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Resumo

Neste trabalho estudamos alguns problemas relacionados a geometria de hipersuper—

fícies Riemannianas imersas em variedades semi—Riemannianas (com índice zero ou

um) equipadas com uma função densidade e que podem ser modeladas por uma certa

classe de produtos warped. Inicialmente, assumindo condições razoaveis na curvatura

média ponderada de tais hipersuperfícies e considerando certas restrições no espaço

ambiente, estabelecermos alguns resultados de unicidade e nao—existência. Também

estabelecermos resultados de estabilidade, bifurcação e rigidez local associados a pro—

blemas variacionais que envolvem o funcional 1—area e o funcional area ponderada de

tais hipersuperfície.

Palavras-chave: variedades ponderadas; produtos warped; hipersuperfícies Rieman—

nianas; tensor de Bakry—Émery—Ricci; curvatura média ponderada; f—Lapaciano; f—

parabolicidade; estabilidade, bifurcação; rigidez local.
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Abstract

In this work we study some problems related to the geometry of Riemannian hypersur—

faces immersed in semi-Riemannian manifolds (with index zero or one) equipped with

a density function and that can be modeled by a certain class of warped products.

Initially, assuming reasonable conditions in the weighted mean curvature of such hy—

persurfaces and considering certain restrictions in the ambient space, we establish some

results of uniqueness and non—existence. We also establish results of stability, bifur—

cation and local rigidity associated with variational problems involving the functional

1—area and the functional weighted area of such a hypersurface.

Keywords: wighted manifolds; warped products; Riemannian hypersurfaces; Bakry—

Emery—Ricci tensor, weighted mean curvature; f—Lapacian; f—parabolicity; estability,

bifurcation; local rigidity.
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Introduction

A weighted manifold W;?H is a semi—Riemannian manifold (MnH, g) endowed

with a weighted volume form dn : effdv, where the weight function f is a real—valued

smooth function on ÚHH and do is the volume element induced by the metric 9 (for

details see, for instance, [IEL IEDI). In this setting, as a crucial ingredient to understand

the geometry of a weighted manifold W;“, the so—called Bakry-Émery-Ricci tensor

ªf is introduced as being the following extension of the standard Ricci tensor & of
—n+1M

ªf : ãà— Hess f,

where % is the Hessian tensor in WH“. Other weighted objects, such as the weighted

mean curvature and the f -divergence can also be considered. A natural line of investi-

gation that appears into this thematic is the problem of extend results stated in terms

of the Ricci curvature, the mean curvature or the divergence, for example, to ana—

logous results for the Bakry—Émery—Ricci tensor, the weghted mean curvature or the

f—divergence.

It is also interesting to remark that weighted manifolds are closely related to

some classical mathematical concepts, as they can be used as a powerful mathematical

tool in order to obtain new results related to them. For some results of geometric

investigations concerning these weighted manifolds, we also refer the reader to the

articles of Morgan [IBII] and Wei-Wylie [BBI].

A theme that has been widely approached in isometric immersion theory in re-

cent years is the study of the geometry of semi—Riemannian manifolds that can be

regarded as warped products of the tipe (M" ><a [, HW“- , '>Mn) + (& oan)27T]ª(edt2))



or ([ ><a M", aª(edtº) + (& OWRVWÍWG -, '>Mn)), where M" is a Riemannian manifold,

[ C IR is an open interval, 7TMn and WR denote the canonical projections from M " >< [

or [ >< M " onto each factor, <-, '>Mn is the Riemannian metric of M ", & is a positive

function defined at the base (i.e. at the first factor) of the product and e G í—1,1]»

is a constant that defines the causal character of the product (the warped product is

a Lorentzian manifold when & = —1 and a Riemannian manifold when & = 1). These

ambient spaces are naturaly foliated by a family of totally umbilical (spacelike, in the

Lorentzian case) hypersurfaces E? := E" >< lit) or 2? := ªlt] >< 2% G [, that will be

called slices. In this setting, an interesting question is to investigate the uniqueness of

such slices among (spacelike) hypersurfaces of the warped product, under reasonable

assumptions on their geometric data.

This branch of study, currently known as Bernstein (Calabi—Bernstein, in the

Lorentzian case) tipe results or also rigidity results, had its beginnings when Berns-

tein [EEI] proved that the only entire minimal graphs in the 3-dimensional Euclidean

space R3 are the planes. In the Lorentzian setting, there is an analogue result to Berns—

teinls theorem, which states that the only entire maximal graphs in the 3-dimensional

Lorentz-Minkowski space Lª are the spacelike planes. This result was firstly proved by

Calabi [IBI], and extended to the general n—dimensional case by Cheng and Yau [DE.

A natural extension to the Benstein and Calabi—Bernstein problems is to determine a

reasonable set of squicient conditions which guarantee the uniqueness (or nonexistence)

of complete (spacelike) hypersurfaces immersed into a certain ambient space.

Another theme that has ben aroused the interest of some geometers it is the study

of variational questions associated to the area functional in Riemannian manifolds. A

example of this branch is the study of stability of hypersurfaces with constant mean

curvature H (shortly, H hypersurfaces) in Riemannian manifolds MnH (n 2 2), wich

began with Barbosa and do Carmo in [|º|], and Barbosa, do Carmo and Eschenburg

in [Bl. In these papers, they introduced the notion of stability and proved that any

closed H —hypersurface immersed into ÚHH is a critical point of the variational problem

of minimizing the area functional for volume—preserving variations.

In this thesis we will present unicity and nonexistence results related to spacelike

hypersurfaces immesed in semi—Riemannian manifolds that can be regarded as one of

the weighted warped products decribed above. We will also do a study of stability, local



rigidity and bifurcation for variational problems associated with the functional 1—area

and the functional weighted area in Riemannian spaces. The results that integrate the

present work correspond to the contents of papers [|ZZI, [BII [BE, [BSI], [Bªl and [Bª.

In the Chapter 1, we describe the ambient spaces that will appear throughout

this work, recall some facts about hypersurfaces immersed in such spaces and we have

also establish most of the notations that will be used.

In the Chapter 2, based in the paper [BH, done in collaboation with H. F. de

Lima, A. M. Oliveira, M. S. Santos and M. A. L. Velasquez, we investigate the geo—

metry of conformal Killing graphs in a weighted Riemannian manifold M;?H endowed

with a complete conformal Killing vector field V, which are defined via the global

flow associated to V over an integral leaf of the distribution Vl (for more details see

Section 1.4.1). Taking into account the Cheeger—Gromoll type splitting theorems due

to Wei and Wylie [BBI], we assume that the weight function f does not depend on the

parameter of the flow associated to unit vector field 1/ = —V/ |V| (see Remark 1.5). In

these circumstances, we calculate a formula for the f—Laplacian of the support function

g(N , V) (cf. Lemma 2.4), where N is the Gauss map of the conformal Killing graph

E(z). Afterwards, in Section 2.2, under a suitable restriction on the norm of the

gradient of the function z, which determines such a graph Hz), we establish squicient

conditions to ensure that Hz) is totally umbilical and, in particular, an integral leaf of

Vl (cf. Theorems 2.6, 2.7, 2.10 and 2.11 and Corollaries 2.8, 2.9, 2.12 and 2.13). Our

approach is based on the use of the f—Laplacian of the supported function g(N, V),

the f—divergence of the tangent part of V on Hz), jointly with a weighted version

of Stokels Theorem to the context of complete weighted Riemannian manifolds (see

Lemma 2.1).

In Section 2.3 we study the stability of f-minimal conformal Killing graphs of

W;?H according to the behavior of the derivative of the conformal factor z/JV of V,

obtaining squicient conditions to guarantee that an f-minimal conformal Killing graphs

be Lf—stable, where Lf stands for the weighted Jacobi operator (cf. Theorem 2.16

and Corollary 2.17). Finally, in Section 2.4 our goal is to investigate the strong f—

stability of closed conformal Killing graphs in W;?H with constant f—mean curvature.

More specifically, we get squicient conditions to a strong f—stable closed conformal

Killing graphs be either f-minimal or isometric to a leaf of Vl (cf. Theorem 2.19 and



Corollary 2.20).

As it is well known, an (71 + 1)—dimensional Riemannian space (MnH, <- , ->) en—

dowed with a suitable Killing vector field Y can be regard as a Killing warped product

(M " ><a IR, <- , ->), for an appropriate n—dimensional Riemannian manifold M " and a

certain warping function & (for more details, see Section 1.4.2). In the Chapter 3,

based in the paper [BE, caried out in collaboation with H. F. de Lima and M. A. L.

Velasquez, we obtain uniqueness results related to the mean curvature equation for

entire Killing graphs E"(z) constructed over the base M " of a weighted Killing warped

product M,? ><a IR with warping function & and whose weight function f does not de—

pend on the parameter t 6 IR, that is, (Vf, ô/ôt> : 0 (see Theorem 3.9, Theorem 3.10,

Theorem 3.11 and Corollary 3.12 in Section 3.3). For this, in Section 3.1 we esta—

blish a suitable f—parabolicity criterion (see Proposition 3.3 and Corollary 3.4) and,

under appropriate constraints on the Bakry—Émery—Ricci tensor and on the f—mean

curvature, in Section 3.2 we prove some rigidity results concerning complete two—sided

hypersurfaces immersed into M,? ><a IR (see Theorem 3.5, Corollary 3.6, Theorem 3.7

and Theorem 3.8).

In the Chapter 4, based in the paper [BBL which was done in collaboration with E.

L. de Lima, H. F. de Lima and M. A. L. Velasquez, our objective is to carry out a study

on the uniqueness, nonexistence and stability of spacelike hypersurfaces immersed into

a weighted standard static spacetime M,? ><a R1, the Lorentzian dual of the weighted

Killing warped product space dealt with in the Chapter 3, endowed with a weighted

function f does not depend on the parameter t 6 IR.

We start by obtaining explicit formulas for the Laplacian of the height function

h (see Proposition 4.1) and the drift Laplacian of the angle function © (see Proposi—

tion 4.12), both functions naturally related to a spacelike hypersurface E" immersed

into M,? ><a R1. Then, applying some analytical results to subharmonic smooth func—

tions on complete Riemannian manifolds (for example: some parabolocity criteria, a

weak form of the Omori—Yau maximum principle and an extension of the Hopf,s The-

orem due to Yau) and considering suitable constraints on the f—mean curvature of E",

on the height function h, sometimes on angle function 9 and on the Bakry—Émery-

Ricci tensor of M ", we establish some uniqueness results (see Theorems 4.3, 4.7 , 4.10,

4.13 and 4.17 , and Corollary 4.4) and some nonexistence results (see Corollaries 4.8,

4



4.14 and 4.18). In Remark 4.15 we exhibit a large family of standard static spacetimes

that verify the hypotheses adopted in Theorem 4.13 and also in their corollary. Next,

in Corollaries 4.11, 4.16 and 4.19 we make a particular study on the Calabi—Bernstein

type properties of entire Killing graphs E"(z) constructed from a smooth function z

defined on the base M" of M? ><a R1.

Proceeding, in Section 4.3, we show that closed spacelike hypersurfaces immersed

with constant f—mean curvature in a weighted standard static spacetime MJ? ><a R1

are solutions of the variational problem of maximizing the weighted area functional for

all variations that keeps the balance of weighted volume equal to zero (see Proposi—

tion 4.22). As a consequence, we establish the notion of f—stability for such hypersur—

faces (Definition 4.23) and provide an appropriate stability criterion (Proposition 4.24).

Finally, in Theorem 4.26 we obtain a characterization of f—stable closed spacelike hy—

persurfaces of M? ><a R1 through the first nonzero eigenvalue of the drift Laplacian.

In the Chapter 5, based in the paper [Bªl], carried out in collaboration with H.

de Lima and M. A. L. Velasquez, we obtain uniqueness results related to the mean

curvature equation for entire Killing graphs constructed over the Riemannian base M "

of a weighted standard static spacetime MJ? ><a R1. As in the Riemannian case, dealt

with in the Chapter 3, in Section 5.1 we establish a suitable f—parabolicity criterion

and, in the Section 5.2, assuming certain control over the Bakry—Émery Ricci tensor and

over the f—mean curvature, we study the rigidity of spacelike hypersurfaces immersed

in MJ? XaRl. Finally, we point out that, in Section 5.3, applications of our main results

to weighted standard static spacetimes of the type G" ><a R1, where G" stands for the

so—called Gaussian space which is nothing but that the Euclidian space IR" endowed
n+1 lylª

with the Gaussian probability density eªm : (2%) 2 e 2 , y 6 IR", are also given.

As observed in [BI, IEL IIU], the set of trial maps for the variational problem of

minimizing the area functional for volume—preserving variations should be a collection

of embeddings of H—hypersufcaces E" into WH“; in order to detect solutions that

are not isometrically congruent, one should take into consideration the action of the

diffeomorphism group of 2", acting by right composition in the space of embeddings,

and the action of the isometry group of Mn“, acting by left composition on the space

of embeddings. The action of the diffeomorphism group of 2" on any set of embeddings

of H —hypersufcaces E" into ÚHH is free, which suggests that one should consider a



quotient of the space of embeddings by this action. This means that two embeddings of

H -hypersufcaces xl : 2? CH ÚHH and 1'2 : 233 CH ÚHH Will be considered equivalent if

there exists a diffeomorphism gb : E? —> 23 such that 1'2 : xl oqõ. As to the left action of

the isometry group of Mn“, this is not free; nevertheless, the group is compact and one

can study a bifurcation problem for its critical orbits. Thus, the variational problem

described above provides us With a framework Where we can study the equivariant

bifurcation (cf. [BI, IEL Im IBH") in a set of equivalence classes of embeddings of H—

hypersufcaces E" into ÚHH.

In this context, our purpose in the Chapter 6 is to study the notions of local rigidi—

ty, bifurcation instants and stability associated With the 1—area and f—area functional for

a family of open sets in certain warped products, using equivariant bifurcation theory

in order to establish suflicient conditions that allow us to guarantee the existence of

bifurcation instants or the local rigidity of such families.

In Section 6.2, based in the paper [IZZL Which is a collaboration With J. Q. Oliveira,

J. F. da Silva and M. A. L. Velasquez, considering a warped product [ ><a M" With

compact (Without boundary) Riemannian fiber M ", our purpose is to investigate the

existence of bifurcation instants or the local rigidity of a certain family iºrhemm] of

open sets Whose boundaries are Hg—hypersurfaces. For this, initially, in a Riemannian

manifold Hª“ we consider the space of open subsets Q C Mn“ With compact closure

and Whose smooth compact boundary dº is an orientable hypersurface and we study

the variational problem of

(VP—1) : minimizing the 1—area functional A1(t) for all variations of

(39 that preserve the volume of Q.

We assemble the Jacobi functional IAG) : A1(t) + AVG) (see (6.6)) associated With

the variational problem, Where V(t) (see (6.4)) is the balance of volume and A is a real

constant, we calculate its first variation % IMO) (see (6.12)), and as a consequence we

get that the open subsets Q of ÚHH Whose boundary dº is a compact H 2—hypersurface

are characterized as critical points of (VP—1) since the Ricci curvature RicM( , ) of ÚHH

in the normal directions Nt of the volume—preserving variations is constant (full details

can be found in Proposition 6.5 and its subsequent comments). It is immediate to

note that any Einstein manifold verifies the adopted condition on the Ricci curvature,



and thus we are obtaining a type of extension for the variational characterization of

compact Hg—hypersurfaces obtained in [III and [EEI]. When we change our variational

problem for the of

(VP—2) : minimizing the 1—area functional A1(t) for all variations of

(39, not necessarily uolume—preseruing variations of Q,

in Proposition 6.5 we observed that the respective critical points of (VP—2) coincide
with the same critical points of the initial variational problem (VP-1). For each of
these critical points, in Proposition 6.7 we calculate the second variation Cªll—; IMO) in
terms of the Jacobi differential operator ] (see (6.18)). Furthermore, for a family
of critical points ãº,) C MnH associated with our variational problem (VP-2), in
Subsection 6.2.2 we use the equivariant bifurcation theory to establish our notions of
bifurcation instants and local rigidity, as well as to relate these two concepts to the

Morse index Ind (IMT), Q,) of each Q,, which in turn can be understood as the number
of negative eigenvalues (counted with multiplicity) of the Jacobi operator ], on Q,.

We begin the Section 6.2.3 by listing in Table 6.1 all Riemmanian warped products

of the type [ ><a M " that satisfy the condition on the Ricci curvature that we are
assuming. Then, in these products, we consider the family Kb]»
of (] ><a M", drº + a(r)2<- , ->M) given by

T€(7'1,7'2] of open subsets

QT = (71,7) X M", With 76 (7177217

where 71 and 72 are fixed numbers in [ C IR. Thus, assuming M " to be compact
(without boundary), we have that the boundary (39, of each Q, is the disjoint union

(39, = 2321 U 22 of two compact hypersurfaces 221 : Jin) >< M" (fixed) and 22 :
%]» >< M ". Since the variations of (39, only affects 22 and taking into account that ZZ is

a compact H ZT—hypersurface with constant second mean curvature H 27 = ( fl (7) / f (r))º,

we have that each element of ãº,)
(VP-2).

Next, in Proposition 6.8 we collect all the elements that are squicient to get

TG (71,721 is a critical point for the variational problem

an explicit expression for the eigenvalues of the Jacobi operator ], of each element of

fºrhemm]? an expression that we will allow to calculate the Morse index Ind (]"/“T), Q,) .
Then, in Theorem 6.9, considering appropriate conditions of the spectrum of the
Laplacian on M " and the warped function &, we establish the local rigidity of the

family KZT) ] C [ ><a M" (see also Corollary 6.10). Furthermore, in Theo-
rem 6.11 and in Theorem 6.13 we establish some squicient conditions in terms of &

T€(7'1,7'2

and the behavior of eigenvalues of the Laplacian on M " to obtain bifurcation instants

of iºrhemwg] C [ ><a M" (see also Corollary 6.12 and Corollary 6.14). Finally, in
Tables 6.2, 6.3 and 6.4 we list examples that verify all the conditions we are assuming.

?



In Section 6.3, we based in the paper [B:u, also carried out in collaboration with H.
F. de Lima and M. A. L. Velasquez. There, our purpose is to study the notions of local

rigidity, bifurcation instants and stability for a family of open sets lº,), of a weighted

Killing warped product MJ? ><a IR whose boundaries (39, are closed hypersurfaces with
constant weighted mean curvature H f(y) (in abbreviation, we say that (39, is a closed
H f(7)-hypersufcace), where 7 varies on a prescribed interval [ C IR.

For this we consider the variational problems:

(VP—3): Minimizing the weighted area functional Af (see (6.36)) for
all variations of (39, that preserve the weighted volume of Q,,

(VP—4) : Minimizing the weighted area functional Af (see (6.36)) for all

variations of (397, not necessarily weighted volume—preserving

variations of Q,.

By an analysis of the first variation of the associated weighted Jacobi functional

fj“) : A, + mm, with m) e n

(see (6.37)), where Vf is the weighted volume functional (see (6.35)), we obtain in
Proposition 6.18 that the critical points of (VP—3) and (VP—4) are the open sets Q,
whose boundary (39, is a closed H f(7)—hypersurface with constant weighted mean
curvature H f(y) : AM)/n. For these critical points, in Proposition 6.21 we obtain the

formula of the second variation of fªm.
Concerning the variational problem (VP—4), in Subsection 6.3.2 we use the equi—

variant bifurcation theory (cf. [BI, Im IEL IBH) to establish our notions of bifurcation
instants and local rigidity in terms of the Morse index of the weighted Jacobi operator

JM (see (6.52)). Then, in Section 6.3.3 we get some results of local rigidity and
bifurcation instants in MJ? ><a IR via the analysis the number of negative eigenvalues of
jfw-



Chapter 1

Preliminaries

In this chapter, our aim is to establish the major part of the notations that will
be used and describe the ambient spaces that will be appear throughout this work.

1 . 1 Riemannian setting

Let MnH be a (n + 1)—dimensional orientable Riemannian manifold (n 2 2) with

metric tensor <- , ->, Levi—Civita connection V and curvature tensor É. We denote by
%(Ú) the set of vector fields of class Oºº on ÚHH, by Oºº (É) the ring of real functions

of class Oºº on MnH and by Cãº(Ú) the set of all smooth functions defined in ÚHH
with compact support. In this context, we consider hypersurfaces x : 2" CH ÚHH,
namely, isometric immersions from a connected, ri—dimensional orientable Riemannian

manifold E" into ÚHH. Since 2" is orientable, one can choose a globally defined unit

normal vector field N on E", which will be called the Gauss map of a : E" <—> M;?H
The shape operator of a : 2" CH MnH with respect to N is given by

A : x(z") —> x(z")
Y !—> A(Y) : —VYN.

Since, for each fixed p E E", Ap : TPE —> TPE is a self-adjoint linear map, the spectral

theorem allows us to choose on TPE an orthonormal basis fel, . . . ,e”) of eigenvectors
of Ap, with corresponding eigenvalues udp), . . .,Hn(p), respectively. The functions
H1,...,Hn on 2" thus defined are called principal curuatures of a : 2" CH Wª“.
Moreover, it is well known that the curvature tensor R of 2" is described in terms of
A and É by the so called Gauss equation, which can be written as

R(U, V)W : (É(U, V)W)T + <A(U), W>A(V) — <A(V), W>A(U) (1.1)

for all U, V, W 6 %(Z), where (-)T stands for tangential components on 2".



We Will deal With the first three mean curvatures of the hypersurface m : 2" %
ÚHH, namely

Hl = %ZH“
i=1

2H2 : _ fªi/'ª'; 1.2n(n— 1) ª J ( )
H —6 z

n(n —1)(n — 2) i<j<k 3

We have that H 1 is the mean curvature of m : 2" % WH“, Which is the main extrinsic

curvature of 2" and When there is no danger of confusion it Will be denote simply by H.

On the other hand, the second mean curvature H 2 defines a geometric quantity Which is
related to the scalar curvature 8 of r : 2" CH ÚHH. Indeed, it follows from the Gauss

equation (1.1) that the (non—normalized) Ricci curvature Ricz of r : 2" CH ÚHH is
given by

Riog(U, V) : RicM(U, V) — <R(U,N)V,N> + nH1<A(U), V> — <A(U),A(V)>,

for U, V 6 %(Zª), Where RicM stands for the Ricci curvature of ÚHH. Therefore, S
obeys the relation

s : É—ZRicM(N, N) +n(n— 1)H2, (1.3)
Where É stands for the scalar curvature of ÚHH. For instance, if there is one E 6 R
such that the Ricci curvature of ÚHH verifies the condition

RicM(N, N) = E : const. on 2", (1.4)
we get from (1.3) and (1.4) that 8 and Hg are related by

S = (n — 1) (E + an) . (1.5)
When required, if a hypersurface r : 2" CH ÚHH has constant second mean

curvature Hg, for short we Will simply say that m : 2" CH MHH is an H g—hypersurface.

One also let the Newton transformation T : %(Eª) —> %(Eª) associated With—n+1 . .
r : 2" CH M be given by setting

T : nHl Id - A, (1.6)
Where Id : %(Eª) —> %(Eª) denotes the identity map.

Associated to the Newton transformation T one has the well known Cheng-Yaris

square operator [DEI

m : oww) —> mºm")
u »—> DW) : tr(ToHesszu), (1-7)

that is a second order differential operator, Where Hess g stands for the Hessian operator
on 2".
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1.2 Lorentzian setting
Let (Ún+1,<-,->) be a (n + 1)—dimentional Lorentzian manifold. We mean by

Cºº(Ú) the ring of real functions of class Oºº on MnH and by %(Ú) the Cºº(Ú)—
module of vector fields of class Oºº on MnH. We recall (cf. EEI, Chapter 3]) that
a vector field X 6 %(Ú) is said to be timelike if (X , X > < 0 on WH“; spacelike if
(X, X) > 0 on MnH and a unit vector field if (X, X) : il on ÚHH. Furthermore, a
Lorentzian manifold ÚHH is said to be time-orientable if there exist a timelike vector

field globaly defined on ÚHH. Consider a spacelike hypersurface x : E" <—> MyH. It
means that the induced metric on 2" via the immersion x is a Riemannian metric.

When MnH is time—orientable by a timelike vector field (cf. [BEL Lemma 5.32]), say
a certain K 6 %(Ú), and 2" is a spacelike hypersurface, then 2" is orientable and
one can choose a globally defined unit normal vector field N on 2" having the same
time-orientation of WH“, that is, (K, N > < 0. Such N is said the future-pointing
Gauss map of 2". If we let

A : x(z") —> asmª) _ (1.8)Y »—> A(Y) : _VYN

denote the shape operator of 2" With respect to N, then the mean curvature H of 2"
is defined by

H : E" —> IR

pi+mm=—%wm. “ª
The choice of the sign in our definition of H is motivated by the fact that in that case
the mean curvature vector is given by H : HN and, therefore, H (p) > 0 at a point
p 6 2" if, and only if, H(p) is in the same time—orientation as N (p), and hence as
KO?)-

1.3 Weighted manifolds
On a complete Riemannian manifold WH“, let us remember that the classical

Laplace operator A on MnH can be defined as the differential operator associated to
the standard Dirichlet form

QW=/|WW%WHWMCÚM7M

Where | - | is the norm induced by the Riemannian metric of WH“, do is the volume
element on ÚHH and £º(do) denotes the set of measurable functions it on MnH such
that the Lebesgue integral (With respect to do) of |<,o|2 exists and is finite.

Now let f 6 Cºº(M ) be a real valued smooth function, that Will be referred as a
weight function (or density function). If we replace the measure do With the weighted

11



measure du : effdv (1.10)
in the definition of Q, we obtain a new quadratic form Qf, and we will denote by Af
the elliptic operator on O;,”(Ú) C £º(du) induced by Qf. In this sense, Af arises
as a natural generalization of the Laplacian. It is clearly symmetric and positive and
extends to a positive operator on £2(du). By Stokes theorem,

ANP) = Asº— (Verb sº 6 CãºW)

The triple (É ”H
acting in CHM) will be called, respectively, the weighted manifold associated with

ÚHH and f, which we simply denote by ÉlfH, and the f -Laplacian (or drift Lapla-
Cian).

,<- , ->,du) and the differential operator Af defined above and

Let us remember that a Riemannian manifold 2" is parabolic if every bounded
solution of Au Z 0 must be identically constant. We recall that a smooth function u

on a weighted manifold W;?H is said to be f -superharmonic if Af(u) É 0. Taking this
into account, the weighted manifold M;?H is called f -parabolic if the only nonnegative

and f—superharmonic functions on WITH are the constant ones.
Let us remember that a notion of curvature for weighted manifolds goes back to

Lichnerowicz [ESL 52] and it was later developed by Bakry and Émery in their seminal

work El, where they introduced the following modified Ricci curvature

ªf zãà—Hessf, (1.11)
where & and % are the standard Ricci tensor and the Hessian on W;“, respec—
tively. As it is common in the current literature, we will refer to this tensor as being the

Bakry-Émery-Ricci tensor of MyH. We note that the interplay between the geometry
of ÚHH and the behavior of the weighted function f is mostly taken into account by
means of its Bakry-Émery-Ricci tensor Rin (cf. EBI).

1.3.1 Hypersurfaces in a class of weighted warped products

Let WH be a weighted warped product of the tipe

(M" xa 1, <- , -> == ww- , ->Mn> + (a owºwsedtº» du)
01“

(1 ><a M", <. , -> := aª(edtº) + (a 0 WWW“ ., ->Mn), du).

We will often refer to the first factor of the product as being the base and the second
factor as being the fiber of the warped product. Here M " is a Riemannian manifold,

[ 6 R is an open interval, ']TMn and WR denote the canonical projections from WH

12



onto each factor, & is a positive function defined at the base of the product, & G í—l, 1)

and du : effdv is the weighted volume form associated with the real—valued smooth
function f , where do is the volume element induced by the metric <- , ->.

