UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE CIÊNCIAS E TECNOLOGIAS DEPARTAMENTO DE ENGENHARIA CIVIL ALUNO: WASLACES WILLAMS DE ALMEIDA MAT.: 29511226-9 PROFESSOR ORIENTADOR: JOSÉ BEZERRA

RELATÓRIO DE ESTÁGIO

CAMPINA GRANDE, 21 DE SETEMBRO DE 2001.

Biblioteca Setorial do CDSA. Maio de 2021.

Sumé - PB

ÍNDICE

ntrodução	03
O estágio	04
Superestrutura em concreto armado	05
Plano de concretagem	06
Formas e Escoramentos	06
Armaduras	
Planejamento	
Pedido do concreto	
Recebimento do concreto	07
O Ensaio de Abatimento (slump test)	8
Amostragem do Concreto	09
Lançamento do Concreto	10
Adensamento do Concreto	11
No Maison des Princes	
Alvenaria	13
Materiais	14
Ferragem	14
Tijolos	14
Argamassa	14
Medidas de Proteção	15
Carpintaria	15
Armação de aço	15
Área de Vivência	
Conclusão.	17

Introdução

No dia quatro do mês de junho, iniciou-se o estágio supervisionado de Waslaces Willams de Almeida Silva, na obra do edifício Maison des Prínces, situado à rua Severino Massa Spinelli, s/n, na cidade de João Pessoa, da Cobrás Empreendimentos Imobiliários Ltda.

O grupo Cobrás Empreendimentos Imobiliários, que tem como diretores o engenheiro Stello Queiroga e Trajano, é um grupo de bastante credibilidade no que diz respeito a imóveis na cidade, com dezenas de prédios entregues ou em construção, nos seus mais de dez anos de atuação na capital paraibana.

O edifício residencial Maison des Princes foi iniciado em maio de 2000 com previsão de entrega para abril de 2004. Este é constituído de 28 pavimentos, sendo um semi subsolo, um pilotis, um mezanino e 25 pavimentos tipo, com quatro apartamentos cada, totalizando 100 apartamentos. Dentre as atividades realizadas no período de estágio, podemos citar o acompanhamento na execução de estrutura em concreto armado e fechamento periférico em alvenaria, onde o estagiário supra citado foi orientado pelos engenheiros Waldemar Nunes e Fernando Siqueira.

O estágio

Início: 04 de junho de 2001 término: 14 de setembro de 2001 Carga horária: 35 horas semanais, totalizando 525 horas Em um período de mais de três meses de estágio, o estagiário

desenvolveu várias atividades, destacando as seguintes:

 Acompanhamento da obra em suas etapas atuais (superestrutura em concreto armado e alvenaria de vedação);

- Conferência de execução de alvenaria de vedação através dos projetos Arquitetônicos e de Alvenaria da edificação;
- Conferência de dimensões e posicionamento de fôrmas e ferragens da superestrutura da edificação;
- Acompanhamento da concretagem da superestrutura da edificação realizada com grua e da moldagem dos corpos de prova do concreto lançado;
- Acompanhamento nas inspeções periódicas realizadas pelo engenheiro da obra juntamente com o restante da equipe técnica da empresa;
- Acompanhamento das inspeções efetuadas pela engenheira de segurança da empresa, bem como participação efetiva na execução das sugestões relacionadas nos relatórios de cada inspeção;
- Participação em palestras sobre segurança do trabalho e saúde ocupacional realizadas no canteiro de obras;
- Acompanhamento do PPRA e PCMSO da obra;
- Auxilio no controle de estoques do almoxarifado e controle de pessoal iuntamente com a técnica em edificações da obra;
- Acompanhamento e execução de medições de produção tanto dos funcionários da empresa como de funcionários terceirizados;

Superestrutura em concreto armado

O concreto utilizado na superestrutura é de 30mpa e dosado em central. O concreto é um dos materiais da construção mais utilizados em nosso

país.

A busca constante da qualidade, a necessidade da redução de custos e a racionalização dos canteiros de obras fazem com que o concreto dosado em central seja cada vez mais utilizado.

Entre as vantagens de se aplicar o concreto dosado em central, destacamos:

Eliminação das perdas de areia, brita e cimento;

 Racionalização do número de operários da obra, com consequente diminuição dos encargos sociais e trabalhistas;

Maior agilidade e produtividade da equipe de trabalho;

 Garantia da qualidade do concreto graças ao rígido controle adotado pelas centrais dosadoras;

 Redução no controle de suprimentos, materiais e equipamentos, bem como eliminação das áreas de estoque, com melhor aproveitamento do canteiro de obras;

Redução do custo total da obra.

