
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE
CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA
UNIDADE ACADÊMICA DE SISTEMAS E COMPUTAÇÃO

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA
COMPUTAÇÃO

VICTOR DA CUNHA LUNA FREIRE

CHARACTERIZATION OF DESIGN DISCUSSIONS IN
MODERN CODE REVIEW

CAMPINA GRANDE - PB
2021

Universidade Federal de Campina Grande

Centro de Engenharia Elétrica e Informática

Coordenação de Pós-Graduação em Ciência da Computação

Characterization of Design Discussions in Modern

Code Review

Victor da Cunha Luna Freire

Tese submetida à Coordenação do Curso de Pós-Graduação em Ciência

da Computação da Universidade Federal de Campina Grande - Campus

I como parte dos requisitos necessários para obtenção do grau de Doutor

em Ciência da Computação.

Área de Concentração: Ciência da Computação

Linha de Pesquisa: Engenharia de Software

João Arthur Brunet Monteiro e Jorge Cesar Abrantes de Figueiredo

(Orientadores)

Campina Grande, Paraíba, Brasil

©Victor da Cunha Luna Freire, 17/08/2021

F866c

Freire, Victor da Cunha Luna.

 Characterization of design discussions in modern code review /
Victor da Cunha Luna Freire. – Campina Grande, 2021.
 87 f. : il. color.

 Tese (Doutorado em Ciência da Computação) – Universidade Federal

de Campina Grande, Centro de Engenharia Elétrica e Informática, 2021.
 "Orientação: Prof. Dr. João Arthur Brunet Monteiro, Prof. Dr. Jorge

Cesar Abrantes de Figueiredo”.
 Referências.

 1. Engenharia de Software. 2. Revisão de Código. 3. Revisão de

Código Moderna (MCR). 4. Design de Software. 5. Discussão de Design.
I. Monteiro, João Arthur Brunet. II. Figueiredo, Jorge Cesar Abrantes de.
III. Título.

 CDU 004.41(043)

FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECÁRIA SEVERINA SUELI DA SILVA OLIVEIRA CRB-15/225

MINISTÉRIO DA EDUCAÇÃO
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE

POS-GRADUACAO CIENCIAS DA COMPUTACAO
Rua Aprigio Veloso, 882, - Bairro Universitario, Campina Grande/PB, CEP

58429-900

FOLHA DE ASSINATURA PARA TESES E DISSERTAÇÕES

VICTOR DA CUNHA LUNA FREIRE

CHARACTERIZATION OF DESIGN DISCUSSIONS IN MODERN CODE REVIEW

Tese apresentada ao Programa
de Pós-Graduação em Ciência da
Computação como pré-requisito
para obtenção do título de
Doutor em Ciência da
Computação.

Aprovada em: 17/08/2021

Prof. Dr. JOÃO ARTHUR BRUNET MONTEIRO, Orientador, UFCG

Prof. Dr. JORGE CESAR ABRANTES DE FIGUEIREDO, Orientador, UFCG

Prof. Dr. TIAGO LIMA MASSONI, Examinador Interno, UFCG

Prof. Dr. LEANDRO BALBY MARINHO, Examinador Interno, UFCG

Prof. Dr. MARCO TÚLIO DE OLIVEIRA VALENTE, Examinador Externo, UFMG

Prof. Dr. UIRA KULESZA, Examinador Externo, UFRN

Documento assinado eletronicamente por JOAO ARTHUR BRUNET
MONTEIRO, PROFESSOR DO MAGISTERIO SUPERIOR, em 04/11/2021,
às 11:15, conforme horário oficial de Brasília, com fundamento no art. 8º,
caput, da Portaria SEI nº 002, de 25 de outubro de 2018.

Documento assinado eletronicamente por JORGE CESAR ABRANTES DE
FIGUEIREDO, PROFESSOR 3 GRAU, em 04/11/2021, às 14:47, conforme
horário oficial de Brasília, com fundamento no art. 8º, caput, da Portaria SEI
nº 002, de 25 de outubro de 2018.

Documento assinado eletronicamente por Uirá Kulesza, Usuário Externo,
em 04/11/2021, às 16:19, conforme horário oficial de Brasília, com
fundamento no art. 8º, caput, da Portaria SEI nº 002, de 25 de outubro de
2018.

Documento assinado eletronicamente por Marco Tulio de Oliveira Valente,
Usuário Externo, em 04/11/2021, às 16:38, conforme horário oficial de
Brasília, com fundamento no art. 8º, caput, da Portaria SEI nº 002, de 25 de
outubro de 2018.

Documento assinado eletronicamente por TIAGO LIMA MASSONI,
COORDENADOR(A) ADMINISTRATIVO(A), em 08/11/2021, às 11:09,
conforme horário oficial de Brasília, com fundamento no art. 8º, caput, da
Portaria SEI nº 002, de 25 de outubro de 2018.

Documento assinado eletronicamente por LEANDRO BALBY MARINHO,
PROFESSOR 3 GRAU, em 16/11/2021, às 22:48, conforme horário oficial de
Brasília, com fundamento no art. 8º, caput, da Portaria SEI nº 002, de 25 de
outubro de 2018.

A autenticidade deste documento pode ser conferida no site
https://sei.ufcg.edu.br/autenticidade, informando o código verificador
1896716 e o código CRC 370D8001.

Referência: Processo nº 23096.050386/2021-17 SEI nº 1896716

Resumo

Revisão de Código Moderna (MCR) é uma atividade leve cada vez mais popular para mel-

horar a qualidade do software. Na MCR, os desenvolvedores participam de várias discussões

que são armazenadas em ferramentas de suporte a MCR. Ao analisar essas discussões,

pesquisadores descobriram que há uma quantidade considerável de informações de design

dentro delas. Eles também obtiveram resultados positivos nos seus estudos de técnicas para

identificar automaticamente as discussões de design nas revisões. No entanto, a maior parte

desta pesquisa é quantitativa e não analisou a fundo questões como, por exemplo, como os

desenvolvedores conduzem discussões de design e que tipo de informação de design eles dis-

cutem. Para recuperar informações de design de forma mais eficaz nas discussões de revisão

de código, é necessário saber como os desenvolvedores discutem design durante as revisões

de código para poder distinguir as informações de design do resto. Além disso, é necessário

saber que tipo de informação de design existe nessas discussões e qual é a sua forma. Com

o objetivo de compreender melhor a MCR e o processo de como design é discutido na MCR

a fim de preencher as lacunas de conhecimento atuais, realizamos um estudo qualitativo

para caracterizar as informações de design na MCR por meio da aplicação de Straussian

Grounded Theory (GT) a um conjunto de dados de projetos de software de código aberto

(OSS) da Apache Software Foundation. Como resultado, produzimos um modelo de como

os desenvolvedores discutem design durante a revisão de código, uma classificação dos tipos

de informações de design discutidas na MCR e uma base de dados de discussões de design.

Acreditamos que nosso trabalho será de grande ajuda em pesquisas futuras que objetivem

extrair informações de design de discussões da MCR de uma maneira que seja útil para os

profissionais.

Palavras-chave: revisão de código; revisão de código moderna; design de software;

discussão de design.

i

Abstract

Modern Code Review (MCR) is an increasingly popular lightweight activity for improving

software quality. As part of MCR, developers participate in a number of discussions which

are stored in tools for supporting the process. By analyzing these discussions, researchers

found that there is a considerable amount of design information within them. They also had

positive results in their studies of techniques for automatically identifying design discussions

in the reviews. However, most of this research is quantitative and has not thoroughly ana-

lyzed questions such as how developers conduct design discussions and what topics of design

they discuss. To retrieve design information more effectively from code review discussions,

it is necessary to know how developers discuss design during code reviews in order to be able

to distinguish design information from the rest. Furthermore, it is necessary to know what

kind of design information exist in these discussions. With the goal of better understanding

MCR and the process of how design is discussed in MCR in order to fill the current knowl-

edge gaps, we performed a qualitative study to characterize design information in MCR by

applying Straussian Grounded Theory (GT) to a dataset of design discussions from open

source software (OSS) projects of the Apache Software Foundation. As a result, we pro-

duced a model of how developers discuss design during code review, a classification of types

of design information discussed in MCR and a dataset of design discussions. We believe our

work will be of significant help in future research aiming to extract design information from

MCR discussions in a manner that is useful to practitioners.

Keywords: code review; modern code review; software design; design discussion.

ii

Agradecimentos

Este trabalho não seria possível sem a ajuda inestimável de inúmeras pessoas. Gostaria de

agradecer principalmente a:

• Aos meus pais, Pedro Aurélio e Rosângela, e ao meu irmão, Leonardo,

• À minha amada, Maraíza,

• Aos demais parentes,

• Aos meus orientadores, João Arthur e Jorge Abrantes,

• Aos membros da banca avaliadora, Tiago Massoni, Uirá Kulesza, Marco Túlio Valente

e Leandro Marinho,

• Aos demais professores do DSC, especialmente: Dalton Serey, Franklin Ramalho,

Joseana Fechine, Andrey Brito, Jacques Sauvé,

• Aos amigos e colegas do projeto ePol e do SPLAB,

• Aos funcionários da COPIN e do SPLAB, especialmente, Lilian,

• Aos amigos, Felipe, Alana, Erick, Poliana, Corina, Arthur, Davi, Diego Pedro, Guil-

herme e Laércio,

• Ao professor Kerly Monroe,

• À CAPES pelo auxílio financeiro,

• A todos que me ajudaram nessa trajetória e que ainda não foram citados.

Muito obrigado!

iii

Contents

1 Introduction 1

1.1 Context . 1

1.2 Problem . 2

1.3 Solution . 3

1.4 Contributions . 4

1.5 Outline . 5

2 Background 6

2.1 Modern Code Review (MCR) . 6

2.1.1 Review Board . 7

2.2 Software Design . 9

2.2.1 Definitions . 9

2.2.2 Software Architecture (High-level Design) 11

2.2.3 Detailed Design (Low-level Design) 12

2.3 Machine Learning and Natural Language Processing 12

2.3.1 Supervised Learning . 13

2.3.2 Tokenization . 13

2.3.3 Lemmatization . 14

2.3.4 Bag of Words and N-grams . 14

2.3.5 TF-IDF . 15

2.3.6 Performance Metrics . 15

2.4 Grounded Theory . 16

2.4.1 QCAmap . 18

iv

CONTENTS v

3 Automatic Identification of Design Discussions in Modern Code Review 20

3.1 Methodology . 20

3.1.1 Research Questions . 20

3.1.2 Data Collection . 21

3.1.3 Data Analysis . 21

3.2 Results . 24

3.2.1 Automatic Classifier . 24

3.3 Discussion . 26

3.4 Related Work . 27

3.5 Conclusion . 29

4 Characterization of Design Discussions in Modern Code Review 30

4.1 Methodology . 30

4.1.1 Research Questions . 30

4.1.2 Data Collection . 31

4.1.3 Data Analysis . 31

4.2 Results . 32

4.2.1 Overview . 32

4.2.2 RQ1: How do developers discuss design during code review? . . . 32

4.2.3 RQ2: What topics of design are discussed during code review? . . . 39

4.3 Discussion . 47

4.3.1 Comparison with Existing Literature 47

4.3.2 Differentiating between Requirements, Design and Implementation 50

4.3.3 Limitations . 51

4.4 Conclusion . 52

5 Conclusion 54

5.1 Contributions . 54

5.2 Future work . 55

A A Systematic Mapping of Modern Code Review 64

A.1 Methodology . 64

CONTENTS vi

A.1.1 Research Questions . 65

A.1.2 Study Search . 65

A.1.3 Study Selection . 66

A.1.4 Data Extraction . 67

A.2 Results . 68

A.2.1 RQ1: Where and when were MCR studies published? 68

A.2.2 RQ2: What researchers and organizations are most active in MCR

research? . 70

A.2.3 RQ3: What are the most investigated MCR topics? 71

A.2.4 RQ4: What types of research methods are used in MCR research? . 75

A.2.5 RQ5: What types of contributions are made in MCR research? . . . 77

A.2.6 RQ6: Which context is more used in MCR studies: open source or

closed source? . 77

A.2.7 RQ7: What are the most referenced (influential) papers? 78

A.3 Discussion . 80

A.3.1 Main Findings . 81

A.3.2 Implications for Researchers . 82

A.3.3 Threats to Validity . 83

A.4 Related Work . 84

A.4.1 Systematic Mappings in Modern Code Review 84

A.4.2 Systematic Mappings in Software Engineering 84

A.4.3 Systematic Mappings in Software Quality 85

A.5 Conclusion . 85

B Tree of Concepts and Categories 87

List of Figures

1.1 An example of a discussion with a proposed design change which was even-

tually rejected. 3

2.1 Workflow of modern code review. [21] 7

2.2 A review request of the Apache Software Foundation in Review Board. [18] 8

2.3 QCAmap supports the process of open coding. A passage that we marked

with the concept of design change is highlighted in this figure. 19

2.4 QCAmap supports grouping concepts into categories. 19

3.1 A boxplot of the proportion of design discussions in the 27 Apache projects

with more than 1,000 discussions. 27

4.1 A view of the model focusing on the core category: design review. 33

4.2 A view of the model focusing on design concern. 33

4.3 A view of the model focusing on review action. 35

4.4 A view of the model focusing on design discussion. 36

A.1 Histogram showing the distribution of papers over the years. 70

A.2 Bar plot comparing the usage of different research methods in MCR research. 76

A.3 Bar plot comparing the usage of different research types in MCR research. . 76

A.4 Bar plot comparing the usage of different contribution types in MCR research. 77

A.5 Venn diagram comparing the number of papers analyzing MCR in Open

Source Software (OSS) projects and Closed Source Software (CS) projects. 78

vii

List of Tables

3.1 Categories of the 1,000 manually classified code review discussions and their

absolute frequencies. 23

3.2 Comparison of candidate learning models using their default hyperparameters. 25

3.3 Comparison of candidate learning models using the best hyperparameters

found for them. 26

4.1 Main concepts and categories of design changes. Categories start with up-

percase to differentiate them from concepts. 40

4.2 Main concepts and categories of design issues. Categories start with upper-

case to differentiate them from concepts. 43

4.3 Main concepts and categories of non-design discussions topics. Categories

start with uppercase to differentiate them from concepts. 46

A.1 The top 12 most popular venues in MCR research. 69

A.2 The top 10 most active organizations in MCR research. 71

A.3 The top 10 most active researchers in MCR research. 72

A.4 The top 10 most referenced authors in MCR research. 72

A.5 The top 10 most investigated concepts in MCR research. 73

A.6 The categories of concepts investigated in MCR research. 74

A.7 The 8 organizations who published multiple papers about MCR within a

closed source context and are responsible for 80.0% of the research with this

context. 79

A.8 The top 10 most referenced papers in MCR research. 79

viii

Chapter 1

Introduction

1.1 Context

Code review is a very popular activity for improving software quality. It originated in 1976

with the work of Fagan on the first code review process [17]. Fagan’s code review process

and similar formal ones are known as software inspections and several studies have provided

evidence of their efficacy. However, despite all this evidence, practitioners tend to not use

inspections because of how costly and time-consuming they are [12][27][47].

In contrast to the early code review processes which were formal and costly, lightweight

code review processes known as Modern Code Review (MCR) were created and they are now

commonplace, especially in open source software (OSS) projects [2]. MCR usually consists

of reviewing changesets in a distributed and asynchronous manner with the assistance of

specialized tools [22][23][41]. Even though MCR processes requires less time than software

inspections, they still positively affect software quality [2][5][7].

We conducted a systematic mapping study of MCR to obtain an overview of the research

in the field of MCR (Appendix A). We identified and classified 177 studies about MCR

that were published between the years of 2002 and 2018 to create a map of the published

peer-reviewed research on MCR. Principally, we observed that the field of MCR has been

growing fast and steadily since 2011 and that a wide variety of topics within MCR are being

studied. In particular, we noticed that the topic of design discussions within MCR needs

more research.

A large number of discussions about the software is often generated as a consequence

1

1.2 Problem 2

of using MCR. Because of the tendency of MCR to be distributed and asynchronous, the

developers usually discuss the changesets under review in writing and these discussions are

commonly stored for future reference.

By analyzing these discussions, researchers have found that there is a considerable

amount of design information present in MCR discussions, although the quantity of such

information varies in each project. Sutherland and Venolia found that design information

was abundant in the code review emails at Microsoft and that those emails were used by

project members to retrieve rationales for past design decisions [50]. Brunet et al. analyzed

102,122 discussions from 77 projects hosted in GitHub and found that on average 25% of

discussions have design information [9]. Zanaty et al. found that an average of 12% of

comments have design information in a sample of 1,357 comments from OpenStack Nova

and 1,460 comments from OpenStack Neutron projects [58].

1.2 Problem

While a number of studies have investigated design information in MCR, these have mostly

used quantitative methodologies and usually focus on automatically identifying design dis-

cussions. Indeed, few studies have investigated how developers conduct design discussions

in MCR and what kind of design information is present.

