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Resumo

Neste trabalho estudamos a existéncia de ground states para a seguinte classe de

sistemas acoplados envolvendo equagoes de Schrodinger nao-lineares

—Au+Vi(@)u = fi(z,u) + ANz)v, xRV,
—Av + Va(x)v = fo(z,v) + ANz)u, z € RV,

onde os potenciais V; : RY — R, V5 : RY — R sdo ndo-negativos e estdo relacionados
com o termo de acomplamento A : RY — R por |A(z)| < §1/Vi(x)Va(z), para algum
0 <0 < 1. Nocaso N = 2, as nao-linearidades f; e fy possuem crescimento critico
exponencial no sentido da desigualdade de Trudinger-Moser. No caso N > 3, as nao-
linearidades sao polindémios com expoente subcritico e critico no sentido de Sobolev.

Estudamos ainda a seguinte classe de sistemas acoplados nao-locais

(=) 2u 4+ Vi(z)u = fi(u) + Mz)v, = €R,
(—A) 0 4 Vi) = folw) + A, @ € R,

onde (—A)'2 denota o operador raiz quadrada do laplaciano e as nao-linearidades
possuem crescimento critico exponencial. Nossa abordagem ¢ variacional e baseada na

técnica de minimizacao sobre a variedade de Nehari.

Palavras-chave: Sistemas linearmente acoplados; Solugoes de energia minima;

Variedade de Nehari; Crescimento critico; Desigualdade de Trudinger-Moser.
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Abstract

In this work we study the existence of ground states for the following class of coupled

systems involving nonlinear Schrédinger equations

—Au+Vi(@)u = fi(z,u) + ANz)v, xRV,
—Av + Va(x)v = fo(z,v) + N(z)u, = €RY,

where the potentials V; : RY — R, V, : RV — R are nonnegative and related with
the coupling term A : RY — R by |[\(z)| < §1/Vi(2)Va(x), for some 0 < § < 1. In
the case N = 2, the nonlinearities f; e fy have critical exponential growth in the sense
of Trudinger-Moser inequality. In the case N > 3, the nonlinearities are polynomials
with subcritical and critical exponent in the Sobolev sense. We study also the following

class of nonlocal coupled systems

(=) 204+ Vi(z)u = fi(u) + Mz)v, = €R,
(—A) 20 4 Vi) = folw) + A, @ € R,

where (—A)'/? denotes the square root of the Laplacian operator and the nonlinearities
have critical exponential growth.  Our approach is variational and based on

minimization technique over the Nehari manifold

Keywords: Linearly couples systems; Ground state solution; Nehari manifold; Critical

growth; Trudinger-Moser inequality.
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Introduction

The present work is concerned to study the existence of ground states for the

following class of coupled systems

—Au+Vi(z)u = fi(z,u) + AN(z)v, z€RY,

(1)
—Av + Vo(z)v = folz,v) + Ma)u, =€ RY,

where the potentials V; : RY — R, V5 : RY — R are nonnegative and related with the
coupling term A : RY — R by |\(z)| < 6+/Vi(2)Va(x) for some 0 < § < 1. Ground
states are solutions with minimal energy among the energy of all nontrivial solutions.
In the case N = 2, we study System (1) when the nonlinearities f; : R? x R — R and
fo : R2 x R — R have critical exponential growth motivated by classes of Trudinger-
Moser inequalities introduced in [14] and [34]. The case N > 3 is studied when the
nonlinearities are polynomials involving subcritical and critical exponent in the Sobolev
sense. We are also concerned with the following class of coupled systems involving the

nonlocal operator square root of the Laplacian

(—A)2u+ Vi(2)u = fu(u) + A(z)v, z€R,

(2)
(=A%) + Vo (x)v = folv) + AMx)u, = €R.

The nonlinearities have critical exponential growth motivated by a class of Trudinger-
Moser inequality introduced by T. Ozawa, see [58]. Throughout the thesis we will
detail the assumptions required over the potentials and the nonlinearities.

The study of ground state solutions for coupled systems has made great progress
and attracted attention of many authors for its great physical interest. Solutions of

System (1) are related with standing waves of the following two-component system

—ia—¢ =AY = V()Y + fi(z, ) + Mz)p, z€RN, t>0,

& (3)
—l7 :A¢—‘/2(33)¢+f2(13>¢)+)\($)¢a Z ERNa t > 07



where ¢ denotes the imaginary unit. Such class of systems arise in various branches
of mathematical physics and nonlinear topics, and can describe different physical
phenomena, such as Bose-Einstein condensates, Bose-Fermi mixture, propagation
in birefringent optical fibers and Kerr-like photorefractive media in optics, see e.g.

[2,23,48,55,62]. For System (3), a solution of the form

(W (2, 1), o(x,1)) = (exp(—iEt)u(z), exp(—iEt)v(z)),

where E is some real constant is called standing wave solution. There are some papers
involving existence of standing waves under various hypotheses on the potentials and
the nonlinearities. We refer the readers to [5,10,11,19-21,44,49,50,65-67,72| and the
references therein. Assuming that f;(x,s§) = f;(z,s)¢, for all s € R, j = 1,2 and
¢ € C with [£] = 1, it can be deduced that (¢, ¢) is a solution of (3) if and only if (u,v)

solves the following system

—Au+ (Vi(x) — E)u = fi(z,u) + Mz)v, z€RY,
—Av + (Va(z) — E)v = fo(z,v) + Mz)u, =€ RN,

For convenience and without loss of generality, replacing V;(z)—E by V;(x), i.e., shifting
E to 0, we turn to consider system (1).
Notice that if A =0, V; = Vo =V, fi = fo = f and u = v, then System (1)

reduces to the nonlinear Schrodinger equation
— Au+V(z)u= f(z,u), xRV (4)

This class of equations has been widely studied by many researchers. In order to
overcome the difficulty originated from the lack of compactness, it was introduced
several classes of potentials. For instance, P. Rabinowitz, [61], considered a class of
potentials bounded away from zero and coercive. He applied variational methods
based on variants of Mountain Pass Theorem to get existence results for (4) when
f(zx, s) is subcritical or superlinear. In order to improve the behavior of the potentials
introduced in [61], T. Bartsch and Z.Q. Wang, [9], considered a class of uniformly
positive potentials such that the level sets {z € RY : V(z) < M} have finite Lebesgue
measure for all M > 0. Besides to weaken the previous hypothesis under V(z),

they also improved the existence results getting infinitely many solutions if f(z,s)



is odd in s, that is, f(x,—s) = —f(x,s). In [64], B. Sirakov improved the class
of potentials contained in [9] and preserve the compactness of the energy functional
associated to (4). For more works concerning the scalar equation (4) we refer the
readers to [7,8,10,11,67] and references therein. Concerning to problems defined in
2—dimensional domains and involving nonlinearities with exponential growth, we refer
the readers to [3,14,26,33,35,56,70] and references therein.

Our work was motivated by some papers that have appeared in the recent years
concerning the study of coupled systems involving nonlinear Schrodinger equations by
using variational approach. In [17], Z. Chen and W. Zou studied the existence of ground

states for the following class of critical coupled systems with constant potentials

—Au+ pu = [uP72u + v, € RN, 5)

—Av+vv = |v]> v+ Ay, ze€RY

when N > 3and 1 < p < 2*—1, where 2* = 2N/(N —2) is the critical Sobolev exponent.
They proved that there exists critical parameters 1o > 0 and A, € [\/(1t — po)v, \/iiv)
such that (5) has a positive ground state when A > X,, and has no ground state
solutions when p > po and A < A,,. Coupled systems of nonlinear Schrodinger

equations of the type

—Au+ pu = (1+a(x))|uflu+ v, ze€RY,
—Av+vv = (1+b(x) || 'v+ I, zeRY,

were studied by A. Ambrosetti [4] with N =1 and A. Ambrosetti, G. Cerami, D. Ruiz
[6] with N > 2. In [6], the authors used concentration compactness type arguments
to prove existence of positive bound and ground states when p = v =1, A € (0,1),
1 <p=gq<2 —1,a(x) and b(z) vanishing at infinity. In [18], Z. Chen and W. Zou
extended and complemented some results introduced in [6], studying the following class
of coupled systems

~Au+pu= fi(u) + I, xRV,

—Av+wvv = fo(v)+ I, xR
The authors obtained the existence of positive radial ground states and energy estimates
giving a description of the limit behavior as the parameter A goes to zero. For
more existence results concerning coupled systems we refer to [16,43, 51,54, 59, 73]

and references therein. Note that in all of these works it was only considered



nonlinearities involving polynomial growth of subcritical or critical type in terms of
Sobolev embedding. On the nonlinear elliptic problems involving critical growth of
Trudinger-Moser type, we refer the readers to [24,25,29,34,47,60| and references therein.

Motivated by concrete applications in many fields of physics, biology and
mathematics, a great attention has been devoted to study the fractional nonlinear

Schrodinger equation
(=AYu+V(z)u= f(z,u), zeRY, 0<s<l1,

under many different assumptions on the potential V' (z) and on the nonlinearity f(x, u).
In [40], it was proved the existence of positive solutions for the case when V' =1 and
f(z,u) has subcritical growth in the Sobolev sense. In order to overcome the lack of
compactness, the authors used a comparison argument. Another way to overcome this
difficulty is requiring coercive potentials, that is, V' (z) — +o0, as |z| — +o00. In this
direction, the existence of ground states was studied by M. Cheng, [22], considering a
polynomial nonlinearity, and S. Secchi, [63], considering a more general nonlinearity
in the subcritical case. For existence results involving another types of potentials, we
refer [15,31,41] and references therein. We point out that in all of these works it were
consider dimension N > 2 and nonlinearities with polynomial growth.

It is known that when s — 1, the fractional Laplacian (—A)® reduces to the
standard Laplace operator —A, see [30]. In the fractional case, the critical Sobolev
exponent is given by 2f = 2N/(N — 2s). If 0 < s < N/2, then the fractional
Sobolev space H*(RY) is continuously embedded into LI(RY), for any ¢ € [2,2%].
Thus, similarly the standard Laplacian case, the maximal growth on the nonlinearity
f(x,u) which allows to treat nonlinear fractional Schrodinger equations variationally

in H5(RY), is given by |u|*~!, when |u] — +o00. For N = 1 and s ~ 1/2, we have

2" ~» +00. In this case, H'/?(R) is continuously embedded into LI(R), for q € [2, +00).
However, H'/?(R) is not. continuously embedded into L>(R). For more details we refer
the reader to [30] and the bibliographies therein. In this work, we deal with the limiting
case, when N = 1, s = 1/2 and nonlinearities with the maximum growth which allows
to treat System (2) variationally. For existence results considering the limiting case we
refer the readers to [27,28,36,37,45] and references therein.

Motivated by the above discussion, our work is concerned to study the existence

4



of ground states for coupled systems under several assumptions on the potentials and
nonlinearities involving critical growth. Though there has been some works in this
direction, not much has been done for the classes of coupled systems introduced by (1)
and (2) when the nonlinear terms reached critical exponential growth. These classes of
systems imposes some difficulties. The first one is the lack of compactness due to the
fact that they are defined in the whole Euclidean space RY, which roughly speaking,
originates from the invariance of R" with respect to translation and dilation. Moreover,
the systems involve strongly coupled Schrédinger equations because of the linear terms
in the right hand side. System (2) has an additional difficulty that is the presence of
the square root of the Laplacian which is a nonlocal operator, that is, it takes care of
the behavior of the solution in the whole space. To overcome these difficulties, we shall
use a variational approach based on Nehari manifold. The literature on the Nehari
manifold is rather extensive and for a description of this subject, see for example [68].
In the following, we describe each chapter of the thesis.

In Chapter 1, we study the following class of coupled systems

—Au+ Vi(z)u = pluP7?u + Nz)v, =€ RV,
—Av + Vo(z)v = |v]7 20 + AMa)u, xRV,

(6)

where N > 3,2 < p < ¢ < 2" and 2* = 2N/(N — 2) is the critical Sobolev exponent.
Throughout the thesis, the coupling term A will be related with the potentials V; and
V5 by the assumption

IN(z)] < 64/ Vi(z)Va(z), for some 0 <8< 1. (7)
We divided the study of System (6) into three cases:
(i) (subcritical case) 2 < p < q < 2%,
(i) (critical case) 2 < p < q = 2*,
(iii) (critical case) p = q = 2*.

The subcritical case is related with the classical paper of H. Brezis and E.H. Lieb, [12].

They proved the existence of ground states for the following class of systems
— Auy(x) = g'(u(z)), i=1,2,..,n, (8)

5



where ¢'(u) = 9G(u)/du;, for some G € C'(R™), n > 2. It can be checked that
when Vi(z) = p, Va(z) = v and Az) = A, with 0 < A < §,/uv, System (6)
becomes a particular case of System (8), satisfying all assumptions required on ¢
in [12]. However, we deal with a more general coupling term A(x) and two classes of
nonnegative potentials: periodic and asymptotically periodic. We prove the existence
of positive ground state and we use a bootstrap argument to improve the regularity of
the solution. In the critical case (ii), the existence of ground state will be related with
the parameter p introduced in the first equation. Indeed, we prove that if p > pg, for
some po > 0, then we get ground state. Finally, in case (iii), we make use of Pohozaev
identity to conclude the nonexistence of positive classical solution for System (6).

In Chapter 2, we deal with the following class of coupled systems

—Au+ Vi(x)u = fi(z,u) + AMz)v, =€ R?

