
X" My o Ry,

Let 2 : X" & M} X, Ry be a closed spacelike hypersurface as described in
Definition {231 We consider the set

g:{UGCOO(Z") : / uda:()}. (4.31)
Just as [9], we can establish the following criterion of f-stability.

Proposition 4.24 With the notations considered above, x : X" & M7 xRy is f-stable
2

if and only if % Jr(0)(u) <0 forallu e g.
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Proof. Suppose that z : X" & M} x, R, is f-stable and consider v € G. From
Remark 4.21] there is a weighted volume-preserving variation X : (—e¢,¢) x 3" —

X
My %o Ryof o 8" & MP X, Ry whose variational field is 6— = uN. Then,
S 1s=0
d2
V¢(0)(u) = 0. Hence, from (4.25)) and Definition 4.23| we obtain
ds?
d? ol2 d? d?
—_— <
2 TH0)(w) = 5 Ar(0)(w) = A VA(O)(w) = 5 Ar(0)(w) < 0

d2
Conversely, suppose that - Jr(0)(u) <Oforallu € G. Let X : (—e,€) x X" —
S

M ? X4 Ry be an weighted volume-preserving variation of x : X" & M}L Xq Ry, and let

0X
uN be the normal component of the variation vector Bs . From Lemma, |4.20},
S ls= 0

/nuda——Vf() 0,

which implies that u € G. Therefore, from hypotheses,

0> S5 TH0)w) = S5 AL~ A T V0)(w) = o
\q,_/

0

which according to Definition tells us that x : ¥" 9= M} x, Ry is f-stable. m
The sought formula for the second variation of Jacobi functional J; is given in
the following

Proposition 4.25 Let z : X" & M} X, Ry be a closed spacelike hypersurface having

constant f-mean curvature Hy. If X : (—€,€) X " — M;} Xqo Ry 18 a wvariation
2

d

of z : ¥" & My X, Ry then the second variation ij(O) of the weighted Jacobi
s

functional J; is given by

70w = [ g ds (4.52)

for any u € C=(082), where Ly : C(X") — C™(X") is the weighted Jacobi operator
given by

— 1 —~— A
L= Ay — {Ricf(N*,N*) — EHessa(N*,N*) + 07 2(30‘) + |A|2}. (4.33)

Here, At and ﬁf represent the f-Laplacians on X" and M"™, respectively, © be the angle
functwn deﬁned n , N is the future-pointing Gauss map of x : X" & M} X, Ry,
Rle and Hess are the Bakry Emery-Ricci tensor and the Hessian operator on M" |A|?
represent the square of the norm of the shape operator A of x : X" & M} X, Ry and

*

N* 1s the projection of N on the tangent bundle of M™.
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Proof. Since H; is constant, from (4.29) and (4.28) we have that

) = o [ (2

where u; is the smooth function given in (4.24)).
On the other hand, reasoning as in the proof of equation (3.5) of [23], we obtain

)u0d0+n/ Hy—H g(usdas) ,
5=0 N\ N— Js 5=0
0

o0(H -
n(ﬁ—;)s = Ay (ug) — {Rics (N, N) + |A%|} uo.
Hence,
d? -
PP Tp(0)(ug) = / {A¢(ug) — {Ricy (N, N) + |A]*} ug } ug do. (4.34)
¥
Now, from equations (.16 and (4.34)) we obtain
d2

where £; is given in ({£.33). To finish the proof, we observe that the expression
depends only on the hypersurface ¥" and on the function ug € C*(X"). =

To show our next result, let us remember that the eigenvalue problem for the
drift Laplacian Ay on a closed Riemannian manifold ¥" is the determination of the
existence or not of nontrivial solutions (that is, not identically zero) u € C*(X) for
the partial differential equation

Ap(u) +&u=0

on X.". In this case, the corresponding function u is an eigenfunction associated with
the eigenvalue {. By the spectral theorem we know that all the eigenvalues of A are
determined by a sequence of eigenvalues {¢; }j:og satisfying

00=¢& <& << & < - <& < &y < -ov
repeated according to their multiplicity, and

J—+o0

(see, for instance, Section 1 of [I2]). Moreover, the variational characterization of &
gives

—/ ulg(u) do
£ = min = (4.36)

ue G\{0} / 2 do
where G is defined in (4.31)).
We can now present our characterization of f-stability concerning closed spacelike

hypersurfaces immersed in a weighted standard static spacetime.
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Theorem 4.26 Letz : X" & M;x Ry be a closed spacelike hypersurface with constant
f-mean curvature. Suppose that
Ay(a)

— 1 —
¢ = —Ricy(N*,N*) + = Hess a(N", N*) — 0? =L~ — |4
o (8%

is a nonzero constant on X", where Ay and &f represent the f-Laplacians on X" and
M?", respectively, © be the angle function defined in , N 1s the future-pointing
Gauss map of x : X" & M} X Ry, f{ivcf and Hess are the Bakry-Emery-Ricci tensor
and the Hessian operator on M", |A|* represent the square of the norm of the shape
operator A of x : 3" & M} xRy and N* is the projection of N on the tangent bundle
of M". Then x : X" & M} X, Ry is f-stable if and only if § is the first nonzero
eigenvalue of drift Laplacian Ay on X",

Proof. Initially, since the f-mean curvature of 2 : 3" & M} x, R, and ¢ are constant
on X", from Proposition we can see that £ belongs to the sequence of eigenvalues
{fj}jzog of the drift Laplacian A; on X"

If ¢ = &, then from ({.32)), and we obtain

d2
S TrO)w) = [ {ulj(u) +Eu’}do < (_g+g)/ wdo = 0
i n
for any u € G and, according to Proposition x: 5" % M} X, Ry is f-stable.
2

d
Conversely, suppose that x : " & M} xR, is f-stable, so that I Jr(0)(u) <0
for all u € G. Let u be an eigenfunction associated to the first nonzero eigenvalue &

of A;. Consequently, by (4.32) and (4.33) we get

0> L70W = (6+9 [ wio

n

Therefore, since £ < &, we must have &, =& m

67



Chapter 5

Uniqueness for the weighted mean
curvature equation in weighted

standad static spacetimes

Our aim here is to obtain uniqueness results concerning the mean curvature equa-
tion in a weighted standard static spacetime M} x, R; having warping function o and
whose weight function f does not depend on the parameter ¢ € R. For this, we esta-
blish a f-parabolicity criterion in order to study the rigidity of spacelike hypersurfaces
immersed in M} X, R; and, in particular, entire Killing graphs constructed over the
Riemannian base M". Applications to weighted standard static spacetimes of the type
G"™ x4 Ry, where G" denotes for the so-called Gaussian space, are also given. The
results presented in this chapter are part of [34].

5.1 A f-parabolicity criterion for spacelike hypersur-
faces in (M" x, Ry);

In [65], Romero, Rubio and Salamanca investigated the parabolicity of complete
spacelike hypersurfaces in GRW spacetimes whose Riemannian fiber has a parabolic
universal Riemannian covering. In this setting, they were able to guarantee the parabo-
licity of complete spacelike hypersurfaces, under suitable boundedness assumptions on
the warping function and on the hyperbolic angle function of these hypersurfaces. Our
aim in this section is just, following the ideas of [41], to obtain an extension of this
parabolicity criterion to the context of standard static spacetimes.

Taking into account the digression presented at the beginning of Section |3.1]



from now on we will denote by M the universal Riemannian covering of base A" with
projection 7 : M — M" and fwill denote the composition f o 7. In this setting, a
standard static spacetime (A" x,R;); will be said spattialy f-parabolic if the universal
Riemannian covering M of its base M™ is f—parabolic.

Proposition 5.1 Let (M" x, Ry); be a weighted standard static spacetimes which is
spatially f-parabolic. If x : X" % M s a spacelike hypersurface such that the

function n = % s bounded on it, then X" is f-parabolic.
Proof. From Lemma [3.2] we have that
(i) f-parabolicity is invariant under a quasi-isometry;

(i) if the universal Riemannian covering & of X" is (f o 7s)-parabolic, then £7 is
also f-parabolic.

Denoting m = 7y, 0z : ¥ — M™, for any tangent vector v € T we have
(v,v) = (m, mv)y — 2 (hw, hao)g < c(mw, m0) i,

where ¢ = supy; 77> > 1. In particular, by previous inequality we see that 7., : T,X —

T M is a isomorphism for every p € ¥". Then, from inverse function theorem we

get that 7 is a local diffeomorphism and applying Lemma 7.3.3 of [43] (see also Lemma

8.8.1 of [56]) we can to conclude that 7 is a covering map and that A/" is complete.
On the other hand, using the Cauchy-Schwartz inequality we see that

(Vh,0)* < (Vh,Vh){v,v)
and, consequently, since h,v = dh(v) = (Vh,v), we have

(v,v) = (mu,mv)y — a*(hao, hag
= (mu,mu)y — a*(Vh,v)?

> <7T*077T*U>M - 042|Vh|2<1),1)>,

that is,
(v,v) (1 + a®|VR|?) > (mv, m0) .

By definition of the function n and from (|1.45)) we get

From our hypothesis we conclude that

c Hmow, mv)y < (v,v) < elmw, T0)u. (5.1)
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So, let 3. be the universal Riemannian covering of X" with projection 7y : I
3", Then, the map ng = 7o 7y : Y M"is a covering map. Now, if M is the
universal Riemannian covering of M"™ with projection 7 : M— M " then there exists
a diffeomorphism ¢ : S — M such that 7 o @ = my. Moreover, ¢ is a quasi-isometry.
Indeed, if v € TS, we have from that

<90*0790*U>M = <7T*(90* ) W*(SO* )>
= ({(mo)wv, (mo)uv)
(me((ms)sv), m((7s) s v)) M

c

IN

< WZ)*U, (WZ)*U>2
(v, v)5.

= C

Analogously, we obtain
(e, uv) 51 2 ¢ H v, 0)5.
Therefore, since the universal Riemannian covering of M ™ is f—parabolic, it follows

that the universal Riemannian covering of 3" is ( f o7y; )-parabolic and, hence, X" must
be also f-parabolic. m

5.2 Rigidity results for spacelike hypersurfaces in
M}l X o Rl

In this section, we will apply the Proposition in order to obtain rigidity
results for spacelike hypersurfaces in M} X, R;. Some of these results are rereadings of
theorems presented in Chapter {] for which the hypothesis of f-parabolicity is replaced
in part by restrictions on the angle function and the warped function, which, in addition
to having value in itself, will be important to establish the uniqueness results for the
weighted mean curvature equation in the next section.

Theorem 5.2 Let M} xR, be a weighted standard static spacetimes which is spatially
f-parabolic. Suppose that Ric; > 0, the warping function o is convez and (V f,Va) <
0. Let 2 : X" o M be an immersed spacelike hypersurface with constant f-mean
curvature Hy such that its angle function © is bounded and infs, o > 0. Then, X" is
totally geodesic and « is a positive constant. In addition, if ];/i\i/Cf 18 positive at some
point pg € X", then X" is contained in a slice M™ x {tq}, for some ty € R.

Proof. It follows from Theorem and Proposition |
In the next result, we treat the case where Ric; is not necessarily nonnegative.

