
Universidade Federal de Campina Grande

Centro de Engenharia Elétrica e Informática

Coordenação de Pós-Graduação em Ciência da Computação

Revisiting the Refactoring Names

Jonhnanthan Victor Pereira Oliveira

Dissertação submetida à Coordenação do Curso de Pós-Graduação em

Ciência da Computação da Universidade Federal de Campina Grande -

Campus I como parte dos requisitos necessários para obtenção do grau

de Mestre em Ciência da Computação.

Área de Concentração: Ciência da Computação

Linha de Pesquisa: Engenharia de Software

Rohit Gheyi (Orientador)

Melina Mongiovi (Orientadora)

Campina Grande, Paraíba, Brasil

c©Jonhnanthan Victor Pereira Oliveira, 03/09/2018

O48r

 Oliveira, Jonhnanthan Victor Pereira.

 Revisiting the refactoring names / Jonhnanthan Victor Pereira
Oliveira. – Campina Grande, 2018.
 65 f. : il. color.

 Dissertação (Mestrado em Ciência da Computação) – Universidade

Federal de Campina Grande, Centro de Engenharia e Elétrica e
Informática, 2018.

 "Orientação: Prof. Dr. Rohit Gheyi, Profa. Dra. Melina Mongiovi”.
 Referências.

 1.

 1. Software. 2. Refactoring Nanes – Survey. 3. Tool Developers.
I. Gheyi, Rohit. II. Mongiovi, Melina. II. Título.

 CDU 004.4(043)

 FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECÁRIA SEVERINA SUELI DA SILVA OLIVEIRA CRB-15/225

Resumo

Refactoring é uma prática chave em metodologias ágeis utilizadas por vários

desenvolvedores e disponível em IDEs profissionais. Existem livros e artigos que

explicam os refactorings e analisam problemas relacionados aos nomes. Alguns trabalhos

identificaram que os nomes de refactorings em ferramentas automatizadas de refactoring

podem confundir os desenvolvedores. No entanto, não sabemos até que ponto os nomes

dos refactorings são confusos no contexto de transformações de pequena granularidade.

Neste trabalho, conduzimos um estudo de método misto a partir de diferentes perspectivas

para entender melhor o significado dos nomes dos refactorings para desenvolvedores e

desenvolvedores de ferramentas (implementações de refactorings e ferramentas de detecção

de refactorings). No primeiro estudo, revisitamos os nomes dos refactorings através de uma

pesquisa com 107 desenvolvedores de projetos Java populares no GitHub. Perguntamos

a eles sobre o resultado de sete tipos de refatoração aplicados a pequenos programas. Esse

estudo identifica que os desenvolvedores não esperam a mesma saída para todas as perguntas,

mesmo usando pequenos programas Java como entrada. O significado dos nomes dos

refactorings é baseado na experiência dos desenvolvedores para um número deles (71.02%).

No segundo estudo, observamos até que ponto as implementações de refatoração têm o

mesmo significado dos nomes dos refactorings. Aplicamos 10 tipos de refactorings em

157,339 programas usando 27 implementações de refactorings de três ferramentas, usando

a mesma entrada e parâmetros, e comparando as saídas. Categorizamos as diferenças em 17

tipos que ocorrem em 9 de 10 tipos de refactorings implementados por Eclipse, NetBeans

e JRRT. No terceiro estudo, comparamos o significado dos nomes dos refactorings usados

em uma ferramenta (RMiner) que detecta refactorings com implementações de refactorings

implementadas por três ferramentas. RMiner não produz o mesmo conjunto de refactorings

aplicados pelas implementações do Eclipse, NetBeans e JRRT em 48.57%, 35% e 9.22% dos

casos, respectivamente. Em geral, desenvolvedores e desenvolvedores de ferramentas usam

diferentes significados para os nomes dos refactorings, e isso pode afetar a comunicação

entre desenvolvedores e pesquisadores.

i

Abstract

Refactoring is a key practice in agile methodologies used by a number of developers, and

available in professional IDEs. There are some books and papers explaining the refactoring

names. Some works identified that the names of some automated refactoring tools are a

distraction to developers. However, we do not know to what extent the refactoring names are

confusing in the context of small-grained transformations. In this work, we conduct a mixed-

method study from different perspectives to better understand the meaning of refactoring

names for developers, and tool developers (refactoring implementations, and refactoring

detection tools). In the first study, we revisit the refactoring names by conducting a survey

with 107 developers of popular Java projects on GitHub. We asked them about the output

of seven refactoring types applied to small programs. It finds that developers do not expect

the same output to all questions, even using small Java programs as input. The meaning

of refactoring names is based on developers’ experience for a number of them (71.02%).

In the second study, we observe to what extent refactoring implementations have the same

meaning of the refactoring names. We apply 10 types of refactorings to 157,339 programs

using 27 refactoring implementations from three tools using the same input and parameters,

and compare the outputs. We categorize the differences into 17 types that occur in 9 out

of 10 refactoring types implemented by Eclipse, NetBeans, and JRRT. In the third study,

we compare the meaning of the refactoring names used in a tool (RMiner) that detects

refactorings to refactoring implementations implemented by three tools. RMiner does not

yield the same set of refactorings applied by implementations from Eclipse, NetBeans, and

JRRT in 48.57%, 35%, and 9.22% of the cases, respectively. Overall, developers and tool

developers use different meanings for refactoring names, and this may impact developers’

and researchers’ communication.

ii

Agradecimentos

Agradeço a Rohit Gheyi e a Melina Mongiovi como meus orientadores nesses dois anos

de mestrado na UFCG. Eles sempre buscaram me ensinar tudo que era necessário e que

melhoraria meu trabalho. Eles sempre acreditaram no meu potencial e me incentivaram a

sempre fazer o melhor que eu conseguisse. Me ensinaram a ser dedicado e acreditar que todas

as barreiras podem ser ultrapassadas com calma e perseverança. Além disso, o fato de sempre

acreditarem que o trabalho pode ser melhorado me mostrou o quanto ainda tenho o que

aprender com eles. Agradeço a UFCG, aos professores e aos funcionários do DSC/COPIN

por todo comprometimento e ajudas prestadas ao longo desse trabalho. Agradeço a CAPES

pelo apoio ao meu trabalho.

iii

Contents

1 Introduction 1

1.1 Problem . 2

1.2 Solution . 3

1.3 Evaluation . 4

1.4 Summary of Contributions . 5

1.5 Organization . 5

2 Background 7

2.1 Program Refactoring . 7

2.1.1 Refactoring Specification . 8

2.1.2 Example . 8

2.2 Refactoring Implementations . 11

2.3 JDOLLY . 13

3 Revisiting Refactoring Names 17

3.1 STUDY I: Developers . 17

3.1.1 Definition . 17

3.1.2 Planning . 18

3.1.3 Results . 18

3.1.4 Discussion . 19

3.1.5 Threats to Validity . 25

3.2 STUDY II: Refactoring Implementations 26

3.2.1 Approach . 26

3.2.2 Definition . 29

iv

CONTENTS v

3.2.3 Planning . 30

3.2.4 Results . 31

3.2.5 Discussion . 32

3.2.6 Threats to Validity . 37

3.2.7 Answers to the Research Questions 38

3.3 STUDY III: Refactoring Detection Tool . 40

3.3.1 Approach . 40

3.3.2 Definition . 43

3.3.3 Planning . 43

3.3.4 Results . 44

3.3.5 Discussion . 47

3.3.6 Threats to Validity . 49

3.3.7 Answers to the Research Questions 50

4 Conclusions 51

4.1 Related Work . 53

4.2 Future Work . 57

List of Figures

1.1 Inline Method refactoring. 2

2.1 Inline Method specification. 9

2.2 Available options to apply a refactoring to the selected item on NetBeans. . 12

2.3 Available additional parameters to apply the selected refactoring on NetBeans. 13

2.4 Preview on NetBeans. 13

3.1 A question of our survey. 19

3.2 Preference of developers for each kind of refactoring type. 20

3.3 Distribution of answers. 20

3.4 Pull Up Field refactoring. 21

3.5 Pull Up Method refactoring. 22

3.6 Push Down Field refactoring. 22

3.7 Push Down Method refactoring. 23

3.8 Rename Field refactoring. 24

3.9 Encapsulate Field refactoring. 24

3.10 An approach to detect differences in refactoring implementations. First,

JDOLLY automatically generates programs as inputs (Step 1). For each

generated program, the refactoring implementation attempts to apply the

transformation (Step 2). Finally, it identifies differences by using Differential

Testing Oracle (Step 3). 27

3.11 The web-based diff view of GumTree. 30

3.12 The Inline Method refactoring implementation of NetBeans 8.2 removes

some statements. 37

vi

LIST OF FIGURES vii

3.13 An approach to detect differences in refactoring implementations and

refactoring detection tools. First, JDOLLY automatically generates

programs as inputs (Step 1). For each generated program, the refactoring

implementation attempts to apply the transformation (Step 2). Finally, we

run RMiner in each transformation, and we check whether RMiner yields

the same refactoring type applied by the refactoring implementation. 41

List of Tables

3.1 Number of differences found by our approach. Programs = number

of programs; Differences = number of transformations applied by both

implementations that have different output programs; - = we could not

evaluate the NetBeans implementations. 31

3.2 Type of differences found by our approach. Difference Type = it specifies

the difference found; Comparison = it specifies the comparison that showed

the related difference; #Diffs = number of differences. 32

3.3 Summary of RMiner detection results. #Pairs = number of transformations;

Undetected = RMiner does not yield the refactoring type applied by the

refactoring implementation; Detected = RMiner identifies the refactoring

applied by the refactoring implementation; Difference = RMiner yields a

different refactoring type, or more than one refactoring type for the same

pair of programs. 47

viii

List of Source Codes

2.1 Input program to apply the Inline Method refactoring. 9

2.2 Result of the Inline Method refactoring application performed by Eclipse JDT. 10

2.3 Result of the Inline Method refactoring application performed by NetBeans

and IntelliJ. 10

2.4 Input program to apply the Pull Up Field refactoring. 11

2.5 Result of the Pull Up Field refactoring application. 11

2.6 An example of a program generated by JDOLLY 14

3.1 Input program to apply the Push Down Method refactoring. 27

3.2 Push Down Method refactoring application of Eclipse JDT. 28

3.3 Push Down Method refactoring application of NetBeans. 28

3.4 Rename Field refactoring application of NetBeans. 33

3.5 Rename Field refactoring application of JRRT. 33

3.6 Move Method refactoring application of Eclipse JDT. 34

3.7 Move Method refactoring application of NetBeans. 35

3.8 Input program to apply the Inline Method refactoring. 37

3.9 Inline Method refactoring application of NetBeans 8.2. 37

3.10 Input program to apply the Push Down Method refactoring. 41

3.11 Result of the Push Down Method refactoring application performed by

Eclipse JDT. 42

3.12 Input program to apply the Pull Up Method refactoring. 44

3.13 Result of the Pull Up Method refactoring application performed by Eclipse

JDT. 45

3.14 Input program to apply the Move Method refactoring. 46

3.15 Result of the Move Method refactoring application performed by NetBeans. 46

ix

LIST OF SOURCE CODES x

3.16 Input program to apply the Pull Up Field refactoring. 47

3.17 Result of the Pull Up Field refactoring application performed by Eclipse JDT. 48

Chapter 1

Introduction

During the life cycle of a software, it may need to be changed to fix bugs, introduce new

features and enhancements, improve its internal structure, or make the processing more

efficient. Systems continue to evolve over time and become more complex as they grow.

Lehman’s Laws describes software evolution as a force that is responsible for both the driving

of new and/or revising of developments in a system [1].

Opdyke and Johnson coined the refactoring term in a research that described the

process and identify common refactorings [2]. Code refactoring, a kind of perfective

maintenance [3], is the process of changing the internal structure of a program to improve

its internal quality but preserving its external behavior [2; 4; 5]. Later, Fowler popularized

it, and explains the principles and best practices through a catalog of 72 refactorings. Each

refactoring type has a name to facilitate the communication among developers [5].

Since then, common refactorings have received names and have been explained [4; 5; 6;

7; 8; 9; 10; 11; 12], have been automated and incorporated into refactoring tools (such as

Eclipse [13], NetBeans [14], and IntelliJ [15]), and has become a central part of software

development processes, such as eXtreme Programming [16].

1

1.1 Problem 2

1.1 Problem

In practice, tool developers implement a refactoring based on their experience, some

previous work or formal specifications [4; 5]. Vakilian et al. [17] find that the names of

some automated refactorings are confusing, and developers cannot predict the outcomes of

complex tools. Murphy-Hill et al. [18] find that the names of the refactoring in some tools

are a distraction to the developer because they can vary from one environment to another.

For example, Fowler’s Introduce Explaining Variable [5] is called Extract Local Variable in

Eclipse.

Consider applying the Inline Method refactoring to the foo method in the Java input

program presented in Figure 1.1. The Inline Method refactoring puts the method’s body into

the body of its callers, and removes the method from the program [5]. The code presented

in Figure 1.1(A) does not remove the foo method. Moreover, in this example, it adds more

statements in the body of the m method. If we use tools to apply this refactoring, Eclipse

JDT 4.5 yields the program described in Figure 1.1(A). This example is a test case from the

Eclipse test suite.

Input

(A)

(B)

class A {
void m() {

int y = 4;
foo(y);

}
void foo(final int x) {

System.out.println(x);
}

}

class A {
void m() {

int y = 4;
final int x = y;
System.out.println(x);

}
void foo(final int x) {

System.out.println(x);
}

}

class A {
void m() {

int y = 4;
System.out.println(y);

}
}

Figure 1.1: Inline Method refactoring.

