

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIÊNCIAS E TECNOLOGIA UNIDADE ACADÊMICA DE ENGENHARIA QUÍMICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA QUÍMICA

Celso Fidelis de Moura Junior

DESENVOLVIMENTO E AVALIAÇÃO DE DIAFRAGMAS POLIMÉRICOS PARA APLICAÇÃO NO PROCESSO DE PRODUÇÃO ELETROLÍTICA DE CLORO -SODA

CAMPINA GRANDE – PB

CELSO FIDELIS DE MOURA JUNIOR

DESENVOLVIMENTO E AVALIAÇÃO DE DIAFRAGMAS POLIMÉRICOS PARA APLICAÇÃO NO PROCESSO DE PRODUÇÃO ELETROLÍTICA DE CLORO – SODA

Dissertação apresentada ao Programa de Pós-Graduação em Engenharia Química da Universidade Federal de Campina Grande como requisito parcial para obtenção do grau de Mestre em Engenharia Química.

Orientador:

Prof. Dr. Eudésio Oliveira Vilar (UFCG/UAEQ/LEEq)

CAMPINA GRANDE – PB

2018

 M929d Moura Junior, Celso Fidelis de. Desenvolvimento e avaliação de diafragmas poliméricos para aplicação no processo de produção eletrolítica de cloro - soda / Celso Fidelis de Moura Junior. - Campina Grande-PB, 2018. 86 f. : il. color.
 Dissertação (Mestrado em Engenharia Química) - Universidade Federal de Campina Grande, Centro de Ciências e Tecnologia, 2018. "Orientação: Prof. Dr. Eudésio Oliveira Vilar". Referências.
 1. Cloro-Soda. 2. Eletrólise. 3. Diafragma Polimérico. I. Vilar, Eudésio Oliveira. II. Título.

DESENVOLVIMENTO E AVALIAÇÃO DE DIAFRAGMAS POLIMÉRICOS PARA APLICAÇÃO NO PROCESSO DE PRODUÇÃO ELETROLÍTICA DE CLORO-SODA

CELSO FIDELIS DE MOURA JUNIOR

Dissertação examinada em: <u>11 09 2018</u>

Banca Examinadora:

Prof. Dr. Eudésio Oliveira Vilar Orientador UAEQ/UFCG

Prof. Dr. José Jailson Nicácio Alves

Prof. Dr. José Jailson Nicácio Alve Examinador Interno UAEQ/UFCG

upon Count Punto

Prof. Dr. Carlos Thiago Cândido Cunha Examinador Externo UAEMa/UFCG

DEDICATÓRIA

Dedico esse trabalho a minha família, em especial minha Avó Rosa.

AGRADECIMENTOS

Primeiramente agradeço a minha avó, Rosa, por todo apoio e por me mostrar, desde muito cedo, que a educação e o conhecimento são as riquezas mais importantes que o homem pode ter e por ter me ensinado a sempre correr atrás dos meus sonhos.

À minha mãe, Maria das Dôres, pelo apoio, paciência, investimento e amor durante essa longa caminhada.

Aos amigos que fiz em Campina Grande, Camyla, Tiago, Francisco, Nicolas, Antônio que se tornaram uma família para mim nesse período longe casa, pelos momentos divertidos e por todo carinho.

Ao Rafael Teles, por todo carinho, paciência, por não me deixar desistir nos momentos difíceis, pelas palavras, conselhos e por sempre me fazer acreditar que sou capaz de conquistar meus objetivos.

A meu orientador, Prof. Dr. Eudésio Oliveira Vilar, pela orientação, dedicação e conhecimentos passados durante todo o processo de realização desse trabalho...

Ao Prof. Dr. Carlos Thiago, pelas orientações e ajuda no desenvolvimento desse projeto.

Aos meus amigos do Laboratório de Engenharia Eletroquímica - LEEq, Emanuelle, Jullie, Raquel, Isabelle, Renan, Grace, Márcia e João pela companhia durante o período de experimentos, pela ajuda e os momentos de risadas.

À Bruna Kattielly, que além de companheira de laboratório acabou tornando-se amiga, confidente, companheira e uma das pessoas mais importantes que conheci durante essa caminhada.

À CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) pela concessão da bolsa.

E a todos que contribuíram de alguma forma para a realização deste trabalho...

... meus mais sinceros agradecimentos.

"A percepção do desconhecido é a mais fascinante das experiências. O homem que não tem os olhos para o misterioso passará pela vida sem ver nada.

(Albert Einstein)

RESUMO

A soda cáustica (NaOH) e o cloro (Cl_2) são uns dos principais pontos de partida, como matériaprima básica, para indústria química mundial. A tecnologia mais utilizada para produção desses insumos é a eletrólise da salmoura em células diafragma. Os diafragmas são separadores que permitem a passagem de íons, mas reduz a difusão dos produtos, além de separar os gases formados nos compartimentos anódico e catódico e são confeccionados a partir de fibra de amianto, fibras poliméricas ou uma mistura dos dois. Este trabalho teve como objetivo desenvolver, a partir de um planejamento experimental de mistura, diafragmas poliméricos a partir de quatro tipos de microfibras. Neste trabalho, os diafragmas foram inicialmente sintetizados e dopados com inserção de argila atapulgita e caracterizados quanto a espessura, permeabilidade e resistividade (Nmac) e a partir do planejamento foi possível desenvolver modelos matemáticos que descrevem o comportamento das fibras sobre as propriedades do diafragma. Foram desenvolvidos 9 diafragmas, chamados de Polymeric Diaphragm (PD), em composições diferentes de microfibras. Os diafragmas que apresentarem as melhores propriedades foram testados num reator eletroquímico composto por duas células em série desenvolvido no Laboratório de Engenharia Eletroquímica – LEEq e foi avaliado sua capacidade de concentração de soda, teores de cloreto e clorato no licor de célula e eficiência de corrente e de energia. Os resultados obtidos mostram que proporções intermediárias (62,5%) de MF2 conferem as melhores propriedades aos diafragmas e a partir dos resultados de caracterização foram selecionados os diafragmas PD1, PD7 e PD8 para passar pelo processo de eletrólise. Dentre os diafragmas em estudo, o PD1 apresentou os melhores resultados quanto a concentração de soda (29,44 g/L) e o menor teor de clorato de sódio no licor de célula (0,035 g/L) apresentando-se favorável à sua aplicação no processo de produção de cloro-soda.

Palavras-chave: Cloro-soda. eletrólise. diafragma polimérico.

ABSTRACT

Caustic soda (NaOH) and chlorine (Cl₂) are one of the main starting points, as a basic raw material for the chemical industry worldwide. The most widely used technology for the production of these inputs is the electrolysis of brine in diaphragm cells. The diaphragms are separators that allow the passage of ions, but reduce the diffusion of the products, besides separating the gases formed in the anodic and cathodic compartments and are made from asbestos fiber, polymer fibers or a mixture of the two. This work aimed to develop, from an experimental planning of mixing, polymeric diaphragms from four types of microfibers. In this work, the diaphragms were initially synthesized and doped with insertion of arglia attapulgite and characterized as thickness, permeability and resistivity (Nmac) and from the planning it was possible to develop mathematical models that describe the behavior of the fibers on the properties of the diaphragm. 9 diaphragms, called Polymeric Diaphragm (PD), were developed in different microfiber compositions. The diaphragms that presented the best properties were tested in an electrochemical reactor composed of two cells in series developed at the Laboratory of Electrochemical Engineering - LEEq and its capacity of soda concentration, chloride and chlorate contents in the cell liquor and current and efficiency were evaluated. power. The obtained results show that intermediate proportions (62.5%) of MF2 confer the best properties to the diaphragms and from the characterization results the PD1, PD7 and PD8 diaphragms were selected to undergo the electrolysis process. Among the diaphragms under study, PD1 presented the best results regarding the soda concentration (29.44 g/L) and the lowest sodium chlorate content in the cell liquor (0.035 g/L), being favorable to its application in the chlorsoda production process.

Key-Words: Chlor-Alkali. Electrolysis of Brine. Polymeric Diaphragm.

LISTA DE FIGURAS

FIGURA 1: DISTRIBUIÇÃO DA PRODUÇÃO MUNDIAL DE CLORO-SODA. (ADAPTADO DE	
EUROCHLOR, 2012).	18
FIGURA 2: CÉLULA TIPO DIAFRAGMA APLICADA NO PROCESSAMENTO DE CLORO-SODA	
(ADAPTADO DE EUROCHLOR, 2015).	20
FIGURA 3: FLUXOGRAMA DO PROCESSO DE PRODUÇÃO DE CLORO-SODA POR TECNOLOGIA	
DIAFRAGMA	21
FIGURA 4: CÉLULA DE ELETRÓLISE TÍPICA DE DIAFRAGMA (ADAPTADO DE ROMINE E	
MATOUSEK, 1998)	23
FIGURA 5: ESTRUTURA DA CADEIA DE RAMIFICAÇÕES DO PMX	26
FIGURA 6: ESQUEMA EXPERIMENTAL DE UMA CÉLULA DIAFRAGMA PARA PRODUÇÃO DE CLO	ORO-
SODA	28
FIGURA 7: ESPAÇO EXPERIMENTAL PARA (A) DOIS, (B) TRÊS E (C) QUATRO COMPONENTES	31
FIGURA 8: AGITADOR MECÂNICO FISATOM 713D	33
FIGURA 9: SISTEMA DE DEPOSIÇÃO DO DIAFRAGMA SOBRE O CÁTODO (ADAPTADO DE CUN	HA,
2015)	34
FIGURA 10: ESTUDA SOLAB SL 102.	34
FIGURA 11: MUFLA BARNSTEAD/THERMOLYNE MODELO FURNANCE 47900.	35
FIGURA 12: CURVA DE SINTERIZAÇÃO (TRATAMENTO TÉRMICO).	36
FIGURA 13: MEDIDOR DE ESPESSURA MINITEST 4100.	36
FIGURA 14: ESQUEMA EXPERIMENTAL PAR DETERMINAÇÃO DA PERMEABILIDADE	37
FIGURA 15: ESQUEMA DO EXPERIMENTO REALIZADO POR POUSH ET AL. (1983)	38
FIGURA 16: SISTEMA EXPERIMENTAL PARA MEDIÇÃO DA CONDUTIVIDADE	39
FIGURA 17: ESQUEMA EXPERIMENTAL DA CÉLULA DE BANCADA.	40
FIGURA 18: REATOR ELETROQUÍMICO COM DUAS CÉLULAS ACOPLADAS EM SÉRIE	41
FIGURA 19: INFLUÊNCIA DAS MICROFIBRAS SOBRE A ESPESSURA DOS DIAFRAGMAS	46
FIGURA 20: SUPERFÍCIE DE RESPOSTA DA ANÁLISE DE ESPESSURA DOS DIAFRAGMAS, FIXAN	DO
MF78 em 12,5%, em função da composição das microfibras	47
FIGURA 21: SUPERFÍCIE DE RESPOSTA DA ANÁLISE DE ESPESSURA DOS DIAFRAGMAS, FIXAN	DO
MF50 em 12,5%, em função da composição das microfibras	47
FIGURA 22: SUPERFÍCIE DE RESPOSTA DA ANÁLISE DE ESPESSURA DOS DIAFRAGMAS, FIXAN	DO
MF05 em 12,5%, em função da composição das microfibras	48

FIGURA 23: SUPERFÍCIE DE RESPOSTA DA ANÁLISE DE ESPESSURA DOS DIAFRAGMAS, FIXANDO FIGURA 24: INFLUÊNCIA DAS MICROFIBRAS SOBRE A PERMEABILIDADE DO DIAFRAGMA.......51 FIGURA 25: SUPERFÍCIE DE RESPOSTA DA ANÁLISE DE PERMEABILIDADE DOS DIAFRAGMAS, FIXANDO MF78 EM 12,5%, EM FUNÇÃO DA COMPOSIÇÃO DAS MICROFIBRAS......52 FIGURA 26: SUPERFÍCIE DE RESPOSTA DA ANÁLISE DE PERMEABILIDADE DOS DIAFRAGMAS, FIXANDO MF50 EM 12,5%, EM FUNCÃO DA COMPOSIÇÃO DAS MICROFIBRAS......52 FIGURA 27: SUPERFÍCIE DE RESPOSTA DA ANÁLISE DE PERMEABILIDADE DOS DIAFRAGMAS, FIXANDO MF05 EM 12,5%, EM FUNCÃO DA COMPOSIÇÃO DAS MICROFIBRAS......53 FIGURA 28: SUPERFÍCIE DE RESPOSTA DA ANÁLISE DE PERMEABILIDADE DOS DIAFRAGMAS, FIXANDO MF2 EM 12,5%, EM FUNÇÃO DA COMPOSIÇÃO DAS MICROFIBRAS......54 FIGURA 30: SUPERFÍCIE DE RESPOSTA DA ANÁLISE DO NMAC DOS DIAFRAGMAS, FIXANDO MF78 EM 12,5%, EM FUNÇÃO DA COMPOSIÇÃO DAS MICROFIBRAS......57 FIGURA 31: SUPERFÍCIE DE RESPOSTA DA ANÁLISE DO NMAC DOS DIAFRAGMAS, FIXANDO MF50 EM 12,5%, EM FUNÇÃO DA COMPOSIÇÃO DAS MICROFIBRAS......57 FIGURA 32: SUPERFÍCIE DE RESPOSTA DA ANÁLISE DO NMAC DOS DIAFRAGMAS, FIXANDO FIGURA 33: SUPERFÍCIE DE RESPOSTA DA ANÁLISE DO NMAC DOS DIAFRAGMAS, FIXANDO MF2 FIGURA 34: GRÁFICO ESPESSURA E NMAC DOS DIAFRAGMAS POLIMÉRICOS.60 FIGURA 36: GRÁFICO ESPESSURA E PERMEABILIDADE DOS DIAFRAGMAS POLIMÉRICOS61 FIGURA 39: ANÁLISE DA CONCENTRAÇÃO DE NAOH E NACLO3 NO LICOR DE CÉLULA......65 FIGURA 40: ANÁLISE DA EFICIÊNCIA DE CORRENTE E DE ENERGIA DOS DIAFRAGMAS......66 FIGURA 41: ANÁLISE DA TENSÃO DA CÉLULA E EFICIÊNCIA DE ENERGIA......67 FIGURA 42: CONCENTRAÇÃO DE NAOH EM FUNÇÃO DO TEMPO PARA O PD1.80 FIGURA 44: CONCENTRAÇÃO DE NAOH EM FUNÇÃO DO TEMPO PARA O PD8.82

LISTA DE TABELAS

TABELA 1: FIBRAS UTILIZADAS NA PRODUÇÃO DOS DIAFRAGMAS.	
TABELA 2: PLANEJAMENTO EXPERIMENTAL DO TIPO SIMPLEX-LATTICE PARA 4 COMPON	ENTES.
TABELA 3: PARÂMETROS ESTATÍSTICOS.	44
TABELA 4: DADOS EXPERIMENTAIS DE ESPESSURA MÉDIA DOS DIAFRAGMAS	45
TABELA 5: DADOS EXPERIMENTAIS DE PERMEABILIDADE DOS DIAFRAGMAS.	50
TABELA 6: DADOS EXPERIMENTAIS DO NÚMERO DE MACMULLIN DOS DIAFRAGMAS	55
TABELA 7: RESULTADOS DOS ENSAIOS ELETROLÍTICOS DOS DIAFRAGMAS.	62
TABELA 8: RESULTADOS DOS ENSAIOS ELETROLÍTICOS DO PD1.	80
TABELA 9: RESULTADOS DOS ENSAIOS ELETROLÍTICOS DO PD7.	81
TABELA 10: RESULTADOS DOS ENSAIOS ELETROLÍTICOS DO PD8.	82

LISTA DE ABREVIATURAS E SIGLAS

Área de vazios (cm ²)
Eficiência de Corrente
Eficiência de Energia
Altura hidrostática (cm)
Densidade de Corrente (A/cm ²)
Corrente (A)
Espessura (cm)
Microfibra
Número de MacMullim
Polymeric Diaphragm
Vazão de Percolação (cm ³ /s)
Resistência (Ω)

LISTA DE SIMBOLOS

K	Permeabilidade (cm ²)
F	Constante de Faraday (C/mol)
v	Velocidade de percolação (cm/s)
μ	Viscosidade dinâmica do fluido (g/cm.s)
ρ	Resistividade do eletrólito (Ω.cm)

ΔP Diferença de Pressão (atm)

SUMÁRIO

1.	INTRODUÇÃO	14
2.	OBJETIVOS	16
	2.1. Objetivo Geral	16
	2.2. Objetivos Específicos	16
3.	FUNDAMENTAÇÃO TEÓRICA	17
	3.1. A Indústria de Cloro-Soda: Um Breve Histórico	17
	3.2. Produção Eletrolítica de Cloro-Soda por Células Diafragma	19
	3.2.1. A célula diafragma	22
	3.3. Diafragma	24
	3.3.1. Diafragmas com amianto	24
	3.3.2. Diafragmas sem amianto	25
	3.4. Transferência de Massa Através do Diafragma e o Modelo de Van Zee, White e	27
4	WETODOLOGIA	27
4.	METODOLOGIA	
	4.1. Materiais	
	4.2. Métodos	
	4.2.1. Planejamento experimental de misturas	
	4.2.2. Síntese do diafragma	
	4.2.2.1. Deposição do diafragma	
	4.2.2.2. Dopagem do diafragma	35
	4.2.3. Caracterização dos materiais e eletroquímica	
	4.2.3.1. Ensaios de permeabilidade	
	4.2.3.2. Ensaios de resistividade – número de MacMullin (N _{MAC})	37
	4.2.3.3. Desempenho do diafragma no reator eletroquímico	
5.	RESULTADOS E DISCUSSÃO	44
	5.1. Análise de Variância – ANOVA	44
	5.2. Caracterização dos Diafragmas	45
	5.2.1. Espessura média	45
	5.2.2. Permeabilidade	50
	5.2.3. Resistividade dos diafragmas – Número de MacMullim (N _{Mac})	55
	5.3. Avaliação dos Diafragmas	59
	5.4. Eletrólise da Salmoura	62

6. CONCLUSÕES	
REFERÊNCIAS BIBLIOGRÁFICAS	69
APÊNDICE	74

1. INTRODUÇÃO

A soda cáustica (NaOH) e o cloro (Cl₂), constituem um dos pontos de partida, como matéria-prima básica, para a indústria química mundial. Mais de 50% das vendas químicas dependem, em alguma etapa do seu processo produtivo, da química do cloro (ANDRADE e ZAPORSKI, 1994).

Segundo Jardin Júnior (2006), a cadeia de cloro e soda expressa uma extensa rede de produção, tendo como os principais consumidores setores da economia como: papel e celulose, química e petroquímica, alumínio, construção civil, sabões e detergentes, têxtil, metalúrgica, eletrônica, alimentos, defensivos agrícolas, bebidas, tintas, tratamento de água e embalagens.

A capacidade instalada do segmento cloro-soda, no Brasil, responde pelo equivalente a 3% da capacidade mundial instalada, situando-se na sexta posição do mundo, e, na América Latina, a indústria nacional é responsável por 55% do total. Em torno de 80% da produção é para uso cativo, principalmente para a fabricação de PVC, óxido de propeno e para uso das indústrias de celulose (BRAGA, 2009).

Pelos processos mais utilizados, modernamente, para produção de cloro, da soda e de outros produtos halogenados, são necessários basicamente três insumos: sal, água e energia elétrica. Algumas indústrias ainda utilizam o mercúrio metálico, embora esse processo venha sendo combatido por ser ambientalmente prejudicial, caindo aos poucos em desuso (FERNANDES et al., 2009).

O processo de produção de cloro-soda se dá pela passagem de uma corrente elétrica pela salmoura (água + NaCl) onde, pela eletrolise, há a formação de cloro, soda cáustica e hidrogênio (H₂).

A cadeia produtiva de cloro e da soda inicia-se com a eletrólise da salmoura, coproduzidos na proporção fixa de 1 tonelada de cloro e 1,13 tonelada de soda cáustica, e como parte da eletrólise produz hidrogênio, que é utilizado no próprio processo de produção ou comercializado (BRAGA, 2009).

Atualmente, três processos de eletrólise são utilizados industrialmente: o de mercúrio, o de diafragma e o de membrana. Em 2007, segundo a Associação Brasileira da Indústria de Álcalis, Cloro e Derivados (Abiclor), 72% da produção brasileira do setor de cloro-soda empregou a tecnologia de diafragma, 23% a de mercúrio e 5% a de membrana. Essa distribuição percentual é em função dos elevados custos inerentes à substituição a tecnologia que utiliza

mercúrio, e também das exigências ambientais legais em cada região pelo governo local (FERNANDES et al., 2009).

Na tecnologia de produção de cloro e soda cáustica por processo de diafragma se obtém o gás cloro no compartimento anódico e uma solução aquosa de hidróxido de sódio e gás hidrogênio no compartimento catódico, a partir da eletrólise de uma solução aquosa de cloreto de sódio. Nestas células eletroquímicas há um separador (diafragma) entre o ânodo e o cátodo, que é confeccionado com fibras de amianto, de polímero ou mistura dos dois, que permite a passagem dos íons, mas reduz a difusão dos produtos, além de separar os gases formados nos compartimentos ou semi-células (VIANA, 2009).

De acordo Lopes (2003) a tecnologia de diafragma tem se desenvolvido ao longo do tempo, principalmente quando ao material de construção. Os ânodos que inicialmente eram de carbono, hoje já são de titânio revestido, enquanto que, os cátodos tiveram poucas modificações em termos de material, mantendo-se em aço. Já os diafragmas podem ser feitos a partir de fibras de amianto, fibras de amianto modificadas e sem amianto. Diafragmas comerciais sem amianto já foram desenvolvidos, como Polimarix e Tephram.

Apesar do amianto não apresentar riscos aos recursos natuais, ele pode ser bastante nocivo à saúde humana e seu uso e exploração tem sido proibido em diversos países. De acordo com a ABREA – Associação dos Brasileiros Expostos ao Amianto (2017), países como Alemanha, Austrália, Suécia, Suíça, Dinamarca, Espanha, Holanda, Japão, Nova Zelândia, Argentina, entre outros têm proibido a importação, fabricação ou venda de produtos que contenham amianto desde 1997.

Em razão disso e do custo dos diafragmas sem amianto disponíveis no mercado, muitos estudos têm sido desenvolvidos com o intuito de substituir diafragmas de amianto pelos diafragmas poliméricos. Com base nesse contexto, Cunha (2015) desenvolveu um diafragma polimérico, denominado de SP11, que apresentou bons resultados em relação às propriedades de permeabilidade e condutividade em comparação com as propriedades do diafragma de amianto. Porém, as propriedades do SP11 precisam ser melhoradas para que o seu desempenho no processo cloro-soda aumente, já que ficaram abaixo do diafragma de referência (amianto).

O presente trabalho tem como objetivo desenvolver diafragmas poliméricos, a partir de um planejamento experimental de mistura, em comparação com ao diafragma comercial Tephram e o diafragma SP11. Buscar-se-á desenvolver um diafragma polimérico que seja vantajoso, tanto economicamente quanto em relação à sua eficiência no processo cloro-soda, e que apresente propriedades similares aos diafragmas de amianto.

2. OBJETIVOS

2.1. Objetivo Geral

Preparar diafragmas poliméricos com quatro diferentes tipos de microfibras partindo de um planejamento experimental de mistura para aplicação no processo de produção eletrolítico de cloro-soda.

2.2. Objetivos Específicos

- ✓ Dopar os diafragmas produzidos através de cargas inorgânicas;
- ✓ Caracterizar os novos diafragmas quanto à espessura e permeabilidade;
- Determinar experimentalmente e avaliar a resistividade dos diafragmas em termos do número de MacMullim;
- ✓ Testar os diafragmas obtidos na célula eletroquímica na produção de cloro-soda em escala de bancada;
- Determinar a eficiência de corrente, eficiência de carga, teores de cloretos e cloratos, teor da soda produzido na célula eletroquímica;
- ✓ Comparar os resultados dos diafragmas desenvolvidos com os resultados apresentados pelo Tephram e SP11;
- ✓ Identificar, através dos resultados obtidos na eletrólise, qual diafragma apresentará como potencial substituto aos diafragmas convencionais.

3. FUNDAMENTAÇÃO TEÓRICA

3.1. A Indústria de Cloro-Soda: Um Breve Histórico

A indústria de cloro-soda é considerada uma das maiores consumidoras de energia elétrica do mundo, perdendo apenas para a indústria de alumínio. As soluções de soda cáustica têm seu uso conhecido desde meados do século XVIII. O desenvolvimento do produto comercializável provém dos fabricantes de soda, que a obtinham mediante caustificação pela cal (ANDRADE, 2000).

O cloro foi descoberto em 1774 pelo sueco Carl Wilhelm Scheele, que acreditava se tratar de um composto contendo oxigênio. Obteve-o com base no dióxido de manganês (O'BRIEN et al., 2005), de acordo a reação representada pela equação 1:

$$MnO_2 + 4HCl \rightarrow MnCl_2 + Cl_2 + 2H_2O \tag{1}$$

De acordo Schmittinger (1996), Cruickshank foi o primeiro a produzir cloro eletroquimicamente em 1800. Porém, a produção de cloro e soda em escala industrial só foi possível com o desenvolvimento de um gerador adequado e ânodos feitos de grafite sintético em 1892. Ao mesmo tempo, foram desenvolvidos os processos das células de diafragma (1885) e o processo das células de mercúrio (1892). Já o processo de membrana foi desenvolvido recentemente (1970).