In the case that ÚHH is a Riemannian manifold (i.e. when & = 1), we will
consider two-sided hypersurfaces x : E" <—> W;“. This condition means that there is
a globally defined unit normal vector field N. On the other hand, in the Lorentzian
case (i.e., when & = —1), E" will be considered a spacelike hypersurface and, in this
case, there exist a normal timelike vector field N globaly defined on 2.

Let us denote by ?, V and & the Levi—Civita connections of ÚHH, 2" and M ",

respectively. The f -mean curvature of 2" is the function H f given by

an =nH+€<Vf,N>, (1.12)
where H = 6% tr(A) denotes the classical mean curvature of 2" with respect to N.

The f—divergence on 2", for any X 6 %(Z), is defined by

(11va : divX _ (Vf,X>, (1.13)
where div(X ) : traceíY »—> VyX) denotes the divergence relative to 2". A direct
calculation assures us that

dÍVf(90X) : gOdÍVfX + <V90,X> (1.14)

for all X 6 %(2) and any ap 6 Cºº(2). We define the f—Laplacian (or drift Laplacian)
relative to 2" by

ANO) = dinWsº) = Aºp — (Vf, VW, (1-15)
for all ap 6 Cºº(2), where A is the standard Laplacian relative to 2". From (1.14)
and (1.15) we can obtain the expression

AAM) = MMO) + MM) + 2<Ve vw, (1-16)

which is valid for any pair of functions g, ap 6 Cºº(2).

We recall that a slice of É” is a hipersurface Mg obtained by fiXing some to 6 I ,
that is, Mg) : M" >< 4,130) or M,?) : ªlto) >< M"; and a slab of M" is the region lying
between two slices, that is, a region of the type

Mn Xa[t1,t2] : í(q,t)GMn Xal : 1315135132)

01“

[t1,t2]XaMn : í(t,Q)GIXaMn : 1315135132).

13



1.4 Ambient spaces and immersed hypersurfaces
In what follows we will introduce the ambient spaces that will appear throughout

the forthcoming chapters. Namely, we will describe certain weighted semi—Riemannian

manifolds with index zero or one that can be regarded as weighted warped products
for which one of the factors is a n—dimensional Riemannian manifold M " and the other

is an open interval [ C IR whose metric defines the causal character of the product.

1.4.1 Weighted Riemannian spaces furnished wiht a conformal
Killing vector field

Let us consider an (71 + 1)—dimensional weighted Riemannian manifold WITH
endowed with a conformal Killing vector field V whose orthogonal distribution D is
integrable. Thus, there exists a smooth function dm 6 Cºº(Ú) such that

£v<w> = 21/1v <-,->, (1.17)
where EV stands for the Lie derivative in the direction of V. The function z/JV is called

the conformalfactor of V.

In this setting, we denote by (13 : [ >< M " —> W;?H the flow generated by V, where
I : (—00, a) is an interval with a > 0 and M " is an arbitrarily fixed integral leaf of D
labeled as t = 0, which we will suppose to be connected and complete. It may happen
that a : +00, i.e., the vector field V is complete. Since (Dt : <I>(t, ) is a conformal
map for any fixed t 6 IR, there exists a positive function A G Cºº(l >< M") such that
A(0,u) : 1 and (132% , -)(u) : A2(t,u)<- , -)(u), for any u 6 M".

We restrict ourselves to the case where the function A depends only on the variable

t, that is, A G Cºº(l ) Geometrically, as it was already observed in [ESL this hypothesis
allows us to relate the induced metrics in distinct leaves of the foliation orthogonal to
V, which we will denote by Vl.

From (1.17 ) we deduce the conformal Killing equation

<VXV7 Y> + <X7VYV> : ZÚV<X7 Y>7

for any X,Y 6 %(M).
An interesting particular case of a conformal Killing vector field V is that in

which

VXV : WX (1.18)
for all X E %(M); in this case we say that V is closed, an allusion to the fact that its
dual 1—form is closed. Yet more particularly, a closed and conformal Killing vector field

V is said to be parallel if its conformal factor z/JV vanishes identically, and homothetic
if Q/JV is constant.

14



Let M ? : (Dt(M") be a leaf of Vl furnished With the induced metric. From
(1.18) we get

WV, W = 21/1vV. (1.19)
Consequently, |V|2 is constant on the leaves of Vl. Moreover, computing covariant
derivatives in (1.19), we have that

and, since both Hess and the metric <- , -> are symmetric tensors, we get

X(ÚV)<V7 Y> : Y(ÚV)<V7 X>7

for all X, Y 6 %(Ú). Now, taking Y = V we arrive at

VÚ/JV)

WV : |V|º V : V(ÚV)V7 (1.20)
V

Where 1/ = —m and, hence, wv is also constant on the leaves of Vl.
Furthermore, With a straightforward computation, we verify that the shape ope—

rator At of a leaf M ? G Vl With respect to 1/ is given by

At(X) : VXV : Qp—VX,
|V|

for any X 6 %(M?) and, hence, the leaves M ? are totally umbilical hypersurfaces With
constant mean curvature ”H : ”yl-[(It) With respect to 1/ given by

_sz”H _ _.
IVI

(1.21)

Under the additional condition that the weight function f of M;?H does not
depend on the parameter of the flow associated to the unit vector field u, Which means

that (Vf, V) = 0 on W;“, we obtain from (1.12) and (1.21) that the f—mean curvature
of a leaf M ? G VT is given by

div
(1.22)

Remark 1.1 We obserue that the following result is a consequence of a Cheeger—
Gromoll type splitting theorem due to G. Wei and W. Wylie (cf. Theorem 6.1 of
of [58], , see also Theorem 1.1 of ,jª/).

“Let M;?H be a weighted Riemannian manifold that contains a
line. If the Bakry—Émery—Ricci tensor of M;?H is nonnegatiue and
the weight function f is bounded then f must be constant along the
line.”
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Taking into account the Remark 1.1, in any weighted Riemannian manifold WITH
endowed with complete closed conformal Killing vector field V, having nonnegative
Bakry-Émery-Ricci tensor and with bounded weight function f, we have that f does
not depend on the parameter of the flow associated with the unit vector field V.

A particular class of Riemannian manifolds provided with a closed conformal
Killing vector field is the so—called warped product of the type [ ><a M ", that is, the
product manifold M " >< IR endowed with the warping metric

(' , -> == 7T11É(0l152)+(0í º mdºwíwa » ->Mn)—

A warped product [ ><a M " endowed with a weight function f will be called a weighted
warped product and it will be denoted by

(IXQM")f.

For such a space, if %; is the canonical projection onto [ , then the vector field V =
(a o m) (3, is conformal Killing and closed, with conformal factor Q/JV : o/ o m, where

the line denotes differentiation with respect to t 6 I . Moreover (see ª), for t 6 I , the
slice M," : ªlt) >< M " is totally umbilical, with constant mean curvature with respect
to —ôt given by

Conversely, let WITH be a weighted Riemannian manifold endowed with closed
conformal Killing vector field V. If p 6 M;?H and Ml? is the leaf of Vl passing through
p, then we can find a neighborhood Mp of p in Ml? and an open interval [ C IR containing
0 such that the flow (1) of V is defined on up for every t 6 I . Besides, if V is complete,
following the ideas in Section 3 of [Bºl, one can prove that

(MM;), _> M;“ (123)
(t,u) »—> <I>(t,u)

is a global parametrization on É;“, so that W;?H is isometric to the weighted warped
product

(IR ><a M;)f, (1.24)
where a(t) : |V(<I>(t,u))|, t 6 IR and u 6 M,? is an arbitrary point.

When the weight function f considered in a warped product of the type [ ><a M "
does not depend on the parameter t 6 IR, we will explicit this condition simply writing

] ><a M; (1.25)
and, in what follows, this notation will be used without further comments. In this case,

from (1.22) we get that the f—mean curvature of the slice ªlt] >< M " with respect to the
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orientation given by —ôt is given by

(1.26)

At the end of this section, our purpose Will be to give a description of one of
our objects of study: conformal Killing graphs immersed in a weighted Riemannian

manifoldf ÉlfH endowed With closed conformal Killing vector field V. In this sense,
following the ideas established in [REI, given a domain Q in M " = M 8, we define the

conformal Killing graph Hz) of a smooth function 3 on ª as the hypersurface of WITH
given by

g(z) : JLq)(Z(U),U) : u 6 É),

Where (1) is the flow generated by V. When Q = M ", E(z) is said to be entire.

If we assign coordinates mg : 137%, . . . ,xn to points in É?“ of the form & :
<I>(t, u), Where %, . . . ,xn are local coordinates in M ", then the corresponding coordinate
vector fields are

(3ng : V(t) and ôilí : (Di,,ôzlu, for all i 6 ªll, . . . ,n).

Thus, the conformal Killing graph Hz) is parameterized in terms of local coordinates
by g(xl, . . . ,xn),x1, . . . ,xn and the tangent space to Hz) is spanned by the vectors

gºi ôolgzwm + ôiquzmm), for all i e »[1, . . . ,n). (1.27)
Hence, from (1.2? ) we see that the metric induced on Hz) is given by

azul)) (3 dzº + daº) ,”7

Where 7 : W and daº stands for the metric of the leaf M ".
Moreover, denoting by DZ the gradient of the function 3 with respect the metric

daº, With a straightforward computation we verify that
1

N = _ (©z(u)*DZ(U) — 730|<1>(z(u),u)) (1-28)
MMO) 7 + |DZ(?»L)|2

gives an orientation on Hz) such that (N, V) < 0.
In this scenario, we Will consider the support function 77V on a conformal Killing

graph E(z) immersed in M;“, Which is defined by

nV:Z(z) —> R
29 H nv(p)=<V(p)7N(p)>,

Where N is the Gauss map of Hz) given in (1.28). We have that nv is negative and

(1.29)

WV : —A(VT), (1.30)
Where A is the shape operator of Hz) With respect to N and VT is the projection of
vector field V on the tangent bundle of E(z).
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1.4.2 Generalized Robertson-Walker Spacetime

According to the terminology introduced in [ªl, a particular class of time—oriented

Lorentzian manifolds is that of generalized Robertson-Walker (GRW) spacetimes de—
noted by 11 ><a M " (n 2 2), namely, product manifolds [ >< M " endowed with warped
metric tensor

(' , -> = “Wªdtzl + (a º %%%le » '>Mn)—

In other words, 11 ><a M" is nothing but a warped product with Lorentzian base
(1, —dt2), Riemannian fiber (M", <- , ->M) and warping function &.

1.4.3 Weighted Killing warped products

Let (É"H
Killing vector field Y which never vanishes. We recall that Y is a Killing vector field

, g) be a (n + 1)—dimensional Riemannian manifold endowed with a

Killing if Ly g = 0, where Ly stands for the Lie derivative in the direction of Y. Let us
suppose in addition that Y has complete flow lines and that the associated orthogonal
distribution D is integrable. In this setting, we denote by (13 : M " >< IR —> MHH the
flow generated by Y, where M " is an arbitrarily fixed integral leaf of D, labeled as
t = 0, which we will suppose to be connected.

In this setting, M ”H can be regarded as the Killing warped product M " ><a IR,
that is, the product manifold M " >< IR endowed with the warping metric

(',-> = WMCwW)+(OZO7TM)27TlÉ(dt2)7 (1-31)

where the warping function is given by a : |Y| > 0. In particular, when a = 1 in (1.31)
we have that the space (M" >< IR, <- , ->) is just a standard product space.

Now, let (M " ><a IRM be a weighted Killing warped product associated with the

density function f. We say that x : 2" CH (M " ><a IRM is f -minimal when its f—mean
curvature vanishes identically. It is a well—known fact that minimal hypersurfaces of

M " ><a IR arise as critical points of the area functional (under compactly supported
variations)

Vol(2") : / du,
where do is the volume element of the hypersurface E" induced via immersion x. Since

the weighted structure on M " ><a IR also induces a weighted structure on 2", we can
consider the similar variational problem for the weighted area functional

Volf(2") : / e'fdu.

From variational formulas (see for instance [BID one can see that x : 2" CH (M " ><a IRM
is f-minimal, namely a critical point of the weighted area functional, if and only if H f
vanishes identically.
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Remark 1.2 We observe that the Killing vector field Y determines in M" ><a IR d
codimension one folidtion by totally geodesic slices M" >< ªlto], to 6 IR, with respect
to orientation determined by Y. Moreover, assuming that the weighted function f 6
Cºº(M" ><a IR) is invdridnt along the flow determindte by Y, that is, (VLY) : 0,
from (1.12) we get that each slice M" >< lit) is f—minimal.

As a consequence of Remark 1.1, in any weighted Killing warped product

(M " ><a IR) f having nonnegative Bakry—Émery—Ricci tensor and with bounded weighted
function f, we have that f does not depend on the parameter of the flow associated
to the Killing vector field Y. For sake of simplicity, in what follows, Killing warped
products M " ><a IR endowed with a weighted function f which does not depend on the
parameter t 6 IR will denoted by

MJ? ><a IR

and this notation will be used without further comments.

Associated to a two—sided hypersurface x : 2" CH (M " ><a IR)!” we will consider
two particular smooth functions, namely, the (vertical) height function

h := (FR) 23“ : E" —> R (1.32)
and the angle function

9:Z"—>R
(1.33)

29 H GCD) == <N(p),Y(p)>,

where N is the Gauss map of 2" and Y is the Killing vector field on M " ><a IR.

We have that 1vn : ? YT, (1.34)
where ( - )T denotes the projection of a smooth vector field in %(Mª ><a IR) onto %(Eª).
Moreover, we have * 1N = N — ? (àY, (1.35)
where ( - )* denotes the projection of a smooth vector field in %(Mª XQR) onto %(Mª).
From (1.34) and (1.35) we get the following relation:

1 *|Vh|2 : ? |N BW. (1.36)
Indeed, we have that

1

<vn,vn> : ªdm/T> : 3<Y _ eN,Y _ em1 eº 1 e e
: ê(1_?)=?<N_?YºN_?Y>1 * * 1 * *
: E<N 7N > _ ?UV 7N >M“



In What follows, we define the entire Killing gmph E"(z) associated to a smooth

function Z 6 Cºº(M"), according to [BD], as being the hypersurface of M? ><a IR given
by

Z"(z) : JL<I>(y,Z(y)) : y 6 M") C M" XQR

The induced metric on M " from the Riemannian metric (1.39) via Z"(z) is given by

<.7.>Z : <'7'>M+a2d22.

On the other hand, the function

G: MªXlR —> IR
(yvt) H G(y,t)2=t—Z(y),

is such that

Enº) = x(G'1(0))—

Then, for all X 6 %(M" ><a IR) we have,, 1 1
X(G) : X (G) + ? <X,1/> me) : <ãy_ DZ,X>,

Where 1/ is the unit vector field given by 1/ : l—ÇI, DZ denotes the gradient of a function
3 with respect to the metric <- , ->M of M " and X * is the orthogonal projection of X
on %(Mª). Thus,

VG : iIj—DZ
az

is a normal vector field on G*1(0) and, consequently,_ 1
No : m*(VG) : —2 Y — m*(Dz)&

is a normal vector field on E"(z). Since,

it follows that

Nº : 1 (Y — a2x*(Dz)) (1.37)N :
|N0| a(1+aº|Dz|ã4)1/2

gives an unit normal vector field on Z"(z), Which we Will consider as being its Gauss
map, for Which the angle function © defined in (1.33) is given by

Oz
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1.4.4 Weighted standard static spacetimes

Consider an (n + 1)—dimensional Lorentzian manifold ÚHH With Lorentzian me-

tric g : g(-, -) and endowed With a timelike Killing vector field Y. Here timelike referred

to a vector field means that Yp G TPH is a timelike vector (and so nonzero) for each
p 6 Hªll.

We observe that the distribution D of all smooth vector fields of ÚHH that are

orthogonal to Y, defined at each point by

Mª“ Bp %> D(p)= ívGTPM : g(v,Y;,) =o),

is of constant rank and integrable. Given a Riemannian integral leaf M " of that
distribution D, let tl! : [ >< M " —> Wª“ be the flow generated by Y With initial values
in M ", Where [ is a maxima] interval of definition. Without loss of generality, in What

follows we Will consider [ : IR. In this setting, our space MnH can be regarded as the

standard static spacetime M " ><a R1 (cf. Proposition 12.38 of M), that is, the product
manifold M " >< IR endowed With the Lorentzian warping metric

<'7'> =Tll4“(<7>M“) + (QOWM“)27T]É(_dt2)7 (1'39)

Where & : |Y| : +/—<Y, Y) > 0 is the vvarping function.

Remark 1.3 The importance of standard static spacetimes comes from the fact that
they include some classical spacetimes. In what follows we list some of them:

(a) A simple example is given by the Lorentz—Minkowski space Lª“, which is isomet—

ric to the warped product (R" >< R1 , irlªn(an) + rifª—d?) ).

(b) The Einstein static universe (S" >< R1, ngn(ggn) + nª(—dt2)) is also a standard
static space (cf. Example 5.11 of ª).

(c) Another example is given by the exterior Schwarzschild spacetime, which is de—
fined as follows. Let R4 be given coordinates (t,r,0,cp), where (r,0,cp) are the
vsval spherical coordinates on R3. Given a positive constant m, the exterior
Schwarzschild spacetime is defined on the svbset r > 2m of R4, a svbset which is
topologically R2 >< Sº. The Schwarzschild metric for the region r > 2m is given

in (t,r,0,<p) coordinates by2 2 &
dsº : _ (1 _ ª) oitº + (1 _ ª) drª + rº (de2 + sin2 ngoº) .T T

Since the metric for this spacetime is invariant vnder time translations t —> t+a,

the coordinate vector field ô/ôt is a ( globally defined) timelike Killing vector field

(cf. Section 5.2 of EV or Chapter 13 of [EZ] ). Consequently, the exterior
Schwarzschild spacetime is a standard static spacetime.
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(d) A model that also presents static regions (which appeared shortly after the Schwarzschild

spacetime) is the Reissner—Nordstro'm spacetime, whose metric in (t, r, 0, 90) coor—

dinates admits the representation2 º 2 º 4
ds2 : — (1— E+ 6—2) dt2+ (1— ª + 6—2) dr2+r2 (dâºà—sinºâdgoº) .r r r r

This metric has singularities in r = 0, r : rr and r : r,, where ri : mi (m2 —
eº)1/2, and in regions corresponding to +00 > r > rr and r, > r > 0 we have
that the Reissner—Nordstro'm spacetime is static (cf. Section 5.5 of ME]).

Now, in the configuration described above, let (M " ><a R1)f be a weighted stan-
dard static spacetime. We Will consider complete spacelike hypersurfaces

x.2"<—>(M"><QR1)f,

namely, isometric immersions from a (connected) n—dimensional Riemannian manifold

E" into weighted standard static spacetime. As (M " ><a R1)f is time—orientable by the

timelike vector field Y and a : E" % (M " ><a R1)f is a spacelike hypersurface, then
2" is orientable (cf. Proposition 5.26 of [BED and one can choose a globally defined

unit normal vector field N on 2" having the same time—orientation of (M " ><a R1)f (cf.
Proposition 5.29 of M), that is,

<KN><O QAQ
Such N is said the future—pointing Gauss map of a : E" % (M" ><a R1)f. We say that
a : E" % (M " ><a Rh is f -maximal When its f—mean curvature vanishes identically.

Remark 1.4 Since the timelike Killing vector field Y has identically zero conformal

factor <p (more precisely, (b : àdivY E 0, where div stands for the divergence on
M" ><a R1, it follows from Proposition 1 of [DE] that Y determines in M" ><a R1 a

codimension one Riemannian foliation by totally geodesic slices ZZ) : M" >< ªlto],
(?

to 6 R, with respect to the orientation determined by — E Y. Moreover, assuming
that the weighted function f 6 Cºº(M" ><a R) is invariant along the flow determinate

by Y, that is, (Vf, Y) = 0, from (1.12) we get that each slice 2% is f—maximal.

Remark 1.5 We observe that the following result is a consequence of a splitting theo—

rem due to Case (see Theorem 1.2 of [%]).

“Let M,?H be a weighted timelike geodesically complete spacetime that contains
a timelike line with ÉAX, X) 2 0 for all timelike vector fields X, and whose
weighted function f is bounded. Then f must be constant along timelike line of
—n+1 ,,
Mf
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From Remark 1.5, in any weighted standard static spacetime (M " ><a R1)f having
nonnegative Bakry—Emery—Ricci tensor for timelike vector fields and with bounded
weighted function f , we have that f does not depend on the parameter of the flow

associated to the Killing vector field % E Y. Hence, we can see that it is reasonable
to consider static spacetimes M " ><a R1 endowed with a weighted function f does not
depend on the parameter t 6 IR. For sake of simplicity, we will denote such an ambient

space by

MJ? ><a R1

and from now on this notation will be used without further comments.

Aassociated with a spacelike hypersurface x : E" <—> MJ? ><a R1, we will consider
the height function

h : (WR) : E" —> R (1.41)En

and the angle function

© : E" —> R
29 H GCD) =<N(10)7Y(p)>,

where N is the future—pointing Gauss map of 2" and Y is the Killing vector field on

(1.42)

M? ><a R1. From (1.40), we note that © will be always a negative function on 2".

We have that 1W : —?YT, (1.43)
where (-)T denote the projection of a smooth vector field in %(Mª ><a R1) on %(Eª).
Furthermore,

N* = N + àeY, (1.44)
where (-)* denote the projection of a smooth vector field in %(Mª ><a R1) on %(Mª).
From (1.43) and (1.44) it is not difficult to verify that the following relation holds.

|Vh|2 : ÉINHÉW. (1.45)
In what follows, until the end of this section, we proceed to describe the inteire

Killing graphs in (MJ? ><a R1). According to [BE, we define the entire Killing gmph
E(z) associated to a smooth function Z 6 Cºº(M ) as being the hypersurface given by

HZ) = fªIf(y,Z(y)) ry G Mªl C M" XQRL

The metric induced on M " from the Lorentzian metric (1.39) via g(z) is given by

<» ->z = <-, ->M — aºdzº. (1.46)
Moreover, g(z) is spacelike if, and only if, aºIDzlãw < 1, where DZ denotes the

gradient of a function 3 with respect to the metric <-, ->M of M ". Indeed, if Hz) is
spacelike, then

0 < (DZ, Dz>z : (DZ, DZ>M — a2<D3,Dz>ã4
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and, hence, we conclude that aº|Dz|ã4 < 1. Conversely, if aº|Dz|ã4 < 1 and X is a
vector field tangent to Z(z), we obtain, from Cauchy—Schwarz inequality,

<X7X>Z : <X*7X*>M _ a2<D27X>k>ã4 Z <X*7X*>M(1_ QZIDZIãí)7

Where X * is the orthogonal projection of X onto TM ". Thus, <X,X>z Z 0 and
<X,X>Z : 0 if, and only if, X = 0.

The function G : M" >< R1 —> IR given by G(y,t) : z(y) — t is such that Hz) :
Q(Gi1(0)). Thus, for each vector field X tangent to M" ><a R1, we have

1

02 (X, agem) : <lôt + DZ, X).02X(G) : X*(G)

Hence, _ 1
VG : —28t + DZ

Oz

is a normal vector field on G*1(0) and, consequently,_ 1
N0 : %(VG) : ?Y + %(Dz)

is a normal timelike vector field on g(z). Since,

1_ 2D 2 1/2
INOI =( al ZIM) ,

Oz

it follows that

Nº : 1 (Y+a2tlf*(Dz))N :
lNol a(l — aºIDZIã4)1/º

(1.47)

defines the future—pointing Gauss map of Hz) such that its angle function 9 = (N, Y)
is given by

Oze = —_ <
(1— aºiDzW/º

0.
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Chapter 2

Conformal Killing graphs in foliated
Riemannian spaces whith density:
rigidity and stability

In this chapter we investigate the geometry of conforma] Killing graphs in a

Riemannian manifold ÉlfH endowed with a weight function f and having a closed
conforma] Killing vector field V with conformal factor Q/JV, that is, graphs constructed

through the flow generated by V and which are defined over an integral leaf of the
foliation Vl orthogonal to V. For such graphs, we establish some rigidity results under
appropriate constraints on the f—mean curvature. Afterwards, we obtain some stability

results for f-minimal conforma] Killing graphs of WITH according to the behavior of
z/JV. Finally, related to conformal Killing graphs immersed in M,?H with constant f—
mean curvature, we study the strong stability. The results presented in this chapter
are part of [Bª.

2.1 Some auxiliary lemmas
This section is devoted to present the analytical machinery that will be used to

establish the main results of this chapter.

Let us denote by LHM") the set of integrable functions on the weighted Rieman—

nian manifold MJ? with respect to the weighted volume element du : eff dM , where
dM stands for the volume element induced by the metric of M f. Since from (1.13) we
have that

(11va : efdiv (effx) ,

for all smooth vector field X on M f, it is not difficult to see that from Proposition 2.1



of [DE we get the following extension of a result due to Yau in [Eu.

Lemma 2.1 Let X be a smooth vector field on an oriented n—dimensional complete

weighted Riemannian manifold M f with weight function f such that diva does not

change sign on Mf. If |X| G EHM"), then diva : 0.

The next lemma is due to Wei and Wylie [BBI] and it extends Theorern 7 of [Eu.

Lemma 2.2 All complete noncompact Riemannian manifolds endowed with a bounded

weghted function f and with nonnegative Bakry—Émery—Ricci tensor have at least linear

f—volume growth.

In the context of conformal Killing graphs immersed in a weighted Riemannian
manifold, following the same ideals of Lemma 4.3 of [BZ] (see also the proof of Theorern

4.2 of [BED we obtain the following

Lemma 2.3 Let M;?H be a weighted Riemannian manifold endowed with complete
closed conformal Killing vector field V an let g(z) be an entire conformal Killing graph

in MyH, defined on some leaf M" of the foliation Vl. If g(z) lies between two leaves
of the foliation Vl then g(z) is complete. Moreover, if IDZI G EHM"), then the
projection VT ofV onto g(z) satisfies |VT| G £;(Z(z)).

In what follows we assume that the weight function f of WITH does not depend
on the parameter of the flow associated with the unit vector field 1/ = —V/ |V|, that is,
(Vf, V) = 0. In our next lemma, we present a suitable formula for the drift Laplacian
Of nv.

Lemma 2.4 Let M;?H be a weighted Riemannian manifold endowed with closed con—
formal Killing vector field V having conformal factor wv and such that the weight
function f does not depend on the parameter of the flow associated to 1/ : —V/|V|. If

g(z) is a conformal Killing graph in ÉlfH, with Gauss map N given in (1.28), and
77V is the smooth function on g(z) defined in (1.29) then

Af(º7v) = — lãfUV, N) + lÁlºl nv — ”VT (Hf) — " &!)va + N(1/lv)l7 (2-1)

where A and H f are the shape operator and the f —mean curvature of g(z) with respect

to N, respectively, and ªf denotes the Bakry—Émery—Ricci tensor of MçH.

Proof. According to the digression presented in Section 1.4.1, we have that (up to iso—

rnetry) W;?H can be regarded locally as a weighted warped product of the type (1.24).
In this setting, we have that V = a &, wv : o/, 1/ : —ôt, |V| : &, and, consequently,
(Vf, o» = 0.
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Note that, from (1.12) we get

Where (3; = (3, — (N, ô,)N is the projection of (3, on the tangent bundle of Eça).
On the other hand,

3351”, M = (793313 M + (Vf, WWW (2-3)
: <V8t=<N,at>NVf7N> — (Vf7Á(ôtT)>

Now, taking into account that (31580 : 0 and denoting by & the Levi—Civita

connection on M;, we have Vf : ofºãf. Then,

WW N> = %(aªvf), N> (2-4)
: <—2a'3o/ãf + a'ºvatãf, N).

Hence, applying Proposition 7.35 of [lª, from (2.4) we get

WW N> = chªo/W + afºoflo/vf, N> (2-5)
: —o/ofg<ãf,N> : —o/ofl<€f,N>.

Substituting (2.5) in equation (2.3) we get that

6? <?]: N> = —<vf, N>oflo/ — <N, <a> Hessf<N, N) — <%“, Avªí». (2-6)

From equation (2.2) and (2.6) we conclude that

—noz<ôt,VH> : —noz<ôtT,VHf> — o/(Vf,N> (2.7)
_ a (N, ô,)ÉHN, N) _ a(Vf, AW».