Theorem 5.3 Let M} x,R; be a weighted standard static spacetimes which is spatially

f—pambolic. Suppose that ];/i\i/Cf > —k, for some constant k > 0, and that o s a convex
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warping function such that (%f, %a} < 0. Let v : X" % M7} x, Ry be an immersed
spacelike hypersurface with constant f-mean curvature, bounded angle function © and
such that infy, o > 0. If the height function h satisfies

c
Vh? < — |AP 5.2
VA" < —5 A%, (5.2)
for some constant ¢ € (0,1), then X" is contained in a slice M™ x {tq}, for some ty € R.

Proof. It follows from Theorem and Proposition [

In what follows, we will deal with specific weight functions that will be defined
in terms of the warping function «. In the next theorem, the weighted mean curvature
Hog o2 of the spacelike hypersurface is not supposed to be constant. Indeed, we just
assume a certain control on the sign of Hy,, 2.

Theorem 5.4 Let M{égag Xo Ry be a weighted standard static spacetimes which s

n

spatially log & 2-parabolic. Let x : X" & My, e xa Ry be an tmmersed spacelike hyper-
surface such that 1) is bounded. Suppose that the log a*-mean curvature Hozo2 and the
function (Va, Vh) have opposite signs. If 3" lies in a slab, then X" is contained in a

slice M™ x {tq}, for some ty € R.

Proof.
By (1.15) and from Proposition we have that

Ajgazh = —na 20 Hyzo2 — (Vloga®, Vh)
2
= —na %O Hipgor — —(Va, Vh).
a

Taking into account that Hi,.2 and (Va, Vh) have opposite signs, we conclude that
Ajog a2h does not change sing. Therefore, since Proposition guarantees the log -
parabolicity of X", h must be constant and, consequently, X" is contained in a slice
M™ x {tq}, for some t; € R. =

From Theorem [5.4] we also have the following

Corollary 5.5 Let Mﬁgag X o Ry be a weighted standard static spacetimes which is spa-
tially log & %-parabolic. Let x : X" 9 M bea log o?-maximal spacelike hypersurface,
contained in a slab, such that 7 is bounded. If the function (Va,Vh) does not change

sign, then X" is contained in a slice M"™ x {ty}, for some ty € R.

Proceeding, we also get the following rigidity result:

O,

Theorem 5.6 Let Mg, 2 xa Ry be a weighted standard static spacetimes which s
spatially log & ~?-parabolic. Let x : ¥" 9 M"

loga—2 Xa R, be a mazximal spacelike hy-

persurface such that 1 is bounded and infs, o > 0. If Ricipg o2 > K, for some constant

k > 0, then X" is contained in a slice M" x {ty}, for some ty € R.
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Proof. Firstly, observe that, reasoning as in the proof of Proposition we obtain
Ah = div(Vh) = a2<vof2, Vh> ~na 2HO
= <V loga 2, Vh> —na 2HO.

Therefore, using (|1.15f), we get
Apga-2h = —na *HO. (5.3)
Now, from Bochner’s formula (see page 378 of [68]) we have that
1
§A10ga—2 |Vh|* = |Hess h|* + Riciga—2(Vh, VR) + (VAga-2h, VR). (5.4)

Consequently, taking into account our restriction on Ricj,e 2 and the assumption that
" is maximal, from (5.3) and (5.4)), we obtain that

1
5Al()gcrf4~|VfL|2 > RiClogo2(Vh, VR) > £|Vh]* > 0. (5.5)

On the other hand, Proposition [5.1|guarantees that X" is log o 2-parabolic. Since,
from (|1.45), infy, o > 0 implies in the boundedness of |Vh| and, consequently, in
the boundedness of |Vh|?, we conclude from log a~2- parabolicity of X"that |Vh|? is
constant, and then Ay, .2|Vh[* = 0. Returning to (5.5), we obtain that [Vi| = 0 and
3™ is contained in a slice. m

5.3 Entire Killing graphs and the mean curvature equa-
tion in M}Z X o Ry
Let X(z) be a entire Killing graph as decribed in the Subsection [1.4.4]. For each

vector field X tangent to M™, the shape operator A of ¥(z) with respect to N is given
by

a o*(Dx Dz, Dz) a*(Da, X)|Dz|3
AX = - DxDz — ’ Dz — : 2D
(= D) = DR PR (T o DaR
(Da, X) (Dz, X)
- Dz — D :
(= DR = atlDefz e 9

where D denotes the Levi-Civita connections in A/".
So, it follows from ([5.6) that the mean curvature H, of a spacelike entire Killing
graph ¥(z) is given by

nH(z) = Div ( abz ) : (Dz, Day)

A+ 2D 2 ) [T+ a?[D2) 172
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where Div stands for the divergence operator on M" with respect to the metric (-, ).
A direct computation shows that the f-mean curvature is given by

n(IL.); = Div; ( aDz ) (Dz, Da) .
’ (1—a?[Dz[3)12) (1 —a?|Dz[3)'?
From the previous digression, an entire Killing graph X(z) is spacelike with cons-
tant f-mean curvature C if, and only if, the function z € C'°(M) satisfies the following
elliptic partial differential equation of f-divergence form

aDz (Dz, Da) )
Di ’ =C M™
e ((1 —a2|DZ|?M)1/2) Ta-apepyE T !

(5.7)
a?|Dz|3, < 1.

In what follows, we will use the theorems obtained in the previous section,
on entire Killing graph context, to obtain uniqueness results for equations of the
type (5.7).We start applying the Theorem [5.2] to get the following:

Theorem 5.7 Let M} xR, be a weighted standard static spacetimes which is spatially
f—pambolic with convex warping function «, (%f, %a} < 0 and Ricy > 0. If the entire
Killing graph X(2) associated to z € C™(M) is such that als(.) is bounded and Ric; is

positive at some point po € X(z), the only solutions of the problem

aDz ) ( (Dz, Do) _C e

N
v ((1 — D)2 ) T (1= a?[DzP,) P

supyy(,y (@?|Dz[3,) < 1,
are the constant ones.

Proof. Since we are supposing that sup a?|Dz|3, < 1, from ([1.48), the boundness of
a|sy2) is equivalent to the boundness of ©. Furthermore, we observe that the condition
sup a?|Dz|3, < 1 also implies the boundness of 7. Indeed, using (1.48]) again, we have

that
1

T =D )
Hence, we can disregard the hypothesis infs,) @ > 0 in the Theorem [5.2] to obtain the
present result. m

Concerned with the weighted product space G" x R;, where G" is the Gaus-
sian space, An et al extended the classical Bernstein’s theorem [I5] showing that the
only weighted minimal graphs X"(z) of functions z(yo, - ,¥,11) = y1 over G", with
SUpy(,) | Dz|g < 1, are the hyperplanes y; = constant (see Theorem 4 of [3]).

Taking into account this previous digression, from Theorem [5.7] we obtain an
extension of Theorem 4 of [5].
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Corollary 5.8 Consider the weighted standard static spacetime G" x, Ry, where G"
is the Gaussian space and the warping function o is convex with (V f,Va) < 0. If the
entire Killing graph Y(z) associated to = € C*(G) is such that a|s(.) is bounded, the

only solutions of the problem

. aDz (Dz, Do)
D = o]
o ((1 - a2|DZ|é)1/2) -z~ ¢ 2e07@

SUDyy() (?|Dz|2) < 1,
are the constant ones.

Proof. We note that, since Vol;(G") = 1, Remark 3 of [54] guarantees that G" is

f-parabolic. Moreover, with a straightforward computation, we get that RNicf = L

Therefore, since G” is also simply connected, the result follows from Theorem 5.7 =
The next result is an application of Theorem

Theorem 5.9 Let My x, Ry be a weighted standard static spacetime which is spatially
f-parabolic with conver warping function a, (Vf,Va) < 0 and Ricy > —k, for some
constant > 0. If the entire Killing graph X(z) associated to z is such that a|s.) is
bounded and c € (0,1) is a constant, the only solutions of the problem

) aDz (Dz, Da)
D ’ =C c C°(M
v (T T ¢SSO

c|AP

SUPy(2) (a?|Dz|3;) < M7

are the constant ones.

Proof. From (1.47), we have that

aV,(Dz)
N*=N_- Nt = 5.8
(L= a?[DR) 7 (5:8)
and this equation give us that
a?|Dz|?
N*}, = — M _ 5.9
The equations ([1.45)) and (5.9) give us the following relation:
Dz|3
B2 = —| M___ 5.10
VA 1 —a?|DzJ3, ( )
Now, using (5.10)) we conclude that the hypothesis (5.2) is equivalent to
2 2 c|A]?
D < —
| Dzl < clA? 4+ &
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A"

Futhermore, since x > 0, we have that that ————
clAP? 4+ &

from Theorem 5.3l =
Reasoning as in the Corollary [5.8] we have:

< 1. Hence, the result follows

Corollary 5.10 Consider the weighted standard static spacetime G" x, R, where G"
s the Gaussian space and the warping function o is convexr with (6]‘?, %a} < 0. If the
entire Killing graph ¥(2) associated to z € C*°(G) is such that os.) is bounded, then,
for any constants k > 0 and c € (0,1), the only solutions of the problem

) aDz (Dz, Da)
D : =C C>(G
i ((1 — a2|Dz|é)1/2) + (1 — a?|Dz|&)1/? ’ Z€ (©)

c|AP

SUP3(2) (a®|Dz]3) < ma

are the constant ones.
From Theorem we obtain the following:

Theorem 5.11 Let M, 2 %Ry be a weighted standard static spacetimes which is spa-
tially log & 2-parabolic. If the entire Killing graph associate to z is such that (Va, U, (Dz))

does not change sign, then the only bounded solutions of the problem

aDz ) ( (Dz, Do)

Di =C (M
vcer (T—a o) + e =6 F €070

Supy.) (o|Dz[3,) < L.

are the constant ones.