(9)
—Av + Va(x)v = fo(z,v) + Mz)u, = € R

We consider a class of potentials introduced by B. Sirakov, [64]. Since Vi and V5 satisfy
(7), we restrict the assumptions to nonnegative potentials. However, these hypotheses
involve a large class of potentials, for instance, coercive potentials. Motivated by a
class of Trudinger-Moser inequalities introduced in [34] (see Lemma 2.2.1 in Section
2.2), we study System (9) when the nonlinearities have critical exponential growth in
the following sense: for i = 1,2 and af > 0, f; : R? x R — R satisfies

fi(z, s) 0 if a>af,

lim sup =
s—r4o00 Az‘@)(‘fmz —1) oo If a< 046,

where A;(x) is a suitable function introduced in (V) (see Chapter 2). In addition to

suitable assumptions, we suppose that there exists ¢ > 2 such that
Fi(z,8) + Fy(z,t) > 0(s? +19), forall x € R* and s,t >0,

where Fj(x,s) := fo (x,7) dr, for i = 1,2. Using a variational approach based on
Nehari manifold we prove that there exists f > 0 such that System (9) possesses a
positive ground state solution, for some 6 > 6,. Moreover, we use a bootstrap argument
to get regularity and L?-estimates to obtain an asymptotic behavior.

In Chapter 3 we study the existence of positive ground states for the following



class of coupled systems

—Au+u= fi(u) + XNz)v, z€R?

10
—Av+v = fo(v) + Ma)u, x€R? v

when the nonlinearities fi(s) and fs(s) have critical exponential growth motivated by
a class of Trudinger-Moser inequalities introduced by D.M. Cao [14] (see Theorem A

in Section 3.2). For ¢ = 1,2 the function f; : R — R has aj-critical growth at +oo,

that is,
, 0 if a>a,
limiup % = ° (11)
S——+00

o if a < o,
In order to prove the existence of ground states we assume the following hypothesis:

liminf $108) 5 g o 2 (12)

s—4o0 %S Q)

The assumption (12) was introduced in [1] and refined in [26]. It has been used in many
works, see e.g. [26,35|, and plays a very important role in this chapter. Indeed, (12)
will be used to get a suitable upper bound for the ground state energy level associated
with System (10). Thus, the ground state energy level will be in the range where we
can recover the compactness of the minimizing sequence. We study also the regularity
and we obtain asymptotic behavior.

Finally, in Chapter 4 we study the existence of ground states for the following

class of nonlocal coupled systems

(—A)Pu+ Vi(z)u = fi(u) + Mz)v, z€R,
(- A)20 4 V(o = fofw) + A)u, z € R

where (—A)'2 denotes the square root of the Laplace operator. Motivated by a class
of Trudinger-Moser type inequalities introduced by T. Ozawa [58] (see Theorem B in
Section 4.2) we consider nonlinearities with critical exponential growth (11). Our
results may be considered as the extension of the main result for the scalar case
in [36]. Here we improve the class of potentials and we deal with two coupled nonlocal

equations.



Notation and terminology

e C,C,Cy,C4,Cl,... denote positive (possibly different) constants;

e (. or C(e) denote positive constant which depends of the parameter ¢;
e Bpr(z) denotes the open ball of radius R and center z;

e Bg(x)¢ denotes the complement of Bg(x);

e |A| denotes the Lebesgue measure of a set A C RY;

e 4 denotes the characteristic function of a set A C R¥, that is,

1 if z€ A,

xa(z) =
0 if reRV\A

e For Q CRY u:Q — R and c € R, we write

{u>ct={reQ:ulx)>c} and {u<c}={recQ:ulx)<c};

e — denotes weak convergence in a normed space;

e — denotes strong convergence in a normed space;

e (- -) denotes the duality pairing between E and the topological dual E*;
e 0,(1) denotes a sequence which converges to 0 as n — oo;

e For 1 < p < oo, the standard norm in LP(RY) is denoted by || - ||,;

e For 1 <p < oo, LP(RY) x LP(RY) denotes the Lebesgue space with norm

y
(e, 0)llp = (llellp + llollp) ™



We denote by S the sharp constant of the embedding D'?(RY) — L* (RY)

2/2*
/ |Vul? dz > S (/ |u|? dx)
RN RN

where DV2(RY) := {u € L¥ (RY) : |Vu| € L}(RM)};

C(£2) denotes the space of continuous real functions in  C RY;

C(Q) denotes the space of continuous real functions in Q@ C RY which are

uniformly continuous on bounded sets of €2;

For an integer k& > 1, C*(Q) denotes the space of k-times continuously

differentiable real functions defined over 2 C R¥:
C(Q) = My CH();

C3°(€2) denotes the space of infinitely differentiable real functions whose support

is compact in Q C RY;
For 0 < 8 < 1and Q C RV, C%¥(Q) denotes the standard Hélder space, that is,

Cc8(Q) = {u € O(Q) : sup Ju(z) = uly)] < oo};

ryea T =yl

For an integer K > 1,0 < 8 < 1 and Q C RY, C*5(Q) denotes the space of the

functions in C*($2) whose all derivatives up order k belongs to C%#(Q);



Chapter 1

Ground states for coupled systems of

Schrodinger equations on RV

1.1 Introduction

In this chapter, we are interested in to establish existence and nonexistence results

for the following class of coupled systems involving nonlinear Schrédinger equations

—Au+ Vi(z)u = plulPu+ A(z)v, zeRN,

(Su)
—Av + Vy(x)v = [v|7 %0 + A(x)u, xRV, g

where N > 3,2 < p < ¢ < 2" and 2* = 2N/(N — 2) is the critical Sobolev exponent.
Our main goal here is to prove the existence of ground states for the subcritical case,
that is, when 2 < p < ¢ < 2* and for the critical case when 2 < p < ¢ = 2*. In
the critical case, the existence of ground state will be related with the parameter u
introduced in the first equation. We are concerned with two classes of nonnegative
potentials: periodic and asymptotically periodic. The proof of our results rely on
minimization method based on the Nehari manifold. For the critical case when
p = ¢ = 2%, we make use of the Pohozaev identity to prove that System (5,) does

not admit positive solution.

1.1.1 Assumptions

In view of the presence of the potentials Vi (z) and V;(x), for i = 1,2 we introduce

the following space
E; = {u c H'RY): / Vi(z)u? dz < —l—oo} :
RN

10



endowed with the inner product
(u,v) g, :/ VuVu dx—i—/ Vi(x)uv dz,
RN RN
to which corresponds the induced norm |lu||3, = (u,u)g,. In order to establish a
variational approach to treat System (S,,), we need to require suitable assumptions on

the potentials. For each i = 1,2, we assume that
(V1) Vi, A € CHRY) are 1-periodic in each of 1,7, ..., TN

(Vo) Vi(z) >0 for all z € RN and

v; = inf {/ |Vul? dx—i—/ Vi(z)u? da :/ u? dor = 1} > 0.
ueE; RN RN RN

(V3) |\(z)| < 8+/Vi(z)Va(z), for some § € (0,1), for all z € RY.
(V]) 0 < Mz) <6/ Vi(z)Va(z), for some § € (0,1), for all z € RV,

The assumption (V5) implies that E; is continuous embedded into LP(RY), for all
2 < p < 2*. We set the product space £ = E; x 5. We have that E is a Hilbert space
when endowed with the inner product
(1,0), (2, 0)) 5 = / (VuVz + Vi (2)uz + VoV + Va(z)ow) d,
RN
to which corresponds the induced norm ||(u, v)||3 = ((u,v), (u,v))p = |Jullz, + ||v]|Z,-

Associated to System (S,), we have the C? energy functional I : E — R defined by

1 W 1
o) = (Il -2 [ Ao ds) = Euly = 2ol

which its differential is given by
(I'(u,0), (6, 0)) = ((v,0), (¢,4)) — / (lul"~2ue + []*"%0 + M) (upp + ve)) dz,
RN
where (¢,7¢) € CPRY) x C3°(RY). Thus, critical points of I correspond to weak

solutions of (5,) and conversely.

Definition 1.1.1. We say that a pair (u,v) € E\ {(0,0)} is a ground state solution
(least energy solution) of (S,), if (u,v) is a solution of (S,) and its energy is minimal
among the energy of all nontrivial solutions of (S,), i.e., I(u,v) < I(w,z) for any
other nontrivial solution (w,z) € E. We say that (u,v) is nonnegative (nonpositive) if
u,v >0 (u,v <0) and positive (negative) if u,v >0 (u,v < 0).

11



We are also concerned with the existence of ground states for the following class

of coupled systems

—Au+ Vi(x)u = plulP?u+ MNz)v, = €RY, &)

~ . p
—Av + Vo(x)v = [v|7 20 + A(x)u, 2z €RY,

when the potentials V;(z), Va(x) and \(z) are asymptotically periodic, that is, they

are infinity limit of the periodic functions Vj(z), Va(x) and A(x). In analogous way,

we may define the suitable product space E = E; x E5 considering the asymptotically

periodic potential V;(z) instead Vj(x). In order to give a variational approach for our

problem, for ¢ = 1,2 we assume the following hypotheses:
(Va) Vi, A € CY(RN), Vi(x) < Vi(z), Mz) < A(z), for all z € RN and

lim |Vi(z)—Vi(z)]=0 and lim [\z)— A(z)|=0.

|z| =400 |z| =400

5 ~ix2 or all x € an
(V)V() 0 f 11 RY and

U; = inf {/ |Vul? dx—i—/ Vi(z)u? dz :/ u? dr = 1} > 0.
uek; RN RN RN
(Vo) |A(z)| < 6+/Vi(2x)Va(x), for some & € (0,1), for all z € RV,
(V) 0 < AMx) < 04/ Vi(2)Va(z), for some & € (0,1), for all z € RV,

1.1.2 Statement of the main results

The main results of this chapter are the following:

Theorem 1.1.2. Assume that (V1)-(V3) hold. If 2 < p < q < 2%, then there exists a
nonnegative ground state solution (ug,ve) € CLP(RN) x CLP(RN) for System (S,,), for

loc loc

all ;p > 0. If (VY) holds, then the ground state is positive.

Theorem 1.1.3. Assume that (V1)-(V3) hold. If 2 < p < q = 2*, then there
exists o > 0 such that System (S,) possesses a nonnegative ground state solution

(uo,v0) € E, for all > pg. If (VY) holds, then the ground state is positive.

Theorem 1.1.4. Suppose that assumptions (V1)-(Vs) hold. If 2 < p < q < 2%, then

there exists a nonnegative ground state solution (ug,ve) € CLP(RN) x CLP(RYN) for

System (Su): for all p >0 . Moreover, if 2 < p < q = 2%, then there exists pg > 0 such

that System (S,,) possesses a nonnegative ground state solution for all p > po. If (VY)

holds, then the ground states are positive.
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Theorem 1.1.5. Assume p = q = 2*. In addition, consider the following assumptions:
(Vz) 0 < (VVi(z), ) < CVi(x).

(Vs) [(VA(x), 2)| < C[A(z)] and (VA(z),z) <0,

Then, System (S,,) has no positive classical solution for all p > 0.

Remark 1.1.6. A typical example of functions satisfying (V) and (V) is A(z) =
—(1/D)|lz|* and Vi(x) = (1/2)]|z]*.

1.1.3 Outline

The remainder of this chapter is organized as follows. In the forthcoming section
we introduce and give some properties of the Nehari manifold (for a more complete
description of this subject we refer the reader to [68]). In Section 1.3 we deal with
System (5),) in the subcritical case when 2 < p < ¢ < 2* and the potentials are
periodic. For this matter we use a minimization method based on Nehari manifold
to get a positive ground state solution and a bootstrap argument to obtain regularity.
In Section 1.4 we study System (S,) in the critical case when 2 < p < ¢ = 2* with
periodic potentials. In the periodic case, the key point is to use the invariance of
the energy functional under translations to recover the compactness of the minimizing
sequence. In Section 1.5 we study the existence of ground states when the potentials
are asymptotically periodic. For this purpose, we establish a relation between the
energy levels associated to Systems (S,,) and (S5,,). Finally, in Section 1.6 we make use

of the Pohozaev identity to prove the nonexistence of positive classical solutions for

system (S,) in the critical case when p = ¢ = 2*.

1.2 Preliminary results

One of the features of the class of coupled systems studied in this thesis is the
presence of the coupling term A(z) in the equations. The assumption (V3) will be
required in all chapters henceforth. The next lemma is a crucial estimate obtained by

this assumption, and will be cited and used in the next chapters.
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Lemma 1.2.1. If (V3) holds, then we have

| (w, ) ||% — Q/RN Mz)uv dz > (1 —0)||(u,v)||%, for all (u,v) € E. (1.1)

Proof. For (u,v) € E we have

0= (VI@II = VI@Il) = V@) = 20 T@luly/Valallo] + Va(ay?,

which together with assumption (15) implies that
—2/ Moy dz > —2/ A()][ul]o] da
RN RN
> -2 [ U@Vl da
R

5 (/RN Vi(2)u? de + /RN Vi ()02 dx)

> =0l (w, )%,

which easily implies (1.1). |

v

V

In order to prove the existence of ground states, we introduce the Nehari manifold

associated to System (.5),)

N = {(u,v) € E\{(0,0)} : (I'(u,v), (u,v)) = 0}.

Notice that if (u,v) € N, then

1w, )1 — Q/RN Ax)uw dz = pllullf + [lvflg. (1.2)

It is obvious that all nontrivial critical points of I belong to A/. In general, the Nehari
manifold may not be a manifold. However, in our case, A is in fact a C'-manifold as

we can see in the following lemma:
Lemma 1.2.2. There exists a > 0 such that
|(u,v)||lg > «, forall (u,v) €N. (1.3)
Moreover, N is a C'-manifold.
Proof. Let (u,v) € N. By using (1.1), (1.2) and Sobolev embedding, we deduce that
L= )l < Il(u,v)[F -2 /RN A(@)uv dx

= pllully + [lollg
< C (I, )l + [[(w, 0)l[E) -

14



Hence, we have that
1-9 _ _
0< =2 < )l + w05

which implies (1.3). Now, let J : E\{(0,0)} — R be the C'-functional defined by
J(u,v) = (I'(u,v), (u,0)) = [|(w,v) ][5 — 2/RN A@)uv dz — pllully = [Jo][g.
Notice that N' = J~(0). If (u,v) € N, then it follows from (1.2) that
o) = 2ol =2 [ Aehude) - pulul; = ool
= -9 (Il -2 [ Nawde) + - ol
which together with (1.1), (1.3) and the fact that 2 < p < ¢ implies that
(J'(u,0), (u,0)) < (2= p)(1 = 0)ll(u, )|z < (2= p)(1 = )a <0. (1.4)

Therefore, 0 is a regular value of J and N is a C''-manifold. [ ]

Remark 1.2.3. If (ug,v9) € N is a critical point of I |y, then I'(ug,v9) = 0. In
fact, notice that I'(ug,vo) = nJ'(ug,vo), where n € R is the corresponding Lagrange
multiplier. Taking the scalar product with (ug,vy) and using (1.4) we conclude that
n=0.