If we provide the same input program and parameters to NetBeans 8.2 and IntelliJ

IDEA 2017.3.5 to apply this refactoring, the tools yield the output program presented

1.2 Solution 3

in Figure 1.1(B). Different outcomes from tools show misunderstandings among tool

developers. The example showed a single transformation performed in a small Java program

that preserves the external behavior but the scenario may be even worse when considering

coarse-grained refactorings applied to larger Java programs, and may impact developers

that use those tools to apply refactorings. However, we do not know to what extent these

differences occur.

1.2 Solution

In this work, we conduct a mixed-method study from different perspectives to better

understand the meaning of refactoring names used by developers and tool developers. For

simplicity, we consider only the refactoring name to also indicate that the mechanics may be

different. The first study considers the developers’ perspective. We revisit the refactoring

names by conducting a survey with 107 developers of popular Java projects on GitHub

to better understand the meaning of the refactoring names used by them in practice. We

asked them about the output of seven refactoring types available in popular IDEs. We

asked developers the output of the Rename Field, Inline Method, Encapsulate Field, Pull

Up Field/Method, and Push Down Field/Method refactorings applied to small programs.

The second study observe to what extent refactorings implemented by developers have

the same meaning as the homonymous refactorings found in the literature [4; 5]. To evaluate

it, we use a number of small Java programs, using JDOLLY [19], an automated Java program

generator, with at most 10 LOC. We use them as input to Eclipse, NetBeans, and JastAdd

Refactoring Tools (JRRT [8]). Eclipse and NetBeans are popular IDEs that allow developers

to apply refactorings. JRRT improves the correctness and applicability of refactorings by

using formal techniques [8]. These tools contain a number of refactoring implementations,

such as Rename Class, Pull Up Method, and Encapsulate Field. We apply the homonymous

refactorings to the same input program and parameters to different implementations. We

perform a pairwise comparison (Eclipse X NetBeans, Eclipse X JRRT, and NetBeans X

JRRT) to identify differences. We consider 27 refactoring implementations of 10 types of

refactorings (Pull Up Method/Field, Push Down Method/Field, Rename Class/Method/Field,

Add Parameter, Encapsulate Field, and Move Method) of Eclipse, NetBeans, and JRRT in

1.3 Evaluation 4

our evaluation.

The third study compares the meaning of the refactoring names used in RefactoringMiner

(RMiner) [11] to refactoring implementations of Eclipse JDT, NetBeans, and JRRT.

RMiner is a tool that detects refactorings implemented by researchers. Researchers used

refactoring detection to empirically study [20; 21; 22; 23; 24; 25; 26] software evolution,

and to support other software engineering tasks, such as library adaptation [27; 28; 29;

30], software merging [31], code completion [32; 33], and code review [34; 35; 36]. RMiner

is a novel technique that overcomes limitations, such as the requirement to build the project

under analysis. RMiner has an improved precision and recall over the previous works [37;

38; 30]. We evaluate RMiner with a set of transformations applied by 18 refactoring

implementations of 7 refactoring types. We provide an input program and a refactored

program yielded by Eclipse, NetBeans, and JRRT in our previous study.

1.3 Evaluation

Our survey finds that developers do not expect the same output. In some cases, such as

Rename Field (46.73%) and Pull Up Method (28.04%), they do not agree on whether the

refactoring should be applied. In other cases, they expect different programs as output. Most

developers expect the refactoring output based on their experience (71.02%). A few of them

consider the meaning of refactoring names presented in papers, books, and sites (7.48%).

This may impact developers’ communication. Moreover, most developers (75.70%) do not

apply manual refactorings; this finding is different from the results showed by previous

studies [17; 39; 40; 41]. They use IDEs to apply refactorings.

Our second study compares the outputs of 157,339 programs. Our approach compares

refactoring implementations by pairs (Eclipse X NetBeans, Eclipse X JRRT, and NetBeans X

JRRT) to identify differences. Overall, only 6.8% of the refactoring applications do not have

differences. In general, 63% of the input programs are not refactored by at least one tool.

Overall, Eclipse, NetBeans, and JRRT applied 23.75%, 26.3%, and 32% of the refactorings,

respectively. We identified that developers of Eclipse, NetBeans, and JRRT adopt the same

meaning to Rename Class refactoring. However, Encapsulate Field refactoring has 94.4% of

differences in the comparison between Eclipse X NetBeans, and NetBeans X JRRT.

1.4 Summary of Contributions 5

We evaluate RMiner [11] in 76,303 transformations of 7 refactoring types using 18

refactoring implementations of Eclipse JDT, NetBeans, and JRRT applied to small Java

programs with at most 10 LOC. We run RMiner in each transformation applied by a tool

to see whether RMiner yields the same refactoring type applied by the tool. RMiner does

not detect 46% of the refactorings applied by Eclipse JDT, 30% of JRRT, and 6% of

NetBeans in 7 refactoring types. RMiner does not detect over 96% of Pull Up Method

refactoring applied by Eclipse JDT and JRRT. The same occurs in over 24% of Rename

Class refactoring application. Moreover, RMiner does not detect all applications of the

seven refactorings applied by NetBeans. In some cases, RMiner detects more refactoring

types in a single refactoring applied by the tool. For example, 34% of the detection of Move

Method refactoring applied by Eclipse JDT yields other types of refactorings, such as Push

Down Method. The same occurs in 22% of detection of Move Method refactoring applied by

NetBeans and JRRT. In other cases, RMiner has the same meaning of the Pull Up Field, and

Push Down Method/Field refactorings implemented by Eclipse JDT, and the Pull Up Field

and Push Down Field refactorings implemented by JRRT.

1.4 Summary of Contributions

In summary, the main contributions of this work are the following:

• A study to better understand the meaning of refactoring names used by developers in

practice (Section 3.1);

• A comparison of 27 refactoring implementations of Eclipse JDT 4.5, NetBeans 8.2,

and JRRT (Section 3.2);

• A comparison of RMiner to 18 refactoring implementations of Eclipse JDT, NetBeans,

and JRRT (Section 3.3).

1.5 Organization

We organize this work as follows. In Chapter 2, we present the background to understand

this work. We explain the concept of refactorings, refactoring tools, and an automated Java

1.5 Organization 6

program generator. Section 3.1 shows a survey to better understand the refactoring names

used by developers in practice. Section 3.2 compares some refactoring implementations of

three tools. Next, Section 3.3 compares the meaning of refactoring names used by refactoring

implementations and RMiner. Finally, we present concluding remarks, and relate our study

to others (Chapter 4).

Chapter 2

Background

In this chapter we present the background of some concepts needed for understanding this

work. First, we explain program refactoring in Section 2.1. Next, Section 2.2 presents an

overview about refactoring tools. Finally, we describe a JDOLLY overview in Section 2.3.

2.1 Program Refactoring

Opdyke originally coined the term refactoring in his PhD thesis [4]. Later, Fowler [5]

popularized it. They define code refactoring as the process of modifying a software system in

order to improve its internal quality while preserving the observable behavior. The essence

of code refactoring consists in a number of small changes that preserve the program behavior.

A sequence of small changes (known as refactorings) produces a substantial restructuring.

According to Mens and Tourwé [6], the process of code refactoring consists of the following

activities:

1. Identify where the software should be refactored;

2. Determine which refactoring(s) should be applied to the identified places;

3. Guarantee that the applied refactoring preserves behavior;

4. Apply the refactoring;

5. Assess the effect of the refactoring on quality characteristics of the software or the

process;

7

2.1 Program Refactoring 8

6. Maintain the consistency between the refactored program code and other software

artifacts.

Over the years, refactoring has become a central part of the software development

process, and developers intend to improve their code. Silva et al. [42] investigated the reasons

that drive developers to refactor their code. They identified refactorings on 748 Java projects

in the GitHub repository. Then, they asked developers why they performed the identified

refactorings. Their results indicate that fixing a bug or changing the requirements, such as

feature additions, mainly drives refactorings.

In addition, Kim et al. [39] perform a field study of refactoring benefits and challenges at

Microsoft through three complementary study methods: a survey, semi-structured interviews

with professional software engineers, and quantitative analysis of version history data. The

survey participants also reported the benefits they have observed from refactoring. The two

most cited benefits were improved readability and maintainability.

2.1.1 Refactoring Specification

Fowler [5] describes the refactorings through a catalog with specifications for 72 refactoring

types. He uses a standard format for each specification with five parts: a name, a summary,

a motivation, the mechanics, and examples. According to Fowler, the name is important to

build a refactoring vocabulary.

The name is followed by a summary. The summary includes a short statement of the

problem that the refactoring helps with, a short description of what should be done, and

a sketch that shows a simple before and after example. The motivation describes why the

refactoring should be done and describes circumstances in which it should not be done.

The mechanics are a step-by-step description of how to carry out the refactoring, and the

examples show a use of the refactoring to illustrate how it works.

2.1.2 Example

The following example considers the refactoring specification of the Inline Method

refactoring. The specification of the Inline Method refactoring starts with the scenario where

2.1 Program Refactoring 9

a method’s body is just as clear as its name. And, the application of this refactoring intends

to put the method’s body into the body of its callers and remove the method (Figure 2.1).

Figure 2.1: Inline Method specification.

Reading the Inline Method refactoring specification as described before, the refactoring

is simple. In general, it is not. Problems on how to handle recursion, and multiple return

points can appear and makes the refactoring difficult to apply.

The tool developers’ perspective may generate some problems. For example, the input

code in Listing 2.1 is small and simple. Consider applying the Inline Method refactoring to

the method foo.

Listing 2.1: Input program to apply the Inline Method refactoring.

1 c l a s s A {

2 void m() {

3 i n t y = 4 ;

4 foo (y) ;

5 }

6

7 void foo (f i n a l i n t x) {

8 System . o u t . p r i n t l n (x) ;

2.1 Program Refactoring 10

9 }

10 }

Considering the mechanics described by Fowler [5] to perform this refactoring, the

refactoring implementation must verify whether the method foo is polymorphic. Next, find

all calls to method foo and replace each call with the method body. Compile and test the

refactored program. Finally, remove the method foo.

The application presented in Listing 2.3 seems to follow those steps and produced an

output program. But, Listing 2.2 does not remove the method and adds a new statement in

the code. Furthermore, the code in Listing 2.2 is a test case of Eclipse JDT.

Listing 2.2: Result of the Inline Method refactoring application performed by Eclipse JDT.

1 c l a s s A {

2 void m() {

3 i n t y = 4 ;

4 f i n a l i n t x = y ;

5 System . o u t . p r i n t l n (x) ;

6 }

7

8 void foo (f i n a l i n t x) {

9 System . o u t . p r i n t l n (x) ;

10 }

11 }

Listing 2.3: Result of the Inline Method refactoring application performed by NetBeans and

IntelliJ.

1 c l a s s A {

2 void m() {

3 i n t y = 4 ;

4 System . o u t . p r i n t l n (y) ;

5 }

6 }

Another problem is the developers’ perspective on the refactoring. For example, the

summary of the Pull Up Field refactoring specifies that the scenario to apply this refactoring

happens when two subclasses have the same field. For example, consider applying the

2.2 Refactoring Implementations 11

Pull Up Field refactoring in the program presented in Listing 2.4. Developers may prefer

not applying the refactoring because the scenario contains only one subclass. In contrast,

some developers may agree on applying the refactoring and also want to make the field

more accessible such as presented in Listing 2.5. This may cause misunderstandings among

developers when the scenario has only one subclass.

Listing 2.4: Input program to apply the Pull Up Field refactoring.

1 p u b l i c c l a s s A {}

2

3 p u b l i c c l a s s B ex tends A {

4 i n t f = 1 1 ;

5 p u b l i c long m() {

6 re turn f ;

7 }

8 }

Listing 2.5: Result of the Pull Up Field refactoring application.

1 p u b l i c c l a s s A {

2 p r o t e c t e d i n t f = 1 1 ;

3 }

4

5 p u b l i c c l a s s B ex tends A {

6 p u b l i c long m() {

7 re turn f ;

8 }

9 }

2.2 Refactoring Implementations

Roberts proposes the first refactoring tool called Refactoring Browser [43]. It implements

a number of refactorings for the Smalltalk [44] language. Refactoring has become more

popular, and researchers improves the correctness and applicability of refactorings by

using formal techniques through refactoring tools, such as JRRT [8]. In addition, most

of the current IDEs have implemented refactorings, such as Eclipse [13], NetBeans [14],

2.2 Refactoring Implementations 12

IntelliJ [15].

Figure 2.2: Available options to apply a refactoring to the selected item on NetBeans.

For example, Figure 2.2 shows available refactorings when the developer selects an item

to refactor using NetBeans. A refactoring tool allows developers to select the refactoring

to be applied and the parameters for configuration. For example, consider applying

the Encapsulate Field refactoring in a field using the NetBeans IDE. Figure 2.3 shows

options that the developer can choose to apply the refactoring. In addition, NetBeans

allows the developer to see the preview of the transformation by pressing the Preview

button (Figure 2.4), which allows the developer to manually inspect the correctness of the

transformation.

The first version of Eclipse, the first IDE to implement refactorings, released in the end

of 2001, included the following refactorings: Rename, Move, and Extract Method [45].

Murphy et al. [46] conduct a survey on Java software development by using Eclipse. They

analyze the use of the Eclipse refactorings by 41 developers. The five most used refactorings

were: Rename, Move, Extract Method, Pull Up Method, and Add Parameter.

2.3 JDOLLY 13

Figure 2.3: Available additional parameters to apply the selected refactoring on NetBeans.

Figure 2.4: Preview on NetBeans.