Proof. Firstly, observe that

(Va,VN) = Vh(a) = —%YT(a) =—%YT((—<Y7Y>)%)
= LG Ty = YY)
- —$<VyTY,Y> = —$<vY+®NY7 Y)
_ _é(ﬁyy,m +(VenY,Y)) = —%(V@NY, Yy  (5.11)
_ _%WNY, Y) = —%NOC Y) = —%N(az)
= 2 20N(e) = 2T,
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On the other hand, in ([5.8), we have that

aV,(Dz)
(1= a2 DR

N =N_- N+t =

Hence, from (5.11)) and (5.8)) we obtain

_ U, (D
(Va, V) = 2 (7q, —L(D2) ©

oV T T ai= @yt @ VD)

Therefore, (Va, VN) do not change of sign if and only if (Va, ¥,(Dz)) do not change
of sign and the result follows from Corollary |
Taking

1
o = (6%2+10g(27r)%) 2 (512)

in Theorem [5.11] we obtain the following consequence:

Corollary 5.12 Consider the weighted standard static spacetime G" x, Ry, where G"
is the Gaussian space and o is defined in (5.12)). If the entire Killing graph associate
to z is such that (Va, ¥, (Dz)) does not change sign, then the only bounded solutions
of the problem

. aDz (Dz, Do)
D = o]
o ((1 - a2|DZ|é)1/2) Ty ¢ FEE)

SUDyy() (?|Dz|2) < 1,

are the constant ones.
Applying the Theorem [5.6] we obtain the following result:

Theorem 5.13 Let M{éga,Q Xo Ry be a weighted standard static spacetimes which is
spatially log & —2-parabolic. If the entire Killing graph associate to z is such that |Dz|3,
is bounded and Ricoz o2 > K, for some constant k > 0, then the only bounded solutions
of the problem

) aDz (Dz, Da)
D ; =0 (M
» (amgym) * e SECTD (513

SupZ(z) (O[2|DZ|%\4) < 17

are the constant ones.
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Proof. We observe that if = € C°°(M) is solution of problem (5.13)), then the entire
Killing graph ¥(z) is spacelike and maximal. Moreover using , we note that the
boundness of [V h|? follows from the boundness of | Dz|3,. Then, the result follows from
Theorem .6l =

Finally, considering

2

2\ 7
o= (e%ﬂog(zw)f) (5.14)

in Theorem [5.13] we have:

Corollary 5.14 Consider the weighted standard static spacetime G" x, R, where G"
is the Gaussian space and « is defined in (5.14)). If the entire Killing graph associate
to z is such that |Dz|3; is bounded and Riciga—2 > K, for some constant > 0, then
the only bounded solutions of the problem

) aDz (Dz, Da)
D ’ =0 c (G
v ((1 —a2|Dz|é)1/2) Ty OO

SUDyy() (?|Dz|2) < 1,

are the constant ones.
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Chapter 6

Bifurcation and local rigidity in

Riemannian warped products

In this chapter, we use equivariant bifurcation theory in order to establish suffi-
cient conditions that allow us to guarantee the existence of bifurcation instants or the
local rigidity of a certain family of open subsets of the warped product I x, M™, in the
Section and of the weighted Killing warped product M} x, R, in the Section
Unless stated otherwise, all manifolds considered on this chapter will be connected,
while closed means compact without boundary. The results presented in this chapter
are part of [27] and [31]

6.1 The Variation concept

In a Riemannian manifold H”H as described in Section , let M be the space of
open subsets {2 C M with compact closure ) and whose smooth compact boundary
0 is a closed, connected and orientable hypersurface. We denote by dM and dV the
volume elements of 77" and 0}, respectively. If 2 € M, the unit normal vector field
globally defined on 02 will be denoted by N. Moreover,

Vol(§2) = /Qdﬁ, Vol;(Q2) = /Qdu

will denote respectively the volume and the f-volume of () and

Area(082) :/ dV, 1-Area(0Q?) = n [ Hi;dV —and Area;(0) :/ du
89 G a9

will denote the area, the 1-area and the f-area of O0f), respectively, where H; is the
mean curvature of 9 with respect to N and du = e /d(99) is the weighted volume
form associated with the density function f.



For €2 € M, we define a variation of 0€) as being the smooth mapping

X : (—6e)x 00 — at

6.1
tp) = X(p) (o
satisfying the following two conditions:
(1) for all t € (—e¢,¢€), the map
X, o 00 M
e 0w (6.2)

p = Xip) = X(t,p)
is a immersion;
(2) X(0,p) = u(p) for all p € OQ, where ¢ : 9Q &= Q is the inclusion map.

In this context, given 2 € M and a variation X : (—¢,¢€) X Q2 — M of 00
we adopted the notation 0, = X,(0f)). For values of ¢ small enough, 92, is also a
connected and oriented smooth submanifold. Moreover, it bounds an open subset €2,
whose closure is also compact. Thus, X : (—¢,€) x 90 — M induces us naturally a
variation of the open subset {2 denoted by €2, which is also an element of M.

In all that follows, we let dV; denote the volume element of the metric induced
on 0, by and N, will denote the unit normal vector field of (6.2). Moreover, we
also consider in 0¢); the weighted volume form given by dj, = e /dV,. When ¢t = 0, all
these objects coincide with those already defined on Of).

The wvariational field associated to X : (—¢,€) x 09 — " is the vector field
%—f|t:0 and, letting

0X
Uy = <W7Nt>7 (63)
we get that
0X oxX| \'
Dt iy = N (W ) |

We are now in a position to describe our variational problems and proceed with
our study of bifurcation and local rigidity. This is what we will do next.

6.2 Bifurcation and local rigidity of constant second
mean curvature hypersurfaces in riemannian warped

products

In this section, based in [27], we will establish sufficient conditions that allow
us to guarantee the existence of bifurcation instants or the local rigidity of a certain
family of open sets of a Riemannian warped product I x, M", where M" is a compact
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Riemannian manifold without boundary. Such family is formed by the open sets whose
boundaries are Hs-hypersurfaces, namely, whose boundaries are hypersurfaces with
constant second mean curvature H,. For each of our results, we have provided a

considerable number of examples that verify all the assumptions under consideration.

6.2.1 Description of the variational problem associated with

the 1-Area functional

The balance of volume of X : (—¢,€) x 090 — ™" is the functional

V :(—€€¢) > R

(6.4)
L= V() = Vol(Qy)

and we say that the variation X : (—e¢,¢) x 90 — M s volume-preserving of Q) if
V(t) =V(0), for all t € (—¢,¢).

The formula of the first variation < V(¢) of the balance of volume V(t) is given
in the following lemma, a formula that is well known and can be found in [69].

Lemma 6.1 If Q€ M and X : (—¢,¢) x 090 — " is a variation of 0F), then

d
—V(t) = d
a0 = [ v,

for each t € (—¢,¢€), where u; is the smooth function defined in . In particular,
X :(—€€) x 00 — M s volume-preserving of ) if, and only if, fmt u; dVy = 0 for
allt € (—e,¢€).

Remark 6.2 From Lemma 2.2 of [8], we have that if ug : 0Q — R is a smooth
function such that fm ugdV = 0, then there exists a volume-preserving variation
X: (—€,6) x 00— M of 02 whose variational field is %—ﬂt:o = uyN.

Taking into account [10], we define the 1-area functional associated to the varia-

tion X : (—e¢,€) x 090 — at by

A (—e¢) > R

t = A (t) = 1-Area(0;) = n H!aV,
o0

(6.5)

where H! = H,(t,-) denotes the mean curvature of 0€2; with respect to the metric
induced by the immersion X; defined in (6.2]).
The following result follows from Proposition 3.2 of [44].
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Lemma 6.3 If Q) € M and X : (—¢,¢) x 090 — M is a variation of 0F), then

0 v 2
EHz B n(n—l)Dt(ut)

+ {anHzt —(n—2)H{ +

(2 )

where O, is the Cheng-Yau’s square operator on 0Q,, Hf = Hs(t,-) and Hi = Hs(t,-)
are the second and third mean curvatures of 0S),, respectively, u,; is the function defined
m , T, is the Newton transformation on 00, and R, is the linear operator on 0,
given by R(Y) = R(N,Y)N, for all Y € X(0Q,).

2 —
mtr(Tt o Rt)} Ut

The previous lemma allows us to compute the first variation < 4, (¢) of the 1-Area
functional A;(¢) (cf. Proposition 3.4 of [44]).

Lemma 6.4 If Q) € M and X : (—¢,¢) x 00 — " is a variation of 0F), then
—A1 = {—n(n — 1)Hy + Ricg(Ne, Ni) } ue dV4,
EIo)

for all t € (—¢,€), where u; is the function defined in (6.3) and Ricy; is the Ricci
curvature of Mt

In order to characterize open subsets €2 of M whose boundary 0f) is a closed
hypersurface with constant second mean curvature, we consider the variational problem
of

(VP-1): minimizing the 1-area functional A,(t) given in . for

all variations of OS) that preserve the volume of (2.

The Lagrange multiplier method leads us then to the Jacob: functional

Fri(—66) - R

t = FMY) = At + AV, (6.6)

where A € R is a constant to be determined. As an immediate consequence of Lem-
mas and we get that the first variation £ F*(t) of F*(¢) takes the following

form

%p( )= | {=n(n—1)H{ + Ricgp (N, No) + A} wg dV;, (6.7)

for each t € (—¢,€).
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To make an appropriate choice of A, we assume from now on that there is 0 € R
such that the Ricci curvature Ricy; of """ satisfies the condition

Ricq7(Ne, Nt) = 0 = const. on 0Qy, for all t € (—¢,€). (6.8)

At the moment, when 3" is Einstein, is naturally valid, but there is a larger
class of manifolds that verify this condition, which will be described in Section [6.2.3

In addition, let
1

A= Area(d9) Jan

be the integral mean of the second mean curvature H; on 0. We call the attention

HydV (6.9)

to the fact that, in case H, is constant, we have
A = H,, (6.10)

and this notation will be used in what follows without further comments.
Hence, if we choose

A =n(n—-—1)A-T7, (6.11)

from we arrive at

d

— FMt) = —n(n —1) {Hy — A} up dV, (6.12)

dt o
for all ¢t € (—¢, €). In particular,

d

— FY0) = —n(n—1) [ {Hy—A}uydV. (6.13)

dt 0

Now, following the same ideas of Proposition 2.7 of [9] we can establish the
following result.

Proposition 6.5 Let ) € M. Assume that the Ricci curvature Ricy; of M satis-
fies . The following statements are equivalent:

(a) 0% is a Ha-hypersurface with constant second mean curvature Hy equal to

A+7D

Hy— 12
T nn-1)

(b) For all variations X : (—e¢,€) x 002 — M of 0X2 which preserve the balance of
volume of Q, we have that % A1(0) =0;

(¢) For all variations X : (—¢,€) x 00 — M of 0%), we have that & F*(0) = 0.
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Proof. We will show this result through the sequence (a) = (¢), (¢) = (b), (b) = (a).

(a) = (c¢): The result follows directly from (6.10)), (6.11) and (6.13).

(¢) = (b): Form (6.6), 0 = L F*0) = £ .A4,(0) + AL V(0) or all variation
X :(—€,€) x 002 — " of 9. But if the variation preserves the volume of €2, then
£3(0) = 0. Hence, £ A;(0) = 0 for all volume-preserving variation X : (—¢, e) x 9Q —

M of 69,

(b) = (a): By contradiction, suppose that there exists py in 02 such that
A+
Hy — ——— 0.
(112 2 ) 2

We can assume that

(H2 _ %) (po) > 0. (6.14)

From the definition of A in we can obtain another point ¢; € " such that

Indeed, from and (6.11)) we have

/ (H2 - M) aV = [ HydV — A Area(0Q) (6.15)
0 n(n—1) 0
= HydV
a9
1
_ Hyd A Q
Area(0f2) ( i V) rea(9Y)
= 0.
. A+7o . .
Thus, if { Hy — ﬁ () > 0 for every g € 0f), since there is py € 0 such
nn —

that (6.14)) is valid, then

/ (HZ—M) dv > 0,
80 n(n—1)

which contradicts (6.15)).