On the other hand, from Proposition 2.1 of [DD] we have that

A<N,ozôt> : —n<a &, VH) — n JLo/H + N(o/)l (2.8)
—<N, ao» íãw, N) + |A?) .

So, substituting (2.7) in (2.8) and using (1.11) we obtain

A<N,aôt> : —n<a ô,,VHp - (Nao» íãfuv, N) + |A?) (2.9)
—n ía'Hf + NW)? — WJ”, A(a 8?»

Moreover, from (1.30) we verify that

V<N, ao» : —A(a of). (2.10)
We finish the proof using the equations (2.9) and (2.10) into (1.15). .

We conclude this section by providing an explicit expression for the f—divergence

of the tangencial component VT of V along a conformal Killing graph.
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Lemma 2.5 Let M,?H be a weighted Riemannian manifold endowed with closed con—
formal Killing uector field V hauing conformal factor wv and such that the weight
function f does not depend on the parameter of the flow associated to 1/ : —V/|V|,

and let Z(z) be a conformal Killing graph in MyH. Then

lefl/vT : nwv + TL'Úva, (2.11)
where Hf is the f—mean curuature of g(z) with respect to N and 77V is the smooth
function on g(z) defined in (1.29).

Proof. Since (Vf, V) = 0, then, writing V : VT + nVN, we get

(Vf, VT> = WW, N>. (2.12)
On the other hand, from equation (8.4) of [IZI] we have

divVT : nwv + mva, (2.13)
where H is the standard mean curvature of Eça). Hence, from (1.13), (2.13) and (2.12)
we obtain (2.11). .

From Remark 1.1, when a weighted Riemannian manifold M;?H endowed with
complete closed conformal Killing vector field V has bounded weight function f and
nonnegative Bakry—Émery—Ricci tensor, we have that f does not depend on the param—

eter of the flow associated with the unit vector field u. In this case, we can see that
the hypotheses adopted in Lemmas 2.4 and 2.5 on the weight function f are naturally
verified.

2.2 Rigidity results for conforma] Killing graphs in
—n+1
Mf

In this section we establish the rigidity results related to conformal Killing graphs
—n+1

in M f

Theorem 2.6 Let M,?H be a weighted Riemannian manifold endowed with complete
closed conformal Killing uector field V and such that the weight function f does not
depend on the parameter of the flow associated to 1/ : —V/|V|, and let g(z) be an entire

conformal Killing graph in MçH, defined on some leaf M" of the foliation Vl, which
lies between two leaues of Vl. Suppose that the f—mean curuature H f (not necessarily
constant) of g(z) satisfies the following inequality

0 < Hf É Hf, (2.14)
where 'Hf is the f—mean curuature of M" giuen in (1.22). If IDZI G EHM"), then
g(z) is isometric to a leaf of Vl.
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Proof. Let 0 be the angle between y and N. From (2.11) and (2.14), we get

divaT : nIVH'Hf — Hf cos 0) Z n(1— cos 0)Hf|V| Z 0, (2,15)

On the other hand, from Lemma 2.3 we obtain that E(z) is complete and |VT| G

£;(Z(z)). Consequently, we can apply Lemma 2.1 to guarantee that div fVT vanishes
identically on g(z). Therefore, returning to (2.15) we conclude that cose : 1 on Z(z),
that is, the unit vector fields N and 1/ determine the same direction on Hz) and, hence,
E(z) must be isometric to a leaf of the foliation Vl. .

From the analysis of the sign of div f (VT) in the proof of Theorem 2.6, we obtain
the following

Theorem 2.7 Let W;?H be a weighted Riemannian manifold endowed with complete
closed conformal Killing vector field V and such that the weight function f does not
depend on the parameter of the flow associated to 1/ : —V/|V|, and let Z(z) be an

entire conformal Killing graph in MfH, defined on some leaf M" of the foliation Vl,
which lies between two leaves of Vl. Suppose that the f—mean curvature Hf of g(z) is
constant and satisfies

0 g Hf g %,

where 'Hf is the f—mean curvature of M" given in (1.22). If IDZI G EHM"), then
g(z) is either f—minimal or isometric to a leaf of Vl.

In the case that the ambient space in the Theorems 2.6 and 2.7 is a weighted
warped product of the type (1.25), noting that 'Hf admits the expression (1.26), we
get the following results:

Corollary 2.8 Let g(z) be an entire conformal Killing graph in a weighted warped

product IR ><a M", defined on a slice Mt?) : ªlto] >< M", to 6 IR, which lies in a slab of

IR ><a M$. Suppose that the f—mean curvature Hf (not necessarily constant) of g(z)
satisfies the following inequality

0 < aHf É o/.

If IDZI G EHMZS), then g(z) is isometric to slice ªlt) >< M", for some t 6 IR.

Corollary 2.9 Let g(z) be an entire conformal Killing graph in a weighted warped

product IR ><a M$, defined on a slice Mil) : ªlto] >< M", to 6 IR, which lies in a slab of
IR ><a M$. Suppose that the f—mean curvature Hf of g(z) is constant and satisfies

OgaHfíoz'.

If IDZI G EHMÃ), then g(z) is either f—minimal or isometric to slice ªlt) >< M", for
some t 6 IR.

29



Continuing with our study, if the f—mean curvature of the conformal Killing graph

and the conforma] factor of the conforma] Killing vector field have opposite signs, we
have established the following result.

Theorem 2.10 Let M,?H be a weighted Riemannian manifold with nonnegative Bakry—
Émery—Ricci tensor ªf, endowed with complete closed conformal Killing vector field
V having conformal factor wv and such that the weight function f is bounded. Let g(z)

be an entire conformal Killing graph in WITH, defined on some leaf M" of the folia—
tion Vl, which lies between two leaves of Vl, and with Gauss map N given in (1.28).
Suppose that wv and the f—mean curvature Hf of g(z) verify one of the following
conditions:

(a) Hf 2 0 and ª/JV É 0 on Z(z);

(b) Hf É 0 and wv 2 0 on Z(z).

If the norm of the second fundamental form |A| of2(z) is bounded and IDZI G EHM"),
then g(z) is totally geodesic and ªf in the direction ofN vanishes identically. In
addition, if g(z) is noncompact and the Bakry—Émery—Ricci tensor of g(z) is also
nonnegative, then g(z) is isometric to a totally geodesic leaf of Vl.

Proof. First of all, we note that f does not depend on the parameter of the flow
associated with 1/ (see Remark 1.5).

Since the support function nv defined in (1.29) is negative, from either item (a)

or (17) jointly with equation (2.11) we obtain that din (VT) does not change sign on
E(z). Since E(z) lies between two leaves of the foliation Vl and |Dz| G £;(Mª), from
Lemma 2.3 we obtain that Hz) is complete and |VT| G £;(Z(z)). So, Lemma 2.1
gives lef (VT) : 0 on g(z). Therefore, wv : 0 and Hf : 0 on g(z).

Now, considering (2.1), we obtain

Af(nv) = — le(N7N) + lÁlºl vv 2 0

on Hz). Moreover, we note that the boundedness of |A| on Hz) gives

anvl í IAIIVTI 6 534320)—

Applying again Lemma 2.1, we get Af (nv) : 0 on Hz) and, consequently,

WAN, N) + |A|2 : 0

on E(z). Since ÉÁN, N) 2 0, we get ãf(N,N) : 0 and A = 0 on Hz), that is,
E(z) is totally geodesic.
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Proceeding, in view of (1.30), we obtain that an : 0 on Hz) and, hence,
nv : (V, N) is constant and nonzero on Hz). On the order hand, since V is parallel

on Hz), from (1.19) we have that (V, V) is constant on ÉlfH. Thus,

|VT|2 : |V _ <V,N>N|2 : (V, V) _ <V,N)º (2.16)

is also constant on Eça). Therefore,

+00 > / |VT|du : |VT|volf(E(z)), (2.17)g(z)

Where volf(2(z)) is the weighted volume of Hz). If, in addition, we assume Hz)
is noncompact and that the Bakry—Émery—Ricci tensor of E(z) is also nonnegative,

Lemma 2.2 gives volf(2(z)) : +00 and, consequently, the only possibility that we
have for validity of (2.1?) is that |VT| : 0 on Hz). Thus, from (2.16) we get

|<V7N>|= IVI—

Therefore, Cauchy—Schwarz inequality gives that V is parallel to N and, hence, Hz)
must be isometric to a totally geodesic leaf of Vl. .

When the f—mean curvature of a conformal Killing graph and the conformal factor

of the conformal Killing vector field have the same sign, we have the following

Theorem 2.11 Let M;?H be a weighted Riemannian manifold with nonnegative Bakry—
Emery—Ricci tensor Ricf, endowed with complete closed conformal Killing vector field
V having conformal factor wv and such that the weight function f is bounded. Let g(z)

be an entire conformal Killing graph in WITH, defined on some leaf M" of the folia—
tion Vl, which lies between two leaves of Vl, with Gauss map N given in ('1 .28 ), and

with norm of the second fundamental form |A| and f —mean curvature H f both bounded.

Suppose that |Dz| G EHM"), Hf has the same sign as wv and

i (?ª/JV_ <_ H º 2.1
where t 6 IR is the parameter of the flow associated with the unit vector field 1/ :
—V/|V|. Then g(z) is totally geodesic and ªf in the direction ofN vanishes iden—
tically. In addition, if g(z) is noncompact, (V, V) is constant on g(z) and the Bakry—
Émery—Ricci tensor of g(z) is also nonnegative, then g(z) is isometric to a totally
geodesic leaf of Vl.

Proof. We have that f does not depend on the parameter of the flow associated With
y (see Remark 1.5). From (1.20) we observe that_ 1 (?

NÚ/Jv) = <N,Vi/Jv) = JJWJV) W = —m%77v7W (2.19)
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where nv is the negative support function defined in (1.29). Thus, in (2.1) we have

" (?ª/JV

Allow) : _n<VHfº Vl _ lãfUVvN) + |A|2l 77V — mlk/Hf + m WWW

From hypothesis (2.18), we get

Af(º7v) Z “"<Vva V> — lÉfUV, N) + lÁlºl 77V * m?va — ”º(Hfl277V— (2-20)

Now, let us consider on Hx) the smooth vector field

X : WV + anVT.

Since E(z) lies between two leaves of the foliation Vl and |Dz| G EMM"), from
Lemma 2.3 we obtain that E(z) is complete and |VT| G £;(Z(z)). Then, from (1.30)
we obtain

IXI É f|Á| +n|Hf|l|VT| € 53432»,

since Hf and |A| are bounded on Hz),
Moreover, from (1.13), (1.14), (2.11) and (2.20) we have

(11va : AMV) + n<VHf, W + M], divf (VT) (2.21)
> —n<VHf, V> _ íãfuv, N) + |A|ºl 77V

“"ª/)VHf — "2(Hf)277V + ”<Vva V>

+"2ª/JVHf + "º(Hf)277v

: _ fãÁNaN) + |A|2l W +"(" — 1)??va Z 0;

where in the last inequality we used that nv is negative, ªf is nonnegative and
the assumption that H f and wv have the same sign on 2". Thus, Lemma 2.1 gives
diva : 0 on E(z). Therefore, by returning to (2.21) we obtain that ÉÁN, N) = 0
and Hz) is totally geodesic.

Finally, if g(z) is noncompact, (V, V) is constant on Z(z) and the Bakry—Émery—

Ricci tensor of Hz) is also nonnegative, then (2.16) holds and we can reason as in the
last part of the proof of Theorem 2.10 to conclude that Hz) is isometric to a totally
geodesic leaf of VT. .

If the ambient space Úij in Theorems 2.10 and 2.11 is a weighted warped pro—
duct IR ><a M$, we observe that the hypotheses about the Bakry—Emery—Ricci tensor of

W;?H and the weight function f can be disregarded, because in this case we already
have to the weigted function f does not depend on the parameter of the flow asso—

ciated with the unit vector field —ôt. Hence, when ÉlfH : IR ><a MJ? we have that
Theorems 2.10 and 2.11 can be rescripted, respectively, in the following way.

Corollary 2.12 Let IR ><a MJ? be a weighted warped product with bounded weight func—

tion f and let g(z) be an entire conformdl Killing gmph in IR XQMJÇL, defined on a slice
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Mg : ªlto] >< F", to 6 R, which lies in a slab oflR ><a M", and with Gauss map N
giuen in (1.28). Suppose that the warped function & and the f —mean curuature H f of
g(z) uerify one of the following conditions:

(a) Hf 2 0 and 0/ É 0 on EQ);

(b) Hf É 0 and 0/ 2 0 on Z(z).

If the norm of the second fundamentalform |A| on(z) is bounded and IDZI G EHMZS),

then Z(z) is totally geodesic and the Bakry—Émery—Ricci tensor of R ><a MJ? in the
direction ofN uanishes identically. In addition, if g(z) is noncompact and the Bakry—
Émery—Ricci tensor of g(z) is nonnegatiue, then g(z) is isometric to a totally geodesic
slice ªlt] >< M", for same t 6 R.

Corollary 2.13 Let R ><a MJ? be a weighted warped product with bounded weight func—

tion f and let g(z) be an entire conformal Killing graph in R XQMJÇL, defined on a slice

Mg : ªlto] >< M", to 6 R, which lies in a slab oflR ><a M$, with Gauss map N giuen
in (1.28), and with norm of the second fundamental form |A| and f—mean curuature

Hf both bounded. Suppose that IDZI G EHMZÉ), Hf has the same sign as the deriuatiue
of the warped function & and

oz” É —na (Hf)2.

Then g(z) is totally geodesic and the Bakry—Émery—Ricci tensor of R ><a MJ? in the
direction ofN uanishes identically. In addition, if Z(z) is noncompact, (V, V) is con—
stant on g(z) and the Bakry—Émery—Ricci tensor of g(z) is nonnegatiue, then g(z) is
isometric to a totally geodesic slice ªlt] >< M", t 6 R.

2.3 Stability of f—minimal conformal Killing graphs

Let M;?H be a weighted Riemannian manifold, with weight function f and en-
dowed with closed conforma] Killing vector field V, and let x : Hz) CH M;?H be an
conforma] Killing graph with Gauss map N defined in (1.28). In this setting, we denote

by d2(z) the volume element with respect to the metric induced by x : Hz) CH WITH
and we mean by Cãº(2(z)) the set of all functions of class Oºº on Hz) supported
compactly.

It is well known that, given a function ap 6 Cãº(2(z)) there exists a normal
uariation with compact support an fixed boundary

xs : g(z) —> ÚçH, for s 6 (—e,e), (2.22)

of x : Hz) CH W;“, that is,

(i) rs : ld outside a compact subset of Hz);
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(ii) for 5 G (—e, e), the map ms : g(z) —> M,?H is a immersion such that if()(p) : x(p)
for all p 6 Z(z);

(iii) msg?) : p for all p 6 ÓEQ).

Moreover, associated with ms : E(z) —> M;?H we have that the variational normal field
is cpN and the first variation of the weighted area functional

.Áf: (—€,€) —> R

5 »—> AAS) : Areaf <xs(2(z))) =/ dos, (223)g(z)

where dns : efdeXz)s and d2(z)s denotes the volume element of Hz) with respect

to the metric induced by ms : Hz) —> É;“, is given by (see, for instance, EEI, Lemma
3.2)

%(Af) = 0%) = "/()<PHfdM- (2.24)E
As a consequence, x : Hz) CH Hilªl is a f—minimal if and only if 650 (Af) : 0 for every
smooth function ap 6 Cãº(2(z)). In other words, f—minimal conformal Killing graphs

in WITH are characterized as critical points of Af.
The stability operator of this variational problem is given by the second variation

formula for the f—area, which in our case is written as follows (see Proposition 3.5
ofmfoer=0)

aim = ªgiªm) = — /()90Lf(<P)dM (2.25)
with

Lf = Af + IÁI2 +ãf(N7N),

where Af is the drift Laplacian operator on Hz), N is the Gauss map of Hz), |A|
denotes the length of the shape operator A of Hz) and ªf is the Bakry-Émery—Ricci

tensor of W;“.
For f—minimal conformal Killing graphs in M;“, the above discussion motivates

the following notion of stability.

Definition 2.14 Let M,?H be a weighted Riemannian manifold, with weight function
f and endowed with closed conformal Killing vector field V, and let m : g(z) % WITH
be a f—minimal conformal Killing graph. We say that m : g(z) CH W,?H is Lf—stable if

dª (Af) 2 0 for every ap 6 Cãº(2(z)).

In order to proof our main theorem in this section, we will need to use the following

auxiliary result, which gives a suflicient condition for a f—minimal hypersurfaces be L f-
stable.
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Lemma 2.15 Let WITH be a weighted Riemannian manifold, with weight function f
and endowed with closed conformal Killing vector field V, and let r : g(z) % WITH
be a f—minimal conformal Killing graph. If there exists a positive smooth function

u 6 Cºº(2(z)) such that Lf(u) É 0, then r : g(z) CH WITH is Lf—stable.

Proof. Let us assume that there exists such a function it and take ap 6 Cãº(2(z)).
Then, we can choose g 6 Cgº(2(z)) satisfying <p : gu. Hence, from (1.16) and (2.25)
we have

«Siam = — /( )sºLf(ªP)dM = — /( )QULf(QU)dM (2.26)

: _ ÁÁ ) (gºuLf(u) + guºAf(g) + 29u<Vg,Vu>) dn

2 —/ (QUºMQ) +29U<V97VU> — ou2<Van>) du—g(z)
1

= — /( ) (wwe) + ªmªnte — guº<vQ,Vf>) du-?) 2

On the other hand, we can see that

div(u2V92) : (Wº, vgº> + u2A(Qº) : (Wº, vgº> + 29u2A(g) + 2u2|VQ|2.

Therefore, from the weighted version of divergence theorem (see Lemma 2.2 of M),
we get from last equation together With (2.26) that

1

(Sg/if) 2 —/ (5 div(u2V92) ““ºlvelº _ Qu2<vg,Vf>) dgg(z)

1

= —/ (—divf(u2Vgº)—u2|Vg|2) do : / uºlVglºdn 2 0ze) ? ze)
and, therefore, x : Hz) CH Hilªl is Lf—stable. .

Now, analyzing the behavior of the conformal factor ª/JV along a conformal Killing

graph, we Will state and prove our main result concerning L f-stability. In What fol-
lows, t 6 IR denotes the parameter of the flow associated With the unit vector field
1/ : —V/|V|.

Theorem 2.16 Let M;?H be a weighted Riemannian manifold nonnegative Bakry—
Émery—Ricci tensor, endowed with complete closed conformal Killing vector field V

having conformal factor wv and whose weight function f is bovnded, and let m : g(z) %

W;?H be a f—minimal conformal Killing graph.

(a) If %% É 0 on g(z) then m : g(z) CH WITH is Lf—stable.

(17) If Z(z) is compact and % 2 0 on g(z) then m : g(z) CH W;?H is Lf—stable if
and only if wv is constant on Z(z).
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(3 —n
(0) If g(z) is compact and % > 0 on g(z) then m : g(z) % lllf+1 cannot be

L f—stable.

Proof. We have that f does not depend on the parameter of the flow associated with 1/

(see Remark 1.5). On Z(z), we consider the smooth positive function u : —77V, where
77V is defined in (1.29). Then, from (2.1) and (2.19) we obtain

" (?ª/JVL = — — 2.27
and, with a direct application of Lemma 2.15, the result of item (a) is obtained imme-
diately.

Now, let us consider (b). Note that in this case Cãº(2(z)) : Cºº(2(z)). So, if
x : E(z) CH É?“ is L f-stable, from Definition 2.14 and equation (2.27 ) we get2 U2 ôíflvE(z) x(z) | |

(?

which guarantees us % = 0 on Hz). The converse follows from item (a).
—n+1

Finally, we prove (c). Assuming the opposite, if we would have x : Hz) CH M f
L f—stable then, from the analysis of signals studied in (2.28), we obtain

UZ (a?/JV

og—n/ ——d;i<0,g(z) |V| &
which is absurd. .

When the ambient space is a weighted warped product of the type (1.25), we can
apply Theorem 2.16 to obtain the following result.

Corollary 2.17 Let x : g(z) % IR ><a M,? be a f—minimal conformol Killing gmph.

(a) If the warping function & sotisfles &” É 0 on g(z) then m : g(z) % IR ><a MJ? is
Lf—stable.

(17) If g(z) compact and the warping function & sotisfles &” 2 0 on g(z) then m :

g(z) % RXQMJ? is Lf—stoble if and only ifa : at+b on Z(z), for some a, b 6 IR.

(0) If g(z) compact and the warping function & sotisfles &” > 0 on g(z) then m :

g(z) % M,?H cannot be Lf—stoble.

2.4 Stability of constant f-mean curvature conforma]
Killing graphs

Let É?“ be a weighted Riemannian manifold, with weight function f and en-
dowed with closed conformal Killing vector field V, and let x : Hz) CH M,?H be an
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closed (that is, compact and without boundary) conformal Killing graph with Gauss
map N defined in given in (1.28).

In what follows we consider the set

g=lsoecººa<z» : Ágººdªlzºlº
formed by all the smooth functions on Hz) with weighted integral mean equal to zero,
where dy : effd2(z) and d2(z) is the volume element with respect to the metric
induced by x : Hz) CH W;?H

According the ideas established in the Lemmas 2.1 and 2.2 of [ISI] (see also Lemma

3.2 of M), every smooth function ap 6 Q induces a normal variation (namely, a smooth

function of form (2.22) checking only item (ii)) of x : g(z) CH Hliwl, with varia—
tional normal field goN and with first variation 650 (Af) of the weighted area functional

Af : (—e, e) —> IR, defined in (2.23), given by the expression (2.24). As a consequence

of (2.24), any closed conformal Killing graph x : Hz) CH M;?H with constant f—mean
curvature H f is a critical point of Af restricted to all functions <p belonging to Ç.
Geometrically, this condition means that the variations under consideration preserve

a certain weighted volume function (for more details, see Section 3 of DE"). For these
critical points, Proposition 3.5 of “23! (see also Proposition 2.5 of [BI) asserts that the
stability of the corresponding variational problem is given by the second variation

5ª (Af) = — ze) fªme) + (IÁI2 +Wf(N7 N)) (Ml sede (229)
where Af is the drift Laplacian operator on Hz), N is the Gauss map of Hz), |A|
denotes the length of the shape operator A of Hz) and ªf is the Bakry-Émery—Ricci

tensor of W;“.
From (2.29), let us now note that dª (Af) depends only on ap 6 Cºº(2(z)). The

following notion of stability now makes sense.

Definition 2.18 Let W,?H be a weighted Riemannidn manifold, with weight function
f and end0wed with closed conformdl Killing vector field V, and let m : g(z) % WITH
be a closed conformdl Killing graph with constant f —medn curvature H f. We say that

x : g(z) % M,?H is strongly f—stdble when 6,2, (Af) 2 0 for every ap 6 Cºº(2(z)).

We are now in position to state and prove the following rigidity result for strongly

f—stable conformal Killing graphs.

Theorem 2.19 Let M,?H be a weighted Riemannidn manifold nonnegdtive Bdkry—
Émery—Ricci tensor, endowed with complete closed conformdl Killing vector field V

having conformdl factor ª/JV and whose weight function f is bovnded. Let m : g(z) %

M;?H be a strongly f—stdble closed conformdl Killing graph. Svppose that

(agp—tv Z maxleHfMl, (2.30)
37



where t 6 IR is the parameter of the flow associated with the unit vector field 1/ :
—V/|V|. If the set where Q/JV : 0 has empty interior in Z(z), then g(z) is either
f—minimal or isometric to a leaf of the foliation V+.

Proof. As seen in Remark 1.5, we have that f not depend of t 6 IR. Let us consider in

W;?H the global parametrization (1.23). Since a : Hz) CH H;?H is strongly f—stable,
it follows from Definition 2.18 and (2.29) that

— ª ) fªme) +fãfUV7 N) + lÁlºlªelsºdu Z 0, (2-31)
for all ap 6 Cºº(2(z)). In particular, since H f is constant on Hz), taking the negative
function 77V defined in (1.29) we get from (2.1) that

Af(77v) + fãfUVv N) + |A|2l77v = +"??va + NWA/H“—

Thus, from (2.31) we have that

&!)va + NWA/HW ªlli Z 0- (2-3?)
g(z)

On the other hand, it follows from (1.20) that

Nav) = WWW = www, u> = já”; cose,
where 0 is the angle between N and —1/. Substituting the above into (2.32), we finally

arrive at (3
/ (1/1va — & cosâ) IVICOSQd/t Z 0.

Now, from (2.30) we obtain

0 É / íz/JVHf — (?ª/JV (3050) IVICOSQd/tg(z) ôt
É / (1—cosâ)ôw—V|V|cos0du É 0.

Hence,
(?ª/JV _ (??/JV _
É — 0 and ôt — —Q/Jva

on g(z). But, since Hf is constant on Z(z), g(z) is either f-minimal or Hf # 0 on

(1 — cos 0)

E(z). If this last case occurs, the condition on the zero set of da; on E(z) together with

the above give & # 0 on a dense subset of Hz) and, hence, cosâ : 1 on this set.
By continuity, cosâ : 1 on Z(z). Therefore, in this case, Hz) must be a leaf of the
foliation V+. l

We close this chapter observing that, when the ambient space is a weighted
warped product of the type (1.25), we can apply Theorern 2.19 to obtain the following
result.
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Corollary 2.20 Let x : g(z) % IR ><a MJ? be a strongly f—stable closed conformal
Killing graph. Suppose that the warped function & satisfles

oz” Z maxJLo/Hf7 0).

If the set where o/ = 0 has empty interior in Z(z), then g(z) is either f—minimal 07"
isometric to the slice ªlto] >< M", for some to 6 IR.
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Chapter 3

Uniqueness for the weighted mean
curvature equation in weighted Killing
warped products

In this chapter, our purpose is to obtain uniqueness results related to the mean
curvature equation for entire Killing graphs constructed over the base M " of a weighted

warped product of the type MJ? ><a IR With warping function & and density f. For this,
we establish a suitable f—parabolicity criterion and, under appropriate constraints on
the Bakry—Émery—Ricci tensor and on the f—mean curvature, we prove some rigidity

results concerning two—sided hypersurfaces immersed in MJ? XQR The results presented
in this chapter are part of [IZZI].

3.1 A f -parabolicity criterion for two-sided hypersur—

faces in (M" ><a R),"

Following the ideas of [Em Subsection 4.3], our aim in this section is just to obtain
a f—parabolicity criterion for two—sided hypersurfaces immersed in a Killing warped
product.

Given a weighted manifold WITH, we define, for any compact subset K C 2",
the f -capacity of K as being

capf(K) : infí /_|VU|2d/L : uGLip0(M) and u|K51 %,M

Where do is the volume element in MHH given in (1.10) and Lip0(Ú) is the set of all
compactly supported Lipschitz functions on WH“. The following statement relates



the notion of f—capacity to the concept of f—parabolicity (cf. [|B-Ill, Proposition 2.1]).

Lemma 3.1 The weighted manifold M;;H is f—pombolic if and only if capf(K) : 0
for any compact set K C MHH.

Let us recall that given two Riemannian manifolds (M ª“, <- , ->M) and (MHH, <- , VM);

a diffeomorphism <p from M "“ onto MHH is called a quasi-isometry if there exists a
constant c 2 1 such that

0'1|v|<-,->M É ldªep(v)|<-,->M É C|v|<-,->M

for all v 6 TPM and any p 6 M "“ (see [EEI for more details). In this case, given
a smooth function f : MHH —> IR, we can reason as in [IEL Corollary 5.3] to verify
that the ( f o «p)—capacity of compact subsets in M "“ changes under a quasi—isometry
at most by a constant factor of the f—capacity of compact subsets in MHH. From
Lemma 3.1, it is not difficult to see that we obtain the following result (for a proof, see
[BBL Lemma 2]).