We define the ground state energy associated with (5,) by

cy = inf  I(u,v).
N (u,0)eEN ( )

We note that ¢y is positive. In fact, for any (u,v) € N we can deduce that

o) = (5 2) (ol =2 [ awwwas) + (3= 2) ol

Since 2 < p < g, it follows from (1.1) and (1.3) that

M) = (55 ) 0= 0ol > (5 2) 1= >o,

which implies that cy > 0.
The set of all nontrivial critical points of I may contain only one element, while
the Nehari manifold contains infinitely many elements. Indeed, this is a consequence

of the following lemma:

15



Lemma 1.2.4. Assume that (V3) holds. Thus, for any (u,v) € E\{(0,0)}, there exists
a unique ty > 0, depending only on (u,v), such that

(tou, tov) € N and  I(tou,tov) = max I(tu, tv).

Proof. Let (u,v) € E\{(0,0)} be fixed and consider the function g : [0, 00) — R defined
by g(t) = I(tu,tv). Notice that (I'(tu,tv), (tu,tv)) = tg'(t). Therefore, ¢, is a positive
critical point of g if and only if (tou, tov) € N. It follows from assumption (V3) that

| (u, v)||% — 2/sz AMz)uv dx >0, for all (u,v) € E.

Since 2 < p < ¢ and

t2

tP 4
> (ol —2 [ Ao ac) = Zaul - 2 ol

9(t)
we conclude that ¢(t) < 0 for t > 0 sufficiently large. On the other hand, by using
(1.1) and Sobolev embeddings, we have that

2 2 T e
9(t) = (1= 0)5ll(wv)llz = Crllully, = Cortlvllk,

P2

1—46 12
> Plwolt (50 - ot

mww%ﬂ—@jfwmwgﬁ>a

provided ¢ > 0 is sufficiently small. Thus g has maximum points in (0, 00). In order to
prove the uniqueness, let us suppose that there exists tq,ts > 0 with ¢; < t5 such that

g'(t1) = ¢'(t2) = 0. Since every critical point of g satisfies

I, )1 — 2 /RN Mzyuv do =" plul[p + 772 |[v[|7,

we have that
0= (&2 =572 pllull+ (#72 = 57%) ||,

which contradicts the fact that (u,v) # (0,0). |

1.3 Proof of Theorem 1.1.2

By Ekeland’s variational principle (see [38]), there exists a sequence (uy,, vy ), C N
such that

I(tup,v,) — e and  I'(uy,v,) — 0. (1.5)
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Notice that (uy,vy,), is bounded. In fact, recalling that p < ¢ it follows from (1.1) and
(1.2) that

M) = (5 2) (Nt =2 [ M@ as) + (22 o

(%_é)a—anwm%mé

Since (I(uy,vy,)), is a bounded sequence, we conclude that (u,,v,), is bounded in E.
Passing to a subsequence if necessary, we way assume that (u,,v,) — (ug,vg) weakly
in £. By a standard argument, we have that I'(ug,vy) = 0. We recall the following
result due to P.L. Lions |69, Lemma 1.21] (see also [52]).

Lemma 1.3.1. Let r > 0 and 2 < s < 2*. If (up), C HY(RY) is a bounded sequence
such that

lim sup / |un|® dz =0,
n——+o0o yERN B (y)
then u, — 0 in L5(RN).
Proposition 1.3.2. There exists a ground state solution for System (S,).

Proof. We split the argument into two cases.
Case 1. (ug,vp) # (0,0).

In this case, (ug, vo) is a nontrivial critical point of the energy functional I. Thus,
(ug,vp) € N. Tt remains to prove that I(ug,vo) = cn. It is clear that ey < I(ug, vp).

On the other hand, by using the semicontinuity of norm, we can deduce that
en+on(1) = I(tn,vn) = (I (Un, V), (Un; Vn))
1 1 1
= (3-3) dwlz+ (5 3) ol

1 1
———)Mmmp (5 2) g+ ont1)

g, Vo) 2<[ (10, v0), (g, v0)) + 0n(1)
Uo, Vo) + 0n(1),

MIH

N DN

Il
~

(
= [(
which implies that ¢y > I(ug, vo). Therefore, I(ug,vg) = car.
Case 2. (ug,vp) = (0,0).

We claim that there exists a sequence (y,), C RY and R, £ > 0 such that

n—o0

hmmf/ (u2 +v2) dz > £ > 0. (1.6)
Br(yn)
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Suppose by contradiction that (1.6) does not hold. Thus, for any R > 0 we have

lim sup / u?dr =0 and lim sup / v2 dz = 0.
Br(y) Br(y)

n—oo yERN n—oo yGRN

It follows from Lemma 1.3.1 that u, — 0 strongly in LP(RY) and v, — 0 strongly
LY(RN), for any 2 < p,q < 2*. Since (u,,v,)n C N, we can deduce that

0 < (1=d)a < (1=0)(unva)llp < pllall} + [lvallf — 0,

which is a contradiction. Therefore, (1.6) holds.

We may assume without loss of generality that (y,), C Z~. Let us consider the
shift sequence (U, (), 0, (x)) = (up(x+yn), vn(x+yy)). Since Vi(+), Va(-) and A(-) are 1-
periodic functions, it follows that the energy functional I is invariant under translations
of the form (u,v) — (u(- — z),v(- — 2)) with z € Z". By a careful computation we can
deduce that

| (G, 0|2 = [[(Uns v )lEs I (T, D) = I(tp,vy) = cpr and I’ (Gp, 0,) — 0.

Moreover, arguing as before, we can conclude that (@, 0,), is a bounded sequence in
E. In this way, there exists a critical point (@, ?) of I, such that, up to a subsequence,
(T, Un) — (@, 0) weakly in E and (@, 0,) — (4, 0) strongly in L?(Bg(0)) x L*(Bg(0)).
Thus, using (1.6) we obtain

n—oo n—oo

/ (@* + 9%) dz = lim inf/ (@2 + 92) dz = lim inf/ (u2 +v2) dz > € > 0.
Br(0) Br(0) Br(yn)

Therefore, (@, 7) # (0,0). The conclusion follows as in the Case 1. [

Proposition 1.3.3. There exists a nonnegative ground state solution (u,0) €
CLERN) x CLE(RN) for System (S,,).

loc loc

Proof. Let (ug,v9) € N be the ground state obtained in the proposition 1.3.2. From
Lemma 1.2.4, there exists ¢ > 0 such that (¢|ug|, t|vo]) € N. Thus, we can deduce that

I(t|ugl, tlvg|) < I(tug, tvg) < rgaoxl(tuo,tvo) = I(ug,v0) = cpr,

which implies that (t|ugl, t|ve]) is also a minimizer of I on N. Therefore, (t|ugl,t|vol)
is a nonnegative ground state solution for System (.5,,).
To prove the regularity, we use the standard bootstrap argument. Let us denote

(t,0) = (t|ugl, t|vg|). First, we define
pr(@) = plalP 20+ A2)5 = Vi(@)i and  pa(a) = [5]125 + Az)i — Va()s.
Thus, (@, ) is a weak solution of the restricted problem

—Au = pi(x), x € By(0),
—AD =po(x), x € By(0).

18



Using Sobolev embedding we have that Vi(z)a, Va(z)o, A(z)a, M(z)o € L* (B1(0)).
Moreover, |a[P~?u € L"(B1(0)) for all 1 < r < 2¢/(p — 1) and |0|7%0 € L*(B;(0))
for all 1 < s <2*/(¢—1). Let us define r, = 2*/(q — 1). Since p < ¢, it follows that
ry < 2%/(p—1). Hence |a[P~%a € L™ (B;(0)). Therefore, p;(x), p2(x) € L™ (B1(0)). On
the other hand, for each i = 1,2 let w; be the Newtonian potential of p;(x). Thus, in
light of [42, Theorem 9.9] we have w; € W2 (B1(0)) and

Awy = pi(x), x € By(0),
Aws = po(x), = € By(0).

Therefore, (i —wy, 0 —ws) € H'(B1(0)) x H'(B1(0)) is a weak solution of the problem

Azl = O, in Bl<0)7
AZQ - 0, in Bl<0)

In light of [46, Corollary 1.2.1], we have that (G—w, 0 —wq) € C*°(B1(0)) x C*(B1(0)).
Therefore, (i,7) € W™ (B1(0)) x W™ (B;(0)). Since ¢—1 < 2* —1, there exists § > 0
such that (¢ — 1)(1 +9) = 2* — 1. Thus,

2* L(1+9) 2N

s ks T T 1) (1.7)

Recall the Sobolev embedding W2 (B;(0)) < L**(B1(0)), where s; = Nri/(N —2ry).
We claim that there exists ro € (ry, s1) such that (@,0) € W™ (B1(0)) x W272(B(0)).
Indeed, we define 7, = s1/(¢ — 1) and we note that ro < s1. By using (1.7) we deduce
that

) Nry (N_2)(1+5)

- = = > 1494,
rr (g—1)(N —2r)r N—-2—-46

which implies that ro € (r1, s1). By Sobolev embedding,

W2 (B1(0)) < L™ (B1(0)) = L™ (B1(0)).

Hence, pi(x),pa(z) € L™(B1(0)). From the same argument used before, we can
conclude that (@,0) € W22(By(0)) x W22 (B;(0)). Iterating, we obtain the sequence

1 Nr,
Thil = .
g1\ N =2,

Notice that r,,1 — 0o, as n — co. Therefore,

(a@,7) € W2 (RN) x W2I(RN), for all 2 <r < oc.

loc

From Sobolev embedding, we have that (@,9) € CY#(B;(0)) x CY#(B;(0)), for some
e (0,1). m

Proposition 1.3.4. If (V) holds, then the ground state is positive.
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Proof. Let (u,7) € FE\{(0,0)} be the nonnegative ground state obtained in the
proposition 1.3.3. Since (@, v) # (0,0) we may assume without loss of generality that
@ # 0. We claim that ¥ # 0. In fact, arguing by contradiction, let us suppose that
v = 0. Thus,

0= (I'(@, 0), (0,)) = — /RN Mz)ag dz, for all & € C(RY).

Since A(z) is positive, we have that @ = 0 which is a contradiction. Therefore, © # 0.

Taking (¢, 0) as test function one sees that

Vi(z)up doe = /

|G|P~ 2t do + / A(x)vp dz > 0,
RN

RN

VuVe dz + /

RN RN

for all o >0, ¢ € Cg°(RY). Thus, we can deduce that

(~2)Ve dz - / —Va(@)] (—@)p dz <0,

RN RN

for all o >0, ¢ € C°(RY). Moreover, since V;(x) > 0 for all z € RY, it follows that
—/ Vi(z)p dr <0, forall p >0, ¢ € C°(RY).
RN

In order to prove that (a,?) is positive, we suppose by contradiction that there exists
p € RY such that @(p) = 0. Thus, since — < 0 in RY, for any R > Ry > 0 we have
that

0= sup (—a) = sup (—a).
Br (p) Br(p)

By the Strong Maximum Principle [42, Theorem 8.19] we conclude that —a = 0 in
Bgr(p), for all R > Ry. Therefore, & = 0 in RY which is a contradiction. Therefore
@ > 0 in RY. Analogously we can prove that © > 0 in RY. Therefore, the ground state

(u,v) is positive. [

Proof of Theorem 1.1.2. Tt follows from Propositions 1.3.2, 1.3.3 and 1.3.4. |

1.4 Proof of Theorem 1.1.3

In this section, we deal with System (S5,) when 2 < p < ¢ = 2*. Analogously
to Theorem 1.1.2, we have a sequence (u,,v,), C N satisfying (1.5). Moreover, the
sequence is bounded and (u,,,v,) — (ug,vy) weakly in E. We have also that (ug,vo) is
a critical point of the energy functional I. In order to get a nontrivial critical point,

we need the following lemma:

Lemma 1.4.1. There exists pg > 0 such that cy < %SN/Q, for all u > pyp.
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Proof. Let us consider (u,v) € E such that u,v > 0 and u,v # 0. We denote u, = pu
and v, = pv. It follows from Lemma 1.2.4 that for any p > 0, there exists a unique
t, > 0 such that (t,u,,t,v,) € N. Thus,

()| ()1 = () pelllly + ()™ 0113+ + 2(tp1)? /RN Az)uo dz,  (1.8)

*

which implies that ||(u,v)||% > (t.1)* ~2||v||3-. Therefore, (¢,u), is a bounded sequence.

Passing to a subsequence if necessary, we may assume that ¢, — t>0, as U — +00.

We claim that ¢ = 0. Indeed, arguing by contradiction we suppose that ¢ > 0. In this

case,

v

(tup)? pllully + (t.p)* |Jv]l3e + 2(75“”)2/ AMz)uv dz — 400, as u — 400,
RN

which contradicts (1.8). Therefore, ¢, — 0 as  — +00. Hence, there exists po > 0
such that

t,11)? 1
P o) < L5V forall pz e

ev < I(t,uy, t,v,) < N

In analogous way to the proof of Theorem 1.1.2, we split the proof into two cases.
Case 1 (ug,v9) # (0,0).

This case is completely similar to the proof of the subcritical case.
Case 2 (ug,v9) = (0,0).