Cada tecnologia incorpora uma maneira diferente de manter o cloro separado do hidrogênio e da soda cáustica. Em processos de membrana e diafragma, o anólito e o católito são separados por uma membrana e um diafragma, respectivamente. Por outro lado, a amálgama de sódio (NaHg) é a barreira de separação na tecnologia de mercúrio (GARCIA-HERRERO et al. 2016; WORLDCHLORINE, 2002).

Atualmente, 97% do cloro gasoso são produzidos, junto com soda cáustica, pela eletrólise de soluções aquosa de cloreto de sódio que, minerado como sal gema ou obtido pela evaporação da água do mar, é uma matéria-prima praticamente inesgotável (WALLAU et al., 2015).

Segundo Silva (2015), a capacidade mundial de produção de cloro e soda, em 2012, foi na ordem de 76,8 e 86,86 milhões de toneladas respectivamente, distribuídas principalmente entre América do Norte, Ásia e Europa. A Figura 1 apresenta a distribuição da produção mundial de cloro-soda.

Figura 1: Distribuição da Produção Mundial de Cloro-Soda. (Adaptado de EUROCHLOR, 2012).

No Brasil, a tecnologia mais utilizada pelo setor em 2014 foi o de diafragma (62% da capacidade instalada, sendo 9% diafragmas sem abstetos e 53% com cristolia), seguida pela tecnologia de membrana (24% da capacidade instalada) e mercúrio (14% da capacidade instalada) (ABICLOR, 2015).

De acordo o relatório apresentado pela Abiclor (2017), a produção brasileira de cloro em 2017 foi de 1.179,9 mil toneladas, com variação negativa de 2,2% em relação ao volume registrado em 2016. Em relação à soda cáustica, a produção em 2017 foi de 1.290,4 mil toneladas, com variação negativa de 2,2% em relação a 2016.

O cloro e a soda cáustica têm uma aplicação bastante diversificada. O cloro, por exemplo, é utilizado na fabricação da resina plástica de policloreto de vinila (PVC), solventes clorados, agroquímicos, e no branqueamento da polpa de celulose. Devido ao seu alto poder bactericida, é também empregado no tratamento de água potável e de piscinas. Já a soda cáustica é aplicada em processos da indústria têxtil, alimentos, química e petroquímica entre outros (FERNANDES et al., 2009).

O crescimento e desenvolvimento futuro deste setor estão sendo baseados principalmente na demanda do mercado, preocupações ambientais e limitações/preço da energia. Além disso, o desenvolvimento tecnológico dos processos e o ajuste do setor ao novo contexto de melhoria contínua são, adicionalmente, fatores que determinarão o futuro da indústria de cloro-soda (GARCIA-HERRERO et al., 2016).

3.2. Produção Eletrolítica de Cloro-Soda por Células Diafragma

Na tecnologia de produção de cloro e soda cáustica por processo eletroquímico, obtêmse o gás cloro em um compartimento anódico e uma solução aquosa de hidróxido de sódio e gás hidrogênio no compartimento catódico a partir da eletrólise de uma solução aquosa de cloreto de sódio (VIANA, 2005).

Segundo Hine (1985), a produção industrial de cloro-soda consiste em uma unidade de tratamento da salmoura, da sala de eletrólise, unidade de evaporação e dos sistemas de processamento de gás para cloro e hidrogênio.

Inicialmente, o sal é dissolvido na água até uma concentração em torno de 300 - 320 g.L⁻¹ de NaCl onde é encaminhada para o tratamento com NaOH. Em seguida a salmoura é filtrada para eliminação de impurezas, para ser aquecida com uma temperatura em torno de 70°C e ser admitida na célula eletroquímica, representada pela Figura 2, pelo compartimento anódico (LIMA, 2006).

Na eletrólise, a salmoura entra pelo lado anódico das células, ao mesmo tempo em que a energia elétrica é alimentada, possibilitando o fluxo de elétrons do ânodo para o cátodo. Os íons cloro se dissociam da molécula de NaCl, formando moléculas de gás na superfície do ânodo (JARDIN-JÚNIOR, 2006).

A formação do gás cloro no ânodo se dá pela seguinte reação:

$$2Cl^- \to Cl_{2(g)} + 2e^- \tag{2}$$

Parte do gás cloro que é produzido reage com a água presente na salmoura de alimentação, formando ácido clorídrico (HCl) e hipocloroso (HClO), até saturar o anólito, onde o seguinte equilíbrio é estabelecido:

$$Cl_{2(g)} + H_2O_{(l)} \to HCl_{(aq)} + HClO_{(aq)}$$
(3)

$$HClO_{(aq)} \to ClO^- + H^+ \tag{4}$$

 $ClO^- + 2HClO_{(aq)} \rightarrow ClO_3^- + HCl_{(aq)}$ (5)

Figura 2: Célula tipo diafragma aplicada no processamento de cloro-soda (Adaptado de EUROCHLOR, 2015).

Concomitantemente a salmoura difunde-se, através do diafragma, para o compartimento catódico devido à queda de pressão hidrostática entre os dois compartimentos, onde, a difusão se mantém contínua devido à diferença de nível entre o anólito e o católito. No compartimento catódico são produzidos gás hidrogênio e íons hidroxila, que juntamente com íons sódio (Na⁺) presentes na salmoura (compartimento anódico) formam hidróxido de sódio ao mesmo tempo em que o fluxo de gás cloro e hidrogênio fluem para fora da célula (ALMEIDA FILHO et al., 2011). A principal reação que acorre no cátodo é a seguinte:

$$H_2 O_{(l)} + 2e^- \to H_{2(g)} + 20H_{(aq)}^-$$
 (6)

Na célula, o pH do anólito permanece entre 3 e 4 e uma diferença hidrostática de nível de cerca de 13 cm entre o anólito e o católito. O equilíbrio químico de operação na célula produz cloro gasoso a 97% no ânodo, hidrogênio a quase 100% no cátodo e uma solução efluente

chamada de licor de célula. Estes licores de célula contem entre 11-12% de NaOH e 17% NaCl que é encaminhada para a unidade de evaporação (JARDIN-JÚNIOR, 2006). De acordo Lima (2006), caso a concentração de NaOH ultrapasse os 12%, a migração de íons hidroxila do compartimento catódico para o anódico se dá de maneira mais intensa, ocasionando o efeito chamado *"Back Migration"*, ocorrendo assim a alcalinização do anólito. Está alcalinização provoca reações paralelas que são indesejáveis, como por exemplo, formação de mais clorato, que leva a perda de eficiência no processo e contaminação do licor de célula.

O licor de célula passa por um evaporador de 3 ou 4 efeitos até atingir uma concentração em massa de NaOH de 50%. Com a saturação do NaOH o sal é cristalizado e depois filtrado para ser reutilizado no processo. A qualidade da soda cáustica das células do diafragma é considerada baixa, devido ao teor de sal de até 1,3% e alto teor de clorato de sódio de até 0,3%, se comparado a outros processos eletroquímicos (LAKSHMANAN e MURUGESAN, 2013). O fluxograma detalhado do processo é mostrado pela Figura 3.

Figura 3: Fluxograma do processo de produção de cloro-soda por tecnologia diafragma.

Fonte: JARDIM JUNIOR, 2006.

As desvantagens apresentadas por esse processo são: menor tempo de vida do separador de amianto (uma duração média de operação de 210 dias), resistência e a não seletividade por parte do separador empregado, permitindo produzir a soda cáustica com elevados teores de cloreto de sódio, o que requer etapas de purificação que, consequentemente, acarreta custos operacionais para a indústria que utiliza esse processo (LIMA, 2006).

3.2.1. A célula diafragma

A primeira célula para produção de cloro foi desenvolvida pela Griesheim Company na Alemanha em 1888. Esta célula de membrana não percolante utilizada principalmente na produção de Cl₂ no início dos anos 1900, foi baseada no uso de diafragma de cimento poroso, inventado por Bauer em 1886 e feito por misturas de cimento Portland com salmoura acidificado com HCl (O'BRIEN et al., 2005).

As unidades padrão passaram a ser as células Hooker S. e a Diamond Alkali D. Assim como ocorreu com as células de mercúrio, a introdução da tecnologia de ânodo metálico levou a uma considerável revisão do projeto das células e a oportunidade de otimizar a lacuna ânodo/cátodo, que de forma semelhante às células de mercúrio, aumentava com o tempo, já que o ânodo deteriorava, mas infelizmente, a célula de mercúrio não podia ser ajustada em operação. A tecnologia de diafragma desenvolveu-se com a substituição de diafragma de amiantos úmidos por diafragmas de polímeros modificados tratados sob calor. Bases de chumbo tornaram-se desnecessárias e uma unidade de célula de diafragma moderna é a ICI DMT, com ânodos de titânio (BRAGA, 2009).

São utilizados dois tipos básicos de células diafragma: as células monopolares e as células bipolares. Na primeira, no arranho de eletrodo os ânodos e cátodos estão configurados em paralelo. Como um resultado dessa configuração, toda célula têm a mesma voltagem de cerca de 3 ou 4V; podem ser construídas até 200 células no circuito. No segundo tipo, o ânodo de uma célula é diretamente conectado com o cátodo da próxima unidade de célula. Esse tipo de arranjo minimiza a perda de voltagem entre células, sendo a tensão total a soma da tensão de cada célula. Porém, o número de células nessa configuração é limitado, para compensar as unidades bipolares tendem a ser muito maiores que as unidades monopolares (BOMMARAJU et al., 2003).

De acordo Romine e Matousek (1998), a célula do tipo diafragma, representada pela Figura 4, consiste de 3 partes principais que são:

- ✓ Conjunto de base condutora e ânodo;
- ✓ Conjunto catódico com o cátodo e o diafragma;
- ✓ Cobertura da célula.

Figura 4: Célula de eletrólise típica de diafragma (Adaptado de ROMINE e MATOUSEK, 1998).

A base compreende uma estrutura de aço suportando uma grade chapa de cobre que leva a corrente elétrica aos ânodos. Uma tela resistente à corrosão sobre a grade para proteger o cobre do ataque pelo anólito e os ânodos metálicos dispostos verticalmente são fixados à base através da tela. O objetivo do projeto dos cátodos é de fornecer estabilidade dimensional e uma longa vida que seja compatível com os ânodos metálicos. Todas as superfícies internas dos cátodos são feitas de tela de aço a qual é depositado o diafragma de amianto, periodicamente renovado. A telas de aço são rigidamente fixadas ao longo de toda a largura do cátodo objetivando alta estabilidade e condutividade elétrica, assim com um espaçamento uniforme entre cada ânodo e cátodo. A cobertura da tampa da célula é feita com resina tipo poliéster resistente a ação do cloro; este tipo de tampa evita a contaminação indevida do anólito o que, em última análise, reduz a frequência de obstrução do diafragma (SHREVE e BRINK, 2008 apud CUNHA, 2015).

3.3. Diafragma

O diafragma tem a função de separar a salmoura de alimentação (anólito) do católito contendo soda cáustica. A salmoura purificada entra no compartimento do ânodo e percola através do diafragma no compartimento catódico. A taxa de percolação é controlada por meio da manutenção de um maior nível de liquido no compartimento do ânodo para estabelecer o controle hidrostático na parte positiva (CUNHA, 2015).

O diafragma permite a passagem dos íons por migração iónica, mas reduz a difusão dos produtos. Com o uso, o diafragma vai entupindo, fato que é observado pela elevação da voltagem e pela maior pressão hidrostática na salmoura (FERNANDES et al., 2009).

Na preparação dos diafragmas, as fibras são suspensas em um meio líquido adequado e é aplicado vácuo para a deposição do material na superfície do cátodo. O cátodo é então aquecido para a remoção da água presente, deixando o diafragma como uma esteira fibrosa (O'BRIEN et al., 2005).

De acordo Moraes (2011), o diafragma pode interferir no processo de eletrólise da célula de acordo com o tamanho de poros, porosidade, tortuosidade do trajeto capilar, permeabilidade e condutividade superficial. A eficiência da corrente na eletrolise pode ser melhorada reduzindo a permeabilidade de íons OH^- através do diafragma do lado catódico para o lado anódico.

3.3.1. Diafragmas com amianto

Os diafragmas de amianto são caracterizados por apresentarem uma vida curta, isto é, na ordem de 6 a 8 meses no processo de cloro-soda. As tentativas de prolongar a vida dos diafragmas de amianto, mantendo as propriedades elétricas desejáveis, incluíram o uso de vários polímeros e resinas no amianto (RECHLICZ e MALONEY, 1977). De acordo Cunha (2015), esses polímeros tem a função de estabilizar o amianto, evitando a sua dissolução antecipada e, permitindo o uso de ânodo expansível.

Os diafragmas convencionais de amianto possuem uma combinação desejável, baixo custo e capacidade, mas também representam um risco para a saúde e um risco ambiental. E, como tal, tornaram-se altamente regulamentados (ZABASAJJA et al., 1997).

3.3.2. Diafragmas sem amianto

A produção de cloro e hidróxido de sódio caracteriza-se por um consumo de energia relativamente alto e o risco de emissões de amianto. Devido aos riscos associados aos materiais de amianto, sugeriu-se o uso de diafragmas sem amianto mecanicamente e quimicamente estáveis e isso motivou diversos estudos. O processo de diafragma pode ser grandemente melhorado pela adaptação de diafragmas estáveis e sem amianto por meios específicos definidos para reduzir o consumo de energia (DOTZEL e SCHNEIDER, 2002).

Segundo Dubois e Maloney (2001), para que um diafragma esteja habilitado a operar em uma célula eletroquímica o mesmo precisa ser suficientemente poroso, para permitir a percolação da salmoura do compartimento anódico para o catódico e que também tenham uma reatividade baixa. Para Freitas (2009), os diafragmas alternativos devem possuir propriedades semelhantes aos diafragmas de amianto, tais como serem permeáveis e possuírem baixa queda ôhmica

Desde a década de 1970 são feitas pesquisas para desenvolver diafragmas sem amianto na sua composição. Esses diafragmas são tipicamente feitos de material polimérico fibroso resistente à atmosfera corrosiva da célula e tipicamente são feitos usando material polimérico perfluorado, por exemplo, politetrafluoroetileno (PTFE). Tais diafragmas podem também conter vários outros modificadores e aditivos como, preenchimentos inorgânicos, formadores de pores (por exemplo, CaCO₃) que posteriormente são extraídos, agentes molhantes, resinas de permuta iónica ou semelhantes (O'BRIEN et al., 2005; DUBOIS e DILMORE, 1993). Os diafragmas depois de preparados em chapas são colocados sobre a estrutura do cátodo.

Empresas como a ELTECH Systems e a PPG Industries fizeram progressos significativos quanto ao desenvolvimento de novos diafragmas. A ELTECH desenvolveu um diafragma sem amianto chamado Polyramix (PMX) no qual a porosidade e similar ao amianto e que pode ser diretamente depositado no cátodo (O'BRIEN et al., 2005).

O PMX é um material fibroso produzido a partir da combinação física de partículas de óxido metálico e uma resina fluorocarbonada. O óxido de metal preferido é o óxido de zircônio, embora possam ser usados outros, tais como dióxido de titânio e o polímero utilizado é o PTFE; no entanto, outros fluorocarbonos podem substituir. As fibras PMX são ramificadas, irregulares e flexíveis, com comprimentos de 1-7 mm e diâmetro de 10-100 μ m, como pode ser observado na Figura 5. As partículas do óxido metálico ficam não só ficam dispersas em toda a fibra com também liga a fibra e sua densidade é o dobro do amianto (CURLIN et al., 1990).

Ainda de acordo Curlin et al. (1990), devido as condições "pré-molhada" do PMX, a percolação uniforme da salmoura através de todo diafragma é acelerada, as taxas de água da salmoura na inicialização são um pouco maiores do que em diafragmas modificados.

Figura 5: Estrutura da cadeia de ramificações do PMX.

Fonte: CURLIN et al., 1990.

A PPG Industries desenvolveu o Tephram, que tem três componentes: basecoat, topcoat e o dopante. O basecoat, contém fibra de PTFE, microfibras de PTFE, Nafion[®] e outros constituintes, e é depositado sob vácuo na tela catódica. As fibras de PTFE formam a manta de base e as microfibras fornecem a porosidade adequada. A resina Nafion contribui para a molhabilidade da manta do PTFE. O topcoat, com partículas inorgânicas, é aplicado sobre o basecoat por deposição a vácuo para alcançar permeabilidade adequada e uniformidade (O'BRIEN et al., 2005).

Também no início da década de 1990, Rhone Poulenc Chemie desenvolveu o chamado "Diafragmas de Pré-Cátodo incorporado". Estes consistem em duas camadas, ambos vazios depositados no cátodo. A primeira camada, a pré-forma, é constituída por um material fibroso condutor, um eletrocatalizador (por exemplo, Raney Ni), um agente formador de poros e um fluoropolímero. A segunda camada é uma composição à base de PTFE com um agente formador de poros. Baseado em teses realizados em células MDC-55, este diafragma fornece economia de energia de até 200 Kw.h/ton de cloreto a 2.64 kAm⁻² (KUNTZBURGER et al., 1998).

Há décadas tem se buscado a otimização dos diafragmas e substituição do amianto com matéria-prima dos separadores na eletrolise de salmoura. É notável que ao longo do tempo vários avanços tenham sido alcançados, como a inserção de fibras de politetrafluoroetileno, e óxidos inorgânicos. Embora o ambiente na célula eletrolítica seja bastante severo, há uma gama de materiais que podem ser empregos, como fibras poliméricas e argilas (CUNHA, 2015).

3.4. Transferência de Massa Através do Diafragma e o Modelo de Van Zee, White e Whatson

Durante a eletrólise, os íons hidroxila gerados no compartimento catódico são transportados para o compartimento anódico através de migração e difusão, mesmo quando oposto ao fluxo anólito através do diafragma. Conversão e migração, em geral, dependem das propriedades do diafragma, eletrólise e condições de fluxo que variam em relação à altura do diafragma, pois, a diferença de pressão aumenta linearmente com a distância do nível do católito (O'BRIEN et al., 2005).

Em 1986 Van Zee, White e Watson desenvolveram o modelo de comportamento dinâmico simples de uma célula de cloro-soda do tipo diafragma. Esse modelo foi baseado em medidas de propriedades mensuráveis do diafragma e a transferência de massa de íons hidroxila (OH⁻) através do diafragma. A Figura 6 exemplifica o modelo unidimensional de uma célula diafragma utilizado para descrever o transporte de íons hidroxila.

O modelo estima equações em função de parâmetros operacionais e de três propriedades físico-químicas do diafragma, a saber: número de MacMullin (N_{Mac}), permeabilidade (β) e espessura (L) (CUNHA, 2015).

Figura 6: Esquema experimental de uma célula diafragma para produção de cloro-soda.

Fonte: Viana, 2009.

Van Zee et al. (1986) assumem um fluxo pistonado, que há uma distribuição uniforme de poros dentro do diafragma e sem a penetração de bolhas de hidrogênio no diafragma. O fluxo de íons hidroxila (N_{OH}) é composto pela contribuição da difusão (N_d), migração (N_m) e convecção (N_c).

$$N_{OH^-} = N_d + N_m + N_c \tag{7}$$

A contribuição da difusão (Nd) é dada por:

$$N_d = -D \frac{dC_{OH^-}}{dx} \tag{8}$$

aqui, D é o coeficiente de difusão dos íons OH⁻ através dos poros dos diafragmas. D pode ser obtido através do coeficiente de difusão dos íons OH⁻ em todo volume utilizando a equação do número de MacMullin:

$$N_{Mac} = \frac{\rho}{\rho^{\circ}} = \frac{D_{OH^-}}{D} \tag{9}$$

Os termos da migração e convecção são dados pelas seguintes equações:

$$N_m = -\frac{F}{RT} DC_{OH} - \frac{d\phi}{dx}$$
(10)

$$N_c = -v\mathcal{C}_{OH^-} \tag{11}$$

onde, F é a constante de Faraday, R a constante dos gases, T a temperatura, $\frac{d\phi}{dx}$ é o gradiente de potencial e v a velocidade de percolação.

Após o tratamento matemático, Van Zee, White e Watson (1986) determinou a equação do fluxo de íons OH⁻ através do anólito para o católito de acordo a equação 12.

$$N_{OH^-} = -\frac{D_{OH^-}}{N_{Mac}}\frac{dC_{OH^-}}{dx} + \frac{D_{OH^-}}{N_{Mac}}C_{OH^-}\left(\frac{F}{RT}\frac{d\phi}{dx}\right) + \nu C_{OH^-}$$
(12)

O gradiente de potencial pode ser representado com uma relação entre a densidade de correte (*i*) através do diafragma e o número de MacMullin pela condutividade específica (k_{avg}). $\frac{d\phi}{dx} = -\frac{iN_{Mac}}{k_{avg}}$ (13)

Segundo Cunha (2015), a diferença entre os níveis do anólito e do católito (h = altura hidrostática) força o anólito a percolar através do diafragma. Esta percolação diminui a perda de OH⁻ do católito para o anólito devido à difusão e migração. Porém esta percolação pode não ser eficiente, de modo que a concentração de OH⁻ no católito diminui ocasionando a queda da concentração de NaOH no licor. No entanto, ao aumentar a densidade de corrente (i) aumentase também a concentração de OH⁻ no católito, assim como a queda de potencial através do diafragma e, consequentemente, aumenta-se a perda de OH⁻ devido à migração.

4. METODOLOGIA

Todos os ensaios realizados e equipamentos desenvolvidos foram desenvolvidos no Laboratório de Engenharia Eletroquímica – LEEq da Universidade Federal de Campina Grande – UFCG.

4.1. Materiais

Para esse estudo foram utilizados oito diferentes tipos de fibras para a produção dos diafragmas, sendo quatro delas com proporções mássicas fixas (PE 1/8, PE ¼, PELP e SM-2) correspondendo a 60% da composição mássica total, e com as outras quatro foi realizado um planejamento experimental a fim de determinar suas proporções mássica e definir, assim, a quantidade de diafragmas a ser desenvolvidos. A Tabela 1 apresenta as microfibras utilizadas no planejamento experimental e o comprimento de cada uma:

Fibras	Comprimento (mm)		
MF50	0,1		
MF05	0,9		
MF2	0,6		
MF78	1,6		

Tabela 1: Fibras utilizadas na produção dos diafragmas.

Todas as fibras foram selecionadas de acordo suas características químicas e de estabilidade. Os materiais são resistentes às condições de operação do reator eletroquímico (pH's entre 2 e 13 e temperaturas entre 50 °C e 80 °C) e resistentes a altas concentrações de cloro e de soda.

4.2. Métodos

4.2.1. Planejamento experimental de misturas

Um experimento com mistura é aquele no qual dois ou mais ingredientes são misturados para formar um produto final, e a resposta a ser medida constitui-se numa propriedade intensiva

da mistura, sendo função apenas das proporções dos componentes presentes (seja em massa, volume ou nº de moles), e não da quantidade total da mistura (NUNES, 1998).

Os planejamentos experimentais para o estudo de misturas apresentam uma importante diferença em relação aos outros tipos de planejamentos existentes, pois nele, a soma das proporções de uma mistura de p componentes é sempre 100% e para se especificar a composição da mistura, só precisamos fixar as proporções de p -1 componentes. A proporção do último componente será sempre o que falta para completar 100% (BRUNS et al., 2001).

Dessa forma, o espaço de experimentação de uma mistura com p componentes fica reduzida a uma região *simplex*, limitada pelas condições:

$$x_i \ge 0, \quad 1 \le i \le p \tag{14}$$

$$\sum_{i=1}^{p} x_i = 1, (15)$$

~~

onde *x_i* representa a proporção do *i*-ésimo componente. Esta equação retira um grau de liberdade das proporções.

O espaço experimental, que contém os componentes p da mistura, pode ser geometricamente representado pelo interior e pelos limites (vértice, bordas, faces) de um *simplex* regular (p-1) – dimensional (CORNELL, 1973). A Figura 7 representa os espaços experimentais de uma *simplex*.

Figura 7: Espaço experimental para (a) dois, (b) três e (c) quatro componentes.

Fonte: NUNES, 1998.

Os vértices representam misturas contendo um único componente e os pontos interiores resultam em misturas com combinação de todos os componentes.

Em 1958, Scheffé introduziu o conceito do projeto *Simplex-Lattica* para experimentos de mistura e desenvolveu modelos polinomiais que tem exatamente o mesmo número de termos que o de pontos existentes nos projetos associados. O projeto consiste no arranjo simétrico de pontos e são referidos com {p,m}-*Lattice* (CORNELL, 1973).

Um *Lattice* pode ter uma correspondência especial para uma expressão polinomial específica. De acordo Cornell (1981), para suportar um modelo experimental de grau m em p componentes sobre o *Simplex*, o *Lattice*, consiste em pontos cujas coordenadas são definidas pelas seguintes combinações das proporções dos componentes: as proporções assumidas por cada componente levam os valores m+1 igualmente espaçados de 0 a 1, ou seja,

$$x_i = 0, \frac{1}{m}, \frac{2}{m}, \dots, 1$$
(16)

Onde m = 1, 2, ... é o grau do polinômio a ser ajustado à resposta medida.

Como essa técnica está atrelada ao posterior ajuste de modelos polinomiais específicos aos dados coletados durante o experimento, o número de pontos a serem testados dependem não só do número de componentes da mistura, mas também do grau do polinômio que se deseja ajusta à superfície de resposta (CORNELL, 1981).