Merely identifying which discussions and comments are about design in a review is not

enough for many purposes. For instance, a discussion might be about a proposed design

change which the developers rejected in the end. These rejected design changes would likely

not be useful if a developer wanted to extract design rules from the discussions. Figure 1.1

shows a real example of such a discussion. The reviewer initially suggests using a simpler

data structure but this is rejected by the developer. However, the developer subsequently

proposes another design change which the reviewer agrees with.

Before designing tools to leverage the design information in MCR, it is necessary to

know what type of design information is present in the discussions. For example, if devel-

opers often talk about architectural concerns in MCR, then it might be possible to extract

architectural rules from these discussions. Conversely, if the discussions are mostly about

low-level design such as method signatures and class responsibilities, then other solutions

1.3 Solution 3

Figure 1.1: An example of a discussion with a proposed design change which was eventually

rejected.

focusing on this kind of information must be evaluated.

Thus, there is a gap in the research regarding how developers discuss design during MCR

and what types of design information are discussed. We hypothesize that filling this knowl-

edge gap would be valuable for future research on several open problems in the area such as

(1) automatically extracting design information to produce documentation, (2) automatically

extracting design information to verify design conformance and (3) tools with better support

for reviewing design in MCR.

1.3 Solution

Our goal is to achieve a deep understanding of the process of design discussion during MCR

and of the content present in design discussions. Therefore, we performed a characterization

study of design discussions in MCR. In particular, we wanted to investigate the following

research questions:

• RQ1: How do developers discuss design during code review?

• RQ2: What topics of design are discussed during code review?

1.4 Contributions 4

Before conducting this characterization study, we had to obtain a dataset of design dis-

cussions in MCR. To this end, we replicated studies which quantitatively analyze the pres-

ence of design discussions in MCR. Specifically, we conducted a study where we created an

automatic binary classifier capable of recognizing which discussions are about design and

applied it to 267,843 review discussions from the Apache Software Foundation (ASF). As a

result, we found further evidence that design is frequently discussed in MCR and we built a

public dataset of 108,458 design discussions.

Straussian Grounded Theory (GT) is a qualitative research methodology which is well

suited to examine research questions like RQ1 and RQ2. The GT research methodology

enables researchers to investigate not only how a process happens but also what happens in

it [15].

For this reason, we used GT to analyze the dataset of design discussions from the the

ASF. We examined 180 review requests which had design information and analyzed 30 of

them in depth to generate as a result: a model of how developers discuss design during MCR

and a classification of types of design discussed in MCR.

We observed that design review is a significant part of MCR which happens implicitly in

code review discussions. Furthermore, we found that design review can be seen as a process

where developers engage in design discussions over design concerns throughout MCR while

performing a number of review actions which affect these design concerns. Moreover, our

classification of types of design discussed in MCR is composed of 93 concepts representing

types of design concerns, which were grouped into a hierarchy that mainly splits them into

two major categories: design changes and design issues. We also identified 45 concepts

representing comments that were not about software design primarily because these will

help other researchers clearly understand what we considered as being software design.

1.4 Contributions

Briefly, the main contributions of this work are:

• A model of how developers discuss design during MCR;

• A classification of types of design information discussed in MCR;

1.5 Outline 5

• A public dataset of 108,458 design discussions from the Apache Software Foundation

that can be used in other studies.

1.5 Outline

This thesis is structured as follows: Chapter 2 provides the necessary background for under-

standing this work, Chapter 3 presents our study of automatically identifying design discus-

sions which produced the dataset used in the characterization study, Chapter 4 describe our

characterization of design in MCR and Chapter 5 concludes this work by outlining what we

found and what the implications are.

Chapter 2

Background

2.1 Modern Code Review (MCR)

In the past decade, lightweight code review processes known as Modern Code Review

(MCR) [2] became increasingly more popular not only on the OSS projects where they

originated but also in proprietary software. In contrast to traditional software inspections,

MCR is usually performed in a distributed and asynchronous manner with the assistance

of specialized tools [22][23][6]. These characteristics have led MCR to be less costly than

inspections and, as a result, it enjoys a higher popularity.

During MCR, it is common for at least part of the discussions to happen in text and

within a MCR tool. Therefore, ample data is generated during these discussions which could

be leveraged to improve the software process.

Although there are many tools for performing MCR and the review processes of each

software development team have their own particularities, the underlying review process

does not change much (Figure 2.1) [21]. After a developer has performed a set of code

changes in the database which he finds satisfactory, he uses an MCR tool to group these as

a changeset and he shares this changeset with others developers who will act as reviewers.

Then, the reviewers read the changeset and write comments where they ask for clarification,

identify bugs, suggest better solutions and etc. Afterwards, the author of changeset respond

to these comments and improve the code according to the discussions. This exchange be-

tween the author of the changeset and the reviewers continues until the reviewers are either

satisfied with the changeset and accept it or they do not approve of it and reject it.

6

2.1 Modern Code Review (MCR) 7

Figure 2.1: Workflow of modern code review. [21]

2.1.1 Review Board

Review Board is a OSS tool for supporting the process of MCR [6]. It allows developers to

share changesets, discuss them and decide whether to approve and reject these changesets.

The core concept of Review Board is a review request, which is how they represent a

changeset. Review requests contain metadata (e.g. name of the author of the review request,

summary of the changes), screenshots, attachments and, most importantly, the files and diff

to be reviewed.

Developers add reviews to a review request throughout the MCR process. Each review

contains general comments about the whole changeset and/or diff comments which are about

specific parts of the diff. It is also possible to reply to these general comments or to the diff

comments.

2.1 Modern Code Review (MCR) 8

Figure 2.2: A review request of the Apache Software Foundation in Review Board. [18]

2.2 Software Design 9

2.2 Software Design

2.2.1 Definitions

Even though design is a fundamental part of most software processes, there is not a clear

and unambiguous definition of software design that is widely accepted by researchers and

practitioners. Classic and seminal works in the field of software engineering (SE) present

different definitions for software design.

For example, two classical SE books describe software design as a process immediately

following requirement analysis which translates the requirements into a design model which

will be followed during subsequent construction activities. They divide the design process

into architectural design, component design, interface design and data design [42][48].

Similarly, Clemens et al., Budgen and Bourque and Fairley also see software design as

being a process happening between requirements and construction, but they divide software

design into architectural design and non-architectural design (detailed design) [13][10][8].

Perry and Wolf in their seminal work on software architecture used the term "design" to

refer to what other authors commonly call "detailed design", i.e. the process executed after

the software architecture is specified and which defines the details of each component of the

architecture [38].

Likewise, Rozanski and Woods also see design as the process which is executed after

the architecture is defined. In addition, they believe that design is exclusively concerned

with translating the system requirements into a specification for building the system and

therefore does not consider the needs of all stakeholders. In their view, architecture definition

(architectural design) acts as a bridge between requirements analysis and design [44].

The lack of a clear, precise and widely accepted definition of design negatively impacts

both research and practice. In research, a lack of such definition prevents the creation of an

integrated body of knowledge on design because studies using different definitions might be

incompatible with one another. In practice, confusion over what design is or not might lead

to conflicts among the software engineers and stakeholders.

Considering the importance of having a clear and detailed definition of software design,

we adopted in this work the definition proposed by Ralph and Wand which aims to fulfill this

need [43]. Ralph and Wand identified 33 definitions for design in the literature (including

2.2 Software Design 10

design in other fields) and analyzed them using four quality criteria: coverage, meaningful-

ness, unambiguousness and ease of use. All of the 33 definitions had problems according

to one or more the chosen quality criteria. Given these results, Ralph and Wand proposed

a new definition for design that builds upon these existing definitions but which aims to be

clear and precise and to satisfy the aforementioned four quality criteria.

Ralph and Wand define design as both a noun and a verb. As a noun, design is "a specifi-

cation of an object, manifested by some agent, intended to accomplish goals, in a particular

environment, using a set of primitive components, satisfying a set of requirements, subject

to some constraints. As a verb, to design is "to create a design, in an environment (where the

designer operates)".

They explained each of the highlighted concepts in their definition. The specification

is a detailed structural description of how the object is to be built using the set of available

primitives. Primitives are the basic components available to the design agent which can

be used to build the object. The environment means either the object environment which

is where the object will operate or the agent environment which is where the agent works.

Requirements are structural or behavioral properties required of the object. Goals differ

from requirements in that they are more abstract statements indicating what the stakeholders

wish the design object accomplishes, i.e. goals specify the impact of the object in the object

environment. Constraints are similar to requirements and they are structural or behavioral

restrictions on the object.

To put these concepts in perspective, let us consider an example in the context of software

engineering where the design object is a software system for the payroll of a business. In this

example, the primitives would include modules, classes, relationships, data structures and

algorithms. The design agents are a group of senior software engineers. The goal is that the

stakeholders expect the system to automate the payroll while complying with governmental

regulations. Part of the behavioral requirements are that the system tracks previously made

payments and that users can examine this data. A structural requirement is that the system

must interface with another human resources system within the company. The environment

for the payroll system is the business and it includes other in-house systems and a set of

outside systems that it must interact with such as the government tax system. A constraint

is that the system must be fast enough to process the payments in the first five days of each

2.2 Software Design 11

month.

Design is usually separated into high-level design (software architecture) and low-level

design (detailed design or non-architectural design). We explain this separation in the next

two subsections.

2.2.2 Software Architecture (High-level Design)

The architecture of a software is a set of architectural elements and their relationships. Its

goal is to satisfy the functional and non-functional requirements (quality properties) of the

software. Architectural elements are often called modules and components and each element

is responsible for a set of features which are accessible by well defined interfaces [44].

Although every software has its own architecture, not all of them has this architecture

properly documented. The documentation of an architecture is called an architectural de-

scription.

There are multiple models for creating an architectural description but most of them

use the concept of views to manage the complexity of architecture [44][13]. Each of these

views focuses on a specific part of the architecture so as not to overwhelm the readers of the

documentation with information.

Rozanski and Woods presents a process for creating an architectural definition which

revolves around the concepts of stakeholders, views, viewpoints and perspectives in their.

More specifically, stakeholders are the individuals or groups interested in the software, a

view is a representation showing certain aspects of the architecture and how these address

the software requirements, a viewpoint is a template for creating a view and a perspective is a

set of guidelines similar to a viewpoint but it affect multiple views and helps the architecture

meet a desired quality property such as security, performance and availability [44].

They introduce 7 viewpoints for creating views for an architectural definition, namely:

context, functional, information, concurrency, development, deployment, and operational.

For example, the context viewpoint helps architects create a view that specifies the scope of

the software and how it will interact with its environment (other software, organizations and

people) [44].

As for perspectives, they describe 9 of them: security, performance and scalability, avail-

abilty and resilience, evolution, accessibility, development resource, internationalization, lo-

2.3 Machine Learning and Natural Language Processing 12

cation, regulation and usability. To illustrate, the security perspective presents a set of activ-

ities and guidelines on how to ensure the architecture meets the security needs of the stake-

holders such as controlling access to information, limiting the effect of potential security

breaches and auditing data modifications [44].

2.2.3 Detailed Design (Low-level Design)

Low-level design, which is also known as non-architectural design and detailed design, con-

sists of specifying each architectural element in detail. In the case of object-oriented software

design, this step would define a number of elements such as classes, interfaces and methods

and how they compose each of the architectural elements [48].

There is not a clear boundary between architecture and detailed design. Not only do

authors have different definitions on what separates them but also these definitions are often

not clear enough to determine with certainty if an element is part of either the architecture or

the detailed design.

For example, Clements et al. believes the architect establishes the boundary between the

two in each software project. Design decisions which enable the software to meet its require-

ments are considered architectural decisions and the other decisions are non-architectural de-

cisions. Thus, software architecture is the set of architectural decisions and detailed design

is the set of non-architectural decisions [13].

At the same time, Budgen states that the architecture is an abstract model of the solu-

tion which does not include details of the architectural elements and that detailed design is

concerned with the details of each of these architectural elements [10].

2.3 Machine Learning and Natural Language Processing

In this section, we focus on the core concepts of machine learning and NLP necessary to

understand the problem of binary classification of text.

2.3 Machine Learning and Natural Language Processing 13

2.3.1 Supervised Learning

Supervised learning consists of generating an approximate function (hypothesis) h(x) that

is as close as possible to a real function f(x) when given a set of input-output pairs (xi, yi)

where yi = f(xi). When the output of f(x) is restricted to a finite set of values, the problem

is said to be a classification problem[45].

Over the years, researchers have designed a plethora of supervised learning algorithms

for generating a hypothesis that approximates a real function, e.g. decision tree, random

forests, naive bayes, logistic regression, gradient descent, neural networks. There is not an

algorithm that works best in every domain, so multiple learning algorithms must be evaluated

when trying to build a classifier.

Explaining the workings of all the supervised algorithms used in this work would be be-

yond the scope of this document. But, knowing their workings is not required to understand

this work because we use them mostly as black boxes.

2.3.2 Tokenization

In NLP, tokenization is the process of splitting text into words and sentences [28]. Con-

sidering how sentences in the English language are formed, this seems to be a very simple

task at first. To divide sentences, an algorithm could just use the naturally occurring periods,

question marks and exclamation points. Likewise, words in a sentence could be divided by

just using the spaces between them.

However, a more careful examination will reveal a number of problems with this trivial

approach. For instance, text, especially in code reviews, is often fraught with spelling and

grammatical errors, e.g. missing spaces between words, misspelled words and missing punc-

tuation. Therefore, a tokenization algorithm that is to be used with code review discussions

needs to be designed for handling such errors.

Another example of a problem with this trivial approach would be the multiple meanings

of periods in text. Periods are not used solely for marking the end of sentences. In fact, they

are also used with completely different meanings in decimal numbers and abbreviations such

as "3.14" and "i.e.".

Even the use of whitespace for separating tokens is not as straightforward as it seems.

2.3 Machine Learning and Natural Language Processing 14

For example, composite names such as "Rio Grande do Norte" could either be considered

as four separate tokens ("Rio", "Grande", "do", "Norte" or as a single token "Rio Grande do

Norte". Each application will have to decide on the best approach according to its needs.

Thus, given the complexity of this problem and the different needs of each application,

there is a wide variety of tokenization algorithms available.

2.3.3 Lemmatization

Every word has an associated root word called its lemma and the process of converting words

to their lemmas is called lemmatization. Concretely, the lemmas for "playing" and "went"

are respectively "play" and "go" [28].

Lemmatization is often confused with stemming. Stemming is similar to lemmatization

in that it returns the root or stem of the word. However, stemming does not consider the

context in which the word appears, nor does it use a dictionary of the language. To illustrate,

the stem of "went" is "went", while its lemma is "go".

2.3.4 Bag of Words and N-grams

Since many machine learning algorithms require numerical features, the list of tokens ex-

tracted from a text must be quantified somehow. One approach to this is the bag of words

model. In this model, each document is represented by a vector containing the frequencies

of each word in the document. Each position in the vector corresponds to a token and the

size of the vector is equal to the number of different tokens present in the dataset [45].

One of the main drawbacks of the bag of words model is that it discards the order of words

in the original document. Consequently, sentences such as "is it ready?" and "it is ready."

would be mapped to the same frequency vector. Depending on the desired application, this

loss of ordering information can have a significant negative impact on the results.

To preserve some of the ordering, researchers have proposed the n-grams language model

[45]. N-grams consist of storing sequences of words of size n, so that the amount of ordering

information to preserve can be controlled with n. Concretely, the sentence "it is ready." has

three 1-grams ("it", "is", "ready"), two 2-grams ("it is", "is ready") and one 3-gram ("it

is ready"). Notice that with an n of size 3, the whole ordering of that small sentence is

2.3 Machine Learning and Natural Language Processing 15

preserved. Further, some n-grams have special names such as unigrams for 1-grams, bigrams

for 2-grams and trigrams for 3-grams.

2.3.5 TF-IDF

Tf-idf is a statistic created to avoid giving too much importance to common but unimportant

words such as articles and prepositions, e.g. "the", "a". To this end, it combines two statistics:

term frequency and inverse term frequency [35].

Term frequency is the number of times a word appeared in a certain document. It rep-

resents the intuitive notion that the more often a word appears in a document, the more

important it is.

The inverse document frequency of a word is a statistic inversely proportional to the

number of documents in the dataset containing that word. Thus, words that are present in

few documents will have a higher inverse-term frequency that words that are present in a lot

of documents.

Tf-idf can be formally defined as tfidf (t) = tf (t, d) ∗ idf (t) = tf (t, d) ∗ logN/df (t)

where t is a word, d is a document in the dataset, N is the number of documents in the

dataset, df (t) is the number of documents containing the word t, tf is the term-frequency

and idf is the inverse-term frequency [35].

2.3.6 Performance Metrics

There are four fundamental metrics for evaluating the performance of a binary classifier. A

binary classifier outputs either positive or negative for each input it receives. Thus, for a set

of instances given to the classifier, we say that [26]:

• TP (true positives) is the number of instances correctly marked as positive by the

classifier;

• FP (false positives) is the number of instances wrongly marked as positive by the

classifier;

• TN (true negatives) is the number of instances correctly marked as negative by the

classifier;

2.4 Grounded Theory 16

• FN (false negatives) is the number of instances wrongly marked as negative by the

classifier.