2.3 JDOLLY

JDOLLY [19] is an automated and bounded-exhaustive Java program generator [19; 47; 48]

based on Alloy, a formal specification language [49]. JDOLLY receives as input an Alloy

specification with the scope, which is the maximum number of elements (classes, methods,

fields, and packages) that the generated programs may declare, and additional constraints

for guiding the program generation. It uses the Alloy Analyzer tool [50], which takes an

Alloy specification and finds a finite set of all possible instances that satisfy the constraints

2.3 JDOLLY 14

within a given scope. JDOLLY translates each instance found by the Alloy Analyzer to a

Java program. It reuses the syntax tree available in Eclipse JDT for generating programs

from those instances. Listing 2.6 illustrates an example of a program generated by JDOLLY.

Listing 2.6: An example of a program generated by JDOLLY

1 package p1 ;

2 p u b l i c c l a s s A {

3 p u b l i c i n t m() {

4 re turn 1 ;

5 }

6 }

7

8 package p2 ;

9 import p1 . ∗ ;

10 p u b l i c c l a s s B ex tends A {}

11

12 package p1 ;

13 p u b l i c c l a s s B ex tends A {}

An Alloy specification is a sequence of signatures and constraints paragraphs

declarations. A signature introduces a type and can declare a set of relations. Alloy relations

specify multiplicity using qualifiers, such as one (exactly one), lone (zero or one), and set

(zero or more). In Alloy, a signature can extend another, establishing that the extended

signature is a subset of the parent signature. For example, the following Alloy fragment

specifies part of the Java meta-model of JDOLLY encoded in Alloy. A Java class is a type,

and may extend another class. Additionally, it may declare fields and methods.

sig Type {}

sig Class extends Type {

extend: lone Class,

methods: set Method,

fields: set Field

}

sig Method {}

sig Field {}

A number of well-formedness constraints can be specified for Java. For instance, a class

2.3 JDOLLY 15

cannot extend itself. In Alloy, we can declare facts, which encapsulate formulas that always

hold. The ClassCannotExtendItself fact specifies this constraint. The all, some, and no

keywords denote the universal, existential, and non-existential quantifiers respectively. The ˆ

and ! operators represent the transitive closure and negation operators respectively. The dot

operator (.) is a generalized definition of the relational join operator.

fact ClassCannotExtendItself {

all c: Class | c ! in c.^extend

}

The Alloy model is used to generate Java programs using the run command, which

is applied to a predicate, specifying a scope for all declared signatures in the context of

a specific Alloy model. Predicates (pred) are used to encapsulate reusable formulas and

specify operations. For example, the following Alloy fragment specifies that we should run

the generate predicate using a scope of 3. The user can also specify different scopes for each

signature.

pred generate[] {...}

run generate for 3

The user can guide JDOLLY to generate more specific programs. For example, to

generate programs to test the Pull Up Method refactoring, JDOLLY uses the following

additional constraints. It specifies that a program must have at least one class (C2) extending

another class (C1), and that C2 declares at least one method (M1).

one sig C1, C2 extends Class {}

one sig M1 extends Method {}

pred generate[] {

C1 = C2.extend

M1 in C2.methods

}

Furthermore, developers can specify a skip number to jump some of the Alloy instances.

For a skip of size n such that n>1, JDOLLY generates one program from an Alloy instance,

and jumps the following n-1 Alloy instances. Consecutive programs generated by JDOLLY

tend to be very similar, potentially detecting the same kind of bug [47; 49]. Thus, developers

can set a parameter to skip some of the generated programs to reduce the time needed to

2.3 JDOLLY 16

test the refactoring implementations. It avoids generating an impracticable number of Alloy

instances by the Alloy Analyzer.

Chapter 3

Revisiting Refactoring Names

We revisit the refactoring names by conducting a mixed-study from three different

perspectives. We organize this chapter as follows. Section 3.1 describes the developers’

perspective and discusses the results. Section 3.2 presents the evaluation of the tool

developers’ perspective, and discusses the results. Next, Section 3.3 presents the evaluation

of the researchers’ perspective.

3.1 STUDY I: Developers

In this section, we survey developers that contribute to popular Java projects. First, we

explain the study definition (Section 3.1.1), and planning (Section 3.1.2). Sections 3.1.3

and 3.1.4 present and discuss the results, respectively. Finally, Section 3.1.5 describes some

threats to validity.

3.1.1 Definition

The goal of this study consists on analyzing the differences from developers’ perspective for

the purpose of evaluating it with respect to identify misunderstandings among developers

concerning refactoring implementations.

17

3.1 STUDY I: Developers 18

3.1.2 Planning

To recruit participants, we sent e-mails to 7,500 developers randomly selected from 124

popular GitHub Java projects, including projects from Google, Facebook, and the Apache

Foundation. We divided the survey into three main sections. The first section asks

developers about the output of seven refactoring types (Rename Field, Inline Method, Pull

Up Field/Method, Encapsulate Field, and Push Down Field/Method) that are available in

the mainstream IDEs. We present an input program, a refactoring name, and a parameter,

and ask what is the expected program after applying a single refactoring. Each question

shows a Java program with at most 10 LOC on the left-hand side (input), and asks to apply

a refactoring to it. We present four options: it yields program (A), it yields program (B), the

refactoring cannot be applied, and another for the developer to mark in case of an expected

different output. The two Java programs on the right-hand side representing options (A) and

(B) for each question are yielded by applying a refactoring using Eclipse, NetBeans, IntelliJ,

or JRRT. We do not mention in our survey that options (A) and (B) are derived from them. In

the last option, there is an open text box in case developers think about a different output. We

presented all questions in the same order to all developers. Figure 3.1 shows one question of

our survey.

The second section asks more information about refactoring activities: (i) Which tool do

you use when applying refactorings? and (ii) How do you know the expected output of a

refactoring application? We used open text boxes after each question to allow developers to

explain their choices. The third section asks developers for additional comments.

3.1.3 Results

Overall, 107 developers completed the survey. In all questions, we do not have a consensus

(Figure 3.2). In some cases, developers prefer to apply a refactoring, while others prefer

to not apply it. Different from previous works [39; 40], most developers use IDEs to

apply refactorings (75.70%), such as IntelliJ and Eclipse. Only 3.74% manually apply

refactorings. The other ones use both strategies (Figure 3.3a). Most developers expect the

refactoring output based on their experience (71.02%). A few of them consider the meaning

of refactoring names presented in papers, books, and sites (7.48%). The other ones use both

3.1 STUDY I: Developers 19

Input

(A)

(B)

class A {
void m() {

int y = 4;
foo(y);

}
void foo(final int x) {

System.out.println(x);
}

}

class A {
void m() {

int y = 4;
final int x = y;
System.out.println(x);

}
void foo(final int x) {

System.out.println(x);
}

}

class A {
void m() {

int y = 4;
System.out.println(y);

}
}

Consider applying the Inline Method refactoring to A.foo() in the
following input program in Java. Which is the expected program
after applying it?

⚬ It yields program (A)
⚬ It yields program (B)
⚬ The refactoring cannot be applied
⚬ Other: ________________

Figure 3.1: A question of our survey.

(Figure 3.3b).

3.1.4 Discussion

Next, we explain the results of all questions in our survey.1 The Inline Method refactoring

puts the method’s body into the body of its callers, and remove the refactored method [5].

Consider the application of the Inline Method refactoring to the input program (Figure 1.1).

We include two output options in Figures 1.1(A) and 1.1(B). A number of developers

(84.11%) prefer to remove foo (Figure 1.1(B)). However, 13.08% of developers prefer

maintaining foo (Figure 1.1(A)), and also adding a declaration of a final field. Some

developers (2.8%) expect both outputs.

The Pull Up Field refactoring moves two fields in subclasses to its direct superclass [5].

1Survey: https://goo.gl/XtCZph

3.1 STUDY I: Developers 20

6.54%

46.73%

30.84%

15.89%

Others

The refactoring cannot be applied

It yields program (B)

It yields program (A)

(a) Rename Field

2.8%

0%

84.11%

13.08%

(b) Inline Method

8.41%

4.67%

58.88%

28.04%

(c) Encapsulate Field

1.87%

2.8%

49.53%

45.79%

Others

The refactoring cannot be applied

It yields program (B)

It yields program (A)

(d) Pull Up Field

12.15%

28.04%

38.32%

21.5%

(e) Pull Up Method

2.8%

7.48%

84.11%

5.61%

Others

The refactoring cannot be applied

It yields program (B)

It yields program (A)

(f) Push Down Field

1.87%

1.87%

15.89%

80.37%

(g) Push Down Method

Figure 3.2: Preference of developers for each kind of refactoring type.

Tools Manually
Apply

3.74%75.70% 20.56%

(a) Tools.

Previous
experience

Books
Papers
Sites

7.48%71.02% 21.50%

(b) References.

Figure 3.3: Distribution of answers.

We asked developers to pull up a field in one subclass to its direct superclass (Figure 3.4).

Only 2.8% of developers prefer not to apply the refactoring. But, 49.53% of them expect

to pull up the field to the superclass, and preserve the field accessibility (Figure 3.4(B)).

Moreover, 45.79% of them expect to pull up the field, but they also want to make the field

more accessible (Figure 3.4(A)). Others (1.87%) expect both outputs.

The Pull Up Method refactoring removes methods with identical results on subclasses

3.1 STUDY I: Developers 21

Input

(A)

(B)

public class A {}
public class B extends A {
int f = 11;
public long m() {

return f;
}

}

public class A {
protected int f = 11;

}
public class B extends A {
public long m() {

return f;
}

}

public class A {
int f = 11;

}
public class B extends A {
public long m() {

return f;
}

}

Figure 3.4: Pull Up Field refactoring.

and introduces to a superclass [5]. We asked developers to pull up an abstract method m

in a subclass B to its abstract superclass A. There is also a concrete class C that extends A

(Figure 3.5). Some developers (28.04%) prefer not to apply the refactoring. Others (21.50%)

expect to apply the refactoring, and also introduce a concrete method mwith a default body in

C (Figure 3.5(A)). Some developers (38.32%) prefer to apply it, and also make C an abstract

class (Figure 3.5(B)). Others (5.06%) expect that class C remains concrete with a compilation

error.

The Push Down Field refactoring moves a field from a superclass to some subclasses [5].

We asked developers to push down a field in a superclass to its subclass (Figure 3.6). A few

developers (7.48%) prefer not to apply the refactoring. Besides that, 5.61% of them expect

to apply the refactoring without updating some field calls (Figure 3.6(A)). It introduces

a behavioral change. A number of developers (84.11%) prefer to apply the refactoring

updating some field calls to preserve behavior (Figure 3.6(B)).

The Push Down Method refactoring moves a method from a superclass to some

subclasses [5]. We asked developers to push down a method (Figure 3.7). Only 1.87%

of developers prefer not to apply the refactoring. Besides that, 80.37% of them expect to

move the method to its direct subclass (Figure 3.7(A)). However, others (15.89%) expect to

3.1 STUDY I: Developers 22

Input

(A)

(B)

public abstract class A {}
public abstract class B extends A {
protected abstract long m(int a);

}
public class C extends A {}

public abstract class A {
protected abstract long m(int a);

}
public abstract class B extends A {}
public class C extends A {
protected long m(int a) {

return 0;
}

}

public abstract class A {
protected abstract long m(int a);

}
public abstract class B extends A {}
public abstract class C extends A {}

Figure 3.5: Pull Up Method refactoring.

Input

(A)

(B)

public interface A {
public int f = 11;

}
public class B implements A {
protected int f = 10;

}
public class C extends B {
public long m() {

return super.f;
}

}

public interface A {
public int f = 11;

}
public class B implements A {}
public class C extends B {
protected int f = 10;
public long m() {

return super.f;
}

}

public interface A {
public int f = 11;

}
public class B implements A {}
public class C extends B {
protected int f = 10;
public long m() {

return f;
}

}

Figure 3.6: Push Down Field refactoring.

move the method not only to its direct subclass, but also to a subclass of its direct subclass

(Figure 3.7(B)). Others (1.87%) expect the tool to yield a warning in both options.

The Rename Field refactoring renames a field name. Although Fowler [5] does not

describe it, it is available in mainstream IDEs. We asked developers to rename a field

3.1 STUDY I: Developers 23

Input

(A)

(B)

public class A {
public long n() {

return 0;
}
public long m() {

return new A().n();
}

}
public class B extends A {}
public class C extends B {}

public class A {
public long n() {

return 0;
}

}
public class B extends A {
public long m() {

return new A().n();
}

}
public class C extends B {}

public class A {
public long n() {

return 0;
}

}
public class B extends A {
public long m() {

return new A().n();
}

}
public class C extends B {
public long m() {

return new A().n();
}

}

Figure 3.7: Push Down Method refactoring.

(Figure 3.8). Some developers (46.73%) prefer not to apply the refactoring. Moreover,

30.84% prefer to apply the refactoring considering an output that introduces a behavioral

change. It only changes the field name (Figure 3.8(B)). Some of them (2.80%) prefer the

same thing but they expect the tool to yield a warning. Others (15.89%) prefer to apply the

refactoring, and update some calls to the field to avoid behavioral changes (Figure 3.8(A)).

The Encapsulate Field refactoring encapsulates a public field and provide accessors

methods [5]. We asked developers to encapsulate a private field (Figure 3.9). Only 4.67% of

developers prefer not to apply the refactoring. In addition, 28.04% of developers expect to

apply the refactoring and generate private accessors methods (Figure 3.9(A)), and 58.88% of

them expect to apply the refactoring and generate public accessors methods (Figure 3.9(B)).