Lemma 3.2 Keeping the same nototion above, we have:

(a) Given o quasi—isometry <p : Mm1 —> MHH and a smooth function f : MHH —>

IR, MHH is f—pombolic if and only if M“1 is (f o «p)—porobolic;

(17) Let M be the universal Riemannion covering of M“1 with cononicol projection
7TM : M —> Mª“. IfM is (f o FM)—parabolic, then Mm1 is f—pombolic.

Recall that every connected manifold M "“ has universal covering, that is, there
exist a simply connected manifold M (called the universal covering of M ª“) and a
smooth map WM : M —> M "“ (called the covering map) such that each point p 6 M "“
has a connected neighborhood U that is evenly covered by WM, that is, WM maps each

component of nª(U ) diffeomorphically onto U (for more details, see [BEL Appendix
A]). Moreover, if M "“ is a Riemannian manifold, then it is possible to give M a
Riemannian structure such that the covering map WM : M —> M "“ is a local isometry.

In this case, M is said the universal Riemannian covering of M "“ (cf. [BBL page 152]).
From now on, we will denote by M the universal Riemannian covering of the

base M ", with projection % : M —> M ", and ; will denote the composition f o %.
In this setting, we have the following f—parabolicity criterion for complete two—sided

hypersurfaces into weighted Killing warped products.

Proposition 3.3 Let (M" ><a Rh be a weighted Killing warped product and let
x : 2" % (M" ><a Rh be a complete two—sided hypersurfoce such that the function77 := (3.1)

©|º
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is bounded and strictly positive on 2", where 9 is the angle function ofm : 2" %
(M" ><a IRM defined in (1.33). If M" has f—pombolic universal Riemannian covering,
then 2" is f—pambolic.

Proof. From Lemma 3.2 we have that

(i) f—parabolicity is invariant under a quasi—isometry;

(ii) if the universal Riemannian covering Í] of 2" is ( f o ng)-parabolic, then 2" is
also f—parabolic.

Denoting 7T : 7TM o m, 7T* : d7T and h,, : dh, for any tangent vector o G TPE and
some p 6 E", from Cauchy—Schwartz inequality we have that

(0,0) : (n*v,n*o>M+a2<h*v,h*o>R É (n*o,n*o>M+a2|Vh|2<v,o>,

and then

(1— a2|Vh|2) (12,0) 5 (n*o,7r*o>M.

By definition of the function 77 and from (1.36) we get

—<o,v> É (n*o,7r*o>M.

Taking into account our hypothesis, we have that

c71<o,v> É (n*v,n*o>M, (3.2)
Where

c := supn2 Z 1.
En

Consequently, 7T is a local diffeomorphism and we can reason as in the proof of [IB,
Lemma 7.3.3] (see also [EH, Lemma 8.8.1]) to conclude that 7T is a covering map.

On the other hand, we see that

(0,0) : (n*o,7r*v>M + a2<h*o,h*v>R Z (n*o,7r*o>M.

Since c 2 1, we obtain that

(n*o,7r*v>M É c<v,v>. (3.3)
It follovvs from (3.2) and (3.3) that

(Minogue) É (em) É dummy). (3.4)
So, let Í) be the universal Riemannian covering of 2" With projection ”ZTE : Í) —>

2". Then, the map no : W 0 ng : E —> M" is a covering map. Now, if M is the
universal Riemannian covering of M " With projection % : M —> M ", then there exists
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a diffeomorphism <p : Í) —> M such that % o p = no. Moreover, <p is a quasi—isometry.

Indeed, if 1) is a tangent vector at some point of 23, from (3.4) we have that

(%%%sz = Hashanâwwhil = ((Wo)*v,(Wo)*v>M
= (%*((7Tz)*v)77u((7fz)*v)>M É 0<(7Tz)*v,(7fz)*v>z = Chung;—

Analogously, we obtain

(go,,u, 90,42%? 2 (No, i;)ã.

Therefore, since the universal Riemannian covering of M " is f—parabolic, it follows

that the universal Riemannian covering of 2" is (f ong)—parabolic and, hence, E" must
be also f—parabolic. .

When the ambient space is just a weighted product space (M " >< IRM, from Propo—
sition 3.3 we get the following f—parabolicity criterion.

Corollary 3.4 Let (M" >< IRM be a weighted product space and let m : E" % (M" >< IRM
be a complete two—sided hypersurface such that the angle function 9 giuen in (1.33) is
bounded away from zero. If M " has f—parabolic uniuersal Riemannian couering, then
2" is f—parabolic.

3.2 Rigidity results for two-sided hypersurfaces in

M;,? ><a R

In our first rigidity theorem for two—sided hypersurfaces immersed in MJ? ><a IR,
we deal with a specific weighted function f : log dº. We note that it will not be
assumed the constancy of the log Olª—mean curvature Hlog az of the hypersurface.

Theorem 3.5 Let M "
log

has logãº—parabolic uniuersal Riemannian couering. Let m : 2" CH Allªm2 ><a IR be

ag ><a IR be a weighted Killing warped product whose base M "

O

a complete two—sided hypersurface such that the function 77 = ()(/9 defined in (3.1)

is bounded and strictly positiue. Suppose that the log Olª—mean curuature Hioga2 and
the function (Va,Vh> haue opposite signs on 2", where h is the height function of

x : 2" CH Allªm2 ><a IR giuen in (1.32). If 2" is contained in a slab of M" 2 ><a IR,o log a
then x(Z") is a slice M" >< ªlto), for some to 6 IR.

Proof. From [Bºl, Lemma 2], we have

Ah : nof2© Hlogaª' (3.5)
Then, from (1.15) and (3.5),

AlogQZh : nofºQHlOgaz — (V log a2,Vh> : nofºQHlOgaz — à(Voz,Vh>.
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Taking into account that Hlog az and the function (Va, Vh) have opposite signs on 2",
we conclude that Alog aah does not change sing on E". But, since 2" is contained in a

slab of Mªg az XQR, Proposition 3.3 guarantees the log aº—parabolicity of 2". Therefore,
h must be constant and, consequently, x(E") is a slice M " >< ªlto), for some to 6 IR. .

From Theorem 3.5 vve obtain the following rigidity result for log Olª-minimal com-

plete hypersurfaces immersed into Mªg & ><a IR.

Corollary 3.6 Let M "log

has logã 2—parabolic uniuersal Riemannian couering. Let m : E" % Ml"
ag ><a IR be a weighted Killing warped product whose base M "

Ogag ><a IR be a
log Olª—minimal complete two—sided hypersurface contained in a slab and such that the

function 77 = ()(/9 defined in (3.1) is bounded and strictly positiue. If the function
(Va,Vh> does not change sign on 2", where h is the height function of m : 2" %

Allªm2 ><a IR giuen in (1.32), then x(Z") is a slice M" >< ªlto), for some to 6 IR.0

We can obtain an equation similar to (3.5) involving the log ofº—Laplacian and
the standard mean curvature of x : 2" CH M " ,2 ><a IR to get the following result forlog a

minimal complete hypersurfaces.

Theorem 3.7 Let M "Iowª ><a IR be a weighted Killing warped product whose base M"
TL

has logã fº—parabolic uniuersal Riemannian couering. Let m : 2" CH mez ><a IR
be a minimal complete two—sided hypersurface such that the angle function 9 defined

in (1.33) is strictly positiue, the function 77 = ()(/9 giuen in (3.1) is bounded and

ignfoz > 0. (3.6)
If the Bakry—Émery—Ricci tensor Riclogafz ofx : 2" % M"Iowª XQR satisfles Riclogafz 2
H, for some positiue constant n 6 IR, then x(Z") is a slice M" >< ªlto), for some to 6 IR.

Proof. Firstly, observe that

Ah : Div (Vh) : oz2<Vofº,Vh>+noF2H9 : <VlogoF2,Vh> +nofºH9.

So, from this last equation and from (1.15) we get

Alogafzh : noFºHQ (3.7)
On the other hand, from Bochnerls formula applied in 2" With density log 072 (see [BBL

page 378]) we have that

1

ª Aloga72|Vh|2 : |Hess h|º + RiclogwáVh, W) + (VAlogafzh, vm. (3.8)
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Now, taking into account our restriction on Riclogafz and the the minimality of x :

2" CH Mªmª ><a IR, from (3.7) and (3.8) we obtain

1

ªnlogafzwmº 2 RiclogaªWhNh) 2 H|Vh|2 2 o. (3.9)

Moreover, from (1.36), the condition (3.6) implies in the boundedness of |Vh|2 on
2". Thus, since Proposition 3.3 assures us that 2" is log ofº—parabolic, from (3.9) we
must have that |Vh|2 is constant on 2". Returning to (3.9), we obtain that |Vh| : 0
on 2" and, therefore, there exists to 6 IR such that x(E") : M" >< ªlto]. .

When the ambient space is a weighted product space MJ? >< IR, we obtain the
following rigidity result which can be regarded as an extension of [ªll], Theorem 7].

Theorem 3. 8 Let M " >< IR be a weighted product space whose base M " has f —parabolic
uniuersal Riemannianf couering and Bakry— Émery— Ricci tensor Rin satisfying Rin_

—H, for some positiue constant n 6 IR. Let x . 2" % Mf >< IR be a complete two—sided
hypersurface with constant f—mean curuature, such that the angle function 9 defined

n (1.33) is bounded away from zero. If the height function h ofm : 2" % MJ? >< IR
satisfles

|Vh|2 g %IAIº, (3.10)
for some constant c 6 (0,1), then x(Z") is a slice M" >< ªlto), for some to 6 IR.

Proof. Since H f is assumed to be constant, from [Bºl, Lemma 1] we get

Afe : _ (&,(Nàivªª) + |A|º) e. (3.11)
Moreover, since we are assuming that 9 is bounded away from zero, for an appropriate

choice of Gauss map N of x : 2" CH MJ? >< IR we get that 9 > 0 on 2".
Thus, taking into account our constraint on Ric, from (1.36) and (3.11) we obtain

Afe g - (|A|2 - H|Vh|º) e. (3.12)
Using hypothesis (3.10), from (3.12) we have that

Afe g —(1 _ c)|A|ºe g 0. (3.13)
Consequently, from (3.13) we get that the angle function 9 is a positive f—superharmonic

function on 2". Hence, we can apply Corollary 3.4 to guarantee that © must be con—
stant on E". So, returning to (3.13) we see that 2" is totally geodesic. Therefore,
hypothesis (3.10) assures that h is constant on 2" and, consequently, there exists
to 6 IR such that x(Z") : M" >< ªlto]. .
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3.3 Entire Killing graphs and the f-mean curvature

equatkn1in.hqlxalR
In this section we present the main results of this chapter, namely, uniqueness

results for the f—mean curvature equation of entire Killing graphs constructed over the

base M " of a weighted Killing warped product MJ? ><a IR.
The shape operator A : %(Z"(z)) —> %(Z"(z)) of the entire Killing graphs E"(z),

presented in section 1.4.3, with respect to Gauss map N given in (1.37 ) is

3D D D 2D X D 2
M : JWDXDZWM Xl Ziª/ºw“? aªi lºllªl+a DZM l+a DZM l+a DZMD X D X< a? > 1/2 < 27 > 1/2 a? (3.14)(1+aº|DZ|i4) (1+aº|DZ|i4)

for every X 6 %(E"(z)). It follows from (3.14) that the mean curvature H(z) of an
entire Killing graph Z"(z) is given by

(3.15)
nH(z) : div< ozDz > <DZ,D0z)(1 wma)” (1 MWM/ºº

where div( -) stands for the divergence on M " with respect to the metric <- , ) M. A
direct computation shows that the f—mean curvature H f(z) of E"(z) is given by

an(Z) : divf< ozDz > <DZ,D0z)(1 + aºiDziiWº (1 + aºIDziiWºº

where lef( -) is the f—divergence on M ".
ln particular, an entire Killing graph Hz) have constant f—mean curvature if

and only if the function Z 6 Cºº(M ) satisfies the following elliptic partial differential

f (( ozDz > + ( <DZ,D0z) : 0, (3.16)1+a2|Dz|ã4)1/2 1+a2|Dz|ã4)1/2
for some constant O G IR.

equation:

ln what follows, we will use the results of Section 3.2 to obtain uniqueness results

for equation (3.16). We start by applying a consequence of Theorem 3.5 to get the
following uniqueness result for log Olª-minimal entire Killing graph in a weighted Killing

warped product M " 2 ><a IR.log a

Theorem 3.9 Let Mlzgag ><a R be a weighted Killing warped product whose base M "
has logã 2—pa7"abolic universal Riemannian covering. Suppose that the entire Killing

graph Z"(z) associated to Z 6 Cºº(M") is such that (Va,x*(Dz)) does not change
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sign. Then, for all positive constant c 6 IR, the only bounded solutions of the problem

divl 2 ªDZ + (DZªDOÓ : 0 m M"
<l+aº|Dz|i>Vº <l+aº|Dz|i>Vº ?

aºiDzii 5 c,

are the constant ones.

Proof.

We observe that the boundness of aº|Dz|ã4 is equivalent to the boundenes of
function 77 defined in (3.1). Indeed, from (1.38),

77 : (1+a2|DZ|ã4)l/2. (3.17)
Furthermore, from (1.3? ) we have that

N* : N—Nl : -ÁZ)M (3.18)
(1 + aºIDzlãiV

On the other hand, we observe that

_ l T _ l T %mw — % >= 0,21% (a > — 0,21% (um ) (3.19)
: i 30”, Y) 1/2YT<Y,Y> : LYVY, Y)aº 2 2d31 _ 1 _
: $<VYTKY> : ÉWWQNKW1 _ _ 1 _
= & <VyY,Y>—<V9NY,Y> : —$<VGNY,Y>

0e _ e e 2
_ _â<VNY7Y> _ _ÉN<Y7Y> _ _ÉNQM)© ,, © ,,
— _É2OZN (oz) : —?<VQ,N>

Hence, from (3.19) and (3.18) follows that

1/2 <Voz, m*(Dz)>
© _ m*(Dz) ©Voz,Vh : — Va : _< > < ( > a (1 + ozºIDzIãÃ)& * 1+ a2|Dz|ã,)1/º

Therefore, (Va, Vh) does not change of sign on E"(z) if and only if (Va, m*(Dz)>
does not change of sign on E"(z), and the result follows from Corollary 3.6. .

In our next result, we Will apply Theorem 3.7 to study a problem related to
the usual mean curvature equation for minimal entire Killing graphics immersed into

M ogaz ><a IR.
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Theorem 3.10 Let Mlggag ><a IR be a weighted Killing warped product whose base M "
has log ãfº—parabolic uniuersal Riemannian couering. Suppose that the entire Killing

graph Z"(z) associated to Z 6 Cºº(M") is such that infgnw & > 0 and that the Bakry—
Émery—Ricci tensor Riclogaz of Z"(z) satisfles Riclogaz 2 H, for some positiue constant
H. Then, for all positiue constant c 6 IR, the only solutions of the problem

. ozDz <DZ Da) .d1v + º = 0, in M"
«1 + aºIDzlif/º) (1 + aºIDzlif/º

aºiDzii 5 c,
are the constant ones.

Proof. By the previous digression, we can conclude that an entire weighted Killing
graph E"(z) is minimal if and only if Z 6 Cºº(M") satisfies the equation (3.15) for
H (z) identically zero. From equation (3.17), the condition aº|Dz|ã4 5 c ensures that
the function 77 defined in (3.1) is bounded and our choice of the Gauss map (1.37 )
guarantees that 77 has strict sign. Hence, the result follows from Theorem 3.7. .

For a weighted product space MJ? >< IR, we establish the following uniqueness result
for f-minimal entire Killing graphs.

Theorem 3.11 Let MJ? >< IR be a weighted product space whose base M" has f—parabolic
uniuersal Riemannian couering and with its Bakry—Emery—Ricci tensor Rle satisfying

Éivcf 2 —/<;, for some positiue constant H. Let Z"(z) be the entire Killing graph associ—

ated to Z 6 Cºº(M") such that |A|2 5 k. For any 0 6 (0,1), the only solutions of the
problem

D
divf _zl/Z : 0, in M"(1+|D2|i4)

are the constant ones.

Proof. We note that from (1.36) and (3.18) we obtain

IDZIhh 2 = _. 3.20IV | 1 + IDZIiw ( )
Hence, using (3.20), we conclude that the hypothesis (3.10) is equivalent to

c|A|2D 2 < _.
| ZIM _ k — c|A|2

Moreover, it is not difficult to verify that this previous inequality jointly with our
constraint in |A|2 and (1.38) imply that the angle function 9 of E"(z) is bounded away
from zero. Therefore, the result follows from Theorem 3.8. I
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An important example of weighted manifold is the so—called Gaussian space G",
which corresponds to the Euclidean space IR" endowed with the Gaussian probability
measure

du : (zwrªefªdyº. (3.21)
Concerning the weighted product space G" >< IR, Hieu and Nam extended in EBI, Theo—

rem 4] the classical Bernsteinls theorem showing that the only weighted minimal graphs

Z"(z) of functions g(yl, . . . ,yn) : yn+1 over G" are the hyperplanes yn+1 : constant.
Finally, taking into account this previous digression, from Theorem 3.11 we obtain

the following uniqueness result for f—minimal entire Killing graph in the weighted
product space G" >< IR.

Corollary 3.12 Consider the weighted product space G" XR, where G" is the Gaussian

space which is endowed with Gaussian density f defined implicitly by (3.21). Let Z"(z)
be the entire Killing graph associated to Z 6 Cºº(G") such that |A| is bounded. For any

positiue constants supznw |A|2 5 k and 0 6 (0,1), the only solutions of the problem

D
divf _21/2 : o, m e"(1+|D2|ã4)

are the constant ones.

Proof. We have that the f—volume of G" is equal to 1 (see, for instance, the last
equation of the proof of [EE, Theorem 4]). Then, [Eª Remark 3] guarantees that G"
is f—parabolic. Moreover, with a straightforward computation we get that the Bakry—

Émery—Ricci tensor Éivcf of G" satisfies the equality Éicf : 1. Therefore, since G" is
also simply connected, the result follows from Theorem 3.11. .
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Chapter 4

Spacelike hypersurfaces immersed in
weighted standard static spacetimes:
uniqueness, noneXistence and stability

Along this chapter, in weighted standard static spacetimes, we study some aspects
of the geometry of spacelike hypersurfaces through of drift Laplacian of two functions
support naturally related to them. For such hypersurfaces, with some restrictions on
density function and the geometry of the ambient spacetime, we begin by stating and
showing some results of uniqueness and nonexistence, several of them not assuming
that the hypersurface to be of constant weighted mean curvature. Versions of these
results are given for entire Killing graphs, that is, graphs constructed over an integral
leaf of the distribution of smooth vector fields orthogonal to timelike Killing vector
field. Finally, for closed spacelike hypersurface immersed in a weighted standard static
spacetime with constant weighted mean curvature, we study a notion of stability via
the first eigenvalue of the drift Laplacian. The results presented in this chapter are
part of BBI].

4.1 Uniqueness and nonexistence results in standard
static spacetimes

We begin this section by providing a formula for the classical Laplacian of the
height function of a spacelike hypersurface immersed in a standard static space M " XalR

in terms of a certain weighted mean curvature. More precisely, we have the following



Proposition 4.1 Let m : 2" % M" ><a R1 be an immersed spacelike hypersurfdce and

let h 6 Cºº(2") be the height function defined in (1.41). Then

Ah : _nefºe Hlogaz, (4.1)
where 9 is the angle function defined in (1.42) and H1ega2 is the log Oiª—mean Guri/ature
of 2".

Proof. Let JLEl, . . . ,E”) be an orthonormal frame defined in & neighborhood of some
point of 2". From (1.43) we note that

ofºdiv (%) : ofºdiv (—of2YT)

—ofº<Vofº, YT> — of4div (YT)

%*º, %> _ of4div (Y + em

_ 074 ÍWÍ (Y + em ,E»

Zzl T Zzl
: <%fº,% _ 074 n [me) <N,Ei> +e<VEN E >]

i=l

: <%fº,% +ofªªetr(A) : <V0a2 %> 41%
Therefore,

Ah : div (%) : eº<%*º, %> _ nofºHG

: <V1egefº, —a2YT> _ nofºHQ

: —ofº<€logofº, YT> _ nefºHe

: _efºãlegeª, Y + eN> _ nofºHQ

: _efº <Vleg efª, Y> —ofº<€log efª, N>e _ nofºHG__
: —of2© ínHoà— <V(log 072), N» = 410729 Hlogazv

Where in the last equality we use (1.12). .
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In order to obtain the first rigidity result of this chapter, we will need another
key lemma. The next one corresponds to Theorem 3 of “111.111 what follows, given a
n-dimensional Riemannian manifold E", we use the notation

CIQI") : íu:Z"—>R : / |u|qd2 (+00),
where dE denotes the standard volume element of 2".

Lemma 4.2 Let it be a nonnegatiye smooth subharmonic function on a complete Rie—

mannian manifold E". [fu G Eq (E"), for some q > 1, then it is constant on 2".

We will apply the previous lemma to get the following result

Theorem 4.3 The only complete spacelike hypersurfaces immersed into standard static
spacetime M " XaRl with nonnegatiye log Olª—mean curvature and whose height function

h is nonnegatiye and satisfles the condition h 6 Eq (E"), for some q > 1, are the slices
M " >< lt), t 6 R.

Proof. In fact, let x : 2" CH M " ><a R1 be such a spacelike hypersurface. Since 9 < 0

and Hiogaz 2 0 on 2", from (4.1) we have that Ah E 0 on 2". From Lemma 4.2,
we conclude that h is constant on 2" and, hence, there is to 6 IR such that m (E") =
M " >< ªlto]. .

From the proof of Theorem 4.3, we get the following

Corollary 4.4 The only parabolic complete spacelike hypersurfaces immersed into stan—

dard static spacetime M " ><a R1 with nonnegatiye log Olª—mean Guri/ature and lying in

a slab of M" ><a R1 are the slices M" >< ªlt), t 6 IR.

A Riemannian manifold 2" is said to be stochastically complete if, for some (and,
hence, for any) (m, t) 6 E" >< (0, +00), the heat kernel p(m, y, t) of the Laplace—Beltrami

operator A (that is, the minimal, positive fundamental solution of the heat operator
A — ô/ôt; for more details concerning the heat kernel of the Laplace—Beltrami operator,

see [EID satisfies the conservation property

/ “1003731, t)d€(y) = 1. (42)
From the probabilistic viewpoint, stochastically completeness is the property of a
stochastic process to have infinite life time. For the Brownian motion on a mani-
fold, the conservation property (4.2) means that the total probability of the particle to
be found in the state space is constantly equal to one (cf. [BEL ªºl, M).

Any parabolic manifold is stochastically complete but the opposite implication is

not true. For example, all Euclidean spaces IR" (with Euclidean measure) are stochas—
tically complete, whereas IR" is parabolic if and only if n 6 ªll, 2]. On the other hand,
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Pigola, Rigoli and Setti showed that stochastic completeness turns out to be equivalent

to the validity of a weak form of the Omori-Yau maximum principle (see Theorem 1.1
of [BB] or Theorem 3.1 of EEI), as can be expressed below.

Lemma 4.5 A Riemannian manifold 2" is stochastically complete if and only if, for
+00 Ceuery u 6 0263") satisfying supu « +00, there exists a sequence of points Jij j=1

ETL

E" such that

lim u(pj) : supu and lim sup Au(pj) É 0.3ª+ºº E" jà+oo
We will also need of the next lemma, which is just a consequence of a more general

extension of Liouvillels theorem due to Yau in [IEE].

Lemma 4.6 The only harmonic semi—bounded functions defined on an n—dimensional

complete Riemannian manifold whose Ricci curuature is nonnegatiue are the constant
ones.

Applying these previous lemmas, we obtain the following result.

Theorem 4.7 Let x : 2" % M" ><a R1 be a stochastically complete spacelike hy—

persurface which lies in a slab of M" ><a R1. If the log Olª—mean curuature Hlogaz
ofx : 2" % M" ><a R1 is a nonnegatiue constant, then m : 2" % M" ><a R1 is
log aº-maximal. Moreouer, ifm : 2" % M" ><a R1 is complete with nonnegatiue Ricci

curuature, then m (E") is a slice M" >< ªlto), for some to 6 IR.

Proof. From Proposition 4.1 we have that aºAh : —nH10gaz 9 on 2". So, taking
into account that the height function h of 2" is bounded, from Lemma 4.5 we get a

sequence ip,??? C E" such that

0 Z limsupaºAij) : nlimsup(—H10ga29(20j)) = —nH10gazliminf©(pj) Z 0.jà+oo jà+oo Jªªfºº
(4.3)

Then, we have that Hioga2 : 0 on 2" and, hence, h is harmonic on 2".
On the other hand, since E" lies in a slab then there exists a constant 6 such that

h — 6 > 0. Thus, if Ric 2 0, then from Lemma 4.6 we can conclude that h is constant
on 2". Therefore, we conclude that there is to 6 IR such that x(E") : M " >< ªlto]. .

In particular, from the analysis of signals realized in (4.3) we can established the
following nonexistence result.

Corollary 4.8 There do not exist stochastically complete spacelike hypersurface im—
mersed into standard static spacetime M" ><a R1 which lies in a slab of M" ><a R1 and

whose log Olª—mean curuature is a positiue constant.
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In order to establish our next result, we Will need of an extension of Hopfls
theorem on a complete noncompact Riemannian manifold due to Yau in [IEL

Lemma 4.9 Let u be a smooth function on a complete Riemannian manifold E", such
that Au does not change sign on 2". If |Vu| 6 E1 (E"), then Au uanishes identically
on 2".

Now, we are in a position to present the following result:

Theorem 4.10 Let M" XaRl be a standard static spacetime and m : 2" % MªxalRl be

a complete spacelike hypersurface whose log Olª—mean curuature Hiogaz does not change
sign. If the gradient Vh of the height function h ofx : 2" % M" ><a R1 has integrable
norm on 2" then x : 2" % M" ><a R1 is log aº—maximal. Moreouer, ifm (E") lies in a
slab of M" ><a IR then m (E") is a slice M" >< ªlto), for some to 6 IR.

Proof. Taking into account our restrictions on Hioga2 and 9, from (4.1) we get that
Ah does not change sign on 2". Moreover, since |Vh| 6 E (E"), from Lemma 4.9 we
get that Ah : 0 and, returning again in (4.1) we have that 2" is log aº—maximal.

On the other hand, from (1.45) we also note that

Ahº : 2hAh+2|Vh|º : zofº|Nªª|2 2 0. (4.4)
If we assume that m (E") lies in a slab of M" ><a IR then h is bounded on 2". So, since
h is bounded on 2" and using once more that |Vh| 6 É (E"), Lemma 4.9 guarantees
also that Ahº : 0. Therefore, from (4.4) we obtain that N * vanishes identically on 2",
Which means that N and the Killing vector field Y are collinear. Since Y determines in

M " ><a R1 a codimension one Riemannian foliation by totally geodesic slices M " >< lit),

t 6 IR, we conclude that there is to 6 IR such that m (E") = M" >< ªlto). .
As a consequence of Theorem 4.10, we Will obtain the following non-parametric

result concerning entire Killing graphs in M " ><a R1 (Cf. Subsecction 1.4.4).

Corollary 4.11 Let Z"(z) be an entire Killing graph which lies in a slab of the stan—
dard static spacetime M" XaRl whose base M" is complete. Suppose there is a positiue

constant 0 < 1 such that the gradient DZ of the function Z 6 Cºº(M") satisfies

sup aºlDzlãwn 5 c. (4.5)
E”(Z)

If the log Olª—mean curuature Hioga2 of Z"(z) does not change sign and IDZI G £1(M"),
then Z"(z) is a slice M" >< ªlto), for some to 6 IR.