Plano de concretagem

O plano de concretagem é um conjunto de medidas a serem tomadas antes do lançamento do concreto para assegurar a qualidade da peça a ser concretada. Apresenta-se a seguir um "check-list" utilizado pelo estagiário como guia para o sucesso da concretagem.

Formas e Escoramentos

- Confere-se as dimensões baseadas no projeto;
- Verifica-se a capacidade de suporte e de deformação das formas provocadas pelo uso próprio ou operações de lançamento do concreto;
- Verifica-se a estanqueidade da forma para evitar a fuga da nata;
- Limpa-se as formas e aplica-se o desmoldante.

Armaduras

- Confere-se as bitolas quantidade e dimensão das barras;
- Confere-se o posicionamento da armadura na forma;
- Fixa-se adequadamente;
- Verifica-se os cobrimentos da armadura (pastilha/espaçadores) especificado no projeto.
- Limpa-se a armadura a fim de garantir a aderência ao concreto;
- Não pisa-se nos "negativos" da armadura.

Planejamento

- Dimensiona-se a equipe envolvida nas operações de lançamento, adensamento e cura do concreto;
- Planeja-se as interrupções nos pontos de descontinuidade das formas, como: juntas de concretagem e encontro de pilares, paredes com vigas ou lajes, etc.
- Garante-se equipamentos suficientes para o transporte de concreto dentro da obra (carrinhos, jericas, dumper, bombas, guinchos, guindaste, caçambas, etc.)
- Disponibiliza-se um número suficiente de tomadas de força para os equipamentos elétricos;
- Ter vibradores e mangotes reservas, para eventual necessidade.

Pedido do concreto

- Informe-o antecipadamente o volume da peça a ser concretada;
- Programe-se: horário de início da concretagem, o volume de concreto por caminhão-betoneira e os intervalos de entrega;
- Verifica-se o tempo previsto para o lançamento. O concreto não pode ser lançado após o início de pega;
- Verifica-se o acesso à obra. Subidas ou descidas íngremes podem impossibilitar a descarga do concreto no local desejado, ou mesmo, a movimentação dos equipamentos de bombeamento.

Recebimento do concreto

Com a chegada do caminhão na obra deve-se verificar se o concreto que está sendo entregue está de acordo com o pedido. Confere-se no documento de entrega:

- volume do concreto;
- abatimento (slump-test);
- resistência característica do concreto à compressão (fck); ou consumo de cimento/m³;
- aditivo, quando solicitado.

Antes da descarga do caminhão betoneira deve-se ainda avaliar se a quantidade de água existente no concreto está compatível com as especificações, não havendo falta ou excesso de água. A falta de água dificulta a aplicação do concreto, criando "nichos" de concretagem. Por sua vez, o excesso de água, embora facilite a aplicação do concreto, diminui consideravelmente sua resistência.

Durante o trajeto da central dosadora até a obra, é comum ocorrer perda na consistência do concreto devido às condições climáticas - temperatura e umidade relativa do ar. Parte da água da mistura deve ser reposta na obra compensando a perda por evaporação durante o trajeto. Para isso, utiliza-se o ensaio de abatimento (slump-test), bastante simples e de fácil execução.

As regras para a reposição de água perdida por evaporação são especificadas pela NBR 7212 - Execução de Concreto Dosado em Central. Como regra

geral, a adição de água não deve ultrapassar a medida de abatimento solicitada pela obra e especificada no documento de entrega do concreto.

O Ensaio de Abatimento (slump test)

A simplicidade deste ensaio o consagrou como o principal controle de recebimento do concreto na obra. Embora limitado, expressa a trabalhabilidade do concreto através de um único parâmetro (abatimento). Para que cumpra este importante papel, deve-se executá-lo corretamente:

- colete a amostra de concreto depois de descarregar 0,5 m³ de concreto do caminhão e em volume aproximado de 30 litros;
- coloque o cone sobre a placa metálica bem nivelada e apoie seus pés sobre as abas inferiores do cone;
- preencha o cone com três camadas iguais e aplique 25 golpes uniformemente distribuídos em cada camada;
- adense a camada junto à base, de forma que a haste de socamento penetre em toda espessura. No adensamento das camadas restantes, a haste deve penetrar até ser atingida a camada inferior adjacente;
- após a compactação da última camada, retire o excesso de concreto e alise a superfície com uma régua metálica;
- retire o cone içando-o com cuidado na direção vertical;
- coloque a haste sobre o cone invertido e meça a distância entre a parte inferior da haste e o ponto médio do concreto, expressando o resultado em milímetros.