So, we have the sets

@mz{qem: (Hg—%)(q)>0}

and _
@Q:{qem: (HQ—LQ))@)«)}

n(n —1
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are well defined.
Now, let us consider nonnegative smooth functions ¢ and ¢’ on 02 such that

py € suppp C 00T, supp ¥ C 9~

and _
/(cp+1/))( (n—l)H2+g+M) dv =0,
a0 (n—1)
where supp ¢ and supp ¢’ denote the support of ¢ and the support of ¥, respectively.
If we consider the smooth function

wo=(p+ ) (—nln - )+ 7+ — T2

then, according to Remark [6.2] there is a Volume preserving variation X : (—e,€) x
00 — " of (9(2 whose variational field is at X |,_y = ugN. Next, from our hypothesis,

Lemma [6.4] and (6.8) we get
d
0=—A4,(00) = / (—n(n — 1)Hy +2) ugdV.
dt 90

Furthermore, since [, uodV = 0, then

0 :/ (—n(n — 1)Hy 4+ 0) ugdV
o0
:/ (—n(n—1)H2+§)u0dv+M/ ug dV
o9 n(n —1) Jan
A+

- /m (—n(n— 1)H2+§+m) o dV

= [ o) (~utn- v 28

m)z dV > 0,

which constitutes an absurd. Nt
Therefore, we must have H, = (—91) on J<). m
n(n —

Hence, when the Riemannian manifold M verifies , from Proposition
we have that the critical points of (VP-1) are open subsets  of " whose boundary
0f) is a closed H,-hypersurface with constant second mean curvature H; equal to

A+

Hy = ———
> nn—1)

(6.16)

with A, € R. On the other hand, if we change our variational problem to

(VP-2): minimizing the 1-area functional A (t) given in (6.5)) for all
variations of 0S), not necessarily volume-preserving varia-
tions of €1,
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from Proposition [6.5] we obtain that the respective critical points of (VP-2) coincide
with the same critical points of the initial variational problem (VP-1).

Remark 6.6 As observed in [{8], our approach is valid for the following more general
configuration. Assume that M is the space of open subsets ) C M whose boundary
%) 1s the union of two disjoint sets 0S) = X7 U XL, We will assume that one of them,
X7, 1s a fized set and so that the variations considered of O} only affects X5. Under
this assumption, the critical points of (VP-1) or (VP-2) will be open subsets € such
that their boundaries are union of o (fized) set 37 and a closed hypersurface X5 with

constant second mean curvature.

For such a critical point (for either of the two variational problems described
above), the formula for the second variation 4 F*(0) of J* is given in the following

result.

Proposition 6.7 Let Q) be open subset of an (n+1)-dimensional Riemannian manifold
M (n > 2) whose boundary 0X) is a closed Hy-hypersurface, with constant second
mean curvature Ho given in (6.16), and let X : (—¢,€) x 002 — "™ be a variation
of 0X). Assume that the Ricci curvature Ricy; of M satisfies . Then
— F0)(u) = =2 uJ (u)dV, (6.17)
dt? 89
for any u € C*(09), where J : C*(0) — C>®(09) is the Jacobi operator associated
with the variational problems (VP-1) and (VP-2) defined by

n(n —1)

j:D+{ -

(nH Hy — (n — 2)Hs) + tr (T o Ry) } . (6.18)
In the last equation (6.18)), (I is the Cheng-Yau’s square operator on 952, Hy, and Hs are
the first and third mean curvatures of 05}, respectively, T is the Newton transformation
on 09 and Ry is the linear operator on 0) given by Ro(Y) = R(N,Y)N for allY €

With respect to the functions on Of) to be evaluated in the second variation
%]—"’\(0) of a critical point of (VP-1), they have to be considered according to Re-
mark [6.9, that is, smooth functions on JQ whose integral mean is zero. On the other
hand, any smooth function on O0S) can be evaluated on the second variation C‘;—;]—"’\(O)
of a critical point of (VP-2).

Proof. Initially, for any variation X : (—e,e) x 002 — WM™ of 90 we consider the
function uy € C*°(0N2) defined in (6.3)). Since H- is constant on 0%, from (6.10)), (6.12)
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and Lemma [6.3] we get

j—;fA(O)(Uo) = —n(n—1) {/m (% i} t:O) o dV (6.19)

0
Hy— A | =
[ mon) 5 )

t=0

— ., {20(ug) + {n(n — 1) (nH; Ho

—(n—2)H;3) + 2tr (T o Ro) } Yuo } uo dV.

Now, for any u € C*(0f2), considering variations X : (—¢,€) x 00 — M of 00
whose variational field is %—)§|t:0 = uN, we obtain that the last expression (6.19) is
also valid for every u € C*°(9€2). This shows the formula of the second variation of a
critical point of (VP-2).

For those critical points of (VP-1), if X : (—¢,€) x 02 — " is a variation of
0f2 which preserve the balance of volume of ) then for uy € C*°(012) defined in (6.3])
we have from Lemma [6.1]that [, uodV =0, and, in adittion, the expression is
valid for such ug. Finally, for any function v € C*°(99) such that [,,udV = 0, from
Remark we get a variation X : (—e¢,¢e) x 00 — M of 09 which preserve the
balance of volume of €) such that the variational field is %—f|t:0 = ulN, and immediately

follows that (6.19) is retrieved for such a u. m

6.2.2 Bifurcation instants for H;-hypersurfaces

In what follows, we consider the one-parameter family {Q,}, C M of open
subsets in """ such that the boundary of each €2,, denoted by 0f) ., is a closed H, -
hypersurface with constant second mean curvature I, , where 7 varies on a prescribed
interval I C R. For every 7 € I, let N, be the unit normal vector field globally defined
on 0€2,. We assume that there is o € R such that the Ricci curvature Ricy; of mt

satisfies
Ricy7(N;,N;) = 2 = const. on 09Q,, foral 7€l. (6.20)

In this context, as a consequence of our study of Subsection [6.2.1] we have that each
(2, is a critical point of a certain variational problem of type (VP-2). More specifically,
each (). is a critical point for the Jacobi functional

Is7 — FO = A+ A1)V

defined in (6.6, where
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Moreover, follows from Proposition that, associated with each closed HJ-hyper-
surface 92, we have that the second variation 25 FX7)(0) of FA) is given by

POy = -2 / uJr(u)dVr, (6.21)

dt? 9.

for any u € C*°(0%2,), where dV is the volume element on 02, and
n(n B 1) TITT T 5
Jr =0, + T(nH1 Hy —(n—2)HJ)+tr (T-oR,)

is the Jacobi operator on 0€)... Here, [, is the Cheng-Yau’s square operator on 0f) .
defined in (L.7), Hy, HJ and H are the first three mean curvatures of 99 ; with respect
to unit normal vector field N,, T, : X(092,) — X(0%2,) is the Newton transformation
on 0f) . defined in and R, : X(0),) — X(0Q,) is the linear operator given by
R.(Y) = R(N,,Y)N, forall Y € X(09).

With respect to our family {,},c; of critical points of (VP-2), we need to
adopt some notions and results that correspond to equivariant bifurcation theory for
geometric variational problems. For more details on this subject, we recommend the
references [3], [16], [17] and [66].

Let us first remember that two elements 2, and Q,, of {Q,},¢; are said to be
wsometrically congruent when there is an isometry ¢ of " that carries the image of
21000, o M onto the image of 25 : 9, & M (cf. Section 1.2 of [3]), where
x1 and x, are the immersions of €2, and 0f)., into W”H, respectively, i.e., if there
exists a diffeomorphism ¢ : 9€2, — 0f),, and an isometry v of "™ such that the
following diagram commutes:

o9, 231"

I

——n+1
07y —5>

Taking into account the studies reported in [16], 7 € I is said to be a bifurcation instant
of {2, } ;s if there exists a sequence {7, },en C I and a sequence {2, },en C {Q, }rer
such that

(a) lim 7, =7,
n—od

(b) lim z, =T, where z,, : Q. % M and 7 - Q=9 """ are the immersions of

n—rod

Q. and (5 into M”H, respectively,
(¢) for all n € N, z,, is not isometrically congruent to z.

Furthermore, according to the ideas set out in [17], if 7 € I is not a bifurcation instant,
the family {€),}, ¢ is said to be locally rigid at 7.
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One of the classical criterion to determine when a instant 7 € I is of bifurcation
is related with the so-called Morse index (cf. [3] and [16]). We recall that the Morse
index of 2,, which will be denoted by Ind (F*7,Q.), is equal to the dimension of
the maximal subspace where the second variation % FMT(0) of the Jacobi functional
FM7) is negative definite. Equivalently, Ind (F*, Q) is the number of negative
eigenvalues (counted with multiplicity) of the Jacobi operator 7,. With our notations,
a real number E(T) is an eigenvalue of 7, if and only if 7. (u) 4+ E(T)u = 0 for some
function u € C*=(9<2,). From Proposition 2.7 of [3] we obtain that Ind (F*7, Q)
is finite in I C R. Intuitively, Ind (F*7),).) measures the number of independent
directions in which the hypersurface 0€2, fails to minimize the 1-area functional A4, (¢)
defined in (6.5]).

Essentially, a variation of the Morse index Ind (f M) QT) along the interval I C R
will indicate the existence of a bifurcation instant. More precisely, under suitable
Fredholmness assumptions (cf. [3] and [16]), we have that if there are 7, € I, with
71 < To, such that the second variation %}"A(Tf')(O) of the Jacobi functional F*(™)
is nonsingular (namely, the eigenvalues of the Jacobi operator 7, are nonzero) for
j €{1,2} and

Ind(FM™ Q) # Ind(FN™?,Q.,),

then {Q,},c; admits a bifurcation instant at some 7, € (7, 72). On the other hand,
according to [I7], using the Implicit Function Theorem, we obtain that if % FMD(0) is
nonsingular for some 7 € I, then the family {€.},¢; is locally rigid at 7. In particular,
when Ind (FA7,Q,) =0 for all 7 € I, {Q,},¢; does not have bifurcation instants.

In the Subsection|6.2.3] we will study the local rigidity and the bifurcation instants
of {Q,},cr by analyzing the spectrum of 7. for all 7 € I. Essentially, we will determine
the number of negative eigenvalues for each 7 (counting its multiplicity) and we will

study the evolution of such a number.

6.2.3 Local rigidity and bifurcation results for H,-hypersurfaces

For an open interval I C R and a given n-dimensional Riemannian manifold A/™
(n > 2) with metric tensor (-,-)5s, consider the warped product I x, M"™. In this
context, for every 7 € I we have that the slice

St o= {1} x M" C I x, M"

is a totally umbilical hypersurface in I x, M™ (cf. for instance [59]), oriented by the
unit normal vector field N, = —0,, and whose shape operator A, is given by
A 0 X(ET) — X(E7)

Y ooe A = —Ty(-a) = DDy (6.22)
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Actually, the induced metric on " is given by a(7)?(-,-)s;, which means that %" is
homotetic to M™ with scale factor a(7). Therefore, the correspondence

ISt — X% = {7} x M"

determines a foliation of I x, M™ by totally umbilical hypersurfaces, whose first three
(constant) mean curvatures (see equations in ([1.2))) are given respectively by

(I (a'm){ e (a'm)? 629

a(r) a(r)

Moreover, the Ricci curvature Ricyy () of I X, M"™ obeys the condition

a” ()

a(r)

Ricrx mn(N;, N;) = —n = const. on X (6.24)

that is, the Riemanniann warped product I x, M" satisfies .