Using these core metrics as a basis, researchers have proposed many other metrics. Here,

we focus on four commonly used metrics: accuracy, precision, recall and f1-score. For the

sake of brevity, we also define P = TP + FN as the number of positive instances and

N = TN + FP as the number of negative instances.

Accuracy is the proportion of instances that the classifier correctly marked, i.e.

accuracy = (TN + TP)/(N + P).

Precision is the proportion of instances that were correctly marked as positive out of all

the instances marked as positive, i.e. precision = (TP)/(FP + TP). In a information

retrieval context, this would be the proportion of results returned that are actually relevant.

Recall is the proportion of instances that were correctly marked as positive out of all the

positive instances, i.e. recall = (TP)/(FN + TP). In a information retrieval context, this

would be the proportion of results returned out of all the results in the dataset.

F1-score is the harmonic mean of precision and recall, i.e. f1score = 2 ∗ precision ∗

recall/(precision + recall). This metric is often used when we want to find a classifier with

balanced precision and recall instead of high precision and low recall or vice-versa.

Although accuracy is the most straightforward metric and appears to summarize the per-

formance of a classifier well at first, it is not the best choice when dealing with an unbalanced

dataset. Suppose a dataset where 10% of the instances are positive and the other 90% are

negative. If a classifier was created where any instances given to it were marked as negative,

then such a classifier would have an accuracy of 90% on this dataset and would seem to have

an excellent performance. However, its precision and recall on this dataset would be 0%.

2.4 Grounded Theory

Grounded theory (GT) is a qualitative research methodology developed by Glaser and Strauss

in 1967 which aims to inductively generate theory from data [24]. By following GT method-

ology, researchers identify codes and categories as they analyze the data and these codes and

categories are eventually used to generate a theory describing and explaining the phenomena

under study.

2.4 Grounded Theory 17

Since its inception, multiple variants of GT have been developed such as the Straussian

and Constructivist variants, while the original GT is became known as Classic GT. Each

variant has different philosophical influences and consequently has its own peculiarities with

regards to the methodology although they are very similar. As an example, while classic

GT is strict about literature review never being performed before the theory is developed,

Straussian GT is more lax in this regard and believes that the use of other literature could be

helpful in certain cases [49].

Many studies often claim incorrectly to have used GT when they only used a small sub-

set of it such as the process of open coding. For a study to use GT properly, they must

perform a number of its defining activities, e.g. constant comparison, theoretical sampling

and memoing [49]. We describe these activities in the next paragraphs in which they are

highlighted.

GT can be understood as an iterative process where we constantly move back and forth

between coding discussions and analyzing these codes to categorize them and generate a new

theory. In GT, there must be a constant comparison of data, concepts, categories and memos

looking for similarities and differences between them. This is in stark contrast to research

methods where analysis is only performed at the end [15].

GT uses theoretical sampling, which is different from sampling in quantitative research

methods. Whereas a random sampling process defined a priori is the norm for quantitative

methods, in GT the researcher purposefully selects new data based on the codes, memos and

hypotheses established so far. That is, it is preferable to select new data points that conflict

with the current analysis results and that will generate new insights instead of data points that

are already explained by the current results. The goal is to achieve theoretical saturation, i.e.

the point where new data points do not affect the codes, categories and theories generated by

the researcher [15].

Each piece of data is analyzed according to the processes of open coding and axial

coding. Open coding consists of determining concepts that represent what is being said

in the data. Concurrently to open coding, researchers perform axial coding which consists of

grouping related lower-level concepts into categories (higher-level categories) and of finding

relationships between concepts and categories. Using these two processes, researchers can

build a hierarchy of concepts, categories and their relationships that describes and explains

2.4 Grounded Theory 18

the phenomena under study [15].

While open coding and axial coding are significant activities of GT, their use in isolation

is not synonymous to using GT. Another crucial activity of GT is memoing. Memos are

documents written by the researchers throughout the analysis where they explain the con-

cepts identified, establish relationships between concepts, compare concepts, think about the

properties and dimensions of a concept, integrate categories, generate hypotheses, develop

theory and so forth. In short, memoing consists of documenting the analytical reasoning of

the researchers on how the identified lower-level concepts were eventually developed into a

theory describing the phenomena under study [15].

A GT study can either limit itself to developing thick and rich description about the

phenomena under study or it can go further and develop a theory for explaining it (theory

building). In order to accomplish that, researchers need to define a core category and perform

integration, which is about relating the categories that were found to this core category and

establishing the relationships between them, i.e. integrating all the concepts and categories

into a unified theory that describes and explains the phenomena under study [15]. After

defining a core category, the hierarchy of concepts and categories can be seen as a tree

where the concepts are the leaf nodes, the categories are internal nodes and the core category

is the root.

2.4.1 QCAmap

QCAmap is a tool that can be used to support the coding processes of GT [36]. It works

well for GT even though it was originally made for another research method, namely, quali-

tative content analysis. Among its many features, it allows researchers to (1) import textual

data, (2) assign concepts to words, phrases and whole paragraphs, (3) group concepts into

categories and (4) generate statistics of the coding process.

2.4 Grounded Theory 19

Figure 2.3: QCAmap supports the process of open coding. A passage that we marked with

the concept of design change is highlighted in this figure.

Figure 2.4: QCAmap supports grouping concepts into categories.

Chapter 3

Automatic Identification of Design

Discussions in Modern Code Review

Before conducting the characterization study, we needed a dataset of design discussions in

MCR. Thus, we saw the opportunity to not only build a public dataset of design discussions

in MCR but also to replicate quantitative studies which indicated the presence of substantial

design information in MCR.

3.1 Methodology

3.1.1 Research Questions

The goal of this study is to analyze the occurrence of design discussions in MCR discussions

and to build a dataset of design discussions using an automatic binary classifier. Hence, we

devised the following research questions:

• RQ1: How frequently is software design discussed during the process of MCR in an

open source software project?

• RQ2: How well does our classifier of design discussions perform in terms of precision

and recall?

20

3.1 Methodology 21

3.1.2 Data Collection

The Apache Software Foundation (ASF), the world’s largest open source software (OSS)

foundation [19], makes the MCR discussions from its numerous projects publicly available

[18]. Due to the wide variety of projects developed by the foundation and the great number

of people involved, we suppose that the foundation’s data are appropriate for studying design

discussions and evaluating the solution proposed in this document.

Code review in Apache’s projects are usually performed with the tool Review Board [6].

Using Review Board, users publish code review requests when they want to send change-

sets to the main code repository and they would like other team members to review these

changesets. After a review request is opened, it is possible to comment either on the whole

changeset or on specific diff lines in the code. These comments can then be answered by

other developers to form discussion threads.

Review Board allows its data to be extracted via a REST API. Therefore, using this API,

we extracted 56,397 review requests that happened between 2010-10-25 and 2019-11-29 and

collectively contain a total of 386,940 comments.

3.1.3 Data Analysis

After extracting the data, we randomly sampled 1,000 discussions from it and manually iden-

tified which were about design. Then, we used this annotated sample to create an automatic

classifier capable of recognizing which discussions are about design. Finally, we applied this

classifier to the whole dataset of comments extracted from the Apache projects.

Manual Classification of Design Discussions

In order to create an automatic identifier of design discussions using a supervised learning

algorithm, a sample of discussions correctly classified as being about design or not is re-

quired. So we manually classified a random sample of 1,000 discussions, marking them as

either being about design or not.

We had to perform a few preprocessing operations on the data before proceeding with

the random sampling of the discussions. These were as follows:

3.1 Methodology 22

1. Removal of 19,945 (5.2%) review requests which had at most one comment because

we observed that this kind of request was usually discarded.

2. Merge of comments made on specific code diffs (DiffComment) with their subsequent

answers (ReplyDiffComment) because we observed that reply comments were often

brief and impossible to understand when analyzed individually out of their original

context.

3. Merge of comments about the whole changeset (Review.body_top and Re-

view.body_bottom) with their associated replies (Review.reply.body_top and

Review.reply.body_bottom) for the same reason as the previous item, i.e., they are a

thread of comments that tend to lose their meaning when analyzed individually.

4. Removal of 1,505 (0.4%) comments which have more than 32,767 characters because

these large comments exceeded the practical limits of the tools we used to work with

the data and of the techniques we later used to create an automatic classifier. Also,

after examining a few of these 1,505 comments, we observed that they consisted of

messages automatically generated by bots, so their removal is unlikely to negatively

affect the results of this study.

These preprocessing operations yielded a total of 267,843 discussions belonging to

36,452 review requests. Afterwards, we extracted a random sample of 1,000 discussions

from this data. Then, for each discussion, we read it carefully, marked it as being about

design or not and assigned one or more concepts to it to create a preliminary categorization

of the discussions.

From the 1,000 code review discussions in the sample, 364 (36.4%) were marked as

being about design and the remaining 636 (63.6%) as not being about design. Furthermore,

Table 3.1 shows our categorization of the discussions in the sample.

3.1 Methodology 23

Table 3.1: Categories of the 1,000 manually classified code review discussions and their

absolute frequencies.

Type Category N

Non-Design Author Acknowledgment 28

Design Better Solution 135

Non-Design Bot (automatic message) 83

Design Bug 63

Non-Design Change Approval 160

Non-Design Changeset Partitioning 2

Design Clarification of Design Decision 82

Design Code Execution Order 1

Non-Design Code Formatting 71

Design Concurrency 5

Design Configuration 6

Design Dependency 9

Non-Design Documentation 113

Design Duplicated Code 4

Design Encapsulation 7

Non-Design Feature Addition (requirements) 3

Non-Design Generic Question 2

Design Interface Contract 3

Non-Design Log Message (message to the user) 15

Design Log Point (implementation of the log system) 7

Non-Design Naming 54

Design Performance 9

Design Refactoring 31

Non-Design Rejection 2

Non-Design Repetition of Previous Comment 19

Non-Design Review Process 7

Design Safety 4

Non-Design Task To Do 10

Design Test Design 14

Non-Design Test Requirements 19

Design Unnecessary Code 32

3.2 Results 24

3.2 Results

3.2.1 Automatic Classifier

After obtaining a set of discussions with labels to indicate whether they contain design in-

formation or not, the next step was to build a binary classifier of design discussions using

supervised learning techniques and natural language processing techniques.

Automatic Classifier Creation

Succinctly, our automatic classifier was created in three steps: (1) tokenization and lemma-

tization of the manually classified sample of 1,000 code review discussions; (2) extraction

of features appropriate for supervised learning algorithms and (3) training of a supervised

learning algorithm.

In the first step, using the spaCy library [1], we began by tokenizing all the code re-

view discussions. Next, from the resulting list of tokens for each discussion, we removed

tokens which represent punctuation characters and stop words. Afterwards, we converted

each tokens to its lemma when possible and converted them to lowercase.

In the second step, using the scikit-learn library [37], we ran the process of feature extrac-

tion on the tokens obtained from the previous step because supervised learning algorithms

usually require the inputs to be fixed numerical vectors. First, we converted the list of tokens

from each discussion into a bag-of-words model composed of unigrams and bigrams. Then,

we normalized the frequencies of these unigrams and bigrams using the tf-idf statistic.

In the third and last step, also using the scikit-learn library [37], we trained the chosen

supervised learning algorithm using the bag-of-words of each discussion, which had the

normalized frequencies of unigrams and bigrams.

Evaluation of Classification Models

Since there does not exist a supervised learning algorithm that is ideal for all problems,

several models must be empirically evaluated before finding one that works satisfactorily. We

chose to evaluate seven algorithms for this study: decision tree (DT), random forest (RF),

multinomial naive bayes (MNB), linear support vector machine (SVM), gradient boosting

classification (GBC), logistic regression (LR) e multi-layer perceptron (MLP).

3.2 Results 25

Table 3.2: Comparison of candidate learning models using their default hyperparameters.

Model Accuracy Precision Recall F1-score

SVM 80.7% (±5.3%) 71.5% (±8.5%) 78.6% (±3.8%) 0.748 (±0.056)

MLP 80.6% (±6.8%) 74.6% (±12.2%) 71.7% (±8.1%) 0.730 (±0.082)

LR 79.0% (±6.2%) 76.2% (±10.5%) 61.8% (±11.7%) 0.681 (±0.098)

GBC 77.1% (±5.4%) 73.4% (±10.7%) 58.5% (±10.4%) 0.650 (±0.088)

RF 76.9% (±4.4%) 82.8% (±9.1%) 46.4% (±13.9%) 0.591 (±0.113)

DT 73.4% (±1.8%) 69.6% (±9.8%) 50.5% (±21.6%) 0.575 (±0.090)

MNB 74.2% (±5.7%) 86.6% (±15.9%) 34.6% (±12.8%) 0.491 (±0.146)

We used k-fold cross validation with a k = 5 to evaluate the algorithms. The main

metrics used were precision, recall and F1-score instead of accuracy because the dataset is

unbalanced, i.e., it has more negative items than positive ones.

Initially, we trained and compared the seven algorithms with barely any changes to their

default hyperparameters. Table 3.2 shows this initial comparison along with the metrics

obtained for each algorithm.

After comparing the results of the algorithms, we chose the most promising models,

namely: SVM, MLP, LR and MNB. SVM, MLP and LR had the best F1-scores respectively.

Despite MNB having a low F1-score, we chose to keep it because it had a very high precision

and we were interested in seeing how it would perform with optimized hyperparameters.

After reducing the number of candidate models to four, we performed a search for the

best hyperparameters for each of these models according to the F1-score metric. Table 3.3

shows the the results of these models using the best hyperparameters found.

Considering these results, we decided to use the MLP model, which obtained an accuracy

of 82.2% (±7.7%), precision of 73.6% (±12.6%), recall of 81.0% (±6.9%) and F1-score of

0.770 (±0.082).

3.3 Discussion 26

Table 3.3: Comparison of candidate learning models using the best hyperparameters found

for them.

Model Accuracy Precision Recall F1-score

MLP 82.2% (±7.7%) 73.6% (±12.6%) 81.0% (±6.9%) 0.770 (±0.082)

SVM 81.2% (±4.1%) 72.0% (±7.1%) 79.7% (±6.3%) 0.756 (±0.040)

MNB 82.0% (±5.1%) 76.3% (±11.4%) 74.2% (±5.5%) 0.751 (±0.056)

LR 80.8% (±5.9%) 71.9% (±9.3%) 78.3% (±4.7%) 0.749 (±0.065)

Classifier Performance on the Dataset

Having built and evaluated the automatic classifier, we applied it to all the 267,843 code

review discussions in dataset. 108,458 (40.5%) discussions were classified as being about

design and the remaining 159,385 (59.5%) as not being about design.

3.3 Discussion

The high ratio of design discussions in both the sample (36.4%) and in the whole dataset

(40.5%) indicates that design is frequently discussed in MCR.

The ratio of design discussions in the whole dataset (40.5%) was similar to the ratio in

the manually classified sample of discussions (36.4%). This suggests that the sample of

discussions is representative of the whole dataset.

The ratio of design discussions in this study (40.5%) was considerably higher than pre-

vious work. Indeed, Brunet et al. found that about 25% of discussions were about design

[9] and Zanaty et al. found that an average of 12% of discussions were about design [58].

We formulated two hypotheses that might explain this difference: (1) the lack of a for-

mal and comprehensive definition of what constitutes a design discussion leads to different

researchers classifying discussions differently and (2) different projects and teams discuss

design at different rates.

To mitigate the lack of a formal definition of software design, we provided a categoriza-

tion of what we considered design in this study to make it clear to others what was marked

3.4 Related Work 27

as design or not.

As for the hypothesis that the ratios of design discussions are considerably different from

one project to another, we examined the variability of this ratio between different Apache

projects to test it (Figure 3.1). There were 27 Apache projects with more than 1,000 dis-

cussions and the ratio of design discussions for these ranged from 25.9% to 60.0% and its

first, second and third quartiles were 38.0%, 49.0% and 55.4%, respectively. Hence, this

provides evidence that design discussions does vary considerably between different teams

and projects and this could explain the different results observed in related studies.

Figure 3.1: A boxplot of the proportion of design discussions in the 27 Apache projects with

more than 1,000 discussions.

3.4 Related Work

Brunet et al. used machine learning to develop a binary classifier for identifying design

discussions in pull requests, commits and issues. They applied this classifier to 102,122 dis-

cussions from 77 projects hosted in GitHub and found that on average (1) 25% of discussions

have design information, (2) 26% of developers participated in at least one design discussion,

(3) 99% of developers contribute to less than 15% of design discussions and (4) the small set

of developers who contribute to most design discussions are the most active committers in

the project [9].

3.4 Related Work 28

Shakiba et al. [46] performed a study like the one by Brunet et al. [9]. Similarly to Brunet

et al., they created and evaluated a binary classifier based in machine learning to identify

design information in discussions. Differently, they (1) applied the classifier only to commit

discussions, (2) used data from projects hosted in GitHub and SourceForge, (3) evaluated

more machine learning classification algorithms and (4) only analyzed the performance of

the classifier i.e. they did not analyze the design information in those discussions. Thus,

their main conclusion was that their classifier based on the random forests algorithm had the

best performance with a G-mean of 75.01.