LEMBRE-SE:

- não adivinhe o índice de abatimento do concreto. Apesar da experiência, tanto do motorista do caminhão-betoneira, quanto do fiscal que recebe o concreto na obra, efetue o ensaio de abatimento do tronco de cone, utilizando-o como um instrumento de recebimento do concreto;
- não adicione água após o início da concretagem. Isto altera as propriedades do concreto e anula as garantias estabelecidas em contrato.

Amostragem do Concreto

Depois do concreto ser aceito por meio do ensaio de abatimento, deve-se coletar uma amostra que seja representativa para o ensaio de resistência que também deve seguir as especificações das normas brasileiras:

- não é permitido retirar amostras, tanto no princípio quanto no final da descarga da betoneira;
- a amostra deve ser colhida no terço médio do caminhão-betoneira;
- a coleta deve ser feita cortando-se o fluxo de descarga do concreto, utilizando-se para isso um recipiente ou carrinho-de-mão;
- deve-se retirar uma quantidade suficiente, 50% maior que o volume necessário, e nunca menor que 30 litros.

Em seguida, a amostra deve ser homogeneizada para assegurar sua uniformidade.

A moldagem deve respeitar as seguintes orientações:

- preencha os moldes cilíndricos (150 mm X 300 mm)em quatro camadas iguais e sucessivas, aplicando 30 golpes em cada camada, distribuídos uniformemente. A última conterá um excesso de concreto; retire-o com régua metálica;
- deixe os corpos-de-prova nos moldes, sem sofrer perturbações e em temperatura ambiente por 24 horas;
- após este período deve-se identificar os corpos-de-prova e transferi-los para o laboratório, onde serão rompidos para atestar sua resistência.

Lançamento do Concreto

Ao lançar o concreto, observe os seguintes cuidados:

- procure lançar o concreto mais próximo da sua posição final;
- não deixe acumular concreto em determinados pontos da fôrma;
- evite a segregação e o acúmulo de água na superfície do concreto;
- lance em camadas horizontais de 15 a 30 cm, a partir das extremidades em direção ao centro das formas;
- a nova camada deve ser lançada antes do início de pega da camada inferior;
- cuidado especial deve ser tomado para concretagem com temperatura ambiente inferior a 10 °C e superior a 35 °C;
- a altura de lançamento não deve ultrapassar 2 m. Para alturas de lançamento elevadas sem acesso lateral (janelas), utilizar trombas, calhas, funis, etc.

No caso de lançamento convencional:

- limite o transporte interno do concreto com carrinhos ou jericas a 60 m, tendo em vista a segregação e perda de consistência;
- utilize carrinhos ou jericas com pneumáticos;
- prepare rampas de acesso para às fôrmas;
- iniciei a concretagem pela parte mais distantes do local de recebimento do concreto.

No caso de lançamento por bombas:

- especifique o equipamento de lançamento: altura de lançamento, bomba estacionária ou bomba lança;
- preveja local de acesso e de posicionamento para os caminhões e bombas;
- garanta o estacionamento, próximo à bomba, para dois caminhõesbetoneira objetivando o fluxo contínuo de *bombeamento*;
- estabeleça a sequência de concretagem e o posicionamento da tubulação de bombeamento.

Adensamento do Concreto

- Providencie os equipamentos necessários: vibradores de imersão (agulha), vibradores de superfície (réguas ou placas vibratórias, acabadores de superfície), vibradores externos(vibradores de fôrma, mesas vibratórias, rolos compactadores vibratórios);
- evite, tanto a falta, contra o excesso de vibração;
- determine a altura das camadas em função do equipamento utilizado;
- o vibrador de imersão deve penetrar cerca de 5 cm na camada inferior;
- inicie o adensamento logo após o lançamento;
- evite o adensamento a menos de 10 cm da parede da fôrma devido ao aparecimento de bolhas de ar e perda da argamassa;
- preveja reforço das fôrmas e escoramento, em função de adensamento enérgico;
- evite o transporte do concreto com o equipamento de adensamento.

No Maison des Princes

Quando do recebimento do concreto na obra, um responsável técnico fazia a conferência da documentação acompanhado do estagiário, de modo a

verificar a sua correta especificação.

O ensaio de abatimento foi feito por responsável técnico, contratado pela construtora da obra. Em quase todas as betonadas o slamp estava de acordo com o solicitado que era entre 6 e 10 cm, dependendo da peça a ser concretada. Salvo em alguns casos em que foi necessária a reposição de água, perdida por evaporação durante o trajeto até a obra.