Let pg > 0 be the parameter obtained in the preceding lemma. We claim that if

1> o, then there exists a sequence (y,), C RY and constants R, £ > 0 such that

n—oo

lim inf/ (u2 +v2)do > € > 0. (1.9)
Br(yn)
In fact, suppose that (1.9) does not hold. Thus, for any R > 0 we have

lim sup / (u? +v2) dz = 0.
Br(y)

n—oo yERN

It follows from Lemma 1.3.1 that u,, — 0 strongly in LP(RY), for 2 < p < 2*. Notice
that

2*
2%

I(up,v,) —

1 -2 1
{1 (s ) Cam, 00)) = 55 =l o
which together with (1.5) and Lemma 1.3.1 implies that

2%
2* .

1 p—2
N on(1) = N (Hlunt) = 307 ). (00 = 22l ) = o
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Moreover, we can deduce that

Ney+o,(1) = ||vy,

Bl 0 s 00), () = 032 [ Ao da

The preceding computations implies that

Ney+on(1) = o,

o __N_ 2 __N_ 9
o S STz ||an||2 <STN-2 H(UmvnmE -2 N /\(x)unvn dx
R

Thus, we can conclude that

N

New + 0a(1) < (NCN)M +on(1).

S

Therefore, ¢y > +S™/2, contradicting Lemma 1.4.1.
Since (1.9) holds, we can consider the shift sequence (@, (z),0,(z)) = (un(x +
Yn),Un(T + y,)) and we can repeat the same arguments used in the proof of

Theorem 1.1.2 to finish the proof.

1.5 Proof of Theorem 1.1.4

In this section we are concerned with the existence of ground states for
the asymptotically periodic case. We emphasize that the only difference between
Vi(z), \(z) and Vi(z),\(z) is the 1-periodicity required to V;(z) and A(z). Thus, if
Vi(z) and \(z) are periodic potentials, we can make use of Theorems 1.1.2 and 1.1.3 to
get a ground state solution for System (Su)- Let us suppose that they are not periodic.

Associated to System (S),), we have the following energy functional

- 1 [ 1
I =— 2 —2 — —ulp = =|v]|%.
(o) =5 (1ol =2 [ S o) =Ll - 2ol
The Nehari manifold associated to System (S,,) is defined by
N = {(u,v) € E\{(0,0)} : (I'(u,v), (u,v)) = 0},

and the ground state energy is given by cg = inf I (u,v). Arguing as before we deduce
that

Fu,v) > (% - %) (1= 0)l|(u,0) 2 > (% - %) (1=8)p>0, forall (u,0)€N.

Hence, ¢ > 0. The next step is to establish a relation between the energy levels cy

and cy.
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Lemma 1.5.1. ¢y < cy.

Proof. Let (ug,vo) € N be the nonnegative ground state solution for System (.5,). It
is easy to see that Lemma 1.2.4 remains true for I and A. Thus, there exists a unique

to > 0, depending only on (ug, vg), such that (toug, tovy) € N. By using (V) we get
[ [03@) = Vi@ + (Vo) = Vala))ed + () = Ao o < .
RN

Therefore, f(touo,tovo) — I(toug, tovg) < 0. Since (ug,vg) is a ground state for

System (5),) we can use Lemma 1.2.4 to deduce that
ey < f(toug,tovo) < I(toug, tovg) < max I(tug, tvg) = I(ug,v9) = cp,
which finishes the proof. [ |

Let (un, vn)n C N be the minimizing sequence satisfying
I(tn, vy) — ¢y and Iy, v,) — 0. (1.10)

Since (uy,, vy,), is a bounded sequence in E, we may assume up to a subsequence that
(tn, V) — (ug,vo) weakly in £. The main difficulty here is to prove that the weak

limit is nontrivial.

Proposition 1.5.2. The weak limit (ug,vy) of the minimizing sequence (uy,vy), is

nontrivial.

Proof. We suppose by contradiction that (ug,vg) = (0,0). We may assume that
e u, — 0 and v, — 0 strongly in L! (RY), for all 2 < p < 2%;
e u,(z) = 0 and v,(z) — 0 almost everywhere in R”.

It follows from assumption (V) that for any € > 0 there exists R > 0 such that

Vi(z) = Vi(2)] <&, |Valz)—Va(z)| <e, |Mz)—Max)| <e, for |z| > R. (1.11)

By using (1.11) and Sobolev embedding and local convergence there exists ny € N such
that

IN

[ @) = Vita) do

/ Vi) — Vi ()] dx+C€/ W2 do
Br(0)

Br(0)¢

< (IVillzgs, + IVillge ) lunl 725 ooy + Cellunll,
< (IVallggs, + [Vallzgs )e + Ce,
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for all n > ny. Analogously, we can deduce that

< (IVallzse + [[Vall e e + Ce.

loc loc

[ Vala) = Vawyet o

We have also from (1.11) the following estimates

/RN(S\(Q:) — M) upv, dz

< / ]5\(1') — X)) ||un||vn| dz + C’e/ [t | vy dz
Br(0)

Br(0)¢
< (Mg

loc

+ Al 5. )e + C,

for all n > ny. Therefore, we can conclude that

I(tp, vy) — (U, v,) = 0,(1)  and (I’ (U, vp), (U, 00)) — (' (Un, Un)s (Un, Un)) = 0, (1),
which jointly with (1.10) implies that

I(up,v,) = ¢y +0,(1) and  (I'(wy, vy), (Un, vn)) = 0,(1). (1.12)
Using Lemma 1.2.4, we obtain a sequence (t,,), C (0, +00) such that (¢,uy, t,v,)n C N.

Claim 1. limsup,,_,, . t, < 1.

Arguing by contradiction, we suppose that there exists £g > 0 such that, up to a
subsequence, we have t,, > 1 + ¢, for all n € N. Thus, using (1.12) and the fact that
(tntin, tav,) C N we get

(7% = Dpllunllh + (272 = Dlvalld = 0a(1),
which together with ¢, > 1 4 g implies that
(1 +20)"™2 = Dpallunllpy + (1 4+ £0)7% = Dfvalld < 0 (1) (1.13)

Similarly to the proof of Theorems 1.1.2 and 1.1.3, there exists a sequence (y,), C RY
and constants R, & > 0 such that

n—oo

lim inf/ (u2 +v2) dz > £ > 0. (1.14)
Br(yn)

We point out that when ¢ = 2*, (1.14) holds for parameters p > g, where py was
introduced in Lemma 1.4.1. Let us define (@, (), 0,(2)) = (un(x + yn), n(x + yn)). It
follows from assumption (V) that Vi,V € L®(RY). Using the continuous embedding
E; — HYRM) we can deduce that (i, @,), is bounded in E. Thus, up to a

subsequence, we may consider (i, o,) — (4, 7) weakly in E. Therefore,

lim (@2 +2) dz = lim (u? +v2) dz > B >0,
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which implies (@, 0) # (0,0). Thus, by using (1.13) and the semicontinuity of the norm,
we get
0 < ((L4e0)" = Dpllafly + (L +0)"* = DII5]g < 0a(D),

which is not possible and finishes the proof of Claim 1.
Claim 2. There exists ng € N such that t,, > 1, for n > ng.

In fact, arguing by contradiction, we suppose that up to a subsequence, ¢, < 1.
Since (tnUn, thvn)n C N we have that
—2 q—2
2q 2q
Therefore, cyr < ¢y which contradicts Lemma 1.5.1 and finishes the proof of Claim 2.

v < pz;pzutﬁllun!\ﬁ + L2t fuallt < 102;})2#”%“5 + [onll§ = e + on(1).
Combining Claims 1 and 2 we deduce that
I(tyun, thv,) — I(tn, v,) = 0,(1).
Thus, it follows from (1.12) that
e < I(tptn, tavn) = I(un, vy) + 0,(1) = ¢ + 0n(1),
which contradicts Lemma 1.5.1. Therefore, (ug,v) # (0, 0). [

Proof of Theorem 1.1.J completed. Since (ug,vy) is a nontrivial point of the energy
functional I, it follows that (ug,ve) € N. Therefore, we have ¢ < I(ug,vp). On the

other hand, using the semicontinuity of the norm we deduce that

1 1 1 1
cxtonlt) = (53 )ululz+ (5 1) ol
1 1 1 1
> (53) twlz+ (51 ) Il +outt)

= I(uo, vo) + 0n(1).

Hence, ¢y > I(ug, vo). Therefore I(ug,vy) = cn. Repeating the same argument used
in the proof of Theorem 1.1.2, we can deduce that there exists t; > 0 such that
(to|uo, tolvo]) € N is a positive ground state solution for System (S,,) which finishes
the proof of Theorem 1.1.4. [ |

1.6 Proof of Theorem 1.1.5

In this section we deal of the following coupled system

—Au+ Vi(z)u = plu* 2u+ Nz)v, z€RY,

(1.15)
—Av + Vy(x)v = [v|* 20 + MNz)u, € RV

In order to get a nonexistence result, we prove the following Pohozaev identity.
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Lemma 1.6.1. Suppose N > 3 and (V7),(Vs). If (u,v) € E is a classical solution of
(1.15), then it satisfies the following Pohozaev identity:

/ (IVul®> + [Vo|*) dz = / (u)® + [0 + 2*A(z)w) da +/ (VA(z), z)uv dz
RN RN RN
2*

T2 Jen (Vi(z)u® + Va(x)v?) da — ﬁ /RN (VVi(z), z)u® + (VVa(z), 2)0?) da.

Proof. Let (u,v) € E be a classical solution of the system (1.15) and let us denote
F ) = ~Va@utplul ur M@)o and gz, u,v) = ~Va()o-t o 2o+ A

We consider the cut-off function ¢ € C3°(R) defined by

1 if | <1,
t) = =
v {Oif it > 2.

such that [¢'(t)| < C, for some C' > 0. We define ¢,,(z) = ¢ (|z|*/n?) and we note that
2, (|zf
vunte) = o (B )
Multiplying the first equation in (1.15) by the factor (Vu,z)1, and integrating we
obtain

—/ Au(Vu, x)ip, do = f(z,u,v)(Vu, 2)1, de.
RN

RN
Multiplying the second equation in (1.15) by the factor (Vv,z)1, and integrating we
get

—/ Av(Vv, z)iby, dx:/ g(x,u,v)(Vv,x), dx.
RN

RN
The idea is to take the limit as n — 400 in the following equation

—/ (Au(Vu, x) + Av(Vv,z)), de = f(z,u,v)(Vu, x)b, de+
RN

RN
+/ g(x,u,v)(Vou, x)1, dz. (1.16)
RN
In order to calculate the limit in the left-hand side of (1.16), we note that

div((Vu, 2)v,Vu) = (V ((Vu,z)1,), Vu) + (Vu, )b, div(Vu)
= V(V ((Vu,z)),Vu) + (Vu, z)(Vib,, Vu) + (Vu, x)1p, Au.
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Moreover, we have

N N
0 ou 0 ou
<V(<VU7I>) 7VU> = <<11 G_xl (a—xl%) 7.--,;% <8—xl$z)> »VU>
N N
0 ou 0 ou
- <<; 0_1,1 (axl) L, ) £ aZEN <8$Z) xz) + VU’7 VU>

Thus, we can deduce that
(Vu, 2), Au = div ((Vu, x)1b, Vu)—1b, (<V (—) ,x) — |Vu|2>+<Vu,x><an, Vu).

Since

2 2 2
div (¢n|v2u| :1:) = Y, (V (@) ,T) + gwnIVUP + @(Vzﬂn,x%

it follows that

(Vu, x)th,Au = div(e, H(z,u))+ ?@/}MVUF - @ (Vipy, ) — (Vu, 2) (Vib,, Vu),
(1.17)
where
|Vul?

H(z,u) = (Vu,z)Vu —

Z.

Let us denote H'(x,u) the i-coordinate of H(z,u) for 1 <7 < N. Since u € H}

loc

(RY)

and supp(¢,) C Ba,(0), we can use the definition of weak derivatives to conclude that

N a |
div(yp, H (z,u)) do = 9y Hie, ;
/RN iv(¢, H(z,u)) do ;/B%(O) % (Y H'(z,u)) dz
- z‘zl/BZn(O) (a% Bz, u) = a_ﬂﬁz‘H <x’“)) dr
= 0.

In order to use the Lebesgue dominated convergence theorem, we note that:

o |[¢,|Vul?| < |Vul? € LYRY) and ¥,|Vu|* = |Vu|?, almost everywhere in RY;
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[Vul?
2
everywhere in RY;

[Vul®

(Vibp,z) — 0, almost

<V¢n,x>’ < C|Vul* € LYRY) and

o |(Vu,z)(Vi,, Vu)| < C|Vu* € L'RY) and (Vu,z)(Vip,, Vu) — 0, almost

everywhere in RV,

Therefore, integrating (1.17) and passing the limit, we obtain

— lim (Vu, z)p,Au dz = —%/ |Vul? dz. (1.18)
RN

n—oo RN
Analogously, we can deduce the limit

— lim (Vo, ), Av de = —%/ |Vo|* da. (1.19)
RN

n—oo RN
The convergences (1.18) and (1.19) implies the limit of the left-hand side in (1.16). In
order to calculate the right-hand side, we note that
div (Y, F(z,u,v)x) = (V (Yo F(x,u,v)),x) + ¥, F(z,u,v)div(z)
= Y (VF(x,u,v),x) + F(x,u,v)(Vib,,z) + N, F(x,u,v),

where F(z,u,v) = —3Vi(2)u® + £&ul*” + A(z)uv. Moreover, we have that

1 .
VF(z,u,v) = —§V‘/1(a:)u2 — (Vi(x)u + plul* "2u + Mz)v)Vu + VA (2)uv + A(x)uVo,
which implies that
1
(VF(xz,u,v),z) = —§<VV1(Z‘), z)u? + f(z,u,v)(Vu, z) + (VA(z), 2)uv + (A(z)uVo, z).