Proof. First, from (4.5) we observe that E"(z) is spacelike. Now, we claim that E"(z)
is complete. Indeed, let X be any vector field tangent to E"(z). From (1.46) and from
the Cauchy—Schwarz inequality we get

X,XZ= X*,X*Mn—oz2DZ,X*Mn 2 1—a2D22n X*,X*Mn.M
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Then, from (4.5) we obtain

Éu(7) Z (1_ c)1/2£M“(7*)7

Where ÉZW) stands for the length of a curve 7 on E"(z) With respect to the induced
metric (1.46) and É Malhª“) denotes the length of the projection 7* of 7 onto M " With
respect to its metric <-, ->Mn. Consequently, since projections onto M " of divergent
curves on E"(z) give divergent curves on M " and as we are assume that the metric
<-, ->Mn is complete, we can apply Hopf—Rinow theorem to conclude that the induced

metric (1.46) is also complete.
On the other hand, from (1.4? ) we obtain* 1N * WW“

So, from (1.45) and (4.5) we have that the height function h of E"(z) satisfies

1hº : _
IV | 1—OzºlDzlã4n

1

|Dz|3W g 1— |Dz|3w (4.6)— C

Therefore, from Theorem 4.10 we get that E"(z) is a slice M " >< ªlto), for some to 6 IR.
.

4.2 Uniqueness and nonexistence results in weighted
standard static spacetimes

Motivated by Remark 1.5, in this section we Will consider standard static space—

times MJ? ><a R1 endowed With a weight function f not depending on the parameter
t 6 IR, that is, (Vf, Y) : 0.The following key proposition provides an explicit formula
for the drift Laplacian of the angle function © defined in (1.42).

Proposition 4.12 Let m : 2" % MJ? ><a R1 be a spacelike hypersurface and let 9 G
Cºº(2") be the angle function defined in (1.42). Then

1N Ãf
Af9 : nYT(Hf) + (Rin(N* N*) _ —Hessoz(N* N*) +92 oz—(ªª )+ |A|2©

(4.7)

Here, Y is the Killing vector field on Mf ><a IR, & _ —|Y| > 0, N is the unit normal

vector fleldw on 2", Af and Ãf represent the f— Laplacians on 2" and M", respectively,
Rle and Hess are the Bakry— Émery— Ricci tensor and the Hessian operator on M",
|A|2 represent the square of the norm of the shape operator A of 2" with respect to the
orientation given by N and N* is the projection ofN on the tangent bundle of M".
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Proof. Firstly, since Y is a Killing vector field for any X 6 %(Zª) we have

<ve,X> : X (e) : X (<N,Y>) : <VXN,Y>+<N,VXY> : <-A(YT)—VNY,X>,

Which assures us that

ve : -A(YT) — (VNY)? (4.8)
On the other hand, from (1.12) we note that

nYT(H) : YT (an + <Vf,N>) (4.9)
: nYT (Hf) + YT «WN»

: nw W + <Y,%f(N) > + GÉHNJV) — <A<YT>,Vf>,

Where we used the decomposition Y : YT — 9 N.

Moreover, since f is supposed to be invariant along the flow determinate by Y,
from (4.8) we get that

<ve,v]ª> : — + (vNY)T,Vf> (4.10)
V

Substituting (4.10) into (4.9) we get

nYT(H) : nYT (Hf) + (àÉHN, N) + <ve,vf>. (4.11)
From Proposition 2.12 of [ISI we have

A9 : nYT (H) + e (Ric(N, N) + |A|º), (4.12)

Thus, from (1.15), (4.12) and (4.11) we obtain that

Afe : nYT (Hf) + (ªmv, N) + |A|º) e. (4.13)

Now, if we consider the decomposition N = N * + N ª of N, Where (-)l denote
the projection of a vector field in %(Mª ><a R1) on %(Rl), we have

%mvw) : <VNVf,N> (4.14)
: <VN€f,N* +Nl>

: Éessf(N*,N*) + à<vfãa>|ivl|º

: Éessf(N*,N*) _ à<€fãa>©ª
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From Corollary 7.43 of [IEZI] we get that_ N 1 N A
Ric(N, N) : Ric(N*,N*) — — Hess a(N*,N*) + ©2(—3) (4.15)Oi Oi

Now, from equations (1.11), (4.14) and (4.15), we have that

ÉÁN, N) : tícfwmvªª) - liíeãsa(N*,N*) + eªw—(3ª) (4.16)Oi Oi
Therefore, from equations (4.16) and (4.13) vve obtain (4.7). .

Next, we obtain the following result concerning f—parabolic spacelike hypersur—

faces immersed in a weighted static spacetime. As usual, expressions that have ( - )
correspond to objects defined on M ".

Theorem 4.13 Let MJ? XaRl be a weighted standard static spacetime with álvcf 2 —H,
for some constant E > 0, and & being a conuex warping function such that (Vf, Va) É

0. Let x : 2" % MJ? XaRl be a f —parabolic spacelike hypersurface with constant f —mean
curuature and angle function 9 bounded from below. If the height function h and the
shape operator A of 2" satisfy

CWill2 É EMF, (4-17)
for some constant c 6 (0,1), then m (E") is contained in a slice M" >< ªlto], for some
to e n.

Proof. Let us first observe that at points Where N * is different from zero we have

1 N N>z< 2 N N* N>z< 92 _ 2 N N>z< N>z<
—Hessa(N*,N*) : ªHess0z (— —) : _QHessa (— —)Oz Oz |N*|7|N*| 0,3 |N*|7|N*|

and, taking a local orthonormal frame lEl : %, Ez, . . . ,E”? tangent to M", we also
have eªw eªw Nª“ Nª“ eºªw

? A(a) : ? Hessa (M, M) + É % Hess QUE,, E,)
Then,

lw ,, eªw lw N*N* eºªw
—EHGSSOZ(N ,N )+ÉA(Q) : aHeSSQ(W,W) +? ªHeSSOÁEiyEi)

and, from (1.15), we get

lw ,, eªw lw N*N*
_EHGSSOZ(N ,N )+ ?Af(0[) : aHeSSOZ (W7W) (4.18)eº " N eº N N

+? ZHGSSOZ(Ei,Ei)—?<VÍ,VOZ> Z 0,
i=2

57



Where in the last step we use the conveXity of & and the hypothesis (ãf, ão) É 0.
Now, noting that H f is constant, 9 < 0 on 2" and taking into account our

constraint on Ric, from (1.45) and (4.18) jointly With Proposition 4.12 we obtain

Af e g (—Ha2|Vh|2 + |A|º) e. (4.19)
Using hypothesis (4.17), from (4.19) we obtain that

Af (—9) 2 (1 — c)|A|2 (—9) . (4.20)

Hence, from (4.20) we have that —9 is a bounded positive subharmonic function on
2" and, since we are assuming that 2" is f—parabolic, —© must be constant on 2".
So, returning to (4.20), we see that 2" is totally geodesic. Therefore, hypothesis (4.17 )

assures that h is constant on E", that is, there exists to 6 IR such that E" C M " >< ªlto).
.

As a direct consequence of Theorem 4.13, we get the following

Corollary 4.14 Let MJ? XaRl be a weighted standard static spacetime with Éivcf 2 —H,
for some constant E > 0, and & being a conuex warping function such that (Vf, Va) É
0. There is not nonzero constant f —mean curuature f —parabolic spacelike hypersurface

immersed into MJ? ><a R1 with angle function bounded from below and such that the
height function and the its shape operator satisfy the condition (4.17), for some constant
c 6 (0, 1).

Remark 4.15 We note that there is a large family of weighted standard static space—

times MJ? ><a R1 that satisfy the conditions of Theorem 4.13. For example, if we define
on M" the smooth function f : aa + b, with a < 0 and b 6 IR, then we obtain that
(ãf, ão) : alãal2 É 0 and the Bakry—Émery—Ricci tensor Éivcf of M" is giuen by

lªftivcf : Éivc+allesscr

In addition, if Éic 2 —H, for some positiue constant H, and & is chosen such that

0 É Éessa É 6 for some constant 6, then Éivcf 2 —(h + |al6). Hence, MJ? ><a R1
uerifles the requested conditions of Theorem 4.13.

Another situation happens when we define on M" the smooth function f : eªª+b,
with a < 0 and b 6 IR. In this other case, with the same constraints on & and álvc
assumed in the previous case, we have that (ãf, ão) : aeªªlãal2 É 0 and

lítivcf : lªio + aºeªª<ãon ->2 + aeªª Éêãsa 2 —(k + |a|6).

Therefore, this second ambient space also contemplates the hypothesis of Theorem 4.13.

In the context of Killing graphs, from Theorem 4.13 we obtain the following
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Corollary 4.16 Let MJ? XaRl be a weighted standard static spacetime with Éicf 2 —/—£,
for some constant E > 0, and & being a conuex warping function such that (ãf, ão) É

0. Let Z"(z) be a f—parabolic entire Killing graph in MJ? ><a R1 with constant f—mean
curuature, angle function 9 bounded from below and whose norm of its shape operator
A satisfy

HA 2 < 4.21| | _ , _ c ( >
for some constant c 6 (0, 1). If the gradient DZ of the function Z satisfy

2 (1 _ Clº 2|Dz|Mn s m, |A| (4.22)
then Z"(z) : M" >< ªlto], for some to 6 R.

Proof. From (4.21) and (4.22), we get supznm aºlDzlãw, 5 c. So, from the first
part of the proof of the Corollay 4.11 we obtain that E"(z) is spacelike and complete.
Now, from (4.6) and (4.22) we obtain (4.17 ) Finally, the result is obtained as a direct
application of the Theorem 4.13. .

In order to characterize slices of weighted standard static spacetimes MJ? ><a R1,
we observe that one of the hypotheses of the Theorem 4.13 is exactly the inferior
limitation of the Bakry-Émery—Ricci tensor Éicf of M " by some constant. When this
limitation is given by zero, we have the following result that establishes other suflicient
conditions for an spacelike hypersurface to be a slice.

Theorem 4.17 Let MJ? ><a R1 be a weighted standard static spacetime with Éicf 2 0
and & being a conuex warpingfunction such that (Vf, Va) É 0. Let x : 2" % foa R1
be a f —parabolic spacelike hypersurface with constant f —mean curuature and angle func—

tion 9 bounded from below. Then, 2" is totally geodesic. Moreouer, if flicf is strictly
positiue at some point pg of 2", then m (E") is contained in a slice M" >< ªlto], for some
to 6 R.

Proof. Since the f—mean curvature of x : 2" CH MJ? ><a R1 is constant, & is a concave
function such that (Vf, Va) É 0 and Rle is nonnegative, from Proposition 4.12 and
(4.18) we obtain that

Afe g (r&f(N*,N*)+|A|º)e g 0. (4.23)
Thus, the weighted parabolicity of 2" assures that 9 is constant on it. So, returning
to (4.23) we have that |A| : 0, that is, 2" is totally geodesic.

We claim that & is constant. Indeed, first we note that all X 6 %(Eª) can be
written as

(X, Y>
X=X*— aº Y

?
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Where (- )* denote the projection on %(Mª). Since 2" is totally geodesic, from Propo—

sition 7.35 oflõZl, we have that

(ve,X> : X(<N,Y>) : (Mía/>

: (NWN/> _ %%%&/>dº
1

Oz

_ 1 _
<X7 Vª><N7 Y> _ & <X7 Y><N7 Vª>7

Which implies

ve : (eVQ- (MWM/).
1

&

Given that 9 is constant on E", since the vector fields Va and Y are linearly inde-
pendent, from the last equation, we obtain that & is also constant on E". So, our
afIirmation stay showed.

On the other hand, from (1.44) it is not difficult to see that

92*2 _
|N an _ (3—1),

Which implies that |N * | Mn is also constant. But, supposing that Éicf is strictly positive

at some point pg of E", since (4.23) give us that RNicf(N*, N*)(P0) : 0, it follows that
N *(po) : 0. Therefore, N * must be vanishes on 2" and, consequently, x(E") must be
contained in a slice M " >< ªlto], for some to 6 IR. .

In particular, Theorem 4.17 gives us the following result of noneXistence.

Corollary 4.18 Let MJ? ><a R1 be a weighted standard static spacetime with Éivcf 2 0
and & being a conuex warping function such that (Vf, Va) É 0. There is not nonzero

constant f —mean curuature f —parabolic spacelike hypersurface immersed into MJ? XaRl
with angle function bounded from below.

From Theorem 4.17, we can reason as in the proof of Corollary 4.11 in order to
obtain the following result:

Corollary 4.19 Let MJ? ><a R1 be a weighted standard static spacetime with Éivcf 2 0
and & being a conuex warping function such that (Vf,Va> É 0. Let Z"(z) be a f—
parabolic entire graph with constant f —mean curuature and angle function 9 bounded

from below. If the norm of the gradient DZ of the function Z 6 Cºº(M") satisfles (4.5),

then Z"(z) is totally geodesic. Moreouer, if Éivcf is strictly positiue at some point pg of
Z"(z), then Z"(z) is a slice M" >< ªlto), for some to 6 IR.
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4.3 A notion of stability in weighted standard static
spacetimes

For a compact spacelike hypersurface x : 2" CH M f ><a R1 with boundary (32
(possibly empty), we define a variation of it as being the smooth mapping

X: (—€,€) >< E" —> M?XQR1
(8,20) H X(S,p)

satisfying the following two conditions:

(i) for all 5 G (—e,e), the map X$ : 2" % MJ? ><a R1 given by Xs(p) : X(s,p) is a
Riemannian immersion such that XO : m;

(a') X, : xl , for all 5 & (—€,€).8282

In all that follows, we let dZs for denote the volume element of the warping
metric (1.39) induced ou E? : XAZ") and Ns will be the future—pointing Gauss map
along of 22. Moreover, we also consider in E? the weighted volume form given by dos :
efdes. When s = 0 all these objects coincide with ones defined in E", respectively.

Moreover for any open subset Q of M? ><a R1 with compact closure, Volf(Q) and
Areaf(Q) will denote the weighted volume and weighted area of Q, respectively.

The variational field associated to the variation X is the smooth vector fieldôX .— . Letting35 s=0 ôjfus : —<É,Ns>, (4.24)
we get oX ox T— = N — .

ôs s=0 UO +(ôs s=0)
The balance of weighted volume and the weighted area functional associated to

the variation X are the functionals

Vf : (—€,€) —> R

5 »—> Vf(s) : Volf (X([0,s] >< E"» = / X*(dõ)[Qáxgn

and
.Áf : (—€,€) —> R

5 »—> AAS) : Areaf (E?) = / dos,Eº;

respectively, where dã is the volume element on induced by the warping metric (1.39).

We say that the variation X is weighted volume-preserving of 2" if VAS) : Vf(0) : 0,
for all 5 G (—e, e).

The following result is well known and, in the context of weighted Lorentzian
manifolds, it can be found in Lemmas 1 and 2 of [BEL
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Lemma 4.20 Let X : (—e,e) >< E" —> MJ? ><a R1 be a variation of the closed (that is,

compact and without boundary) spacelike hypersurface m : 2" % MJ? ><a R1. If us is the
smooth function giuen in (4.24) thend d

%w(s) : Á? us dos and %Ajds) : 71/27; (sz)s us dos
where (Hf)s : Hf(s,-) denotes the f—mean curuature of 22. In particular, X is

weighted uolume—preseruing of E" if and only if us dos : 0 for all s 6 (—e, e).
2?

Remark 4.21 Applying the same topological arguments used to proue Proposition 3.2

of [EV, we conclude that a closed spacelike hypersurface E" immersed in a standard static
spacetime M " ><a R1 can only exist when the Riemannian base M " is also compact.

On the other hand, it is not dij'icult to uerify that Lemma 2.2 of [E] still remains ualid
for the context of weighted standard static spacetimes. More specifically, giuen a closed

spacelike hypersurface m : 2" % MJ? ><a R1, ifu G Cºº(2") is such that

/udo : 0,
then there exists a weighted uolume—preseruing uariation X : (—e, &) >< E" —> MJ? ><a R1. . . ôX
ofx : 2" % MJ? ><a R1 whose uariationalfleld is ô— = UN.5 s=0

In order to characterize closed spacelike hypersurfaces x : 2" CH MJ? ><a R1
with constant f—mean curvature, we consider the variational problem of maximizing

the weighted area functional Af for all variations X : (—e,e) >< E" —> MJ? ><a R1 of
x : 2" CH MJ? ><a R1 that keeps the balance of weighted volume Vf equal to zero. The
Lagrange multiplier method leads us then to the associated weighted Jacobi functional

jf : (—e,e) —> R
5 e a(s) =Af(s>—Avf(s>,

where A is a constant to be determined. As an immediate consequence of Lemma 4.20

(4.25)

we get that the first variation of Jf takes the following form

d

% a(s) = / a (H», — & asda—s, (4.26)Eº;

where us is the smooth function given in (4.24). Thinking about making the best
possible choice of A, let _ 1

H : Areaf(2") gn
be an integral mean of the f—mean curvature H f on 2". We call the attention to the

H, do (4.27)
fact that, in case H f is constant, we have

% = H,, (4.28)
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and this notation Will be used in What follows Without further comments. Therefore,

if we choose A = nª, from (4.26) we arrive at

disjfçs) = 71/27; “HDS —ã% Usdºs— (429)

Reasoning as in the proof of Proposition 2.7 of [|º| we get

Proposition 4.22 The following statements are equivalent:

(a) x : 2" % MJ? ><a R1 is a closed spacelike hypersvrface with constant f—mean
cvrvatvre H f ;

d

(17) d—Af(0) = 0 for all weighted volvme—preserving variation X : (—e,e) >< E" —>5

MJ? ><a R1 OfZE : 2” CH M? XQR1;

d

(c) %JÁO) = 0 for every variation X : (—e,e) >< E" —> MJ? ><a R1 ofm : 2" %
M? XQRL

Proof. We Will show the result making the sequence (a) => (0), (0) => (17), (17) => (a).

(a) => (0): The result follovvs directly from (4.28) and (4.29).
(0) => (17): We have d d _ d

º : %ÍÁÚ) = %Af(0)+nH%vf(0)

or all variation X : (—e,e) >< E" —> MJ? ><a R1 of x : 2" % MJ? ><a R1. But if
at

the variation preserves the volume of x : 2" CH MJ? ><a R1 then d— Vf(0) = 0. Hence,S

% Af(0) = 0 for all weighted volume—preserving variation X : (—e, &) >< E" —> MJ? XaRl
ofx:E"C1—>MJÇL XaRl.

(17) => (a): Suppose there is po in 2" such that (Hf — 'H)(p0) # 0. We can assume

that (H f —Í)(p0) > 0. From the definition of ª in (4.27 ) we can obtain another point
qo G E" such that (Hf — Í)(q0) < 0. Indeed, from (4.28) we have

/ (Hf — ª) da : Hf do — WAreanl") (4.30)71 En
1

= Hdo— —/ Hdo)Area E" =D.2“ f (Areaf(2") 2“ f f( )
So, if (Hf—H)(q) > 0 for every q 6 E", since there is po 6 E" such that (Hf—H)(p0) >
0, then

/(Hf—ã)da > 0,
inequality that is in contradiction With (4.30).
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Thus, the sets

z+=íqez" : (H,—ã)(q)>0) and $f=íqez" : (H,—%)(qkoi
are well defined.

Now, consider nonnegative smooth functions <p and 1/1 such that pg 6 suppcp C
E+, suppi/J C Ef and

[a “wolf _n) da = o.
where supp <p and supp 1/1 denote the support of <p and the support of 1/1, respectively. If

we consider the smooth function u : (<p +i/))(Hf — ”H) then, according to Remark 4.21,

there is a weighted volume—preserving variation X : (—€,€) >< E" —> MJ? ><a R1 of
ôX

x : 2" CH MJ? ><a R1 whose variational field is —s
Lemma 4.20,

: uN . By hypothesis and
s=0

0 dA(0) H d=— :” U .ds f f 0ETL

Since / n da = 0, we obtain

0 = n/ Hfuda-nã ndo : n/ (H,—Www : n/ (%w(Hf—Éºda > 0,n En n n

which is a contradiction. Therefore, H f = % on 2". .
In particular, Proposition 4.22 guarantees that a closed spacelike hypersurface

x : 2" CH MJ? ><a R1 is a critical point of the variational problem described above if
and only if its f—mean curvature H f is constant. Motivated by this fact, we establish
the following

Definition 4.23 Let m : 2" % MJ? ><a R1 be a closed spacelike hypersurface having
2d

constant f—mean curvature. We say that x : 2" % MJ? XaRl is f—stable if F AAO) 5s
0, for all weighted volvme—preserving variation X : E" >< (—e,e) —> MJ? ><a R1 of

m:?“HM? XaRl.

Let x : 2" CH MJ? ><a R1 be a closed spacelike hypersurface as described in
Definition 4.23. We consider the set

QzíuGCººQI") : / udonÉ. (4.31)
Just as [|º|], we can establish the following criterion of f—stability.

Proposition 4.24 With the notations considered above, m : 2" % foalRl is f—stable
2

if and only if % Jf(0)(u) É 0 for all u 6 Q.
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Proof. Suppose that x : 2" CH MJ? ><a R1 is f—stable and consider u 6 Q. From
Remark 4.21, there is a weighted volume—preserving variation X : (—€,€) >< E" —>

MJ? ><a R1 of x : 2" CH MJ? ><a R1 whose variational field is ô—X : uN. Then,S s=0
d2

d_sº Vf(0 )(u ) = 0. Hence, from (4.25) and Definition 4.23 we obtaind2 d2 d2 d2
d—sz Jf((> >(u >= ?OAA >(u >— Agvf(o>(u>= d—52 Af((> >(u > < (>

d2

Conversely, suppose that F Jf(0)(u) g 0 for all u 6 Q. Let X : (—€,€) >< E" —>S

M " ><a R1 be an weighted volume—preserving variation of x : 2" CH MJ? ><a R1, and let
ôX

uN be the normal component of the variation vector ô— F.rom Lemma 4.20,S 3: 0

Amº:—WO:) (>
which implies that u 6 Q . Therefore, from hypotheses,

o_jzíf((»(u>= d çºu—Amu Ad—vf((»(u>=d—x—,_/
0

which according to Definition 4.23 tells us that x : 2" CH MJ? ><a R1 is f—stable. .
The sought formula for the second variation of Jacobi functional Jf is given in

the following

Proposition 4.25 Let x : 2" % MJ? ><a R1 be a closed spacelike hypersurface having
constant f—mean curvature Hf. If X : (—e,e) >< E" —> MJ? ><a R1 is a variation

2d

of x : E" (>_> MJ? ><a R1 then the second variation 33,40) of the weighted Jacobis
functional Jf is given by

j—sg if(o >(u > = fnuªfw da, (4.32)
for any u 6 Cºº(ôQ), where Ef : Cºº(2") —> Cºº(2") is the weighted Jacobi operator
given by _ 1 N Ã

cf : Af- íRicANÉNª“) - EHessa(N*,N*) +92 ªªª) + wº? (4.33)

Here, Af and Ãf represent the f— Laplacians on 2" and M", respectively, 9 be the angle

function defined in (1. 42), N is the future— —pointing Gauss map ofm: 2" % M" >< alRl,
Rin and Hess are the Bakry— Émery— Ricci tensor and the Hessian operator on M", |A|2

represent the square of the norm of the shape operator A ofm . 2" % MJ? ><a R1 and
*N is the projection ofN on the tangent bundle of M".
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Proof. Since Hf is constant, from (4.29) and (4.28) we have that

j—iífwxuu = n/ (3%)

where as is the smooth function given in (4.24).

)UOdU-I—TL/ Hf—W ª(ust-S) 7s=0 n % (35 s=0
0

On the other hand, reasoning as in the proof of equation (3.5) of [|23l, we obtain

" ô(Hf)sas : Afeto) _ íãfuvw) + lAºlluO—s=0

Hence, dº _, ,
Now, from equations (4.16) and (4.34) we obtain

2

% Jf(0)(u0) : /n ug Sf(u0) do, (4.35)
where Ef is given in (4.33). To finish the proof, we observe that the expression (4.35)
depends only on the hypersurface 2" and on the function ao 6 Cºº(2"). .

To show our next result, let us remember that the eigenvalue problem for the

drift Laplacian Af on a closed Riemannian manifold 2" is the determination of the
existence or not of nontrivial solutions (that is, not identically zero) u 6 Cºº(2) for
the partial differential equation

Af(u) + 5 u : 0

on 2". In this case, the corresponding function u is an eigenfunction associated with
the eigenvalue € . By the spectral theorem we know that all the eigenvalues of Af are

determined by a sequence of eigenvalues &, ]»Ízºã satisfying

0=€0<€1É<€2É"'É€jí€j+ií"',
repeated according to their multiplicity, and

jà+oo

(see, for instance, Section 1 of [[El). Moreover, the variational characterization of &
gives

—/ uAf(u)dU& : min “_ (4.36)
11.6 QVLO] / UZ da

where Ç is defined in (4.31).
We can now present our characterization of f—stability concerning closed spacelike

hypersurfaces immersed in a weighted standard static spacetime.
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Theorem 4.26 Let r : 2" % foaiRl be a closed spacelike hypersurface with constant
f —mean curuature. Suppose that

g: _ RNicf(N*,N*) + & Éêãsawww) _ eº %? _ |A|2

is a nonzero constant on 2", where Af and Ãf represent the f—Laplacians on 2" and
M", respectively, 9 be the angle function defined in (1.42), N is the future—pointing

Gauss map ofr : 2" % MJ? ><a R1, ITÚ/Cf and Éêãs are the Bakry—Émery—Ricci tensor
and the Hessian operator on M", |A|2 represent the square of the norm of the shape

operator A ofr : 2" % MJ? XaRl and Nª“ is the projection ofN on the tangent bundle
of M". Then r : 2" % MJ? ><a R1 is f—stable if and only ifí is the first nonzero
eigenualue of drift Laplacian Af on 2".

Proof. Initially, since the f—mean curvature of a : 2" CH MJ? ><a R1 and 5 are constant
on 2", from Proposition 4.12 we can see that € belongs to the sequence of eigenvalues

iíjhªoã of the drift Laplacian Af on 2".
Ifí : &, then from (4.32), (4.33) and (4.36) we obtaind2 2 2

— a(oxu) = gªrrafa) + gu ida s eg + o/ u da = ods2 n
for any u 6 Q and, according to Proposition 4.24, x : 2" CH MJ? ><a R1 is f—stable.

2d

Conversely, suppose that a : 2" CH MJ? XaRl is f—stable, so that E Jf(0)(u) É 05
for all u 6 Q . Let u be an eigenfunction associated to the first nonzero eigenvalue &

of Af. Consequently, by (4.32) and (4.33) we get

0 > —Jf(0>(u> = (—€1+€>/ uºda.n

Therefore, since & 5 € , we must have & : € . l
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Chapter 5

Uniqueness for the weighted mean
curvature equation in weighted
standad static spacetimes

Our aim here is to obtain uniqueness results concerning the mean curvature equa—

tion in a weighted standard static spacetime MJ? ><a R1 having warping function & and
Whose weight function f does not depend on the parameter t 6 IR. For this, we esta—
blish a f—parabolicity criterion in order to study the rigidity of spacelike hypersurfaces

immersed in MJ? ><a R1 and, in particular, entire Killing graphs constructed over the
Riemannian base M ". Applications to weighted standard static spacetimes of the type
G" ><a R1, Where G" denotes for the so—called Gaussian space, are also given. The

results presented in this chapter are part of [BEL

5.1 A f—parabolicity criterion for spacelike hypersur-
faces in (M" ><a Rºja

In [IBH], Romero, Rubio and Salamanca investigated the parabolicity of complete
spacelike hypersurfaces in GRW spacetimes Whose Riemannian fiber has a parabolic
universal Riemannian covering. In this setting, they were able to guarantee the parabo—
licity of complete spacelike hypersurfaces, under suitable boundedness assumptions on

the warping function and on the hyperbolic angle function of these hypersurfaces. Our

aim in this section is just, following the ideas of [BI, to obtain an extension of this
parabolicity criterion to the context of standard static spacetimes.

Taking into account the digression presented at the beginning of Section 3.1,



from now on we Will denote by M the universal Riemannian covering of base M " With

projection % : ]TÍ —> M " and fwill denote the composition f o %. In this setting, a
standard static spacetime (M " XaRl)f Will be said spattialy f—parabolic if the universal
Riemannian covering M of its base M " is f—parabolic.