From we observe that the slices ©" = {7} x M" of the Riemannian warped
product I x, M™ verify the conditions and when the warped function
a : I — R verifies the ordinary differential equation

na”(t) +oa(r) =0, T€l, (6.25)
whose solutions are given by

4 p— —
clcosh<1/_—97>+cgsinh< _—QT> , if
n n

a(t) = a>0 or ¢7+c , if 0=0,

€1 COS (\/ET>—|—CQSH1< gT) , if
n n

where ¢1, ¢ € R are constants and, in each case, the interval of definition I C R of a

1]
A
o

1]
\Y4
o

\

is the maximal one where « is positive. From these solutions, in Table we collect
the options of Riemannian warped products for our study.

For all warped functions described in Table 6.1} when the Riemannian fiber M™
is closed, we have that the Riemannian warped product I x, M™ support a family of
open subsets which can be realized as critical points of the variational problem that
was described in Subsection [6.2.1] To see this, let 71 and 7 be arbitrary numbers in
I C R and we consider the family

{QT}TG(Tl,Tg]
of open subsets of I x, M" defined by
Qr = (m,7) x M", T € (71,72 (6.26)
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Riemannian warped product 0 c1 Co
(—00,4+00) X er M" —n 1 1
(—00,4+00) X coshr M" —n 1 0
(0,+00) X snnr M" —n| 0 1
(—o0,+00) x M" 0
(0,+00) x, M" 0 1 0
(=7/2,7/2) X cosr M n 1 0
(0,7) Xginr M" n 0 1
(0,7/2) Xsinricosr M" n 1 1

Table 6.1: Riemannian warped products satisfying the ordinary differential equa-
tion (|6.29)

Thus, assuming M™ closed, we have that the boundary 02 of each €. is the disjoint
union

00, = ¥ U X"

of two closed hypersurfaces X7 = {r} x M" (fixed) and X7 = {7} x M". Since
the variations of 0€), only affects X7 and taking into account that X7 is a closed H; -
hypersurface, Remarkassures us that each element of {2}, ., . is a critical point
of the variational problem (VP-2). Moreover, from (6.18), the differential operator
Tr: C®(E7) — C(X7) given by

T-(u) = O (u) + {”(”T_l) (nHTHy — (n—2)H]) +tr (T, o R,) } u  (6.27)

for u € C*°(X"), is the Jacobi operator associated with our variational problem, where
0, is the Cheng-Yau’s square operator on 3" defined in , H, Hy and HJ are the
first three mean curvatures of 7 given in (6.23), 7 : X(X7) — X(7) is the Newton
transformation on £” defined in (1.6) and R, : X(X?) — X(X7") is the linear operator
given by

R.(Y) = R(0,,Y)d, (6.28)

for all Y € X(X").
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In what follows, in a Riemannian warped products I x, M"™ with closed Rie-
mannian fiber M" and whose warped function satisfies the ordinary differential equa-
tion (6.25)), we pay more attention to the study of the conditions that guarantee either
the local rigidity or the existence of bifurcation instants of the family of open subsets
{Q:},c(r, - defined in (6.26).

In the next result we calculate the expressions that will allow us to write the
Jacobi operator 7, in a more malleable way, in terms of the warped function «, of the
Laplacian A on M™ and the constant P.

Proposition 6.8 With the considerations and notations established above,
a'(7)

a(r)

(@) T, = (n—1) Id,, where 1d, denotes the identity map on X(X7);

A, where A, s the Laplacian operator on X7 ;

o'(7)
a(r)?
(d) The i-th eigenvalue &;(7) of the Cheng-Yau’s square operator O, on X7 is
o'(7)
a(r)?

where &; 1s the i-th eigenvalue of the Laplacian operator A on M";

() O, =(n-1) A, where A is the Laplacian operator on M";

fz’(T) = (n— 1) &,

(e) tr (TT o ET) = (n— 1)(;’((77——)) b
(f) jq— = (n — 1)3;532& (A —+ QO); where

QO =n (0/(7'))2 —+ Oz(T)zﬁ (6'29)
is a constant on (Ty,72);

(9) The i-th eigenvalue 5(7) of the Jacobi operator J, on X7 is

o o/(7)

&G(r) = (n— 1)a(7)3 (& —Qo),

where &; 1s the i-th eigenvalue of the Laplacian operator A on M";

Proof. Item (a) is obtained immediately from (1.6) and (6.22). To obtain item (b),
from (1.7) and item (a) we obtain

O-(u) = tr (T, (Hesssn(u))) = (n—1)

—+
]
—~
=
m
wn
w0
™
43
—_
N
~—
~—
I



for all u € C*°(X"). Now, through the natural identification of C*°(X") with C*° (M),
item (c) follows from item (b) noting that the induced metric on X7 is given by
a(7)?(-,-)a; and item (d) follows directly from (c).

For the item (e), let {Fy,..., E,} be an orthonormal frame defined in a neigh-
borhood of some point of X7 and let K37 (0., ;) be the sectional curvature of at
along the plane generated by 0, and E;, j € {1,...,n}. Then, from (6.28)), item (a)
and noting that our Riemannian warped products verifies , we get

(T, o) = (- )2 SR (). B)

a(r) &
(o o'(7) o ~ (n— o/ (1) _
- ( 1) O[(T) R M(07707) ( 1) O[(T) 0.

—(n—2) (Z((:)) +(n— 1)2/((;) @)}
0 oo (YON )
~ - (-0 (55) + 005 Q}
o/ () (n—1)a/(7)

Hence, to end the proof of item (f), it remains to show that

Q : (r,m») — R
r e Q) = (@) +alr)?T

is a constant function. For this, from (6.25)) we observed that

Q'(1) = 24/(1)(na" (1) + a(r)g) = 0

.

~
0

for all 7 € (71, 72), which implies that there exists )g € R such that Q(7) = @), for all
T € (11, T2).

Finally, item (g) follows directly from (f). =
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For a better understanding of the statements in the following results, let us re-
member that the spectrum of the Laplacian operator A on a closed Riemannian man-
ifold M" (cf. Section 1.3 of [24]) are determined by a sequence of eigenvalues {&;}, "
satisfying

0=6§ <& << <6< G < -en

repeated according to their multiplicity, and

Our first result provides some simple sufficient conditions to get the local rigidity
of the family {QT}TG(TLQ].

Theorem 6.9 Let I C R be an open interval, let M" be a closed n-dimensional Rie-
mannian manifold (n > 2) and let I x, M™ be a Riemannian warped product, whose
warped function o : I — R satisfies the ordinary differential equation . Let
{Q:}re(r ) be a family of open subsets of I xo M™ of the form Q. = (r,7) x M",

where 71 and T are fized numbers in I C R with 71 < 7o. If

(a) Qo #& forallie {0,1,2,...}, where Qq is the constant defined in (6.29) and &;

15 the i-th eigenvalue of the Laplacian operator A on M", and
(b) /(1) # 0 for all T € (11, T2),
then {2} c(r,m @8 locally rigid at each T € (71, 72).

Proof. Taking into account our assumptions, from item (g) of Proposition we
obtain that the i-th eigenvalue 5(7) of the Jacobi operator 7, on X7 is such that
> a'(7)

&) = (1= 177

Hence, the second variation % FAN7)(0) given in (6.21)) is nonsingular for all 7 € (71, 72)
and, therefore, the family {€2,} (- ] is locally rigid at each 7 € (71, 72). ®

(& — Qo) # 0.

e

Let S"(r) be the n-dimensional Euclidean sphere of radius » > 0. We know that
all the eigenvalues &, of the Laplacian operator A on S"(r) (cf. Section 2.4 of [24]) are
given by o

¢ = Z(HT# i€{0,1,2,...}. (6.30)
Then, from Table we can investigate the families {{2,},c(,, -,] of open sets in the
warped products [ x, S"(r) of the form Q, = (m,7) x S"(r), with 71,72 € I C R and
71 < Ty, that verify the conditions of Theorem In Table [6.2) we collect the results
of this analysis.

From the Table [6.2] we observe that the first case can be extended to a broader
warped product class, exchanging the Euclidean sphere S™(r) by any closed Riemannian

manifold M™.
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Corollary 6.10 Let (—o00, +00) X cosnr M™ be a Riemannian warped product, with
closed Riemannian fiber M™ (n > 2), and let {;};c(r =) be a family of open sub-
sets of (—00, +00) X cosnr M™ of the form Q, = (11, 7) x M™, where 71 and 72 are fized
numbers either in (—oo,0) or in (0, +00), in both cases with 7y < 5. Then {2} c(r m]

is locally rigid at each T € (71, 73).

In the next result we have established a criterion that guarantees the existence
of bifurcation instants of the family {Q .} c(r ).

Theorem 6.11 Let I C R be an open interval, let M"™ be a closed n-dimensional
Riemannian manifold (n > 2) and let I x, M" be a Riemannian warped product,
whose warped function o : I — R satisfies the ordinary differential equation (6.25]).
Let {2} (r1,m] be a family of open subsets of I x, M"™ of the form Q. = (7, 7) x M",

where 7, and T are fired numbers in I C R with 71 < 7. Suppose that

(a) Qo #& forallie {0,1,2,...}, where Qq is the constant defined in (6.29) and &;

18 the i-th eigenvalue of the Laplacian operator A on M", and

(b) there exist numbers 8y, m9 € (71, T2) with §g < 1y such that either o/ (dy) > 0 and
a’(no) <0, or a'(dg) < 0 and a'(ny) > 0.

Then {Q:}rc(n,m) admits at least a bifurcation instant at some 7, € (09, 19).

Proof. Since a > 0on I C R, from item (g) of Propositionand from our hypotheses
involving )y and o' we obtain that the eigenvalue 5(60) and 5(770) of the Jacobi
operators J5, and J,, are such that

= (o o'(do) .

51(50) - ( 1)OZ((50)3 (gl QO) 7é 0 (631)
and /(o)

) = (1= 1) 55 (6= Qo) # 0 (6.32)

for all i € {0,1,2,...}, respectively. Furthermore, for some i, € {0,1,2,...}, from

and (533),

2 '(%)0(10)
a(dg)?a(ng)?

since the hypothesis (b) guarantees that o'(dg)a’(19) < 0.

Now, from 1i (6.31) and (6.32) we get that the second variations % FA) ()
and % FMm)(0) are nonsingular. Furthermore, from (6.33) we obtain that the eigen-

value &;(7) of the Jacobi operator

50(50)50(770) = (n - 1) (gio - Q0)2 < 07 (633)

Tr = (n— D (7)/a(T)*) (A + Qo)
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which corresponds to ¢ = iy admits a change the signal between 71 and 7. Since the
eigenvalues of the Jacobi operator . are ordered, we can ensure that the number of
negative eigenvalues between 77 and 7, has changed. Therefore,

Ind (FA™,Q.)) # Ind (F}™), Q)

and the result follows. m

Taking into account once again the eigenvalues of the Laplacian operator A of
the Euclidean spheres S"(r), giving in (6.30)), we can list in Table [6.3] some examples
of families {Q2,},¢(, - of open sets in warped products I x, S"(r) of the form Q. =
(11,7) x S*(r), with 79,75 € I C R and 7y < 7, that verify the conditions of the
Theorem B.111

We remark that the first case of Table [6.3| can be extended to a broader warped
product class, exchanging the Euclidean sphere S"(r) by any closed Riemannian ma-
nifold M™.