Utilizando o software STATISTICA, foi escolhido o planejamento de mistura do tipo *Simplex* – *Lattice* em função das 4 microfibras, com um polinômio do grau 1 e adicionado pontos interiores e ponto central, gerando 9 experimentos de forma aleatória. Na Tabela 2, podemos observar os experimentos gerados com as respectivas proporções. Os diafragmas desenvolvidos nesse trabalho receberam a nomenclatura de *Polymeric Diaphragm* (PD).

Diafragma	MF50	MF05	MF2	MF78
PD1	0,0%	100%	0,0%	0,0%
PD2	12,5%	12,5%	12,5%	62,5%
PD3	12,5%	62,5%	12,5%	12,5%
PD4	$0,\!0\%$	$0,\!0\%$	$0,\!0\%$	100%
PD5	0,0%	0,0%	100%	0,0%
PD6	25%	25%	25%	25%
PD7	12,5%	12,5%	62,5%	12,5%
PD8	100%	0,0%	0,0%	0,0%
PD9	62,5%	12,5%	12,5%	12,5%

Tabela 2: Planejamento experimental do tipo Simplex-Lattice para 4 componentes.

O planejamento permitirá fazer a análise da possível influência de cada microfibra em diferentes respostas do diafragma polimérico produzido, como: espessura, permeabilidade, condutividade, eficiência de corrente e de energia, teor de soda, teor de cloreto e de clorato e potencial da célula.

4.2.2. Síntese do diafragma

Inicialmente foi preparado uma mistura de 700 mL água e 3,5 g de diutana (agente espessante) e 0,5g de argila atapulgita por meio do agitador mecânico Fisatom 713D (Figura 8) com rotação de 2000 rpm durante o período de 10 min, afim de conferir posteriormente uma melhor dispersão de fibras. Em seguida, as fibras foram adicionadas à mistura e agitadas novamente durante 20 minutos, até que fosse obtida uma mistura homogênea.

4.2.2.1. Deposição do diafragma

A deposição do diafragma sobre o cátodo foi realizada utilizando o sistema de deposição (Figura 9) desenvolvido no Laboratório de Engenharia Eletroquímica – LEEq, que consiste em uma bomba de vácuo Buchi V-700 e um controlador de programação V-855.

Figura 9: Sistema de deposição do diafragma sobre o cátodo (Adaptado de CUNHA, 2015).

Depois de depositado sobre o cátodo, o conjunto foi submetido ao processo de secagem em estufa SOLAB SL 102 (Figura 10) a uma temperatura de 120 °C durante um período de 1 hora.

Figura 10: Estuda SOLAB SL 102.

4.2.2.2. Dopagem do diafragma

A dopagem do diafragma foi realizada por meio de uma adaptação do sistema de deposição. Utilizando argila atapulgita e óxido de zircônio em uma proporção fixa de 1:3, em 1 litro de água. Na dispersão foi utilizada uma bomba de vácuo modelo V740.3 FT 8. A solução preparada foi então depositada sobre o diafragma, aos poucos, na medida que o volume colocado percolava.

Depois o diafragma passou por um novo tratamento térmico em mufla Barnstead/Thermolyne, modelo Furnance 47900 (Figura 11).

Figura 11: Mufla Barnstead/Thermolyne modelo Furnance 47900.

A mufla foi programada de acordo a curva de sinterização (Figura 12). Esse novo tratamento térmico irá favorecer a fixação das fibras e permitir uma boa adesão da argila no diafragma.

Figura 12: Curva de sinterização (tratamento térmico).

Após o tratamento térmico, foram feitas medições de espessura utilizando o medidor de espessura Minitest 4100 da Elecktrophysik (Figura 13). Foram realizadas várias leituras, tomando sempre cuidado com o posicionamento do diafragma sob a chapa metálica, e calculado o valor médio e o desvio padrão dessas espessuras.

4.2.3. Caracterização dos materiais e eletroquímica

4.2.3.1. Ensaios de permeabilidade

O coeficiente de permeabilidade (K) foi definido pela quantidade de salmoura que percolou o diafragma sob o cátodo para um dado intervalo de tempo, baseada na Lei de Darcy (Equação 17). Os ensaios foram realizados a partir do parâmetro de carga desenvolvido por Cunha (2015), esquematizado pela Figura 14.

$$K = \frac{Q\mu L}{A\rho gh} \tag{17}$$

Onde, $\Delta P = \rho gh$ é a diferença de pressão aplicada na amostra, μ é a viscosidade dinâmica do fluido, L a espessura do meio, Q a vazão de permeação e K é a permeabilidade absoluta do meio.

Figura 14: Esquema experimental par determinação da permeabilidade.

Fonte: CUNHA, 2015.

4.2.3.2. Ensaios de resistividade – número de MacMullin (NMAC)

A metodologia utilizada nesse estudo para a determinação do número de MacMullin foi baseada no trabalho realizado por Poush et al. (1983), como representado pela Figura 15.

O número de MacMullin é definido como a medida da habilidade de um meio poroso (diafragma) de prevenir o movimento de espécies dissolvidas num eletrólito. Sendo assim,

trata-se de uma medida relativa entre o coeficiente de difusão de um íon num meio poroso e o coeficiente de difusão deste íon.

Figura 15: Esquema do experimento realizado por Poush et al. (1983).

A célula de condutividade e o sistema de medição é representado pela Figura 16 e foi baseado no experimento de Poush (1983). O sistema utilizou um sinal senoidal de frequência igual a 1,4 KHz, uma amplitude de onde de 5,0 V e um offset de 0 V. Foram realizadas leituras de voltagem (V) e corrente (i) e a partir desses valores foram calculadas as resistências do meio apenas com o eletrólito (R_0) e a resistência do meio com eletrólito/diafragma (R) através da 1^a lei de Ohm (Equação 18).

$$R = \frac{V}{i} \tag{18}$$

Foi empregado um resistor *shunt* de 98,1 Ω em paralelo aos eletrodos com o objetivo de facilitar a obtenção dos dados pelo sistema, visto que a resistência do eletrólito e eletrólito/diafragma é baixa, podendo não ser lida pelo equipamento. Com isso, o cálculo da resistência foi extraído utilizando a equação equivalente de resistores em paralelo (Equação 19).

$$R_m = \frac{R_d \cdot R_{shunt}}{R_d + R_{shunt}} \to R_d = \frac{R_{shunt} \cdot R_m}{R_{shunt} - R_m} = \frac{98, 1 \cdot R_m}{98, 1 - R_m}$$
(19)

onde, Rm é a resistência medida no sistema, Rshunt é a resistência do shunt e Rd a resistência do diafragma.

Após a determinação das resistências do eletrólito e eletrólito/diafragma, foram determinadas as resistividades do eletrólito (ρ_0) e do eletrólito/diafragma (ρ) utilizando a 2ª lei de Ohm (Equação 20). Em seguida, determinou-se o número de MacMullim através da Equação 21.

$$R = \rho \frac{L}{A}$$
(20)
$$N_{Mac} = \frac{\rho}{\rho_0}$$
(21)

Figura 16: Sistema experimental para medição da condutividade.

4.2.3.3. Desempenho do diafragma no reator eletroquímico

Os diafragmas sintetizados e caracterizados serão sujeitos a ensaios eletroquímico para a produção de cloro-soda, em escala de bancada. O reator construído no Laboratório de Engenharia Eletroquímica - LEEq consiste no processo realizado pela indústria. A célula eletroquímica é esquematizada pela Figura 17.

Figura 17: Esquema experimental da célula de bancada.

Fonte: CUNHA, 2015.

O reator eletroquímico corresponde a duas células eletrolíticas associadas em série com a finalidade de se avaliar simultaneamente dois diafragmas num mesmo ensaio eletrolítico. As células eletroquímicas associadas em série é representada pela Figura 18.

No início do processo, a célula eletroquímica foi alimentada com salmoura mineral numa concentração de 350 g/L e um pH em torno de 3,5 e 4,0. A eletrólise teve uma duração de 8 horas para cada diafragma. O reator eletroquímico consiste basicamente em duas semicélulas, uma anódica e outra catódica, separadas pelo diafragma o que estabelece uma diferença de pressão hidrostática entre as semi-células.

Figura 18: Reator eletroquímico com duas células acopladas em série.

A eletrólise foi realizada com o propósito de se apurar o desempenho dos diafragmas desenvolvidos em um sistema eletrolítico semelhante ao presente na indústria. O rendimento da eletrólise está ligado com a eficiência de corrente e eficiência de energia, que são determinados juntamente com a produção de soda cáustica.

Será determinada a eficiência de corrente e de energia conforme o manual Basic Eletrochemistry and Diaphragm Cell Operation (Hooker).

A eficiência de corrente do processo (E.C.), é definida pela Equação (19):

$$\% E. C. = \frac{Total \ de \ produto \ formado}{Total \ teórico \ de \ produto} x100$$
(19)

O produto formado pode estar relacionado ao claro ou a soda produzida durante determinado período de tempo, no caso deste estudo, o produto principal considerado foi a soda.

Como se sabe, a eficiência de corrente mede indiretamente a quantidade de carga elétrica real que foi utilizada no processo para formar o produto de interesse em relação ao seu valor teórico.

Outro fator importante a ser considerado é a eficiência de energia (E.E.), dada pela Equação (20):

$$\% E. E. = \frac{\% E.C.x2,24}{Potencial \ de \ operação \ da \ célula}$$
(20)

Onde: 2,24 V corresponde ao potencial teórico de decomposição do processo, ou seja, a eficiência da energia mede a fração de energia total gasta para formar o produto de interesse.

De acordo Cunha (2015), a formação do clorato no católito representa perda de eficiência de corrente, pois parte do produto cloro está sendo consumida em reações não desejadas. A quantificação dos índices de cloretos e cloratos no licor de célula, e esses parâmetros são um indicativo de um bom desempenho do diafragma.

Através de algumas relações matemáticas foi determinado massa teórica de soda, essas relações se estabelecem entre as grandezas envolvidas num processo de eletrólise, como a corrente elétrica (i), a quantidade de carga elétrica (Q) transferida no processo em um determinado tempo (t) de eletrólise.

Por definição, carga elétrica corresponde a quantidade de elétrons transportados por uma determinada corrente constante em um determinado intervalo de tempo, Equação 21.

$$Q = i.t \tag{21}$$

Tem-se que:

$$n = \frac{Q}{F} \tag{22}$$

onde, n = número de mols e F= constante de Faraday (igual a 96486 C/mol). Substituindo a equação 21 na equação 22 e rearranjando, temos:

$$\frac{m}{MM} = \frac{i.t}{F} \to m = \frac{MM.i.t}{F} = \frac{40.i.t.3600}{96486}$$
(23)

onde, m é a massa teórica de soda cáustica, MM a massa molecular de NaOH (correspondente a 40 g/mol) e 3600 corresponde ao fator de correção do tempo de segundos para horas.

Portanto, a massa teórica de NaOH é determinada pela Equação 24:

$$m = 1,4924.\,i.\,t$$
 (24)

Os índices de soda, cloretos e cloratos foram determinados utilizando a metodologia padrão de análises químicas descritas nos apêndices I a III.

5. RESULTADOS E DISCUSSÃO

5.1. Análise de Variância – ANOVA

Foi realizada uma análise de variância – ANOVA a partir dos resultados experimentais. A Tabela 3 apresenta os valores dos principais parâmetros estatísticos para os modelos linear, quadrático, cúbico especial e cúbico completo, obtidos a partir dos dados experimentais de espessura (L), permeabilidade (K) e condutividade (N_{mac}).

Por meio desta análise, foi possível determinar os coeficientes para os modelos estáticos, assim como foi possível verificar os efeitos que cada microfibra apresenta e interações sobre a resposta de interesse.

Variável	Modelo	Efeito df	Teste F	p-Valor	R ²
L	Linear	3	1,216	0,394	0,422
L	Quadrático	4	12,990	0,205	0,989
L	Cúbico Especial	1	0,000	0,000	1,000
L	Cúbico Completo	0	0,000	0,000	1,000
K	Linear	3	7,712	0,0253	0,822
K	Quadrático	4	4,069	0,354	0,989
K	Cúbico Especial	1	0,000	0,000	1,000
K	Cúbico Completo	0	0,000	0,000	1,000
Nmac	Linear	3	3,530	0,104	0,679
N _{mac}	Quadrático	4	3,354	0,385	0,978
N _{mac}	Cúbico Especial	1	0,000	0,000	1,000
Nmac	Cúbico Completo	0	0,000	0,000	1,000

Tabela 3: Parâmetros Estatísticos.

Foi escolhido o modelo cúbico especial, para as três variáveis estudadas, por apresentar maior valor de R² dentre os modelos testados e por estudar uma quantidade de efeitos maior que o modelo cúbico completo que também apresentou um R² igual a 1.

5.2. Caracterização dos Diafragmas

5.2.1. Espessura média

A espessura é uma variável de grande importância na produção de diafragmas para aplicação na indústria de cloro-soda pois ela está relacionada com o número de MacMullin (N_{Mac}), cujo seu valor é baixo para diafragmas de menor espessura. A espessura também está relacionada diretamente com a tensão de célula, onde, quanto mais espesso for o diafragma maior será a tensão de célula e maior será o consumo energético do processo. Portanto, diafragmas com espessuras menores são mais viáveis para o processo de produção eletrolítica de cloro-soda.

Na Tabela 4 encontram-se os dados de espessura média dos diafragmas desenvolvidos e suas respectivas composições mássicas. Podemos observar que as menores espessuras foram obtidas pelos diafragmas PD1, PD8 e PD7 onde apresentam um maior percentual de MF05, MF50 e uma composição intermediária de MF2, respectivamente, em sua composição. O diafragma mais espesso, PD4, apresentou uma maior proporção de MF78 em sua composição.

Diafragma		Comp	Espessura (cm)		
	MF50	MF05	MF2	MF78	_
PD1	0,0%	100%	0,0%	0,0%	0,219±0,008
PD2	12,5%	12,5%	12,5%	62,5%	0,277±0,022
PD3	12,5%	62,5%	12,5%	12,5%	0,286±0,028
PD4	0,0%	0,0%	0,0%	100%	0,427±0,006
PD5	0,0%	0,0%	100%	0,0%	0,395±0,022
PD6	25%	25%	25%	25%	0,248±0,027
PD7	12,5%	12,5%	62,5%	12,5%	0,228±0,011
PD8	100%	0,0%	0,0%	0,0%	0,242±0,042
PD9	62,5%	12,5%	12,5%	12,5%	0,356±0,004

Tabela 4: Dados experimentais de espessura média dos diafragmas.

A partir da modelagem estatística foi possível avaliar a influência que cada microfibra tem sobre a espessura média do diafragma, representado na Figura 19. Como podemos observar, quanto maior a proporção de MF50, maior será a espessura média do diafragma. Comportamento semelhante é observado pela MF05. A curva de MF2 assemelha-se a uma parábola com sua concavidade voltada para baixo, apresentando uma menor espessura ao diafragma quando sua proporção for em torno de 50%. A MF78 apresenta um comportamento crescente, onde à medida que sua proporção na composição do diafragma aumenta a sua espessura também é aumentada. Esse comportamento apresentado pela MF78 pode estar relacionado devido ao fato, que dentre as quatro microfibras utilizada na confecção dos diafragmas, ela apresenta o maior comprimento (1,6 mm).

Figura 19: Influência das microfibras sobre a espessura dos diafragmas.

Por meio da modelagem de mistura foi possível realizar uma análise da superfície de resposta (Figuras 20 a 23). Como trata-se de quatro componentes, fixou-se a proporção de um dos componentes e, com isso, estudou-se a contribuição que cada microfibra tem sobre uma determinada resposta de espessura. Foi gerado um modelo matemático estatístico, para cada superfície de resposta, no qual se é possível estimar a resposta da espessura do diafragma e a analisar qual coeficiente vai melhor contribuir sobre resultados de espessura do diafragma.

A superfície de resposta representada pela Figura 20 corresponde a influência das microfibras MF50, MF05 e MF2 sobre a espessura do diafragma, fixando MF78 em 12,5%. Para os diafragmas desenvolvidos, podemos observar que as menores espessuras são alcançadas em um percentual intermediário de MF2.

Figura 20: Superfície de resposta da análise de espessura dos diafragmas, fixando MF78 em 12,5%, em função da composição das microfibras.

Na Figura 21 temos a superfície de resposta correspondente a influência das microfibras MF05, MF2 e MF78, fixando MF50 em 12,5%, sobre a espessura. Observou-se que percentuais intermediários de MF2 conferem uma menor espessura ao diafragma.

Figura 21: Superfície de resposta da análise de espessura dos diafragmas, fixando MF50 em 12,5%, em função da composição das microfibras.

A Figura 22 corresponde a influência das microfibras MF78, MF50 e MF2 quando MF05 fixado em 12,5%. Podemos observar que diafragmas menos espessos serão alcançados quando tivermos uma maior proporção de MF2 e menor proporção de MF78 na sua composição.

Figura 22: Superfície de resposta da análise de espessura dos diafragmas, fixando MF05 em 12,5%, em função da composição das microfibras.

A influência de MF78, MF50 e MF05, fixando MF2 em 12,5%, é representada na Figura 23. Através da superfície de resposta foi possível observar que menores espessuras de diafragma serão alcançadas quando tivermos uma menor proporção de MF78 e maior de MF05. Também é notável que um percentual intermediário de MF50 irá conferir uma menor espessura.

Figura 23: Superfície de resposta da análise de espessura dos diafragmas, fixando MF2 em 12,5%, em função da composição das microfibras.

Por conseguinte, podemos afirmar a partir dessa análise que as microfibras MF2 e MF78 terão maior influência sobre a espessura do diafragma, onde o diafragma apresentará uma menor espessura quando tivermos maiores proporções de MF2 e menores de MF78 na sua composição. Isso pode ser explicado a partir da análise de comprimento das microfibras, no qual MF2 apresenta o menor comprimento dentre as microfibras estudadas e MF78 apresenta o maior comprimento como foi mostrado na Tabela 1.

A partir das superfícies de respostas foi possível definir o modelo matemático para determinação da espessura do diafragma, representado pela Equação 25:

$$L(cm) = 0,242A + 0,219B + 0,395C + 0,427D + 3,065AB - 0,05AC - 1,325AD - 2,316BC - 2,128ABC$$
(25)

Onde, A = MF50, B = MF05, C = MF2 e D = MF78 em proporção mássica.

Analisando os termos da equação percebemos que quando os componentes A, B, C e D são tratados individualmente promovem o aumento na espessura do diafragma. Já os componentes A e B interagem sinergicamente, ou seja, promovem o aumento da espessura do diafragma e as interações A e C, A e D, B e C e ainda A, B e C interagem antagonicamente, promovendo a diminuição da espessura média do diafragma.

5.2.2. Permeabilidade

Segundo Viana (2008), a permeabilidade é um parâmetro determinante com relação à migração das espécies iônicas através do diafragma. Alta permeabilidade é sinônimo de pouca resistência à migração dos íons e isso ocasiona a migração reversa das hidroxilas do compartimento catódico para o anódico, formando hipoclorito de sódio que eleva o consumo de cloro gerado diminuindo a eficiência do processo.

A adição de materiais particulados do tipo óxidos ou silicatos inorgânicos finamente divididos se faz necessária na confecção de um diafragma. A atapulgita (paligorsquita) juntamente com o óxido de zircônio têm sido os componentes preferidos para a dopagem de diafragmas aplicados no processo cloro-soda. O emprego de argilas como dopantes, principalmente a atapulgita, tem como objetivo diminuir a permeabilidade na camada superior dos diafragmas (CUNHA, 2015).

Na Tabela 5 encontram-se os resultados experimentais de permeabilidade dos diafragmas desenvolvidos, onde, três diafragmas apresentaram uma permeabilidade numa ordem de grandeza de 10⁻⁹. Os diafragmas PD1, PD7 e PD8 apresentaram os resultados de permeabilidade, porém, o diafragma PD1 necessitou de um menor volume de argila no processo de dopagem em comparação com o PD7 e PD8 e isso tem uma influência direta no custo final do diafragma produzido.

Tabela 5: Dados experimentais de permeabilidade dos diafragmas.									
Diafragma	Composição				Permeabilidade x 10 ⁸ (cm ²)				
	MF50	MF05	MF2	MF78	_				
PD1	0,0%	100%	0,0%	0,0%	0,85±0,11				
PD2	12,5%	12,5%	12,5%	62,5%	7,35±0,68				
PD3	12,5%	62,5%	12,5%	12,5%	5,05±0,36				
PD4	0,0%	0,0%	0,0%	100%	13,70±0,75				
PD5	0,0%	0,0%	100%	0,0%	5,80±0,37				
PD6	25%	25%	25%	25%	5,38±0,57				
PD7	12,5%	12,5%	62,5%	12,5%	0,85±0,19				
PD8	100%	0,0%	0,0%	0,0%	0,80±0,11				
PD9	62,5%	12,5%	12,5%	12,5%	3,86±0,19				

Por meio da modelagem estatística de mistura foi possível antever, variando-se as composições de microfibras, a permeabilidade dos diafragmas desenvolvidos. A Figura 24 representa a influência das microfibras sobre a resposta de permeabilidade, onde, podemos observar que a MF78 oferece uma permeabilidade maior à medida que sua proporção é

aumentada. Já MF50, MF05 e MF2 tem o efeito contrário, onde à medida que suas proporções aumentam há uma diminuição na permeabilidade dos diafragmas.

Figura 24: Influência das microfibras sobre a permeabilidade do diafragma.

Para realizar a análise de superfície de resposta foi fixado o valor de um dos componentes e com isso foi possível avaliar a influência de cada microfibra sobre a permeabilidade do diafragma. As Figura 25 a 28 representam as superfícies de respostas correspondentes a permeabilidade dos diafragmas.

A influência das microfibras MF50, MF05 e MF2 quando temos MF78 fixado em 12,5% é representado na Figura 25, onde, é possível observar que proporções intermediárias de MF50 ou MF2 forneceram uma menor permeabilidade ao diafragma.

A Figura 26 mostra a influência de MF05, MF2 e MF8, fixando-se MF05 em 12,5%, sobre a permeabilidade. Podemos observar que menores valores de permeabilidade serão conseguidos quando tivermos menores proporções de MF78 e maiores de MF2.

Figura 26: Superfície de resposta da análise de permeabilidade dos diafragmas, fixando MF50 em 12,5%, em função da composição das microfibras.

Na Figura 27, temos a superfície de resposta correspondente a análise das microfibras MF50, MF2 e MF78 com MF05 fixado em 12,5%. Podemos observar que menores valores de permeabilidade serão alcançados quando tivermos menores proporções de MF78 e maiores de MF2 na composição do diafragma.

Figura 27: Superfície de resposta da análise de permeabilidade dos diafragmas, fixando MF05 em 12,5%, em função da composição das microfibras.

Na Figura 28 temos a influência das microfibras MF50, MF05 e MF78 fixando MF2 em 12,5%. Para os 9 diafragmas desenvolvidos, podemos observar que as menores permeabilidades serão obtidas quando tivermos um menor percentual de MF78 e maior de MF05 ou um menor percentual de MF05 e maior de MF50. Podemos ainda observar que o MF50 tem uma maior influência sobre a permeabilidade do diafragma, isso se deve ao fato dela apresentar um menor comprimento de fibra formando, assim, uma estrutura mais compacta do diafragma.

Podemos evidenciar através dessa análise que as microfibras MF2 e MF78 terão maior influência sobre a permeabilidade do diafragma em relação a MF50 e MF05, sendo as menores permeabilidades obtidas quando tivermos maiores proporções de MF2 e menores de MF78 na composição do diafragma.

Comparando as respostas apresentados da permeabilidade com a espessura, podemos avaliar a semelhança no que diz respeito a necessidade de maiores teores de MF2 e menores teores de MF78 dentro do planejamento estudado.

A Equação 26 apresenta o modelo matemático que correlaciona a permeabilidade do diafragma com composição das microfibras MF50, MF05, MF2 e MF78.

 $Kx10^{8}(cm^{2}) = 0,731A + 0,847B + 5,8C + 13,7D + 60,178AB - 46,678AC - 25,995AD - 54,561BC + 275,29ABC$ (26)

Onde, A = MF50, B = MF05, C = MF2 e D = MF78 em proporção mássica.

Assim como na espessura, quando tratados individualmente, os componentes A, B, C e D promovem o aumento da permeabilidade do diafragma. Já os componentes A e B, A, B e C interagem de forma sinérgicas enquanto as interações A e C, A e D, B e C ocorrem de forma antagônica.

5.2.3. Resistividade dos diafragmas – Número de MacMullim (N_{Mac})

O número de MacMullim relaciona a resistividade do diafragma saturado em um eletrólito, com a resistividade do eletrólito. É uma relação adimensional que mede a capacidade de meios porosos de impedir a circulação de espécies dissolvidas no eletrólito, isto é, concerne uma relação entre o coeficiente de difusão de um íon num meio poroso e o coeficiente de difusão deste íon fora de um meio poroso (CALDWELL et al., 1982).

O número de MacMullim é uma medida relativa que caracteriza a resistividade que é oferecida pelo diafragma para o rendimento energético do processo. Portanto, quanto menor for a resistividade do diafragma, menor será número de MacMullim e menor o consumo energético do processo.

Analisando a Tabela 6, onde encontram-se os resultados experimentais dos testes de condutividade, podemos observar que o diafragma PD8 apresentou o menor Nmac (1,12) dentre os diafragmas desenvolvidos e foi o que apresentou percentual máximo de MF50 em sua composição. Já os PD4 e PD5 apresentaram os maiores valores de Nmac, isso pode está diretamente ligado ao fato de ambos terem apresentado as maiores espessuras em comparação aos diafragmas desenvolvidos, o que oferece uma maior resistência a difusão dos íons OH- ao diafragma e elevando seu Nmac.