In all questions in our survey, the options (A) and (B) are yielded by Eclipse, NetBeans,

IntelliJ, or JRRT when receiving the input programs. We use all refactoring tools to apply

the transformations of all questions. Some of it did not apply the refactoring or showed error

messages during the application of the refactoring. This gives more evidence that there is

3.1 STUDY I: Developers 24

Input

(A)

(B)

public abstract class A {
public abstract long m();
protected int f1 = 10;

}
public class B extends A {
public int f0 = 11;
public long m() {

return this.f1;
}

}

public abstract class A {
public abstract long m();
public int f1 = 10;

}
public class B extends A {
public int f1 = 11;
public long m() {

return ((A)this).f1;
}

}

public abstract class A {
public abstract long m();
protected int f1 = 10;

}
public class B extends A {
public int f1 = 11;
public long m() {

return this.f1;
}

}

Figure 3.8: Rename Field refactoring.

Input

(A)

(B)

public class A {
private long f = 10;

}

public class A {
private long f = 10;
private long getF() {

return f;
}
private void setF(long f) {

this.f = f;
}

}

public class A {
private long f = 10;
public long getF() {

return f;
}
public void setF(long f) {

this.f = f;
}

}

Figure 3.9: Encapsulate Field refactoring.

3.1 STUDY I: Developers 25

also no consensus in the context of tool developers about the meaning of refactoring names.

Moreover, we only analyze the developers’ answers that use a tool to apply a refactoring.

Over 50% of the time, developers do not expect the output of the preferred tool when

applying a refactoring.

3.1.5 Threats to Validity

Next, we identify some threats to validity of this evaluation.

Internal Validity. We provide questions with input and options to output yielded by one

tool or IDE. Developers may paste the input code in their preferred IDE and apply the

refactoring used in the question to answer. We have evidence they did not do this because the

answers were varied. Moreover, we observe that developers affirmed use an IDE but prefer

outputs yielded by another IDE.

External Validity. We provide questions with only one refactoring type applied to small

Java programs with at most 10 LOC. The results of this survey can only be interpreted in the

context of the considered refactoring types. We intend to survey more developers as future

work.

3.2 STUDY II: Refactoring Implementations 26

3.2 STUDY II: Refactoring Implementations

In this section, we evaluate our approach to identify differences in refactorings implemented

by tool developers using 27 refactoring implementations of Eclipse JDT, NetBeans, and

JRRT of 10 refactoring types. First, we overview our approach (Section 3.2.1). Next,

we explain the experiment definition (Section 3.2.2). Sections 3.2.4 and 3.2.5 present

and discuss the results, respectively. Section 3.2.6 describes some threats to validity, and

Section 3.2.7 summarizes the main findings.

3.2.1 Approach

In this section, we explain our approach to identify differences in refactorings

implementations. Next, we overview our approach, and explain how we detect differences

and categorize them.

Overview

The main steps of our approach are the following. First, it automatically generates

programs as inputs for a refactoring using JDOLLY (Step 1). JDOLLY [19] is an automated

and bounded-exhaustive Java program generator [19; 47; 48] based on Alloy, a formal

specification language [49]. JDOLLY receives as input the refactoring type, a skip number

to reduce the number of generated programs, and an Alloy specification, which includes

specific characteristics and the scope of the programs. The refactoring is automatically

applied to each generated program (Step 2). Finally, we use Differential Test [51] to identify

differences in two refactoring implementations (Step 3). Figure 3.10 illustrates the main

steps.

Detecting Differences in Refactoring Implementations

Our approach compares the application of two refactoring implementations of the same

refactoring type using the same input program. We use an Abstract Syntax Tree

(AST) differencing algorithm (GumTree [52]) to compare the outputs of the refactoring

implementations. It has an improved detection of move actions over the previous work [53].

It performs a per-file comparison. The approach receives two compilable programs as input,

3.2 STUDY II: Refactoring Implementations 27

DT
oracle

Additional
constraints

Output
program

Input
program

Scope

Skip

Diff
Report

1 2 3

Input
program

Output
program

Output
program

Input
program

Refactoring
implementation

Figure 3.10: An approach to detect differences in refactoring implementations. First,

JDOLLY automatically generates programs as inputs (Step 1). For each generated program,

the refactoring implementation attempts to apply the transformation (Step 2). Finally, it

identifies differences by using Differential Testing Oracle (Step 3).

and yields a list of actions for each class indicating the differences. For simplicity, the

comparison considers the first program as the source, and the second as the target. The goal

is to detect all possible actions that could be performed in the source to yield the target. For

each file, GumTree yields a list of actions to change the AST of the source program to yield

the AST of the target program. GumTree detects four kinds of actions: insert, delete, update,

and move. The order of declarations (fields and methods) does not change the semantics in

Java, therefore, we discard lists that contain only move actions. We manually inspect the

differences to analyze whether there is a difference in both refactoring implementations, in

one of them, or it is a false positive. Even GumTree having an improved detection of move

actions, it may yield lists with other actions (for example, update actions) from a comparison

composed only by move actions. We consider this scenario as a false positive.

For example, consider the program presented in Listing 3.1. Suppose we would like

to apply the refactoring Push Down Method to m. First, we apply it using the refactoring

implementation in Eclipse JDT 4.5. It yields the program presented in Listing 3.2. Then

we apply the same refactoring using NetBeans 8.2, and it yields the program presented in

Listing 3.3.

Listing 3.1: Input program to apply the Push Down Method refactoring.

1 package p1 ;

2 p u b l i c c l a s s A {

3 p u b l i c i n t m() {

3.2 STUDY II: Refactoring Implementations 28

4 re turn 1 ;

5 }

6 }

7

8 package p2 ;

9 import p1 . ∗ ;

10 p u b l i c c l a s s B ex tends A {}

11

12 package p1 ;

13 p u b l i c c l a s s B ex tends A {}

Listing 3.2: Push Down Method refactoring application of Eclipse JDT.

1 package p1 ;

2 p u b l i c c l a s s A {}

3

4 package p1 ;

5 p u b l i c c l a s s B ex tends A {

6 p u b l i c i n t m() {

7 re turn 1 ;

8 }

9 }

10

11 package p2 ;

12 import p1 . ∗ ;

13 p u b l i c c l a s s B ex tends A {

14 p u b l i c i n t m() {

15 re turn 1 ;

16 }

17 }

Listing 3.3: Push Down Method refactoring application of NetBeans.

1 package p1 ;

2 p u b l i c c l a s s A {}

3

4 package p1 ;

5 p u b l i c c l a s s B ex tends A {

6 p u b l i c i n t m() {

3.2 STUDY II: Refactoring Implementations 29

7 re turn 1 ;

8 }

9 }

10

11 package p2 ;

12 import p1 . ∗ ;

13 p u b l i c c l a s s B ex tends A {}

The approach performs a per-file analysis to the output programs presented in Listings 3.2

and 3.3. It yields a list of actions for each file. For the class p2.B, it yields the

following list: [DEL Modifier, DEL PrimitiveType, DEL SimpleName, DEL SimpleName,

DEL MethodInvocation, DEL ReturnStatement, DEL Block, DEL MethodDeclaration]. DEL

denotes the delete action, and it is followed by an AST element. We manually analyze it.

GumTree has a web-based view that helps us to graphically visualize the list of actions for

each file. For example, Figure 3.11 shows the list of actions to the output programs presented

in Listings 3.2 and 3.3. We identify that the NetBeans refactoring implementation pushes

down a method to one subclass, while the Eclipse JDT refactoring implementation pushes

down m to all subclasses. They perform different transformations. Since the resulting classes

p1.A and p1.B are identical in Eclipse JDT and NetBeans implementations, GumTree

yields an empty list of actions.

3.2.2 Definition

The goal of our experiment is to analyze the proposed approach to observe the extent of

differences in refactoring implementations for the purpose of evaluating it with respect to

the refactoring names in the perspective of tool developers. For this goal, we address the

following research questions:

• Q1 What refactoring types have differences when comparing Eclipse and NetBeans

refactoring implementations?

We count the number of differences detected by our approach for each type of

refactoring implementation.

• Q2 What refactoring types have differences when comparing Eclipse and JRRT

refactoring implementations?

3.2 STUDY II: Refactoring Implementations 30
Legend Shortcuts Quit

B.java

package p2;
import p1.*;
public class B extends A {
 public int m() {
 return 1 ;
 }
}

B.java

package p2;
import p1.*;
public class B extends A {}

Figure 3.11: The web-based diff view of GumTree.

We count the number of differences detected by our approach for each type of

refactoring implementation.

• Q3 What refactoring types have differences when comparing NetBeans and JRRT

refactoring implementations?

We count the number of differences detected by our approach for each type of

refactoring implementation.

3.2.3 Planning

In this section, we describe the subjects used in the experiment and its instrumentation.

We ran the experiment on a Desktop computer 3.6 GHz core i7 with 16 GB RAM running

Ubuntu 12.04 and JDK 1.7. We evaluated 27 refactoring implementations of Eclipse JDT 4.5,

NetBeans 8.2, and JRRT (02/mar/13) of 10 refactoring types. We used a scope of two

packages, three or four classes, up to four methods, and up to three fields to generate the

programs for each refactoring type in JDOLLY [19]. We identified a number of compilation

errors, behavioral changes, and overly strong conditions in refactoring implementations

using a similar setup [47; 54]. It generates small Java programs containing abstract classes,

abstract methods, and interfaces.

3.2 STUDY II: Refactoring Implementations 31

3.2.4 Results

Our approach generated 157,339 small Java programs with at most 10 LOC. It found

differences in 3 refactoring types (Move Method, Push Down Field/Method) when

comparing Eclipse and NetBeans refactoring implementations. In addition, it found

differences in 5 refactoring types (Rename Field/Method, Move Method, Encapsulate Field,

Push Down Method) when comparing NetBeans and JRRT refactoring implementations.

Moreover, comparing Eclipse and JRRT refactoring implementations our approach found

differences in 9 refactoring types (Rename Field/Method, Move Method, Add Parameter,

Push Down Field/Method, Encapsulate Field, Pull Up Field/Method). Table 3.1 summarizes

all differences found.

Refactoring	 Programs	
Differences	

Eclipse	x	
NetBeans	

Eclipse	x	
JRRT	

NetBeans	x	
JRRT	

Pull	Up	Method	 12,927	 -	 7,871	 -	

Pull	Up	Field	 42,051	 -	 41	 -	

Push	Down	Method	 3,462	 449	 554	 449	

Push	Down	Field	 23,528	 32	 200	 245	

Add	Parameter	 13,319	 3,823	 5,698	 9,170	

Encapsulate	Field	 13,956	 7,752	 1,302	 2,418	

Rename	Field	 6,267	 374	 2,642	 1,752	

Rename	Class	 11,842	 0	 1,711	 0	

Rename	Method	 21,568	 0	 6,521	 13,712	

Move	Method	 8,419	 4327	 749	 1,122	

Table 3.1: Number of differences found by our approach. Programs = number of programs;

Differences = number of transformations applied by both implementations that have different

output programs; - = we could not evaluate the NetBeans implementations.

In the comparison between Eclipse and JRRT, our approach found five differences only

in the Move Method refactoring. Besides that, our approach found four differences in

Encapsulate Field refactoring when comparing NetBeans and JRRT. And, it found another

four differences in the Push Down Method refactoring in the same pairwise comparison. On

the other hand, our approach found four differences in the Push Down Field refactoring

in the three tool comparisons. Overall, only 6.8% of all performed comparisons of the

3.2 STUDY II: Refactoring Implementations 32

refactoring implementations do not have differences. We manually classified the differences

in categories presented in Table 3.2. Each difference can represent an indication that the

refactoring name is not clear.

Difference Type Refactoring Comparison #Diffs
It	incorrectly	implements	of	the	SET	method Encapsulate	Field Eclipse	x	JRRT 1

The	order	of	the	abstract	modifier	is	different
Encapsulate	Field,	Rename	Field/Method,	
Add	Parameter,	Push	Down	Field/Method,	

Pull	Up	Method,	Move	Method
Eclipse	x	JRRT;	NetBeans	x	JRRT 8

The	GET	or	SET	methods	with	a	private	accessibility Encapsulate	Field NetBeans	x	JRRT 1
The	GET	or	SET	methods	should	have	the	same	

accessibility	of	the	original	field Encapsulate	Field NetBeans	x	JRRT 1

It	increases	the	field	accessibility Rename	Field,	Push	Down	Field,	Pull	Up	Field Eclipse	x	JRRT;	NetBeans	x	JRRT 4
It	decreases	the	method	accessibility Add	Parameter Eclipse	x	JRRT 1

The	parameter	is	not	added	to	the	method Add	Parameter Eclipse	x	JRRT 1
The	field	is	not	added	to	the	target Push	Down	Field Eclipse	x	NetBeans 1
It	does	not	update	all	field	calls Push	Down	Field Eclipse	x	JRRT 1

It	makes	a	class	or	method	abstract Pull	Up	Method Eclipse	x	JRRT 1
It	increases	the	method	accessibility Push	Down	Method,	Move	Method NetBeans	x	JRRT 2

It	does	not	remove	the	source	class	method Pull	Up	Method Eclipse	x	JRRT 1
It	does	not	add	the	import	to	create	the	new	object Push	Down	Method Eclipse	x	JRRT;	NetBeans	x	JRRT 1

The	method	is	not	added	to	all	subclasses Push	Down	Method Eclipse	x	NetBeans 1
It	includes	a	ClassName.this when	accessing	an	object Move	Method Eclipse	x	JRRT 1

It	includes	a	this	when	accessing	a	field Move	Method Eclipse	x	JRRT;	Eclipse	x	NetBeans 1
It	creates	a	local	variable Move	Method Eclipse	x	JRRT 1

Table 3.2: Type of differences found by our approach. Difference Type = it specifies

the difference found; Comparison = it specifies the comparison that showed the related

difference; #Diffs = number of differences.

3.2.5 Discussion

In this section, we discuss the results of our evaluation concerning the differences detected,

and JDOLLY.