Corollary 6.12 Let (—o00, +00) X cosnr M™ be a Riemannian warped product, with
closed Riemannian fiber M™ (n > 2), and let {;};c(r =) be a family of open sub-
sets of (—00, +00) X cosnr M™ of the form Q, = (11, 7) x M™, where 71 and 72 are fized
numbers such that 7 € (—00,0) and 72 € (0,+00). If 6y and 1y are two real numbers
such that 71 < 8 < 0 < 1y < 7o, then ., = (1, 7) X M" admits at least a bifurcation

instant at some T, € (dg,19)-

Another way of establishing the existence of bifurcation instants of the family
{Q+¢} e 1o Is given in the following result.

Theorem 6.13 Let I C R be an open interval, let M™ be a closed n-dimensional
Riemannian manifold (n > 2) and let I x, M" be a Riemannian warped product,
whose warped function o : I — R satisfies the ordinary differential equation for
some nonzero constant real 0. Let {Q;}.c(r, -, be a family of open subsets of I x, M"
of the form Q, = (11, 7) x M"™, where 7, and 72 are fized numbers in I C R with 7 < 75.

Suppose that

(a) Qo #& forallie {0,1,2,...}, where Qq is the constant defined in (6.29) and &;

18 the i-th eigenvalue of the Laplacian operator A on M", and
(b) there exists T, € (11,72) such that o'(7,) = 0.
Then {Q:}rc(n ) admits a bifurcation instant in .

Proof. From item (g) of Proposition for every &g, 1m0 € (71, 72) With 0y < 7 < 10
and for iqg € {0,1,2,...} we have

2 @' (%)0(10)
a(dg)?a(ng)?
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Since @ > 0 on I, 3 # 0 and —na”(7) = va(7) on I (see equation (6.25)) then o”’(7) # 0
on I, which asserts that o’ is strictly increasing or strictly decreasing on /. So, from
hypothesis (b), since dy < t. < g then o/(dy) < 0 < o' (n9) or a'(ny) < 0 < &/ (dp). In
both cases, o/ (6)a’ (1) < 0. Hence, returning to and considering the hypothesis
(a), we have that &, (6)&:, (o) < 0.

In addition, again using item (g) of Proposition and the hypothesis (a) we
get that (6.31) and (6.32)) are valid.

Now, the result is obtained by following the same steps of the end of the proof of
Theorem G111 =

With slight changes, it is immediate to observe that the families of open sets
described in Table [6.3] can fit under the conditions of Theorem [6.13] We recorded this
new configuration in Table

Here we can also establish the following immediate consequence of Theorem

Corollary 6.14 Let (—00, +00) X cosnr M™ be a Riemannian warped product, with
closed Riemannian fiber M"™ (n > 2), and let {Q;}.c(- ) be a family of open sub-
sets of (—00,4+00) X cosnr M"™ of the form Q, = (m,7) x M", where 7 and 7o are
fized numbers such that 7 € (—00,0) and 7 € (0,400). Then {Q;} c(r ) admits a

bifurcation point in 1, = 0.

The requirement on the constant ()y that appears in the hypotheses of Theo-
rems and can be interpreted as a geometric condition on the Rieman-
nian fiber M" of the warped product I x, M™. To arrive at this conclusion, let us first
observe from that the constant 7 admits the expression

Qo
a(r)?
that when substituted in we obtain that the scalar curvature S of X" is given
by ST = Qo/a(7)?. But as the induced metric on ¥? is a(7)?(-,-)», we have that
the scalar curvature S™ of M™ and @, are related by S = (n — 1)Qg. Therefore,
what is requested in item (a) of Theorems and can be interpreted as
the requirement that the constant scalar curvature SM of A" does not belong to the

E - nH2Tv

spectrum of the Laplacian operator A of M™.

6.3 Local rigidity, bifurcation and stability of Hy -
hypersurfaces in weighted Killing warped prod-

ucts

This section corresponds to the contents of [31]. In what follows, in a weighted
Killing warped product M} X, R endowed with a weighted function f that does not
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depend on the parameter ¢ € R , we will establish sufficient conditions that allow us
to guarantee the existence of bifurcation instants or the local rigidity for a family of
open sets {{1,},c; whose boundaries Jf), are hypersurfaces with constant weighted
mean curvature. For this, we analyze the number of negative eigenvalues of a certain
Schrédinger operator and study its evolution. Furthermore, we obtain a characteriza-
tion of a stable closed hypersurface x : X" & M} x, R with constant weighted mean
curvature in terms of the first eigenvalue of the f-Laplacian of ¥".

6.3.1 Description of the variational problem associated with
the weighted area functional
The weighted volume functional associated to the variation X : (—¢,€) x 0Q —
M}L X, R 18
Vii(—€,6) > R

s Vi(s) = Vols(£) = / dp,

El

(6.35)

and we say that X : (—¢€,¢) x 90 — M? x, R is weighted volume-preserving of € if
Vi(s) = Vy(0), for all s € (—¢,¢).

The following result is well known and, in the context of weighted manifolds, it
can be found in [23].

Lemma 6.15 If Q) € M and X : (—¢,€) x 980 — M} X, R is a variation of 0¢) then

d
—Vi(s) = / usdps, for all s € (—¢,¢€),
dt a9,

where u, is the function defined in . In particular, X : (—€,€) x 9 — My x, R
18 weighted volume-preserving of () if and only if fms usdus = 0 for all s € (—¢,€).

Remark 6.16 We observe that is not difficult to verify that Lemma 2.2 of [8] still
remains valid for the context of weighted Riemannian manifolds, that is, if u € C*(0Q)
1 such that fm udp = 0, then there exists a weighted volume-preserving variation
X (—€,€) x 0Q = M7} xR of 02 whose variational field is %_)§|s:0 =uN.

The werghted area functional associated to the variation X is given by

A (—e€e) > R

s = Ar = Area;(0Q,) = /{m dss.

(6.36)

Following the same steps of the proof of Lemma 3.2 of [23], we can get the following
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Lemma 6.17 IfQ) € M and X : (—€,¢€) x 9 — M? X, R is a variation of €2, then

d
— Ag(s) = —n/ (Hy), usdp,s, forall s € (—¢,€),
dS 90,

where us is the function given in and (Hy), = Hy(s,-) denotes the f-mean cur-
vature of 0X), with respect to the metric induced by the immersion X, defined in (6.2).

In order to characterize open subsets () of M} x, R whose boundary are closed
hypersurfaces with constant f-mean curvature (possibly equal to zero), we consider the
variational problem

(VP-3): Minimizing the weighted area functional A; (see (6.36)) for

all variations of O€), that preserve the weighted volume of €).,.

The Lagrange multiplier method leads us then to the associated weighted Jacob:
functional
]:;‘ c(—e,6) > R
s = Fp(s) = Areap(99,) + AVoly (),

where \ is a constant to be determined (eventually A can be zero, and in this case,

(6.37)

for {2 € M, our variational problem reduces to minimizing the functional A, for all
variations of 0€2).

As an immediate consequence of Lemmas and we get that the first
variation of F} takes the following form:

d

d d
E}—JZ\(S) == Ar(s) + )\E Vi(s) = o {=n(Hp), + A} usdps. (6.38)
Thinking about making the best possible choice of A, let

1

= Area(08)) Jsq

Hydy (6.39)

be an integral mean of the f-mean curvature ; on 0f2. We call the attention to the
fact that, in the case where Iy is constant, we have

H=H;, (6.40)
and this notation will be used in what follows without further comments. Therefore,

if we choose A\ = nH, from (6.38) we arrive at

LN = —n [ ), - HYuadp (6.41)
s

In particular,
d _, _
— F7(0) = —n {Hy —H} ugdp. (6.42)
ds a0

Now, from (6.42)) and following the same ideas of Proposition 2.7 of [9] we can
establish the following result.
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Proposition 6.18 Let 2 € M. The follouing statements are equivalent:

(a) 0% is a closed Hy-hypersurface with constant f-mean curvature Hy equal to Hy =
A/n;

(b) for all weighted volume-preserving variations X : (—e¢, €) x 09 — My xR of 09,
we have L A (0) = 0;

(¢) for all variations X : (—¢,€) x 9Q — M} x4, R of 082, we have %]—"}(0) =0.

Hence, from Proposition we have that the critical points of (VP-5) are open
subsets (2 of M} X, R whose boundary 0f is a closed H;-hypersurface with constant
second mean curvature I, equal to

Hy = (6.43)

A
n ?
with A € R. On the other hand, if we change (VP-3) to

(VP-4) : Minimizing the weighted area functional A; (see (6.36]) ) for all
variations of 0€).,, not necessarily weighted volume-preserving

variations of €1,

from Proposition we obtain that the respective critical points of (VP-4) coincide
with the same critical points of the initial variational problem (VP-3).

Remark 6.19 In the case A = 0 we observe that the two variational problems (VP-4)
and (VP-3) coincide, in which case the respective critical points are open subsets )
of M} xR whose boundary O} are closed f-minimal hypersurfaces. Furthermore,
from we can observe that ]_—fo coincides with the weighted area functional Ay
and, for each 2 € M, this whole situation comes down to the variational problem
of minimizing Ay for all variations of OS) (not necessarily for those that preserve the
weighted volume of ).

Remark 6.20 Taking into account the Remark we will assume that M 1is the
space of open subsets () C My X, R whose boundary 0€) = X7 U X7 s the union of
two disjoint sets where XV is a fized set and, hence, the considered variations of OS)
only affects 3. Under this assumption, the critical points of (VP-3) or (VP-4) will be
open subsets Q such that their boundaries are union of a (fixred) set X7 and a closed
H¢-hypersurface X3 with constant f-mean curvature H; given by .

For the critical points of (VP-3) and (VP-4), the formula for the second variation
of F} is given in the following result.
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Proposition 6.21 Let () € M be open subset of M} x, R whose boundary 05} is a
compact H-hypersurface, with constant f-mean curvature Hy given by (6.43). Then
2

d
the second variation F]—"J%(O) of the weighted Jacobi functional ]-"Ji\ s given by
s

d2

@]—"Ji\(())(u) = — /aaujf(U) d, (6.44)

for any u € C(09)), where Jy : C*(082) — C*(0N) is the weighted Jacobi operator
given by

Aa( a) + AP (6.45)

Jr = A + Ricy(N*, N*) — éﬁ\egsa(N*,N*) (N,Y)?
Here, Y is the Killing vector field on M7 x, R, a = [Y| > 0, N is the unit normal
vector ﬁeld on ), Ay and Af represent the f-Laplacians on 02 and M7}, respectively,
Rle and Hess are the Bakry-Emery-Ricci tensor and the Hessian operator on M7,
|A|? represents the square of the norm of the shape operator A of 092 with respect to
the orientation given by N and N* is the orthogonal projection of N on the tangent
bundle of M". With respect to the functions on 0S) to be evaluated in %]—?(0) for
a critical point of (VP-3), they have to be considered according to Remark that
18, smooth functions on 0X) whose integral mean is zero; and, on the other hand, any
smooth function on 0X) can be evaluated in %]—"’\(0) for a critical point of (VP-4).

Proof. Initially, for any variation X : (—¢,¢€) x 9 — M7 x, R of 982 we consider the
function uy € C*°(012) defined in (6.3]). Since H; is constant, from (6.41) and (6.40)
we have that

d? 0 (Hy)
- _ s d
ds? ]:f( ) (to) n/m ( Os 3:0) Ho ot
—n/ H; —H 2(u dpy)
a0 \i’—/ (95 ? MS SZO‘

0

Reasoning as in the proof of equation (3.5) of [23], we obtain

9 (Hy),
0s

_, = A (uo) + {Rics (N, N) + |47} uo.