Zanaty et al. performed a mixed methods study of design discussions [58]. First, they

manually analyzed a sample of 1,357 comments from OpenStack Nova and 1,460 comments

from OpenStack Neutron projects. From this qualitative analysis, they found that an aver-

age of 12% of comments have design information and they created a categorization of the

design issues discussed in the comments. Second, they built multiple binary classifiers of

design discussions and then applied these classifiers to 2,506,308 review comments. Their

classifiers had a precision of 59% to 66% and a recall of 70% to 78%. They ultimately con-

clude that design is not discussed as often as it should be and that most design comments are

constructive.

Likewise, Viviani et al. designed and evaluated a binary classifier for finding design

points in pull request discussions [52]. To this end, they built a dataset of design points in

10,790 paragraphs from 3 OSS projects. Using this dataset to train the classifier, they found

that it had an AUC of 0,87. To further evaluate the generalizability of this classifier to other

projects, the authors enlisted 5 Computer Science students to build another dataset with 250

discussion paragraphs from different OSS projects. On this dataset, the classifier had an

AUC of 0,81 which suggests that it is generalizable to datasets other than the one used to

train it.

In the same manner, Mahadi et al. improved upon Brunet et al.’s design discussion clas-

sifier and studied the generalizability of such a classifier to datasets different from the one

used to train it [34][33]. Their improved classifier exhibited an AUC of 0.84 but had poor

results when applied to different datasets than the training one even when using ULMFiT,

which is a technique for improving transfer learning.

3.5 Conclusion 29

3.5 Conclusion

In this study, we wanted to examine the presence of design discussions in MCR and build a

classifier and dataset of design discussions that we could use for future studies.

Briefly, the study consisted of: (1) extracting 386,940 comments from 56,397 code re-

views of 80 project repositories from the Apache organization, (2) manually identifying in

a sample of 1,000 discussions which were about design, (3) creating an automatic classifier

capable of recognizing which discussions are about design and (4) applying this classifier to

the dataset of extracted comments.

The main contributions of this study were:

• A public dataset of 108,458 design discussions from the Apache Software Foundation

that can be used in other studies;

• A free and open source classifier of design discussions trained on this dataset with an

F1-score of 0.770 (±0.082);

• Evidence that design is frequently discussed in MCR;

• Evidence that it is possible to identify design discussions automatically;

Chapter 4

Characterization of Design Discussions in

Modern Code Review

So far, most research has focused on quantitative analyses of design in MCR. As a result,

there is little evidence on how design is discussed in MCR and what topics of design are

discussed because qualitative methodologies are better suited to answer questions related to

process and classification. In order to fill this research gap, we conducted a qualitative study

using Straussian Grounded Theory to learn more about how developers discuss design in

MCR and what topics of design are discussed.

4.1 Methodology

4.1.1 Research Questions

Given the aforementioned knowledge gap in this area, we decided to investigate the following

research questions:

• RQ1: How do developers discuss design during code review?

• RQ2: What topics of design are discussed during code review?

As explained in Section 2.4, Straussian grounded theory (GT) is a qualitative research

methodology which can inductively generate theory from data. Moreover, GT is able to not

only describe a process but also classify its contents. Thus, we chose the GT methodology

30

4.1 Methodology 31

for this study because it is well suited for the research questions, i.e. it enables us to simul-

taneously investigate the process of how developers discuss design during code review and

also what topics of design are discussed.

4.1.2 Data Collection

We analyzed public code reviews from OSS projects of the Apache Software Foundation

(ASF). Specifically, we used a dataset containing 267,843 review discussions from 80

projects of the ASF. We had previously extracted these discussions from the ASF’s publicly

available instance of Review Board [18].

We chose this dataset because (1) the ASF develops a wide variety of large projects used

in production, (2) of the high number of people involved in these projects and (3) the public

and open nature of these code reviews favors the replicability of this study.

4.1.3 Data Analysis

We performed the analysis according to the key aspects of GT which were explained in in

Section 2.4.

To begin our analysis, we chose a large code review at random that had a substantial

amount of discussion. After analyzing this first code review, we continuously skimmed other

code reviews in no particular order and analyzed the ones which we thought would advance

the emerging theory following the idea of theoretical sampling.

To analyze each selected code review, we used the processes of open coding and axial

coding. QCAmap was the tool used to support the coding processes [36].

When we had difficulty understanding a comment or a discussion, we examined the

source code associated with the comment and the metadata for that comment which some-

times indicated whether the comments were accepted or discarded in the end.

Throughout the analysis, we naturally performed the essential GT activities of constant

comparison and memoing. We wrote and stored the memos in Google Docs and later used

them for theory building.

The author of this thesis and his doctoral advisors conducted periodic reviews to improve

the reliability of the results because the author conducted the majority of the coding and

4.2 Results 32

memoing. During these reviews, we discussed the concepts, categories, memos and etc that

were identified from the data thus far. Furthermore, at the end of the analysis, we compared

our results with existing research in the area to evaluate the validity of our results.

4.2 Results

4.2.1 Overview

Following the process of theoretical sampling, we skimmed 180 review requests with de-

sign information chosen at random and analyzed in depth 30 of those while incrementally

building our theory. We concentrated our effort on these 30 review requests because we

deemed them as likely to improve the theory by providing new concepts or conflicting with

the intermediary theory.

The 30 review requests analyzed in depth came from 16 Apache Software Foundation

software projects. These review requests contain 1936 comments whose total length is 40975

words (approximately 82 pages of 500 words) and which were written by a total of 91 de-

velopers.

Our open and axial coding of the 30 review requests identified 174 concepts and 46

categories which have 3330 occurrences in the data. Moreover, developers discussed a total

of 409 distinct design concerns, of which 246 were design changes and 163 were design

issues. Appendix B shows the full tree of concepts and categories identified during the

analysis.

4.2.2 RQ1: How do developers discuss design during code review?

Design review is a significant part of code review and it is conducted in an implicit and

unstructured manner during code review. Indeed, information pertaining to design review

is mixed in discussions which deal with a range of topics unrelated to software design. To

better understand design review, we split it into three components: design concern, review

action and design discussion (Figure 4.1).

In the figures used to illustrate the model, we used the following notation: (1) a named

box denotes a category, (2) names within a box which are prefixed by a plus sign denote

4.2 Results 33

Figure 4.1: A view of the model focusing on the core category: design review.

concepts belonging to that category, (3) a regular line with a closed arrow denotes that a

category is a subcategory of the category pointed to and (4) a dashed line indicates that one

category is related to another.

Design Concern

Figure 4.2: A view of the model focusing on design concern.

The core of a design review is a set of design concerns which originate in the changes

made by the author of the review request. A design concern is an aspect of the software

design that is of interest to the developers and it can be either a design change or a design

issue (Figure 4.2).

4.2 Results 34

Observation 1. A design review revolves around a set of design concerns (changes and

issues).

A design change is a modification to the software design. It has a temporal property in

that it can either be a proposed change or an already implemented change. It also has a goal

which can be: (1) to fix a design issue, (2) to improve a non-functional requirement (e.g.

maintainability, performance) or (3) to support a new feature.

The following quotation is an example of a design change. This change is proposed in

order to improve maintainability and it consists of a pull up refactoring where common code

would be moved to a common parent abstract class:

"probably we can make this less painful, maybe having ServerProcedureInter-

face and TableProcedureInterface extending something like ProcedureQueueOb-

jectInterface or something like that. and then we do getRunQueue with some-

thing like procQueueObjectInterface.getQueueId()?" – Review #34130, Com-

ment #134521

A design issue is a problem in the software design that impacts the fulfillment of func-

tional or non-functional requirements. Issues can be minor such as deficient encapsulation

in a class which hampers maintainability or severe such as when the design doesn’t fulfill the

functional requirements.

Here is an example of a design issue. The reviewer thinks there might be a concurrency

design issue:

"We reuse these instances? Any racing going to happen between threads w/ one

setting these data members and another reading?" – Review #10965, Comment

#55460

Design issues and design changes also share similarities. Both design issue and design

change have an associated description (the what) and a rationale (the why). For example,

in the case of a design issue, its description explains what the issue is and its rationale is

the explanation for why it is an issue. Furthermore, there are a plethora of different types of

design change and types of design issue and these are presented in detail in the next section.

4.2 Results 35

Review Action

Figure 4.3: A view of the model focusing on review action.

Throughout design review, developers execute a variety of review actions, which fall un-

der one of three categories according to its goal: (1) improving the design, (2) understanding

the design or (3) postponing (Figure 4.3).

Observation 2. Developers seek to improve and understand the design during design

review.

To improve the design, developers introduce design concerns during the review and ask

for feedback for the other participants. The introduction of design concerns serves as the

starting point for design discussions which will discuss the validity of these and what course

of action to take in light of them.

To understand the design, developers ask for clarification on design and provide clari-

fication on design to others. They usually want to understand design concerns well before

submitting their feedback as evidenced by the high frequency of comments asking for clari-

fication. Aside from design concerns, they also seek to understand the current design of the

software, i.e. the software design as it is before applying the code changes under review.

All these clarification requests are not only about the description of design concerns but also

their rationale. Next, an example of a developer asking for clarification on a design change:

"What’s the purpose of this static factory?" – Review #53297, Comment

#224909

Given how large some review requests can become, postponing certain actions is not

unusual. Specifically, participants may (1) ask for time before answering design-related

4.2 Results 36

questions, (2) suggest postponing a discussion to a later date or (3) postpone implementing

a design change even though it has already been agreed upon during the review.

Design Discussion

Figure 4.4: A view of the model focusing on design discussion.

During the design review, developers engage in design discussions over the design con-

cerns identified. These discussions can be seen as a series of beliefs expressed over time by

the developers. Moreover, a developer can express multiple beliefs regarding a design con-

cern because, as he analyzes a design concern and the beliefs of other developers, his beliefs

are subject to change and he might produce new ones (Figure 4.4).

Beliefs The beliefs regarding the design concerns can range from strong agreement to

strong disagreement. Therefore, we used a Likert-type scale with 5 values to represent this

variation, namely: strongly agree, weakly agree, neutral, weakly disagree, strongly disagree.

A belief can be seen as either a strong belief or a weak belief according to the language

used by the developer. When a developer is not sure of his belief or desires to be polite,

she tends to frame her beliefs as questions or use language constructs that denote uncertainty

(Figure 3). By contrast, when a developer is confident in his belief or feels that further

discussion is unnecessary, he uses affirmative language as in this example of a developer

having a strongly agree belief about a design change:

4.2 Results 37

"Have two separate methods - addRegistration and updateRegistration" – Re-

view #11700, Comment #44704

Participants often provide explicit rationales for their beliefs. For example, they may

strongly agree that something is indeed a design issue because they know of a particular use

case where there will be a problem.

Discussion Result By the end of a design discussion, there is usually a discussion re-

sult indicating whether the design concern under consideration was accepted or discarded.

Sometimes this result is communicated in the text and other times it is presented by the status

of the discussion, i.e. the discussion is marked as dropped or accepted in the review tool.

Observation 3. Developers engage in discussions over design concerns, which are ulti-

mately accepted or rejected.

As the name implies, an accepted result means that the design concern was accepted by

the participants. In particular, it means that either the design issue was considered to be valid

or the necessity of performing the design change was agreed upon.

On the other hand, a discarded result can happen for more than one reason. Naturally,

a design concern may be rejected by developers after deliberation. In addition, a design

concern is also considered discarded when the developers agree to postpone its associated

discussion to another time after the current design review. Finally, a discarded result can

also happen because the corresponding design concern was invalidated by another one. For

instance, a design issue regarding a problem in a certain class can become invalid if a design

change removes this class from the software.

In the following excerpt from the data, the developers decide to postpone discussion

about a proposed design change. They use the issue tracker to organize this future discussion:

"Created HIVE-17622 for followup." – Review #62314, Comment #263796

Example

To illustrate the model, we present an example of a design discussion interpreted with it. This

example discussion began with the following comment from one of the developers reviewing

the changeset (Review #10965, Comment #41747):

4.2 Results 38

"Does this have to be on this Interface?" – Reviewer

The reviewer is introducing a design issue in that sentence. The use of a question to

introduce the issue suggests that the reviewer only weakly agrees that this is a design issue,

i.e. the reviewer is not completely sure of it. Looking at the code associated with this

comment, we see that the reviewer is questioning whether a certain method should really be

where it was placed. Thus, the type of design issue is represented by the concept wrongly

placed method, which is a part of the more abstract category placement issue.

After this first comment, the developer who is the author of the changeset under review

replied as follows:

"why not? This seems the most straightforward place" – Changeset Author

Here, the changeset author is expressing his belief on the design issue introduced by the

reviewer in the previous comment. The tone of his sentence suggests that the type of belief is

of weakly disagreement. The author also presents the rationale for this belief, i.e. the reason

why he disagrees that the fact presented by the reviewer is an issue.

Next, the reviewer responded:

"I will always pushback adding stuff to this Interface; the more stuff it has to

carry, the harder mocking will be.

replayNonceOperation seems particularly exotic, not something I’d think impor-

tant enough to make it up into this high-level RegionServerServices Interface. I

could be wrong." – Reviewer

In this comment, the reviewer is presenting a more detailed rationale for his belief, i.e.

he presents reasons for why the method should not be in that particular place. He still has

a weakly agree belief that the design issue should be accepted. The sentence "I could be

wrong" at the end confirms that his belief is of not of strong agreement but of weakly agree-

ment.

Afterwards, the changeset author reacts with this comment:

"hmm... this seems to be a prescribed way of calling RegionServer parts from

Region.

4.2 Results 39

What would you suggest? I could instead add method like getNonceManager

and then call the requisite method on that" – Changeset Author

The first sentence provides a clarification on the current design, i.e. it explains the current

software design without the changeset under review. Next, the question "What would you

suggest?" means that the author is asking for design change proposals, which can be seen

more abstractly as a review action to improve the design. Finally, in the last sentence of that

comment, the author introduces a design change which has goal of fixing the design issue.

This design change is a proposed change and the type of this design change is create new

method, which falls under the category create new element. Moreover, the wording used by

the author suggest that he has weakly agree belief regarding this proposed design change.

The last comment in this design discussion is from the reviewer:

"I think getting a nonce manager from the Interface is more coarse grained and

therefore appropriate for a high-level Interface like this (also means you won’t

have to change the Interface again if you need more nonce methods). Thanks."

– Reviewer

The reviewer expresses a strongly agree belief regarding the proposed design change. In

addition to that, the whole discussion is marked as resolved in the review tool. Thus, given

this information, we infer that both the design issue and the proposed design change to fix

this issue were accepted after this design discussion between the changeset author and the

reviewer regarding these two design concerns.

4.2.3 RQ2: What topics of design are discussed during code review?

Types of Design Change

We identified 59 concepts representing types of design change and we grouped most of them

into 11 categories (Table 4.1). We display concepts and categories in the same table be-

cause some concepts were not related to any other and consequently were not grouped into

a category. Also, for the sake of brevity, we omit concepts which only occurred once.

Change method contract is a category well summarized by its name. It consisted of

changes such as change method parameter, change method preconditions and change return

value.

4.2 Results 40

Table 4.1: Main concepts and categories of design changes. Categories start with uppercase

to differentiate them from concepts.

Concept / Category Occurrences Reviews With It

Change method contract 19 16

change solution design 9 9

change field mutability 6 6

Class-level change 15 13

Concurrency 4 4

Create new element 15 12

Design pattern 5 4

Exception 14 11

Merge elements 3 3

Move element 20 14

remove code duplication 4 4

Remove unnecessary element 10 10

Traditional refactoring 21 13

Use another element 11 9

4.2 Results 41

The concept of change solution design was used to denote context-dependent design

changes that do not fit into a generic classification of types of design concerns. The following

quote shows a concrete example of what we mean. In short, in that comment, the developer

is talking about the algorithm used to solve a problem in the domain of that application:

"Will cover this in [URL for issue in JIRA] which will handle per pool valida-

tion. I will also add precendence order when multiple actions has to be applied

at the same time. I was thinking when KILL and MOVE triggers are violated at

the same time, KILL takes precendence. When more than one MOVE trigger is

violated at the same time, may be biggest pool (based on resource percent) will

be chosen to avoid juggling between pools. May be will make this comparator

pluggable." – Review #62314, Comment #265116

We believe such comments are specific to the problem domains of their software and

cannot be classified in a straightforward manner in terms of design components common

to all applications such as classes, subsystems, modules, methods, relationships between

modules, dependencies, etc. Moreover, it is out of the scope of this study to enumerate all

the types of design concerns specific to every possible problem domain.

Change field mutability is about altering an immutable field to be mutable or vice-versa.

The category of class-level change is similar to change method contract and is about

changes to the interface of a class and its relationships to other classes. It encompasses mod-

ifications such as change object construction interface, change object serialization, change

relationship multiplicity and new relationship between classes.