Differences in Refactoring Implementations. We identify a number of differences

between refactoring implementations. Only the Rename Class refactoring type does not

have differences in all refactoring implementations. Our approach found only one difference

in the Rename Method refactoring when comparing Eclipse and JRRT, and when comparing

NetBeans and JRRT. Similarly, our approach found only two differences in the Rename Field

refactoring in the same comparison.

For example, Listings 3.2 and 3.3 shows a difference in the Push Down Method

refactoring in implementations of Eclipse JDT 4.5 and NetBeans 8.2 detected by our

3.2 STUDY II: Refactoring Implementations 33

approach. The input program presented in Listing 3.1 contains three classes: p1.A, p2.B

that extends A, and p1.B that extends A. Class A declares method m returning 1. Applying

the Push Down Method refactoring to move method m from class A to class B, we identify a

difference. NetBeans (Listing 3.3) pushes down the method m to only one class B.

As another example, our approach detects whether the refactoring implementation

updates a field/method access (Listings 3.4 and 3.5), or includes the this qualifier

(Listings 3.6 and 3.7). We cannot detect differences whether some tool removes a file since

our checker using GumTree performs a per-file analysis.

Listing 3.4: Rename Field refactoring application of NetBeans.

1 package p0 ;

2 a b s t r a c t p u b l i c c l a s s A {

3 p u b l i c a b s t r a c t long m() ;

4 p r o t e c t e d i n t f = 1 0 ;

5 }

6

7 package p1 ;

8 import p0 . ∗ ;

9 p u b l i c c l a s s B ex tends A {

10 p u b l i c long m() {

11 re turn t h i s . f ;

12 }

13 p u b l i c i n t f = 1 1 ;

14 }

15

16 package p1 ;

17 p u b l i c c l a s s C ex tends B {

18 p r o t e c t e d i n t f = 1 2 ;

19 }

Listing 3.5: Rename Field refactoring application of JRRT.

1 package p0 ;

2 a b s t r a c t p u b l i c c l a s s A {

3 p u b l i c i n t f = 1 0 ;

4 a b s t r a c t p u b l i c long m() ;

5 }

3.2 STUDY II: Refactoring Implementations 34

6

7 package p1 ;

8 import p0 . ∗ ;

9 p u b l i c c l a s s B ex tends A {

10 p u b l i c i n t f = 1 1 ;

11 p u b l i c long m() {

12 re turn ((A) t h i s) . f ;

13 }

14 }

15

16 package p1 ;

17 p u b l i c c l a s s C ex tends B {

18 p r o t e c t e d i n t f = 1 2 ;

19 }

Listing 3.6: Move Method refactoring application of Eclipse JDT.

1 package p0 ;

2 a b s t r a c t p u b l i c c l a s s A {

3 p r o t e c t e d a b s t r a c t long m(i n t a) ;

4 p r i v a t e long m(long a) {

5 re turn 1 ;

6 }

7 p u b l i c long m() {

8 re turn t h i s . f . n (2) ;

9 }

10 p u b l i c B f = n u l l ;

11 }

12

13 package p0 ;

14 import p1 . ∗ ;

15 p u b l i c c l a s s B implements C {

16 p r o t e c t e d long n (i n t a) {

17 re turn 0 ;

18 }

19 }

20

21 package p1 ;

3.2 STUDY II: Refactoring Implementations 35

22 p u b l i c i n t e r f a c e C {}

Listing 3.7: Move Method refactoring application of NetBeans.

1 package p0 ;

2 a b s t r a c t p u b l i c c l a s s A {

3 p r o t e c t e d a b s t r a c t long m(i n t a) ;

4 p r i v a t e long m(long a) {

5 re turn 1 ;

6 }

7 p u b l i c long m() {

8 re turn f . n (2) ;

9 }

10 p u b l i c B f = n u l l ;

11 }

12

13 package p0 ;

14 import p1 . ∗ ;

15 p u b l i c c l a s s B implements C {

16 p r o t e c t e d long n (i n t a) {

17 re turn 0 ;

18 }

19 }

20

21 package p1 ;

22 p u b l i c i n t e r f a c e C {}

Previous works [55; 41] state that developers do not care whether refactorings change the

observable behavior. We do not filter out behavioral changes in our current approach, but we

can improve it by using SAFEREFACTOR [56] before Step 3 (Figure 3.10). SAFEREFACTOR

automatically evaluates whether two versions of a program have the same behavior by

automatically generating test cases only for the common methods impacted by the change.

It identified a number of bugs in refactorings implementations of Eclipse JDT, JRRT, and

NetBeans [19]. We use SAFEREFACTOR to analyze the programs that our approach identifies

differences. SAFEREFACTOR identified 8 out of 28 programs with behavioral changes.

3.2 STUDY II: Refactoring Implementations 36

JDOLLY. To avoid state explosion, we adapted the scope for each refactoring type and

added some constraints (optimizations). We added some constraints in the Java metamodel

implemented in JDOLLY 3.0 to reduce this rate of uncompilable programs. After adding

the new constraints, we have reached a rate of 90.9% of compilable programs generated by

JDOLLY. In the Encapsulate Field and Add Parameter refactorings all generated programs

compile. The lowest rate is 56.3% in the Push Down Method refactoring. However, it was

one of the refactoring type that we found the most number of differences. The average rate

of compilable programs in JDOLLY 1.0 was 68.8% [19].

Although the new constraints have reduced the number of Alloy instances, the Pull

Up Field specification has more than a million instances using a scope of three classes

and two methods, fields, and packages. This small scope coupled with a high number of

Alloy instances indicates the expressiveness of JDOLLY. In the previous approach, JDOLLY

generated at most 30,186 Alloy instances to generate useful programs [19]. After the addition

of the new constructs (abstract classes, abstract methods, and interfaces), JDOLLY 3.0 had to

deal with a number of Alloy instances 30 times higher than JDOLLY 1.0 for the same scope,

which increased the cost to evaluate the refactoring implementations. Furthermore, we have

to deal with memory leaks in the Eclipse JDT API. To alleviate these problems and reduce

the costs to run the experiment, we choose a skip of 25 to generate programs in 5 refactoring

types. In 4 out of 10 refactoring types, we used no skip.

Evaluating Other Refactoring Types. As a feasibility study, we evaluated the Inline

Method refactoring implementations of Eclipse JDT, NetBeans, and JRRT. The goal is to

analyze whether our approach can evaluate a refactoring type that applies a transformation

inside a method body. Instead of using programs generated by JDOLLY in Step 1, we select

266 programs used in the test suites of Eclipse JDT, NetBeans, and JRRT, to evaluate the

Inline Method refactoring implementation. The programs contain some Java constructions

not considered in JDOLLY 3.0 such as: richer method bodies, generics, arrays, loops, among

others. Then, we followed the same steps used in our approach. We found six differences

(one in Eclipse JDT, two in NetBeans, and three in JRRT) using our approach related to (i)

introducing the this modifier in a field access, (ii) deletion of all statements of the selected

method, and (iii) not including an explicit cast.

3.2 STUDY II: Refactoring Implementations 37

For instance, consider the program presented in Listing 3.8. After applying the Inline

Method refactoring of NetBeans 8.2 in the add method call, it yields the program presented

in Listing 3.9. Notice that it removes the add method call in the resulting program.

Listing 3.8: Input program to apply the Inline Method refactoring.

1 p u b l i c c l a s s T e s t {

2 s t a t i c S t r i n g [] f ;

3 p u b l i c s t a t i c vo id main (S t r i n g [] a r g s) {

4 add ((f = a r g s) . l e n g t h , f i e l d . hashCode ()) ;

5 }

6 s t a t i c i n t add (i n t x , i n t y) {

7 re turn y + x ;

8 }

9 }

Listing 3.9: Inline Method refactoring application of NetBeans 8.2.

1 p u b l i c c l a s s T e s t {

2 s t a t i c S t r i n g [] f ;

3 p u b l i c s t a t i c vo id main (S t r i n g [] a r g s) {

4 }

5 }

Figure 3.12: The Inline Method refactoring implementation of NetBeans 8.2 removes some

statements.

As another example, suppose a developer would like to inline the Integer.parseInt

method. In NetBeans and JRRT, we cannot apply it. In Eclipse JDT, it depends on whether

the developer has access to the Integer.parseInt source code. In case the developer

has access, it is possible to inline it, and the tool does not remove Integer.parseInt.

3.2.6 Threats to Validity

Next, we identify some threats to validity of this evaluation.

3.2 STUDY II: Refactoring Implementations 38

Internal Validity. In fact, there is no consensus among refactoring tool developers

about the refactoring names. Several refactoring implementations may introduce the same

differences. The diversity of the generated programs may be related to the number of

detected differences. The higher the diversity, more differences our approach may find. So,

the scope, constraints, and skip used by JDOLLY control the number of generated programs,

and consequently may also hide possible differences.

External Validity. We evaluated 27 refactoring implementations available in mainstream

IDEs (Eclipse JDT and NetBeans) and in one academic tool (JRRT). A survey carried out

by Murphy et al. [46] shows that Java developers commonly use the Pull Up refactoring.

We evaluated the Pull Up Field and Pull Up Method refactorings. We plan to evaluate more

refactoring types, and evaluate refactoring implementations of other IDEs, such as IntelliJ.

3.2.7 Answers to the Research Questions

Next, we answer our research questions.

• Q1 What refactoring types have differences when comparing Eclipse and NetBeans

refactoring implementations?

Our approach found 3 types of difference in 3 (Move Method, Push Down

Field/Method) out of 10 refactoring types when comparing Eclipse and NetBeans

refactoring implementations.

• Q2 What refactoring types have differences when comparing Eclipse and JRRT

refactoring implementations?

Our approach found 21 types of difference in 9 (Rename Field/Method, Move

Method, Add Parameter, Push Down Field/Method, Encapsulate Field, Pull Up

Field/Method) out of 10 refactoring types when comparing Eclipse and JRRT

refactoring implementations.

• Q3 What refactoring types have differences when comparing NetBeans and JRRT

refactoring implementations?

Our approach found 7 types of difference in 5 (Rename Field/Method, Move Method,

3.2 STUDY II: Refactoring Implementations 39

Encapsulate Field, Push Down Method) out of 10 refactoring types when comparing

NetBeans and JRRT refactoring implementations.

3.3 STUDY III: Refactoring Detection Tool 40

3.3 STUDY III: Refactoring Detection Tool

Refactoring detection algorithms have been crucial to a variety of applications: (i) empirical

studies about the evolution of code, tests, and faults, (ii) tools for library API migration,

(iii) improving the comprehension of changes and code reviews [11]. The tool RMiner [11]

implements a novel technique, and has a improved precision and recall over the previous

works [37; 38; 30]. RMiner currently supports the detection of 21 refactorings types

(Extract Method, Inline Method, Rename Class/Method, Move Class/Field/Method, Pull Up

Field/Method, Push Down Field/Method, Extract Superclass/Interface, Move and Rename

Class, Extract and Move Method, Move Source Folder, Change Package (Move, Rename,

Split, Merge), and Extract Variable).

In this section, we compare the meaning of the refactoring names used by RMiner to the

meaning used by tool developers through 18 refactoring implementations of Eclipse JDT,

NetBeans, and JRRT of 7 refactoring types. First, we overview our approach (Section 3.3.1).

Next, we explain the experiment definition (Section 3.3.2). Sections 3.3.4 and 3.3.5 present

and discuss the results, respectively. Section 3.3.7 summarizes the main findings.

3.3.1 Approach

In this section, we explain our approach to compare the meaning of the refactorings names

used by a refactoring detection tool to the meaning of the refactoring names used by

tool developers. We consider the researchers’ perspective by using a tool (RMiner [11])

implemented by researchers to compare to refactorings implemented by refactoring tools

through the analysis of the outputs yielded by Eclipse JDT, NetBeans, and JRRT.

Steps 1 and 2 are exactly the same of Figure 3.10. We reuse transformations that

yield well-formed programs presented in Section 3.2. We consider 20,193 transformations

of 7 refactoring types performed by Eclipse JDT, 36,723 transformations of 7 refactoring

types performed by JRRT, and 19,387 transformations of 4 refactoring types performed by

NetBeans. We do not consider all refactoring types evaluated in Section 3.2, since RMiner

does not implement detection of three of them (Add Parameter, Encapsulate Field, and

Rename Field). The only difference is in Step 3, in which We provide each pair of programs

(input and refactored version) to RMiner performs the refactoring detection. Figure 3.13

3.3 STUDY III: Refactoring Detection Tool 41

illustrates the main steps.

Additional
constraints

Output
program

Input
program

Scope

Skip 1 2

RMiner3
Detected

refactorings

Input
program

Output
program

Output
program

Input
program

Refactoring
implementation

Figure 3.13: An approach to detect differences in refactoring implementations and

refactoring detection tools. First, JDOLLY automatically generates programs as inputs

(Step 1). For each generated program, the refactoring implementation attempts to apply

the transformation (Step 2). Finally, we run RMiner in each transformation, and we check

whether RMiner yields the same refactoring type applied by the refactoring implementation.

For example, consider Listings 3.10 and 3.11. Listing 3.11 is the result of the Push

Down Method refactoring application performed by Eclipse JDT in the input program

(Listing 3.10). The RMiner tool yields a list of detected refactorings when it receives the

Listings 3.10 and 3.11 as input. We compare the results of this list with the refactoring

applied by the tool to identify whether they are the same.

Listing 3.10: Input program to apply the Push Down Method refactoring.

1 package p0 ;

2 import p1 . ∗ ;

3 p u b l i c c l a s s B ex tends A {

4 p u b l i c long n () {

5 re turn 0 ;

6 }

7 p u b l i c long m() {

8 re turn q () ;

9 }

10 }

11

12 package p1 ;

13 import p0 . ∗ ;

14 a b s t r a c t p u b l i c c l a s s A {

3.3 STUDY III: Refactoring Detection Tool 42

15 p u b l i c a b s t r a c t long n () ;

16 p u b l i c long q () {

17 re turn new B () . n () ;

18 }

19 }

20

21 package p1 ;

22 import p0 . ∗ ;

23 p u b l i c c l a s s C ex tends B {}

Listing 3.11: Result of the Push Down Method refactoring application performed by Eclipse

JDT.