Therefore,

fz,u,v)(Vu, x)th, do = / (div(n F(z, u,v)z) — F(x,u,v){Vih,, x)1b,) da

RN RN

# [ (300002 - NP0 ~ (A, 2)w — (@uVe,o) ) b, do

v]?" 4+ A(x)uv, we can deduce

Analogously, denoting G(z, u,v) = _%‘/Q(x)v2 4 QL

/]RN g(z,u,v)(Vv, x), do = / (div(¢,G(z,u,v)x) — G(z,u,v){Vih,, x)1,) dx

RN

n / ) (%wwx),mz — NG(w,u,0)n — (VA(x), zyuv — <A<x>vw,x>) n da

We note that

al O(uv)
- /RN Ax)(uVv 4+ vVu, )1, de = —/ A(x) ; . z 1y, dz.

B2, (0)
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Using integration by parts we have that

3 In )
_ /]32n(0) M) - Z/BQ (8@ (x)uv + a—xixiuvwn + NQZJnA(x)uv) _

Therefore,

lim Ax)(uVv + vVu, ), de = —/ (VA(z),z)uv de — N A(x)uv de.

n—oo RN RN RN

Thus, using the Lebesgue dominated convergence theorem in the same way as we used

when we calculate the left-hand side, we obtain

lim (f(z,u,v)(Vu,z) + g(z,u,v)(Vv,z)) ¢, dv = =N F(z,u,v) dx

-N G(z,u,v) dz + %/]RN (VVi(z), z)u® + (VVa(z), 2)0?) da

RN

_/N<w( ), 2yuv de + N | Aa)uww da.

RN

Replacing F(x,u,v) and G(z,u,v) in the equation above, we get the right-hand side
of (1.16) which finishes the proof. |

Proof of Theorem 1.1.5 completed. Let (u,v) € E be a positive classical solution of
(1.15). By the definition of weak solution we obtain

/ (IVul + Vi(2)a + [Vl + Va(z)o?) d:z::/ (Juf” + o>+ 2\(z)uv) de.
RN RN

which together with the Pohozaev identity obtained in Lemma 1.6.1 implies that

0= (1 - %) /RN (Vi(z)u® + Va(z)v* — 2X\(z)w) dz + /RN<V)\( x), x)uv dx
53 L (V@) + (9Vala). o) do. (120
Multiplying (1.20) by the factor —(N — 2)/2, we get
N —2

/ (Vi(z)u® + Va(z)v® — 2A(z)w) dz = —/ (VA(z),z)uv de
RN 2 RN

1

—= (VVi(z),z)u® + (VVa(z),z)v*) da.

2 RN

Thus, it follows from assumptions (V7) and (Vg) that
/ (Vi(z)u® + Va(z)v* — 2A\(z)w) dz < 0.
RN

On the other hand, by assumption (V3) we get

/]RN (VI@)U2 + Va(z)v? — 2)\(x)uv) dx > 0.
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Thus, we conclude that

/RN (\/1($)u2 + ‘/2(1’)1)2 — 2)\(1})uv> dz = 0.

Therefore, we finally deduce that

0 < / (Vi@ — VValah) da

Yu? — 23/ Vi () Va(z)uw + ‘/Q(ZE)U2> dx

%\%\%

, (v
2
< (V1 z)u® + Va(z)v? — SA(x)uv> dz
N
< (Vi(z)u® + Va(z)v* — 2\ (z)wv) da
RN
which is not possible and finishes the proof of Theorem 1.1.5. |

Remark 1.6.2. Let us set
A:={pn>0:(5,) has ground state}.

We proved that A is nonempty since for p sufficiently large System (S,) possesses

ground state solution. Let us define i := inf A. Naturally arise the following questions:
(i) p>07?
(ii) A = [ji,4+00) or A = (fi,+00)?

Moreover, let us consider the following system

—Au+ Vi(z)u = [ufPPu+ Mz,  z€RY,
—Av + Va(z)v = plv]* v + AMz)u, xRN,

Does System (S,,) possesses ground state solution for any p > 07
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Chapter 2

Ground states for coupled systems of
Schrédinger equations on R? involving

critical exponential growth

2.1 Introduction

In this chapter we study the following class of coupled systems

—Au+ Vi(z)u = fi(z,u) + Mz)v, z € R?

(5)
—Av + Va(z)v = fo(z,v) + AMx)u, =€ R

where the potentials Vi, V5 are nonnegative and satisfy |\(z)| < §+/Vi(z)Va(z) for
some 0 < § < 1. Our main contribution in this chapter is to prove the existence of
ground states for the class of coupled systems (5) under assumptions involving a large
class of potentials that contains, for example, coercive potentials, and nonlinearities
with critical exponential growth of the Trudinger-Moser type.

2.1.1 Assumptions

We will use the notation H'(R?) for the usual Sobolev space, endowed the

standard scalar product and the induced norm

(u,v):/ (VuVov +w) de, Hqu:/ (IVul® +u?) dz.
R2 R2

For each i = 1,2, we consider the following weighted Sobolev space defined by
Hy, (R?) = {u € H'(R?): / Vi(z)u? dz < oo} :
R2
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endowed with the natural norm

1/2
v, = (/ |Vul? d$+/ Vi(z)u? dx) :
R2 R2

In order to apply variational methods based on the space Hy,(R?), we assume suitable

i

conditions on the potential V;(z) for each i = 1, 2.

(V1) Vi(z) >0, for all z € R? and V; € L2 (R?).

loc

(V2) The infimum
inf {/ (IVul® + Vi(z)u®) da : / u? do = 1}
ueHVi(RQ) R2 R2
is positive.
(V3) Let Q C R? be open and 2 < s < co. There exists s € [2,+00) such that

lim v!(R?*\Bg) = o0,

R—o0

where
/ (IVul + Vi(ap?) de
Z(Q) _ inf Q2 2/
Vg = ue H} (2)\{0} (fQ |ul* d:v)
00 if Q=40.

it Q40

(V4) There exists functions A;(z) € L2 (R?), with A;(x) > 1, and constants ; > 1,
Co, Ry > 0 such that

Ai(x) < Cy [1 + Vi(x)l/ﬁi] , forall |z| > Ry.

(V5) There exists 0 < § < 1 such that |A(z)| < 1/Vi(z)Va(z), for all z € R2
(VZ) There exists 0 < § < 1 such that 0 < A(z) < §+/Vi(x)Va(x), for all z € R>.

Motivated by a class of Trudinger-Moser type inequality proved in [34], we study
a class of coupled systems when the nonlinearities have exponential critical growth. In
view of this inequality, we consider nonlinearities with mazimal growth, which allows
us to treat System (S) variationally. Precisely, for i = 1,2 and of > 0, we say that

fi : R? x R — R has a)-critical growth at +oo if, uniformly in z, we have

A 0 if a> af,
lim sup J: (:Ea’sf) = ? (2.1)
sotoo Ai(x) (€2 — 1) oo if a < .

For each 7 = 1,2, we assume the following hypotheses under the nonlinearities:
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(f1) i : R*xR—=RisC', fi(z,s) =0 for all z € R* s <0, and

im filz, ) =0, uniformly in z € R%
s—0 A;(x)s

(f2) fi(z,s) and Ofi(x,s)/0s are locally bounded in s, that is, for any bounded
interval I C R, there exists C' > 0 such that |f;(z,s)|,|0fi(z,s)/0s| < C, for
all (z,s) e R* x I.

(f3) For each fixed z € R? the function s — s~! f;(x, s) is increasing for s > 0;
(f1) There exists pu; > 2 such that
0 < piFy(z,s):= pi/ fi(z,7)dT < sfi(z,s), forall x € R* and s > 0.
0

We denote the product space E = Hy, (R?) x Hy,(R?) which is a Hilbert space

when endowed with the scalar product

((u,v), (w, 2)) = / (VuVw + Vi(z)uw + VoVz + Va(z)vz) dz,

R2

to which corresponds the induced norm

I o) =l + 0l = [ (VP +VaGoy?) das [ (90F +Va(o)e?) o

The energy functional I : E — R associated with System (.5) is

I(u,v) = % (||(u,v)||2 - Q/RQ A )uw dx) - /R (Fy(z,u) + Fy(z,v)) da.

By standard arguments can be verified that I € C?(E,R) and its derivative is given by

(1100, 6, 0)) = (0,0 0:0)= | ()6 + o)) da= | Nw) -+ v) da,

2

where (¢,7v) € C(RY) x C5°(RY). Thus critical points of I correspond to weak

solutions of () and conversely.

Definition 2.1.1. We say that a pair (u,v) € E\ {(0,0)} is a ground state solution
(least energy solution) of (), if (u,v) is a solution of (S) and its energy is minimal
among the energy of all nontrivial solutions of (5), i.e., I(u,v) < I(w,z) for any
other nontrivial solution (w,z) € E. We say that (u,v) is nonnegative (nonpositive) if

u,v >0 (u,v <0) and positive (negative) if u,v >0 (u,v < 0).
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2.1.2 Statement of the main result

Now we are in position to state our main result.

Theorem 2.1.2. For each i = 1,2 suppose that fi(x,s) and Ofi(x,s)/ds have -
critical growth, (V1)-(V5) and (f1)-(f4) are satisfied. In addition, suppose the following
hypothesis:

(fs) There exists ¢ > 2 such that
Fi(x,8) + Fy(x,t) > 0(s?+ 1), for all z € R?* and s,t > 0.
Then, there exists a constant 0y > 0 such that System (S) possesses a nonnegative

ground state solution (ug,vo) € E, for some 6 > 0y. If (V) holds, then the ground
state is positive. Moreover, (ug,vy) € CL*(R?) x CL*(R?) for some a € (0,1) with the

loc loc
following asymptotic behavior

Remark 2.1.3. We collect some remarks on our assumptions:
(i) A typical example of nonlinearity which satisfies the assumptions (f;)-(f5) is
given by
£s) 0qs? 25 + qsT25(e20% — 1) + 2ap595e™ if §> 0,
S) =
0 if s<0,

where ¢ > p > 2 and «y is the critical exponent of the definition (2.1).

(ii) There are many examples of functions V;(z) and A(z) satisfying (15)-(V5). For

instance, consider
1 if Jz| <1,
Vi(z) = .
lz|*" if x| > 1,
where o' > 2, and A\(z) € C5°(R?) such that

1/2 if |z <1,
/\(I’) = 1 1/2
(_) it o] > 1.

|z|2 41
(iii) We will prove the existence of ground state when the constant 6 introduced in
(f5) is large enough. Accurately, we obtain the ground state for some constant

satisfying

)

0 l—op—2 q Ar q

where p = min{uy, i2}, @p = max{a}, ad} and 5y = max{%, (Bf—il)}
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(iv) The assumption (f5) can be weakened. Indeed, instead of (f5), we can just assume

for each 7 = 1, 2, the following local condition

E
lim inf —/———2 (az, )

> . .
m it . >pu>0 (2.2)

It can be deduced that conditions (f;) and (2.2) imply that (f5) holds.

2.1.3 Outline

The remainder of this chapter is organized as follows. In the forthcoming section
we collect some lemmas which are crucial to give a variational approach for our work.
Furthermore, we introduce and give some properties of the Nehari manifold associated
with the energy functional. In Section 2.3 we make use of the Ekeland’s variational
principle to obtain a minimizing sequence for the ground state energy associated with
System (5), and we use the growth conditions of the nonlinearities and a Trudinger-
Moser type inequality to prove that the weak limit of this sequence will be a ground
state solution of the problem. After that, we use the known ground state to get another
ground state which will be positive. Finally, we apply a bootstrap argument and L9-

estimates to obtain regularity and asymptotic behavior.

2.2 Preliminary results

It is well known that when N > 3, it is standard to require a polynomial
growth at infinity in order to define associated functionals in Sobolev spaces. However,
when N = 2, in view of a class of Trudinger-Moser inequality, a faster growth can
be allowed on the nonlinearities in order to treat System (5) variationally, see for
instance [14, 32,57, 71]. The following extension of the Trudinger-Moser inequality
for the whole space R? contained in [34], allow us to study System (S) when the
nonlinearities have exponential growth involving the terms A;(z) and As(z).

Lemma 2.2.1. Suppose that (V1)-(Vy) are satisfied and let i = 1,2. Then, for any
u € Hy,(R?), ¢ > 2 and o' > 0,

/R? Ay(z)(e®™ = 1)|ul? dz < co. (2.3)
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Furthermore, if o'B;||u||? < 4n(B; — 1), there exists C > 0 such that
Vi

/ Ay(@)(e™ — D)[ul? dz < Cjull?,. (2.4)
R2
Lemma 2.2.2. Ifa>0,1>1 andr > 1, then

2

(e — 1) < (e*™ —1), forall s€R.

Proof. In fact, let f : [1,4+00) — R be the function defined by f(t) = (t' —1)— (t—1)%.
Notice that f(1) = 0 and f'(t) > 0, for all ¢ > 1. The result follows taking t = e**". W

For ¢ = 1, 2, let us define the weighted Lebesgue space
Lh (R?) = {u : R? — R measurable : / Ai(z)|ulP dz < —l—oo} :
RQ
endowed with the usual norm

1/p
s, = ([ A as)

We set the product space LY (R?) x L% (R?) endowed with the norm

p p 1/p
It 0)les, =l + Tl )
The following embedding result has been proved by B. Sirakov in [64].

Lemma 2.2.3. Under the assumptions (V)-(V,), for i = 1,2, Hy,(R?) is compactly
embedded into the Lebesgque spaces LP(R?) and LA, (R?), for all 2 < q < oo.

Lemma 2.2.4. Suppose that (f3)-(f1) hold. Then, for each i = 1,2 we have

0fi
s 8fs (x,s) — sfi(x,s) >0, (2.5)
%(z, s) >0, (2.6)
sfi(x,s) —2F;(x,s) > 0, (2.7)

for all x € R? and s > 0.

Proof. For i = 1,2, it follows from assumption (f3) that

2 0fi
0<2 (fi(w’ S)) 7’ 55 (128) = sfi(@,5)

3 3 , for x € R?* and s >0,
s s s

which implies (2.5). Using the preceding estimate together with (f;) we get
df; fi(I, S) 2%

z,8) > > 2 F(x,s) >0, for x €R? and s >0,
0s S 52
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which implies (2.6). Now, let € R? be fixed and consider 0 < s < t. Thus, using (f3)

we deduce that

sfi(x,s) = 2Fi(x,5) = 2fi2:9) — 2F(x +2/ B

S

< sz(:c 2 — 2F;(x, )—|—2—fl(:§’t)/ Tdr

t
_ SQ—f"(f’t) —ZE(x,t)—i—(tQ—SQ)fi(g;’t)

= tfi(z,t) — 2F;(z,t).