We did not delve deeper into design changes related to concurrency because they hap-

pened sparingly so we believed it would not add much to our study to do so. We identified

two concepts: add concurrency mechanism and change concurrency mechanism. For ex-

ample, a suggestion for adding a monitor for synchronizing threads was classified as add

concurrency mechanism.

Create new element is about adding a new element to the software design. Specifically,

we placed four actions under this category: create new class, create new field, create new

method and create public interface.

As intuited, we found discussions about design patterns nevertheless they were not fre-

4.2 Results 42

quent. Developers discussed the use of 5 designs patterns in the discussions analyzed:

builder, dependency inversion, observer, singleton and visitor.

The exception category consists of changes to how the software handles exceptions.

The merge elements category consists of design changes that merged classes or methods

which had similar behaviors.

Move element is composed of design changes that move responsibilities from one place

to another in the software. For example, moving a class to another module, moving methods

to another class and moving code to another function. We used the term "code" when we

wanted to mean that different elements were moved together e.g. classes, fields and methods.

Remove code duplication is a concept used for a general design change that aims at

removing code duplication in the code. This could involve creating a method, a class or

something else but it is not clearly specified in the discussion.

The category remove unnecessary element is about eliminating unnecessary elements

from the software design such as unnecessary fields or methods.

Traditional refactoring are the design changes which involve one of the types of refactor-

ings popularized by Martin Fowler in his seminal book on the subject [20]. We observed the

following types of refactorings in the discussions: encapsulate, extract class, extract field,

extract method, extract variable, inline function, pull up code, replace conditional with poly-

morphism, replace magic literal and replace primitive with object. Although some move

operations (e.g. move field to another class) are part of Fowler’s catalog of refactorings [20],

we decided to assign them to the separate move element category because his catalog does

not include all concepts we identified such as move class to another module.

Here is an example of a refactoring design change of type pull up code. The developer

has a weakly agree belief regarding it and provides the change rationale that it would avoid

code duplication:

"Can chainMap and joinChains variables be moved to super class as well?

Would avoid lots of duplicate code." – Review #28946, Comment #107937

Use another element is a category for changes that involve replacing a design element

with another. The decisions to replace own implementation with an external dependency, use

another algorithm, use another data structure or use another library were grouped under this

4.2 Results 43

Table 4.2: Main concepts and categories of design issues. Categories start with uppercase to

differentiate them from concepts.

Concept / Category Occurrences Reviews With It

concurrency design issue 8 8

confusing design 4 4

design doesnt fulfill requirements 4 4

Design smell 3 3

Encapsulation 8 7

Exception issue 8 7

Memory 2 2

Method contract issue 7 7

Missing element 5 5

misused design pattern 2 2

Placement issue 8 6

poor performance of design 2 2

Solution design 6 4

Unnecessary element 23 14

category.

Types of Design Issue

We identified 34 concepts representing types of design issue and we grouped most of them

into 9 categories (Table 4.2).

Concurrency design issue represents problems with the concurrency strategy in the de-

sign. As was the case with design changes, we did not investigate these issues in more detail.

Confusing design is a concept used for denoting that even though the design works it is

hard to understand well.

Although the software design might be correct and easy to understand, it might not solve

the problem the stakeholders have, i.e. the design doesn’t fulfill the software requirements.

4.2 Results 44

We identified three types of design smells: flag argument, global variable and magic

literal. A flag argument issue is when a method uses a boolean argument to determine its

behavior. Magic literal consists of using hard coded numbers in the code instead of well

defined named constants.

An encapsulation issue happens when a class or module either unnecessarily exposes its

contents (deficient encapsulation) or when it does not expose a method or field that other

classes need (excessive encapsulation).

The exception category is about problems with wrong exception handling or throwing an

exception when it shouldn’t (should not throw exception).

A memory design issue happens when there is a memory leak or poor memory manage-

ment. We believe that we did not see many memory leak issues because most of the analyzed

code was written in languages with automatic memory management.

The method contract issues we found were: inconsistent API method contracts, wrong

method precondition and wrong method return. These issues match well with the change

method contract types of design change found.

The missing element category consists of issues where expected design elements were

not present. Specifically, the issues belonging to this category were missing method, missing

constructor and missing interface.

Sometimes developers did not use a design pattern appropriately and these issues were

marked with the concept misused design pattern.

A common type of issue was placement issue. These happened when a class was not in

the right module (poorly placed class), a field was not in the right class (poorly placed field)

or a method was in the wrong class or module (wrongly placed method).

The concept of poor performance of design represented an issue where the design was

correct but its performance did not match the one expected by stakeholders.

Similarly to design changes of type change solution change that we explained in the

previous section, there were context-dependent design issues. The solution design could be

either a poor one (poor solution design) or just plain wrong (wrong solution design).

Unnecessary element was by far the most common design issue. There were cases of re-

dundant inheritance, unnecessary class, unnecessary code (a combination of field, methods

and classes), unnecessary field, unnecessary method and unnecessary method parameter.

4.2 Results 45

This suggests that simplifying the design and reusing existing design elements is a major

concern of developers.

Observation 4. Developers strive to identify unnecessary design elements during MCR.

Few of the identified design changes and issues could be seen as being related to ar-

chitectural design. Contrary to our expectations, we did not observe discussions which were

clearly about components, relationship between components, architectural patterns and other

architectural design topics.

Observation 5. Most of the design concerns discussed during MCR are low-level design

(non-architectural design).

Not Design

We identified 45 concepts representing comments that were not about software design and

we grouped most of them into 6 categories (Table 4.3). To recap, the purpose of detailing

what the non-design discussions were is to provide a clearer idea of what we did not consider

to be design in this study.

Some of the concepts above are straightforward. Code style are discussions about source

code formatting, indentation, spacing and etc. The documentation category includes not only

documentation files but also code comments in the source code. Error message is exactly as

the name implies. Software requirements represents discussions about what the software

should do, i.e. the specification of features. Software configuration files mean configuration

files that are not source code and that control the behavior of the software. The testing

concept was used for all comments relating to test code in the review and software testing

concerns.

The bulk of non-design discussions were about implementation. We grouped 12 concepts

into this category and there were 95 discussions about implementation.

To differentiate between design and implementation, we considered method contracts

as the boundary between them in this study. That is, we considered discussions about the

preconditions, postconditions, return values and similar properties of a method to be design

and comments regarding code strictly inside the method as implementation. For example,

4.2 Results 46

Table 4.3: Main concepts and categories of non-design discussions topics. Categories start

with uppercase to differentiate them from concepts.

Concept / Category Occurrences Reviews With It

code style 19 19

Documentation 42 29

error message 6 6

software requirements 13 13

Implementation 95 28

Logging 11 9

reference to another comment 11 11

reference to info outside this review 19 19

Review workflow 45 27

Social 20 13

software configuration files 4 4

Testing 27 27

Tools 19 14

4.3 Discussion 47

discussing whether a method should have another parameter would be design but discussing

how to optimize a for loop inside this method would be implementation.

We also considered the following concepts to be implementation: implementation bugs,

code snippets, naming of code entities (e.g. classes, variables, methods and constants), tem-

porary code and use of another programming language.

Logging consists of discussions about adding a log point somewhere in the code and the

log messages.

It was common to find references to other comments in the review request and also ref-

erences to information outside the review request. In particular, developers frequently cited

information present in the issue tracker of the project and discussions which happened out-

side the tool e.g. in person and issue tracker.

Comments about the review workflow also comprised a significant chunk of non-design

discussions. This includes diverse comments such as asking the author to close the review re-

quest, declaring what parts the developer reviewed, stating that the dev could not understand

a review comment and approving the review request (LGTM).

We used the category social to denote comments such as praising the review, praising

the author’s work and greeting the other developers.

The tools category consists of comments by the developers about build tool configura-

tion and version control, comments generated by build bots (build tool log) and comments

generated by review bots.

Observation 6. Aside from design and implementation, developers frequently discuss

documentation, testing and code style during MCR.

4.3 Discussion

4.3.1 Comparison with Existing Literature

One of the tenets of Grounded Theory is that researchers should avoid literature review

before the study to avoid bias in the results. Therefore, although we were naturally aware

of other research on design information on MCR, we only analyzed these related studies in

depth after our study.

4.3 Discussion 48

We found 13 papers related to design discussions in MCR but most of them are quan-

titative studies. Indeed, only 3 of them use qualitative research methods. Of these three,

two present a categorization of the design information discussed [58][54] and a single one

presents a model on how developers discuss design in MCR [53].

Zanaty et al.’s Design Issues (2018)

Zanaty et al. performed a mixed methods study of design discussions [58]. First, they man-

ually analyzed a sample of 1,357 comments from OpenStack Nova and 1,460 comments

from OpenStack Neutron projects. From this qualitative analysis, they found that an aver-

age of 12% of comments have design information and they created a categorization of the

design issues discussed in the comments. Second, they built multiple binary classifiers of

design discussions and then applied these classifiers to 2,506,308 review comments. Their

classifiers had a precision of 59% to 66% and a recall of 70% to 78%. They ultimately con-

clude that design is not discussed as often as it should be and that most design comments are

constructive.

Like Zanaty et al.’s study, our study also analyzed comments from code reviews of OSS

projects and we also created a classification of design issues and a classification of non-

design topics. Differently from their study, our use of the GT methodology led to a clas-

sification of design issues that is more detailed with multiple hierarchical levels and which

integrates a more abstract classification which includes design changes.

All but one of the categories of design issues identified by Zanaty et al. can be seen in

our classification. Their categories along with the most similar one in our model are: mod-

ule coupling (design smell), redundant code (unnecessary code), performance (poor perfor-

mance of design), side effect (solution design), unnecessary complexity (confusing design),

code misplacement (placement issue) and shallow fix. We could not identify a category in

our model that directly matches shallow fix as per their definition: "comments that point out

limitations in the breadth of a fix in terms of the design of the code. This could be a fix that

has a ripple effect on the code, or a fix that could potentially be generalized to fix other areas

in the code suffering from the same problem" [58].

4.3 Discussion 49

Viviani et al.’s Design Topics (2018)

Viviani et al. manually classified 2,378 paragraphs from 10,790 MCR discussions in order

to identify design points [54]. A design point is a new concept they proposed that means "a

piece of a discussion relating to a decision about a software system’s design that a software

development team needs to make." After that manual identification of design points, they

applied open coding on 275 paragraphs about design to categorize the design topics that de-

velopers had discussed. In the end, they found that approximately 22% of the paragraphs had

design information and they produced a categorization of the design topics that developers

discuss.

Similarly to Viviani et al., we also analyzed comments from code reviews of OSS projects

and created a classification of design information. Unlike their study, we produced a more

comprehensive classification by using GT and a larger dataset and the definition of design

we used seems to be considerably different.

At first, most of their categories of design information can be readily seen in our model.

These along with the most similar one in our model are: code (implementation), maintain-

ability, testing (testing), robustness (exception), performance (poor performance of design),

configuration (software configuration files), documentation (documentation) and clarifica-

tion (understanding design).

However, we did not consider most of their categories of design information to be design

in our study. Specifically, according to the definition of design we used, we regarded code

(implementation) as separate from design, maintainability was seen as one of the possible

goals of a design change (to improve a non functional requirement) instead of a type of design

concern, testing was deemed to not be design, configuration was not considered design and

clarification are actions the developers take during design review to better understand the

design concerns.

Viviani et al.’s Model of Design Discussions (2018)

Viviani et al. analyzed 3 pull requests from Rails, an OSS project, in order "to better un-

derstand the form and content of how developers discuss design" [53]. Using a process like

open coding, they interpreted design discussions as revolving around finding candidate solu-

4.3 Discussion 50

tions to design questions. Furthermore, developers support or reject the candidate solutions

presented and provide rationales for their opinions.

The model of design discussions proposed by Viviani et al. is compatible with the one in

this study. Their concept of design questions and candidate solutions can be mapped respec-

tively to design issues and proposed design changes in our model. Likewise, the process of

supporting and rejecting candidate solutions according to rationales can be represented by

the concept of belief in our model.

The similarity between our model and the one from Viviani et al. suggests that our results

correctly represent design discussions and that they are generalizable to other organizations

due to the different contexts.

Differently from the model of Viviani et al., our analysis of a larger dataset enabled us

to produce a richer model with additional concepts. For instance, our model captures review

actions performed by developers in the discussions such as asking and providing clarification

on design concerns and we delved deeper into design changes by specifying their goals, types

and temporality.

4.3.2 Differentiating between Requirements, Design and Implementa-

tion

One of the challenges of this study has been to determine if a discussion is about require-

ments, design or implementation. This happens primarily because we are analyzing dis-

cussions happening at the level of code so that most comments are associated with lines of

code. But, even if a comment is associated with lines of code, the underlying subject of the

discussion may be software requirements or software design instead of implementation.

Differentiating between design and implementation was the hardest. The reason for this

is that there is not a clear and unambiguous definition of software design that is widely ac-

cepted by researchers and practitioners even though design is a fundamental part of most

software processes. Despite adopting the definition proposed by Ralph and Wand[43] which

aims to solve this problem, we found that it does not provide a clear separation between

design and implementation. Concretely, we can perceive this difficulty by trying to answer

questions such as: (1) is a discussion regarding removing a method from a class a design or

4.3 Discussion 51

an implementation discussion? (2) is the choice of a data structure a design or an implemen-

tation decision?

We mitigated the problem of differentiating between design and implementation by

clearly specifying what we considered design with our classification of types of design issue

and design change and by deliberately adopting method contracts as the boundary between

design and implementation. In this manner, researchers and practitioners can determine

exactly what we considered as design. Nevertheless, future research is needed to address

this gap so that research papers on design from different organizations can be combined

seamlessly into a coherent body of work.

Although discerning between requirements and design was sometimes hard, it was usu-

ally surmountable by spending more time to understand the discussion well. According to

Ralph and Wand’s definition of design, design is basically a specification of an object which

aims to satisfy a set of requirements. The following quote shows an example of a comment

which may seem to be about design at first. More specifically, it looks as if the discussion

revolves around what the best API for users would be. However, on closer inspection, the

developer is suggesting a change in the behavior of the ‘rename‘ method which is provided

for users of this library. We concluded, therefore, that this discussion is about software

requirements, in particular the specification of a feature required by the users:

"While POSIX guarantees that ‘rename‘ e.g., does not see inconsistent state,

there is nothing preventing ‘to‘ from being deleted once we execute the condi-

tional code here.

Since it is hard to know what semantics users expect _in general_, it might make

more sense to not add the sync behavior to ‘rename‘, but to e.g., ask users to

perform ‘fsync‘ themself [sic]." – Review #69009, Comment #294037

4.3.3 Limitations

First, we have the limitations common to qualitative studies using Straussian grounded the-

ory. Principally, it is possible that the researchers did not have sufficient theoretical sensitiv-

ity as required by grounded theory and failed to perceive significant concepts, categories and

relationships. Moreover, the time consuming nature of qualitative studies means that only a

4.4 Conclusion 52

small subset of the data available could be analyzed in comparison to quantitative studies.

Another threat to validity is that we could have misunderstood grounded theory and mis-

applied it which is a common occurrence according to Stol et al [49]. We manage this threat

by describing in detail how we applied grounded theory during this study in the Methodology

section so that other researchers can evaluate it.

Although a single researcher performed most of the open coding process, the analysis

was periodically reviewed by two other more experienced software engineering researchers

to strengthen its reliability. Furthermore, Straussian grounded theory methodology assumes

that multiple interpretations can be extracted from the same data due to the richness of qual-

itative data and the fact that "different analysts focus on different aspects of data, interpret

things differently and identify different meanings" [15].

Notably, at present, it is uncertain how generalizable the results from this study are out-

side the Apache organization. Given our personal experience with code review and that our

results were compatible with the ones obtained by Viviani et al. studying pull requests from

an OSS project outside the Apache organization, we believe that our model applies to other

contexts but further research is needed to evaluate this.

4.4 Conclusion

Modern code review (MCR) is a promising source of design information which is currently

underutilized due to the difficulty of manually extracting such information and the absence

of automatic tools for that. In order to further research on how to facilitate the extraction

of design information, it is necessary to learn how developers discuss design in code review

and what topics of design are discussed.

Given the dearth of qualitative studies on this topic, we conducted a qualitative study us-

ing Straussian Grounded Theory (GT) to characterize how developers discuss design during

code reviews and what topics of design are discussed in the reviews.

Accordingly, this study resulted in a model of how design is reviewed in MCR and a

classification of types of design information discussed in code review. The results of this

study are not only compatible with previously published literature but also presents new

concepts. In addition, we presented the major challenges and limitations of this study in

4.4 Conclusion 53

order to help future research in this area.

Chapter 5

Conclusion

In this thesis, our goal was to investigate Modern Code Review (MCR) and the design dis-

cussions that occur as part of MCR. To this end, we conducted a characterization of design

discussions in MCR using a dataset of design discussions from the Apache Software Foun-

dation.

5.1 Contributions

Our major contributions were in summary:

• Model of design discussions in MCR: a model of how developers discuss design

during MCR;

• Classification of design in MCR: a classification of types of design issues and design

changes discussed in MCR;

• Dataset of design discussions: a public dataset of 108,458 design discussions from

the Apache Software Foundation that can be used in other studies.