O transporte do concreto foi feito em caçamba a qual foi içada por grua

até o local de lançamento.

O adensamento foi executado por pessoal orientado para tal, de forma a não aparecerem nichos de concretagem nas peças.

Alvenaria

A medida que se avança com a superestrutura, fazia-se o fechamento da periferia com alvenaria. Com isso diminuía consideravelmente o uso de madeira na obra, visto que esta não seria utilizada como proteção (guarda-corpo).

A execução da alvenaria era muito rigorosa, no que diz respeito ao prumo e a planicidade, etapas conferidas com rigor pelo estagiário. Tal rigor era explicado, pois o tijolo possuía 12 cm de largura e as guarnições de portas e janelas teriam 13,2 cm de largura, restando apenas 1,2 cm para o revestimento de gesso na soma das duas faces.

As caixinhas de energia eram pré colocadas nos tijolos e quando levantada alvenaria, estes eram colocados de pé, de modo que o eletroduto passava por dentro dele, não precisando quebrá-lo posteriormente. Assim, eliminava-se o desperdício.

Materiais

Ferragem

As ferragens da obra chegam em caminhões, os quais estacionam fora da obra, e são transportados para dentro com o auxílio da grua. Alguns varões de pilares e vigas são virados na obra, porém a maioria destes já vêm prontos. Na obra faz-se a utilização de telas soldadas nas lajes. Estribos, espaçadores, ganchos já chegam na obra dobrados, ficando apenas o trabalho de armação para os ferreiros.

Tijolos

Os tijolos utilizados na obra chegavam semanalmente (3 milheiros) e eram dispostos em páletes de modo a facilitar o transporte, que era feito em gaiolas içadas pela grua até plataformas dispostas em pavimentos onde iria se trabalhar.

Argamassa

Na obra, fazia-se a utilização de argamassa semi-pronta, restando apenas a adição de água para sua aplicação. Da mesma forma dos tijolos, eram dispostos na obra semanalmente, estocados também em páletes.

Medidas de Proteção

Carpintaria

As operações em máquinas e equipamentos necessários à realização da atividade de carpintaria eram efetuadas por trabalhadores qualificados. A serra circular atendia às disposições a seguir:

- ⇒ dotada de mesa estável, com fechamento de suas faces inferiores, anteriores e posterior, construída em madeira resistente e de primeira qualidade, material metálico ou similar de resistência equivalente, sem irregularidades, com dimensionamento adequado para a execução das tarefas;
- ⇒ carcaça do motor aterrada eletricamente
- ⇒ disco de serra sempre mantido afiado e travado, sendo substituído quando apresentava trincas, dente quebrado ou empenamento;
- ⇒ provida de coifa protetora do disco e cutelo divisor, com identificação do fabricante, e ainda coletor de serragem.

Armação de aço

O dobramento de vergalhões de aço na obra eram feitos sobre bancadas apropriadas e estáveis, apoiadas sobre superfícies resistentes, niveladas e não escorregadias, afastadas da área de circulação de trabalhadores. As armações de pilar e outras estruturas verticais eram apoiadas e escoradas para evitar tombamento. A área de trabalho onde estava situada a bancada de armação era totalmente protegida contra queda de materiais e intempéries, pois ficava no semi subsolo do edifício.

Área de Vivência

A obra possuía cerca de trinta operários, entre pedreiros, carpinteiros, ferreiros, guincheiro, operador de grua e ajudantes. Todos tinham armário individuais, locais para banhos e sanitários. A obra não era dotada de cozinha, pois a alimentação era terceirizada e chegava á obra em quentinhas, as quais eram desfrutadas em mesas e cadeiras plásticas em local apropriado. A obra não dispunha de alojamento, pois nenhum operário lá dormia. A segurança era feita por aparelhagem eletrônica, não necessitando de vigilante na obra.

Conclusão

Ao término destes três meses e meio de estágio, pôde-se avaliar a importância do mesmo, visto que conseguimos pôr em prática muito daquilo que até então, tínhamos apenas a teoria.

Foram vistas a praticidade de algumas técnicas, a exemplo da utilização de grua no transporte de materiais – o que dá uma imensa rapidez a obra, pois a mesma consegue "varrer" todo o perímetro da construção; uso de telas soldadas em lajes – facilitando o trabalho dos armadores, pois não precisam pontear as ferragens; disposição de água encanada nos pavimentos – dando agilidade na confecção de argamassa para levantamento de alvenaria; colocação de telas na amarração de paredes. Constituindo assim soluções simples e eficientes, as quais facilitam o trabalho na industria da construção civil.