Diafragma		N _{Mac}			
	MF50	MF05	MF2	MF78	
PD1	0,0%	100%	0,0%	0,0%	1,14±0,00
PD2	12,5%	12,5%	12,5%	62,5%	1,23±0,00
PD3	12,5%	62,5%	12,5%	12,5%	1,21±0,00
PD4	0,0%	0,0%	0,0%	100%	1,35±0,00
PD5	0,0%	0,0%	100%	0,0%	1,36±0,00
PD6	25%	25%	25%	25%	$1,22\pm0,00$
PD7	12,5%	12,5%	62,5%	12,5%	1,14±0,01
PD8	100%	$0,\!0\%$	0,0%	0,0%	1,12±0,01
PD9	62,5%	12,5%	12,5%	12,5%	1,16±0,00

Tabela 6: Dados experimentais do número de MacMullim dos diafragmas.

Assim como para espessura e permeabilidade, foi realizado uma modelagem estatística afim de se avaliar a influência que cada microfibra tem sobre a resistividade dos diafragmas. Essa influência é representada pela Figura 29. Podemos observar que MF50 e MF05 apresentam um comportamento semelhante sobre a resistividade dos diafragmas, promovendo a diminuição do Nmac quando estão presentes em proporções maiores que 40% na composição. Proporções de MF2 até 60% favorecem a diminuição da resistividade do diafragma, já a MF78 apresenta um comportamento ascendente do Nmac para proporções maiores que 40%.

Figura 29: Influência das microfibras sobre o NMac do diafragma.

A análise das superfícies de resposta foi realizada fixando um dos componentes e com isso, foi possível analisar a influência de cada microfibra sobre o Nmac de cada diafragma. As Figura 30 a 33 representam as superfícies de respostas correspondente ao Nmac dos diafragmas desenvolvidos.

A Figura 30 apresenta a influência de MF50, MF05 e MF2, quando fixado MF78 em 12,5%, sobre o Nmac. Proporções intermediárias de MF50 ou MF2 fornece diafragmas com menores resistências em consequência menores Nmac.

Figura 30: Superfície de resposta da análise do NMac dos diafragmas, fixando MF78 em 12,5%, em função da composição das microfibras.

A Figura 31 corresponde a influência dos componentes MF05, MF2 e MF78, fixando MF50 em 12,5%. Nessa análise, podemos observar que os menores valores de Nmac serão conseguidos quando tivermos diafragmas com proporções intermediárias de MF2 em sua composição.

Figura 31: Superfície de resposta da análise do NMac dos diafragmas, fixando MF50 em 12,5%, em função da composição das microfibras.

Na Figura 32 temos a superfície de resposta da influência de MF50, MF2 e MF78 fixando MF05 em 12,5%. Nesta análise temos que, maiores proporções de MF2 e menores de MF78 na composição fornece um menor valor de Nmac ao diafragma.

Figura 32: Superfície de resposta da análise do NMac dos diafragmas, fixando MF05 em 12,5%, em função da composição das microfibras.

Na Figura 33 temos a influência das microfibras MF50, MF05 e MF78 fixando MF2 em 12,5%. Para os diafragmas desenvolvidos, podemos observar que os menores valores de Nmac serão obtidas quando tivermos um menor percentual de MF78 e maior de MF05 ou um menor percentual de MF05 e maior de MF50.

Assim como na análise da espessura e permeabilidade, podemos observar uma maior influência das microfibras MF2 e MF78 sobre a resistividade dos diafragmas desenvolvidos.

A Equação 27 apresenta o modelo matemático que correlaciona o valor de Nmac do diafragma com composição das microfibras MF50, MF05, MF2 e MF78.

 $N_{Mac} = 1,12A + 1,14B + 1,36C + 1,35D + 1,35AB - 1,37AC - 0,705AD - 1,755BC + 8,48ABC$ (27)

Onde, A = MF50, B = MF05, C = MF2 e D = MF78 em proporção mássica.

Quando os componentes A, B, C e D são tratados individualmente, eles promovem o aumento do Nmac. Já a interação entre A e B e ainda A, B e C ocorrem de forma sinérgica,

promovendo o aumento do Nmac. As interações A e C, A e D e B e C são antagônicas, ou seja, essas interações favorecem a diminuição da resistividade dos diafragmas

Figura 33: Superfície de resposta da análise do NMac dos diafragmas, fixando MF2 em 12,5%, em função da composição das microfibras.

5.3. Avaliação dos Diafragmas

Analisando as Figuras de 34 a 36, é possível prever quais diafragmas desenvolvidos apresentaram melhores resultados durante a eletrólise. Os pontos 10 e 11 da abcissa das figuras correspondem aos diafragmas Tephram e SP11, respectivamente, utilizando como referência.

A Figura 34 correlaciona a espessura dos diafragmas com o Nmac dos diafragmas desenvolvidos. Como os valores de Nmac para os diafragmas foram próximos, foi tomado como base de análise uma espessura entre 0,20 e 0,25 cm, representado pela faixa amarela no gráfico. Os diafragmas destacados em vermelho apresentaram valores para essas propriedades próximas aos diafragmas de referência. Sendo assim, pode-se afirmar que nesta correlação 3 diafragmas poderiam ser selecionados: PD1, PD7 e PD8. Cada um desses diafragmas apresentou espessura entre 0,219 e 0,245 cm e Nmac entre 1,12 e 1,15.

Figura 34: Gráfico Espessura e Nmac dos diafragmas poliméricos.

A Figura 35 apresenta a correlação entre a permeabilidade e o Nmac dos 9 diafragmas desenvolvidos e os diafragmas Tephram e SP11. Nessa análise, foi analisado uma permeabilidade menor que 10⁻⁸ e apenas os diafragmas PD1, PD7 e PD8, novamente, apresentaram valores próximos ao diafragma Tephram. Levando em consideração as propriedades analisadas, os 3 diafragmas se mostraram adequados.

Conforme as análises anteriores, a Figura 36 apresenta os resultados quanto à permeabilidade e espessura dos 9 diafragmas desenvolvidos e os diafragmas de referência (Tephram e SP11). Nesta análise, novamente, os diafragmas PD1, PD7 e PD8 apresentaram melhor comportamento dentro do intervalo de análise para permeabilidade e espessura.

Em todas a análises realizadas os diafragmas PD1, PD7 e PD8 apresentaram os melhores resultados em comparação ao Tephram e o SP11.

Figura 35: Gráfico permeabilidade e Nmac dos diafragmas poliméricos.

Figura 36: Gráfico espessura e permeabilidade dos diafragmas poliméricos

5.4. Eletrólise da Salmoura

A partir da análise comparativa entre os diafragmas desenvolvidos com o Tephram e o SP11 foi possível selecionar três diafragmas (PD1, PD7 e PD8) com melhores resultados de espessura, permeabilidade e resistividade para realizar a eletrólise e com isso foi possível analisar a eficiência quanto a produção de soda, teor de cloreto e clorato no licor de célula, tensão média de célula, eficiência de corrente e de energia de cada diafragma durante o processo.

Cada eletrolise foi realizada durante um período de 8 horas, utilizando uma corrente média de 6,06 A e alimentadas com salmoura com concentração em torno de 350 g/L em temperatura ambiente. Foram realizadas coletas de licores de células a cada meia hora de forma pontual e de forma total, onde, foi coletado o volume de licor produzido a cada meia hora de processo. A concentração de soda foi de forma pontual e total e ao final do processo por titulometria e as concentrações de cloreto e clorato foi medida no final do processo também por titulometria. Durante todo processo tentou-se manter os níveis dentro das células controlado para cada uma das eletrólises.

A Tabela 7 apresenta todos os resultados obtidos nos ensaios eletroquímicos e dos diafragmas desenvolvidos e os de referência. Podemos observar que os três diafragmas desenvolvidos apresentaram concentrações de soda superiores aos diafragmas de referência, dando destaque ao PD1, que apresentou uma concentração de 29,44 g/L após 8 horas de eletrólise.

Tabela /: Resultados dos ensaios eletrolíticos dos diafragmas.									
Diafragma	Tensão	Corrente	NaOH	NaCl	NaClO ₃	M _{NaOH}	M _{NaOH}	%E.C.	%E.E.
	Média	Média	(g/L)	Licor	(g/L)	Produzida	Teórica		
	(V)	(A)		(g/L)		(g)	(g)		
Tephram	3,88	6,00	11,04	134,43	0,25	63,20	72,47	87,21	51,01
SP11	4,02	6,13	12,96	124,50	0,39	64,83	74,14	87,43	49,09
PD1	4,10	6,03	29,44	116,31	0,035	41,86	71,63	58,44	32,08
PD7	3,23	6,02	18,96	139,11	0,66	61,90	71,63	86,42	60,49
PD8	3,17	6,13	16,24	118,07	0,41	53,62	73,90	72,56	53,12

As tabelas de eletrólise dos 3 diafragmas desenvolvidos e os gráficos da concentração encontram-se no Apêndice IV.

As Figuras 37 e 38 apresentam a concentração de soda pontual e total, respectivamente, dos três diafragmas desenvolvida. Para o PD1 e PD7 é perceptível um aumento da concentração de soda pontualmente produzida durante as 3 primeiras horas de eletrólise e em seguida um decréscimo dessa concentração. Cunha (2015) atribui esse comportamento a uma tendência de acomodação das fibras no próprio diafragma. Após esse período de acomodação a concentração volta a subir e começa a estabilizar em torno de 6 horas de eletrólise. Esse comportamento não é observado no PD8, que apresenta um aumento gradativo da concentração durante as 4 primeiras horas de eletrólise e se estabilizando logo em seguida.

Durante as primeiras 2 horas de eletrólise, não foi possível verificar a concentração de soda total produzida pelo PD1 devido ao baixo volume de licor produzido durante esse intervalo de tempo. Após essas 2 horas, a célula começou a produzir um volume significativo de licor que foi aumentando ao decorrer do processo e assim foi possível medir a concentração total de soda. Essa percolação lenta através do diafragma se deu devido a uma dificuldade de migração dos íons Na⁺ do compartimento anódico para o catódico.

Figura 37: Concentração pontual de soda dos diafragmas desenvolvidos.

Figura 38: Concentração total de soda dos diafragmas desenvolvidos.

Através da Figura 39 foi possível analisar as concentrações de NaOH e NaClO₃ presentes no licor de célula produzidos durante a eletrólise dos diafragmas. Em comparação com os diafragmas de referência, Tephram e SP11, podemos dá destaque ao PD1 que apresentou a maior concentração de soda e a menor concentração de clorato dentre os diafragmas em estudo e apresentando resultados superiores aos apresentados pelos diafragmas de referência, essa baixa concentração de clorato de sódio apresentado no licor do PD1 indica que esse diafragma possui uma melhor capacidade de servir como barreira a passagem de NaCl não eletrolisado.

De acordo Jardim Junior (2006), a formação de clorato de sódio (NaClO₃) no católito representa perda de eficiência de corrente, pois parte do produto cloro está sendo consumida em reações paralelas não desejadas.

Figura 39: Análise da concentração de NaOH e NaClO₃ no licor de célula.

No que concerne a eficiência do processo, analisando a Figura 40, podemos destacar o diafragma PD7 que apresentou maiores resultados de eficiência de corrente e de energia em comparação aos outros diafragmas. Apesar do PD1 ter mostrado uma maior concentração de soda ao final da eletrólise o mesmo teve a menor eficiência de corrente e de energia dentre os diafragmas em análise. Esse fato está relacionado devido a eficiência de corrente ser uma variável que relaciona a massa de soda produzida durante a eletrólise com a massa teórica e como o PD1 levou um maior tempo para produzir um volume suficiente, devido a percolação lenta através dele, a massa produzida foi menor em comparação. Com isso, faz-se necessário um maior tempo de eletrólise para poder potencializar os resultados de eficiência de corrente e de energia para esse diafragma.

Figura 40: Análise da eficiência de corrente e de energia dos diafragmas.

Através da Figura 41 é possível realizar uma análise do aspecto energético do processo. No que se diz respeito a tensão de célula, dentre os diafragmas desenvolvidos, apenas o PD1 apresentou uma tensão média superior a 4 V. Com relação a eficiência de energia, podemos destacar o PD7 que apresentou um valor de 60,49% sendo maior que os diafragmas de referência.

Apesar ter apresentado resultados inferiores de eficiência de corrente e de energia, em detrimento do baixo volume produzido causada pela percolação lenta da salmoura nas 2 primeiras horas de eletrólise, podemos comprovar que o PD1 é o que possui as melhores parâmetros possibilitando seu uso em escala industrial para produção de cloro-soda, visto que apresentou a maior concentração de soda e menor concentração de clorato dentre os diafragmas em estudo.

Para potencializar os resultados apresentados pelo PD1 quanto a eficiência de corrente e de energia, faz-se necessário realização de uma eletrólise com um período maior de tempo afim de se avaliar o volume produzido e por seguinte a massa de soda.

Figura 41: Análise da tensão da célula e eficiência de energia.

6. CONCLUSÕES

De acordo os resultados apresentados, foi possível concluir que:

- Por meio do planejamento experimental de mistura foi possível determinar a quantidade de diafragmas produzidos e avaliar a composição ideal de cada microfibra;
- ✓ Menores proporções de MF78 e maiores de MF2 ou composições intermediárias de MF50 conferem diafragmas com espessuras menores, isto está relacionado com o comprimento das microfibras;
- Assim como para espessura, a menor permeabilidade para o diafragma será conseguida quando tivermos menores proporções de MF78 e maiores de MF2;
- ✓ Menores resistividades do diafragma serão conseguidas como tivermos menores proporções de MF78 e maior de MF2 na composição do diafragma;
- ✓ A dopagem dos diafragmas com argila atapulgita teve grande influência sobre a permeabilidade dos diafragmas;
- ✓ Os modelos estáticos desenvolvidos para representar o comportamento da espessura, permeabilidade e Nmac em função da composição das microfibras representaram precisamente os resultados experimentais, apresentando ajuste de R² = 1,00.
- ✓ Dentre os 9 diafragmas desenvolvidos, o PD1, PD7 e PD8 apresentaram os melhores resultados quanto a espessura, permeabilidade e resistividade;
- Os três diafragmas selecionados foram testados no reator eletroquímico e apresentaram capacidade de concentração soda;
- ✓ O PD1 apresento os melhores resultados, frente aos desenvolvidos e aos de referência, quanto a concentração de soda e teores de cloreto e clorato no licor de célula;
- As caracterizações feitas nos diafragmas Tephram e SP11 foram de grande importância pois foi possível, através de uma comparação entre os parâmetros experimentais, qual melhor diafragma desenvolvido em comparação.

REFERÊNCIAS BIBLIOGRÁFICAS

ABICLOR – ASSOCIAÇÃO BRASILEIRA DA INDÚSTRIA DE ÁLCALIS, CLORO E DERIVADOS. **Relatório anual.** Disponível em: < http://www.abiclor.com.br/>. Acesso em: 09 out. 2017.

ABREA – ASSOCIAÇÃO BRASILEIRA DE EXPOSTOS AO AMIANTO. Disponível em:<www.abrea.org.br>. Acesso em: 09 out. 2017.

ALMEIRA FILHO, E. M.; VILAR, E. O.; FEITOZA, A. C. O. **Physical-chemical characterization and statistical modeling applied in a chlor-alkali diaphragm cell process.** Chemical Engineering Research and Design. v. 89, p. 491-498, 2011.

ANDRADE, J. E. P. e ZAPORSKI, J. A indústria de cloro-soda. **Revista do BNDES**, Rio de Janeiro, v. 1, n. 2, p. 183-226, 1994.

ANDRADE, M. H. S. Estudo e otimização da fluidodinâmica do anólito de celas de clorosoda com tecnologia de diafragma. 2006. 180 f. Tese (Doutorado em Engenharia de Processos) – Universidade Federal de Campina Grande, Campina Grande, 2006.

ANDRADE, M. H. S. Avaliação de ligas de níquel como cátodo para a reação de desprendimento de hidrogênio. 2000. Dissertação (Mestrado em Química) - Universidade Federal de Alagoas, Maceió, 2000.

BARROS NETO, B.; SCARMINIO, I. S.; BRUNS, R. E. **Como fazer experimentos: pesquisa** e desenvolvimento na ciência e na indústria. Campinas: Editora da UNICAMP, 2001.

BOMMARAJU, T.V.; LUKE, G.; O'BRIEN, T. F.; BLACKBURN, M. *Chlorine*. **Kirk-Othmer Encyclopedia of Chemical Technology.** Jonh Wiley & Sons, Inc, New York, 2003.

BRAGA, J. M. F. Análise da viabilidade econômica da integração de sistemas de célula a combustível, nas plantas de cloro-soda, para utilização do hidrogênio gerado no processo.
2009. 249 f. Tese (Doutorado em Engenharia Química) - Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2009.

CALDWELL, D. L.; POUSH, K. A.; WHITE, R. E.; VAN ZEE, J. W. Mathematical model of the chlorine cell diaphragm. **Electrochemical Society 161**st **Meeting.** Montreal, Canadá, 1982.
CORNELL, J. A. Experiments with mixtures: A review. **Technometrics**, v. 15, n. 3, p. 437-455, 1973.

CORNELL, J. A. Experiments with mixtures: Designs, models, and the analysis of misture data. John Wiley & Sons, Inc. 3 ed, p. 23, Nova Iorque, 1981.

CUNHA, T. C. C. Desenvolvimento de diafragmas poliméricos aplicáveis na produção eletrolítica de cloro-soda. 2015. 114 f. Tese (Doutorado em Ciência e Engenharia de Materiais) – Universidade Federal de Campina Grande, Campina Grande, 2015.

CURLIN, L. C.; FLORKIEWICZ, T. F.; MATOUSEK, R. C. Polyramix: A Depositable Replacement for Asbestos Diaphragms. **Modern Chlor-Alkali Technolog,** v. 4, p. 334-335, 1990.

DOTZEL, O.; SCHNEIDER, L. Non-asbestos diaphragm in chlorine-alkali electrolysis. **Chemical Engineering Technology**, v. 25, p. 167-171, 2002.

DUBOIS, D. W.; MALONEY, B. A. Method of preparing a diaphragm for an electrolytic cell. United States Patent No. 6,299,939, 2001.

DUBOIS, D. W.; DILMORE, C. R.; **Diaphragm for use in chlor-alkali cells.** United States Patent No. 5,192,401, 1993.

EUROCHLOR. **The diaphragm cell process.** Disponível em: http://www.eurochlor.org/. Acesso em: 13 out. 2017.

FERNANDES, E.; GLÓRIA, A. M. S.; GUIMARÃES, B. A. O setor de sada-cloro no Brasil e no mundo. **BNDES Setorial**, Rio de Janeiro, n. 29, p. 279-320, 2009.

FREITAS, R. A.; FILHO, C. M. O. L.; JÚNIOR, R. T. L.; FREIRE, R. C. S.; VILAR, E. O.; VIANA, K. M. S.; FEITOSA, A. C. O. Desenvolvimento de um instrumento aplicado a medição de condutividade de soluções salinas. In: VIII CONGRESSO INTERNACIONAL DE METROLOGIA ELÉTRICA, 7, 2009, João Pessoa, Anais de Congresso, João Pessoa, PB: SEMETRO, 2009.

GARCIA-HERRERO, I.; MARGALLO, M.; ONANDÍA, R.; ALDACO, R.; IRABIEN, A. Environmental challenges of the chlor-alkali production: Seeking answers from a life cycle approach. **Science of the Total Environmental**, v. 580, p. 147-157, 2016.

HINE, F. Electrode Processes and Electrochemical Engineering. Plenum Press, New York, 1985.

HOOKER. **Basic Eletrochemistry and Diaphragm cell Operation**; Salgema Industrias Químicas S. A.; Produção, 1976.

JARDIN JÚNIOR, R. N. **Modelagem matemática de um processo industrial de produção de cloro e soda por eletrólise de salmoura visando sua otimização.** 2006. 139 f. Dissertação (Mestrado em Engenharia Química) - Universidade de São Paulo, São Paulo, 2006.

KUNTZBURGER, F.; HORBEZ, D.; LEHELLOCO, J. G.; PERINEAU, J. M. New Developments in Built-in Precathode Diaphragm Technology. **Modem Chlor-Alkali Technology**, v. 7, p. 181, 1998.

LAKSHMANAN, S.; MURUGESAN, T. The chlor-alkali process: Work in Progress. Clean Technologies and Environmental Policy. v. 16, 2013.

LIMA, P. R. Investigação da formação e efeito do clorato sobre a reação de desprendimento de hidrogênio no processo de cloro-soda com tecnologia de diafragma. 2006. 93 f. Dissertação (Mestrado em Química) – Universidade Federal de Alagoas, Maceió, 2006.

LONASHIRO, M.; GIOLITO, I. Cerâmica. v. 26, n. 121, p.17 – 24, 1980.

LOPES, M. D. A importância das inovações tecnológicas e a indústria de cloro-soda. Monografia de especialização. GETIQ, São Paulo, 2003.

MORAES, J.P. Eletrólise da salmoura para a geração de cloro empregando cátodos de difusão de oxigênio modificados com ferro. 2011. 100 f. Dissertação (Mestrado em Engenharia Mecânica) – Universidade Estadual de Campinas, Campinas, 2011.

NUNES, D. B. **Rotinas para otimização experimental de misturas.** 1998. 174f. Dissertação (Mestrado em Engenharia de Produção) – Universidade Federal do Rio Grande do Sul, Porto Alegre, 1998.

O'BRIEN, T. F.; BOMMARAJU, T. V.; HINE, F. Handbook of chlor-alkali technology. Springer Science+Business Media, Inc. New York, 2005. RECHLICZ, T. A.; MALONEY, B. A. Method of providing a resin reinforced asbestos diapgragm, United States Patents No. 679,561, 1977.

ROMINE, R.; MATOUSEK, R. New and improved diaphragm cell hardware designs. Electrode Corporation Chlorine/Chlorate Semiar, ELTECH Systems Corporation, Chardon, 1998.

SCHMITTINGER, P. Clorine. Ullmann's Encyclopedia of Industrial Chemistry, New York, 1996.

SILVA, T. M. Caracterização e modelagem estatística do diafragma sintético utilizado na planta de cloro-soda- Maceió/AL. 2015. 72 f. Dissertação (Mestrado em Engenharia Química)
– Universidade Federal de Campina Grande, Campina Grande, 2009.

VAN ZEE, J.; WHITE, R.E. Simple Models for Diaphragm-Type Chorine/Caustic Cells/ II. Effect of Acid Anolyteos Steady-State Caustic Yield. **Journal Electrochemistry Society**, n.3, v. 133, p. 508-515, 1986.

VIANA, K. M. S. **Diafragmas de PEUAPM para aplicação no processo de produção eletrolítica de cloro-soda.** 2009. 113 f. Tese (Doutorado em Engenharia de Processos) - Universidade Federal de Campina Grande, Campina Grande, 2009.

VIANA, K. M. S. Influência da geometria e liga catódica sobre o desprendimento de hidrogênio a partir da eletrólise da salmoura. 2005. 68 f. Dissertação (Mestrado em Engenharia Química) - Universidade Federal de Campina Grande, Campina Grande, 2005.

WALLAU, M.; BIANCHINI, D.; EBERSOL, C. P.; SANTOS JÚNIOR, J. A.; BARBOZA, T.
M. Química verdadeiramente verde – Propriedades químicas do cloro e sua ilustração por experimentos em escala miniaturizada. Química Nova, v. 38, n. 3, p. 436-445, 2015.

WORLDCHLORINE. Cholor-Alkali manufacturing process. 2002. Disponível em:< http://www.worldchlorine.org/>. Acesso em: 14 out. 2017.

ZABASAJJA, J. N.; GROSS, J. W.; AIKMAN JR., R. E.; MARTIN, C. W. Non-asbestos diaphragm separator, United States Patent No. 5,685,755, 1997.

APÊNDICE

APÊNDICE I – DETERMINAÇÃO DE HIDRÓXIDO DE SÓDIO NO LICOR DE CÉLULA

REAGENTES: Titulante: Ácido clorídrico 1N Indicador: Fenolftaleína 1% APARELHAGEM: Pipeta graduada Erlenmeyer 250 mL Bureta digital

PROCEDIMENTO EXPERIMENTAL

Mudança de coloração da solução titulada: rosa \rightarrow incolor

$$NaO(Rg/L) = \frac{V.N.40}{Va} = \frac{V.1.40}{5} = V.8$$
 (A3)

V = Volume gasto de HCl

N= Normalidade do HCl

Va=Volume da amostra

APÊNDICE II – DETERMINAÇÃO DE CLORETO DE SÓDIO

REAGENTES:

Titulante: Nitrato de prata 0,1 N Indicador: Cromato de potássio 5% Ácido Nítrico 3,5% Bicarbonato de sódio em pó P.A.

APARELHAGEM:

Pipeta graduada Balão volumétrica 100 mL Erlenmeyer 250 mL Bureta de 25 ou 50 mL

PROCEDIMENTO EXPERIMENTAL

Pipetar 5 mL da amostra e transferir para balão volumétrico e completar com água deionizada ou destilada

Mudança de coloração da solução titulada: amarelo → vermelho

*Há formação de precipitado

CÁLCULO PARA DA DETERMINAÇÃO DO CLORETO DE SÓDIO

$$NaC(k/L) = \frac{V.N.f.5845}{Va}_{(A4)}$$

V = Volume gasto de nitrato de prata

N = Normalidade de nitrato de prata

f = Fator de diluição: Salmoura =20 ; Licor=10

Va = Volume da amostra

APÊNDICE III – DETERMINAÇÃO DE CLORATO DE SÓDIO (NaClO₃)

REAGENTES: Titulante: Sulfato ferroso amoniacal 0,1 N Ácido fosfórico 1:1 Ácido sulfúrico 12 N Ácido difenilamina sulfônico 0,25% Dicromato de potássio 0,1 N APARELHAGEM:

Pipeta graduada Erlenmeyer 250 mL Bureta digital

PROCEDIMENTO EXPERIMENTAL

Titulação da Amostra

Mudança de coloração da solução titulada: verde \rightarrow púrpura.