Proposition 5.1 Let (M " ><a R1)f be a weighted standard static spacetimes which is
spatially f—parabolic. If x : 2" % WH is a spacelike hypersurface such that the
function 77 := % is bounded on it, then 2" is f—parabolic.

Proof. From Lemma 3.2 we have that

(i) f—parabolicity is invariant under a quasi—isometry;

(ii) if the universal Riemannian covering Í] of 2" is ( f o ng)-parabolic, then 2" is
also f—parabolic.

Denoting 7T : ”FM o m : E" —> M", for any tangent vector v 6 T2 we have

(0,0) : (n*v,7r*v>M — aº(hw, hªhª É c<7r*v,7r*v>M,

Where c : supE 772 2 1. In particular, by previous inequality we see that um, : TPZ —>

T,,(p)M is a isomorphism for every p E 2". Then, from inverse function theorem we
get that 7T is a local diffeomorphism and applying Lemma 7.3.3 of [EEI (see also Lemma

8.8.1 of [EQ]) we can to conclude that 7T is a covering map and that M " is complete.
On the other hand, using the Cauchy—Schwartz inequality we see that

(Vh,v>2 É (Vh,Vh><v,v>

and, consequently, since h,,v : dh(v) : (Vh,v>, we have

(0,0) : (n*v,7r*v>M — aº(hw, hªha

: (n*v,7r*v>M — aº(Vh,v>2

Z <7T*077T*U>M _ QZIVh|2<va>7

that is,

(12,0) (1 + a2|Vh|2) Z (n*v,n*v>M.

By definition of the function 77 and from (1.45) we get

From our hypothesis we conclude that

cil<7r*v,7r*v>M 5 (12,0) 5 c<7r*v,7r*v>M. (5.1)
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So, let Í) be the universal Riemannian covering of 2" With projection ”ZTE : Í) —>

2". Then, the map no : W 0 ng : Í] —> M" is a covering map. Now, if M is the
universal Riemannian covering of M " With projection % : M —> M ", then there exists

a diffeomorphism <p : Í) —> M such that % o <p : no. Moreover, <p is a quasi—isometry.

Indeed, if o G Tí), we have from (5.1) that

((We )*v lil“ o)* WMM

(%*(OT n*) v)7f*((7fz)*v))M

C

«OH;, %*QÓM :

| A <7TE)*U7 (772)*U>2

(12,1%.: C

Analogously, we obtain

%%an Z 0'1<v,v)g-
Therefore, since the universal Riemannian covering of M " is f—parabolic, it follows

that the universal Riemannian covering of 2" is ( f ong)—parabolic and, hence, E" must
be also f—parabolic. .

5.2 Rigidity results for spacelike hypersurfaces in
M? ><a R1

In this section, we Will apply the Proposition 5.1 in order to obtain rigidity

results for spacelike hypersurfaces in M,? ><a R1. Some of these results are rereadings of
theorems presented in Chapter 4, for Which the hypothesis of f—parabolicity is replaced

in part by restrictions on the angle function and the warped function, Which, in addition

to having value in itself, Will be important to establish the uniqueness results for the
weighted mean curvature equation in the next section.

Theorem 5.2 Let MJ? XaRl be a weighted standard static spacetimes which is spatially
f—parabolic. Suppose that Rin 2 0, the warping function & is conuex and (Vf, Va) É
0. Let x : 2" % WH be an immersed spacelike hypersurface with constant f —mean

curvature Hf such that its angle function 9 is bounded and infg & > 0. Then, 2" is
totally geodesic and & is a positiue constant. In addition, if Éivcf is positiue at some
point pg 6 2", then 2" is contained in a slice M" >< ªlto], for some to 6 IR.

Proof. It follovvs from Theorem 4.17 and Proposition 5.1. .

In the next result, we treat the case Where Ric f is not necessarily nonnegative.

Theorem 5.3 Let MJ? XaRl be a weighted standard static spacetimes which is spatially
f—parabolic. Suppose that Éivcf 2 —H, for some constant E > 0, and that & is a conuex
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warping function such that (%%%&) É 0. Let x : 2" % MJ? ><a R1 be an immersed
spacelike hypersurface with constant f —mean curuature, bounded angle function 9 and

such that infg & > 0. If the height function h satisfles
cW 2 < — A º 5.2| | _ mº | | , ( )

for some constant c 6 (0, 1), then 2" is contained in a slice M" >< fte), for some to 6 IR.

Proof. It follows from Theorem 4.13 and Proposition 5.1. .
In what follows, we will deal with specific weight functions that will be defined

in terms of the warping function &. In the next theorem, the weighted mean curvature

Hioga2 of the spacelike hypersurface is not supposed to be constant. Indeed, we just
assume a certain control on the sign of Hlog az.

OTheorem 5.4 Let Mlªgag ><a R1 be a weighted standard static spacetimes which is
TL

spatially logã 2—parabolic. Let m : 2" CH Allow2 ><a R1 be an immersed spacelike hyper—
surface such that 77 is bounded. Suppose that the log Oiª—mean curuature Hiogaª and the
function (Va, Vh) haue opposite signs. If E" lies in a slab, then 2" is contained in a
slice M" >< ªlto), for some to 6 IR.

Proof.

By (1.15) and from Proposition 4.1, we have that

AlOgQZh : —nof2©H10gaz — (V log a2,Vh>
2

: —nofº©H10gaz — —<Va, Vh).&

Taking into account that Hlogaz and (Va, Vh) have opposite signs, we conclude that
Alogazh does not change sing. Therefore, since Proposition 5.1 guarantees the log dº—
parabolicity of E", h must be constant and, consequently, 2" is contained in a slice
M" >< ªlto), for some to 6 IR. .

From Theorem 5.4 we also have the following

Corollary 5.5 Let Mlzgag XaRl be a weighted standard static spacetimes which is spa—
tially log & 2—parabolic. Let m : 2" CH ÚHH be a log aº—maximal spacelike hypersurface,

contained in a slab, such that 77 is bounded. If the function (Va, Vh) does not change
sign, then 2" is contained in a slice M" >< fte), for some to 6 IR.

Proceeding, we also get the following rigidity result:

OTheorem 5.6 Let Mªgª ><a R1 be a weighted standard static spacetimes which is
spatially logã fº—parabolic. Let m : E" % M"Iowª ><a R1 be a maximal spacelike hy—
persurface such that 77 is bounded and infg & > 0. If Riclogafz 2 7a“, for some constant
E > 0, then 2" is contained in a slice M" >< fte], for some to 6 IR.
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Proof. Firstly, observe that, reasoning as in the proof of Proposition 4.1, we obtain

Ah : div (Vh) : a2<VoFº, %> _ nofºHQ

: <V log 072, Vh> — nofºHQ

Therefore, using (1.15), we get

Alogafzh : —nof2H9. (5.3)
Now, from Bochner,s formula (see page 378 of [IBRI) we have that

1

ªnlogafz |Vh|2 : |Hess h|º + RiclogwáVh, W) + (VAlogafzh, vm. (5.4)

Consequently, taking into account our restriction on Riclogafz and the assumption that
2" is maxima], from (5.3) and (5.4), we obtain that

1

ªnlogafzwmº 2 Riclogafz(Vh,Vh) 2 H|Vh|º ; 0. (5.5)

On the other hand, Proposition 5.1 guarantees that 2" is log oFº—parabolic. Since,

from (1.45), infga > 0 implies in the boundedness of |Vh| and, consequently, in
the boundedness of |Vh|º, we conclude from log ofº- parabolicity of Zªthat |Vh|2 is
constant, and then Alogalehlº : 0. Returning to (5.5), we obtain that |Vh| : 0 and
2" is contained in a slice. .

5.3 Entire Killing graphs and the mean curvature equa-

tion in M;,? ><a R1

Let E(z) be a entire Killing graph as decribed in the Subsection 1.4.4 . For each
vector field X tangent to M ", the shape operator A of Hz) With respect to N is given
by

oz a3<DXDZ DZ> aº(Doz X>|DZ|2AX = ——D D __ºp —º—MD
o —a%Dzanvº X Z a —a%Dzanªº Z u-—a%DzanWº Z

<Da,X> <DZ,X>— D — D 5.6(1—aaD4twª Z (1—aaD4twe ª? ( )
Where D denotes the Levi—Civita connections in M ".

So, it follows from (5.6) that the mean curvature HZ of a spacelike entire Killing
graph Z(z) is given by

nH(z) : Div ( ªDZ ) ( (DZ, DOO<1+aaD4twº +'1+aaD4twºº
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where Div stands for the divergence operator on M " with respect to the metric ( -, ->M.

A direct computation shows that the f—mean curvature is given by

n(H )f : Divf ( ozDz ) <Dz,Da> .Z (1—aºiDz|i>1/º (1—aºiDz|i>1/º
From the previous digression, an entire Killing graph g(z) is spacelike with cons—

tant f—mean curvature 0 if, and only if, the function Z 6 Cºº(M ) satisfies the following
elliptic partial differential equation of f—divergence form

ozDz <DZ Da) .D' º = o M"
1Vf((1—aºlDzlãt)1/º)+(1—aºlDZIãir/º * 1“

(5.7)

aºlDzGM < 1.

In what follows, we will use the theorerns obtained in the previous section,
on entire Killing graph context, to obtain uniqueness results for equations of the
type (5.7 ).We start applying the Theorem 5.2 to get the following:

Theorem 5.7 Let MJ? XaRl be a weighted standard static spacetimes which is spatially
f—parabolic with conuex warping function &, (ãf, %d) 5 0 and Rin 2 0. If the entire
Killing graph g(z) associated to Z 6 Cºº(M) is such that ª|2(z) is bounded and Rin is
positive at some point pg 6 EQ), the only solutions of the problem

ozDz ) ( <Dz,Da> =O, Z 6 Cºº(M)
D.
”f ((1— aºiDziir/º 1— aºiDziir/º

supza) mºmza) < 1,
are the constant ones.

Proof. Since we are supposing that sup aºlDzlãy < 1, from (1.48), the boundness of
algm is equivalent to the boundness of 9. Furthermore, we observe that the condition
sup aºlDzlãw < 1 also implies the boundness of 77. Indeed, using (1.48) again, we have
that

177 : W'
Hence, we can disregard the hypothesis infg(z) & > 0 in the Theorem 5.2 to obtain the
present result. .

Concerned with the weighted product space G" >< R1, where G" is the Gaus—
sian space, An et al extended the classical Bernstein,s theorern [EEI showing that the
only weighted minimal graphs Z"(z) of functions Z(y2, - -- ,ynrl) : yl over G", with

supmz) IDZIG < 1, are the hyperplanes yl : constant (see Theorem 4 of [ED.
Taking into account this previous digression, from Theorem 5.7 we obtain an

extension of Theorem 4 of E!.
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Corollary 5.8 Consider the weighted standard static spacetime G" ><a R1, where G"

is the Gaussian space and the warping function & is conuex with (Vf, Va) É 0. If the

entire Killing graph g(z) associated to Z 6 Cºº(G) is such that ª|2(z) is bounded, the
only solutions of the problem

: 0, z e oºº(e)D' ozDz (DZ, Da)]

Vf (1— aºIDzià)1/º (1— aºIDzlà)1/º

supmz) (aºlDzlà) < 1,

are the constant ones.

Proof. We note that, since Volf(G") : 1, Remark 3 of [EEI guarantees that G" is
f—parabolic. Moreover, With a straightforward computation, we get that RNicf : 1.
Therefore, since G" is also simply connected, the result follows from Theorem 5.7. I

The next result is an application of Theorem 5.3.

Theorem 5.9 Let MJ? XalRl be a weighted standard static spacetime which is spatially
f—parabolic with conuex warping function &, (Vf,Va> É 0 and Rin 2 —/—£, for some

constant E > 0. If the entire Killing graph g(z) associated to Z is such that ª|2(z) is
bounded and 0 6 (0,1) is a constant, the only solutions of the problem

. ozDz <DZ Da)D º = O G Oºº M
1Vf((1—c>zºll3z|?a)1/º)+(1—ozºlDzlãir/º * Z ( )

C|Á|º

supza) (ªºlDzliw) < W,
are the constant ones.

Proof. From (1.47), we have that

* _ L _ aq]*(DZ)
N _ N — N _ —(1 _ aºlDzBWl/ºº (5.8)

and this equation give us that

oz2|DZ|2Nª“ º = _M. 5.9
The equations (1.45) and (5.9) give us the following relation:

2 lDzliw

Now, using (5.10) we conclude that the hypothesis (5.2) is equivalent to

C|Á|º2 2(M D < _.
| ZIM — Cl “2
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||2Futhermore, since E > 0, we have that that _
c|A|2 + H

5 1. Hence, the result follows

from Theorem 5.3. .

Reasoning as in the Corollary 5.8, we have:

Corollary 5.10 Consider the weighted standard static spacetime G" ><a R1, where G"

is the Gaussian space and the warping function & is conuex with (ãf, ão) É 0. If the

entire Killing graph g(z) associated to Z 6 Cºº(G) is such that ª|2(z) is bounded, then,
for any constants k: > 0 and 0 G (0, 1), the only solutions of the problem

. ozDz <DZ Da)D 7 = C Oºº G
1Vf((1—aº|Dzlà)1/º) + (1—aºiDzlà)1/º * Z ª ( )

C|Á|º

Sªpaz) (QZIDZIÉ) < m,
are the constant ones.

From Theorem 5.4, we obtain the following:

Theorem 5.11 Let Mªg ag XaRl be a weighted standard static spacetimes which is spa—
tially log & 2—parabolic. If the entire Killing graph associate to Z is such that (Va, %*(Dzw

does not change sign, then the only bounded solutions of the problem

ozDz ) ( <Dz,Da> =O, Z 6 Cºº(M)
D.

(o _ amar/º 1— aºIDzlãir/º

supmz) (OZZIDZIiw) < 1—

are the constant ones.

Proof. Firstly, observe that

<Va,VN> : Vh(a) = —àYl(a) =—ÉYT((—<Y»Y>lªl

= —à(%(—<Y, Y»ªYT<Y7Y>) = —%YT<Y»Y»

: _ÉWYTYAO : —$<VY+8NY7Y>

: —$(M+<V©NY»Y>) rªínha/> (5.11)

: _%<VNY,Y> : —%N<Y, Y> = —%N(ªº>

: _% _ gama) : %%,m.
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On the other hand, in (5.8), we have that

OAIIÁDZ)Nª“ : N _ Nl : _,
(1— aºiDzlãir/º

Hence, from (5.11) and (5.8) we obtain_ no(Va,VN>=º<Va, & (Z) 9
a (1 _ a2|Dz|3M)1/2> : a(l _ aºlDz|ã4)1/2<Vaº “DZ”

Therefore, (Va, VN) do not change of sign if and only if (Va, %*(Dz)> do not change
of sign and the result follows from Corollary 5.5. .

Taking l

a : (6972+log(27r)%) 2 (512)
in Theorem 5.11, we obtain the following consequence:

Corollary 5.12 Consider the weighted standard static spacetime G" ><a R1, where G"

is the Gaussian space and & is defined in (5.12). If the entire Killing graph associate
to Z is such that (Va, m*(DZ)> does not change sign, then the only bounded solutions
of the problem

. ozDz <DZ,Da>D : OO
1Vf((1— ªº|DZ|ê)1/º) + (1 — aºlDz|ê)1/2 0, Z 6 C (G)

supmz) (aºIDzlà) < 1,

are the constant ones.

Applying the Theorem 5.6 we obtain the following result:

Theorem 5.13 Let Mªgmª ><a R1 be a weighted standard static spacetimes which is
spatially logã fº—parabolic. If the entire Killing graph associate to Z is such that IDzlãw

is bounded and Riclogafz 2 H, for some constant E > 0, then the only bounded solutions
of the problem

. ozDz <DZ Da)D º = 0 Oºº M
” ((1— aºiDziir/º) + (1— aºiDziir/º * Z 6 ( ) (5 13)

sup2(z)(a2|DZ|ã4) <17

are the constant ones.
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Proof. We observe that if Z 6 Cºº(M ) is solution of problem (5.13), then the entire
Killing graph Hz) is spacelike and maxima]. Moreover using (5.10), we note that the
boundness of |Vh|2 follows from the boundness of |Dz|ãw Then, the result follovvs from
Theorern 5.6. .

Finally, considering
2 n %

a : (BºTHogom) (5.14)
in Theorern 5.13, we have:

Corollary 5.14 Consider the weighted standard static spacetime G" ><a R1, where G"

is the Gaussian space and & is defined in (5.14). If the entire Killing graph associate

to Z is such that IDzlãw is bounded and Riclogafz 2 H, for some constant E > 0, then
the only bounded solutions of the problem

. ozDz <DZ Da)D 7 = 0 G Oºº G
1V((1—ozºlDzlà)1/º)+(1—ozºlDziàr/º * Z ( )

supmz) (aºlDzlà) < 1,

are the constant ones.
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Chapter 6

Bifurcation and local rigidity in
Riemannian warped products

In this chapter, we use equivariant bifurcation theory in order to establish sufli—
cient conditions that allow us to guarantee the existence of bifurcation instants or the
local rigidity of a certain family of open subsets of the warped product [ ><a M ", in the

Section 6.2, and of the weighted Killing warped product MJ? ><a IR, in the Section 6.3.
Unless stated otherwise, all manifolds considered on this chapter will be connected,
while closed means compact without boundary. The results presented in this chapter
are part of [IZZI and [BII

6.1 The Variation concept
In a Riemannian manifold ÚHH as described in Section 1.1, let M be the space of

open subsets Q C ÚHH with compact closure Q and whose smooth compact boundary
ôQ is a closed, connected and orientable hypersurface. We denote by dy and dV the
volume elements of Mn“ and ôQ, respectively. If Q 6 M, the unit normal vector field
globally defined on ôQ will be denoted by N. Moreover,

Vol(Q) : /dÚ, Volf(Q) : /duo o
will denote respectively the volume and the f -volume of Q and

Área(ôQ) : / dV, l—Area(ôQ) : n HldV and Areaf(ôQ) : / duao ao ao
will denote the area, the 1-area and the f -area of ôQ, respectively, where Hl is the
mean curvature of ôQ with respect to N and du : effd(ôQ) is the weighted volume
form associated with the density function f.



For Q 6 M, we define a variation of ôQ as being the smooth mapping

X : (—€,€)><(3Q —> ÚHH 6.1(up) % xm») ( )
satisfying the following two conditions:

(1) for all t 6 (—€, e), the map

X : Q MHHt 3 % (6.2)
29 H XAZ?) = X(t,p)

is a immersion;

(2) X(0,p) : L(p) for all p 6 ôQ, where L : ôQ % Q is the inclusion map.

In this context, given Q 6 M and a variation X : (—€, &) >< ôQ —> ÚHH of ôQ
we adopted the notation ôQt : Xt(ôQ). For values of t small enough, ôQt is also a
connected and oriented smooth submanifold. Moreover, it bounds an open subset Qt
whose closure is also compact. Thus, X : (—€, &) >< ôQ —> ÚHH induces us naturally a

variation of the open subset Q denoted by Qt, which is also an element of M.
In all that follows, we let dV; denote the volume element of the metric induced

on ôQt by (6.2) and Nt will denote the unit normal vector field of (6.2). Moreover, we
also consider in ôQt the weighted volume form given by du, : efdet. When t = 0, all
these objects coincide with those already defined on ôQ.

The variational field associated to X : (—€, &) >< ôQ —> ÚHH is the vector field

%hzo and, letting
ôXut : <É7Nt>7 (6'3)

we get that ox ox T
a _ “º“ (a :O) '

We are now in a position to describe our variational problems and proceed with
our study of bifurcation and local rigidity. This is what we will do next.

6.2 Bifurcation and local rigidity of constant second
mean curvature hypersurfaces in riemannian warped
products

In this section, based in [m, we will establish suflicient conditions that allow
us to guarantee the existence of bifurcation instants or the local rigidity of a certain
family of open sets of a Riemannian warped product [ ><a M ", where M " is a compact
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Riemannian manifold without boundary. Such family is formed by the open sets whose

boundaries are Hg—hypersurfaces, namely, whose boundaries are hypersurfaces with
constant second mean curvature Hg. For each of our results, we have provided a
considerable number of examples that verify all the assumptions under consideration.

6.2.1 Description of the variational problem associated With
the 1-Area functional

The balance of uolume of X : (—€, &) >< (39 —> Mn“ is the functional

V : (—€,€) —> R
(6.4)

t !—> va) : vem,)

and we say that the variation X : (—€, &) >< (39 —> ÚHH is uolume-preseruing of 9 if

V(t) : V(0), for all t 6 (—€, e).

The formula of the first variation % V(t) of the balance of volume V(t) is given
in the following lemma, a formula that is well known and can be found in [BHI].

Lemma 6.1 If9 6 M and X : (—e,e) >< (39 —> MnH is a uariation of (39, then

d— t : d
dtv( ) ÁQÉUÉ Vª,

for each t 6 (—e,e), where ut is the smooth function defined in (5.3). In particular,

X : (—e, &) >< (39 —> MHH is uolume—preseruing of9 if, and only if, fôºt utht : 0 for
all t 6 (—€,€).

Remark 6.2 From Lemma 2.2 of [IH], we haue that if ug : (39 —> IR is a smooth

function such that foo ug dV : 0, then there exists a uolume—preseruing uariation
X : (—e,e) >< (39 —> MHH of (39 whose uariational field is %lmo = MON.

Taking into account [IEE], we define the 1-area functional associated to the varia—

tion X : (—€,€) >< (39 —> ÚHH by

.Ál : (—€,€) —> R

t »—> Á1(t)= 1—Area((39t) : n Hfdlá,
(39,5

(6.5)

where Hf : H1(t, -) denotes the mean curvature of (39, with respect to the metric
induced by the immersion Xt defined in (6.2).

The following result follows from Proposition 3.2 of [lª.
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Lemma 6.3 IfQ 6 M and X : (—e,e) >< (39 —> MHH is a variation of (39, then

(? t _ 2
ãHº _ n(n—1)Dt(ut>

+ íanHzt — (n — 2)H3f +

+<(%—Í)T,V(H;>),

where Dt is the Cheng— Yauls square operator on ôQt, H; : H2(t, -) and H; : H3(t, -)
are the second and third mean curvatures of ôQt, respectively, ut is the function defined

2 _
mtr(Tt o Fit)) ut

in (6.3), Tt is the Newton transformation on ôQt and Ft is the linear operator on ôQt
given by ÉÁY) : ª(Nt, Y)Nt for all Y 6 %(ôQt).

The previous lemma allows us to compute the first variation % A1(t) of the 1—Area
functional A1 (t) (cf. Proposition 3.4 of EZ").

Lemma 6.4 IfQ 6 M and X : (—e,e) >< (39 —> MnH is a variation of (39, then

—A1(t= í-n();n-1H +RicM( (Nt,Nt))utdl/t,oot

for all t 6 (—e,e), where ut is the function defined in (6.3) and RicM is the Ricci
curvature of ÚHH

In order to characterize open subsets Q of ÚHH Whose boundary dº is a closed
hypersurface With constant second mean curvature, we consider the variational problem
of

(VP—1): minimizing the 1—area functional A1(t) given in (6.5) for
all variations of (39 that preserve the volume of Q.

The Lagrange multiplier method leads us then to the Jacobi functional

]:)“: (—e,e) —> R
t l—> P(t) : A1(t)+ Ava), (6'6)

Where A G IR is a constant to be determined. As an immediate consequence of Lem—

mas 6.1 and 6.4 we get that the first variation %.FAÚÍ) of f”)(t) takes the following
form

%;y )_ _ r_nm _ 1)H;+ RicM(Nt, Nt) + A) Utdl/ta (6-7)

for each t 6 (—e, e).
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To make an appropriate choice of A, we assume from now on that there is 5 G IR

such that the Ricci curvature RicM of MnH satisfies the condition

RicM(Nt,Nt) : E : const. on ôQt, for all t 6 (—e,e). (6.8)

At the moment, When MnH is Einstein, (6.8) is naturally valid, but there is a larger
class of manifolds that verify this condition, Which Will be described in Section 6.2.3.
In addition, let

1

A : Área(ôQ) aº
be the integral mean of the second mean curvature Hg on (39. We call the attention

H2 dV (6.9)
to the fact that, in case Hg is constant, we have

A : Hg, (6.10)
and this notation Will be used in What follows Without further comments.

Hence, if we choose

A : n(n — 1)A — 5, (6.11)
from (6.7) we arrive atd A t_? (t) : —n(n - 1) % - Madi/;, (6.12)dt ôºt
for all t 6 (—e, e). In particular,

d A— ]: (0) : —n(n — 1) JLHZ — A) no dV. (6.13)dt aº
Now, following the same ideas of Proposition 2.7 of [|º| we can establish the

following result.

Proposition 6.5 Let Q 6 M. Assume that the Ricci curvature RicM of MHH satis—
fles (6.8). The following statements are equivalent:

(a) (39 is a Hg—hypersurface with constant second mean curvature Hg equal to

A+?-H =—
2 n(n—l)7

(6) For all uariations X : (—e, &) >< (39 —> MHH of (39 which preserve the balance of

volume of Q, we have that % .Ál(0) : 0;

(o) For all uariations X : (—e, &) >< (39 —> MHH of (39, we have that % Jªm) : 0.
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Proof. We Will show this result through the sequence (a) => (0), (0) => (17), (17) => (a).

(a) => (0): The result follovvs directly from (6.10), (6.11) and (6.13).

(c) :» (b): Form (6.6), 0 = %?(0) : %A1(0)+ AÉWO) or all variation
X : (—€, &) >< (39 —> ÚHH of (39. But if the variation preserves the volume of Q, then

% V(0) = 0. Hence, % A1(0) = 0 for all volume—preserving variation X : (—€, &) >< (39 —>
Mª“ of 39.

(17) => (a): By contradiction, suppose that there exists po in (39 such that

We can assume that

(H2 _ %) (pg) > o. (6.14)
From the definition of A in (6.9) we can obtain another point qo G E" such that

Indeed, from (6.9) and (6.11) we have

/ (H2 _ &) dV : H2 dV _ AArea(ôQ) (6.15)ao "(" _ 1) ao
= Hg dV

ao
1— _ H d A Q

Amam) ( ao º V) mªº )
= 0.. A + E . .

Thus, if Hg — m (q) > 0 for every q G (39, since there is pg G (39 suchTL TL —

that (6.14) is valid, then

/(H2—ª) dV > 0,ao "(" _ 1)
Which contradicts (6.15).

So, we have the sets

ôQ+=íqGôºz (Hz—%)(qpol
and

ôQ=íqGôQz (Hz—%)(qkol
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are well defined.

Now, let us consider nonnegative smooth functions (p and 1/1 on (39 such that

pg 6 supp (p C ôQ+ , suppi/J C ôQfand _
/(<p+1/J)(—n(n—1)H2+Q+M)oil/=O,ao ( — 1)

Where supp(p and suppi/J denote the support of (p and the support of 2/1, respectively.
If we consider the smooth function

o=((o+w>(— "(n—1)H2+õ+%)

then, according to Remark 6. 2, there is a volume— preserving variation X ' (— e ,e) ><
—n+1

(39 —> M

Lemma 6.4 and (6.8) we get
of (39 Whose variational field 1s ôô—t XI:, 0 — —u0N. Next, from our hypothesis,

0 : %AÁO) : /ôº(—n(n—1)H2+E)u0dl/.

Furthermore, since foo no dV : 0, then

0 = / (—n(n —1)H2 +?)u0 dV89

ao "(" _1) ao
)( +?

: ÁQ (—n(n—1)H2+E+m)u0dlf

=/ôº((o+w>(— n(n—1>H2+g+ “5my dV > 0,
Which constitutes an absurd. _

Therefore, we must have Hg : & on (39. .
n(n — l)

Hence, When the Riemannian manifold ÚHH verifies (6.8), from Proposition 6.5

we have that the critical points of (VP—1) are open subsets Q of MnH Whose boundary
(39 is a closed Hg—hypersurface With constant second mean curvature H 2 equal to

)( + EH =—
2 n(n—l)7 (6.16)

With A,? G IR. On the other hand, if we change our variational problem to

(VP—2) : minimizing the 1—a7ºea functional A1(t) given in (6.5) for all

variations of (39, not necessarily volume—preserving varia—

tions of Q,
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from Proposition 6.5 we obtain that the respective critical points of (VP—2) coincide
With the same critical points of the initial variational problem (VP-1).