1 package p0 ;

2 import p1 . ∗ ;

3 p u b l i c c l a s s B ex tends A {

4 p u b l i c long n () {

5 re turn 0 ;

6 }

7 p u b l i c long m() {

8 re turn q () ;

9 }

10 p u b l i c long q () {

11 re turn new B () . n () ;

12 }

13 }

14

15 package p1 ;

16 import p0 . ∗ ;

17 a b s t r a c t p u b l i c c l a s s A {

18 p u b l i c a b s t r a c t long n () ;

19 }

20

21 package p1 ;

22 import p0 . ∗ ;

23 p u b l i c c l a s s C ex tends B {}

We categorize the results into undetected (RMiner disagrees with the refactoring applied

3.3 STUDY III: Refactoring Detection Tool 43

by the tool), detected (RMiner identifies the same refactoring applied by the tool), and

difference (RMiner yields a different refactoring type, or more than one refactoring type

for the same pair of programs).

3.3.2 Definition

The goal of our experiment is to analyze the proposed approach to compare the meaning

of the refactoring names used by researchers to the meaning used by tool developers for

the purpose of evaluating it with respect to differences among RMiner and refactoring tools

implementation. For this goal, we address the following research questions:

• Q1 What refactoring implementations have disagreements when comparing RMiner

refactoring detection and Eclipse JDT refactoring implementations?

We count the number of refactorings types with differences for each type of refactoring

implementation.

• Q2 What refactoring implementations have disagreements when comparing RMiner

refactoring detection and NetBeans refactoring implementations?

We count the number of refactorings types with differences for each type of refactoring

implementation.

• Q3 What refactoring implementations have disagreements when comparing RMiner

refactoring detection and JRRT refactoring implementations?

We count the number of refactorings types with differences for each type of refactoring

implementation.

3.3.3 Planning

In this section, we describe the subjects used in the experiment and its instrumentation.

We ran the experiment on a Desktop computer 3.6 GHz core i7 with 16 GB RAM

running Ubuntu 12.04 and JDK 1.7. We use RMiner 1.0.0. We evaluated 18 refactoring

implementations of popular IDEs (Eclipse JDT 4.5 and NetBeans 8.2), and one academic

tool (JRRT (02/mar/13) [8]) of seven refactoring types from Section 3.2. We consider 20,193

transformations of 7 refactoring types performed by Eclipse JDT, 36,723 transformations

3.3 STUDY III: Refactoring Detection Tool 44

of 7 refactoring types performed by JRRT, and 19,387 transformations of 4 refactoring

types performed by NetBeans. We consider a pair of programs as an input program

(such as Listing 3.1) and a refactored version of this program yielded by the refactoring

implementation (such as Listing 3.2) to use as input to RMiner.

3.3.4 Results

Our approach analyzes 76,303 transformations applied to small Java programs generated

by JDOLLY with at most 10 LOC in 18 refactoring implementations of 7 refactorings

types. Overall, RMiner detects 68% of all analyzed transformations applied by Eclipse JDT,

NetBeans, and JRRT.

In some refactoring types, such as the Pull Up Method refactoring, RMiner disagrees

with over 96% of the refactorings applied by Eclipse JDT and JRRT. For example, Eclipse

JDT applies the Pull Up Method refactoring in the input program presented in Listing 3.12

and yields the outcome presented in Listing 3.13. RMiner disagrees with the application

performed by Eclipse JDT in the programs presented in Listings 3.12 and 3.13. Despite this,

RMiner agrees with all applications of 5 out of 18 refactoring implementations. It detects

all applications of Pull Up Field, and Push Down Method/Field refactorings by Eclipse JDT,

and all applications of Pull Up Field and Push Down Field refactorings by JRRT. Moreover,

RMiner yields a different refactoring type, or more than one refactoring type in 1.9%, 2.8%,

and 3.9% of the refactored programs from Eclipse JDT, NetBeans, and JRRT, respectively.

Listing 3.12: Input program to apply the Pull Up Method refactoring.

1 package p1 ;

2 import p0 . ∗ ;

3 a b s t r a c t p u b l i c c l a s s A ex tends B {

4 p r o t e c t e d a b s t r a c t long m(long a) ;

5 }

6 package p0 ;

7

8 import p1 . ∗ ;

9 p u b l i c c l a s s B implements C {

10 p r o t e c t e d long m(i n t a) {

11 re turn t h i s . n (2) ;

3.3 STUDY III: Refactoring Detection Tool 45

12 }

13 p r i v a t e long n (i n t a) {

14 re turn 0 ;

15 }

16 }

17

18 package p1 ;

19 p u b l i c i n t e r f a c e C {}

Listing 3.13: Result of the Pull Up Method refactoring application performed by Eclipse

JDT.

1 package p1 ;

2 import p0 . ∗ ;

3 a b s t r a c t p u b l i c c l a s s A ex tends B {}

4

5 package p0 ;

6 import p1 . ∗ ;

7 p u b l i c a b s t r a c t c l a s s B implements C {

8 p r o t e c t e d long m(i n t a) {

9 re turn t h i s . n (2) ;

10 }

11 p r i v a t e long n (i n t a) {

12 re turn 0 ;

13 }

14 p r o t e c t e d a b s t r a c t long m(long a) ;

15 }

16

17 package p1 ;

18 p u b l i c i n t e r f a c e C {}

In some cases, RMiner detected more refactoring types in a transformation applied by

the tool. For example, 34% of the detection of the Move Method refactoring applied by

Eclipse JDT yields other types of refactorings in RMiner, such as Push Down Method. The

same occurs in 22% of detection of the Move Method refactoring applied by NetBeans and

JRRT. For example, NetBeans applies the Move Method refactoring in the input program

presented in Listing 3.14 and yields the outcome presented in Listing 3.15. RMiner yields

3.3 STUDY III: Refactoring Detection Tool 46

other refactoring type (Push Down Method refactoring) when performing the detection in

this transformation. Table 3.3 summarizes the results.

Listing 3.14: Input program to apply the Move Method refactoring.

1 package p1 ;

2 p u b l i c i n t e r f a c e C {}

3

4 package p1 ;

5 import p0 . ∗ ;

6 p u b l i c c l a s s A implements C {

7 p r o t e c t e d long m(i n t a) {

8 re turn 0 ;

9 }

10 p u b l i c B f = n u l l ;

11 }

12

13 package p0 ;

14 import p1 . ∗ ;

15 a b s t r a c t p u b l i c c l a s s B ex tends A {

16 p r o t e c t e d a b s t r a c t long n (long a) ;

17 p u b l i c a b s t r a c t long n (i n t a) ;

18 p u b l i c long n () {

19 re turn m(2) ;

20 }

21 }

Listing 3.15: Result of the Move Method refactoring application performed by NetBeans.

1 package p1 ;

2 p u b l i c i n t e r f a c e C {}

3

4 package p1 ;

5 import p0 . ∗ ;

6 p u b l i c c l a s s A implements C {

7 p u b l i c B f = n u l l ;

8 }

9

10 package p0 ;

3.3 STUDY III: Refactoring Detection Tool 47

11 import p1 . ∗ ;

12 a b s t r a c t p u b l i c c l a s s B ex tends A {

13 p r o t e c t e d a b s t r a c t long n (long a) ;

14 p u b l i c a b s t r a c t long n (i n t a) ;

15 p u b l i c long n () {

16 re turn m(2) ;

17 }

18 p r o t e c t e d long m(i n t a) {

19 re turn 0 ;

20 }

21 }

Refactoring
Eclipse NetBeans JRRT

#Pairs Undetected Detected Difference #Pairs Undetected Detected Difference #Pairs Undetected Detected Difference
Pull	Up	Method 8,761 8,497 264 0 - - - - 8,414 8,150 264 0
Pull	Up	Field 315 0 315 0 - - - - 315 0 315 0

Push	Down	Method 1,208 0 1,208 0 988 0 986 2 1,963 249 1,714 0
Push	Down	Field 229 0 229 0 1,526 111 1,415 0 276 0 276 0
Rename	Class 2,069 690 1,379 0 - - - - 7,994 1,952 5,135 907

Rename	Method 6,512 240 6,272 0 14,416 1,104 13,312 0 15,368 1,032 14,336 0
Move	Method 1,099 0 717 382 2,457 15 1,887 555 2,393 0 1,862 531

Total 20,193 9,427 10,384 382 19,387 1,230 17,600 557 36,723 11,383 23,902 1,438

Table 3.3: Summary of RMiner detection results. #Pairs = number of transformations;

Undetected = RMiner does not yield the refactoring type applied by the refactoring

implementation; Detected = RMiner identifies the refactoring applied by the refactoring

implementation; Difference = RMiner yields a different refactoring type, or more than one

refactoring type for the same pair of programs.

3.3.5 Discussion

In this section, we discuss the results of our evaluation in the context of the comparison

among researchers (RMiner) and tool developers (outputs yielded by Eclipse JDT, NetBeans,

and JRRT).

In some cases, RMiner agrees with the refactorings applied by the tools. For example,

RMiner agrees with the Pull Up Field (Listings 3.16 and 3.17), and Push Down Field/Method

refactorings applied by Eclipse JDT.

Listing 3.16: Input program to apply the Pull Up Field refactoring.

3.3 STUDY III: Refactoring Detection Tool 48

1 package p0 ;

2 p u b l i c c l a s s A {

3 p r o t e c t e d long n (long a) {

4 re turn 0 ;

5 }

6 }

7

8 package p0 ;

9 p u b l i c c l a s s C ex tends A {

10 p u b l i c long m() {

11 re turn t h i s . n (2) ;

12 }

13 p r o t e c t e d i n t f = 1 1 ;

14 }

15

16 package p1 ;

17 p u b l i c c l a s s B {

18 p u b l i c i n t f = 1 0 ;

19 }

Listing 3.17: Result of the Pull Up Field refactoring application performed by Eclipse JDT.

1 package p0 ;

2 p u b l i c c l a s s A {

3 p r o t e c t e d i n t f = 1 1 ;

4 p r o t e c t e d long n (long a) {

5 re turn 0 ;

6 }

7 }

8

9 package p0 ;

10 p u b l i c c l a s s C ex tends A {

11 p u b l i c long m() {

12 re turn t h i s . n (2) ;

13 }

14 }

15

16 package p1 ;

3.3 STUDY III: Refactoring Detection Tool 49

17 p u b l i c c l a s s B {

18 p u b l i c i n t f = 1 0 ;

19 }

The approach disagrees with the refactoring application in three out of seven refactoring

types applied by Eclipse JDT, in four out of seven refactoring types applied by JRRT, and

three out of four refactoring types applied by NetBeans. Moreover, RMiner disagrees with

over 7% of Push Down Field and Rename Method applied by NetBeans. The same occurs

in over 24% of Rename Class refactoring application.

The approach identify differences in 5 out of 18 refactoring implementations. It

detects differences in the Move Method refactoring implemented by Eclipse JDT, NetBeans,

and JRRT, in the Push Down Method refactoring implemented by NetBeans, and in the

Rename Class refactoring implemented by JRRT. Moreover, RMiner identifies more than

one application of the same refactoring in one transformation, such as the application of

Push Down Method/Field and Pull Up Field refactorings.

The differences found in the Move Method refactoring in all comparisons identify other

refactoring type. For example, RMiner yields a list with Push Down Method and Pull

Up Method refactorings for some pairs of transformations that NetBeans applied the Move

Method refactoring.

3.3.6 Threats to Validity

Next, we identify some threats to validity of this evaluation.

Internal Validity. The differences found between RMiner, and Eclipse JDT, NetBeans,

and JRRT, may not appear in other refactoring detection tools. Since RMiner has

better accuracy than previous refactoring detection tools, differences may be find in other

refactoring detection tools.

External Validity. We evaluated one transformation applied to one small Java program

generated by JDOLLY. A similar scenario may happen in coarse-grained transformations

applied to real programs. We considered refactoring implementations in popular IDEs

(Eclipse JDT and NetBeans), but we cannot generalize our results to other tools and

3.3 STUDY III: Refactoring Detection Tool 50

languages. We noticed that some transformations applied by Eclipse JDT and NetBeans

are similar to IntelliJ. So, we believe that similar results may also occur when considering

IntelliJ.

3.3.7 Answers to the Research Questions

Next, we answer our research questions.

• Q1 What refactoring types have disagreements when comparing RMiner refactoring

detection and Eclipse JDT refactoring implementations?

The approach found 48.57% of disagreements in four out of seven refactoring

implementations when comparing RMiner and Eclipse JDT refactoring

implementations.

• Q2 What refactoring types have disagreements when comparing RMiner refactoring

detection and NetBeans refactoring implementations?

The approach found 9.22% of disagreements in four out of seven refactoring

implementations when comparing RMiner and NetBeans refactoring implementations.

• Q3 What refactoring types have disagreements when comparing RMiner refactoring

detection and JRRT refactoring implementations?

The approach found 35% of disagreements in five out of seven refactoring

implementations when comparing RMiner and JRRT refactoring implementations.

Chapter 4

Conclusions

In this work, we conduct a mixed-method study from different perspectives to better

understand the meaning of the refactoring names. The first study considers the developers’

perspective by conducting a survey with 107 developers of popular Java projects on GitHub

to better understand the meaning of the refactoring names used by them in practice.