Importantly, our characterization study of design discussions in MCR resulted in the

following key findings:

1. A design review within MCR revolves around a set of design concerns (changes and

issues);

54

5.2 Future work 55

2. Developers seek to improve and understand the design during design review within

MCR;

3. Developers engage in discussions over design concerns, which are ultimately accepted

or rejected;

4. Developers strive to identify unnecessary design elements during MCR.

5. Most of the design concerns discussed during MCR are low-level design (non-

architectural design);

6. Aside from design and implementation, developers frequently discuss documentation,

testing and code style during MCR.

5.2 Future work

There are a number of opportunities for future work in the area of design discussions in MCR

which can be helped by this work.

Future studies could be made to improve upon our characterization study of design in

MCR. The immediate next step would be to conduct further studies to validate the theory

of how developers discuss design in MCR. For instance, a survey could be conducted with

developers to evaluate if they agree with it. A replication study could also be conducted on a

different dataset to evaluate the generalizability of the theory to other software development

contexts. In particular, we have not analyzed review discussions from closed source software

projects in our study. Another possibility is a large study focused solely on producing a more

comprehensive classification of types of design information in MCR.

As for the problem of automatic classifying design discussions in MCR, we believe that

the next logical step would be to investigate multiclass classifiers capable of identifying

what type of design issue or change is being discussed. We plan to leverage the results

of our characterization study of design in MCR to research multiclass classifiers of design

discussions.

Due to the rapid advances in the field of natural language processing, it would be inter-

esting to examine the viability of automatic summarization of design information in MCR

because such a tool would probably be of great help to practitioners.

5.2 Future work 56

Regarding secondary studies in the area of MCR, an update of our systematic mapping

would be interesting given that it only covers papers published up to early 2018. Also, a

systematic review of binary classifiers of design discussions would also be valuable because

there are several papers proposing and evaluating such classifiers as of today.

Finally, the whole dataset used in this thesis is available to aid future research and to en-

courage replication at: https://sites.google.com/view/ch-design-discuss-thesis/

This work was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de

Nível Superior - Brasil (CAPES) - Finance Code 001.

Bibliography

[1] Explosion AI. spaCy · Industrial-strength Natural Language Processing in Python.

[2] Alberto Bacchelli and Christian Bird. Expectations, Outcomes, and Challenges of

Modern Code Review. In Proceedings of the 2013 International Conference on

Software Engineering, ICSE ’13, pages 712–721, Piscataway, NJ, USA, 2013. IEEE

Press.

[3] Deepika Badampudi, Ricardo Britto, and Michael Unterkalmsteiner. Modern code re-

views - Preliminary results of a systematic mapping study. In Proceedings of the Evalu-

ation and Assessment on Software Engineering, pages 340–345, Copenhagen Denmark,

April 2019. ACM.

[4] Sebastian Barney, Kai Petersen, Mikael Svahnberg, Aybüke Aurum, and Hamish Bar-

ney. Software quality trade-offs: A systematic map. 54(7):651–662.

[5] Gabriele Bavota and Barbara Russo. Four eyes are better than two: On the impact of

code reviews on software quality. In Software Maintenance and Evolution (ICSME),

2015 IEEE International Conference on, pages 81–90. IEEE, 2015.

[6] Inc. Beanbag. Review Board. https://www.reviewboard.org/.

[7] Moritz Beller, Alberto Bacchelli, Andy Zaidman, and Elmar Juergens. Modern code re-

views in open-source projects: which problems do they fix? In Proceedings of the 11th

Working Conference on Mining Software Repositories, pages 202–211. ACM, 2014.

[8] Pierre Bourque and Richard E. Fairley, editors. SWEBOK: Guide to the Software Engi-

neering Body of Knowledge. IEEE Computer Society, Los Alamitos, CA, version 3.0

edition, 2014.

57

BIBLIOGRAPHY 58

[9] João Brunet, Gail C. Murphy, Ricardo Terra, Jorge Figueiredo, and Dalton Serey. Do

Developers Discuss Design? In Proceedings of the 11th Working Conference on Mining

Software Repositories, MSR 2014, pages 340–343, New York, NY, USA, 2014. ACM.

event-place: Hyderabad, India.

[10] D. Budgen. Software Design. International computer science series. Pearson/Addison-

Wesley, 2003.

[11] David Budgen, Mark Turner, Pearl Brereton, and Barbara Kitchenham. Using mapping

studies in software engineering. In Proceedings of PPIG, volume 8, pages 195–204.

Lancaster University.

[12] M. Ciolkowski, O. Laitenberger, and S. Biffl. Software reviews: The state of the prac-

tice. IEEE Software, 20(6):46–51, November 2003.

[13] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, P. Merson, R. Nord,

and J. Stafford. Documenting Software Architectures: Views and Beyond. SEI Series

in Software Engineering. Pearson Education, 2010.

[14] Flavia Coelho, Tiago Massoni, and Everton L. G. Alves. Refactoring-aware Code Re-

view: A Systematic Mapping Study. In Proceedings of the 3rd International Workshop

on Refactoring, IWOR ’19, pages 63–66, Piscataway, NJ, USA, 2019. IEEE Press.

event-place: Montreal, Quebec, Canada.

[15] Juliet Corbin and Anselm Strauss. Basics of Qualitative Research: Techniques and

Procedures for Developing Grounded Theory. Sage Publications, Inc, 3 edition.

[16] Frank Elberzhager, Jürgen Münch, and Vi Tran Ngoc Nha. A systematic mapping study

on the combination of static and dynamic quality assurance techniques. 54(1):1–15.

[17] M.E. Fagan. Design and code inspections to reduce errors in program development.

IBM Systems Journal, 15(3):182–211, 1976.

[18] Apache Software Foundation. All Review Requests | Review Board. https:

//reviews.apache.org/r/.

BIBLIOGRAPHY 59

[19] Apache Software Foundation. The Apache Software Foundation. https://www.

apache.org/.

[20] Martin Fowler. Refactoring. Addison-Wesley Signature Series (Fowler). Addison-

Wesley, Boston, MA, 2 edition, 2018.

[21] Victor Freire. Automatic Decomposition of Code Review Changesets in Open Source

Software Projects. PhD thesis, Universidade Federal de Campina Grande, Campina

Grande, September 2016.

[22] Gerrit team. Gerrit. https://www.gerritcodereview.com/. [Online; ac-

cessed 01-Jan-2021].

[23] GitHub. Github’s features. https://github.com/features. [Online; accessed

01-Jan-2021].

[24] Barney G. Glaser and Anselm L. Strauss. The Discovery of Grounded Theory: Strate-

gies for Qualitative Research. Aldine de Gruyter, New York, NY, 1967.

[25] Google LLC. Google scholar. https://scholar.google.com/citations?

view_op=top_venues&hl=en&vq=eng_softwaresystems. [Online; ac-

cessed 29-Aug-2019].

[26] A. Géron. Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts,

Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, 2017.

[27] L. Harjumaa, I. Tervonen, and A. Huttunen. Peer Reviews in Real Life - Motivators

and Demotivators. pages 29–36. IEEE, 2005.

[28] D. Jurafsky and J.H. Martin. Speech and Language Processing: An Introduction to

Natural Language Processing, Computational Linguistics, and Speech Recognition.

Prentice Hall Series in Artifi. Pearson Prentice Hall, 2009.

[29] B. Kitchenham, P. Brereton, and D. Budgen. Mapping study completeness and reli-

ability - a case study. In 16th International Conference on Evaluation Assessment in

Software Engineering (EASE 2012), pages 126–135.

BIBLIOGRAPHY 60

[30] Barbara Kitchenham, Pearl Brereton, and David Budgen. The educational value

of mapping studies of software engineering literature. In Proceedings of the 32Nd

ACM/IEEE International Conference on Software Engineering - Volume 1, ICSE ’10,

pages 589–598. ACM. event-place: Cape Town, South Africa.

[31] Barbara A. Kitchenham, David Budgen, and O. Pearl Brereton. Using mapping studies

as the basis for further research–a participant-observer case study. 53(6):638–651.

[32] S. MacDonell, M. Shepperd, B. Kitchenham, and E. Mendes. How reliable are system-

atic reviews in empirical software engineering? 36(5):676–687.

[33] Alvi Mahadi. Conclusion stability for natural language based mining of design discus-

sions. Thesis, 2021. Accepted: 2021-02-12T05:11:37Z.

[34] Alvi Mahadi, Karan Tongay, and Neil A. Ernst. Cross-Dataset Design Discussion Min-

ing. arXiv:2001.01424 [cs], January 2020. arXiv: 2001.01424.

[35] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Scoring, term

weighting, and the vector space model. In Introduction to Information Retrieval, pages

100–123. Cambridge University Press, 2008.

[36] Mayring, Philipp and Fenzl, Thomas. Qcamap. https://www.qcamap.org/.

[Online; accessed 10-Aug-2019].

[37] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-

del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine Learning in Python.

Journal of Machine Learning Research, 12:2825–2830, 2011.

[38] Dewayne E. Perry and Alexander L. Wolf. Foundations for the Study of Software

Architecture. ACM SIGSOFT Software Engineering Notes, 17(4):40–52, October 1992.

[39] Kai Petersen, Robert Feldt, Shahid Mujtaba, and Michael Mattsson. Systematic map-

ping studies in software engineering. In 12th International Conference on Evaluation

and Assessment in Software Engineering, volume 17, page 1.

BIBLIOGRAPHY 61

[40] Kai Petersen, Sairam Vakkalanka, and Ludwik Kuzniarz. Guidelines for conducting

systematic mapping studies in software engineering: An update. 64:1–18.

[41] Phacility, Inc. Phabricator. https://www.phacility.com/phabricator/.

[Online; accessed 01-Jan-2021].

[42] Roger S. Pressman. Software engineering: a practitioner’s approach. McGraw-Hill

series in computer science. McGraw Hill, Boston, Mass, 5th ed edition, 2000.

[43] Paul Ralph and Yair Wand. A Proposal for a Formal Definition of the Design Concept.

In Kalle Lyytinen, Pericles Loucopoulos, John Mylopoulos, and Bill Robinson, editors,

Design Requirements Engineering: A Ten-Year Perspective, Lecture Notes in Business

Information Processing, pages 103–136, Berlin, Heidelberg, 2009. Springer.

[44] N. Rozanski and E. Woods. Software Systems Architecture: Working with Stakeholders

Using Viewpoints and Perspectives. Addison-Wesley, 2012.

[45] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice

Hall, 3 edition, 2010.

[46] Abbas Shakiba, Robert Green, and Robert Dyer. FourD: Do Developers Discuss De-

sign? Revisited. In Proceedings of the 2Nd International Workshop on Software An-

alytics, SWAN 2016, pages 43–46, New York, NY, USA, 2016. ACM. event-place:

Seattle, WA, USA.

[47] F. Shull and C. Seaman. Inspecting the History of Inspections: An Example of

Evidence-Based Technology Diffusion. IEEE Software, 25(1):88–90, January 2008.

[48] I. Sommerville. Software Engineering. Always learning. Pearson, 2016.

[49] Klaas-Jan Stol, Paul Ralph, and Brian Fitzgerald. Grounded theory in software engi-

neering research: a critical review and guidelines. In Proceedings of the 38th Interna-

tional Conference on Software Engineering, ICSE ’16, pages 120–131, Austin, Texas,

May 2016. Association for Computing Machinery.

BIBLIOGRAPHY 62

[50] A. Sutherland and G. Venolia. Can peer code reviews be exploited for later information

needs? In 2009 31st International Conference on Software Engineering - Companion

Volume, pages 259–262, May 2009.

[51] A. Tahir and S. G. MacDonell. A systematic mapping study on dynamic metrics and

software quality. In 2012 28th IEEE International Conference on Software Mainte-

nance (ICSM), pages 326–335.

[52] Giovanni Viviani, Michalis Famelis, Xin Xia, Calahan Janik-Jones, and Gail C. Mur-

phy. Locating Latent Design Information in Developer Discussions: A Study on Pull

Requests. IEEE Transactions on Software Engineering, pages 1–1, 2019. Conference

Name: IEEE Transactions on Software Engineering.

[53] Giovanni Viviani, Calahan Janik-Jones, Michalis Famelis, and Gail C. Murphy. The

structure of software design discussions. pages 104–107. ACM, May 2018.

[54] Giovanni Viviani, Calahan Janik-Jones, Michalis Famelis, Xin Xia, and Gail C. Mur-

phy. What Design Topics Do Developers Discuss? In Proceedings of the 26th Con-

ference on Program Comprehension, ICPC ’18, pages 328–331, New York, NY, USA,

2018. ACM. event-place: Gothenburg, Sweden.

[55] Roel Wieringa, Neil Maiden, Nancy Mead, and Colette Rolland. Requirements en-

gineering paper classification and evaluation criteria: a proposal and a discussion.

11(1):102–107.

[56] Claes Wohlin. Guidelines for snowballing in systematic literature studies and a repli-

cation in software engineering. pages 1–10. ACM Press.

[57] Claes Wohlin, Per Runeson, Paulo Anselmo da Mota Silveira Neto, Emelie Engström,

Ivan do Carmo Machado, and Eduardo Santana de Almeida. On the reliability of map-

ping studies in software engineering. 86(10):2594–2610.

[58] Farida El Zanaty, Toshiki Hirao, Shane McIntosh, Akinori Ihara, and Kenichi Mat-

sumoto. An Empirical Study of Design Discussions in Code Review. In Proceedings

of the 12th ACM/IEEE International Symposium on Empirical Software Engineering

BIBLIOGRAPHY 63

and Measurement, ESEM ’18, pages 11:1–11:10, New York, NY, USA, 2018. ACM.

event-place: Oulu, Finland.

Appendix A

A Systematic Mapping of Modern Code

Review

Although several papers had been published on MCR by 2018, there was not any systematic

mapping available on the field at the time. Thus, we decided to perform a systematic mapping

not only to fill this research gap but also to evaluate the relevance of our thesis topic.

A.1 Methodology

We used the systematic mapping (SM) methodology described in the guidelines of Petersen

et al. [39][40], which will be described in more detail in the following subsections. Briefly,

first, we created the protocol for the systematic mapping specifying the whole process, e.g.

the goal, the research questions, the search strategy and the inclusion and exclusion criteria.

Second, we searched for studies about MCR using electronic data sources and the snowball

search method. During this search, we evaluated the potential papers against the inclusion

and exclusion criteria. Finally, we examined each of the relevant papers to: (1) create a

spreadsheet with their metadata and topic independent classification and (2) create a topic

dependent classification by the process of keywording the abstracts.

64

A.1 Methodology 65

A.1.1 Research Questions

The goal of this study is to classify and summarize the published research on MCR in order

to provide researchers with an overview of the field and help them identify opportunities for

further studies. With this purpose, we established the following research questions:

• RQ1: Where and when were MCR studies published?

• RQ2: What researchers and organizations are most active in MCR research?

• RQ3: What are the most investigated MCR topics?

• RQ4: What types of research methods are used in MCR research?

• RQ5: What types of contributions are made in MCR research?

• RQ6: Which context is more used in MCR studies: open source or closed source?

• RQ7: What are the most referenced (influential) papers?

A.1.2 Study Search

We used multiple data sources and combined the results of two different search strategies to

maximize the probability of finding all relevant studies.

Electronic Data Source Search

We performed searches for MCR papers in multiple websites. Specifically, we used four

publisher websites (ACM Digital Library, IEEE Xplore Digital Library, ScienceDirect and

SpringerLink) and one search engine (Google Scholar).

For these searches, we used the query: "code review". We had to use the general term

"code review" instead of "modern code review" because some papers do not use the term

"modern code review" even though they are about MCR.

A.1 Methodology 66

Snowball Search

The snowball search procedure consists of iteratively examining the backwards and forward

references of relevant papers until they have all been examined. For a given study, the back-

ward references are the papers it cites, i.e. the ones listed in its References section and the

forward references are the papers which cite the study [56]. Google Scholar was used to

identify the papers which cite a given study.

We used 7 popular papers about MCR as the start set and then iteratively examined

the backward and forward references of these papers and of the subsequent ones that we

found. These 7 papers are highly cited and they had been published between 2008 and

2016 in mostly different venues. According to Wohlin, selecting a good start set is still an

open research problem but it should contain diverse and highly cited papers to minimize the

chance of missing relevant papers [56].

A.1.3 Study Selection

During the search for studies about MCR, we evaluated the potential papers against the

inclusion and exclusion criteria. For each paper, we read the abstract and, when necessary,

the full paper to determine if it matched the criteria set in the protocol of the study.

Inclusion Criteria

• Study is about Modern Code Review (MCR) as defined by Bachelli and Bird: "review

that is (1) informal (in contrast to Fagan-style), (2) tool-based, and that (3) occurs

regularly in practice nowadays, for example at companies such as Microsoft, Google,

Facebook, and in other companies and OSS projects" [2]. It is about the practice of

MCR or a tool or technique for supporting the activity.