Titulação do Branco

Mudança de coloração da solução titulada: verde \rightarrow púrpura.

CÁLCULO PARA DA DETERMINAÇÃO DO CLORETO DE SÓDIO

$$NaClO_3(g/L) = \frac{(B-A)xNx17,74}{Va}$$

A = Volume gasto de dicromato de potássio na titulação da amostra.

B = Volume gasto de dicromato de potássio na titulação do branco.

N = Normalidade do dicromato de potássio (valor típico = 0,1 N).

Va = Volume da amostra.

APÊNDICE IV – RESULTADOS DAS ELETRÓLISES

a) PD1

Diafragma	Tempo (h)	Corrente (A)	Potencial (V)	Volume (L)	[NaOH] pontual (g/L)	[NaOH] (g/L)	Massa Produzida (g)	Massa Teórica (g)	%E.C.	%E.E.
	0,5	6,15	4,59		9,04	0	0	4,59	0	0
	1	6,07	4,38		17,28	0	0	9,06	0	0
	1,5	5,94	4,14		29,12	0	0	13,30	0	0
	2	6,07	4,1		31,52	0	0	18,12	0	0
	2,5	6,23	4,05	0,05	34,48	33,36	1,67	23,24	7,18	3,97
	3	6,04	3,97	0,129	37,6	36,48	4,71	27,04	17,40	9,82
	3,5	6,09	3,94	0,226	35,36	34,96	7,90	31,81	24,84	14,12
PD1	4	5,98	3,92	0,343	33,2	36,72	12,59	35,70	35,28	20,16
	4,5	5,95	3,95	0,467	28,56	32,96	15,39	39,96	38,52	21,84
	5	5,94	4,02	0,654	26	34,96	22,86	44,32	51,58	28,74
	5,5	6,06	4,1	0,824	21,44	31,6	26,04	49,74	52,35	28,60
	6	5,97	4,09	0,989	20,8	28,32	28,01	53,46	52,39	28,69
	6,5	5,93	4,06	1,081	22,64	28,08	30,35	57,52	52,77	29,11
	7	6,01	4,09	1,22	23,76	29,84	36,40	62,79	57,98	31,76
	7,5	6	4,09	1,33	25,12	26,64	35,43	67,16	52,76	28,89
	8	6	4,08	1,422	27,28	29,44	41,86	71,64	58,44	32,08

Tabela 8: Resultados dos ensaios eletrolíticos do PD1.

Figura 42: Concentração de NaOH em função do tempo para o PD1.

b) PD7

Diafragma	Tempo (h)	Corrente (A)	Potencial (V)	Volume (L)	[NaOH] pontual (g/L)	[NaOH] (g/L)	Massa Produzida (g)	Massa Teórica (g)	%E.C.	%E.E.
	0,5	6,15	3,79	0,27	7,28	5,84	1,58	4,59	34,36	20,31
	1	6,07	3,58	0,418	13,04	11,92	4,98	9,06	55,00	34,41
	15	5,87	3,35	0,554	17,92	15,92	8,82	13,14	67,12	44,88
	2	6,08	3,27	0,651	22,08	19,68	12,81	18,15	70,60	48,36
	2 5	6,23	3,23	0,75	24,88	22,8	17,10	23,24	73,57	51,02
	3	6,04	3,13	0,9	26,16	26,16	23,54	27,04	87,06	62,31
		6,09	3,11	1,077	28	27,04	29,12	31,81	91,55	65,94
	3,2	5,98	3,08	1,278	23,84	26,4	33,74	35,70	94,51	68,74
PD7	5 7 2	5,83	3,01	1,513	22,72	24,48	37,04	39,15	94,60	70,40
	4,2	5,95	3,07	1,783	22	21,44	38,23	44,40	86,10	62,82
	2	6,05	3,16	2,033	17,12	19,44	39,52	49,66	79,58	56,41
	درد	5,99	3,14	2,304	17,92	18,56	42,76	53,64	79,73	56,87
	6	5,91	3,15	2,582	16,96	20,16	52,05	57,33	90,79	64,57
	6,5	6,02	3,21	2,824	15,76	18,8	53,09	62,89	84,42	58,91
	7	6,01	3,2	3,045	16,88	18,4	56,03	67,27	83,29	58,30
	7,5 8	6	3,2	3,265	17,04	18,96	61,90	71,64	86,42	60,49

Tabela 9: Resultados dos ensaios eletrolíticos do PD7.

Figura 43: Concentração de NaOH em função do tempo para o PD7.

c) PD8

Diafragma	Tempo (h)	Corrente (A)	Potencial (V)	Volume (L)	[NaOH] pontual (g/L)	[NaOH] (g/L)	Massa Produzida (g)	Massa Teórica (g)	E.C. %	E.E. %
	0.5	6.11	3.6	0.201	9.12	5.36	1.08	4.56	23.63	14.70
	1	6.02	3.38	0.401	13.28	7.84	3.14	8.98	34.99	23.19
	1.5	6.05	3.31	0.593	13.92	9.12	5.41	13.54	39.93	27.02
	2	6.22	3.29	0.788	15.92	10.8	8.51	18.57	45.84	31.21
	2.5	6.25	3.18	0.982	18	12	11.78	23.32	50.53	35.60
	3	6.05	3.16	1.198	18.08	13.28	15.91	27.09	58.73	41.63
	3.5	6.02	3.13	1.396	18	13.76	19.21	31.44	61.09	43.72
PD8	4	6.04	3.09	1.6	18.4	14.8	23.68	36.06	65.67	47.61
-	4.5	6.07	3.08	1.822	19.36	15.36	27.99	40.76	68.65	49.93
	5	6.21	3.1	2.014	18.8	14.88	29.97	46.34	64.67	46.73
	5.5	6.03	3.03	2.216	19.44	16	35.46	49.50	71.63	52.96
	6	6.23	3.09	2.459	18.96	15.68	38.56	55.79	69.12	50.10
	6.5	5.95	3	2.591	19.84	16.24	42.08	57.72	72.90	54.43
	7	6.3	3.11	2.79	19.6	16.32	45.53	65.81	69.18	49.83
	7.5	6.3	3.1	3.089	18.32	16.16	49.92	70.52	70.79	51.15
	8	6.19	3.06	3.302	17.92	16.24	53.62	73.90	72.56	53.12

Tabela 10: Resultados dos ensaios eletrolíticos do PD8.

Figura 44: Concentração de NaOH em função do tempo para o PD8.

ANEXO V – PLANILHA DE CÁLCULOS DE ESPESSURA E PERMEABILIDADE DOS DIAFRAGMAS

Lei de Darcy	$\rho_{salmoura} =$	1,22	g/cm ³	$\mu_{salmoura} =$	0,018368	g/cm.s
$Q = -kA/\mu \ \Delta P/L$ $k = -\Omega \mu L/A \Delta P = -\Omega L$	$\Delta P_1 = \rho g h$	2,59E+04	g/s	λ = μ/ <i>Α</i> Δ <i>Ρ</i> =	3,89E-08	
	A =	18,20	cm²	> área furo	S	