Hence,

dsz ]:f( ) (o —/ {A(uo) + {Ricy (N, N) + |A]*} g } uo dpu. (6.46)
2,9

On the other hand, denoting by N* and N~ the orthogonal projections of N
over the tangent and normal bundles of M", respectively, taking into account that f
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is invariant along the flow determinate by Y, from [62], Proposition 7.35] we obtain
Hessf(N,N) = (VyVf,N) (6.47)
= (VyVf,N"+N*)
N 1 ~ ~
= Tessf(N", N*) + —(V, Va) [N |

! (Vf,Va)(N,Y)2

= Hessf(N*,N*) 4+ pe

Moreover, from [62] Corollary 7.43] we get that

_ __ 1 — A
Ric(N, N) = Ric(N*, N*) — = Hess a(N*, N*) — (N,Y)? (30‘) (6.48)
« «
Now, from equations (6.47) and (6.48]), we have that
__ — 1 — A
Ric;(N, N) = Rics(N*, N*) — — Hess a( N*, N*) — (N, Y)? f(go‘) (6.49)
« «
Therefore, from equations (6.49)) and (6.46) we obtain
d2
Ff?(O)(uo) = —/ ug Jp(uo) dp, (6.50)
o 0

where J; is given in (6.49]).

Now, for any u € C*°(9(2), considering variations X : (—¢,€) x 90 — M} x, R
of 0€) whose variational field is %—f|t:0 = uN, we obtain that the last expression (|6.50])
is also valid for every u € C*°(0f2). All this we provide the formula of the second
variation of F} for a critical point of (VP-4).

For the critical points of (VP-3), if X : (—¢,€) x 9Q — M} x, R is a variation
of 09 which preserve the weighted volume of 2 then for uy € C*°(02) defined in
we have from Lemmal[6.15| that [,, uodV = 0, and, in adittion, the expression is
valid for such ug. Finally, for any function v € C*°(99) such that [,,udV = 0, from
Remark |6.16( we get a variation X : (—¢,€) x 9 — M} x, R of 9Q which preserve the
weighted volume of {2 such that the variational field is %—)ﬂtzo = ulN, and immediately
follows that is retrieved for such a u. m

We conclude this subsection by noting that the weighted Jacobi operator J¢
given in belongs to a class of differential operators which are usually referred to
as Schrédinger operators, that is, operators of the form A 4 ¢, where A is the standard
Laplacian on 99 and ¢ is any continuous function on 0f) (see, for instance, [46]). In
particular, we can highlight that the behavior of the eigenvalues of J; is well known,
behavior that will play an important role in obtaining the main results of this section.

6.3.2 Bifurcation instants for H-hypersurfaces in M} x, R

In what follows, we consider the one-parameter family {€2,}. of open subsets in
weighted Killing warped product M} x,R such that the boundary of each (2., denoted
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by 0€2,, is a closed H(v)-hypersurface with constant f-mean curvature H;(v), where
~ varies on a prescribed interval I C R. In this context, as a consequence of our study
of Subsection we have that each (2, is a critical point of a certain variational
problem of type (VP-4). More specifically, each ), is a critical point for the one-
parameter family of weighted Jacobi functionals

I3y — FY = A+ X))V

defined in (6.37]), where
A(y) = nH(v).

Moreover, from Proposition [6.21] associated with each closed H(~y)-hypersurface 02,
we have that the second variation % }";(7)(0) of }";(7) is given by

a2
SEO0W = - [ adpmwdn (6.51)
§ 9]
for any u € C*°(052,), where

As()

3 * * 1 = P * *
Try = Apy + Ricy(N], NJ) — EHess (N7, N) — (I

2L AP (652)
is the weighted Jacobi operator on 0f),. Here, Ay, and A s are the f-Laplacians on
082, and M7, respectively, ];/i\i/(?f and Iess are the Bakry-Emery-Ricci tensor and the
Hessian operator in M7, A, is the shape operator of 0€), with respect to normal vector
field N, and N} is the orthogonal projection of N, on the tangent bundle of M".
Taking into account that the digression in the Subsection [6.2.2| can be applied to
the functional }";(7), we have that a variation of Ind; (f;(“’), €1, ) along the interval
I C R will indicate the existence of a bifurcation instant. More precisely, under suitable
Fredholmness assumptions (cf. [3] and [16]), we have that if there are 1,2 € I, with
~v1 < 72, such that the second variation % }"JZ\(W )(0) of the weighted Jacobi functional
}—}\(w ) is nonsingular (namely, the eigenvalues of the weighted Jacobi operator J;.,, are

nonzero) for j € {1,2} and
Ind; (f}(“ﬂ),sz%) £ Ind, (f;(”),QW), (6.53)

then {Q,},c; admits a bifurcation instant at some v, € (v1,72). On the other hand,
if % }";ﬁ)(()) is nonsingular for some ¥ € I, then the family {€,},cs is locally rigid
at 7. In particular, when Ind; (}";(7),97) = 0 for all v € I, {Q, },cr does not have
bifurcation instants.

Remark 6.22 We observe that the change in the Morse index a family of hypersurfaces
given by condition (6.53) is not sufficient to guarantee the bifurcation of the family
{Q, }yer. Indeed, considering the standard context, the family of CMC spherical caps,
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starting with a pole and terminating with the entire sphere has a change in the Morse
index from 0 to 1 at the hemisphere, but there is no bifurcation (for more details,
see [1]). Hence, our assumption that %]—"JZ\(W)(O) is nonsingular for 7 € {1,2} is a

necessary condition to reach at the bifurcation.

In the Section[6.3.3] we will study the local rigidity and the bifurcation instants of
{Q, },er by analyzing the spectrum of ;.. for all v € I. Essentially, we will determine
the number of negative eigenvalues for each + (counting its multiplicity) and we will
study the evolution of such a number.

6.3.3 Local rigidity and bifurcation results for H ;-hypersurfaces

The first result of this section provides some simple sufficient conditions to get
the local rigidity of the family {Q,},c; of critical points of the variational problem
(VP-4) described in Subsection [6.3.2]

Theorem 6.23 Let {0, }.c; be a family of open subsets of the weighted Killing warped
product M} x, R whose boundaries 051, are closed H(vy)-hypersurfaces. If, for all
~v € I, the function

As(o)

Qs(v) = Ricy (NI, N7) — — Hessa (N3, NZ) = (N, Y)? + A, |2

is constant on 0S), and the first nonzero eigenvalue ffl (7) of the f-Laplacian Ay, on
0f1, satisfies
£ () —Qp(7) >0, (6.54)

then {Q,}yer is locally rigid at each . In particular, such a family is locally rigid if

one of the following conditions holds:

(a) Rle(N,\/,N,\/) - EHeSSQ(N’y7N7) - <N’V7Y>2 23 < _|A’V|2;

(b) either
Rics (N}, N}) — ~Hessa(N}, NJ) — <J\L,,Y>2£[—3 <0 and &(y) > A7
or
Rlcf(Nw,Nv)—EHessa(Nw,Nw)—<N7,Y>2 23 <0 and &(y) >[4,

Proof.
Since Qf(7) is constant, from (6.52)) we have that the eigenfunctions of the
weighted Jacobi operator [Jy., will coincide with the eigenfunctions of f-Laplacian
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Ay.,. More specifically, if u is an eigenfunction of A;., associated with an eigenvalue
£s(7) then u is eigenfunction of J;., with eigenvalue

o~

Er(v) = &5(v) — Q7).

Moreover, by the spectral theorem we know that all the eigenvalues of A;., are given
] +o0 . .
by a sequence {¢ 7 (7)}j:0 satisfying

0= &) < &y < <& < <
repeated according to their multiplicity, and

li () =

Jim () = oo

(see, for instance, Section 1 of [72]). So, all the eigenvalues E; (v) of J;., have the
following form

E1(7) =€} (7) — Qs(y) for every j € {0,1,2,...}. (6.55)
So, from and we obtain
() =0 -Qr() = & () —Qs(y) > 0 for every j €{0,1,2,...}.

Hence, the second variation % }"JZ\(“’)(O) given in (6.51)) is nonsingular for all v € I and,
therefore, the family {€,}.c; is locally rigid at each v € I.

[

Our next result provides a criterion that guarantees the existence of bifurcation
instants of the family {2} ¢;.

Theorem 6.24 Let {€),}, be a family of open subsets of the weighted Killing warped
product M X, R whose boundaries 952, are closed H¢(vy)-hypersurfaces. Suppose that,
for all ~v € I, the function

., Y>2 gf(a)

Qs(v) = Ricy (NwNv) N EHQSSQ (N“/’N“/) - (N a?

+ A,

is constant on 08),. If there are two values vy, and o, with v, < 72, such that the eigen-
values fjf(vl) and fjf(vg) of the weighted Jacobi operators Jy., and Jr.., (respectively)
satisfy

(a) é\;(,}/l) 7é 0 a’ndé\;(,}/?) 7é 0 f07' a’”j S {07 1727' : ‘}:

(b) there exists jo € {0,1,2,...} such that <§?Jf°(71)) <§?Jf°(72)) <0,
then there exists a bifurcation instant ~. € (71, Y2)-

104



Proof. Initially, from (6.52)) and (6.51) we note that the condition about @);(vy) and
the hypothesis (a) assures us that the second variation % }";(W )(0) of the weighted

Jacobi functional }"JZ\(W ) is nonsingular for j € {1,2}. On the order hand, we observe
that hypothesis (b) assures us that the eigenvalue of the weighted Jacobi operator which
corresponds to j = j, admits a change the signal between ~; and ~,. Moreover, as the
eigenvalues of the one-parameter family of weighted Jacobi functionals are ordered, we
can ensure that the number of negative eigenvalues between +; and +2 has changed.
Therefore,

Ind; (77,0, ) # nd; (779, 0.,)

and the result follows. m

When M" is closed, the weighted Killing warped product M} x, R naturally
admits a family of open subsets that can be realized as critical points of the weighted
area functional A, defined in (6.36). To visualize this, for {,,4, € R with {; < {;, we
consider the family of open subsets {€2,}c(, 1, given by

97 = M" x (tl,’}/), v e (tl,tg], (656)
whose boundary €1, of each (2, is formed by the disjoint union
00, = T UT3(7)

of a fixed set £ = M" x {t;} and other set £5(7) = M" x {~}. From Remark [L.2] we
have that each X5 (v), v € (1, 2], is an f-minimal totally geodesic closed hypersurface.
So, since the variations of 0, only affects X7(v), from Remarks and we
conclude that each element of the family ,c, +,) is a critical point of .A;. For these
critical points, noting that 0, is the vector field on My X, R that determines the
orientation of each X5 (v), v € (L1, 12], we have that second variation of the weighted
Jacobi functional F fo = A; and the weighted Jacobi operator on each 0f),, given by

the expressions (6.51]) and (6.52)), are reduced to

d? -
A =~ [ w3

and .
Ipa(w) = Apa(u) = ~ Ag(a)u
for any u € C*°(X3(y)), respectively, where A, represents the f-Laplacian on 33 (v),
ﬁf is the f-Laplacian on M%, a = |Y| > 0 and Y is the Killing vector field that
determines on M} x, R the foliation by totally geodesic closed slices M" x {t}, ¢ € R.
In addition, if a is an eigenfunction of Ay, with associated eigenvalue c, we have that
Jt can be written simply as
Jpy = Dy F
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In this scenario, we observe that the arguments of the proofs of Theorems [6.23
and are valid, and even more, the statements can be refined, in the sense that we
now ask as hypotheses a certain behavior of the spectrum of the drift Laplacian A 5 of
the closed manifold M.