• Study was peer-reviewed, i.e. conference papers, journal papers and chapters from

peer-reviewed books.

• Study was written in English and is available in full-text.

A.1 Methodology 67

Exclusion Criteria

• Paper is not about MCR (e.g., Fagan’s inspections, peer review of school assignments).

• Paper superficially mentions MCR but does not present a clear contribution to the field.

• Secondary studies (e.g., systematic literature reviews and surveys).

• Studies in short formats (e.g., tutorial papers, long abstract papers and poster papers).

• Shorter versions of the same study will not be considered (e.g. if a study is first pub-

lished as a conference paper and later an extended version of it is published in a journal,

only the journal version will be considered).

• Non-research material (e.g. magazine articles and research proposals).

A.1.4 Data Extraction

For each selected study, we extracted its metadata and classified it according to two classi-

fication schemes: a topic independent one (applicable to other fields of study) and a topic

dependent one (exclusive to Modern Code Review).

Metadata

We filled a spreadsheet containing the following metadata columns for each paper: title, au-

thor, affiliations, year, publication type, venue title, venue abbreviation, number of citations.

Topic Independent Classification

A topic independent classification is a general classification scheme that can be applied to

several different fields of study, i.e. it is not specific to Modern Code Review. In this study,

we classified papers according to research method, research type, contribution type and con-

text (whether the software examined had an open or closed source license) [40]. We recorded

this classification in the same spreadsheet for the metadata of the papers.

A.2 Results 68

Topic Dependent Classification

A topic dependent classification is a custom classification scheme created specifically for

a certain topic. We created a topic dependent classification scheme for MCR by using a

method similar to open coding on the abstracts of the papers, which Petersen et al. [40]

called keywording. We read each of the abstracts and assigned concepts that summarized

what a given paper is about. These concepts were later grouped into categories to summarize

the topics studied in MCR research even further. For example, one of the abstracts we found

had the following passage: "We performed a study that looked at the code review practices

of software product teams at Microsoft" [50]. From this passage, we identified the concept

the process of code review and this concept was later grouped into the more abstract category

Review Process alongside concepts such as classification of code review processes.

The process of creating this classification was supported by QCAmap, a free web-based

tool for qualitative content analysis [36].

A.2 Results

We initially found 164 studies using electronic data search and 211 studies using snowball

search. After combining the results and removing duplicates, there were 243 studies left.

During the keywording process, when analyzing the studies in more depth, we noticed there

were still some irrelevant studies. After removing these, we finally had a total of 177 papers

which fit our inclusion and exclusion criteria. These 177 papers are used to answer the

research questions of this study.

A.2.1 RQ1: Where and when were MCR studies published?

For this research question, we want to know the venues where MCR studies are being pub-

lished in and the number of MCR studies published throughout the years.

Venues

Papers about MCR have been published in a total of 95 venues. Table A.1 shows the 12

venues with most papers about MCR. These 12 most popular venues are focused on the field

A.2 Results 69

Table A.1: The top 12 most popular venues in MCR research.

Venue Papers

1 MSR 17

2 ICSE 12

3 ICSME 9

4 APSEC 7

5 FSE 7

6 SANER 6

7 ESEM 5

8 ASE 4

9 Empir Software Eng 4

10 CHASE 3

11 ICSE-C 3

12 OSS 3

of Software Engineering except for MSR, which is about mining and analyzing data from

software repositories.

Few of the venues found are commonly targeted for publication of MCR research. More

specifically, only 26 (27.4%) venues had more than one paper about MCR published in them

and only 12 (12.6%) venues had more than two papers about MCR.

Only 32 (18.1%) of the 177 papers have been published in journals. This indicates that

research in the field of MCR is still far from comprehensive and there is ample opportunity

for future research.

Years

The first paper about MCR was published in 2002 and a total of 177 MCR papers have been

published between the years 2002 and 2018.

There has been significant growth and interest in the field of MCR according to the

histogram of MCR papers over the years (Figure A.1). Since 2006, the number of papers

A.2 Results 70

published about MCR has never decreased from one year to another and since 2011, the

number of papers published about MCR has been growing year after year.

We omit the year 2018 from the histogram to avoid the erroneous impression that there

was a sudden drop in the number of papers in that year. Very few papers from 2018 are

present in the dataset, because the study selection phase started in July/2017 and ended in

April/2018.

Figure A.1: Histogram showing the distribution of papers over the years.

A.2.2 RQ2: What researchers and organizations are most active in

MCR research?

Organizations

152 organizations have published papers in the field of MCR. Table A.2 shows the 10 orga-

nizations who authored the most papers about MCR.

Few organizations are responsible for most of MCR research. 61 (34.5%) of the papers

have been published by the top 8 (5.0%) organizations and 106 (59.9%) of the papers have

been published by the top 30 (20.0%) organizations.

Most organizations are not frequent contributors to research on MCR. 98 (64.5%) of the

152 organizations only published a single paper on MCR.

A.2 Results 71

Table A.2: The top 10 most active organizations in MCR research.

Organization Papers

1 Nara Institute of Science and Technology 16

2 Microsoft 13

3 Delft University of Technology 7

4 Osaka University 7

5 University of Alabama 7

6 Bitergia 6

7 Leibniz Universität Hannover 6

8 National University of Defense Technology 6

9 Polytechnique Montréal 6

10 Universidad Rey Juan Carlos 6

Researchers

A total of 378 researchers have published papers in the field of MCR. Table A.3 shows the

top 10 researchers by activity in the field.

Similarly to the distribution of organizations, few researchers are responsible for most

of MCR research. 72 (40.7%) of the papers have been published by the top 19 (5.0%)

researchers and 124 (70.1%) of the papers have been published by the top 76 (20.0%) re-

searchers.

Likewise, most researchers are not frequent contributors to research on MCR. 277

(73.3%) of the 378 researchers only worked on a single paper about MCR.

The most active researchers are not necessarily the most popular ones. Table A.4 shows

the top 10 most referenced researchers on MCR. Indeed, only 3 researchers are among the

top 10 most active and the top 10 most referenced authors.

A.2.3 RQ3: What are the most investigated MCR topics?

To answer this research question, we created a topic dependent classification scheme as

detailed in Section A.1.4. We identified a total of 148 concepts (Table A.5), which we

A.2 Results 72

Table A.3: The top 10 most active researchers in MCR research.

Researcher Papers

1 Iida, H. 12

2 Kula, R. G. 10

3 Bird, C. 9

4 Bosu, A. 8

5 Yoshida, N. 8

6 Bacchelli, A. 7

7 Thongtanunam, P. 7

8 Wang, H. 7

9 Yin, G. 7

10 Yu, Yue 7

Table A.4: The top 10 most referenced authors in MCR research.

Researcher Papers

1 Bird, C. 823

2 Rigby, P. C. 546

3 Bacchelli, A. 535

4 Hassan, A. E. 368

5 German, D. M. 366

6 Storey, M. A. 366

7 Adams, B. 346

8 Iida, H. 333

9 Kamei, Y. 262

10 McIntosh, S. 250

A.2 Results 73

Table A.5: The top 10 most investigated concepts in MCR research.

Concept Frequency in Papers

1 the process of code review 28.8%

2 tool support for code review 24.9%

3 GitHub 16.9%

4 reviewer recommendation 12.4%

5 pull requests 11.9%

6 outcomes of code review 10.7%

7 review participation 10.7%

8 machine learning 10.7%

9 understanding of the code under review 10.7%

10 recommendations for code review 9.0%

grouped into 24 categories (Table A.6). The terms review and code review in the names

of the concepts mean modern code review. Most of the categories are easily understood by

their names, so we only detail some of them in the next paragraphs.

The most popular category is Review Process (Table A.6). Over 50% of the papers

about MCR focus on the process of MCR, e.g. they analyze the practices used in real world

projects, classify different MCR processes or recommend best practices for MCR.

The second most popular category is Techniques. When a paper is associated with this

category, it means that the paper studies the application of some technique to MCR. The

most common techniques being applied to MCR are: machine learning (10.7%), program

analysis (8.5%), social network analysis (5.6%) and natural language processing (5.6%). It

is not surprising that machine learning ranks so high, since it has been frequently applied to

widely different fields in recent years.

The third most popular category is Open Source. Papers in this category can be about

one of the following three topics: (1) analyze data from GitHub (16.9%), (2) analyze pull

requests (11.9%) or (3) comparison of MCR in open source projects with MCR in closed

source software projects (3.4%).

A.2 Results 74

Table A.6: The categories of concepts investigated in MCR research.

Category Frequency in Papers

1 Review Process 50.8%

2 Techniques 49.7%

3 Open Source 32.2%

4 Review Tools 32.2%

5 Process Metrics 30.5%

6 Non-technical Factors of Code Review 20.3%

7 Understanding 20.3%

8 Improving Effectiveness 18.1%

9 Impact of Code Review 17.5%

10 Reviewer Metrics 17.5%

11 Automation of Review Tasks 14.7%

12 Code Quality 14.7%

13 Review Repository Mining 13.6%

14 Review Comments 10.2%

15 Changeset Metrics 9.0%

16 File Metrics 9.0%

17 Review Adoption 7.9%

18 Security 7.3%

19 Comparison with Other QA Activities 4.0%

20 Architecture/Design 3.4%

21 Knowledge Management 2.8%

22 MCR in Different Contexts 2.8%

23 Author Metrics 2.8%

24 Code Ownership 2.3%

A.2 Results 75

The fourth most popular category, Review Tools, is about tools for supporting MCR. Con-

cepts within this category include the limitations of MCR tools and comparison of different

MCR tools.

The fifth most popular category, Process Metrics, encompasses metrics of the process of

MCR. For example, the concept time taken to review is part of this category and it is a metric

of how much time it takes for developers to review a changeset. Other examples of concepts

within this category include review cost and number of reviews that find defects.

The sixth most popular category, Non-technical Factors of Code Review, is about the

human and social factors that affect code review such as conflicts between developers, how

developers perceive one another and the sentiments embedded in review comments.

A.2.4 RQ4: What types of research methods are used in MCR

research?

Research Methods

The six research methods described in the guidelines of Petersen et al. [40] have been used

in the field of MCR. These are, in order of popularity: case study, experiment, survey, proto-

typing, mathematical analysis and simulation.

The most popular research method is the case study which has been used in 98 (55.4%)

of the papers (Figure A.2). The second most popular method is the experiment which has

been used in 40 (22.6%) of the papers. The experiment method is less than half as common

as the case study method.

The sum of the papers in Figure A.2 is larger than the total number of papers because

some papers used multiple research methods.

Research Types

We applied the classification of research types proposed by Wieringa et al. [55], according

to which there are six possible types: evaluation research, validation research, solution pro-

posal, experience paper, opinion paper and philosophical paper. Both evaluation research

and validation research denote research which empirically validates a solution, however

evaluation research is used when the solution is validated in a real world context and val-

A.2 Results 76

Figure A.2: Bar plot comparing the usage of different research methods in MCR research.

idation research for when the solution is validated in a laboratory setting [40]. A solution

proposal is a study that presents a solution but only provides superficial validation such as

small toy example. The meaning of the other research types can be inferred from their names.

All six types of research have been performed in the field of MCR. The most popular

research type is by far the evaluation research which has been used in 77.4% of the papers

(Figure A.3). The second most popular method is the solution proposal which has been used

in 9.04% of the papers.

Figure A.3: Bar plot comparing the usage of different research types in MCR research.

A.2 Results 77

A.2.5 RQ5: What types of contributions are made in MCR research?

The contribution type is the type of object being studied by a paper. Petersen et al. classified

the contributions from papers in five types: process, method, tool, model and metric [40].

We defined a sixth type called dataset after observing a number of papers whose main focus

were valuable datasets that the authors had produced for research.

The most popular contribution type is process which has been used in 71 (40.1%) of

the 177 papers (Figure A.4). The second and third most popular contribution types are,

respectively, method which has been used in 52 (29.4%) of the 177 papers and tool which

has been used in 28 (15.8%) of the 177 papers.

Figure A.4: Bar plot comparing the usage of different contribution types in MCR research.

A.2.6 RQ6: Which context is more used in MCR studies: open source

or closed source?

For this research question, we classified the context of an MCR study as being either open

source software (OSS) or closed source software (CS) and we want to know whether MCR

research tends to focus on one context more than the other.

Open source software is the most popular context for MCR research by far, having been

studied in 144 (81.4%) of the 177 papers, while the context of closed source software (CS)

A.2 Results 78

was studied in just 40 (22.6%) of the 177 papers (Figure A.5). 9 papers have analyzed both

OSS and CS contexts.

Figure A.5: Venn diagram comparing the number of papers analyzing MCR in Open Source

Software (OSS) projects and Closed Source Software (CS) projects.

Most research on MCR in a closed source context is done by a few organizations. Of the

54 organizations who have published more than one paper about MCR, only 8 organizations

have authored more than one paper about MCR within a closed source software context.

Furthermore, these 8 organizations have published 32 (80.0%) of the papers with a closed

source context.

A.2.7 RQ7: What are the most referenced (influential) papers?

For this research question, we analyzed the most cited papers about MCR. We wanted to

know what they are about and what they have in common.

Table A.8 shows the top 10 most referenced papers on MCR along with how much they

were cited according to Google Scholar in March 2019.

Six of the most referenced papers were written by the same scientific collaboration net-

work (Papers 1, 2, 4, 5, 6, 8 in Table A.8). Considering a graph where the 10 most referenced

papers are the vertices and the edges indicate which papers have at least one author in com-

mon, then these six papers would form a connected component and the remaining papers

would not be linked to any other.

Two organizations have collaborated with more than one of the 10 most referenced pa-

pers. Papers 1, 4, 6, 7 have at least one author affiliated with Microsoft and papers 2 and 5

A.2 Results 79

Table A.7: The 8 organizations who published multiple papers about MCR within a closed

source context and are responsible for 80.0% of the research with this context.

Organization Papers OSS CS

1 Microsoft 13 6 10

2 Leibniz Universitat Hannover 6 0 6

3 Vienna University of Technology 4 0 4

4 University of Saskatchewan 5 3 3

5 University of Mannheim 3 0 3

6 Kyushu University 3 2 2

7 University of Alabama 7 6 2

8 North Carolina State University 4 2 2

Table A.8: The top 10 most referenced papers in MCR research.

Researcher Papers

1 Expectations, Outcomes, and Challenges of Modern C... 323

2 Open Source Software Peer Review Practices: A Case... 176

3 A large-scale empirical study of just-in-time qual... 162

4 Learning Natural Coding Conventions 145

5 Understanding broadcast based peer review on open... 139

6 Convergent Contemporary Software Peer Review Pract... 136

7 How Do Software Engineers Understand Code Changes?... 103

8 Modern Code Reviews in Open-source Projects: Which... 99

9 Reducing Human Effort and Improving Quality in Pee... 96

10 Collaboration, peer review and open source softwar... 88

A.3 Discussion 80

have at least one author affiliated with the University of Victoria.

The most referenced papers were all published in high impact venues. These venues,

along with their h5-indexes, are: ACM/IEEE International Conference on Software Engi-

neering (75), ACM SIGSOFT International Symposium on Foundations of Software Engi-

neering (51), IEEE Transactions on Software Engineering (48), Mining Software Reposito-

ries (38) and Information Economics and Policy (19) [25].

The distribution of research methods and types of the 10 most cited papers is very similar

to the distribution in the general population of MCR papers. As research method, most papers

use case study (5 of the 10 papers) and, as research type, the papers are almost all classified

as evaluation research (9 of the 10 papers).

The most predominant contribution type of these most cited papers is process. 6 of the

10 papers studied the process of MCR, 2 contributed models for MCR and the remaining 2

studied methods to support MCR.

Regarding the context of the papers, 5 papers analyze an open source context exclusively,

3 papers studying a closed source context exclusively and 2 analyzed both open source and

closed source contexts. It is noteworthy that of the 9 papers in the whole dataset which

analyze both open and closed contexts, 2 are part of the top 10 most cited papers. These two

papers consists of studies which analyzed a large amount of data from multiple and diverse

projects.

According to the topic dependent classification, most of the top cited papers study: the

process of MCR (6 papers), the impact of MCR on the software project (4 papers), tools

for supporting MCR (4 papers), the application of a certain technique to MCR (3 papers),

how to automate review tasks (2 papers), the effect of MCR on code quality (2 papers),

how to improve the effectiveness of MCR (2 papers), the non-technical factors of MCR (2

papers), MCR in open source software versus MCR in closed source software (2 papers) and

understanding of the code under review (2 papers).

A.3 Discussion

In this section, we summarize the main findings of this study and their implications for

researchers.

A.3 Discussion 81

A.3.1 Main Findings

The field of Modern Code Review is growing fast. A total of 177 papers about MCR have

been published since 2002 and research on MCR has been growing steadily every year since

2011. Also, most papers so far have been published in conferences and workshops, which

suggests that the field is still in its infancy. Overall, this indicates that the field of MCR is

promising and relevant and that there is ample opportunity for future research.