PD	1 Massa Medida(g	B1/B2	Tara Béquer(g)	Massa Real (g)	Tempo(s)	L(mm) após dopagem	Q(cm ³ /s)	g _a (cm/s)	K (cm²)	PD3	Massa Medida(g)	B1/B2	Tara Béquer(g)	Massa Real (g)	Tempo(s)	L(mm) após dopagem	Q(cm ³ /s)	g.(cm/s)	K (cm ²)	PD5	Massa Medida(g)	B1/B2	Tara Béquer(g)	Massa Real (g)	Tempo(s)	L(mm) após dopagem	Q(cm ³ /s)	0.(cm/s)	K (cm ²)	PD7	Massa Medida(g)	B1/B2	Tara Béquer(g)	Massa Real (g)	Tempo(s)	L(mm) após dopagem	Q(cm ³ /s)	₽.(cm/s)	K (cm²)
1	94.82	Bl	48.144	46.671	30	2.10	1.2752	7.01E-02	1.09E-08	2	131.05	B1 B2	48 11	82.030	15	2,00	4 5322	2,565-01	5.048-08	2	114.91	B2	48.11	66 800	15	3.05	3.6503	2.01E-01	5.61E-08	2	104.08	B2	48.11	55.074	30	1.8	1 5293	8.40E-02	1.07E-08
2	88,95	B2	48.11	40,839	30	2,19	1,1158	6.13E-02	9,51E-09	3	139.88	Bl	48.144	91.740	15	2,86	5.0131	2.75E-01	5.58E-08	3	120.67	B1	48,144	72,526	15	3.95	3.9632	2.18E-01	6.09E-08	3	105,31	B1	48,144	57,161	30	1.8	1.5618	8.58E-02	1.09E-08
3	87,64	B1	48,144	39,495	30	2,19	1,0791	5,93E-02	9,19E-09	4	137.34	B2	48.11	89.233	15	2.86	4.8761	2.68E-01	5.42E-08	4	113.63	B2	48.11	65.519	15	3.95	3.5803	1.97E-01	5.50E-08	4	99.41	B2	48.11	51.297	30	1.8	1.4016	7.70E-02	9.81E-09
4	85,52	B2	48,11	37,412	30	2,19	1,0222	5,62E-02	8,71E-09	5	136,46	B1	48,144	88,316	15	2,86	4,8260	2,65E-01	5,37E-08	5	122,30	Bl	48,144	74,159	15	3,95	4,0524	2,23E-01	6,23E-08	5	97,59	Bl	48,144	49,445	30	1,8	1,3510	7,42E-02	9,46E-09
5	86,79	B1	48,144	38,647	30	2,19	1,0559	5,80E-02	9,00E-09	6	141,31	B2	48,11	93,202	15	2,86	5,0930	2.80E-01	5.67E-08	6	126,34	B2	48,11	78,234	15	3,95	4,2751	2,35E-01	6,57E-08	6	94,26	B2	48,11	46,154	30	1,8	1,2610	6,93E-02	8,83E-09
6	82,69	B2	48,11	34,581	30	2,19	0,9448	5,19E-02	8,05E-09	7	123,94	Bl	48,144	75,793	15	2,86	4,1417	2,28E-01	4,61E-08	7	112,46	Bl	48,144	64,318	15	3,95	3,5146	1,93E-01	5,40E-08	7	91,54	Bl	48,144	43,395	30	1,8	1,1857	6,51E-02	\$,30E-09
7	83,42	B1	48,144	35,273	30	2,19	0,9637	5,30E-02	8,21E-09	8	131,64	B2	48,11	83,532	15	2,86	4,5646	2,51E-01	5,08E-08	8	114,63	B2	48,11	66,520	15	3,95	3,6350	2,00E-01	5,59E-08	8	91,71	B2	48,11	43,597	30	1,8	1,1912	6,54E-02	8,34E-09
8	82,73	B2	48,11	34,624	30	2,19	0,9460	5,20E-02	8,06E-09	9	133,59	Bl	48,144	85,444	15	2,86	4,6691	2,57E-01	5,19E-08	9	115,14	B1	48,144	66,996	15	3,95	3,6610	2,01E-01	5,63E-08	9	88,24	Bl	48,144	40,099	30	1,8	1,0956	6,02E-02	7,67E-09
9	90,98	BI	48,144	42,830	30	2,19	1,1704	0,43E-02	9,97E-09	10	125,90	B2	48,11	77,794	15	2,86	4,2510	2,34E-01	4,73E-08	10	118,61	B2	48,11	70,499	15	3,95	3,8524	2,12E-01	5,92E-08	10	88,15	B2	48,11	40,038	30	1,8	1,0939	6,01E-02	7,66E-09
11	81.25	B2 B1	40,11	33,908	30	2,19	0,9204	5,09E-02	7,092-09	11	131,54	B1	48,144	83,396	15	2,86	4,5572	2,50E-01	5,07E-08	11	117,33	Bl	48,144	69,189	15	3,95	3,7808	2,08E-01	5,81E-08	11	81,18	Bl	48,144	33,035	30	1,8	0,9026	4,96E-02	6,32E-09
12	81.84	B1 B2	48 11	33 727	30	2,19	0.9215	5.06E-02	7.85E-09	12	124,39	B2	48,11	76,278	15	2,86	4,1682	2,29E-01	4,64E-08	12	120,32	B2	48,11	72,209	15	3,95	3,9458	2,17E-01	6,06E-08	12	89,64	B2	48,11	41,525	30	1,8	1,1346	6,23E-02	7,94E-09
13	82.94	Bl	48,144	34,800	30	2,19	0,9508	5.22E-02	8,10E-09	13	125,44	Bl	48,144	77,296	15	2,86	4,2238	2,32E-01	4,70E-08	13	110,76	Bl	48,144	62,620	15	3,95	3,4219	1,88E-01	5,26E-08	13	82,62	Bl	48,144	34,472	30	1,8	0,9419	5,18E-02	6,59E-09
14	78,16	B2	48,11	30,054	30	2,19	0,8211	4,51E-02	7,00E-09	14	127,86	B2	48,11	79,745	15	2,86	4,3577	2,39E-01	4,85E-08	14	112,13	B2	48,11	64,016	15	3,95	3,4981	1.92E-01	5,38E-08	14	80,52	B2	48,11	32,409	30	1,8	0,8855	4,87E-02	6,20E-09
15	78,27	B1	48,144	30,129	30	2,19	0,8232	4,52E-02	7,01E-09	15	123,27	Bl	48,144	75,121	15	2,86	4,1050	2,26E-01	4,57E-08	15	116,55	B1	48,144	68,402	15	3,95	3,7378	2,05E-01	5,74E-08	15	79,31	B1	48,144	31,163	30	1,8	0,8514	4,68E-02	5,96E-09
					MEDIA	2,19	0,9947	5,47E-02	8,47E-09						MEDIA	2,86	4,5386	2,49E-01	5,05E-08						MEDIA	3,95	3,7715	2,07E-01	5,80E-08						MEDLA	1,80	1,2108	6,65E-02	8,48E-09
					DESVIO	0.00	0.1257	6.91E-03	1.07E.00						DESVIO	0,00	0.3241	1.78E-02	3.61E-09						DESVIO	0,00	0,2400	1,32E-02	3.69E-09						DESVIO	0,00	0,2723	1,50E-02	1,91E-09
						.,		0011-00	1,071-09										-,										-,=									1 1	
						.,	.,	0,012-00	1,072-05									-,	-,					L					-,					l					
			_			L(mm)		0,712-00	1,072-05							L(mm)			-,							• (-,										
PE	2 Massa Medida(g	B1/B2	Tara Béquer(g)	Massa Real (g)	Tempo(s)	L(mm) após dopagem	Q(cm ^{3/} s)	ц.(ст/s)	K (cm ²)	PD4	Massa Medida(g)	B1/B2	Tara Béquer(g)	Massa Real (g)	Tempo(s)	L(mm) após dopagem	Q(cm ^{3/s})	0, (cm/s)	K (cm ²)	PD6	Massa Medida(g)	B1/B2	Tara Béquer(g)	Massa Real (g)	Tempo(s)	L(mm) após	Q(cm³/s)	g₀(cm/s)	K (cm²)	PD8	Massa Medida(g)	B1/B2	Tara Béquer(g)	Massa Real (g)	Tempo(s)	L(mm) após	Q(cm ^{2/s})	g _s (cm/s)	K (cm²)
PE	12 Massa Medida(g	B1/B2	Tara Béquer(g)	Massa Real (g)	Tempo(s)	L(mm) após dopagem	Q(cm ³ /s)	5.(cm/s)	K (cm ²)	PD4	Massa Medida(g)	B1/B2	Tara Béquer(g)	Massa Real (g)	Tempo(s)	L(mm) após dopagem	Q(cm ² /s)	0, cm/s)	K (cm²)	PD6	Massa Medida(g)	B1/B2	Tara Béquer(g)	Massa Real (g)	Tempo(s)	L(mm) após dopagem	Q(cm³/s)	<u>"(</u> cm/s)	K (cm²)	PD8	Massa Medida(g)	B1/B2	Tara Béquer(g)	Massa Real (g)	Tempo(s)	L(mm) após dopagem	Q(cm ^{3/s})	₽ _e (cm/s)	K (cm²)
PE	2 Massa Medida(g	B1/B2	Tara Béquer(g) 48,144	Massa Real (g) 97,282	Tempo(s)	L(mm) após dopagem 2,79	Q(cm ³ /s)	g_(cm/s) 4,38E-01	K (cm ³) 8,65E-08	PD4	Massa Medida(g) 148,49	B1/B2 B1	Tara Béquer(g) 43,144	Massa Real (g) 100,342	Tempo(s)	L(mm) após dopagem 4,27	Q(cm ² /s) 8,2248	y ₄ (cm/s) 4,52E-01	K (cm²)	PD6	Massa Medida(g) 130,38	B1/B2 B1	Tara Béquer(g) 48,144	Massa Real (g) 82,235	Tempo(s) d	L(mm) após dopagem 2,48	Q(cm ³ /s) 6,7406	g ₄ (cm/s) 3,70E-01	K (cm ²) 6,50E-08	PD8	Massa Medida(g) 65,06	B1/B2 B1	Tara Béquer(g) 48,144	Massa Real (g) 16,917	Tempo(s) 20	L(mm) após dopagem 2,64	Q(cm ³ /s) 0,6933	y(cm/s) 3,81E-02	K (cm²) 7,12E-09
PE	2 Massa Medida(g 145,43 136,44	B1/B2 B1 B2 B1	Tara Béquer(g) 48,144 48,111 48,144	Massa Real (g) 97,282 88,328 87,280	Tempo(s)	L(mm) após dopagem 2,79 2,79	Q(cm ³ /s) 7,9739 7,2400 6.7450	g₀(cm/s) 4,38E-01 3,98E-01 3.71E-01	K (cm ²) 8,65E-08 7,86E-08 7,32E-08	PD4 1 2	Massa Medida(g) 148,49 152,39	B1/B2 B1 B2 B1	Tara Béquer(g) 48,144 48,11	Massa Real (g) 100,342 104,281	Tempo(s) 10 10	L(mm) após dopagem 4,27 4,27	Q(cm ³ /s) 8,2248 8,5476 8,0528	3 ₆ (cm/s) 4,52E-01 4,70E-01	K (cm ²) 1,37E-07 1,42E-07	PD6	Massa Medida(g) 130,38 128,02	B1/B2 B1 B2	Tara Béquer(g) 48,144 48,11	Massa Real (g) 2 82,235 79,909	Tempo(s) d	L(mm) após dopagem 2,48 2,48	Q(cm³/s) 6,7406 6,5499	g₀(cm/s) 3,70E-01 3,60E-01	K (cm ²) 6,50E-08 6,32E-08	PD8 1 2	Massa Medida(g) 65,06 64,57	B1/B2 B1 B2	Tara Béquer(g) 48,144 48,11	Massa Real (g) 16,917 16,464	Tempo(s) 20 20	L(mm) após dopagem 2,64 2,64	Q(cm ² /s) 0,6933 0,6748	g.(cm/s) 3,81E-02 3,71E-02	K (cm²) 7,12E-09 6,93E-09
PE 1 2 3	2 Massa Medida(g 145,43 136,44 130,43	B1/B2 B1 B2 B1 B2	Tara Béquer(g) 48,144 48,111 48,144 48,11	Massa Real (g) 97,282 88,328 82,289 75,621	Tempo(s)	L(mm) após dopagem 2,79 2,79 2,79 2,79	Q(cm ³ /s) 7,9739 7,2400 6,7450 6 1984	g_(cm/s) 4,38E-01 3,98E-01 3,71E-01 3,41E-01	K (cm ²) 8,65E-08 7,86E-08 7,32E-08 6,73E-08	PD4 1 2 3 4	Massa Medida(g) 148,49 152,39 157,37	B1/B2 B1 B2 B1 B2	Tara Béquer(g) 48,144 48,111 48,144 48,11	Massa Real (g) 100,342 104,281 109,224	Tempo(s) 10 10 10	L(mm) após dopagem 4,27 4,27 4,27 4,27	Q(cm ² /s) 8,2248 8,5476 8,9528 8,6144	D ₀ (cm/s) 4,52E-01 4,70E-01 4,92E-01 4,92E-01	K (cm ²) 1,37E-07 1,42E-07 1,49E-07 1,49E-07	PD6	Massa Medida(g) 130,38 128,02 122,21	B1/B2 B1 B2 B1	Tara Béquer(g) 48,144 48,11 48,144	Massa Real (g) 2 82,235 79,909 74,063 20.064	Tempo(s) d	L(mm) após dopagem 2,48 2,48 2,48 2,48	Q(cm ³ /s) 6,7406 6,5499 6,0707	J ₀ (cm/s) 3,70E-01 3,60E-01 3,34E-01	K (cm ²) 6,50E-08 6,32E-08 5,86E-08	PD8 1 2 3	Massa Medida(g) 65,06 64,57 69,57	B1/B2 B1 B1 B2 B1	Tara Béquer(g) 48,144 48,11 48,144	Massa Real (g) 16,917 16,464 21,424	Tempo(s) 20 20 20	L(mm) após dopagem 2,64 2,64 2,64	Q(cm ³ /s) 0,6933 0,6748 0,8780	g ₆ (cm/s) 3,81E-02 3,71E-02 4,82E-02	K (cm²) 7,12E-09 6,93E-09 9,02E-09
PE 1 2 3 4	2 Massa Medida(g 145,43 136,44 130,43 123,73 125,25	B1/B2 B1 B2 B1 B2 B1	Tara Béquer(g) 48,144 48,11 48,144 48,11 48,144	Massa Real (g) 97,282 88,328 82,289 75,621 77,109	Tempo(s) 10 10 10 10 10 10 10 10 10 10 10 10 10	L(mm) após dopagem 2,79 2,79 2,79 2,79 2,79 2,79	Q(cm ² /s) 7,9739 7,2400 6,7450 6,1984 6,3704	L ₆ (cm/s) 4,38E-01 3,98E-01 3,71E-01 3,41E-01 3,47E-01	K (cm ²) 8,65E-08 7,86E-08 7,32E-08 6,73E-08 6,86E-08	PD4 1 2 3 4 5	Massa Medida(g) 148,49 152,39 157,37 153,21 154,22	B1/B2 B1 B1 B1 B2 B1 B1	Tara Béquer(g) 48,144 48,11 48,144 48,11 48,11	Massa Real (g) 100,342 104,281 109,224 105,096	Tempo(s) 10 10 10 10 10 10	L(mm) após dopagem 4,27 4,27 4,27 4,27 4,27	Q(cm ² /s) 8,2248 8,5476 8,9528 8,6144 8,6043	3 ₆ (cm/s) 4,52E-01 4,70E-01 4,92E-01 4,73E-01 4,73E-01	K (cm ²) 1.37E-07 1.42E-07 1.49E-07 1.43E-07 1.44E-07	PD6 1 2 3 4	Massa Medida(g) 130,38 128,02 122,21 118,17	B1/B2 B1 B2 B1 B2 B1 B2	Tara Béquer(g) 48,144 48,11 48,144 48,11	Massa Real (g) 2 82,235 79,909 74,063 70,064 21,042	Tempo(s) d	L(mm) após dopagem 2,48 2,48 2,48 2,48 2,48	Q(cm ³ /s) 6,7406 6,5499 6,0707 5,7430	B ₆ (cm/s) 3,70E-01 3,60E-01 3,16E-01 3,16E-01	K (cm ³) 6,50E-08 6,32E-08 5,86E-08 5,54E-08	PD8 1 2 3 4	Massa Medida(g) 65,06 64,57 69,57 65,44	B1/B2 B1 B2 B1 B2 B1 B2	Tara Béquer(g) 48,144 48,11 48,144 48,11	Massa Real (g) 16,917 16,464 21,424 17,328	Tempo(s) 20 20 20 20	L(mm) após dopagem 2,64 2,64 2,64 2,64	Q(cm ² /s) 0,6933 0,6748 0,8780 0,7102	g ₆ (cm/s) 3,81E-02 3,71E-02 4,82E-02 3,90E-02	K (cm ²) 7,12E-09 6,93E-09 9,02E-09 7,29E-09
PE 1 2 3 4 5 6	2 Massa Medida(g 145,43 136,44 130,43 123,73 125,25 112,46	B1/B2 B1 B1 B2 B1 B2 B1 B1 B2	Tara Béquer(g) 48,144 48,111 48,144 48,111 48,144 48,111 48,144 48,111	Massa Real (g) 97,282 88,328 82,289 75,621 77,109 64,351	Tempo(s) 10 10 10 10 10 10 10 10 10 10 10 10 10	L(mm) após dopagem 2,79 2,79 2,79 2,79 2,79 2,79 2,79 2,79	Q(cm ³ /s) 7,9739 7,2400 6,7450 6,1984 6,3204 5,2747	g,(cm/s) 4,38E-01 3,98E-01 3,71E-01 3,41E-01 3,41E-01 2,90E-01	K (cm ²) 8,65E-08 7,86E-08 7,32E-08 6,73E-08 6,86E-08 5,72E-08	PD4 1 2 3 4 5 6	Massa Medida(g) 148,49 152,39 157,37 153,21 154,22 147,97	B1/B2 B1 B2 B1 B2 B1 B2 B1 B2	Tara Béquer(g) 48,144 48,11 48,144 48,11 48,144 48,11	Massa Real (g) 100,342 104,281 109,224 105,096 106,071 00 855	Tempo(3) 10 10 10 10 10 10 10 10 10 10 10 10 10	L(mm) após dopagem 4.27 4.27 4.27 4.27 4.27 4.27 4.27 4.27	Q(cm ² /s) 8,2248 8,5476 8,9528 8,6144 8,6943 8,1848	J ₄ (cm/s) 4,52E-01 4,70E-01 4,70E-01 4,70E-01 4,70E-01 4,70E-01 4,70E-01 4,70E-01	K (cm ²) 1,37E-07 1,42E-07 1,49E-07 1,43E-07 1,44E-07 1,36E-07	PD6 1 2 3 4 5 6	Massa Medida(g) 130,38 128,02 122,21 118,17 119,19	B1/B2 B1 B2 B1 B2 B1 B2 B1 B2	Tara Béquer(g) 45,144 48,11 45,144 48,11 48,144 48,11 48,144	Massa Real (g) 1 82,235 79,909 74,063 70,064 71,047 76,603	Tempo(s) d 10 10 10 10 10 10 10 10	L(mm) após dopagem 2,48 2,48 2,48 2,48 2,48 2,48 2,48	Q(cm ³ /s) 6,7406 6,5499 6,0707 5,7430 5,8233 6,7390	g,(cm/s) 3,70E-01 3,60E-01 3,34E-01 3,16E-01 3,20E-01 3,20E-01	K (cm ²) 6,50E-08 6,32E-08 5,66E-08 5,62E-08 5,62E-08 6,52D-08 6,52D-08	PD8 1 2 3 4 5	Massa Medida(g) 65,06 64,37 69,37 65,44 70,59	B1/B2 B1 B2 B1 B2 B1 B2 B1	Tara Béquer(g) 48,144 48,11 48,144 48,11 48,144	Massa Real (g) 16,917 16,464 21,424 17,328 22,443 19,552	Tempo(s) 20 20 20 20 20 20 20	L(mm) após dopagem 2,64 2,64 2,64 2,64 2,64 2,64 2,64	Q(cm ² /s) 0,6933 0,6748 0,8780 0,7102 0,9198	g ₆ (cm/s) 3,81E-02 3,71E-02 4,82E-02 3,90E-02 5,05E-02	K (cm ²) 7,12E-09 6,93E-09 9,02E-09 7,29E-09 9,45E-09 9,45E-09
PE 1 2 3 4 5 6 7	2 Massa Medida(g 145,43 136,44 130,43 123,73 125,25 112,46 133,29	B1/B2 B1 B2 B1 B2 B1 B2 B1 B2 B1	Tara Béquer(g) 48,144 48,111 48,144 48,111 48,144 48,111 48,144 48,111 48,144 48,111 48,144 48,111	Massa Real (g) 97,282 88,328 82,289 75,621 77,109 64,351 85,144	Tempo(s) 10 10 10 10 10 10 10 10 10 10	L(mm) após dopagem 2,79 2,79 2,79 2,79 2,79 2,79 2,79 2,79	Q(cm ² /s) 7,9739 7,2400 6,7450 6,1984 6,3204 5,2747 6,9790	5,712-00 5,0(cm/s) 4,38E-01 3,98E-01 3,71E-01 3,41E-01 3,41E-01 3,47E-01 2,90E-01 3,83E-01	K (cm ²) 8,65E-08 7,86E-08 7,32E-08 6,73E-08 6,86E-08 5,72E-08 7,57E-08	PD4 1 2 3 4 5 6 7	Massa Medida(g) 148,49 152,39 157,37 153,21 154,22 147,97 145,85	B1/B2 B1 B2 B1 B2 B1 B2 B1	Tara Béquer(g) 48,144 48,111 48,144 48,111 48,144 48,111 48,114 48,114	Massa Real (g) 100,342 104,281 109,224 105,096 106,071 99,855 07,714	Tempo(3) 10 10 10 10 10 10 10 10 10 10 10 10 10	L(mm) após dopagem 4,27 4,27 4,27 4,27 4,27 4,27 4,27 4,27	Q(cm ² /s) 8,2248 8,5476 8,9528 8,6144 8,6943 8,1848 8,0093	3,000 (m/s) 4,522-01 4,702-01 4,702-01 4,732-01 4,732-01 4,732-01 4,502-01 4,502-01 4,502-01	K (cm ³) 1.37E-07 1.42E-07 1.49E-07 1.43E-07 1.44E-07 1.36E-07 1.33E-07	PD6 1 2 3 4 5 6 7	Massa Medida(g) 130,38 128,02 122,21 118,17 119,19 118,61 118,52	B1/B2 B1 B2 B1 B2 B1 B2 B1 B2 D1	Tara Béquer(g) 48,114 48,114 48,114 48,114 48,114 48,114 48,114	Massa Real (g) 1 82,235 79,909 74,063 70,064 71,047 70,502 70,360 20,360	Tempo(1) d	L(mm) após dopagem 2,48 2,48 2,48 2,48 2,48 2,48 2,48 2,48	Q(cm ³ /s) 6,7406 6,5499 6,0707 5,7430 5,8233 5,7789 5,7789	g ₀ (cm/s) 3,70E-01 3,60E-01 3,34E-01 3,16E-01 3,20E-01 3,18E-01 3,18E-01 3,18E-01	K (cm ²) 6,50E-08 6,32E-08 5,86E-08 5,54E-08 5,57E-08 5,57E-08 5,57E-08	PD8 1 2 3 4 5 6 7	Massa Medida(g) 65,06 64,57 69,57 65,44 70,59 66,76 70,45	B1/B2 B1 B2 B1 B2 B1 B2 B1 B2 B1	Tara Béquer(g) 48,144 48,11 48,144 48,11 48,144 48,11	Massa Real (g) 16,917 16,464 21,424 17,328 22,443 18,652 23,354	Tempo(s) 20 20 20 20 20 20 20 20 20 20	L(mm) após dopagem 2,64 2,64 2,64 2,64 2,64 2,64 2,64 2,64	Q(cm ² /s) 0,6933 0,6748 0,8780 0,7102 0,9198 0,7644	g₀(cm/s) 3,81E-02 3,71E-02 4,82E-02 3,00E-02 5,05E-02 4,20E-02 5,05E-02	K (cm ²) 7,12E-09 6,93E-09 9,02E-09 7,29E-09 9,45E-09 7,35E-09
PE 1 2 3 4 5 6 6 7 7 8	Massa Medida(g 145,43 136,44 130,43 123,73 125,25 112,46 133,29 128,41	B1/B2 B1 B1 B2 B1 B1 B2 B1 B2 B1 B2 B1 B2	Tara Béquer(g) 48,144 48,11 48,144 48,11 48,144 48,11 48,144 48,11 48,144 48,11	Massa Real (g) 97,282 88,328 82,289 75,621 77,109 64,351 85,144 80,302	Tempo(s) 10 10 10 10 10 10 10 10 10 10 10 10 10	L(mm) após dopagem 2,79 2,79 2,79 2,79 2,79 2,79 2,79 2,79	Q(cm ³ /s) 7,9739 7,2400 6,7450 6,1984 6,3204 5,2747 6,9790 6,5821	5,712-00 5,6(cm/s) 4,38E-01 3,98E-01 3,71E-01 3,41E-01 3,41E-01 3,47E-01 2,90E-01 3,83E-01 3,62E-01 3,62E-01	K (cm ²) 8,65E-08 7,86E-08 7,32E-08 6,73E-08 6,73E-08 5,72E-08 7,57E-08 7,14E-08	PD4 1 2 3 4 5 6 7 8	Massa Medida(g) 148,49 152,39 157,37 153,21 154,22 147,97 145,86 153,13	B1/B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2	Tara Béquer(g) 48,144 48,111 48,114 48,114 48,114 48,114 48,114	Massa Real (g) 100,342 104,281 109,224 105,096 106,071 99,855 97,714	Tempo(3) 10 10 10 10 10 10 10 10 10 10 10 10 10	L(mm) após dopagem 4.27 4.27 4.27 4.27 4.27 4.27 4.27 4.27	Q(cm ³ /s) 8,2248 8,5476 8,9528 8,6144 8,6943 8,1848 8,0093 8,6085	B ₄ (cm/s) 4,52E-01 4,70E-01 4,73E-01 4,73E-01 4,73E-01 4,50E-01 4,50E-01 4,40E-01 4,75E-01	K (cm ²) 1,37E-07 1,42E-07 1,42E-07 1,44E-07 1,44E-07 1,36E-07 1,36E-07 1,33E-07 1,33E-07 1,33E-07	PD6 1 2 3 4 5 6 7	Massa Medida(g) 130,38 128,02 122,21 118,17 119,19 116,61 118,30	B1/B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2	Tara Béquer(g) 48,144 48,11 48,144 48,11 48,144 48,11 48,144 48,11 48,144 48,11	Massa Real (g) 1 82,235 79,909 74,063 70,064 71,047 70,502 70,160 62,841	Tempo(s) d 10 10 10 10 10 10 10 10 10 10	L(mm) após dopagem 2,48 2,48 2,48 2,48 2,48 2,48 2,48 2,48	Q(cm ³ /s) 6,7406 6,5499 6,0707 5,7430 5,7430 5,7789 5,7508 5,7508	g ₆ (cm/s) 3,70E-01 3,60E-01 3,34E-01 3,16E-01 3,16E-01 3,16E-01 3,16E-01 3,16E-01 3,20E-01	K (cm ³) 6.50E-08 6.32E-08 5.56E-08 5.54E-08 5.57E-08 5.57E-08 6.32E-08 6.57E-08	PD8 1 2 3 4 5 6 7 5	Massa Medida(g) 65,06 64,57 69,57 65,44 70,59 66,76 70,45	B1/B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2	Tara Béquer(g) 48,144 48,11 48,144 48,11 48,144 48,11 48,144 48,14	Massa Real (g) 16,917 16,464 21,424 17,328 22,443 18,632 22,304	Tempo(s) 20 20 20 20 20 20 20 20 20 20	L(mm) após dopagem 2,64 2,64 2,64 2,64 2,64 2,64 2,64 2,64	Q(cm ^{2/} 5) 0,6933 0,6748 0,8780 0,7102 0,9198 0,7644 0,9141	g ₆ (cm /s) 3,81E-02 3,71E-02 4,82E-02 5,05E-02 5,05E-02 5,05E-02 5,02E-02 5,02E-02	K (cm ²) 7,12E-09 6,93E-09 9,02E-09 7,19E-09 9,45E-09 7,35E-09 7,35E-09 7,35E-09
PD 1 2 3 4 5 6 6 7 8 9	Massa Massa 145,43 136,44 130,43 123,73 125,25 112,46 133,29 123,29 128,41 131,61	B1/B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1	Tara Béquer(g) 48,144 48,11 48,144 48,11 48,144 48,11 48,144 48,11 48,144 48,11 48,144 48,11 48,144 48,11	Massa Real (g) 97,282 88,328 82,289 75,621 77,109 64,351 85,144 80,302 83,463	Tempo(s) 10 10 10 10 10 10 10 10 10 10 10 10 10	L(mm) após dopagem 2,79 2,79 2,79 2,79 2,79 2,79 2,79 2,79	Q(cm ³ /s) 7,9739 7,2400 6,7450 6,1984 6,3204 5,2747 6,9790 6,5821 6,8412	gu(cm/s) 4,38E-01 3,98E-01 3,71E-01 3,41E-01 3,47E-01 2,90E-01 3,83E-01 3,62E-01 3,76E-01	K (cm ²) 8,65E-08 7,86E-08 7,32E-08 6,73E-08 6,73E-08 5,72E-08 7,22E-08 7,22E-08 7,22E-08 7,22E-08 7,42E-08	PD4 1 2 3 4 5 6 7 8 9	Massa Medida(g) 148,49 152,39 157,37 153,21 154,22 147,97 145,86 153,13 146,02	B1/B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B1	Tara Béquer(g) 48,144 48,111 48,144 48,111 48,144 48,111 48,114 48,114 48,114 48,114	Massa Real (g) 100,342 104,281 109,224 105,096 106,071 99,855 97,714 105,024 97,876	Tempo(i) 10 10 10 10 10 10 10 10 10 10	L(mm) após dopagem 4,27 4,27 4,27 4,27 4,27 4,27 4,27 4,27	Q(cm ² /s) 8,2248 8,5476 8,9528 8,6144 8,6943 8,1848 8,0093 8,6085 8,0226	5 ₄ (cm/s) 4,52E-01 4,70E-01 4,70E-01 4,75E-01 4,75E-01 4,75E-01 4,50E-01 4,73E-01 4,73E-01	K (cm ²) 1,37E-07 1,42E-07 1,43E-07 1,44E-07 1,34E-07 1,33E-07 1,33E-07 1,33E-07 1,33E-07	PD6 1 2 3 4 5 6 7 8 9	Massa Medida(g) 130,38 128,02 122,21 118,17 118,19 118,61 118,61 118,30 110,97 109,35	B1/B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1	Tara Béquer(g) 48,144 48,11 48,144 48,11 48,144 48,11 48,144 48,11 48,144 48,11 48,144 48,11 48,144	Massa Real (g) 1 82,235 79,909 74,063 70,064 71,047 70,502 70,160 62,861 61,205	Tempo(s) d	L(mm) após dopagem 2,48 2,48 2,48 2,48 2,48 2,48 2,48 2,48	Q(cm ³ /s) 6,7406 6,5499 6,0707 5,7430 5,8233 5,7789 5,7508 5,1523 5,056	g,(cm/s) 3,70E-01 3,60E-01 3,34E-01 3,16E-01 3,18E-01 3,18E-01 2,83E-01 2,83E-01 2,83E-01	K (cm ²) 6.50E-08 6.32E-08 5.54E-08 5.54E-08 5.57E-08 5.57E-08 5.55E-08 4.97E-08	PD8 1 2 3 4 5 6 7 8 9	Massa Medida(g) 65,06 64,57 65,76 65,76 70,45 65,76 70,45 65,06	B1/B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1	Tara Béquer(g) 48,144 48,11 48,144 48,11 48,144 48,11 48,144 48,11 48,144	Massa Real (g) 16,917 16,464 21,424 17,328 22,443 18,652 22,304 16,948 17,749	Tempo(s) 20 20 20 20 20 20 20 20 20 20	L(mm) após dopagem 2,64 2,64 2,64 2,64 2,64 2,64 2,64 2,64	Q(cm ³ /s) 0,6933 0,6748 0,8780 0,7102 0,9198 0,7644 0,9141 0,6946 0,7580	g ₀ (cm/s) 3,81E-02 3,71E-02 4,82E-02 5,05E-02 5,05E-02 5,05E-02 5,02E-02 3,82E-02 4,20E-02	K (cm ²) 7,12E-09 6,53E-09 9,02E-09 7,29E-09 9,45E-09 7,35E-09 9,39E-09 7,13E-09 7,13E-09
PE 1 2 3 4 5 6 6 7 7 8 9 9	2 Massa Medida(g 145,43 136,44 130,43 125,25 112,46 133,29 128,41 13,61 9 134,61 9 134,61	B1/B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2	Tara Béquer(g) 45,144 48,11 48,144 48,11 48,144 48,11 48,144 48,11 48,144 48,11 48,144 48,11	Massa Real (g) 97,282 88,328 82,289 75,621 77,109 64,351 85,144 80,302 83,463 86,303	Tempo(3) 10 10 10 10 10 10 10 10 10 10 10 10 10	L(mm) após dopagem 2,79 2,79 2,79 2,79 2,79 2,79 2,79 2,79	Q(cm ² /s) 7,9739 7,2400 6,7450 6,1984 6,3204 5,2747 6,9790 6,5821 6,8412 7,0740	y ,(cm /s) 4,38E-01 3,98E-01 3,71E-01 3,41E-01 3,47E-01 2,90E-01 3,83E-01 3,62E-01 3,76E-01 3,89E-01	K (cm ²) 8,652-08 7,862-08 7,322-08 6,732-08 6,732-08 7,322-08 7,322-08 7,322-08 7,322-08 7,322-08 7,322-08 7,322-08 7,1422-08 7,422-08 7,422-08	PD4 1 2 3 4 5 6 7 8 9 10	Massa Medida(g) 148,49 152,39 157,37 153,21 154,22 147,97 145,86 133,13 146,02 138,22	B1/B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2	Tara Béquer(g) 48,114 48,114 48,114 48,114 48,114 48,114 48,114 48,114 48,114 48,114	Massa Real (g) 100,342 104,281 109,224 105,096 106,071 99,855 97,714 105,024 97,876 90,105	Tempo(s) 10 10 10 10 10 10 10 10 10 10 10 10 10	L(mm) após dopagem 4.27 4.27 4.27 4.27 4.27 4.27 4.27 4.27	Q(cm ² /s) 8,2248 8,5476 8,9528 8,6144 8,6943 8,1848 8,0093 8,6085 8,0026 7,3837	g_(cm/s) 4,52E-01 4,70E-01 4,70E-01 4,73E-01 4,73E-01 4,73E-01 4,73E-01 4,73E-01 4,40E-01 4,40E-01 4,41E-01 4,06E-01	K (cm ²) 1.37E-07 1.42E-07 1.43E-07 1.43E-07 1.36E-07 1.33E-07 1.33E-07 1.33E-07 1.33E-07	PD6 1 2 3 4 5 6 7 8 9 10	Massa Medida(g) 130,38 128,02 122,21 118,17 119,19 118,61 118,30 110,97 109,35 113,33	B1/B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2	Tara Béquer(g) 48,114 48,114 48,114 48,11 48,144 48,11 48,144 48,11 48,144 48,11 48,144	Massa Real (g) 1 82,235 79,909 74,063 70,064 71,047 70,502 70,160 62,861 61,206 65,116	Tempo(s) d	L(mm) após dopagem 2,48 2,48 2,48 2,48 2,48 2,48 2,48 2,48	Q(cm ³ /s) 6,7406 6,5499 6,0707 5,7430 5,7789 5,7789 5,7508 5,1523 5,0169 5,3374	g,(cm/s) 3,70E-01 3,60E-01 3,34E-01 3,16E-01 3,16E-01 3,16E-01 2,83E-01 2,76E-01 2,93E-01 2,93E-01	K (cm ⁴) 6,50E-08 6,52E-08 5,56E-05 5,57E-08 5,57E-08 5,57E-08 4,57E-05 4,57E-05 4,57E-05 4,54E-08	PD8 1 2 3 4 5 6 7 8 9 10	Massa Medida(g) 65,06 64,57 69,37 65,44 70,59 66,76 70,45 65,06 65,91 70,37	B1/B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2	Tara Béquer(g) 48,144 48,11 48,144 48,11 48,144 48,11 48,144 48,11	Massa Real (g) 16,917 16,464 21,424 17,328 22,443 18,652 22,304 16,948 17,768	Tempo(s) 20 20 20 20 20 20 20 20 20 20	L(mm) após dopagem 2,64 2,64 2,64 2,64 2,64 2,64 2,64 2,64	Q(cm ² /s) 0,6933 0,6748 0,8780 0,7102 0,9198 0,7644 0,9141 0,6946 0,7282 0,915	E ₆ (cm/s) 3,31E-02 3,71E-02 4,32E-02 3,00E-02 5,05E-02 4,20E-02 5,02E-02 3,32E-02 4,00E-02 5,01E-02	K (cm ²) 7,12E-09 6,93E-09 9,02E-09 9,45E-09 9,35E-09 9,39E-09 7,13E-09 7,48E-09 7,48E-09
PD 1 2 3 3 4 4 5 5 6 6 7 7 7 8 8 9 9 9 11	V2 Massa Medida(g 145,43 145,43 136,44 130,43 123,73 125,25 112,46 133,29 128,41 131,61 131,41 131,41 135,15	 B1/82 B1 B2 B1 <l< td=""><td>Tara Béquer(g) 48,144 48,111 48,144 48,111 48,114 48,111 48,114 48,111 48,114 48,111 48,114 48,111 48,114 48,111 48,114 48,111 48,114 48,111 48,114 48,111 48,114 48,111 48,114 48,111 48,114 48,111</td><td>Massa Real (g) 97,282 88,328 82,289 75,621 77,109 64,351 85,144 80,302 83,463 83,463 83,463</td><td>Tempo(3) 10 10 10 10 10 10 10 10 10 10 10 10 10</td><td>L(mm) após dopagem 2,79 2,79 2,79 2,79 2,79 2,79 2,79 2,79</td><td>Q(cm²/s) 7,9739 7,2400 6,7450 6,1984 6,3204 5,2747 6,9790 6,5821 6,8412 7,0740 7,1318</td><td>5,712-00 5,4(cm/s) 4,38E-01 3,98E-01 3,71E-01 3,71E-01 3,71E-01 3,92E-01 3,32E-01 3,52E-01 3,52E-01 3,52E-01 3,52E-01 3,52E-01</td><td>K (cm²) 8.65E-08 7.36E-08 7.32E-08 6.73E-08 5.73E-08 7.32E-08 7.42E-08 7.42E-08 7.68E-08 7.68E-08</td><td>PD4 1 2 3 4 5 6 7 8 9 10 11</td><td>Massa Medida(g) 148,49 152,39 157,37 153,21 154,22 147,97 145,86 133,13 146,02 138,22 143,64</td><td>B1/B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1</td><td>Tara Béquer(g) 48,114 48,114 48,114 48,114 48,114 48,114 48,114 48,114 48,114 48,114 48,114 48,114 48,114 48,114</td><td>Massa Real (g) 100,342 104,281 109,224 105,096 106,071 99,855 97,714 105,024 97,876 90,105 95,492</td><td>Tempo(s) 10 10 10 10 10 10 10 10 10 10 10 10 10</td><td>L(mm) após dopagem 4.27 4.27 4.27 4.27 4.27 4.27 4.27 4.27</td><td>Q(cm²/s) 8,2248 8,5476 8,9528 8,6144 8,6943 8,1848 8,0093 8,6083 8,0226 7,3857 7,8272</td><td>5₄(cm/s) 4.52E-01 4.70E-01 4.73E-01 4.73E-01 4.76E-01 4.75E-01 4.73E-01 4.73E-01 4.73E-01 4.73E-01 4.73E-01 4.73E-01 4.73E-01 4.73E-01 4.73E-01</td><td>K (cm²) 1,37E-07 1,42E-07 1,43E-07 1,43E-07 1,33E-07 1,33E-07 1,33E-07 1,33E-07 1,33E-07 1,33E-07 1,33E-07 1,33E-07</td><td>FD6 1 2 3 4 5 6 7 8 9 10 11</td><td>Massa Medida(g) 130,38 128,02 122,21 118,17 118,17 118,61 118,30 110,97 109,35 113,23 111,90</td><td>B1/B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1</td><td>Tara Béquer(g) 48,114 48,114 48,114 48,114 48,114 48,114 48,114 48,114 48,114 48,114 48,114 48,114 48,114 48,114 48,114 48,114</td><td>Massa Real (g) 1 82,235 79,909 74,063 70,064 71,047 70,502 70,160 62,861 61,206 61,206 65,116 63,714</td><td>Tempo(1) d</td><td>L(mm) após dopagem 2,48 2,48 2,48 2,48 2,48 2,48 2,48 2,48</td><td>Q(cm^{3/s}) 6,7406 6,5499 6,0707 5,7430 5,8233 5,7789 5,7508 5,1523 5,0169 5,3374 4,2557</td><td>5,(cm/s) 3,70E-01 3,60E-01 3,34E-01 3,16E-01 3,16E-01 2,83E-01 2,93E-01 2,93E-01 2,93E-01 2,93E-01 2,93E-01</td><td>K (cm⁴) 6,50E-08 6,52E-08 5,56E-08 5,57E-08 5,57E-08 5,57E-08 5,57E-08 5,57E-08 5,57E-08 5,57E-08 5,57E-08 5,57E-08 4,57E</td><td>PD8 1 2 3 4 5 6 7 8 9 10 11</td><td>Massa Medida(g) 65,06 64,57 66,37 65,44 70,59 66,76 70,45 65,06 65,91 70,37 64,95</td><td>B1/B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1</td><td>Tara Béquer(g) 48,144 48,11 48,144 48,11 48,144 48,11 48,144 48,11 48,144</td><td>Massa Real (g) 16,917 16,464 21,424 17,328 22,443 18,652 22,304 16,948 17,768 22,264</td><td>Tempo(s) 20 20 20 20 20 20 20 20 20 20</td><td>L(mm) após dopagem 2,64 2,64 2,64 2,64 2,64 2,64 2,64 2,64</td><td>Q(cm²/s) 0,6933 0,6748 0,8780 0,7102 0,9198 0,7644 0,9141 0,6946 0,7282 0,9125 0,6859</td><td>E₆(cm/s) 3,31E-02 3,71E-02 4,32E-02 3,00E-02 5,05E-02 4,20E-02 5,02E-02 3,32E-02 4,00E-02 5,01E-02 5,</td><td>K (cm²) 7,12E-09 6,53E-09 9,02E-09 9,02E-09 9,35E-09 9,35E-09 7,13E-09 7,74E-09 9,37E-09 7,07E-00</td></l<>	Tara Béquer(g) 48,144 48,111 48,144 48,111 48,114 48,111 48,114 48,111 48,114 48,111 48,114 48,111 48,114 48,111 48,114 48,111 48,114 48,111 48,114 48,111 48,114 48,111 48,114 48,111 48,114 48,111	Massa Real (g) 97,282 88,328 82,289 75,621 77,109 64,351 85,144 80,302 83,463 83,463 83,463	Tempo(3) 10 10 10 10 10 10 10 10 10 10 10 10 10	L(mm) após dopagem 2,79 2,79 2,79 2,79 2,79 2,79 2,79 2,79	Q(cm ² /s) 7,9739 7,2400 6,7450 6,1984 6,3204 5,2747 6,9790 6,5821 6,8412 7,0740 7,1318	5,712-00 5,4(cm/s) 4,38E-01 3,98E-01 3,71E-01 3,71E-01 3,71E-01 3,92E-01 3,32E-01 3,52E-01 3,52E-01 3,52E-01 3,52E-01 3,52E-01	K (cm ²) 8.65E-08 7.36E-08 7.32E-08 6.73E-08 5.73E-08 7.32E-08 7.42E-08 7.42E-08 7.68E-08 7.68E-08	PD4 1 2 3 4 5 6 7 8 9 10 11	Massa Medida(g) 148,49 152,39 157,37 153,21 154,22 147,97 145,86 133,13 146,02 138,22 143,64	B1/B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1	Tara Béquer(g) 48,114 48,114 48,114 48,114 48,114 48,114 48,114 48,114 48,114 48,114 48,114 48,114 48,114 48,114	Massa Real (g) 100,342 104,281 109,224 105,096 106,071 99,855 97,714 105,024 97,876 90,105 95,492	Tempo(s) 10 10 10 10 10 10 10 10 10 10 10 10 10	L(mm) após dopagem 4.27 4.27 4.27 4.27 4.27 4.27 4.27 4.27	Q(cm ² /s) 8,2248 8,5476 8,9528 8,6144 8,6943 8,1848 8,0093 8,6083 8,0226 7,3857 7,8272	5 ₄ (cm/s) 4.52E-01 4.70E-01 4.73E-01 4.73E-01 4.76E-01 4.75E-01 4.73E-01 4.73E-01 4.73E-01 4.73E-01 4.73E-01 4.73E-01 4.73E-01 4.73E-01 4.73E-01	K (cm ²) 1,37E-07 1,42E-07 1,43E-07 1,43E-07 1,33E-07 1,33E-07 1,33E-07 1,33E-07 1,33E-07 1,33E-07 1,33E-07 1,33E-07	FD6 1 2 3 4 5 6 7 8 9 10 11	Massa Medida(g) 130,38 128,02 122,21 118,17 118,17 118,61 118,30 110,97 109,35 113,23 111,90	B1/B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1	Tara Béquer(g) 48,114 48,114 48,114 48,114 48,114 48,114 48,114 48,114 48,114 48,114 48,114 48,114 48,114 48,114 48,114 48,114	Massa Real (g) 1 82,235 79,909 74,063 70,064 71,047 70,502 70,160 62,861 61,206 61,206 65,116 63,714	Tempo(1) d	L(mm) após dopagem 2,48 2,48 2,48 2,48 2,48 2,48 2,48 2,48	Q(cm ^{3/s}) 6,7406 6,5499 6,0707 5,7430 5,8233 5,7789 5,7508 5,1523 5,0169 5,3374 4,2557	5,(cm/s) 3,70E-01 3,60E-01 3,34E-01 3,16E-01 3,16E-01 2,83E-01 2,93E-01 2,93E-01 2,93E-01 2,93E-01 2,93E-01	K (cm ⁴) 6,50E-08 6,52E-08 5,56E-08 5,57E-08 5,57E-08 5,57E-08 5,57E-08 5,57E-08 5,57E-08 5,57E-08 5,57E-08 5,57E-08 4,57E	PD8 1 2 3 4 5 6 7 8 9 10 11	Massa Medida(g) 65,06 64,57 66,37 65,44 70,59 66,76 70,45 65,06 65,91 70,37 64,95	B1/B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1	Tara Béquer(g) 48,144 48,11 48,144 48,11 48,144 48,11 48,144 48,11 48,144	Massa Real (g) 16,917 16,464 21,424 17,328 22,443 18,652 22,304 16,948 17,768 22,264	Tempo(s) 20 20 20 20 20 20 20 20 20 20	L(mm) após dopagem 2,64 2,64 2,64 2,64 2,64 2,64 2,64 2,64	Q(cm ² /s) 0,6933 0,6748 0,8780 0,7102 0,9198 0,7644 0,9141 0,6946 0,7282 0,9125 0,6859	E ₆ (cm/s) 3,31E-02 3,71E-02 4,32E-02 3,00E-02 5,05E-02 4,20E-02 5,02E-02 3,32E-02 4,00E-02 5,01E-02 5,	K (cm ²) 7,12E-09 6,53E-09 9,02E-09 9,02E-09 9,35E-09 9,35E-09 7,13E-09 7,74E-09 9,37E-09 7,07E-00
PID 1 2 3 3 4 4 5 6 6 7 7 8 9 9 10 11 12 12 12 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	12 Massa Medidagg 145,43 136,44 130,43 122,325 112,46 133,29 128,41 131,61 131,61 135,15 213,151 235,152	 B1/82 B1 B2 B1 B2 B1 <l< td=""><td>Tara Béquer(g) 48,144 48,111 48,144 48,111 48,114 48,111 48,114 48,111 48,114 48,111 48,114 48,111 48,114 48,111 48,114 48,111 48,114 48,111 48,114 48,111 48,114 48,111</td><td>Massa Real (g) 97,282 88,328 82,289 75,621 77,109 64,351 85,144 80,303 83,463 86,303 87,008 86,067</td><td>Tempo(s) 10 10 10 10 10 10 10 10 10 10</td><td>L(mm) após dopagem 2,79 2,79 2,79 2,79 2,79 2,79 2,79 2,79</td><td>Q(cm²/s) 7,9739 7,2400 6,7450 6,1984 6,3204 5,2747 6,9790 6,5821 6,8412 7,0740 7,1318 7,0547</td><td>5,712-00 4,382-01 3,982-01 3,712-01 3,712-01 3,712-01 3,922-01 3,322-01 3,522-01 3,522-01 3,522-01 3,522-01 3,522-01 3,522-01 3,522-01</td><td>K (cm²) 8,652-08 7,965-08 7,325-08 6,732-08 6,732-08 7,725-08 7,725-08 7,742-08 7,742-08 7,742-08 7,742-08</td><td>PD4 1 2 3 4 5 6 7 8 9 10 11 12</td><td>Massa Medida(g) 148,49 152,39 157,37 153,21 154,22 147,97 145,86 133,13 146,02 138,02 143,64 153,59</td><td>B1/B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2</td><td>Tars Béquer(g) 48,144 48,111 48,144 48,111 48,144 48,111 48,144 48,111 48,144 48,111</td><td>Massa Real (g) 100,342 104,281 109,224 105,096 106,071 99,855 97,714 105,024 97,876 90,103 95,492 105,481</td><td>Tempo(i) 10 10 10 10 10 10 10 10 10 10</td><td>L(mm) após dopagem 4.27 4.27 4.27 4.27 4.27 4.27 4.27 4.27</td><td>Q(cm²/s) 8,2248 8,5476 8,9528 8,6144 8,6943 8,1848 8,0093 8,6085 8,0226 7,3837 7,8272 8,6460</td><td>\$\$\mathcal{G}_4(cm/s)\$ 4.52E-01 4.70E-01 4.92E-01 4.73E-01 4.73E-01</td><td>K (cm²) 1.37E-07 1.42E-07 1.43E-07 1.43E-07 1.36E-07 1.33E-07 1.33E-07 1.33E-07 1.33E-07 1.33E-07 1.33E-07 1.33E-07 1.44E-07</td><td>PD6 1 2 3 4 5 6 7 8 9 10 11 12</td><td>Massa Medida(g) 130,38 128,02 122,21 118,17 119,19 118,61 118,30 110,97 109,35 113,23 111,20 110,31</td><td>B1/B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2</td><td>Tara Béquer(g) 45,144 48,11 45,144 48,11 45,144 48,11 45,144 48,11 45,144 48,11 45,144</td><td>Massa Real (g) 1 82,235 79,909 74,063 70,064 71,047 70,502 70,160 62,861 61,206 65,116 63,734 62,198</td><td>Tempo(1) 10 10 10 10 10 10 10 10 10 10</td><td>L(mm) após dopagem 2,48 2,48 2,48 2,48 2,48 2,48 2,48 2,48</td><td>Q(cm³/s) 6,7406 6,5499 6,0707 5,7430 5,8233 5,7789 5,7508 5,1523 5,0169 5,3374 5,2257 5,0082</td><td>5,(cm/s) 3,70E-01 3,60E-01 3,34E-01 3,16E-01 3,16E-01 2,83E-01 2,93E-01 2,93E-01 2,87E-01 2,87E-01 2,87E-01</td><td>K (cm²) 6.50E-08 6.32E-08 5.66E-08 5.54E-06 5.77E-08 4.57E-08 4.57E-08 4.57E-08 5.13E-08 5.13E-08 5.13E-08 5.04E-08 5.04E-08</td><td>PD8 1 2 3 4 5 6 7 8 9 10 11 12</td><td>Massa Medida(g) 65,06 64,57 66,37 65,44 70,39 66,76 70,45 65,06 65,91 70,37 64,95 64,74</td><td>B1/B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2</td><td>Tara Béquer(g) 48,144 48,11 48,144 48,11 48,144 48,11 48,114 48,114 48,114 48,114 48,114 48,114 48,114 48,114 48,114 48,114 48,114</td><td>Massa Real (g) 16,917 16,464 21,424 17,328 22,443 18,652 22,304 16,948 17,768 22,264 16,809 16,633</td><td>Tempo(s) 20 20 20 20 20 20 20 20 20 20</td><td>L(mm) após dopagem 2,64 2,64 2,64 2,64 2,64 2,64 2,64 2,64</td><td>Q(cm²/s) 0,6933 0,6748 0,8780 0,7102 0,9198 0,7644 0,9141 0,6946 0,7282 0,9123 0,6859 0,6859</td><td>g₆(cm/s) 3,81E-02 3,71E-02 4,32E-02 3,00E-02 5,05E-02 4,20E-02 5,02E-02 5,02E-02 5,01E-02 3,79E-02 3,75E-02 5,01E-02 3,75E-02</td><td>K (cm²) 7,12E-09 6,633E-09 9,02E-09 7,19E-09 9,45E-09 7,35E-09 9,39E-09 7,37E-09 7,07E-09 7,07E-09 7,07E-09</td></l<>	Tara Béquer(g) 48,144 48,111 48,144 48,111 48,114 48,111 48,114 48,111 48,114 48,111 48,114 48,111 48,114 48,111 48,114 48,111 48,114 48,111 48,114 48,111 48,114 48,111	Massa Real (g) 97,282 88,328 82,289 75,621 77,109 64,351 85,144 80,303 83,463 86,303 87,008 86,067	Tempo(s) 10 10 10 10 10 10 10 10 10 10	L(mm) após dopagem 2,79 2,79 2,79 2,79 2,79 2,79 2,79 2,79	Q(cm ² /s) 7,9739 7,2400 6,7450 6,1984 6,3204 5,2747 6,9790 6,5821 6,8412 7,0740 7,1318 7,0547	5,712-00 4,382-01 3,982-01 3,712-01 3,712-01 3,712-01 3,922-01 3,322-01 3,522-01 3,522-01 3,522-01 3,522-01 3,522-01 3,522-01 3,522-01	K (cm ²) 8,652-08 7,965-08 7,325-08 6,732-08 6,732-08 7,725-08 7,725-08 7,742-08 7,742-08 7,742-08 7,742-08	PD4 1 2 3 4 5 6 7 8 9 10 11 12	Massa Medida(g) 148,49 152,39 157,37 153,21 154,22 147,97 145,86 133,13 146,02 138,02 143,64 153,59	B1/B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2	Tars Béquer(g) 48,144 48,111 48,144 48,111 48,144 48,111 48,144 48,111 48,144 48,111	Massa Real (g) 100,342 104,281 109,224 105,096 106,071 99,855 97,714 105,024 97,876 90,103 95,492 105,481	Tempo(i) 10 10 10 10 10 10 10 10 10 10	L(mm) após dopagem 4.27 4.27 4.27 4.27 4.27 4.27 4.27 4.27	Q(cm ² /s) 8,2248 8,5476 8,9528 8,6144 8,6943 8,1848 8,0093 8,6085 8,0226 7,3837 7,8272 8,6460	\$\$\mathcal{G}_4(cm/s)\$ 4.52E-01 4.70E-01 4.92E-01 4.73E-01	K (cm ²) 1.37E-07 1.42E-07 1.43E-07 1.43E-07 1.36E-07 1.33E-07 1.33E-07 1.33E-07 1.33E-07 1.33E-07 1.33E-07 1.33E-07 1.44E-07	PD6 1 2 3 4 5 6 7 8 9 10 11 12	Massa Medida(g) 130,38 128,02 122,21 118,17 119,19 118,61 118,30 110,97 109,35 113,23 111,20 110,31	B1/B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2	Tara Béquer(g) 45,144 48,11 45,144 48,11 45,144 48,11 45,144 48,11 45,144 48,11 45,144	Massa Real (g) 1 82,235 79,909 74,063 70,064 71,047 70,502 70,160 62,861 61,206 65,116 63,734 62,198	Tempo(1) 10 10 10 10 10 10 10 10 10 10	L(mm) após dopagem 2,48 2,48 2,48 2,48 2,48 2,48 2,48 2,48	Q(cm ³ /s) 6,7406 6,5499 6,0707 5,7430 5,8233 5,7789 5,7508 5,1523 5,0169 5,3374 5,2257 5,0082	5,(cm/s) 3,70E-01 3,60E-01 3,34E-01 3,16E-01 3,16E-01 2,83E-01 2,93E-01 2,93E-01 2,87E-01 2,87E-01 2,87E-01	K (cm ²) 6.50E-08 6.32E-08 5.66E-08 5.54E-06 5.77E-08 4.57E-08 4.57E-08 4.57E-08 5.13E-08 5.13E-08 5.13E-08 5.04E-08 5.04E-08	PD8 1 2 3 4 5 6 7 8 9 10 11 12	Massa Medida(g) 65,06 64,57 66,37 65,44 70,39 66,76 70,45 65,06 65,91 70,37 64,95 64,74	B1/B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2	Tara Béquer(g) 48,144 48,11 48,144 48,11 48,144 48,11 48,114 48,114 48,114 48,114 48,114 48,114 48,114 48,114 48,114 48,114 48,114	Massa Real (g) 16,917 16,464 21,424 17,328 22,443 18,652 22,304 16,948 17,768 22,264 16,809 16,633	Tempo(s) 20 20 20 20 20 20 20 20 20 20	L(mm) após dopagem 2,64 2,64 2,64 2,64 2,64 2,64 2,64 2,64	Q(cm ² /s) 0,6933 0,6748 0,8780 0,7102 0,9198 0,7644 0,9141 0,6946 0,7282 0,9123 0,6859 0,6859	g ₆ (cm/s) 3,81E-02 3,71E-02 4,32E-02 3,00E-02 5,05E-02 4,20E-02 5,02E-02 5,02E-02 5,01E-02 3,79E-02 3,75E-02 5,01E-02 3,75E-02	K (cm ²) 7,12E-09 6,633E-09 9,02E-09 7,19E-09 9,45E-09 7,35E-09 9,39E-09 7,37E-09 7,07E-09 7,07E-09 7,07E-09
PE 1 1 2 3 3 4 4 5 6 6 7 7 8 9 9 10 11 12 12 12 1 1 1 1 1 1 1 1 1 1 1 1 1	Massa Medidag 145,43 136,44 130,43 123,73 125,25 112,46 131,61 131,61 131,61 135,15 135,15 135,15 135,16 135,15 135,15 135,15 135,15 135,15	B1/B2 B1 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1	Tara Béquer(g) 48,144 48,11 48,144 48,11 48,144 48,11 48,144 48,11 48,144 48,11 48,144 48,11 48,144 48,11 48,144 48,11 48,144 48,11 48,144 48,11	Massa Real (g) 97,282 88,328 82,289 75,621 77,109 64,331 85,144 80,302 83,463 86,303 87,008 86,067 86,877	Tempo(s) 10 10 10 10 10 10 10 10 10 10	L(mm) após dopagem 2,79 2,79 2,79 2,79 2,79 2,79 2,79 2,79	Q(cm ² /s) 7,9739 7,2400 6,7450 6,1984 6,3204 5,2747 6,9790 6,5821 6,8412 7,0740 7,1318 7,0547 7,1211	p.(cm/s) 4.38E-01 3.98E-01 3.71E-01 3.41E-01 3.41E-01 3.47E-01 3.59E-01 3.59E-01 3.92E-01 3.92E-01 3.58E-01 3.51E-01	K (cm ²) 8,65E-08 7,86E-08 7,32E-08 6,73E-08 6,73E-08 6,73E-08 7,37E-08 7,37E-08 7,44E-08 7,44E-08 7,74E-08 7,68E-08	PD4 1 2 3 4 5 6 7 8 9 10 11 12 13	Massa Medida(g) 148,49 152,39 157,37 153,21 154,22 147,97 145,86 133,13 146,02 138,22 143,64 153,64 153,64	B1/B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1	Tars Béquer(g) 48,144 48,111 48,144 48,111 48,144 48,111 48,144 48,111 48,144 48,111 48,144 48,111 48,144 48,111	Massa Real (g) 100,342 104,281 109,224 105,096 106,071 99,855 97,714 105,024 97,876 90,105 95,492 105,481 98,736	Tempo(i) 10 10 10 10 10 10 10 10 10 10	L(mm) após dopagem 4.27 4.27 4.27 4.27 4.27 4.27 4.27 4.27	Q(cm ² /s) 8,2248 8,5476 8,9528 8,6144 8,6943 8,6943 8,6083 8,0093 8,6085 8,0226 7,3857 7,8272 8,6460 8,0931	g ₄ (cm/s) 4,52E-01 4,70E-01 4,70E-01 4,73E-01 4,75E-01 4,50E-01 4,73E-01 4,40E-01 4,00E-01 4,73E-01 4,00E-01 4,73E-01 4,50E-01 4,35E-01	K (cm ²) 1,37E-07 1,42E-07 1,44E-07 1,44E-07 1,43E-07 1,34E-07 1,33E-07 1,33E-07 1,33E-07 1,33E-07 1,33E-07 1,34E-07 1,34E-07	FD6 1 2 3 4 5 6 7 8 9 10 11 12 13	Massa Medida(g) 130,38 128,02 122,21 118,17 119,19 118,50 110,97 109,35 1113,23 111,90 110,33	B1/B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1	Tara Béquer(g) 45,144 48,11 45,144 45,114 45,114 45,114 45,114 45,114 45,114 45,114 45,114 45,144 45,114	Massa Real (g) 1 82,235 79,909 74,063 70,064 71,047 70,502 70,160 62,861 61,206 65,116 63,754 62,198 52,205 55,206	Tempo(s) d 10 10 10 10 10 10 10 10 10 10	L(mm) após dopagem 2,48 2,48 2,48 2,48 2,48 2,48 2,48 2,48	Q(cm ³ /s) 6,7406 6,5499 6,0707 5,7430 5,8233 5,7789 5,7508 5,1523 5,0169 5,3374 5,2257 5,0982 4,5251	g,(cm/s) 3,70E-01 3,60E-01 3,16E-01 3,16E-01 3,18E-01 3,18E-01 2,83E-01 2,93E-01 2,93E-01 2,80E-01 2,80E-01 2,40E-01	K (cm ³) 6.508-08 6.328-08 5.548-08 5.548-08 5.548-08 5.578-08 4.978-08 5.548-08 5.558	PD8 1 2 3 4 5 6 7 8 9 10 11 12 13	Massa Medida(g) 65,06 64,57 69,57 65,44 70,59 66,76 70,45 65,06 65,91 70,37 64,95 64,74	B1/B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1	Tara Béquer(g) 48,144 48,114 48,114 48,114 48,114 48,114 48,114 48,114 48,114 48,114 48,114 48,114 48,114 48,114 48,114 48,114 48,114 48,114	Massa Real (g) 16,917 16,464 21,424 17,328 22,443 18,652 22,304 16,948 17,768 22,264 16,948 17,768 22,264 16,633 17,567	Tempo(s) 20 20 20 20 20 20 20 20 20 20	L(mm) após dopagem 2,64 2,64 2,64 2,64 2,64 2,64 2,64 2,64	Q(cm ³ /s) 0,6933 0,6748 0,8780 0,7102 0,9198 0,7644 0,9141 0,6946 0,7282 0,9123 0,6819 0,6817 0,6859	g.(cm/s) 3,81E-02 3,71E-02 4,32E-02 3,00E-02 5,05E-02 4,20E-02 5,02E-02 5,02E-02 5,01E-02 3,75E-02 3,75E-02 3,56E-02 3,56E-02	K (cm ²) 7,12E-09 6,93E-09 9,02E-09 9,45E-09 7,13E-09 7,13E-09 7,13E-09 7,13E-09 7,13E-09 7,07E-09 7,07E-09 7,07E-09 7,13E-09
PD 1 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 11 11 11 11 11 11 11 11 11 11 11 11	Massa Medidag 145,43 136,44 130,43 123,73 125,25 112,46 133,29 128,41 131,61 134,41 135,15 134,41 135,02 134,18 135,02	B1/B2 B1 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2	Tara Béquer(g) 48,144 48,11 48,144 48,11 48,144 48,11 48,144 48,11 48,144 48,11 48,144 48,11 48,144 48,11 48,144 48,11 48,144 48,11 48,144 48,11	Massa Real (g) 97,282 88,328 82,289 75,621 77,109 64,331 85,144 80,302 83,463 86,303 87,008 86,877 86,877 85,400	Tempo(3) 10 10 10 10 10 10 10 10 10 10 10 10 10	L(mm) após dopagem 2,79 2,79 2,79 2,79 2,79 2,79 2,79 2,79	Q(cm ² /s) 7,5739 7,2400 6,7450 6,1984 6,3204 5,2747 6,9790 6,5821 6,8412 7,0740 7,1318 7,0547 7,1211 7,0000	p.(cm/s) 4.38E-01 3.08E-01 3.71E-01 3.41E-01 3.41E-01 3.47E-01 3.53E-01 3.53E-01 3.53E-01 3.53E-01 3.53E-01 3.53E-01 3.53E-01 3.53E-01	K (cm ²) 5,65E-08 7,56E-08 7,52E-08 6,73E-08 6,73E-08 7,72E-08 7,72E-08 7,42E-08 7,42E-08 7,42E-08 7,42E-08 7,42E-08 7,42E-08 7,42E-08 7,65E-08	PD4 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Massa Medida(g) 148,49 152,39 157,37 153,21 154,22 147,97 145,86 133,13 146,02 138,22 143,64 153,59 146,68 139,24	B1/B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2	Tara Béquer(g) 48,144 48,11 48,144 48,11 48,144 48,11 48,144 48,11 48,144 48,11 48,144 48,11 48,114 48,114 48,114	Massa Real (g) 100,342 104,281 109,224 105,096 106,071 99,855 97,714 105,024 97,876 90,105 95,492 105,481 98,736 91,133	Tempo(3) 10 10 10 10 10 10 10 10 10 10 10 10 10	L(mm) após dopagem 4.27 4.27 4.27 4.27 4.27 4.27 4.27 4.27	Q(cm ³ /s) 8,2248 8,5476 8,9528 8,6144 8,1848 8,0093 8,6085 8,0226 7,3857 7,8272 8,6460 8,0931 7,4699	g ₄ (cm/s) 4.52E-01 4.70E-01 4.70E-01 4.73E-01 4.75E-01 4.50E-01 4.73E-01 4.06E-01 4.052-01 4.75E-01 4.41E-01 4.75E-01 4.45E-01 4.45E-01 4.45E-01 4.45E-01	K (cm ²) 1.37E-07 1.42E-07 1.43E-07 1.43E-07 1.43E-07 1.33E-07 1.33E-07 1.33E-07 1.33E-07 1.33E-07 1.33E-07 1.34E-07 1.34E-07 1.34E-07 1.34E-07	FD6 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Massa Medida(g) 130,38 128,02 122,21 118,17 119,19 118,50 110,97 109,35 111,90 110,31 110,31 110,31 111,72	B1/B2 B1 B2	Tara Béquer(g) 48,144 48,11 48,144 48,11 48,144 48,11 48,144 48,11 48,144 48,11 48,144 48,11 48,144 48,11	Massa Real (g) 1 82,235 7 79,909 74,063 70,064 7 70,502 7 70,160 62,381 61,206 65,116 63,734 55,206 63,612 1	Tempo(s) d 10 10 10 10 10 10 10 10 10 10	L(mm) após dopagem 2,48 2,48 2,48 2,48 2,48 2,48 2,48 2,48	Q(cm ³ /s) 6,7406 6,5499 6,0707 5,7430 5,8235 5,7789 5,7508 5,1525 5,0169 5,3374 5,2257 5,0982 4,5251 5,2141	g,(cm/s) 3,70E-01 3,60E-01 3,34E-01 3,16E-01 3,16E-01 3,18E-01 2,83E-01 2,93E-01 2,93E-01 2,93E-01 2,80E-01 2,49E-01 2,49E-01	K (cm ²) 6.50E-06 6.32E-06 5.54E-06 5.54E-08 5.57E-08 5.57E-08 5.53E-08 5.54E-08 5.55E	PD8 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Massa Medida(g) 65,06 64,57 69,57 65,44 70,59 66,76 70,45 65,06 65,51 70,37 64,95 64,74 65,71 65,52	B1/B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2	Tara Béquer(g) 48,144 48,11 48,144 48,11 48,144 48,11 48,144 48,11 48,144 48,11 48,144 48,11	Massa Real (g) 16,917 16,464 21,424 17,328 22,443 18,652 22,304 16,948 17,768 22,264 16,809 16,833 17,567 17,212	Tempo(s) 20 20 20 20 20 20 20 20 20 20	L(mm) após dopage 2,64 2,64 2,64 2,64 2,64 2,64 2,64 2,64	Q(cm ³ /s) 0,6933 0,6748 0,8780 0,7102 0,9198 0,7644 0,9141 0,6946 0,7282 0,9123 0,6817 0,7282 0,6817	J ₀ (cm ¹) 3,81E-02 3,71E-02 4,82E-02 3,90E-02 5,05E-02 4,20E-02 3,92E-02 3,92E-02 3,92E-02 3,75E-02 3,96E-02 3,98E-02 3,98E-02 3,98E-02	K (cm ²) 7,128-09 6,538-09 9,022-09 7,1382-09 9,458-09 7,1382-09 7,1382-09 7,1382-09 7,1382-09 7,1482-09 7,1482-09 7,078-09 7,078-09 7,008-09 7,2482-09
PD 1 2 3 3 4 4 5 6 6 7 7 8 8 9 9 9 10 11 11 11 12 12 11 11 11 11 11 11 11 11	Alexandroin Massa 145,43 136,44 130,43 123,75 123,75 122,25 131,41 133,29 133,42 133,41 131,61 134,18 135,15 134,18 135,50 134,18 135,50 135,51 135,51 135,51	B1/B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B1 B2 B1 B2 B1 B2 B1 B2 B1 B1 B2 B1 B2 B1 B2 B1 B2 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1	Tara Béquer(g) 48,144 48,11 48,144 48,11 48,144 48,11 48,144 48,11 48,144 48,11 48,144 48,11 48,144 48,11 48,114 48,11 48,114 48,11 48,114 48,11 48,114 48,11 48,114 48,11 48,114 48,11	Massa Real (g) 97,282 88,328 82,289 75,621 77,05 64,331 85,144 80,302 83,463 86,303 87,008 86,067 86,067 85,400 74,253	Tempo(3) 10 10 10 10 10 10 10 10 10 10 10 10 10	L(mm) após dopagem 2,79 2,79 2,79 2,79 2,79 2,79 2,79 2,79	Q(cm²/s) 7,9739 7,2400 6,7450 6,1984 6,3204 5,2747 6,5790 6,5821 7,0740 7,1318 7,0547 7,1211 7,0000 6,0863	5,72-0 5,(cm's) 4,38E-01 3,93E-01 3,71E-01 3,71E-01 3,47E-01 3,47E-01 3,53E-01 3,53E-01 3,52E-01 3,52E-01 3,53E-01 3,55E-01 3,53E-01 3,55E-01	K (cm ²) 8,65E-08 7,56E-08 7,32E-08 6,73E-08 6,73E-08 7,72E-08 7,72E-08 7,42E-08 7,42E-08 7,42E-08 7,64E-08 7,64E-08 7,74E-08 7,74E-08 7,74E-08 7,74E-08 7,74E-08 7,74E-08 7,74E-08 7,74E-08 7,74E-08 7,74E-08 7,74E-08 7,74E-08 7,74E-08 6,61E-08 7,05E-08 7,75E-08 7,75E-08 7,75E-08 7,75E-08 7,75E-08 7,75E-08 7,75E-08 7,75E-08 7,75E-08 7,75E-08 7,74E	PD4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Massa Medida(g) 148,49 152,39 157,37 133,21 154,22 147,86 133,13 145,86 133,13 146,02 138,22 143,64 153,59 146,88 139,24 147,59	B1/B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1	Tara Béquer(g) 48,114 48,114 48,114 48,114 48,114 48,114 48,114 48,114 48,114 48,114 48,114 48,111 48,114 48,111 48,114 48,111 48,114 48,114 48,114	Massa Real (g) 100,342 104,281 109,224 105,096 106,071 99,855 97,714 105,024 97,876 90,103 95,492 105,481 98,748 91,133 99,449	Tempo(3) 10 10 10 10 10 10 10 10 10 10 10 10 10	L(mm) após dopagem 4.27 4.27 4.27 4.27 4.27 4.27 4.27 4.27	Q(cm ^{3/3}) 8,2248 8,5476 8,5528 8,6144 8,6943 8,6085 8,0093 7,8272 8,6460 8,00931 7,4699 8,1516	g ₀ (cm/s) 4,52E-01 4,70E-01 4,70E-01 4,73E-01 4,75E-01 4,75E-01 4,40E-01 4,40E-01 4,30E-01 4,40E-01 4,30E-01 4,30E-01 4,30E-01 4,45E-01 4,40E-01	K (cm*) 1.37E-07 1.42E-07 1.43E-07 1.43E-07 1.33E-07 1.33E-07 1.33E-07 1.33E-07 1.33E-07 1.33E-07 1.33E-07 1.33E-07 1.34E-07 1.34E-07 1.34E-07 1.34E-07 1.34E-07 1.34E-07 1.34E-07 1.34E-07 1.34E-07 1.34E-07 1.34E-07 1.33E-0	PD6 1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15	Massa Medida(g) 130,38 128,02 122,21 118,17 118,19 118,61 118,61 110,97 100,35 1113,23 111,90 110,31 103,35 111,35 111,35	B1/B2 B1 B2 B1	Tara Béquer(g) 45,144 45,114 45,114 45,114 45,114 45,114 45,114 45,114 45,114 45,114 45,114 45,114 45,114 45,114 45,114 45,114 45,114 45,114 45,114 45,114	Massa Real (g) 1 82,235 79,909 74,063 70,064 71,047 70,502 70,160 62,861 61,206 65,116 63,754 62,198 55,206 63,612 70,261 70,261	Tempo(s) d	L(mm) após dopagem 2,48 2,48 2,48 2,48 2,48 2,48 2,48 2,48	Q(cm ² /s) 6,7406 6,7406 6,6707 5,7430 5,7789 5,7580 5,7789 5,7580 5,7789 5,7580 5,7591 5,0822 4,5221 5,2141 5,7591	g ₆ (cm/s) 3,70E-01 3,60E-01 3,34E-01 3,16E-01 3,18E-01 3,18E-01 3,18E-01 2,51E-01 2,51E-01 2,51E-01 2,51E-01 2,51E-01 2,51E-01 2,56E-01 3,16E-01 3,16E-01 3,16E-01	K (cm ²) 6,50E-06 6,32E-06 5,34E-06 5,42E-06 5,42E-06 5,57E-06 4,97E-06 4,97E-06 4,97E-06 4,97E-06 4,97E-06 4,97E-06 4,97E-06 4,97E-06 5,04E	PD8 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Massa Medida(g) 65,06 64,57 69,57 65,44 70,59 66,76 70,45 65,91 70,37 64,95 64,91 70,37 64,95 64,74 65,71 65,71 65,71	B1/B2 B1 B2 B1	Tara Béquer(g) 48,144 48,11 48,144 48,11 48,144 48,11 48,144 48,11 48,144 48,11 48,144 48,11 48,144 48,11 48,144 48,11 48,144 48,11 48,144 48,11 48,144 48,11 48,144 48,11	Massa Real (g) 16,917 16,464 21,424 17,538 22,443 18,652 22,304 16,548 17,768 22,264 16,839 16,633 17,367 17,212 23,364	Tempo(s) 20 20 20 20 20 20 20 20 20 20	L(mm) após dopage 2,64 2,64 2,64 2,64 2,64 2,64 2,64 2,64	Q(cm ² /s) 0.6933 0.6748 0.8780 0.7102 0.9198 0.7644 0.7282 0.9123 0.6946 0.7282 0.9123 0.6889 0.6817 0.72054 0.7054 0.9575	5,01E-02 3,51E-02 3,71E-02 4,52E-02 3,00E-02 5,03E-02 4,20E-02 5,02E-02 3,32E-02 4,00E-02 3,32E-02 3,51E-02 3,79E-02 3,79E-02 3,58E-02 3,58E-02 3,58E-02 5,52E-02	K (cm ²) 7,12E-09 6,53E-09 9,02E-09 7,29E-09 7,35E-09 9,35E-09 7,35E-09 7,35E-09 7,35E-09 7,35E-09 7,35E-09 7,35E-09 7,35E-09 7,24E-09 7,34E-09 7,34E-09 7,34E-09 7,34E-09 7,34E-09 7,34E-09 7,34E-09
PD 1 2 3 4 4 5 6 6 7 7 8 9 9 10 11 12 12 14 14 14 14 14 14 14 14 14 14	Aug Massa 145,43 136,44 130,43 125,75 125,25 112,46 133,29 122,52 112,46 133,29 125,55 134,41 135,50 134,41 135,50 134,18 135,50 134,18 135,50 134,18 135,50 122,40	B1/B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B2 B1 B2 B2 B1 B2 B2 B1 B2 B2 B1 B2 B2 B1 B2 B2 B1 B2 B2 B1 B2 B2 B1 B2 B2 B1 B2 B2 B1 B2 B2 B1 B2 B1 B2 B2 B1 B2 B2 B1 B2 B1 B2 B2 B2 B2 B1 B2 B2 B2 B2 B2 B2 B2 B2 B2 B2 B2 B2 B2	Tara Béguer(g) 45,144 48,111 48,144 48,114 48,114 48,114 48,114 48,114 48,114 48,114 48,111 48,114 48,111 48,114 48,114 48,114 48,114 48,114 48,114 48,114	Massa Real (g) 97,282 88,328 82,289 75,621 77,09 64,331 85,144 80,302 83,463 86,303 87,008 86,067 86,877 85,400 74,233	Tempo(3) 10 10 10 10 10 10 10 10 10 10 10 10 10	L(mm) após dopagem 2,79 2,79 2,79 2,79 2,79 2,79 2,79 2,79	Q(cm ³ /s) 7,9739 7,2400 6,7450 6,1984 6,3204 5,2747 6,5790 6,5821 7,0740 7,1318 7,0547 7,1211 7,0000 6,0863 6,7748	\$\mathbf{y}_1 \mathbf{L}_2 \vert_0 \vert_1 \vert_1 \vert_1 \vert_1 \vert_1 \vert_2 \vert_2 \vert_2 \vert_1 \vert_1 \vert_1 \vert_2 \vert_2 \vert_2 \vert_2 \vert_1 \vert_1 \vert_1 \vert_2 \vert_2 \vert_2 \vert_2 \vert_1 \vert_1 \vert_2 \vert_2 \vert_2 \vert_2 \vert_2 \vert_1 \vert_2 \ver	K (cm ²) 8,65E-08 7,56E-08 7,32E-08 6,73E-08 6,73E-08 7,32E-08 7,72E-08 7,42E-08 7,42E-08 7,64E-08 7,74E-08 7,64E-08 7,66E-08 6,61E-08 6,61E-08	PD4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Massa Medida(g) 148,49 152,39 153,21 154,22 147,97 145,86 133,13 146,02 138,22 143,64 133,59 146,88 139,24 147,59	B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1	Tara Béquer(g) 48,114 48,11 48,114 48,11 48,114 48,111 48,144 48,111 48,144 48,111 48,144 48,111 48,144 48,111 48,144 48,111 48,144 48,111 48,144 48,111 48,114 48,114	Massa Real (g) 100,342 104,281 108,224 105,096 97,714 105,024 97,876 90,105 95,492 105,481 94,736 91,133 90,449	Tempo(3) 10 10 10 10 10 10 10 10 10 10 10 10 10	L(mm) após dopagem 4.27 4.27 4.27 4.27 4.27 4.27 4.27 4.27	Q(cm ^{3/3}) 8,2248 8,5476 8,9528 8,6144 8,6943 8,6943 8,6943 8,6943 8,6943 8,6943 8,6943 8,6943 8,6943 8,6085 8,0226 8,6460 8,0931 7,4699 8,1516 8,2288	\$\$\mathbf{s}_u(cm's)\$ 4.53E-01 4.75E-01 4.60E-01 4.06E-01 4.30E-01 4.30E-01 4.35E-01 4.45E-01 4.52E-01	K (cm ²) 1.37E-07 1.42E-07 1.42E-07 1.43E-07 1.43E-07 1.33E-07 1.33E-07 1.33E-07 1.33E-07 1.34E-07 1.33E-07 1.34E-07 1.34E-07 1.33E-07 1.33E-07 1.34E-07 1.34E-07 1.33E-07 1.34E	PD6 1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 18	Massa Medida(g) 130,38 128,02 122,21 118,17 118,19 118,19 118,30 110,97 109,35 111,30 110,33 111,90 110,33 111,72 118,41	B182 B1 B2 B1	Tara Béquer(g) 48,114 48,111 48,114 48,114 48,114 48,114 48,114 48,111 48,114 48,111 48,114 48,114 48,114 48,114 48,114 48,114 48,114 48,114 48,114 48,114 48,111 48,114 48,114 48,114	Massa Real (g) 1 82,235 79,909 74,063 70,064 71,047 70,160 62,381 61,206 65,116 63,754 62,198 35,206 63,612 70,261 70,261	Tempo(s) 10 10 10 10 10 10 10 10 10 10	L(mm) após 2,48 2,48 2,48 2,48 2,48 2,48 2,48 2,48	Q(cm*)s) 6,7406 6,6469 6,6469 6,6707 5,7430 5,8233 5,7789 5,5785 5,1525 5,0169 5,3374 5,2537 5,0982 4,5251 5,2141 5,2251 5,2558 5,55815	g ₆ (cm/s) 3,70E-01 3,4E-01 3,14E-01 3,14E-01 3,18E-01 3,18E-01 2,18E-01 2,38E-01 2,38E-01 2,38E-01 2,38E-01 2,36E-01 2,36E-01 3,16E-01 3,16E-01 3,16E-01 3,16E-01 3,16E-01	K (cm ²) 6.50E-06 6.32E-06 5.54E-06 5.54E-06 5.52E-08 5.57E-08 5.57E-08 5.57E-08 5.04E	PD8 1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15	Massa Medida(g) 65,06 64,57 69,57 65,44 70,59 65,05 65,05 65,05 65,91 70,37 64,95 64,74 65,71 65,32 71,51	B1/B2 B1 B2 B1	Tara Béquer(g) 48,144 48,11 48,144 48,11 48,144 48,11 48,144 48,11 48,144 48,11 48,144 48,11 48,144 48,11 48,144 48,114 48,144 48,114	Massa Real (g) 16,917 16,464 21,424 17,338 22,443 18,652 22,304 16,948 17,768 22,264 16,609 16,633 17,367 17,212 23,364	Tempo(s) 20 20 20 20 20 20 20 20 20 20 20 20 20	L(mm) após dopagem 2,64 2,64 2,64 2,64 2,64 2,64 2,64 2,64	Q(cm ³ /s) 0.6933 0.6748 0.5780 0.7102 0.9198 0.7644 0.9113 0.6945 0.6945 0.69123 0.6889 0.6817 0.7200 0.70575 0.7762	5,81E-02 3,81E-02 3,71E-02 4,82E-02 3,00E-02 5,05E-02 4,20E-02 5,02E-02 3,82E-02 4,00E-02 3,79E-02 3,79E-02 3,79E-02 3,88E-02 3,88E-02 3,26E-02 4,20E-02	K (cm ⁻¹) 7,12E-09 6,93E-09 9,62E-09 9,45E-09 7,35E-09 9,39E-09 7,35E-09 9,37E-09 7,74E-09 7,07E-09 7,07E-09 7,39E-09 7,39E-09 7,39E-09 7,39E-09 7,39E-09