Remark 6.6 As obserued in jª], our approach is ualid for the following more general
configuration. Assume that M is the space of open subsets 9 C MnH whose boundary
(39 is the union of two disjoint sets (39 = 2? U 23. We will assume that one of them,
E?, is a fixed set and so that the uariations considered of (39 only ajfects ZZ. Under
this assumption, the critical points of (VP—1) or (VP—2) will be open subsets 9 such
that their boundaries are union of a ( fixed) set 2? and a closed hypersurface 2% with
constant second mean curuature.

For such a critical point (for either of the two variational problems described
above), the formula for the second variation % IMO) of ]“ is given in the following
result.

Proposition 6.7 Let 9 be open subset of an (n+1)—dimensional Riemannian manifold
ÚHH (n 2 2) whose boundary (39 is a closed Hg—hypersurface, with constant second
mean curuature Hg giuen in (6.16), and let X : (—e,e) >< (39 —> MnH be a variation

of (39. Assume that the Ricci curuature RicM of MHH satisfies (6.8). Then

—f (0)(u) : —2 uj(u)dV, (6.17)dt2 ao
for any u 6 Cºº((39), where ] : Cºº((39) —> Cºº((39) is the Jacobi operator associated
with the uariational problems (VP—1) and (VP—2) defined by

n(n — 1)

J=D+í 2 (nHng — (n — 2)H3) + tr (T o ão) % . (6.18)

In the last equation (6.18), E is the Cheng— Yauls square operator on (39, Hl, and Hg are

the first and third mean curuatures of (39, respectiuely, T is the Newton transformation

on (39 and É) is the linear operator on (39 giuen by FOO/) : É(N,Y)N for all Y 6

With respect to the functions on (39 to be eualuated in the second uariation

ªí"/YO) of a critical point of (VP—1), they have to be considered according to Re—
mark 6.2, that is, smooth functions on (39 whose integral mean is zero. On the other

hand, any smooth function on (39 can be eualuated on the second uariation Cªll—;]“(m
of a critical point of (VP-2).

Proof. Initially, for any variation X : (—€, &) >< (39 —> Mn“ of (39 we consider the
function no 6 Cºº((39) defined in (6.3). Since Hg is constant on (39, from (6.10), (6.12)
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and Lemma 6.3 we get

%;f*(0)(uo) = —n(n _ 1) Um (% H; t=o) uodV (6.19)
(3H —A —+A) 2 &(utdvz) t=0

: _ aº JLZDÚLO) + JL7”L(7”L — 1) (nH1H2

—(n — 2)H3) + 2tr (TOÉOHÉUOÉUO dV.

Now, for any u 6 Cºº(ôQ), considering variations X : (—€,€) >< (39 —> ÚHH of (39

Whose variational field is ôô—fltzo : UN , we obtain that the last expression (6.19) is
also valid for every u 6 Cºº(ôQ). This shows the formula of the second variation of a
critical point of (VP-2).

For those critical points of (VP-1), if X : (—€, &) >< (39 —> MnH is a variation of

(39 Which preserve the balance of volume of Q then for ao 6 Cºº(ôQ) defined in (6.3)

we have from Lemma 6.1 that foo uo dV : 0, and, in adittion, the expression (6.19) is
valid for such uo. Finally, for any function u 6 Cºº(ôQ) such that foo udV : 0, from
Remark 6.2 we get a variation X : (—€,€) >< (39 —> ÚHH of (39 Which preserve the

balance of volume of Q such that the variational field is %|t=0 : UN , and immediately
follows that (6.19) is retrieved for such a u. .

6.2.2 Bifurcation instants for Hg-hypersurfaces

In What follows, we consider the one—parameter family ãº,), C M of open
subsets in MnH such that the boundary of each Q,, denoted by dº,, is a closed H;—
hypersurface With constant second mean curvature H;, Where 7 varies on a prescribed
interval [ C IR. For every 7 G I , let NT be the unit normal vector field globally defined

on ãº,. We assume that there is 5 G IR such that the Ricci curvature RicM of ÚHH
satisfies

RicM(NT,NT) : E : const. on ãº,, for all 7 G I. (6.20)
In this context, as a consequence of our study of Subsection 6.2.1, we have that each

Q, is a critical point of a certain variational problem of type (VP—2). More specifically,
each Q, is a critical point for the Jacobi functional

197 »—> JPX“) : Á1+Ã(T)V

defined in (6.6), Where
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Moreover, follows from Proposition 6.7 that, associated with each closed Hg—hyper—

surface (39, we have that the second variation Cªll—; ÍA(T)(0) of IMT) is given by

d—ZÍA(T)(0)(U) : -2 / uJT(u)dVT, (621)diª 89 T
for any u 6 Cºº(ôQ,), where OlVT is the volume element on (39, and

”(TL _ 1) T T T _
J, : D,+ TmHle - (n-2)H3)+tr(T,oR,)

is the Jacobi operator on (397. Here, D, is the Cheng—Yau,s square operator on (39,
defined in (1.7), H [, H 27 and H 37 are the first three mean curvatures of (39, with respect

to unit normal vector field N,, TT : %(ÓQT) —> %(ÓQT) is the Newton transformation

on (39, defined in (1.6) and É, : %(ÓQT) —> %(ÓQT) is the linear operator given by
Em : É(N,,Y)N, for all Y e amo,).

With respect to our family “23,61 of critical points of (VP—2), we need to
adopt some notions and results that correspond to equivariant bifurcation theory for
geometric variational problems. For more details on this subject, we recommend the
references [BI, [EEI], [E:Zl and [BH.

Let us first remember that two elements Q,, and Q,, of “23,61 are said to be
isometrically congruent when there is an isometry 1/1 of MnH that carries the image of

xl : (39,1 CH ÚHH onto the image of 1'2 : (39,2 CH ÚHH (cf. Section 1.2 of [BID, where

xl and 1'2 are the immersions of (39,1 and (39 72 into ÚHH, respectively, i.e., if there
exists a diffeomorphism gl) : (39,1 —> (39 72 and an isometry 1/1 of ÚHH such that the

following diagram commutes:

89,13%“4 t—n+1
(39 ,2 —>m2

Taking into account the studies reported in [Elª, ? G [ is said to be a bifurcation instant
of “23,61 if there exists a sequence anlneN C I and a sequence íQWhGN C “23,61
such that

(a) lim T,, = ?,n;)OO

(b) lim x,, : %, where x,, : Q,“ CH ÚHH and % : Q; CH MnH are the immersions ofnªco

Q,“ and Q; into WH“, respectively,

(c) for all 71 E N , x,, is not isometrically congruent to %.

Furthermore, according to the ideas set out in [DIZ], if ? G 1 is not a bifurcation instant,
the family “23,61 is said to be locally rigid at ?.
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One of the classical criterion to determine When a instant ? G 1 is of bifurcation

is related With the so—called Morse index (cf. [Bl and DE). We recall that the Morse

index of Q,, Which Will be denoted by Ind (]"/W), Q,), is equal to the dimension of
the maximal subspace Where the second variation % ÍA(T)(0) of the Jacobi functional
IMT) is negative definite. Equivalently, Ind (IMT),Q,) is the number of negative
eigenvalues (counted With multiplicity) of the Jacobi operator ] ,. With our notations,
a real number Em is an eigenvalue of ], if and only if J,(u) + f(rm : 0 for some
function u 6 Cºº(ôQ,). From Proposition 2.7 of [BI] we obtain that Ind (ÍA(T),Q,)
is finite in [ C IR. Intuitively, Ind (ÍA(7),Q,) measures the number of independent
directions in Which the hypersurface ôQ, fails to minimize the 1—area functional A1(t)

defined in (6.5).

Essentially, a variation of the Morse index Ind (?"/“T), Q,) along the interval [ C IR
Will indicate the existence of a bifurcation instant. More precisely, under suitable
Fredholmness assumptions (cf. [Bl and W), we have that if there are 71,72 G I , With

71 < 72, such that the second variation %?MTJNO) of the Jacobi functional IMT)
is nonsingular (namely, the eigenvalues of the Jacobi operator J,]. are nonzero) for
j 6 ªll, 2) and

lnd(]'—A(Tl), 9,1) # IndUCMTª), 9,2),

then ãº,),g admits a bifurcation instant at some 7, € (71,72). On the other hand,
according to [IEL using the Implicit Function Theorem, we obtain that if % ÍAGKO) is
nonsingular for some ? G I , then the family ãº,),g is locally rigid at ?. In particular,

When Ind (]"/W), Q,) = 0 for all 7 G I, “27ng does not have bifurcation instants.
In the Subsection 6.2.3, we Will study the local rigidity and the bifurcation instants

of ãº,),g by analyzing the spectrum of j , for all 7 G I . Essentially, we Will determine
the number of negative eigenvalues for each 7 (counting its multiplicity) and we Will
study the evolution of such a number.

6.2.3 Local rigidity and bifurcation results for Hg-hypersurfaces

For an open interval [ C IR and a given n—dimensional Riemannian manifold M "

(n 2 2) With metric tensor <- , ->M, consider the warped product [ ><a M". In this
context, for every 7 G [ we have that the slice

zi : meª c IXQM"

is a totally umbilical hypersurface in [ ><a M " (cf. for instance M), oriented by the
unit normal vector field N, : —ô,, and Whose shape operator A, is given by

A, : %(22) —> %(22)

Y % A,(Y)=—vy(_a,)= & (622)
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Actually, the induced metric on 22 is given by a(7)2<-, ->M, Which means that EZ is
homotetic to M " With scale factor a(r). Therefore, the correspondence

137 »—> ZízírlxM"

determines a foliation of [ ><a M " by totally umbilical hypersurfaces, Whose first three

(constant) mean curvatures (see equations in (1.2)) are given respectively by

H, : exe), H; : (amy, H; : (oz/(T>)? (623)(W) a(r)
Moreover, the Ricci curvature Ric [MMA ,) of [ ><a M " obeys the condition

(yl/(T)

a(r)RicIXaMn(N,,N,) : —n : const. on 22, (6.24)

that is, the Riemanniann warped product [ ><a M " satisfies (1.4).
From (6.24) we observe that the slices 22 : %]» >< M " of the Riemannian warped

product [ ><a M " verify the conditions (6.8) and (6.20) When the warped function
& : I —> IR verifies the ordinary differential equation

noz/[(T) +Eoz(7) : 0, T E I, (6.25)
Whose solutions are given by

cl cosh (“_—97) +02 sinh< _—QT> , if E < 0,n n
a(7)= a>0 or 017+02 , if E=0,

01 cos (JET) +02 sin< gr) , if E > 0,n n
Where 01,02 € IR are constants and, in each case, the interval of definition [ C IR of &
is the maximal one Where & is positive. From these solutions, in Table 6.1 we collect
the options of Riemannian warped products for our study.

For all warped functions described in Table 6.1, When the Riemannian fiber M "
is closed, we have that the Riemannian warped product [ ><a M " support a family of
open subsets Which can be realized as critical points of the variational problem that
was described in Subsection 6.2.1. To see this, let 71 and 72 be arbitrary numbers in
[ C IR and we consider the family

JLQTÉTGÚ'LTZ]

of open subsets of [ ><a M " defined by

(2, = (7177) X Mn, 7 € (71,72]— (6.26)
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Riemannian warped product E 01 02

(—oo,+oo)><eTM” —n 1 1
(—oo,+oo) XCOShT M” —n 1 O

(OHLOO) XSínhT M" —n O 1

(—oo, +00) >< M” O

(O, +00) >< M” O 1 O
( —7T/2, 7T/2) ><a—m M” 71 1 O

(0,7T ) XS,“ M” n O 1
(O, 7T/2) ><sm7+com M” n 1 1

Table 6.1: Riemannian warped products satisfying the ordinary differential equa—
tion (6.25)

Thus, assuming M " closed, we have that the boundary (39, of each (2, is the disjoint
union

89, = 221 U 22

of two closed hypersurfaces 221 : Jin) >< M" (fixed) and 22 : %]» >< M". Since
the variations of (39, only affects 22 and taking into account that EZ is a closed H;—

hypersurface, Remark 6.6 assures us that each element of “23,6%“ is a critical point
of the variational problem (VP—2). Moreover, from (6.18), the differential operator
JT : 000632) —> 000632) given by

J,(u) : a(u) + VULTA) (anH; - (n - 2)H;) + tr (T, o É,) % u (6.27)

for u 6 000632), is the Jacobi operator associated With our variational problem, Where

DT is the Cheng—Yau,s square operator on 22 defined in (1.7), Hf, H; and Hg are the
first three mean curvatures of 22 given in (6.23), TT : %(22) —> %(22) is the Newton
transformation on 22 defined in (1.6) and É, : %(22) —> %(22) is the linear operator
given by

ETO/) : É(ô,,Y)ô, (6.28)
for all Y & asma).
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In what follows, in a Riemannian warped products [ ><a M " with closed Rie—
mannian fiber M " and whose warped function satisfies the ordinary differential equa—

tion (6.25), we pay more attention to the study of the conditions that guarantee either
the local rigidity or the existence of bifurcation instants of the family of open subsets

fºriremn] defined in (6.26).
In the next result we calculate the expressions that will allow us to write the

Jacobi operator JT in a more malleable way, in terms of the warped function &, of the
Laplacian A on M " and the constant ?.

Proposition 6.8 With the considerations and notations established above,

0/(7)
(W)

(a) TT : (n — 1) ldT, where ldT denotes the identity map on %(ZÉ);

AT, where AT is the Laplacian operator on 22;

0/(7)
MT)?)

(d) The i—th eigenvalue &(7) of the Cheng— Yaris square operator DT on 22 is

0/(7)
MT)?)

where & is the i—th eigenvalue of the Laplacian operator A on M";

(0) DT : (n — 1) A, where A is the Laplacian operator on M";

&(7) = (71— 1) &,

(e) tr (TT 0 ET) : (" _1)Zl((;))õ;

(f) «77- : (TL —1)Z;5—Çª (A —|— QO); where

a = n (armª + amºr (629)
is a constant on (71,72);

(9) The i—th eigenvalue à(r) of the Jacobi operator JT on 22 is

A 0/(7)
&(7) = (" —1)a(7)3 (€i_ QO)?

where & is the i—th eigenvalue of the Laplacian operator A on M";

Proof. Item (a) is obtained immediately from (1.6) and (6.22). To obtain item (b),
from (1.7) and item (a) we obtain

DTM) : tr (TT (Hess23(u))) : (n—l) C* "É
A
E (D m E!) M a? A

2
V V
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for all u 6 000632). Now, through the natural identification of 000632) With Cºº(M),
item (0) follows from item (17) noting that the induced metric on 22 is given by
a(7)2<- , ->M; and item (d) follows directly from (0).

For the item (e), let JLEl, . . . ,En] be an orthonorrnal frame defined in a neigh-

borhood of some point of 22 and let KM (ô,, E,) be the sectional curvature of ÚHH
along the plane generated by (3, and E,, j 6 ªll, . . . ,n]. Then, from (6.28), item (a)
and noting that our Riemannian warped products verifies (6.8), we get

tr (T, on,) : (n _ nºª/(T) Z<ÉT(EJ»>,EJ»>

me,ª
_ n _ o/(T) 1c— _ n _ o/(T) _
_ ( 1) a(r) R M(ô7'7ô7') ( 1) a(r) Q

_(n — 2) ((;/((Z)) + (n —1)Z85>%

=n_ aw» nn_ we>ª ”_ awo_( DQUPA+ ( o “ª)-H Hªªg?
o/ 7) (n — 1)Oz/(7')

Hence, to end the proof of item (f), it remains to show that

Q : (7-1, 72) —> R
T % QV) = n(ª'(7))2+a(7)ºã

is a constant function. For this, from (6.25) we observed that

Q/(T) : 20/(7)(noz”(7) +Oz(7)õ) : 0

for all 7 G (71, 72), Which implies that there exists QO G IR such that Q(7) : QO for all

7” 6 (7-1, 7-2).

Finally, item (9) follows directly from (f). .
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For a better understanding of the statements in the following results, let us re—
member that the spectrum of the Laplacian operator A on a closed Riemannian man-

ifold M " (cf. Section 1.3 of [DED are determined by a sequence of eigenvalues &) 1108
satisfying

0=€0<€1ÉêZÉ"'É€iÉ€i+1É"'7
repeated according to their multiplicity, and

Our first result provides some simple suflicient conditions to get the local rigidity

Of the family lºTlTGUile'

Theorem 6.9 Let I C IR be an open interual, let M" be a closed n—dimensional Rie—

mannian manifold (n 2 2) and let ] ><a M" be a Riemannian warped product, whose
warped function & : I —> IR satisfles the ordinary diferential equation (6.25). Let
fºrlremm] be a family of open subsets of] ><a M" of the form Q, = (71,7) >< M",
where 71 and 72 are fixed numbers in 1 C IR with 71 < 72. If

(a) QO 7ª & for alli G JLO, 1, 2, . . .]», where QO is the constant defined in (6.29) and &

is the i—th eigenualue of the Laplacian operator A on M", and

(b) 0/(7) 7ª 0 for all 7 € (71,72),

then lº,],emm] is locally rigid at each 7 € (71,72),

Proof. Taking into account our assumptions, from item (9) of Proposition 6.8 we
obtain that the i—th eigenvalue à(r) of the Jacobi operator ], on 22 is such that

A 0/(7)
&(T) = (n— 1) (T)?)

]:MT)(0) given in (6.21) is nonsingular for all 7 G (71, 72)

(Si—Qe) 7ª 0-
Q

d2É
and, therefore, the family “),),an is locally rigid at each r 6 (71,72). .
Hence, the second variation

Let S"(r) be the n—dimensional Euclidean sphere of radius r > 0. We know that

all the eigenvalues & of the Laplacian operator A on S"(r) (cf. Section 2.4 of [DZD aregiven by . .
g,. : W ieí0,1,2,...]». (6.30)

Then, from Table 6.1 we can investigate the families ãº,),emn] of open sets in the
warped products [ ><a S"(r) of the form Q, = (71,7) >< S"(r), With 71,72 G I C IR and
71 < 72, that verify the conditions of Theorem 6.9. In Table 6.2 we collect the results
of this analysis.

From the Table 6.2 we observe that the first case can be extended to a broader

warped product class, exchanging the Euclidean sphere S"(r) by any closed Riemannian
manifold M ".
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Corollary 6.10 Let (—oo,+oo) XCOSh, M" be a Riemannian warped product, with
closed Riemannian fiber M" (n 2 2), and let JLQTthNZ] be a family of open sub—
sets of (—00, +00) >< cosh, M" of the form Q, = (71,7) >< M", where 71 and 72 are fixed

numbers either in (—00, 0) or in (0, +00), in both cases with 71 < 72. Then ãº,),emn]
is locally rigid at each r 6 (71,72).

In the next result we have established a criterion that guarantees the existence

of bifurcation instants of the family ãº,],emn].

Theorem 6.11 Let I C IR be an open interual, let M" be a closed n—dimensional
Riemannian manifold (n 2 2) and let ] ><a M" be a Riemannian warped product,
whose warped function & : I —> IR satisfies the ordinary diferential equation (6.25).

Let ãº,],emm] be afamily of open subsets of] XQM" of the form Q, = (71,7) >< M",
where 71 and 72 are fixed numbers in 1 C IR with 71 < 72. Suppose that

(a) QO 7ª & for alli G JLO, 1, 2, . . .]», where QO is the constant defined in (6.29) and &

is the i—th eigenualue of the Laplacian operator A on M", and

(b) there exist numbers 60,770 6 (71,72) with 60 < 770 such that either o/(õg) > 0 and

o/(ng) < 0, or o/(õg) < 0 and o/(ng) > 0.

Then ãº,),emm] admits at least a bifurcation instant at some 7,6 6 (50,770).

Proof. Since & > 0 on I C IR, from item (9) of Proposition 6.8 and from our hypotheses
involving QO and o/ we obtain that the eigenvalue à(õo) and 5,070) of the Jacobi
operators jõo and 3,70 are such that

A. _ ”_ 0450) ._
€Z(60) _ ( 1)OZ(60)3 (& QO) 7ª 0 (6'31)and ,( )
amo) = (n — vªgãº? (& — oo) # o (6.32)

for all i 6 JL0,1,2,...]», respectively. Furthermore, for some io G JLO,1,2,...]», from
(6.31) and (6.32), 2%

ª(50)3ª(770)3

since the hypothesis (b) guarantees that a'(60)a'(n0) < 0.

Now, from (6.21), (6.31) and (6.32) we get that the second variations % fà(5º)(0)

and % ÍMÚWO) are nonsingular. Furthermore, from (6.33) we obtain that the eigen—

ãio(60)ãio(770) : (TL _ 1) (gio _ Q0)2 < 07 (6'33)

value &(7) of the Jacobi operator

«77 = (" —1)(a'(7)/ª(7)3)(A + Qe)
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which corresponds to i : io admits a change the signal between rl and 72. Since the
eigenvalues of the Jacobi operator ], are ordered, we can ensure that the number of
negative eigenvalues between rl and 72 has changed. Therefore,

Ind (PW, 9,1) # Ind (JCW), 9,2)

and the result follows. .

Taking into account once again the eigenvalues of the Laplacian operator A of
the Euclidean spheres S"(r), giving in (6.30), we can list in Table 6.3 some examples

of families “),),an of open sets in warped products [ ><a S"(r) of the form Q, =
(71,7) >< S"(r), with 71,72 G I C IR and rl < 72, that verify the conditions of the
Theorem 6.11.

We remark that the first case of Table 6.3 can be extended to a broader warped
product class, exchanging the Euclidean sphere 8" (r) by any closed Riemannian ma-
nifold M ".

Corollary 6.12 Let (—oo,+oo) XCOSh, M" be a Riemannian warped product, with
closed Riemannian fiber M" (n 2 2), and let lº,]Tqu] be a family of open sub—
sets of (—00, +00) >< cosh, M" of the form Q, = (71,7) >< M", where rl and 72 are fixed

numbers such that rl G (—oo,0) and 72 G (0,+oo). If 60 and 770 are two real numbers
such that rl < 60 < 0 < 770 < 72, then Q, = (71,7) >< M" admits at least a bifurcation
instant at some 7,6 6 (50,770).

Another way of establishing the existence of bifurcation instants of the family

lºtltdthtz] is given in the following result.

Theorem 6.13 Let I C IR be an open interual, let M" be a closed n—dimensional
Riemannian manifold (n 2 2) and let ] ><a M" be a Riemannian warped product,
whose warped function & : I —> IR satisfles the ordinary diferential equation (6.25) for

some nonzero constant real 5. Let “2376517721 be a family of open subsets of] ><a M"
of the form Q, = (71,7) >< M", where rl and 72 are fixed numbers in 1 C IR with rl < 72.
Suppose that

(a) QO 7ª & for alli G JLO, 1, 2, . . .]», where QO is the constant defined in (6.29) and &

is the i—th eigenualue of the Laplacian operator A on M", and

(b) there exists 7,6 6 (71,72) such that o/(n) : 0.

Then “2376517721 admits a bifurcation instant in r$.

Proof. From item (9) of Proposition 6.8, for every 60,770 6 (71,72) with 60 < 7,6 < 770
and for io G íO, 1,2, . . ]» we have 2%

ª(50)3ª(770)3
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Since & > 0 on I, E # 0 and —no/'(r) : 5047) on I (see equation (6.25)) then (f(r) # 0
on I , which asserts that 0/ is strictly increasing or strictly decreasing on I . So, from
hypothesis (b), since 60 < t,, < 770 then o/(õg) < 0 < o/(ng) or o/(ng) < 0 < o/(õo). In
both cases, a'(õo)a'(n0) < 0. Hence, returning to (6.34) and considering the hypothesis
(a), we have that ªo(õOÉOWO) < 0.

In addition, again using item (9) of Proposition 6.8 and the hypothesis (a) we
get that (6.31) and (6.32) are valid.

Now, the result is obtained by following the same steps of the end of the proof of
Theorem 6.11. .

With slight changes, it is immediate to observe that the families of open sets
described in Table 6.3 can fit under the conditions of Theorem 6.13. We recorded this

new configuration in Table 6.4.

Here we can also establish the following immediate consequence of Theorem 6.13.

Corollary 6.14 Let (—oo,+oo) XCOSh, M" be a Riemannian warped product, with
closed Riemannian fiber M" (n 2 2), and let ãº,],emm] be a family of open sub—
sets of (—oo,+oo) Xcosh, M" of the form Q, = (71,7) >< M", where 71 and 72 are
fixed numbers such that 71 G (—oo,0) and 72 G (0, +00). Then “2376517721 admits a
bifurcation point in r,, = 0.

The requirement on the constant QO that appears in the hypotheses of Theo—
rems 6.9, 6.11 and 6.13, can be interpreted as a geometric condition on the Rieman—
nian fiber M " of the warped product [ ><a M ". To arrive at this conclusion, let us first

observe from (6.29) that the constant E admits the expression

Qe

a(r)º? _ ”H;?
that when substituted in (1.5) we obtain that the scalar curvature ST of 22 is given
by ST : QO/a(r)º. But as the induced metric on 22 is a(r)º<- , ->M, we have that
the scalar curvature SM of M " and QO are related by SM : (n — 1)Q0. Therefore,
what is requested in item (a) of Theorems 6.9, 6.11 and 6.13 can be interpreted as
the requirement that the constant scalar curvature SM of M " does not belong to the
spectrum of the Laplacian Operator A of M ".

6.3 Local rigidity, bifurcation and stability of H f -
hypersurfaces in weighted Killing warped prod-
ucts

This section corresponds to the contents of [BH. In what follows, in a weighted

Killing warped product MJ? ><a IR endowed with a weighted function f that does not
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depend on the parameter t 6 R , we will establish squicient conditions that allow us
to guarantee the existence of bifurcation instants or the local rigidity for a family of
open sets “2,3%; whose boundaries (39, are hypersurfaces with constant weighted
mean curvature. For this, we analyze the number of negative eigenvalues of a certain
Schrõdinger operator and study its evolution. Furthermore, we obtain a characteriza—

tion of a stable closed hypersurface x : 2" CH MJ? ><a R with constant weighted mean
curvature in terms of the first eigenvalue of the f—Laplacian of 2".

6.3.1 Description of the variational problem associated With
the weighted area functional

The weighted uolume functional associated to the variation X : (—€,€) >< (39 —>

MJ? ><a R is

Vf : (—€,€) —> R

s »—> Vf(s) : Volf(Qs) : / du,S

(6.35)

and we say that X : (—€,€) >< (39 —> MJ? ><a R is weighted uolume-preseruing of Q if
Vf(s) : VAO), for all s 6 (—e,e).

The following result is well known and, in the context of weighted manifolds, it

can be found in [|23l.

Lemma 6.15 IfQ 6 M and X : (—e,e) >< (39 —> MJ? ><a IR is a uariation of (39 then

d

—Vf(s) =/ us ela,, for all s 6 (—e,e),dt aºs
where us is the function defined in (5.3). In particular, X : (—e,e) >< (39 —> MJ? ><a IR

is weighted uolume—preseruing of Q if and only if fôºs us dus : 0 for all s 6 (—e, e).

Remark 6.16 We obserue that is not dij'icult to uerify that Lemma 2.2 of [|H] still
remains ualid for the context of weighted Riemannian manifolds, that is, if u 6 Cºº(ôQ)

is such that foo udu : 0, then there exists a weighted uolume—preseruing uariation
X : (—e,e) >< (39 —> MJ? ><a IR of (39 whose uariationalfleld is %lçº = uN.