Several researchers and organizations are involved in MCR research, however most are

infrequent contributors. Of the 378 researchers and 178 organizations involved in MCR

research, 73.3% of the researchers and 64.5% of the organizations have participated in just a

single paper about MCR.

Researchers are studying a wide variety of topics within MCR. Our topic dependent

classification groups MCR papers according to 148 concepts and 24 categories which were

extracted from the abstract of the papers. The most investigated topics are the process of

MCR, the application of specific techniques (e.g. machine learning and natural language

processing) to parts of the MCR process, the use of MCR in OSS projects and tools for

supporting the activities of MCR.

Almost 80% of the research provides empirical validation of their results in a real world

setting. This is a very positive finding because it indicates that the results of MCR research

tend to be reliable and grounded in real world data.

Most papers study the process of MCR (40.1%). This is a positive finding because it

indicates that the investigation of possible tools and methods for supporting MCR is well

grounded in research of the process of MCR and its outcomes and challenges.

Although process is the most frequent contribution type for papers, papers studying meth-

ods and tools are also common. When counting together papers that study methods and tools

for supporting MCR, they account for 45.2% of all MCR papers, which is more than pa-

pers studying the process of MCR. This is evidence that research in this field is not only

concerned with understanding MCR but also with improving it.

MCR is considerably more studied in an OSS context than in a closed source software

(CS) context. Only 22.6% of the papers studied MCR within an OSS context. Moreover,

we have identified that 8 organizations are responsible for publishing 80.0% of the papers

using a CS context. We hypothesize that this happens because data from the review process

A.3 Discussion 82

of OSS projects is often readily available online unlike CS projects.

The most cited MCR papers usually describe and characterize the process of MCR and

were published in high impact venues. It is likely that this happens because papers about

MCR usually cite at least one paper which describes and explains the process of MCR for

purposes of context and motivation. Since these studies about the process of MCR were

published in popular venues and are well written and reviewed, they are usually cited in

papers about MCR.

A.3.2 Implications for Researchers

Researchers interested in MCR should focus their attention on the 12 venues listed in A.1,

given that they are the only ones which had at least 3 papers about MCR published at the

time of the data collection phase.

MCR researchers should follow the most active and popular organizations and re-

searchers (Section A.2.2) in order to keep up to date with new developments in the field of

MCR. Also, our list of researchers and organizations involved in MCR may also be useful

for identifying potential collaborators.

Our topic dependent classification (Section A.2.3) allows the researcher to quickly iden-

tify MCR papers of interest to him. For instance, a researcher interested in code under-

standing during the process of code review can retrieve from the classification which papers

contain the concept understanding of the code under review. Thus, our classification facili-

tates literature review.

Considering the disproportionate amount of papers studying MCR solely within an OSS

context (77.4%), researchers would do well to focus on a closed source software context

in future studies in order to confirm that the findings are generalizable to that context. In

particular, we believe that a paper publishing a dataset of MCR data from CS projects would

be very useful, since there were only 7 datasets papers published in the field and they were

all built from OSS projects.

MCR researchers will likely find useful to be familiar with the papers which we identified

as the most referenced in the field (A.8). The majority of these papers talk about the process

of MCR, so they should be relevant for most research in the field.

A.3 Discussion 83

A.3.3 Threats to Validity

As with any research study, there are many possible threats to the validity, but we tried to

mitigate them as far as possible.

To begin with, only one author selected the studies for analysis, so the selection might

be biased. That is, although we have clearly defined inclusion and exclusion criteria to avoid

this, it is still a possibility that irrelevant studies were deemed to fit the criteria and be about

MCR and that relevant studies were wrongly considered to not fit the criteria.

Further, even though we used two search strategies in a systematic way, some relevant

studies may not have been found. It is not impossible that there exists relevant studies about

MCR which were not cited by any other in our dataset and which did not match the keywords

we used in the electronic data search.

For the data extraction phase, in general, the possible threats to validity are that we

wrongly filled entries in the data extraction spreadsheet or that we misclassified papers.

For the metadata extraction of the selected studies, we manually checked that each field

was correct in order to avoid errors.

As for the topic independent classification process, it is possible that some papers were

misclassified since we do not read each paper fully in a conventional systematic mapping

study. In particular, the distinction between papers contributing methods and papers con-

tributing tools is not always clear (Section A.2.5). For instance, sometimes, the authors of a

given paper state that their main contribution is a tool, but this tool is actually a prototype im-

plementation of their new method for supporting code review. Therefore, it is possible some

papers were misclassified as mainly contributing a tool instead of a method and vice-versa.

The topic dependent classification process is vulnerable to a number of problems, e.g. we

might have missed important concepts, might have given poor names to concepts, might have

conceived poor categories and so forth. That is because the process is based on open coding

from grounded theory [40], which is a qualitative process whose results vary according to

the interpretation, skill and background of the researchers involved [15].

A.4 Related Work 84

A.4 Related Work

In this section, we describe two other systematic mappings (SM) related to MCR. Because

there are only two directly related studies, we also briefly summarize in this section: studies

about the use of SM studies in Software Engineering and studies reporting SM in the more

general field of Software Quality which encompasses MCR.

A.4.1 Systematic Mappings in Modern Code Review

When we conducted our study, there were not any published systematic mappings related

to MCR. However, before we published our study, researchers published two systematic

mappings on the field.

Coelho et al. conducted a systematic mapping similar to ours but with a narrower scope.

Specifically, while we analyzed papers about MCR, they focused on papers with solutions

for MCR which consider the presence of refactorings in changesets. They found 13 papers

matching their search criteria. Subsequently, they created a topic independent classification

(question, results and validation) and a topic dependent classification for these papers [14].

Badampudi et al. reported the preliminary results of their systematic mapping on MCR

[3]. They performed an electronic data source search and found 177 papers about MCR.

Next, they analyzed those papers according to the topics they discuss, i.e. they created a

topic dependent classification for these papers. Although their classification has topics which

are similar to ours, we believe our classification is more extensive with more concepts. We

also analyzed the papers according to multiple other dimensions such as venue and research

method.

A.4.2 Systematic Mappings in Software Engineering

Petersen et. al presents a guide on how to perform a SM in Software Engineering and also

compares and contrasts SM with systematic review (SR) by analyzing ten published sys-

tematic reviews [39]. In 2015, Petersen et al. notices that the aforementioned guidelines

from 2008 could be improved and as a result, they perform a SM of existing SM studies in

Software Engineering to determine how SM studies are being conducted in practice. With

this information, they propose new and updated guidelines for performing a SM study [40].

A.5 Conclusion 85

Kitchenham et al. analyzed five studies which were based on preceding SM studies and

found that research based on an earlier SM study had a number of advantages such as faster

completion time and easier understanding of the literature [31]. Budgen et al. examined six

mapping studies in Software Engineering and found that researchers often had difficulty with

classifying the selected studies and with data extraction due to poor reporting in the studies

[11].

Kitchenham et al. conducted a case study with six students and found that SM studies

are useful for undergraduate and postgraduate students because they teach research skills and

provide an overview of a research field [30].

Wohlin et al., MacDonell et al. and Kitchenham et al. compared SM studies which

addressed the same topic and obtained mixed results on how similar the results of the SM

studies are and how much overlap in selected studies they had [57][32][29].

A.4.3 Systematic Mappings in Software Quality

Barney et al. conducted a SM study on the topic of software quality trade-offs. As a major

result, they found that only 28% of the selected studies provide empirical validation [4]. In

sharp contrast, we found that almost 80% of the studies provide empirical validation with

real world data in the field of MCR.

Tahir et al. did a SM study in the area of dynamic metrics of software quality and found

that most studies at the time of the study focused on complexity and maintainability metrics.

Also, 63% of the studies provided empirical validation to their claims [51].

Elberzhager et al. conducted a SM study on methods that combine static and dynamic

quality assurance techniques. They found evidence of growing interest in the field and that

nearly 50% of the studies provide empirical validation [16].

A.5 Conclusion

Given the popularity of MCR and the lack of secondary studies in the field in 2017, we con-

ducted a systematic mapping study of MCR, where we identified 177 studies about MCR and

classified them according to not only an existing classification scheme for research studies

in general but also to a new classification scheme we derived from the papers themselves.

A.5 Conclusion 86

From our analysis and classification of the papers, we obtained interesting insights and

also provided recommendations for future research in the area. We mainly discovered that:

(1) the field of MCR is growing fast and steadily since 2011, (2) a wide variety of topics

within MCR are being studied, (3) close to 80% of the studies provide empirical validation,

(4) most papers study the process of MCR and such papers are usually the most cited and (5)

there are comparatively few studies using a closed source software context.

However, our greatest contribution in this work is the map of the published peer-reviewed

research on MCR. This map provides multiple benefits to researchers such as enabling them

to easily find the published research relevant to their current work in MCR and visualizing

the topics within MCR studied so far.

As potential future work, we believe that more secondary studies could be done in MCR.

In particular, it would be interesting to conduct more in depth studies such as systematic

reviews focusing on more specific topics within MCR. For example, systematic reviews

about the process of MCR are promising given the high number of primary studies examining

this topic.

Finally, the whole dataset containing the list of selected studies, their metadata

and the classification can be found at: https://sites.google.com/view/

ch-design-discuss-thesis/

Appendix B

Tree of Concepts and Categories

The following table shows the whole tree of concepts and categories identified during the

characterization study of design discussions in MCR described in Chapter 4. The table also

includes the absolute and relative number of occurrences of each concept and category.

Regarding the notation used, the categories to the left encompass the categories and con-

cepts to the right. For example, the concept to fix issue belongs to the category Goal of design

change, which belongs to the category Design change, which belongs to Design concern.

Note that the top-most category Design review, which encompasses all other categories, was

omitted due to print-size constraints.

87

Category Concept N %
Design concern 1160 34.83%

Design change 689 20.69%
change description 1 0.03%
change rationale 22 0.66%
implemented change 40 1.20%
proposed change 334 10.03%

Goal of design change 77 2.31%
to fix issue 42 1.26%
to improve a non-functional requirement 31 0.93%
to support new feature 4 0.12%

Types of design change 215 6.46%
change memory management 2 0.06%
change solution design 19 0.57%
change to a stateless design 1 0.03%
change field mutability 8 0.24%
extract library 1 0.03%
remove code duplication 4 0.12%
removed code with design issues 1 0.03%

Change method contract 27 0.81%
change method parameters 8 0.24%
change method preconditions 7 0.21%
change method return 7 0.21%
change static method to non-static 3 0.09%
mark method as non-overridable 2 0.06%

Class-level change 20 0.60%
change class API 1 0.03%
change class to interface 1 0.03%
change class to static 4 0.12%
change dependency from impl to interface 2 0.06%
change object construction interface 5 0.15%
change object serialization 2 0.06%
change relationship multiplicity 1 0.03%
new relationship between classes 2 0.06%
remove from public API 2 0.06%

Concurrency 5 0.15%
add concurrency mechanism 1 0.03%
change concurrency mechanism 4 0.12%

Create new element 18 0.54%
create new class 6 0.18%
create new field 1 0.03%
create new method 10 0.30%
create public interface 1 0.03%

Design pattern 5 0.15%
apply builder design pattern 1 0.03%
apply dependency inversion pattern 1 0.03%
apply observer pattern 1 0.03%
apply singleton pattern 1 0.03%
apply visitor design pattern 1 0.03%

Exception 21 0.63%
change exception handling 16 0.48%
change thrown exception 5 0.15%

Merge elements 3 0.09%
merge classes 1 0.03%
merge methods 2 0.06%

Move element 20 0.60%
move class to another module 2 0.06%

move code to another class 7 0.21%
move code to another function 6 0.18%
move code to another module 1 0.03%
move field to another class 2 0.06%
move methods to another class 2 0.06%

Remove unnecessary element 11 0.33%
remove unnecessary code 7 0.21%
remove unnecessary field 2 0.06%
remove unnecessary method 2 0.06%

Traditional refactorings 33 0.99%
encapsulate 2 0.06%
extract class 3 0.09%
extract field 1 0.03%
extract method 11 0.33%
extract variable 1 0.03%
inline function 1 0.03%
pull up code 4 0.12%
replace conditional with polymorphism 1 0.03%
replace magic literal 6 0.18%
replace primitive with object 3 0.09%

Use another element 16 0.48%
replace own impl with an external dependency 1 0.03%
use another algorithm 3 0.09%
use another data structure 9 0.27%
use another library 3 0.09%

Design issue 471 14.14%
issue 306 9.19%
issue rationale 19 0.57%

Types of design issue 146 4.38%
class should be more generic 1 0.03%
concurrency design issue 15 0.45%
confusing design 5 0.15%
design doesnt fulfill the software requirements 7 0.21%
misused design pattern 3 0.09%
new design causes regression 1 0.03%
not reusing existing code 1 0.03%
poor performance of design 3 0.09%

Design smell 3 0.09%
flag argument 1 0.03%
global variable 1 0.03%
magic literal 1 0.03%

Encapsulation 18 0.54%
deficient encapsulation 16 0.48%
excessive encapsulation 2 0.06%

Exception issue 11 0.33%
should not throw exception 1 0.03%
wrong exception handling 10 0.30%

Memory 2 0.06%
memory leak 1 0.03%
poor memory management 1 0.03%

Method contract issue 11 0.33%
inconsistent API method contracts 1 0.03%
wrong method precondition 1 0.03%
wrong method return 9 0.27%

Missing element 14 0.42%
incomplete interface (missing methods) 12 0.36%
missing constructor 1 0.03%

missing interface 1 0.03%
Placement issue 9 0.27%

poorly placed class 1 0.03%
poorly placed field 2 0.06%
wrongly placed method 6 0.18%

Solution 9 0.27%
poor solution design 3 0.09%
wrong solution design 6 0.18%

Unnecessary element 33 0.99%
redundant inheritance 2 0.06%
unnecessary class 5 0.15%
unnecessary code 7 0.21%
unnecessary field 4 0.12%
unnecessary method 11 0.33%
unnecessary method parameter 4 0.12%

Not design 901 27.06%
assertion 4 0.12%
code style 75 2.25%
duplicated discussion comment 58 1.74%
error message 19 0.57%
feature specification (software requirements) 26 0.78%
reference to a specific dev 2 0.06%
reference to another comment 19 0.57%
reference to infor outside this review request 46 1.38%
software configuration files 8 0.24%
testing 87 2.61%

Documentation 147 4.41%
code comment 97 2.91%
documentation 50 1.50%

Logging 18 0.54%
add log point 6 0.18%
log message 12 0.36%

Implementation 237 7.12%
change method implementation 4 0.12%
code snippet 26 0.78%
implementation bug 44 1.32%
local variable initialization 10 0.30%
local variable type 5 0.15%
missing method calls in method impl 1 0.03%
move statements within method 12 0.36%
naming in code 82 2.46%
optimize method implementation 4 0.12%
replace code with calls to existing methods 2 0.06%
simplify method implementation 35 1.05%
temporary code 4 0.12%
unnecessary line of code 7 0.21%
use another programming language 1 0.03%

Review workflow 69 2.07%
ask author to keep working on the changeset 2 0.06%
ask devs to review the patch 1 0.03%
ask if review was abandoned 1 0.03%
ask author to close finished issues 1 0.03%
ask author to close review request 1 0.03%
declaration of what the dev reviewed 11 0.33%
dev couldnt understand the review comment 1 0.03%
lgtm 24 0.72%
move part of the changes to another review 6 0.18%

summary of the review comments written 21 0.63%
Social 42 1.26%

praise the author's work 27 0.81%
praise the review 1 0.03%
social 14 0.42%

Tools 44 1.32%
build tool configuration 6 0.18%
build tool log 2 0.06%
review bot 19 0.57%
version control 17 0.51%

Review actions 595 17.87%
Improving design 422 12.67%

ask for design change proposals 4 0.12%
ask for feedback 9 0.27%

Introduce design concern 409 12.28%
introduce change 246 7.39%
introduce issue 163 4.89%

Postponing 18 0.54%
ask for time before answering 7 0.21%
postponed a design change 8 0.24%
suggest postponing discussion 3 0.09%

Understanding design 155 4.65%
paraphrase belief to confirm understanding 2 0.06%
understood clarification 6 0.18%

Ask for clarification on design 76 2.28%
ask for clarification on current design 7 0.21%
ask for clarification on design change 63 1.89%
ask for clarification on design issue 6 0.18%

Provide clarification on design 71 2.13%
clarification on change description 33 0.99%
clarification on change rationale 24 0.72%
clarification on current design 8 0.24%
clarification on issue description 6 0.18%

Design discussion 674 20.24%
Discussion result 157 4.71%

accepted 79 2.37%
Discarded 78 2.34%

postponed discussion 17 0.51%
rejected 53 1.59%

Design concern was invalidated 8 0.24%
another change invalidated this change 6 0.18%
another change invalidated this issue 2 0.06%

Belief 517 15.53%
belief rationale 20 0.60%

Types of belief 497 14.92%
neutral belief 7 0.21%
strongly agree belief 171 5.14%
strongly disagree belief 37 1.11%
weakly agree belief 247 7.42%
weakly disagree belief 35 1.05%

3330 100.00%