PD9	Massa Medida(g)	B1/B2	Tara Béquer(g)	Massa Real (g)	Tempo(s)	L(mm) após dopagem	Q(cm³/s)	₽.(cm/s)	K (cm²)
1	119,69	Bl	48,144	71,546	20	3,56	2,9322	1,61E-01	4,06E-08
2	121,03	B2	48,11	72,923	20	3,56	2,9886	1,64E-01	4,14E-08
3	120,16	Bl	48,144	72,017	20	3,56	2,9515	1,62E-01	4,09E-08
4	118,89	B2	48,11	70,780	20	3,56	2,9008	1,59E-01	4,02E-08
5	117,43	Bl	48,144	69,282	20	3,56	2,8394	1,56E-01	3,93E-08
6	118,20	B2	48,11	70,089	20	3,56	2,8725	1,58E-01	3,98E-08
7	117,23	Bl	48,144	69,090	20	3,56	2,8316	1,56E-01	3,92E-08
8	113,01	B2	48,11	64,901	20	3,56	2,6599	1,46E-01	3,68E-08
9	116,08	B1	48,144	67,932	20	3,56	2,7841	1,53E-01	3,86E-08
10	114,37	B2	48,11	66,256	20	3,56	2,7154	1,49E-01	3,76E-08
11	113,71	Bl	48,144	65,568	20	3,56	2,6872	1,48E-01	3,72E-08
12	114,93	B2	48,11	66,820	20	3,56	2,7385	1,50E-01	3,79E-08
13	107,61	Bl	48,144	59,464	20	3,56	2,4370	1,34E-01	3,37E-08
14	114,41	B2	48,11	66,295	20	3,56	2,7170	1,49E-01	3,76E-08
15	115,43	Bl	48,144	67,288	20	3,56	2,7577	1,52E-01	3,82E-08
					MEDIA	3,56	2,7876	1,53E-01	3,86E-08
					DESVIO	0,00	0,1403	7,71E-03	1,94E-09