Since most developers expect the refactoring output based on their experience, there is

no consensus in any of the questions in our survey. This scenario may be even worse

when considering coarse-grained refactorings applied to larger Java programs. A number

of developers use IDEs to apply refactorings. However, over 50% of the time, the IDEs used

by developers yield an output that is different from what they expect.

In the second study, we investigate to what extent refactoring implementations have the

same understanding of the meaning associated with the refactoring names. We evaluate

it automatically generating small Java programs as inputs using JDOLLY. Our approach

attempts to apply a refactoring type using the refactoring implementations of mainstreams

IDEs (Eclipse and NetBeans) and an academic tool (JRRT). We considered 10 types of

refactorings in 27 refactoring implementations. Overall, only 6.8% of the refactoring

applications do not have differences. These results give evidences that refactoring names

have different meanings in the context of refactoring implementation’ developers.

In the third study, we compare the meaning of the refactoring names used in RMiner

to refactoring implementations implemented by Eclipse, NetBeans, and JRRT. We analyze

18 refactoring implementations of 7 refactoring types. We provide an input program and

a refactored program yielded by Eclipse, NetBeans, and JRRT in Section 3.2. RMiner

51

52

does not detect 46% of the refactorings applied by Eclipse JDT, 30% of JRRT, and 6%

of NetBeans in 7 refactoring types. Our results show evidences of misunderstandings of the

current refactoring names among developers, and tool developers. The misunderstandings

explained in our work may be a starting point to improve them. Moreover, researchers

used refactoring detection tools to empirically study [20; 21; 22; 23; 24; 25; 26] software

evolution, and to support other software engineering tasks, such as library adaptation [27;

28; 29; 30], software merging [31], code completion [32; 33], and code review [34; 35;

36]. Since we found differences in RMiner, and Eclipse and NetBeans in Section 3.3,

some refactoring implementations of Eclipse and NetBeans are different (Section 3.2), and

developers have different opinions about transformations applied by popular refactoring

implementations (Section 3.1), the previous results using refactoring detection tools should

be revisited to check whether the meaning of the refactoring names used in each work is

appropriate.

Our work shows differences between refactoring implementations and refactoring

detection, and differences in understanding of refactoring types by developers. Some

refactoring definitions use natural language to describe scenarios and application of it. This

may be one cause of misunderstanding of the refactoring types presented in our study.

Using formal methods to formalize all refactorings is a challenge considering all language

statements that exist, such as the statements in the Java language. Some works formalize

some refactoring types. This is a step to minimize the differences found by our work.

Our approach presented in Section 3.2 can also help developers to improve refactoring

implementations. They can compare the application of one refactoring implementation with

other and merge the results to improve the actual refactoring implementations. Approaches

to designing software, such as Design by Contract, may help to improve existing refactoring

implementations.

Developers depend on the preferred IDE to predict a refactoring application but they

can disagree with the application of it. This disagreement can generate rework because the

applied transformation can be modified. This modification may impact refactoring detection

tools. Minimizing the differences found between the refactorings tools presented in the

second study may contribute to the evolution of refactorings detection tools. In addition,

the developers that use these tools can change their understanding and agree with the tools

4.1 Related Work 53

by minimizing misunderstandings.

4.1 Related Work

Opdyke and Johnson [2; 4] coined the refactoring term describing the process and identifying

common refactorings. Roberts [43] automates the basic refactorings proposed by Opdyke.

Later, Tokuda and Batory [57] demonstrate that the preconditions proposed by Opdyke are

not sufficient to guarantee behavior preservation after applying transformations. Moreover,

proving refactorings with respect to a formal semantics considering all language constructs

constitutes a challenge [58]. In our work, we performed an analysis of the different

interpretations inferred from refactorings presented in the literature.

Murphy-Hill et al. [18] find that the names of refactorings assigned by the refactoring

tools are a distraction to the developer because it can vary from one environment to another.

For example, Fowler’s Introduce Explaining Variable [5] is called Extract Local Variable

in Eclipse. Moreover, refactoring names differ between Eclipse and IntelliJ. This confuses

the developer. For example, Generify in IntelliJ appears as Infer Generic Type Arguments

in Eclipse, and Introduce Field in IntelliJ appears as Convert Local Variable to Field in

Eclipse. In our work, we conduct a mixed-method study, and find more evidences of

misunderstandings in the refactoring names.

Vakilian et al. [17] study 26 developers working in their natural settings on their code for

a total of 1,268 programming hours over three months to understand how they interact with

automated refactorings. They identify factors that affect the appropriate and inappropriate

uses of automated refactorings. For example, they show that disuse of automated refactorings

occurs when a programmer performs a refactoring manually even though the IDE supports it.

In addition, more than half of interviewees sometimes performed the refactoring manually.

Some coarse-grained refactorings are ambiguous, and developers cannot predict the outcome

of the refactoring implementation. The interviewees did not know the goals of more than

eight automated refactorings on average. Moreover, more than half of interviewees could not

describe the transformation automated by some refactoring, and did not use some automated

refactorings because of their unpredictability. We find that even refactorings applied to small

programs may also lead to misunderstandings.

4.1 Related Work 54

Kim et al. [39] perform a field study of refactoring benefits and challenges at Microsoft

through three complementary study methods: a survey, semi-structured interviews with

professional software engineers, and quantitative analysis of version history data. With an

exception of the Rename refactoring, more than a half of the participants said that they apply

those refactorings manually. In our study, most developers (75.70%) use IDEs to apply

refactorings.

Murphy-Hill et al. [40] present an analysis of four sets of data that provides new

insight into how developers refactor in practice. Refactoring implementations themselves are

underused, particularly when we consider refactorings that have a method-level granularity

or above. We find that a number of developers use IDEs to apply refactorings. However, the

output yielded by the preferred IDE is different from what they want.

Tempero et al. [41] conduct a survey with 3,785 developers to see the barriers of applying

refactorings. They found that the decision of whether or not to refactor was due to non-design

considerations. They mentioned inadequate tool support as a reason for not refactoring. In

our study, developers use IDEs to apply refactorings even not expecting the same outcome

yielded by the preferred IDE.

Daniel et al. [59] propose an approach for automated testing refactoring engines. The

technique is based on ASTGEN, a Java program generator, and a set of programmatic

oracles. To evaluate the refactoring implementations, they implemented six oracles

that evaluate the output of each transformation. They use the oracles DT, and Inverse

Transformations, to identify differences in refactoring implementations. The Inverse oracle

checks whether after applying a refactoring to a program, its inverse refactoring to the target

program yields the same initial program. If they are syntactically different, the refactoring

engine developer has to manually check whether they have the same behavior. They evaluate

the technique by testing 42 refactoring implementations, and find three differences using

Differential Testing and Inverse oracles in 2 refactoring implementations of Eclipse and

NetBeans of the Encapsulate Field refactoring. We compare the output of 27 refactoring

implementations and find 21 differences in 9 out of 10 refactoring implementations. In a

previous work, Soares et al. [19] show that JDOLLY generates more interesting programs

than ASTGEN.

Steimann and Thies [12] identify that mainstreams IDEs such as Eclipse, NetBeans, and

4.1 Related Work 55

IntelliJ are flawed when it comes to maintaining accessibility. They identify scenarios where

the application of existing refactorings such as Pull Up Members causes unexpected changes

to program behavior. In our study, we observe an access modification in the application of

the Pull Up Field refactoring performed by Eclipse but developers (45.79%) agreed with this

modification.

Schäfer et al. [8] present a number of Java refactoring implementations. They translated

a Java program to an enriched language that’s easier to specify and check preconditions,

and apply the transformation. They aim to improve correctness and applicability of the

Eclipse refactoring implementations. In our work, we compare JRRT to mainstreams

IDEs to identify differences in refactoring implementations. Our approach used in study

II (Section 3.2) found 21 differences in 9 refactoring types when compared to refactoring

implementations of Eclipse. Moreover, our approach used in study III (Section 3.3) found

differences in 3.9% of the refactoring applications.

Jagannath et al. [60] presented the STG technique to reduce the costs of bounded-

exhaustive testing by skipping some test inputs. They randomly select a skip up to 20 after

generating each program. They evaluated it using ASTGEN and found that the technique

took some seconds to find the first failure related to compilation error or engine crash in

the refactoring implementations using STG. Different from them we use skips to identify

differences in refactoring implementations in the second study (Section 3.2). Also, we use

a fixed skip that is set by the user while they use a random skip. Moreover, we can execute

using a different skip to find some missed differences.

Later, Gligoric et al. [61] propose UDITA, a Java-like language that extends ASTGEN

allowing users to describe properties in UDITA using any desired mix of filtering and

generating style in opposed to ASTGEN that uses a purely generating style. UDITA evolved

ASTGEN to be more expressive and easier to use, usually resulting in faster program

generation as well. They found four new bugs related to compilation errors in Eclipse in

a few minutes. However, the technique requires substantial manual effort for writing test

generators [62] since they are specified in a Java-like language. Soares et al. [19] find that

UDITA does not generate some programs that JDOLLY generates using the same scope. We

use a new version of JDOLLY in this work [54]. It generates programs considering more Java

constructs.

4.1 Related Work 56

Related approaches [19; 54; 48] proposed a technique to test refactoring engines

by detecting bugs related to compilation errors, behavioral changes, and overly strong

preconditions. It is based on JDOLLY and a set of automated oracles, such as

SAFEREFACTOR [56] to identify behavioral changes and Differential Testing and Disabling

Preconditions to identify overly strong preconditions. As opposed to ASTGEN and UDITA

that use a Java-like language, JDOLLY only needs to declaratively specify the structures of

the programs. In this work, we extend them [19; 54; 48] to identify differences between

refactoring implementations and improve the expressiveness of JDOLLY by generating

programs considering more Java constructs.

Cedrim et al. [63] analyze both the positive and negative impact of refactoring changes

on the density of smells. They analyze if refactoring reduces smells, and if and to what

extent specific refactoring types are often related to the introduction of new smells. They

find that refactorings often touches smelly elements, but they are neutral suggesting that

developers need more guidance to remove a code smell. Moreover, they find that 33.3% of

the refactorings are related to the introduction of new smells. They use RMiner to support

the detection of refactoring types. We compare the meaning of the refactoring names used

in RMiner to refactoring implementations performed by Eclipse JDT, NetBeans, and JRRT

(Section 3.3). RMiner disagrees with 48.57% of the refactorings applied by Eclipse JDT,

35% of JRRT, and 9.22% of NetBeans in 7 refactoring types. We found differences related

to creates a local variable, does not update field calls, accessibility changes, and others.

Our results show differences in the opinion of the researchers and tool developers about the

refactoring names. This may influence the results of the work, and in other works that use

tools to detect refactorings [37; 38; 30]. The tools may have detected more or less refactoring,

or detect other refactoring types.

Medeiros et al. [64] propose a mixed-method evaluation of their refactoring catalog

from the previous study [65] of the C language with ifdefs. The catalog contains 14

refactoring types to resolve undisciplined directives. They evaluate the refactoring types

regarding the opinion of developers, number of application possibilities in practice, and

behavior preservation. The results show that developers prefer the refactored version instead

of the original program. We can use the approach of the second study (Section 3.2) to

compare different refactoring implementations of the proposed catalog. We need to review

4.2 Future Work 57

the refactoring names carefully to avoid misunderstandings.

Mongiovi et al. [66] propose a tool to analyze refactoring applications and generate test

cases only for impacted methods. They evaluate SAFEREFACTORIMPACT by the comparison

to SAFEREFACTOR with respect to correctness in identifying the behavioral changes, time

to analyze a transformation, number of methods considered for test generation, coverage of

methods impacted, and relevant tests. The results show that SAFEREFACTORIMPACT detects

more behavioral changes, has better results when analyzing larger programs, and is faster

than SAFEREFACTOR to analyze small programs. We can use SAFEREFACTORIMPACT to

evaluate the differences found to identify behavioral changes.

4.2 Future Work

As future work, we intend to evaluate more tools (such as IntelliJ), and more refactoring

types to detect and study more differences. We intend to evaluate more refactoring types

using the programs available in the test suites of Eclipse JDT, NetBeans, IntelliJ, and JRRT.

Moreover, we aim to survey more developers by adding more refactoring types to identify

misunderstandings.

Bibliography

[1] Meir Lehman. Programs, life cycles, and laws of software evolution. Proceedings of

the IEEE, 68(9):1060–1076, 1980.

[2] William Opdyke and Ralph Johnson. Refactoring: An Aid in Designing Application

Frameworks and Evolving Object-Oriented Systems. In Proceedings of the Symposium

Object-Oriented Programming Emphasizing Practical Applications, SOOPPA, pages

274–282, 1990.

[3] E. Burton Swanson. The Dimensions of Maintenance. In Proceedings of the

International Conference on Software Engineering, ICSE, pages 492–497, 1976.

[4] William Opdyke. Refactoring Object-oriented Frameworks. PhD thesis, University of

Illinois at Urbana-Champaign, 1992.

[5] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts.

Refactoring: improving the design of existing code. Addison-Wesley Professional,

1999.

[6] Tom Mens and Tom Tourwé. A Survey of Software Refactoring. IEEE Transactions

on Software Engineering, 30(2):126–139, 2004.

[7] Joshua Kerievsky. Refactoring to Patterns. Pearson Higher Education, 2004.

[8] Max Schäfer and Oege de Moor. Specifying and implementing refactorings.

In Proceedings of the International Conference on Object-Oriented Programming,

Systems, Languages, and Applications, OOPSLA, pages 286–301, 2010.

[9] Jan Wloka, Manu Sridharan, and Frank Tip. Refactoring for Reentrancy. In

Proceedings of the Joint Meeting of the European Software Engineering Conference

58

BIBLIOGRAPHY 59

and the Symposium on The Foundations of Software Engineering, ESEC/FSE, pages

173–182, 2009.