Therefore, the function sf;(z,s) — 2F;(x, s) is increasing for s > 0. Since sf;(x,0) —

2F;(x,0) =0, (2.7) follows.

Lemma 2.2.5. Suppose that (2.1), (Vi), (1), (f2) and (fs) are satisfied. For any

>0, a>a} and r > 2, there exists C = C(e,r) > 0 such that

fi(z,s)s < eAi(z)s* + CA;(z)(e™
Fi(z,8) < eAi(z)s* + C’Ai(ﬂ:)(eo‘s2 —1)s",

df; (z
0s '

for each i = 1,2 and for all (x,s) € R? x [0, +00).

5) < eAi(x)s? + CA;(z) (e

Proof. Let € > 0 be fixed. By using (f), there exists § > 0 such that
fi(z,5)s < eAi(x)s®, forall z € R* and 0 < s < 0.

By using (2.1) for a > ), there exists R > 0 such that

2

filz, s)s < eAi(2) (e —1)s < Ci(e, ) Ai(x) (e —1)s",

for all z € R? and s > R. It follows from (V) and (f5) that

2

fi(z,5)s < Cy(e,r)Ai(z)(e* —1)s", for all (x,s) € R* x [§, R)].
From (2.12) and (2.13) we get

filz,s)s < Ce,r)A(x) (e —1)s", for all (z,s) € R? x [§, +00).
Combining (2.11) and (2.14) we get (2.8). By assumption (f;) we have

1
Fi(z,8) < —fi(x,s)s, forall (z,s) € R* x [0, +00),

i

(2.11)

(2.12)

(2.13)

(2.14)

and (2.9) follows immediately of the estimate (2.8). Analogously we can deduce

(2.10).
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The Nehari manifold associated to System (.5) is given by
N = {(u,v) € EN{(0,0)} : {I'(u, v), (u,v)) = 0}.
Notice that if (u,v) € N then

| (w, v)||* — 2 /R2 Mz)uwwdr = [ filv,w)udr+ [ folz,v)v do. (2.15)

R2 R2

Lemma 2.2.6. If (u,v) € N, then [{u > 0} > 0 or [{v > 0}] > 0.

Proof. Arguing by contradiction, let (u,v) € N be such that [{u > 0}| = 0 and
|{v > 0}| = 0. We recall from Lemma 1.2.1 that

| (w, ) |* — 2/ Mz)uv dz > (1 —0)||(u,v)||?, for all (u,v) € E. (2.16)
R2
By using (2.16) and the fact that (u,v) € N, we have that

0 < (1=9)l(uv)|
< l(u,v)||* - 2/&? AMz)uv dz

= filz,wude+ | fo(z,v) de =0,

R2 R2

which is not possible and finishes the proof. [ |

In general, the Nehari manifold may not be a manifold. However, under our

assumptions, N is in fact a C'-manifold as we can see in the following lemma:

Lemma 2.2.7. N is a C'-manifold and there exists v > 0, such that
|(u,v)|| >, for all (u,v) € N. (2.17)

Proof. We define the C'-functional ¢ : E\{(0,0)} — R by ¢(u,v) = (I'(u,v), (u,v)),
that is,
p(u,v) = [|(u, v)|* - 2/ AMrjuwo de — | fi(z,u)udr — [ fo(z,v)v de.
R2 R2 R2
Notice that ' = ¢~1(0). Moreover, if (u,v) € N/, then it follows from (2.5) and (2.15)
that

<f1($, w)u — %($, uyu® + fola, v)v — %(JS, v)v2> dz <0,

(¢ (w0), (o)) = [ ) L
(2.18)

RQ

which implies that 0 is a regular value of ¢. Therefore A is a C'-manifold.
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Assume by contradiction that (2.17) does not hold. Thus, there exists a sequence
(U, Vn)n C N such that ||(un, v,)|| = 0 as n — +oo. Let us consider
o' >al and 0<y <7y <4n(Bi—1)/a'B;, fori=1,2
and let ng € N be such that ||(u,,v,)||* <1 < 72, for n > ny. By using Lemma 2.2.1,
estimate (2.8) and Sobolev embedding, for given r > 2 and ¢ > 0, we deduce that

Fir(@, uu, dz < elfuy |2 +02/
Aq R

eChllunlly, + Collunlly,

< eCtll(un, va)lI* + Coll (tn, )",

Ay () (e — Du,|" da
R2 2

IN

for n > ng. Analogously, we get

fo(z,v0) v, dz < eCs|(tn, v0)||? + Cul|(tn, v, ||, for n > ny.
RQ

Hence,
/ (fi(x, up)un + fo(z,v,)v,) de < 56’1|](un, v)||? + ég\|(un,vn)\|r. (2.19)
RQ

Thus, it follows from (2.15), (2.16) and (2.19) that

(L= ), va) I < I, va)I* = 2/]1@2 A(@)unon dz

- / (1 (2 0 )it + fol,vn)0n) da
RQ
< <G|t w12 + Coll (ts v "

Since € > 0 is arbitrary and C; does not depends of ¢ and n, we can choose ¢ sufficiently
small such that 1 — § — £C; > 0. Therefore,

15—\

—0—¢ely

0<ys= <+> < |t vn) |-
Cs

If we consider v, < v = min{~s,v3} we get a contradiction. Therefore (2.17) holds. W

Let us define the ground state energy associated with System (.5)

= inf [ .
ey = nf I(u,0)
We claim that ¢y is positive. Indeed, using (f;) and recalling that g := min{uq, po},
it follows that
1

Iwov) = 3 (||(u,v)||2 —Z/RQ Aa)uw da:) —/RQ(Fl(x,u) + Fy(z,v)) do

> L (||(u,v)||2 — 2/ Az)uw d:v) L fi(z,u)u dz — i fo(z,v)v dz
2 2

M1 JRr2 K2 JRr2

(% _ %) <H<u,v)u2 - Q/RQ Al da:) ,
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for all (u,v) € N, which together with Lemma 2.2.7 and (2.16) implies that

o) 2 (53 ) @ =olwol > (3-1) =97 >0

Let us define the set

E. = {(u,v) € E\{(0,0)} : [{u >0} > 0 or [{v > 0}| > 0}.

Lemma 2.2.8. Suppose that (V1)-(Vs), (fi1)-(f1) and (f5) holds. Then for each
(u,v) € Ey, there exists a unique to > 0, depending only of (u,v), such that

(tou, tov) € N and  I(tou,tov) = max I(tu, tv).

Proof. Let (u,v) € Ey be fixed and define the function g : [0,00) — R such that
g(t) = I(tu,tv). Notice that

(I'(tu, tv), (tu, tv)) = tg'(t).

Thus, it suffices to find a nontrivial positive critical point of g. From assumption (V5)

we get
[l (, 0)||* = 2/ A(x)uv dz > 0.
R2

Using assumption (V) we can deduce that
Fi(z,s) > C(|s|* — 1), for s> 0.

We may assume without loss of generality that [{u > 0}| > 0. Let R > 0 be such that
|{u > 0} N Bg(0)| > 0. Thus, we have that

o) = §<||(u,v)||2—2/RQA(x>uv dx) —/RQ Fi(o, tu) dx—/ Fy(w, tv) da

RQ
t2

[(w,v)[? =2 [ Az)uv dz ) — 6" ul"t da.
2
R? {u>0}NBx(0)

Since p; > 2, we obtain g(t) < 0 for ¢ > 0 sufficiently large. On the other hand, for

<

some o > «f and

: ar (B — D\Y? (4n(B— D\
0<t<mln{<m) ’(WIUH%@) :

we can use (2.9) and the same ideas used to obtain the estimate (2.19), to get

t2
/ (Fi(z, tw) + Fy(w, ) dz < Cre [[(w, 0)|* + Cot" || (w, 0)]", (2.20)
R2
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where r > 2 and ¢ is small enough such that 1 — 6 — Cye > 0. Hence, by using (2.16)
and (2.20), we have

g(t) g (||(u,v)||2 - Q/RZ Az)uv dm) - /R Fi(z, tu) do —/ Fy(z, tv) da

R2
1—0—Ce . —
Pl (255 - 2w ?)

v

Therefore ¢g(t) > 0 provided ¢t > 0 is sufficiently small. Thus ¢ has maximum points in

(0,00). In order to prove the uniqueness, note that every critical point of g satisfies

t t
||(u,v)H2 _ 2/ )\(.T)UU dr = M dr + fg(m,—v)v dr. (2.21)
R2 R2 t R2 t
Moreover, it follows from (2.5) that
0fi Ofi
27J0 —sf 2778 _ )
d [ fi(z,ts)s _ ts 9 (x,ts) — sfi(x,ts) _ (ts) B (x,ts) — tsfi(z,ts) >
dt t t2 t3 ’

which ensure that the right-hand side of (2.21) is increasing on ¢ > 0, and consequently,
the critical point tg € (0,400) is unique. |

Let us define

S, = inf Sy (u,v),
T (wweB\{(0,0)} o)

where for any (u,v) € E\{(0,0)}, we define

(||(u, 2 = Q/RQ A(x)uvdx) v

1w, )l

Notice that S, is positive. In fact, by using (2.16) and Sobolev embedding we have

Sq(u,v) =

that
1w, 0)[1? = /Rz Az)uo dz > (1= 6)||(u,0)[|* > (1 = 8)C||(u, v)]]3,

for all (u,v) € E\{(0,0)}. Therefore, S, > [(1—8)C]"* > 0.

Lemma 2.2.9. For any (u,v) € E\{(0,0)}, we have

12 ) ) . A (1 1 Sy(u,v)?a/@=2)
ma (S8, - o) = (3 - 1) Sl

where 0 and q are the constants introduced in ( f).
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Proof. Let h : [0,+00) — R be defined by
t2
h(t) = 5 Sg(us v)7 (| (w, 0) g = 0] (u, 0) 3.
Thus, h is differentiable and
W (t) = tSq(u, v)?||(w, v) |17 — g0t~ (u, v) |2,

Notice that A/(t) > 0 if and only if ¢t < ¢, where
1/(q—2
- ( Sq(u,v)z_Q) 4-2) |
g0 (u, v)|lg

Therefore, ¢ is a maximum for h and

(1 1Y Sy(u,v)*e/a2)

2.3 Proof of Theorem 2.1.2

By Ekeland’s variational principle (see [38]), there exists a sequence (uy, vy ), C N
such that

I(tup,v,) — e and  I'(uy,v,) — 0. (2.22)
Lemma 2.3.1. We have the following facts:

(a) The sequence (tn,vy,), is bounded in E.

(b) We have the following estimate

1 -9 SQ‘]/(‘I_Q)
lim sup || (wn, v,)||? < r_g “

s [—60—2 ¢ (g0a> (2:23)

Proof. By using (2.22) we get

ey +0,(1) = % <||(un,vn)||2 — 2/R2 @) unvy, dx) — /R2(F1(x,un) + Fy(z,v,,)) dz,

which together with (f;) and (2.16) implies that

ex o) = g (HumolP =2 [ M) = 3 [ (e win + flovn)en

(%_i)@—ammm%w?

Therefore (uy,, v,), is bounded in E.
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To prove (b), using the computation in the proof of (a) we obtain

1 2
limsup||(un,vn)||2 < oK

T — . 2.24

From Lemma 2.2.8, for any (¢,¢) € FE\{(0,0)} there exists ¢, > 0 such that
(tol)|, tol@|) € N, which yields

e < I(to|Y|, tol9]) = rglggf(tlw,tlcbl)- (2.25)

Thus, by using (f5), (2.25) and the fact that S,(|¢|,|4])? < S,(v, ¢)?* we deduce that

IN

CN

max {g <|y(¢,¢)|y2 - Q/RZ Az) o] dx) - etq\l(w,aﬁ)HZ}

>0

2
= e { S, 1oL o0 0013 — 0 0l

2
S max {%Sq(w, 0)*[ (0, )|I2 — 07| (+), ¢)||Z} 7

which jointly with Lemma 2.2.9 ensures that

11\ S,(¢, ¢ 2q/(9-2)
ey < (5 - 6) Eq9)23(‘1—2) . (2.26)

Combining (2.24), (2.26) and taking the infimum over (¢, ¢) € E\{(0,0)} we have that

1 ) S2Q/(q_2)
lim sup || (tn, v, )||> < i 4

) |
n—o0 1 — 5 om— 2 q (qQ)Q/(q_Q)

Since (y, vy), is bounded in E| passing to a subsequence, we may assume that
(Un, vy) — (ug,vy) weakly in E. Moreover, it follows from Lemma 2.2.3 that, up to a

subsequence,
e u, = ug strongly in Lf (R?), for all 2 <p < oo;
e v, = vy strongly in L (R?), for all 2 < p < oo;
e u,(x) = up(z) and v, (r) — vo(z) almost everywhere in R?,

Proposition 2.3.2. The weak limit (ug,vo) is nontrivial.