The weighted area functional associated to the variation X is given by

.Áf : (—€,€) —> R

s »—> .Áf : Areaf(ôQs) : /ao da,.
(6.36)

Following the same steps of the proof of Lemma 3.2 of [EEI], we can get the following
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Lemma 6.17 IfQ 6 M and X : (—e,e) >< (39 —> MJ? ><a IR is a variation of (39, then
d

—.Áf(s) : —n/ (Hf)s us dus, for all s 6 (—e,e),ds aºs
where us is the function giuen in (5.3) and (Hf)s : Hf(s, -) denotes the f—mean cur—
uature of (393 with respect to the metric induced by the immersion Xs defined in (6.2).

In order to characterize open subsets Q of M? ><a IR whose boundary are closed
hypersurfaces with constant f—mean curvature (possibly equal to zero), we consider the
variational problem

(VP—3): Minimizing the weighted area functional Af (see (6.36)) for
all uariations of (397 that preserue the weighted uolume of (27.

The Lagrange multiplier method leads us then to the associated weighted Jacobi
functional

J:? : (—e,e) —> R
s »—> ]:?(s) : Areaf(ôQs) + AVolf(Qs),

where A is a constant to be determined (eventually A can be zero, and in this case,

(6.37)

for Q 6 M, our variational problem reduces to minimizing the functional Af for all
variations of (39).

As an immediate consequence of Lemmas 6.17 and 6.15 we get that the first

variation of f? takes the following form:
dd d

%]?(s) = % Af(s) + Aê Vf(s) : aos í—n (Hf)s + A? us dus. (6.38)
Thinking about making the best possible choice of A, let

1

Areaf(ôQ) aº

be an integral mean of the f—mean curvature H f on (39. We call the attention to the

% = H, du (6.39)
fact that, in the case where H f is constant, we have

% = H,, (6.40)
and this notation will be used in what follows without further comments. Therefore,
if we choose A : nª, from (6.38) we arrive at

% ms) = —n HH», — ª? ªs dªs— (641)895

In particular, d A _—ff(0) : —n le —'HÉ uo du. (6.42)ds ao
Now, from (6.42) and following the same ideas of Proposition 2.7 of [|º| we can

establish the following result.
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Proposition 6.18 Let 9 6 M. The following statements are equivalent:

(a) (39 is a closed H f—hypersurface with constant f —mean curvature H f equal to H f :

)x/n;

(b) for all weighted volume—preserving variations X : (—e, &) >< (39 —> MJ? XQR of (39,

we have % AAO) : 0;

(c) for all variations X : (—e,e) >< (39 —> MJ? ><a IR of (39, we have %]"?(0) = 0.

Hence, from Proposition 6.18 we have that the critical points of (VP—5) are open

subsets 9 of M? ><a IR Whose boundary (39 is a closed H f—hypersurface With constant
second mean curvature H f equal to

H, = (6.43)i
n?

With A G IR. On the other hand, if we change (VP—3) to

(VP—4) : Minimizing the weighted area functional Af (see (6.36)) for all

variations of (397, not necessarily weighted volume—preserving

variations of 97,

from Proposition 6.18 we obtain that the respective critical points of (VP—4) coincide
With the same critical points of the initial variational problem (VP-3).

Remark 6.19 In the case A = 0 we observe that the two variational problems (VP—4)
and (VP—3) coincide, in which case the respective critical points are open subsets 9

of M;! ><a IR whose boundary (39 are closed f—minimal hypersurfaces. Furthermore,
from (5.3?) we can observe that ]:fº coincides with the weighted area functional Af
and, for each 9 6 M, this whole situation comes down to the variational problem
of minimizing Af for all variations of (39 (not necessarily for those that preserve the
weighted volume of 9).

Remark 6.20 Taking into account the Remark 6.6, we will assume that M is the

space of open subsets 9 C MJ? ><a IR whose boundary (39 = 2? U 2% is the union of
two disjoint sets where 2? is a fixed set and, hence, the considered variations of (39
only afects ZZ. Under this assumption, the critical points of (VP—3) or (VP—4) will be

open subsets 9 such that their boundaries are union of a (fixed) set 2? and a closed
H f—hypersurface 2% with constant f —mean curvature H f given by (6.43).

For the critical points of (VP—3) and (VP—4), the formula for the second variation

of f? is given in the following result.
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Proposition 6.21 Let 9 6 M be open subset of M;! ><a IR whose boundary (39 is a
compact H f—hypersurface, with constant f —mean curvature H f given by (6.43). Then

2
at

the second variation FINO) of the weighted Jacobi functional ]:? is given bys

d2

FÍJMOMU) : — ÁQUJf(U)d/i7 (6.44)
for any u 6 Cºº((39), where Jf : Cºº((39) —> Cºº((39) is the weighted Jacobi operator
given by

ACM—(3ª &) + |A|2 (6.45)Jf : Af + r&f(N*,N*) _ àiãêãsawâivw- (N Y>º

Here, Y is the Killing vector field on MJ? ><a IR, & _ —|Y| > 0, N is the unit normal

vector fleldN on (39, Af and Ãf represent the f— Laplacians on (39 and M", respectively,
Rin and Hess are the Bakry— Émery— Ricci tensor and the Hessian operator on M",
|A|2 represents the square of the norm of the shape operator A of (39 with respect to
the orientation given by N and N* is the orthogonal projection of N on the tangent

bundle of M". With respect to the functions on (39 to be evaluated in %]ÍJMO) for
a critical point of (VP—3), they have to be considered according to Remark 6.16, that
is, smooth functions on (39 whose integral mean is zero; and, on the other hand, any

smooth function on (39 can be evaluated in ªí"/WO) for a critical point of (VP-4).

Proof. Initially, for any variation X : (—€, &) >< (39 —> MJ? ><a IR of (39 we consider the
function no 6 Cºº((39) defined in (6.3). Since Hf is constant, from (6.41) and (6.40)
we have that

d2 (3 (Hf)s
d_s2 ff“) )(u 0) _ —n ÁS, ( (3s s=0) UO d”

— (3—n H—H —usds/ao f (3s( #)N—F/ 3=0 .
0

Reasoning as in the proof of equation (3.5) of [|23l, we obtain

nõ (Hf)s
(3s _O = Af (ao) + íªfw, N) + |Aº|i Uo—

Hence,

d_s2 2.7:f(0 )(uo )=_/o íAf(u0)+íãf(N,N)+|Á|2%u0Éu0d/i (6.46)9

On the other hand, denoting by N * and N ª the orthogonal projections of N
over the tangent and normal bundles of M ", respectively, taking into account that f
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is invariant along the flow determinate by Y, from [IEL Proposition 7.35] we obtain

Hessf(N, N) : (VNVf,N> (6.47)
= (VwãfJVªª + Nl>N 1 N N
= Hessf(N*, N*> + 5<VfNa>|Nª|ºN 1 N N
: Hessf(N*, Nª“) + âWf, Vd><N, Y>º.

Moreover, from [BEL Corollary 7.43] we get that

A(Ol)_ N 1 N
Ric(N, N) : Ric(N*, Nª“) - _ Hess a(N*, Nª“) - (N, Y>º 3 (6.48)Oz Oz

Now, from equations (6.47) and (6.48), we have that_ N 1 N Ã
Ricf(N, N) : Ricf(N*, Nª“) - _ Hessa(N*, Nª“) - <N,Y>º fiª) (6.49)Oz Oz

Therefore, from equations (6.49) and (6.46) we obtain

d2

FÍNÚMUO) : —/ UO «7f(U0)d/i7 (6-50)5 ao
where Jf is given in (6.45).

Now, for any u 6 Cºº(ôQ), considering variations X : (—€,€) >< (39 —> MJ? ><a IR

of (39 whose variational field is %hzo : UN , we obtain that the last expression (6.50)
is also valid for every u 6 Cºº(ôQ). All this we provide the formula of the second

variation of f? for a critical point of (VP-4).
For the critical points of (VP-3), if X : (—€, &) >< (39 —> MJ? ><a IR is a variation

of (39 which preserve the weighted volume of Q then for ao 6 Cºº(ôQ) defined in (6.3)

we have from Lemma 6.15 that foo uo dV : 0, and, in adittion, the expression (6.50) is
valid for such uo. Finally, for any function u 6 Cºº(ôQ) such that foo udV : 0, from
Remark 6.16 we get a variation X : (—€, &) >< (39 —> MJ? ><a IR of (39 which preserve the

weighted volume of Q such that the variational field is (?,—fhzo : UN , and immediately
follows that (6.50) is retrieved for such a u. .

We conclude this subsection by noting that the weighted Jacobi operator Jf
given in (6.45) belongs to a class of differential operators which are usually referred to
as Schrõdinger operators, that is, operators of the form A + q, where A is the standard

Laplacian on (39 and q is any continuous function on (39 (see, for instance, MEI). In
particular, we can highlight that the behavior of the eigenvalues of Jf is well known,
behavior that will play an important role in obtaining the main results of this section.

6.3.2 Bifurcation instants for H f-hypersurfaces in MJ? ><a R
In what follows, we consider the one—parameter family ãº,), of open subsets in

weighted Killing warped product MJ? XQR such that the boundary of each Q,, denoted
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by dº,, is a closed H f(7)—hypersurface with constant f—mean curvature H f(y), where
7 varies on a prescribed interval [ C IR. In this context, as a consequence of our study

of Subsection 6.3.1, we have that each Q, is a critical point of a certain variational
problem of type (VP—4). More specifically, each Q, is a critical point for the one—
parameter family of weighted Jacobi functionals

] 3 7 %> ]:me : Af+A(7)vf

defined in (6.37), where

Mv) = "HAW-

lVloreover, from Proposition 6.21, associated with each closed H f(7)—hypersurface dº,

we have that the second variation % fªb/RO) of fªm is given by

dº ,
FEM WM“) = —/ “Jp/(wdn, (6.51)5 ao

fºr any U 6 Cºº(ôQ,), where

Ãf(ª),? * * lw * *
jfw : Alf,, +R1cf(N7,N7) — ãHessoz(N7,N7) — (Nmº + lAilº (6.52)

is the weighted Jacobi operator on ãº,. Here, Alf,, and Ãf are the f—Laplacians on

(39, and M;, respectively, Éivcf and Éêãs are the Bakry—Émery—Ricci tensor and the
Hessian operator in M ", A, is the shape operator of dº, with respect to normal vector

field N, and Ni; is the orthogonal projection of N, on the tangent bundle of M ".
Taking into account that the digression in the Subsection 6.2.2 can be applied to

the functional fªm, we have that a variation of lndf (fªm, Q,) along the interval
[ C IR will indicate the existence of a bifurcation instant. More precisely, under suitable

Fredholmness assumptions (cf. [BI] and M), we have that if there are 71,72 G I , with

71 < 72, such that the second variation % fªb/nm) of the weighted Jacobi functional

fªb/º') is nonsingular (namely, the eigenvalues of the weighted Jacobi operator JMJ. are
nonzero) for j 6 ªll, 2) and

Indf<f?(ll),9,1) # Indf (gªnha,), (6.53)
then lº,),g admits a bifurcation instant at some % € (71,72). On the other hand,
if % Elªm) is nonsingular for some & G I , then the family lº,],g is locally rigid

at &. In particular, when lndf (flw/>A)» : 0 for all 7 G [, lº,),g does not have
bifurcation instants.

Remark 6.22 We observe that the change in the Morse index a family of hypersurfaces

giyen by condition (6.53) is not suj'icient to guarantee the bifurcation of the family
lº,),g. Indeed, considering the standard context, the family of CMC spherical caps,
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starting with a pole and terminating with the entire sphere has a change in the Morse

index from 0 to 1 at the hemisphere, but there is no bifurcation (for more details,

see [E]). Hence, our assumption that %??(lj)(0) is nonsingular forj 6 43,2] is a
necessary condition to reach at the bifurcation.

In the Section 6.3.3, we Will study the local rigidity and the bifurcation instants of

4523761 by analyzing the spectrum of jm for all 7 G I . Essentially, we Will determine
the number of negative eigenvalues for each 7 (counting its multiplicity) and we Will
study the evolution of such a number.

6.3.3 Local rigidity and bifurcation results for H f-hypersurfaces

The first result of this section provides some simple suflicient conditions to get

the local rigidity of the family 4523761 of critical points of the variational problem
(VP—4) described in Subsection 6.3.2.

Theorem 6.23 Let “ZA/he] be a family of open subsets of the weighted Killing warped

product MJ? ><a IR whose boundaries ôQ7 are closed Hf(7)—hypersurfaces. If, for all
7 G I, the function

Ãf(ª)
QfW) : R1Cf(N7,N7) - anessa (MWM/) - <N7,Y>º + |Ar,|2

is constant on (397 and the first nonzero eigenualue €; (7) of the f—Laplacian A“, on
(397 satisfles

6%(7) — QM) > 0, (6-54)
then “Lhe; is locally rigid at each 7. In particular, such a family is locally rigid if
one of the following conditions holds:

(a) R1Cf(N77N7) _ EHGSSQ(N77N7) _ <N77Y>2 23 É _IA'YIZ;

(b) either

R1Cf(N7,N7) - ãHessodeNQ - <N7,Y>ºâ—3 < 0 and 5%) 2 |A7|º,

07“

R1Cf(N7,N7)—ãHessa(N7,N7)—<N7,Y>2 23 g 0 and €;(7)>|A7|º.

Proof.

Since Qf(7) is constant, from (6.52) we have that the eigenfunctions of the
weighted Jacobi operator JM Will coincide With the eigenfunctions of f—Laplacian
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Af, More specifically, if u is an eigenfunction of Alf,, associated With an eigenvalue
&(7) then u is eigenfunction of J#, With eigenvalue

A

SfW) = €f(7) _ Qle

Moreover, by the spectral theorem we know that all the eigenvalues of Alf,, are given

by a sequence lê; (WH; satisfying

0 = 5%) <€f1(7) £ £ ífªh) £ SFM) £
repeated according to their multiplicity, and

1' ª' :jinco €f(7) +00

(see, for instance, Section 1 of [|Z2l). So, all the eigenvalues É; (7) of J#, have the
following form

Em = se) — em for everyj e lº, 1, 2, . . &. (6.55)

So, from (6.54) and (6.55) we obtain

ao) = ao) — QM) 2 ao) — em > 0 for everyjel0,1,2,——.l-

Hence, the second variation % fªb/RO) given in (6.51) is nonsingular for all 7 G I and,
therefore, the family lº,],el is locally rigid at each 7 G I .

.
Our next result provides a criterion that guarantees the existence of bifurcation

instants of the family lº,),e [.

Theorem 6.24 Let lº,], be a family of open subsets of the weighted Killing warped

product MJ? ><a IR whose boundaries (39, are closed Hf(7)—hypersurfaces. Suppose that,
for all 7 G I, the function

% Y>2 Ãf(a)QfW) : R1Cf(N77N7) _ EHGSSQ (N77N7) _ <N oz?) + |An,|2

is constant on ãº,. If there are two ualues 71 and 72, with 71 < 72, such that the eigen—

ualues €;(71) and €;(72) of the weighted Jacobi operators Jf, and “715,2 (respectively)
satisfy

(a) %?(71)?É 0 andª/?(fl/Z) 7ª 0 f07' allj G l071727' ' “l:

(17) there exists jo G JLO, 1,2, . . .] such that (ªº(mv (ªº(7g)) < 0,

then there exists a bifurcation instant % € (71,72).
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Proof. Initially, from (6.52) and (6.51) we note that the condition about Qf(7) and

the hypothesis (a) assures us that the second variation % lªb/”(O) of the weighted
Jacobi functional fªm) is nonsingular for j 6 fl, 2). On the order hand, we observe
that hypothesis (b) assures us that the eigenvalue of the weighted Jacobi operator which
corresponds to j : jo admits a change the signal between 71 and 72. Moreover, as the
eigenvalues of the one—parameter family of weighted Jacobi functionals are ordered, we

can ensure that the number of negative eigenvalues between 71 and 72 has changed.
Therefore,

Indf (J'-“;(“, 9,1) # Indf (&”/ª), 9,2)
and the result follows. .

When M " is closed, the weighted Killing warped product MJ? ><a IR naturally
admits a family of open subsets that can be realized as critical points of the weighted

area functional Af defined in (6.36). To visualize this, for tbtg G IR with tl < tg, we
consider the family of open subsets ãº,/%%%&] given by

97 : Mn X (tl/Y), ”Y E (t1,t2], (6.56)

whose boundary (39, of each Q, is formed by the disjoint union

6% = 2? u 2%)

of a fixed set 2? = M" >< fil) and other set 23%7) : M" >< JL7]». From Remark 1.2 we
have that each 257), 7 6 (131,132], is an f-minimal totally geodesic closed hypersurface.

So, since the variations of (39, only affects 23%7), from Remarks 6.19 and 6.20, we

conclude that each element of the family (Z,/emm is a critical point of Af. For these

critical points, noting that & is the vector field on MJ? ><a IR that determines the
orientation of each 257), 7 6 (131,132], we have that second variation of the weighted

Jacobi functional ffº : Af and the weighted Jacobi operator on each (397, given by
the expressions (6.51) and (6.52), are reduced todº N

ÉAAOMU) = — /2(,)“ªfª(“)d”7and 1
JW) = Amo) — & Moz) u

for any u 6 Cºº(23(7)), respectively, where Am represents the f—Laplacian on 23%7),
Ãf is the f—Laplacian on M", a : |Y| > 0 and Y is the Killing vector field that
determines on MJ? ><a IR the foliation by totally geodesic closed slices M " >< lit), t 6 IR.
In addition, if & is an eigenfunction of Af, with associated eigenvalue c, we have that
JM can be written simply as

wa : Afw + C*
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In this scenario, we observe that the arguments of the proofs of Theorems 6.23
and 6.24 are valid, and even more, the statements can be refined, in the sense that we

now ask as hypotheses a certain behavior of the spectrum of the drift Laplacian Ãf of

the closed manifold M$.

Corollary 6.25 Let M" be an n—dimensional closed Riemannian manifold and, for

t1,t2 G IR with tl < tg, let (ZA/emm be the family of open subsets of the weighted Killing

warped product MJ? ><a IR given by (6.56). Let Ãf be the f—Laplacian on MJ? [fa is
an eigenfunction of Af (with associated eigenvalue 0) and the first nonzero eigenvalue

€; (7) of the f—Laplacian A“, on 22(7) : M" >< JL7], 7 G (t1,t2], satisfles

€)(7) > 0,

then fºr/hahª] is locally rigid at each 7 G (tbtgl.

Proof. Initially, it is immediate to note that the function Qf(7) of Theorem 6.23 re—
duces to the nonnegative constant 0. Then, as in the steps of the proof of Theorem 6.23,

we make an analysis of the eigenvalues of JM that contribute to lndf (Af 797) and the
result follows. .

Remark 6.26 Considering once more the behavior of the eigenvalues of the f—Laplacian

A“, on an arbitrary closed weighted manifold M", from Corollary 6.25 we obtain the

following consequence: The family of open subsets of the weighted product MJ? >< IR given
by ('6. 56) is always locally rigid at each 7 G (t1,t2].

Thinking similarly, from Theorem 6.24 we obtain the following result:

Corollary 6.27 Let M" be an n—dimensional closed Riemannian manifold and, for

t1,t2 G IR with tl < tg, let (ZA/emm be the family of open subsets of the weighted Killing

warped product MJ? ><a IR given by (5.56). Let Ãf be the f—Laplacian on M;. If &
is an eigenfunction of Af (with associated eigenvalue 0) and if there are two values

71, 72 G (t1,t2], with 71 < 72, such that the eigenvalues ªfim) and ãfWZ) of the Jacobi
operators $;le and 31572 (respectively) satisfy

(a) %?(71)?É 0 andª/?(fl/Z) 7ª 0 f07' allj G l071727' ' “l:

(b) there exists jo G JLO, 1,2, . . .] such that (ªOWlO (ªº(72)) < 0,

then there exists a bifurcation instant % € (71,72).
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6.4 Stability of H f-hypersurfaces in M]? ><a R
It is important to remark that, for all calculations in the Section 6.1, there is no

real dependence on the open set Q 6 M but on the hypersurface (39. In fact, in the
literature, it is more common to work in terms of hypersurfaces (for instance, see [lºl, ISI

for the classical context, and [|23I, IBÃI for the weighted context). In this scenario, M

becomes the space of all closed orientable hypersurfaces of M? ><a IR.
In this last section, we study the notion of stability associated with problem (VP—

3) described in Subsection 6.1 for this new set M. We begin this study by remembering

that if x : 2" CH MJ? XQR is such a hypersurface, then the weighted volume and weighted

area associated with a variation X : (—€, &) >< E" —> MJ? ><a IR are given by

Vf: (—€,€) —> R

5 H VAS) : Volf (E" >< [0,5]) = / X*(dõ)E")<[0,s]

and
.Áf: (—€,€) —> R

5 H AAS) : Areaf(Xs(Z")) : /n dus,
respectively. Furthermore, the variational problem of minimizing the functional Af for

all variations of x : 2" CH MJ? ><a IR that preserve the weighted volume Vf is addressed
by the study of the weighted Jacobi functional

ff : (—€,€) —> R
5 H ff(s) : AAS) +nãvf(s)

where % is the constant defined in (6.39), and their respective critical points are the

closed H f—hypersurfaces of M? ><a IR. For these critical points, the stability of the
corresponding variational problem is given by the second variation

d2

ªmem) = — / me) du,
where Jf : Cºº(2") —> Cºº(2") is the weighted Jacobi operator given in (6.45). The
above discussion motivates the following notion of stability.

We say that a closed H f—hypersurface x : 2" CH MJ? ><a IR is f -stable if

d2

É Adº) Z 0,

for all weighted volume—preserving variations X : E" >< (—€, e) —> MJ? ><a IR of x : 2" %

MJ? ><a IR.
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Remark 6.28 Let r : 2" % MJ? ><a IR be a closed Hf—hypersurfdce ds described in the
last definition aboue. We consider the set

QzíuGCººQl") ; /nud/i=0%. (6-5?)
Just ds [|E], we can establish the following criterion of f —stdbility: d hypersurfdce m :

2" % MJ? ><a IR is f—stdble if and only if %]:ÁOMU) 2 0, for all u 6 Q.

In What follows, associated With a hypersurface x : 2" CH MJ? ><a IR, we Will
consider the angle function © defined in (1.33). In this setting, we get the following
key lemma, Which provides suflicient conditions to obtain a eigenfunction of the drift

Laplacian Af on E". Let us denote by ?, V and & the Levi—Civita conections of
M? ><a IR, 2" and M ", respectively.

Proposition 6.29 Let r : 2" % MJ? ><a IR be a hypersurfdce immersed into weighted
Killing wdrped product MJ? ><a IR. HQ 6 Cºº(2) is the function defined in (1.33) then

Ãf()
AfeHâMNàNªk) _ àÉessa(N*,N*)— eº_ + |A|2 ;e— _ —nYT(Hf),

where we are using the same notdtions of Proposition 6.21. In addition, if 2" is closed

dnd both Hf dnd

+ |A|2
__ 1 N Ã

g : Ricf(N*,N*) _ —Hessa(N*,N*) _ eº fiª)Ol Ol
dre constants, then € is an eigenualue of Af on 2", with eigenfunction ©.

Proof. Firstly, from (1.12) we note that

—nYT(H) : _YT (an _ (Wim) (6.58)
: —nYT (Hf) + YVW, N>

: —nYT (Hf) +%f(y, N) _ (àÉjXN, N) _ (AYT,Vf>.

Moreover, With a straightforward computation we can show that

ve : _AYT _ (Vm/f,

and, since f is invariant along the flow determined by Y, we get that

(veãn : AyT + (VNY)T,Vf> (6.59)—(

__<AYT7 Vf> _ <VNY7VÍ>

__<AYT7 Vf>+ (Y YNYD

—<AYT, Vf> + H_essf(Y, N)
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Taking into account the equations (6.58) and (6.59) we get that

—nYT (H) : —nYT(Hf) — GÉHN, N) + (veân (6.60)

On the other hand, from Proposition 2.12 of [ISI we have

A9 : —nYT(H) — © (ª(N, N) + |A|2) , (6.61)

Therefore, from (1.11), (1.15), (6.49), (6.61) and (6.60) we obtain the result. .
Our stability result stated in Theorem 6.30, that follows, gives us a characteriza—

tion of f—stable H f—hypersurfaces in MJ? ><a IR through the first eigenvalue of the drift
Laplacian Af, Which extends a classic result of Barbosa, do Carmo and Eschenburg
(see Proposition 2.13 of [RI).

Theorem 6.30 Let x : 2" % MJ? ><a IR be a closed Hf—hypersurfdce immersed into
weighted Killing wdrped product MJ? ><a IR. If

g: r&f(N*,N*) - lÉessa(N*,N*) - eº AN”)oz oz?) + |A|2

is constant then x : 2" % MJ? ><a IR is f—stdble if and only ifS is the first eigenvalue
of drift Laplacian Af on 2".

Proof. Since that 5 is constant, Proposition 6.29 guarantees that 5 is in the spectrum

of the drift Laplacian Af. So, let & be the first eigenvalue of Af on 2". If € : &, then
the variational characterization of A1 (see, for instance, Section 1 of [IED gives

—/ uAf(u)d/i5: min ”_,
uGQXlO] / “2d”

Where Ç is defined in (6.57). Then, from (6.44) and (6.45) we obtain that

%JÍÁOMU) : Enf—UAÁU) —€u2ld/L Z (5—5) Án “2d” : 07

for any u 6 Q and, according to Remark 6.28, x : 2" CH MJ? ><a IR is f—stable.

Now suppose that x : 2" CH MJ? XQR is f—stable, Which according to Remark 6.28
is equivalent to %?ÁOMU) Z 0 for all u 6 Q. Let it be an eigenfunction associated
to the first eigenvalue & of the drift Laplacian Af on 2". Consequently, by (6.44)

and (6.45) we get 2
0 < d—ff(0><u> = (& —o / Mºdu-_ ds2 n

Therefore, since & 5 € , we must have & : € . I
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Riemannian warped product Family of open sets Qe

(—oo,+oo) XCOShTSn(T) “23%de With T1,Tg —n
With T > 0 in (—oo,0) and 71 <

Tg, or With T1,Tg in
(O,—l—oo) and T1 < Tg

(O,—l—oo) Xsth S”(T) lQTlenJg] with 71
with 0 < T < 1 T1,7'2 in (O, +00) and

71 < Tg

(O,—l—oo) ><T S”(T) lQTlenJg] with 71
with 0 < T < 1 T1,7'2 in (O, +00) and

71 < Tg

( —7T/2, 7T/2) >< COST S”(T) lQTlenJg] with 71
with 0 < T < 1 T1,7'2 in (—7T/2,0)

and 71 < Tg, or with
T1,7'2 in (Om/2) and
71 < Tg

(Om) Xsím- S”(T) lQTlenJg] with 71
with 0 < T < 1 T1,7'2 in (Om/2) and

T1 < Tg, or With
7"1,72 in (TT/2,7T) and

71 < Tg

(Om/2) ><sim+cow S”(T) lQTlenJg] with 71
WithO<T<1 T1,7'2 in (Om/4) and

7'1<7'2, or With T1,Tg

in (TT/4,7T/2)
7'1<7'2

and

Table 6.2: Families that are locally rigid according to Theorem 6.9
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Riemannian warped product Family of open sets QO

(_007 +00 ) >< COShTSn(T) %:QTETÉÚLTQ] With —n
With T > 0 T1, Tg, 50 and

770 such that
—00 < tl < 50 <
0 < 770 < T2 < +00

(_7/27 7T/2 ) >< COSTSTLO") %:QTETGÚ'IJ'Z] With n

with 0 < T < 1 7-1, 72, 50 and
770 such that
—7r/2 < tl < 50 <
0 < 770 < Tg < 7T/2

(0,7T) Xsím- S”(T) JiQTLGmJZ] with 71
with 0 < T < 1 T1, Tg, 50 and

770 such that
0 < 71 < 50 <
7T/2 < 770 < Tg < 7T

(Om/2) xsmmmsw magma] with n
WithO<T< 1 T1, Tg, 50 and 770

such that 0 < 71 <
50 < w/4 < 770 <
Tg < 7T/2

Table 6.3: Families that admit a bifurcation instant according to Theorem 6.11
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