Corollary 6.25 Let M" be an n-dimensional closed Riemannian manifold and, for
t1,ty € R with £, <ty, let Qe 1) be the family of open subsets of the weighted Killing
warped product M;' X R given by (6.56)). Let ﬁf be the f-Laplacian on My. If a is
an eigenfunction of Ay (with associated eigenvalue c) and the first nonzero eigenvalue
ffl (7) of the f-Laplacian Ay., on 3a(y) = M"™ x {v}, v € (t1,t2], satisfies

£ (y) > ¢,
then {0}y 10] 98 locally rigid at each v € (11,15

Proof. Initially, it is immediate to note that the function Q(v) of Theorem re-
duces to the nonnegative constant c. Then, as in the steps of the proof of Theorem |6.23]
we make an analysis of the eigenvalues of J;., that contribute to Ind; (A ,€2,) and the
result follows. m

Remark 6.26 Considering once more the behavior of the eigenvalues of the f-Laplacian
Ay, on an arbitrary closed weighted manifold M}, from Corollaryl@l we obtain the
following consequence: The family of open subsets of the weighted product M} xR given

by is always locally rigid at each v € (11, 12].
Thinking similarly, from Theorem we obtain the following result:

Corollary 6.27 Let M" be an n-dimensional closed Riemannian manifold and, for
t1,t2 € R with t, <y, let Q e, 1,1 be the family of open subsets of the weighted Killing
warped product My X, R given by (6.56). Let Ay be the f-Laplacian on M7. If

18 an eigenfunction of &f (with associated eigenvalue c) and if there are two values

Y1, Ve € (t1,1a], with v1 < 72, such that the eigenvalues E;(%) and é\;(’}/g) of the Jacobi
operators J ., and Jy., (respectively) satisfy

(a) é\;(,}/l) 7é 0 a’ndé\;(,}ﬁ) 7é 0 f07' a’”j € {07 L,2,.. ‘}:

(b) there exists jo € {0,1,2,...} such that <§?Jf°(71)) <§?Jf°(72)) <0,

then there exists a bifurcation instant ~. € (71, Y2)-
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6.4 Stability of H;-hypersurfaces in M} x, R

It is important to remark that, for all calculations in the Section there is no
real dependence on the open set {2 € M but on the hypersurface 0¢). In fact, in the
literature, it is more common to work in terms of hypersurfaces (for instance, see [9 [§]
for the classical context, and [23, 54] for the weighted context). In this scenario, M
becomes the space of all closed orientable hypersurfaces of M7 x, R.

In this last section, we study the notion of stability associated with problem (VP-
3) described in Subsection for this new set M. We begin this study by remembering
that if z : ¥" 9 M'x R is such a hypersurface, then the weighted volume and weighted
area associated with a variation X : (—¢,€) x X" — M} x, R are given by

Vii (—e€6) - R
s = Vi(s) = Volg (2" x [0,5]) = / X*(do)
3 x[0,s]

and
Ap: (—e,e) - R

s = As(s) = Areas (X,(X")) = /n dpis,

respectively. Furthermore, the variational problem of minimizing the functional A, for
all variations of  : ¥" & M} X, R that preserve the weighted volume V; is addressed
by the study of the weighted Jacobi functional

Fr: (—e€) - R
s > Fi(s) = Ap(s) + nH Vi(s)

where 7 is the constant defined in (6.39), and their respective critical points are the
closed Hg-hypersurfaces of M7 x, R. For these critical points, the stability of the
corresponding variational problem is given by the second variation

d2

SFOW == [ ugiwdn
where J; : C®(X") — C*°(X") is the weighted Jacobi operator given in (6.45). The
above discussion motivates the following notion of stability.

We say that a closed Hy-hypersurface v : ¥ & M} x, Ris f-stable if
d2

e As(0) >0,

for all weighted volume-preserving variations X : ¥" x (—¢,€) = M7 x,Rof 2 : X" &
M}L X4 R,
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Remark 6.28 Let x : X" & M} X, R be a closed Hy-hypersurface as described in the

last definition above. We consider the set

g:{uecw(z“) : /nudu:0}. (6.57)

Just as [9], we can establish the following criterion of f-stability: o hypersurface x :
X" G M7 x4 R is f-stable if and only if %]—"f(())(u) >0, forallu e G.

In what follows, associated with a hypersurface » : ¥" & M} x, R, we will
consider the angle function © defined in (1.33). In this setting, we get the following
key lemma, which provides sufficient conditions to obtain a eigenfunction of the drift
Laplacian Ay on X". Let us denote by V, V and V the Levi-Civita conections of
My xR, X" and M", respectively.

Proposition 6.29 Let z : X" & M} X, R be a hypersurface immersed into weighted
Killing warped product My x, R. If © € C*(X) is the function defined in then

A()

A0 + {Ric,(N*, N*) - éﬁgsa(N*,N*) 2219 | Ave — _uyT(m)),

where we are using the same notations of Proposition In addition, if " s closed
and both H; and

+ 1A

—_ 1 —~ A
¢ = Ricy(N*, N*) — = Hess a( N*, N*) — ©? f(go‘)
« «

are constants, then & is an eigenvalue of Ay on X", with eigenfunction ©.
Proof. Firstly, from (|1.12)) we note that

—nY (H)=-Y" (nH; — (Vf,N)) (6.58)
= —nY " (H;)+Y (VS N)
= —nY " (H;) + Hessf(Y, N) — OHessf(N, N) — (AY ", Vf).

Moreover, with a straightforward computation we can show that
VO =—AYT — (VyY)7,
and, since f is invariant along the flow determined by Y, we get that

(VO,Vf) = —(AYT + (VyY)T,V/) (6.59)

—(
<AYT7 Vf> - <vNY7 vf>
—(AY TV [y + (Y, VAV /)
—(AY T V) + Hessf(Y, N).
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Taking into account the equations (6.58) and (6.59)) we get that
—nY T (H)=—nY " (H;) — OHessf(N,N) + (VO,Vf) (6.60)
On the other hand, from Proposition 2.12 of [8] we have

A® = —nY T (H) — © (Ric(N, N) + |AP), (6.61)

Therefore, from (1.11)), (1.15), (6.49), (6.61) and we obtain the result. m
Our stability result stated in Theorem [6.30} that follows, gives us a characteriza-
tion of f-stable H;-hypersurfaces in M} X, R through the first eigenvalue of the drift

Laplacian Ay, which extends a classic result of Barbosa, do Carmo and Eschenburg
(see Proposition 2.13 of [§]).

Theorem 6.30 Let v : X" & M} X R be a closed Hy-hypersurface immersed into
weighted Killing warped product M7 X R. If

¢ = Ric,(N*, N*) — = Hess a(N", N*) — @2 Ay(a)

o o’

+ |AJ]?

is constant then v : X" & My X, R is f-stable if and only if § is the first eigenvalue
of drift Laplacian Ay on X".

Proof. Since that £ is constant, Proposition [6.29| guarantees that £ is in the spectrum
of the drift Laplacian A;. So, let §; be the first eigenvalue of A; on ¥". If { = &, then
the variational characterization of \; (see, for instance, Section 1 of [12]) gives

— / ulg(u) dp
¢ = min - ,
u€ G\{0} / W dy

where G is defined in (6.57). Then, from (6.44)) and (6.45) we obtain that

L FOW = [ {-udstw) - ety dn 2 -0 [ o=

for any u € g and, according to Remark [6.28} = : X" & M} X, R is f-stable.
Now suppose that x : X" & M7 xR is f-stable, which according to Remark

is equivalent to %}"f(O)(u) > 0 for all u € G. Let u be an eigenfunction associated
to the first eigenvalue & of the drift Laplacian A; on X". Consequently, by (6.44)

and (6.45) we get
d2
0< SFOW = (69 [ wtdn

— ds? n

Therefore, since £ < &, we must have &, =& m
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Riemannian warped product

Family of open sets

Qo

(—00, 400 ) X coshr S™(7) {Q: eprm With 71,7 || —n
with r > 0 in (—00,0) and 7 <
Ty, or with 7,7 in
(0,+00) and 7 <7
(0,70) Xsnr S°(1) | {Qrbroimm  with | n
with 0 <r <1 11,72 in (0,+o00) and
T < Ty
(0,400) x, S™(r) 1927} re(mm) with n
with 0 <r <1 11,72 in (0,+o00) and
T < Ty
(=7/2,m/2) Xeosz S™(1) || {2+ Fre(r,m] with n
with 0 <r <1 T,7 in (—7/2,0)
and 1 < 7, or with
1,7 in (0,7/2) and
T < Ty
(0,7) Xginr S™(r) 1927} re(mm) with n
with 0 <r <1 1,72 in (0,7/2) and
1 < Ty, or with
7,72 in (7/2,7) and
T < Ty
(0,7/2) Xgnryeosr S"(1) || {2+ re(rm] with n

with 0 < r <1

1,7 in (0,7/4) and
T < Ty, or with 71,7

in (n/4,7/2) and

71 < Ty

Table 6.2: Families that are locally rigid according to Theorem
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Riemannian warped product | Family of open sets Qo

(—00, +00) X cosh rS"() {Q:} e with —n
with » > 0 Ti, To, Op and
Mo such that
—o0 < t < dy <
0 <y <7 <400

(=7/2,7/2) X cos~S" (1) {Q:}ren ) with n
with 0 <r <1 T, T2, 0y and

Mo such that
—7m/2 <t < &y <
O<my<m<m/2
(0,7) Xgnr S™(r) {927} e With n
with 0 <r <1 Ti, To, Op and

Mo such that
0 < < & <
T/2<m<T<mT

(0,7/2) X snr e S"(r) | {QeFrcinm  With | n
with 0 <r <1 T, T», Op and my
such that 0 < <
dp < 7/d < my <
Ty < /2

Table 6.3: Families that admit a bifurcation instant according to Theorem |6.11
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Riemannian warped product Family of open sets Qo

(—00, 400 ) X cosh + S (7) {927} e With 7, —n
with » > 0 Ty, and 7, such that
—o < <71 =0<
Ty < +00
(=7/2,7/2) Xcosr S™(r) | {27} ren,m) With 7, n
with 0 <r <1 Ty, and 7, such that
—m/2< <7 =0<
Ty < /2
(0,7) Xgnr S™(r) {927} e With 7, n
with 0 <r <1 Ty, and 7, such that
O<nm<m=m/2<
Ty <
(0,m/2) Xginricosr SU(r) | {2+ re(r,n] With 7, n
with 0 <r <1 Ty, and 7, such that
O<mn<m=ma/d4<
T < /2

Table 6.4: Families that admit a bifurcation instant at 7, in (71, 75) according to The-
orem [0.15
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