ANEXO VI – PLANILHA DE CÁLCULO DA RESISTIVIDADE DOS DIAFRAGMAS (NMAC)

 $A (cm^2) = 3,14$

Rcal = I/V

 $\rho = \text{Rcorr}^*(A/L)$

L (cm) = 4,00 Rcorr = 98,1*Rcal/(98,1-Rcal) Nmac = ρ/ρ_0

	Ensaio	: Solução				Ensaio: S	olução + 1	Diafragma			V (mV
V (mV)	I (mA)	Rcalc	Rcorr	ρο	V (mV)	I (mA)	Rcalc	Rcorr	ρ	Nmac	25,90
25,90	66,90	0,39	0,39	0,31	29,40	66,80	0,44	0,44	0,35	1,14	26,10
26,10	66,90	0,39	0,39	0,31	29,70	66,80	0,44	0,45	0,35	1,14	26,20
26,20	66,90	0,39	0,39	0,31	29,80	66,80	0,45	0,45	0,35	1,14	26,20
26,20	66,90	0,39	0,39	0,31	29,80	66,80	0,45	0,45	0,35	1,14	
									N _{mac} ^{med}	1,14	
									Desvio	0,00	
									Erro	0.00	

	Ensaio	: Solução				Ensaio: S	olução +	Diafragma		
V (mV) 25,90	I (mA) 66,90	Rcalc 0,39	Rcorr 0,39	ρ₀ 0,31	V (mV) 34,50	I (mA) 66,30	Rcalc 0,52	Rcorr 0,52	ρ 0,41	N _m 1,3:
26,10	66,90	0,39	0,39	0,31	34,70	66,30	0,52	0,53	0,41	1,34
26,20	66,90	0,39	0,39	0,31	34,90	66,30	0,53	0,53	0,42	1,3
26,20	66,90	0,39	0,39	0,31	34,90	66,30	0,53	0,53	0,42	1,35
									N _{mac} ^{med}	1,3
									Desvio	0,00
									Erro	0.00

	Ensaio	: Solução				Ensaio: S	olução + :	Diafragma		
V (mV) 25,90	I (mA) 66,90	Rcalc 0,39	Rcorr 0,39	ρ ₀ 0,31	V (mV) 28,90	I (mA) 66,90	Rcalc 0,43	Rcorr 0,43	ρ 0,34	N 1
26,10	66,90	0,39	0,39	0,31	29,30	66,90	0,44	0,44	0,35	1
26,20	66,90	0,39	0,39	0,31	30,10	66,90	0,45	0,45	0,35	1
26,20	66,90	0,39	0,39	0,31	30,10	66,90	0,45	0,45	0,35	1
									Nmac ^{med}	1
									Desvio	0
									Erro	0

Diafragma:	PD2									
	Ensaio	: Solução				Ensaio: S	olução +	Diafragma	1	
V (mV) 25,90	I (mA) 66,90	Rcalc 0,39	Rcorr 0,39	ρ₀ 0,31	V (mV) 31,70	I (mA) 66,80	Rcalc 0,47	Rcorr 0,48	р 0,37	N _{mac} 1,23
26,10	66,90	0,39	0,39	0,31	32,10	66,70	0,48	0,48	0,38	1,23
26,20	66,90	0,39	0,39	0,31	32,20	66,70	0,48	0,49	0,38	1,23
26,20	66,90	0,39	0,39	0,31	32,30	66,70	0,48	0,49	0,38	1,24
									N _{mac} ^{med}	1,23
									Desvio	0,00
									Erro	0,00

	Ensaio	: Solução				Ensaio: S	olução + i	Diafragma	1	
V (mV) 25,90	I (mA) 66,90	Rcalc 0,39	Rcorr 0,39	ρ₀ 0,31	V (mV) 34,70	I (mA) 66,20	Rcalc 0,52	Rcorr 0,53	ρ 0,41	N, 1,
26,10	66,90	0,39	0,39	0,31	35,20	66,30	0,53	0,53	0,42	1,
26,20	66,90	0,39	0,39	0,31	35,30	66,30	0,53	0,54	0,42	1,
26,20	66,90	0,39	0,39	0,31	35,10	66,30	0,53	0,53	0,42	1,
									N _{mac} ^{med}	1,
									Desvio	0,
									Frro	0

	Ensaio	: Solução				Ensaio: S	olução +	Diafragma		
V (mV) 25,90	I (mA) 66,90	Rcalc 0,39	Rcorr 0,39	ρ₀ 0,31	V (mV) 28,70	I (mA) 65,60	Rcalc 0,44	Rcorr 0,44	р 0,34	N _m 1,1
26,10	66,90	0,39	0,39	0,31	28,60	65,90	0,43	0,44	0,34	1,1
26,20	66,90	0,39	0,39	0,31	28,60	66,10	0,43	0,43	0,34	1,1
26,20	66,90	0,39	0,39	0,31	29,30	66,30	0,44	0,44	0,35	1,1
									N _{mac} ^{med}	1,1
									Desvio	0,0
									Erro	0.0

	Ensaio	: Solução				Ensaio: S	olução + :	Diafragma	1	
V (mV) 25,90	I (mA) 66,90	Rcalc 0,39	Rcorr 0,39	ρ₀ 0,31	V (mV) 31,10	I (mA) 66,80	Rcalc 0,47	Rcorr 0,47	ρ 0,37	N _m 1,2
26,10	66,90	0,39	0,39	0,31	31,50	66,70	0,47	0,47	0,37	1,2
26,20	66,90	0,39	0,39	0,31	31,70	66,70	0,48	0,48	0,37	1,2
26,20	66,90	0,39	0,39	0,31	31,80	66,70	0,48	0,48	0,38	1,2
									N _{mac} ^{med}	1,2
									Desvio	0,0
									Erro	0,0

Diafragma:	Diafragma: PD6														
	Ensaio		Ensaio: Solução + Diafragma												
V (mV)	I (mA)	Rcalc	Rcorr	ρo	V (mV)	I (mA)	Rcalc	Rcorr	ρ	Nmac					
25,90	66,90	0,39	0,39	0,31	30,60	64,70	0,47	0,48	0,37	1,22					
26,10	66,90	0,39	0,39	0,31	31,00	64,90	0,48	0,48	0,38	1,23					
26,20	66,90	0,39	0,39	0,31	31,10	65,10	0,48	0,48	0,38	1,22					
26,20	66,90	0,39	0,39	0,31	30,90	64,60	0,48	0,48	0,38	1,22					
									N _{mac} ^{med}	1,22					
									Desvio	0,00					
									Erro	0,00					

	Ensaio	: Solução			Ensaio: Solução + Diafragma						
V (mV) 25,90	I (mA) 66,90	Rcalc 0,39	Rcorr 0,39	ρ ₀ 0,31	V (mV) 29,80	I (mA) 66,90	Rcalc 0,45	Rcorr 0,45	ρ 0,35		
26,10	66,90	0,39	0,39	0,31	30,20	66,50	0,45	0,46	0,36		
26,20	66,90	0,39	0,39	0,31	30,40	66,80	0,46	0,46	0,36		
26,20	66,90	0,39	0,39	0,31	30,50	66,70	0,46	0,46	0,36		
									N _{mac} ^{med}	ſ	
									Desvio	Г	
									Euro		

Diafragma	Espessura (cm)	Permeabilidade x 10 ⁸ (cm ²)	Nmac	Tensão (V)	Corrent e (A)	NaOH (g/L)	NaCl (g/L)	NaClO3 (g/L)	M _{NaOH} Teórico (g)	M _{NaOH} Produzida (g)	%E.C	%Е. Е.
PD1	0,219	0,847	1,14	4,1	6,03	29,44	116,31	0,035	71,63	41,86	58,44	32,08
PD7	0,228	0,849	1,15	3,23	6,02	18,96	139,11	0,66	71,63	61,9	86,42	60,49
PD8	0,242	0,799	1,12	3,17	6,13	16,24	118,07	0,41	73,9	53,62	72,56	53,12
Tephram	0,221	8,97	2,73	3,88	6,00	11,04	268,87	0,25	72,47	63,2	87,21	51,01
SP11	0,224	9,04	1,15	4,02	6,13	12,96	249,87	0,39	74,14	64,83	87,43	49,09

APÊNDICE V – RESULTADO DE TODOS OS PARÂMETROS PARA OS 3 DIAFRAGMAS ESCOLHIDOS E OS DE REFEÊNCIA