Proof. In light of (2.23), for o’ > af, there exists 6, > 0 such that

limsup || (un, v,)]|* < min {47 (8 — 1)/(a' B1), 47 (B2 — 1)/ (a®B2) },  for i =1,2
n—oo
provided that 6 > 6y. Let r > 1 sufficiently close to 1 such that
0 < 7l[(un, va) | < 4m(B; —1)/(a'B;),  for some 0 > by
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Now, we consider ¢ > 2, [ € (1,7) and 1/l 4+ 1/I' = 1. Thus, using Lemma 2.2.2, (2.8)

and Hélder inequality we deduce that

filz,up)uy,de < ||un||iz11 + 4 /RZ A ()€ = 1)|un)? dz

RQ

1/1
< ||unHi?41 + Cy (/R2 Ay () (e = 1) |uy, |4 dx) |2 |

1
ml1u2 /
< My, + 0 ([ e = D d) ol

which together with Lemma 2.2.1 implies that

[ A de < s, +Colfunl-

Al

Analogously,
/ fa(@,vn)vn dz < Jlvall7s + Callvall,,
R2 Ag L

Ao

On the other hand, from Lemma 2.2.7 and (2.16) it follows that
0<y(1—=0) < (1—=0)(tn, va)I* < |[(thny v)|]* — 2/ A(x)upv, do.
R2

Since (un, vn)n - N, one sees that

| (e, v0)||* — 2/]1{2 ANz ugv, de = | fi(z,up)u, dz+ [ fo(x, v,)v, de.

R2 R2

Therefore, combining (2.27), (2.28), (2.29) and (2.30), we can deduce that

0<9(1=0) <l + el +C (Jonllty + Il ),
1 2 Aq

I
Lq
Ao

which together with Lemma 2.2.3 implies (ug, vo) # (0, 0).

Al

(2.27)

(2.28)

(2.29)

(2.30)

Proposition 2.3.3. The weak limit (ug, vo) is a critical point of the energy functional I.

Proof. By the weak convergence we have that

((tns vn), (6,9)) = ((uo, v0), (), for all (¢,4) € Cg°(R?) x Cg*(R?).

Moreover, from (V5), Lemma 2.2.3 and Holder inequality,

R2

and

[ A@ns o= [ Ao da| < 1N elalln = ol = .

R2
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Thus, if we prove that

] fi(z,u,)¢ de — ) fi(z,up)e dx  and ] fo(z,v,)0 de — 2 fo(z,v0)0 du,
R R R R (2.31)
then,

(I' (tn, V), (¢,70)) — (I'(ug, vo), (¢, 7)), for all (¢,7) € C3°(R?) x C5°(R?). (2.32)

Since the space C§°(R?) is dense in (Hy, (R?), || - ||v;), it follows from (2.32) that (ug, vo)
is a critical point of I. Thus, it remains to prove (2.31). Notice that (2.31) holds if

and only if for any compact set K C R? we have

/ |f1(z,u,)| de — / | fi(z,up)| dx  and / | fo(x,v,)| dx — / | fo(z,vo)| d.
K K K K

(2.33)
Let us prove the first convergence. By using (2.27), we can deduce that

/ | fi(z, un)u,| do < Cy. (2.34)
K
Since u,, ug € L1(R?), we have that u,,,uy € L'(K). For any M > 0 we can write

<I+ 1+ 17,

‘/;!jl(f,un)ldx-—./ilfl(x,uo)\dx

where

ﬁz/ ()| da, @z/ (o) da,
{lun(z)|>M} {luo(z)|>M}

-/ (1, u)| = ol wo)) o
{lun (z)|<M}

Let us estimate each of these integrals separately. For any ¢ > 0, we can use (2.34)

and choose M > 0 sufficiently large such that

/ |f1(gj’un)|d:p:/ de<ﬁ<
{lun(z)|>M}

e
< - (2.35)
{Jun(z)[>M} || M "3

Moreover, since fi(z,up) € L'(K), we can choose M > 0 sufficiently large such that

/ | fi(z, uo)| do <
{luo(a)|>M}

Thus, let M > 0 be fixed such that (2.35) and (2.36) are satisfied. Let us denote

. (2.36)

Wl M

Hiy(2) = X{jun (@) <2 | f1 (25 wn) | = X(juol<nry | 1 (@, w0)-

We claim that
I} = / H,(z)dx — 0. (2.37)
K

In fact, notice that:
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e H,(xz) — 0, almost everywhere in K
o [Hy(x)] < [fi(z,uo)l, if [un(x)] = M;
o |Hy(x)] < C+ |fix,up)|, if Jun(x)| < M, where

C =sup{|fi(z,s)| 1z € K, |s| < M}.

Thus, the claim follows from Lebesgue dominated convergence theorem. Therefore,
combining (2.35), (2.36) and (2.37), we obtain (2.33), and consequently (2.31). |
Proposition 2.3.4. The weak limit (ug,vo) is a ground state solution for System ().

Proof. Since that (ug,vo) # (0,0) and I'(ug,v9) = 0, we have that (ug,v9) € N.
Therefore c¢pr < I(ug,vp). On the other hand, by using (2.7), it follows from Fatou’s

lemma that

ox ton(1) = T, v) = 3 (1, 00), (i 02)
= 1/ (fl(xa un)un - 2F1(x7un) + f2($7 Un)vn - 2F2($,Un)) dw
2 Jeo
> %/ (f1(z,up)ug — 2F 1 (z,up) + folx,vo)ve — 2F3(x,v0)) dz + 0,(1)
RQ

= I(ug,vp) — %(I’(uo,vo), (uo,v0)) + 0n(1)
= I(ug,vo) + 0,(1),

which implies that cyxr > I(ug, vp). Therefore I(ug,vo) = cyr |

We have been proved that (ug,vg) is a ground state solution for System (5). By

assumptions (f1) and (f;) we have for i = 1,2 that
Fi(z,s) < Fy(x,|s]), forall (z,s) € R* x R,

Thus, we can deduce that I(|ugl, |vo|) < I(ug,vo).

Proposition 2.3.5. There exists a nonnegative ground state solution (u,0) €
C’l’o‘(Rz) x CY*(R2), for some a € (0,1) with the following asymptotic behavior

loc loc

||1~L||Cl,a(BR($O)) _> 0 and ||6||01’Q(BR(‘TO)) _> 0, as |x0| _> Q.

Proof. Let (up,v9) € E be the ground state obtained in Proposition 2.3.4. It follows
from Lemma 2.2.8 that there exists a unique tq > 0 such that (to|ugl,to|ve]) € N.
Moreover, since (ug,v9) € N, we have from Lemma 2.2.6 that (ug,v9) € Fy. Thus, it

follows that max;>o I (tug, tvg) = I(ug,vp). Thus, we have that

[(to’Uo|,t0|’Uo|) S [(toUo, t(ﬂ)o) S I?SE]X [(tuO,tU0> = I(Uo, Uo) = CN.
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Therefore, (to|uol, tolvo]) € N is a nonnegative ground state solution for System (.5).
Let us denote (@, 0) = (to|uol,to|vo]). In order to get regularity, we use a bootstrap

argument. The ground state (u,?) is a weak solution of the restricted problem

{ —Au = fi(x,a) + AMx)0 — Vi(z)a = pi(z), Bar(zo)

—AD = fo(z,0) + Mx)u — Va(x)0 = po(z), Bar(xo) (2.38)

Since V;(z), A(x) € L2, (R?) and @ € LP(R?) for all p > 2, we have that A(x)0, Vi(z)u €

loc

LP(Byg(xg)) for all p > 2. By using growth conditions of the nonlinearity, Lemmas
2.2.2 and 2.2.3 we have for € > 0, p,q > 2, r > p and o' > o} that

~2

[ lnward < [ @ Cae™ -l d
Bag(zo) Bar(zo)

< C / Ai(z)"|aff +C / Ay ()P ('™ — 1)P|a)pay
BQR(mO) BQR(JC())

r 1,&2 ~ —1)— ~
< CllwolZas, oo +O/BR( R L]
2 x

Furthermore, it follows from Lemma 2.2.1 that

1/2
rali? ~ —1)—
( / A 1 dx) ltoll 2 Bantony < Clltoll iz zaniony
Bagr(xo

Using Holder inequality and combining the previous estimates, we finally conclude that

[ 1@ @) do < ol + Cllallpunten
Bagr(zo)

and since that the right-hand side is finite for all p,q > 2, we have that p;(z) €
LP(Byg(zo)) for all p > 2. Let f,,(z) be the Newtonian potential of p;(x). In light of
Calderon-Zygmund [42, Theorem 9.9,

Afpl = pl(ﬂf), in BQR(iL‘Q), (239)

and f,, € W*P(Bayg(z0)), for all p > 2. Combining (2.38) and (2.39) we deduce that

/ V(i—f, ) de =0, forall o C(Bon(zo),
Bag (o)

which implies that @ — f,, is a weak solution of —Az = 0 in Bsg(xp). Since
@ — fp, € W'%(Bag(x)), it follows from Weyl’s Lemma [46, Corollary 1.2.1] that
@ — fp, € C®(Bag(xg)). Therefore, i € W?P(Byg(zg)) for all p > 2. Notice that
2/p < 2, for all p > 2. Thus, by Sobolev imbedding [39, Theorem 6| we conclude that
@ € CY*(Byg(y)), for some a € (0,1). The same argument can be used to prove that
0 € CY*(Byg(x)), for some o € (0,1). By interior LP-estimates [42, Theorem 9.11],

we have that
][ w2r(Brzo)) < CUEllLr(Bsre)) + D1l Lr(Bsr (o))
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By using Sobolev Imbedding and the previous computations, we deduce that

@l e @rmoy < CUlallzeBanoy + 1@l 2(Bar (o)

Letting |zo| — 00, we get [|t]|c1.a(grgy) — 0- The same idea can be applied to 0. W
Proposition 2.3.6. If (V) holds then the ground state is positive.

Proof. The idea is similar to the proof of Lemma 1.3.4 and for convenience we give a
short version here. Let (@, 0) € E\{(0,0)} be the nonnegative ground state obtained in
the preceding proposition. Using (1), we can conclude that @ # 0 and © # 0. Taking
(p,0) as test function one sees that

VuVe dz + /

RQ

Viz)up de = [ fi(z,0)e dz + / Ax)vp dz > 0,
R? R?

RQ

for all ¢ > 0, p € C;°(R?). We suppose by contradiction that there exists p € R? such
that @(p) = 0. Thus, since —u < 0 in R?, for any R > Ry > 0 we have that

0= sup (—a) = sup (—a).
Br, (p) Br(p)
By the Strong Maximum Principle [42, Theorem 8.19] we conclude that —a = 0 in
Bg(p), for all R > Ry. Therefore —u = 0 in R?, which is a contradiction. Therefore
@ > 0 in R%. Analogously, we can prove that © > 0 in R?. Therefore, the ground state

(u, ) is positive. [ |

Proof of Theorem 2.1.2. 1t follows from Propositions 2.3.2, 2.3.3, 2.3.4, 2.3.5 and
2.3.6. |

Remark 2.3.7. We stress that Theorem 2.1.2 holds for some 0 > 0y sufficiently large,
see Remark 2.1.3 (iii). Notice that by estimate (2.23) the norm of the minimizing
sequence is so small as we want, and it is controlled by the choice of 0. However, in the
lemma 2.2.7, we proved that the norm of any element that belongs to Nehari manifold
is greater or equal to a positive constant -y, which is strictly less than 4w(B; — 1)/a’B;,
foriv=1,2. Thus, our proof holds for any 6 contained in a bounded interval of the real

line. Let us consider, for instance,
U = sup{d € R: (5) has ground states}.

Naturally, it arises the following questions: V* is finite? If 9% is finite, then there exists
ground states at 9 = 9*?
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Chapter 3

On coupled systems of nonlinear
equations with critical exponential

growth

3.1 Introduction

This chapter is devoted to study the following class of coupled systems involving

nonlinear Schrodinger equations

—Au+u= fi(u) + Nz)v, z€R?
—Av+v = fo(v) + Mz)u, z€R2

(5)

Our main contribution in this work is to prove the existence of positive ground state
solutions for (S) when the nonlinearities fi(s), f2(s) have critical exponential growth
motivated by a class of Trudinger-Moser inequalities introduced by D.M. Cao [14] (see
Theorem A in Section 3.2).

3.1.1 Assumptions.

For i = 1,2 we assume the following assumptions on f;:

(H;) The function f; belongs to C*(R), fi(s) = 0 for all s <0 and

lim @

s—0 S

= 0.

(H,) The function s — s71f;(s) is increasing for s > 0.
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(H3) There exists u; > 2 such that
0 < u;Fi(s) :== ,ui/ fi(r) dr < fi(s)s, for all s > 0.
0
(H4) There exists M > 0 such that

0 < Fi(s) < Mfi(s), forall s>0.

(H,) There exists 6 > 0 such that 0 < A(x) < § < 1 for all z € R*. Moreover, A(x) is
1-periodic, that is, A(z) = A(z + z) for all z € R? and 2 € Z*.

(CG) The function f; : R — R has «-critical growth at +oo, that is, there exists
aly > 0 such that
fi(s) 0 if oz>oz6,

lim sup ag = .
sotoo €7 — 1 oo if o< a.

Let us consider E = H*(R?) x H*(R?) endowed with the natural scalar product

((u,v), (w,2)) = / (VuVw 4+ uw 4+ VoVz +vz) dz,
R2

and the induced norm ||(u,v)||* = ((u,v), (u,v)). Associated to System (S) we have

the energy functional I : ' — R defined by

I(u,v) = % <y|<u,v)u2 - Q/RQ Az )uv dx) - /R (Fy(u) + Fy(v)) da.

By using the assumptions on f;(s) and A(z) and Trudinger-Moser inequality, we can
easily see that I is well defined. Moreover, it’s standard to check that I is C?(E,R)

and

(7 (1,0), (0000) = (w00, 6.00) = [ (Ao + L0)) do— [ Aw) i+ 09) d.

The critical points of I are precisely the solutions (in the weak sense) of System (.59).

Definition 3.1.1. We say that a pair (u,v) € E\ {(0,0)} is a ground state solution
(least energy solution) of (), if (u,v) is a solution of (S) and its energy is minimal
among the enerqy of all nontrivial solutions of (5), i.e., I(u,v) < I(w,z) for any
other nontrivial solution (w,z) € E. We say that (u,v) is nonnegative (nonpositive) if

u,v >0 (u,v <0) and positive (negative) if u,v >0 (u,v < 0).
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3.1.2 Statement of the main result.

We are now in position to formulate our main result and we also give some remarks

on our assumptions.