[10] Frank Tip, Robert M. Fuhrer, Adam Kieżun, Michael D. Ernst, Ittai Balaban, and Bjorn

De Sutter. Refactoring Using Type Constraints. ACM Transactions on Programming

Languages and Systems, 33(3):9:1–9:47, 2011.

[11] Nikolaos Tsantalis, Matin Mansouri, Laleh Mousavi Eshkevari, Davood Mazinanian,

and Danny Dig. Accurate and efficient refactoring detection in commit history. In

Proceedings of the International Conference on Software Engineering, ICSE, pages

483–494, 2018.

[12] Friedrich Steimann and Andreas Thies. From Public to Private to Absent: Refactoring

Java Programs under Constrained Accessibility. In Proceedings of the European

Conference on Object-Oriented Programming, ECOOP, pages 419–443, 2009.

[13] Eclipse.org. Eclipse Project. http://www.eclipse.org, 2018.

[14] Oracle. Netbeans IDE. http://www.netbeans.org, 2018.

[15] JetBrains. IntelliJ IDEA. https://www.jetbrains.com/idea/, 2018.

[16] Kent Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley

Longman Publishing Company, Inc., 2000.

[17] Mohsen Vakilian, Nicholas Chen, Stas Negara, Balaji Ambresh Rajkumar, Brian P.

Bailey, and Ralph E. Johnson. Use, Disuse, and Misuse of Automated Refactorings.

In Proceedings of the International Conference on Software Engineering, ICSE, pages

233–243, 2012.

[18] Emerson Murphy-Hill, Moin Ayazifar, and Andrew P. Black. Restructuring software

with gestures. In Proceedings of the Symposium on Visual Languages and Human-

Centric Computing, VL/HCC, pages 165–172, 2011.

[19] Gustavo Soares, Rohit Gheyi, and Tiago Massoni. Automated Behavioral Testing of

Refactoring Engines. IEEE Transactions on Software Engineering, 39(2):147–162,

2013.

BIBLIOGRAPHY 60

[20] Giuliano Antoniol, Massimiliano Di Penta, and Ettore Merlo. An Automatic Approach

to Identify Class Evolution Discontinuities. In Proceedings of the International

Workshop on Principles of Software Evolution, IWPSE, pages 31–40, 2004.

[21] Gabriele Bavota, Bernardino De Carluccio, Andrea De Lucia, Massimiliano Di Penta,

Rocco Oliveto, and Orazio Strollo. When Does a Refactoring Induce Bugs? An

Empirical Study. In Proceedings of the IEEE International Working Conference on

Source Code Analysis and Manipulation, SCAM, pages 104–113, 2012.

[22] Gabriele Bavota, Andrea De Lucia, Massimiliano Di Penta, Rocco Oliveto, and Fabio

Palomba. An experimental investigation on the innate relationship between quality and

refactoring. Journal of Systems and Software, 107:1–14, 2015.

[23] Miryung Kim, Dongxiang Cai, and Sunghun Kim. An Empirical Investigation into

the Role of API-level Refactorings During Software Evolution. In Proceedings of the

International Conference on Software Engineering, ICSE, pages 151–160, 2011.

[24] Fabio Palomba, Andy Zaidman, Rocco Oliveto, and Andrea De Lucia. An Exploratory

Study on the Relationship Between Changes and Refactoring. In Proceedings of the

International Conference on Program Comprehension, ICPC, pages 176–185, 2017.

[25] Napol Rachatasumrit and Miryung Kim. An empirical investigation into the impact of

refactoring on regression testing. In Proceedings of the IEEE International Conference

on Software Maintenance, ICSM, pages 357–366, 2012.

[26] Peter Weißgerber and Stephan Diehl. Are Refactorings Less Error-prone Than

Other Changes? In Proceedings of the International Workshop on Mining Software

Repositories, MSR, pages 112–118, 2006.

[27] Ittai Balaban, Frank Tip, and Robert Fuhrer. Refactoring Support for Class Library

Migration. In Proceedings of the Annual ACM SIGPLAN Conference on Object-

oriented Programming, Systems, Languages, and Applications, OOPSLA, pages 265–

279, 2005.

[28] Johannes Henkel and Amer Diwan. CatchUp!: Capturing and Replaying Refactorings

BIBLIOGRAPHY 61

to Support API Evolution. In Proceedings of the International Conference on Software

Engineering, ICSE, pages 274–283, 2005.

[29] Zhenchang Xing and Eleni Stroulia. API-Evolution Support with Diff-CatchUp. IEEE

Transactions on Software Engineering, 33(12):818–836, 2007.

[30] Danny Dig, Can Comertoglu, Darko Marinov, and Ralph Johnson. Automated

Detection of Refactorings in Evolving Components. In Proceedings of the European

Conference on Object-Oriented Programming, ECOOP, pages 404–428, 2006.

[31] Danny Dig, Kashif Manzoor, Ralph E. Johnson, and Tien N. Nguyen. Effective

Software Merging in the Presence of Object-Oriented Refactorings. IEEE Transactions

on Software Engineering, 34(3):321–335, 2008.

[32] Stephen Foster, William Griswold, and Sorin Lerner. WitchDoctor: IDE support

for real-time auto-completion of refactorings. In Proceedings of the International

Conference on Software Engineering, ICSE, pages 222–232, 2012.

[33] Xi Ge, Quinton L. DuBose, and Emerson Murphy-Hill. Reconciling Manual and

Automatic Refactoring. In Proceedings of the International Conference on Software

Engineering, ICSE, pages 211–221, 2012.

[34] Everton Alves, Myoungkyu Song, and Miryung Kim. RefDistiller: A Refactoring

Aware Code Review Tool For Inspecting Manual Refactoring Edits. In Proceedings

of the International Symposium on Foundations of Software Engineering, FSE, pages

751–754, 2014.

[35] Xi Ge, Saurabh Sarkar, and Emerson Murphy-Hill. Towards Refactoring-aware Code

Review. In Proceedings of the International Workshop on Cooperative and Human

Aspects of Software Engineering, CHASE, pages 99–102, 2014.

[36] Xi Ge, Saurabh Sarkar, Jim Witschey, and Emerson Murphy-Hill. Refactoring-Aware

Code Review. In Proceedings of the Symposium on Visual Languages and Human-

Centric Computing, VL/HCC, pages 71–79, 2017.

BIBLIOGRAPHY 62

[37] Kyle Prete, Napol Rachatasumrit, Nikita Sudan, and Miryung Kim. Template-based

Reconstruction of Complex Refactorings. In Proceedings of the IEEE International

Conference on Software Maintenance, ICSM, pages 1–10, 2010.

[38] Danilo Silva and Marco Tulio Valente. RefDiff: Detecting Refactorings in Version

Histories. In Proceedings of the International Conference on Mining Software

Repositories, MSR, pages 269–279, 2017.

[39] Miryung Kim, Thomas Zimmermann, and Nachiappan Nagappan. An Empirical Study

of Refactoring Challenges and Benefits at Microsoft. IEEE Transactions on Software

Engineering, 40(7):633–649, 2014.

[40] Emerson Murphy-Hill, Chris Parnin, and Andrew P. Black. How We Refactor, and

How We Know It. IEEE Transactions on Software Engineering, 38(1):5–18, 2012.

[41] Ewan Tempero, Tony Gorschek, and Lefteris Angelis. Barriers to Refactoring.

Communications of ACM, 60(10):54–61, 2017.

[42] Danilo Silva, Nikolaos Tsantalis, and Marco Tulio Valente. Why We Refactor?

Confessions of GitHub Contributors. In Proceedings of the International Symposium

on Foundations of Software Engineering, FSE, pages 858–870, 2016.

[43] Donald Roberts. Practical Analysis for Refactoring. PhD thesis, University of Illinois

at Urbana-Champaign, 1999.

[44] Adele Goldberg and David Robson. Smalltalk-80: The Language and Its

Implementation. Addison-Wesley Longman Publishing Co., Inc., 1983.

[45] Robert Fuhrer, Adam Kieżun, and Markus Keller. Refactoring in the Eclipse JDT: Past,

Present, and Future. In Workshop on Refactoring Tools, pages 30–31. Springer-Verlag,

2007.

[46] Gail Murphy, Mik Kersten, and Leah Findlater. How Are Java Software Developers

Using the Eclipse IDE? IEEE Software, 23(4):76–83, 2006.

BIBLIOGRAPHY 63

[47] Melina Mongiovi, Gustavo Mendes, Rohit Gheyi, Gustavo Soares, and Márcio Ribeiro.

Scaling Testing of Refactoring Engines. In Proceedings of the International Conference

on Software Maintenance and Evolution, ICSME, pages 371–380, 2014.

[48] Gustavo Soares, Melina Mongiovi, and Rohit Gheyi. Identifying overly strong

conditions in refactoring implementations. In Proceedings of the International

Conference on Software Maintenance, ICSM, pages 173–182, 2011.

[49] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT

Press, 2012.

[50] Daniel Jackson, Ian Schechter, and Hya Shlyahter. Alcoa: The Alloy Constraint

Analyzer. In Proceedings of the International Conference on Software Engineering,

ICSE, pages 730–733, 2000.

[51] William McKeeman. Differential Testing for Software. Digital Technical Journal,

10(1):100–107, 1998.

[52] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin

Monperrus. Fine-grained and accurate source code differencing. In Proceedings of

the ACM/IEEE International Conference on Automated Software Engineering, ASE,

pages 313–324, 2014.

[53] Beat Fluri, Michael Wuersch, Martin PInzger, and Harald Gall. Change Distilling:Tree

Differencing for Fine-Grained Source Code Change Extraction. IEEE Transactions on

Software Engineering, 33(11):725–743, 2007.

[54] Melina Mongiovi, Rohit Gheyi, Gustavo Soares, Márcio Ribeiro, Paulo Borba, and

Leopoldo Teixeira. Detecting Overly Strong Preconditions in Refactoring Engines.

IEEE Transactions on Software Engineering, 44(5):429–452, 2018.

[55] Miryung Kim, Thomas Zimmermann, and Nachiappan Nagappan. A Field Study of

Refactoring Challenges and Benefits. In Proceedings of the International Symposium

on the Foundations of Software Engineering, FSE, pages 50:1–50:11, 2012.

[56] Gustavo Soares, Rohit Gheyi, Dalton Serey, and Tiago Massoni. Making Program

Refactoring Safer. IEEE Software, 27(4):52–57, 2010.

BIBLIOGRAPHY 64

[57] Lance Tokuda and Don Batory. Evolving Object-Oriented Designs with Refactorings.

In Proceedings of the International Conference on Automated Software Engineering,

ASE, pages 89–120, 2001.

[58] Max Schäfer, Torbjörn Ekman, and Oege de Moor. Challenge Proposal: Verification

of Refactorings. In Proceedings of the International Conference on Programming

Languages Meets Program Verification, PLPV, pages 67–72, 2008.

[59] Brett Daniel, Danny Dig, Kely Garcia, and Darko Marinov. Automated testing of

refactoring engines. In Proceedings of the International Symposium on Foundations

of Software Engineering, FSE, pages 185–194, 2007.

[60] Vilas Jagannath, Yun Young Lee, Brett Daniel, and Darko Marinov. Reducing the

costs of bounded-exhaustive testing. In Proceedings of the International Conference

on Fundamental Approaches to Software Engineering, FASE, pages 171–185, 2009.

[61] Milos Gligoric, Tihomir Gvero, Vilas Jagannath, Sarfraz Khurshid, Viktor Kuncak, and

Darko Marinov. Test generation through programming in UDITA. In Proceedings of

International Conference on Software Engineering, ICSE, pages 225–234, 2010.

[62] Milos Gligoric, Farnaz Behrang, Yilong Li, Jeffrey Overbey, Munawar Hafiz, and

Darko Marinov. Systematic testing of refactoring engines on real software projects.

In European Conference on Object-Oriented Programming, ECOOP, pages 629–653,

2013.

[63] Diego Cedrim, Alessandro Garcia, Melina Mongiovi, Rohit Gheyi, Leonardo Sousa,

Rafael de Mello, Baldoino Fonseca, Márcio Ribeiro, and Alexander Chávez.

Understanding the Impact of Refactoring on Smells: A Longitudinal Study of 23

Software Projects. In Proceedings of the International Symposium on Foundations

of Software Engineering, FSE, pages 465–475, 2017.

[64] Flávio Medeiros, Márcio Ribeiro, Rohit Gheyi, Sven Apel, Christian Kästner, Bruno

Ferreira, Luiz Carvalho, and Baldoino Fonseca. Discipline Matters: Refactoring of

Preprocessor Directives in the #ifdef Hell. IEEE Transactions on Software Engineering,

44(5):453–469, 2018.

BIBLIOGRAPHY 65

[65] Flávio Medeiros, Márcio Ribeiro, Rohit Gheyi, and Baldoino Fonseca. A Catalogue

of Refactorings to Remove Incomplete Annotations. Journal of Universal Computer

Science, 20(5):746–771, 2014.

[66] Melina Mongiovi, Rohit Gheyi, Gustavo Soares, Leopoldo Teixeira, and Paulo

Borba. Making Refactoring Safer Through Impact Analysis. Science of Computer

Programming, 93:39–64, 2014.

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

	Introduction
	Problem
	Solution
	Evaluation
	Summary of Contributions
	Organization

	Background
	Program Refactoring
	Refactoring Specification
	Example

	Refactoring Implementations
	JDolly

	Revisiting Refactoring Names
	Study I: Developers
	Definition
	Planning
	Results
	Discussion
	Threats to Validity

	Study II: Refactoring Implementations
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Study III: Refactoring Detection Tool
	Approach
	Definition
	Planning
	Results
	Discussion
	Threats to Validity
	Answers to the Research Questions

	Conclusions
	Related Work
	Future Work