Theorem 3.1.2. Suppose that (H)) holds and assume that for each i = 1,2 fi(s), fi(s)

have of-critical growth at +o0o (CG) and satisfies (H,)-(H,). In addition, we consider
the following assumption:
sfi(s) 2e

H, liminf —— > Gy >
(Hs) i e =P o

where oy = max{a},ad}. Then System (S) possesses a positive ground state solution
(ug,vo) € CLY(R?) x CL*(R?), for some 0 < o < 1 with the following asymptotic

loc loc

behavior

Furthermore, the set IC of all ground state solutions of System (S) is a compact subset
of E.

Remark 3.1.3. A typical example of nonlinear term satisfying conditions (Hy)-(Hy)
and (CGQ) is given by f(s) = e (gs?" + 2a0s7™1) if s > 0 and f(s) = 0 if s < 0,

where ag is the critical constant introduced in (CG).

Remark 3.1.4. A typical example of coupling term satisfying (H)) is given by
Mz) = X € (0,0), for all x € R?, for some § < 1. The assumption (H,) will be
crucial through the paper. It will be used to guarantee that the Nehari manifold is
bounded away from (0,0) (see Lemma 3.2.3).

Remark 3.1.5. As we comment in the introduction, assumption (Hs) was introduced
in [1] and refined in [26]. It plays a very important role in the proof of Theorem 3.1.2,
because it will ensure that the ground state energy associated to System (S) is strictly
less than 27 /ag (Proposition 3.2.5). This fact will allow the use of Theorem A in
the minimizing sequence obtained by Ekeland’s variational principle (see (3.15) and

(3.23)).

3.1.3 Outline

The remainder of this chapter is organized as follows: In the forthcoming Section
we collect some results which are crucial to study our problem by a variational
approach. Moreover, we introduce and give some properties of the Nehari manifold.

In Section 3.3, we prove Theorem 3.1.2. We make use of the Ekeland’s variational
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principle to get a minimizing sequence for the energy functional associated to the
problem. We will use the invariance of the energy functional by translation to recover
the compactness of the minimizing sequence and a Trudinger-Moser type inequality
to prove that the weak limit of that sequence will be a ground state solution of the
problem. After that, we obtain a nonnegative ground state solution. Finally, we get
regularity and asymptotic behavior of the ground state using a bootstrap argument and

Li-estimates. The positivity will be a consequence of the strong maximum principle.

3.2 Preliminary results

In this section, we provide preliminary results which will be used throughout the
chapter. The notion of criticality used in this work is motivated by the following result

which was first considered by D.M. Cao [14] (see also [32]).

Theorem A. If a >0 and u € H(R?), then
/ (e —1) dz < oo.
R2

Moreover, if 0 < o < 4m, ||[Vulls < 1, |Juls < C, then there exists a constant
C = C(a,C) > 0, depending only on o and C, such that

/ (e —1)dz < C.
R2

Lemma 3.2.1. Let assumptions (H,)-(H3) hold. Then

fi(s)s* — fi(s)s > 0, (3.1)
fi(s) >0, (3.2)
Hi(s) = fi(s)s — 2F;(s) > 0, (3.3)
for1=1,2 and for all s > 0.
Proof. The proof is quite similar to Lemma 2.2.4 and will be omitted here. [ |

We introduce the Nehari manifold associated to (5) define by
N ={(u,v) € E\{(0,0)} : (I'(u,v), (u, v)) = O}.
Notice that if (u,v) € N then

1w, )2 = Q/RQ Najude = [ ftwude+ [ b de (3.4)
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Remark 3.2.2. We can prove analogously Lemma 2.2.6 to the Nehari manifold defined

under assumptions of this chapter.

Lemma 3.2.3. Suppose that (CG), (Hy) and (H,) hold. Then
(a) N is a C*-manifold.
(b) There exists p > 0, such that

| (u,v)|| > p,  for all (u,v) € N. (3.5)

(c) (u,v) € E\{(0,0)} is a critical point of I if and only if (u,v) is a critical point
of I |-

Proof. Let ¢ : E\{(0,0)} = R be the C'-functional defined by

p(u,v) = (I'(u,v), (u,0)) = [(u, v)\|2—2/

AMz)uv dr— | fi(w)udz— [ fo(v)v de.
R? R2 R?

Notice that N = ¢~ 1(0). If (u,v) € N, it follows from (3.1) and (3.4) that

@l on o) = [ (A= fiee) o+ [ ()= fen?) d <o

Therefore, 0 is a regular value of ¢ which implies that N is a C'-manifold.
Arguing by contradiction, we suppose that (3.5) does not hold. Thus, we have a
sequence
(tn, Un)n C N, such that ||(un,,v,)]| = 0 as n — +oo. (3.6)

Consider o > g and py > 0 such that ap? < 4. As consequence of (3.6), there exists
no € N such that ||(un,v,)|| < p1 < po, for n > ng. By using the growth conditions
(Hy) and (CG), for any € > 0 and p > 2, there exists a constant C' = C(e,p) > 0 such
that

fi(s) <els| + Cle, p) (e —1)|s|?, forall s€R and i=1,2. (3.7)

We recall from Lemma 2.2.2 that for « > 0, [ > 1 and r» > [ we have

2

(e — 1) < (e*" —1), forall s R, (3.8)

Let us consider | > 1 close enough to 1 such that lap? < 4. Thus, it follows from
Theorem A, (3.8) and Holder inequality that

. 2 1/i
/Rz(eaun —D)|unl? dz < (/RQ(emllunz(nun) —1) dx> HunHzl, < C’||unH§l,. (3.9)
Combining (3.7), (3.9) and using Sobolev embedding one sees that

) fi(un)uy doe < eCh|(tn, vo)|1? + Caol| (wn, v,)||P,  for n > ng.
R
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Analogously, we deduce that

Fo(vn)vn dz < eCs|(un, va)||* + Cul|(tn, va) [P, for n > ny.
R2

Combining theses estimates we get
/2(f1(un)un + fo(vn)vn) dz < Cy|(tn, v0)||? + Col| (tn, v, ||P- (3.10)
R

Since € > 0 is arbitrary and C; does not depend on € and n, we can choose ¢ sufficiently
small such that 1 — ¢ — 55‘1 > 0. We recall from Lemma 1.2.1 that

| (w, ) ||* — 2/ Mz)uv dz > (1 —0)||(u,v)|]?, for all (u,v) € E. (3.11)
R2
Thus, it follows from (3.10) and (3.11) that

(1= )l (n, v |I* < /Rz)(fl(un)un + fa(va)vn) A < eCi | (un, va)|I? + Coll (un, va) I,

which yields
0< (1 — 0 — 5él)H<unavn)H2 < ég“(un,’l}n)”p.

Therefore, denoting p, = (1 — § — eC})/Cy we obtain

0 < /"7 < || (s, )|,

If we choose p; < p = min{pg, ps’ *~>'} we get a contradiction. Therefore, ||(u,v)|? > p

for all (u,v) € N.

Finally, if (u,v) # (0,0) is a critical point of I, we have I'(u,v) = 0 and
obviously (u,v) € N. Conversely, if (u,v) is a critical point of I on N, we have
that A\¢/(u,v) = I'(u,v), where A € R is the Lagrange multiplier. Taking the scalar
product with (u,v) and recalling the previous results we conclude that A = 0, and the

lemma is proved. [

Let us define the set

By = {(u,v) € E\{(0,0)} : [{u > 0}| > 0 or |{v > 0}| > 0}.

Lemma 3.2.4. Suppose that (H,)-(H;) and (H)) hold. For any (u,v) € E, there

exists a unique ty > 0, depending of (u,v), such that

(tou, tov) € N and I(tou,tov) = max I(tu, tv).
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Proof. Let (u,v) € E, be fixed and define the function h : [0,00) — R such that
h(t) = I(tu,tv). Notice that (I'(tu,tv), (tu,tv)) = th'(t). Thus, it suffices to find a

nontrivial positive critical point of h. After integrating (H3), we get

Fi(s) = Co(ls

#i—1), forall s>0.

We may assume without loss of generality that |[{u > 0}| > 0. Let R > 0 be such that
|{u > 0} N Bg(0)| > 0. Thus, we have that

t? N
ht) < (H(u,v)||2 _ 2/ Aa)uw dx) _ CO/ iyl dz — C|Br(0).
2 R {u>0}NB&(0)]

Since p; > 2, we conclude that h(t) < 0 for ¢ > 0 sufficiently large. On the other
hand, by using growth conditions we have that for any ¢ > 0 and p > 2, there exists

C' = C(g,p) > 0 such that
Fy(s) <e|s| + C(e*” —1)|s|P", forall s €R.
By similar arguments used to get (3.10) we can deduce that
t2
/ (Fy(tu) + Fo(t)) da < Cre o, )|+ Gt u, ) 7
RQ

Thus, we have

g(t) = §(||(u,v)||2—2/R2 O dx) —/Rz Fi(tu) dx—/RQ Fy(tv) dz
> 2ol (S5 - e o).

Choosing € > 0 small enough such that 1 —d — eC' > 0, we conclude that h(t) > 0
for t > 0 sufficiently small. Therefore h has maximum points in the interval (0, +00).

Finally, notice that every critical point of h satisfies

t t
I (u, v)|| — 2/ INCS T ey e L GOy (e GO L (3.12)
R2 R2 t R2 t
It is easy to see that (3.1) implies that the right-hand side of (3.12) is strictly increasing

on t > 0. Thus, the critical point ¢y € (0, +00) is unique. |

We define the ground state energy associated with System (S) by

= inf I(u,v).
v = inf (u,v)

The next Proposition plays a very important role and will be proved in Section 3.4.

Proposition 3.2.5. The energy level cyr satisfies

2
0<cy< il (3.13)
Qo
Remark 3.2.6. We can wuse Lemma 5.2.4 to get the following minimax
characterization:
cy = inf I(u,v) < inf maxI(tu,tv). 3.14
N (u,v)eEN ( )_(U,U)EEJr tZDX ( ) ( )
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3.3 Proof of Theorem 3.1.2

By Ekeland’s variational principle (see [38]), there exists a minimizing sequence

(Up, V) € N such that

I(up,vy) = e and I'(uy,v,) — 0. (3.15)

Proposition 3.3.1. The minimizing sequence (up, vy,)n s bounded in E and
fi(up)u, de < C; and / Fi(u,) dz < C,
R2 R2

fa(vp)v, dz < C,  and / Fy(v,) dz < C.
R2

RQ

Proof. We obtain from (3.15) that

1
CN+On(1) un’Un = 5 <|| un,vn ||2 _ 2/ /\(x)unvn d(l}) —/ (Fl(un)+F2(vn)) dl’
R2 R2

Thus, by using (H3), (3.11) and the fact that (u,,v,), C N, we deduce that

ex+onl) 2 (=) (1= O IP, (3,16

where p = min{yuq, po}. Therefore, (u,,v,), is bounded in E. It follows from (3.15)
that

‘”(umvn)HQ —2 /R2 Az )upv, dz — fi(un)u, do — fo(vn)vn dz| < 0, (1) || (tn, va) |-

R2 R2

Combining these estimates together with (H3) we get

R+ o) < 2ex 20,00+ 0u(Dln )| 42 [ (Filun) + Fa(wn)
< 2o+ 200(1) + (Ul 0l % [ (il + Falon)en)
which implies that
[ + fova)in) de < e+ 20,0 + w317

Since ||(uy, v,)|| < C for some C' > 0, using (H3) and (3.17) we conclude the proof. W
By the preceding proposition, we may assume, up to a subsequence, that

o (Up,v,) — (ug,vy) weakly in E

e u, — up and v, — vy strongly in L! (R?), for all 2 < p < oc;
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e u(z) = ug(r) and v(z) — vo(z), almost everywhere in R?.

Proposition 3.3.2. Let (u,,v,), C N be a minimizing sequence satisfying (3.15).

Then (u,, v,)n satisfies exactly one of the following conditions:
(i) (un,vy,) — (0,0) strongly in E;

(ii) There exists a sequence (y,)n, C R?* and constants R,& > 0 such that

n—oo

lim inf/ (u2 +v2) dz > € > 0.
Br(yn)
Proof. Suppose that (ii) does not hold. Thus, for any R > 0 we have

lim sup / (uZ +v2) dz = 0. (3.18)
Br(y)

n—oo y€R2

Assertion 3.3.3. If (3.18) holds, then

lim AMz)upv, de = lim Fi(u,) dz = lim Fy(v,) dz = 0. (3.19)

n—oQ R2 n—oo R2 n—oo R2

In fact, if (3.18) holds it follows from Lemma 1.3.1 that u, — 0 and v, — 0 in LP(R?)
for any p > 2. Thus, up to a subsequence u,(z) — 0 and v, () — 0 almost everywhere
in R?. By using assumption (H)), Sobolev imbedding, Holder inequality and the fact

that the minimizing sequence is bounded, we have for p > 2 that

/ AMz)upv, dx
R2

By a similar argument used to get (2.33) (see also |26, Lemma 2.1]), we can deduce
that

< 5||un||’p||vn”p’ < CHUnHHuan < CHuan — 0.

fi(u,) dz — 0 and / fo(v,) dz — 0, as n — oo,
Br(0) Br(0)

for any R > 0. Therefore, by using assumption (H,) and generalized Lebesgue

dominated convergence theorem we conclude that
/ Fi(u,)dx — 0 and / Fy(v,) dz — 0, as n — oc. (3.20)
Br(0) Br(0)
Thus, it remains to prove that for given € > 0 there exists R = R(¢) > 0 such that

/ Fi(u,) dx <e and / Fy(v,) dz < e.
R2\Br(0) R2\ Br(0)

Let B > 0 be such that 2MCB~! < ¢ and let us define the set

Qp = {r € R*\Bz(0) : |u,(z)| > B}.
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It follows from assumption (/) and Proposition 3.3.1 that

. (3.21)

DO ™

M
| R de<ar [ ) de< G [ it de< 25 <
Qp Op B Ja, B

By assumption (H;), for any £ > 0, there exists C' = C'(&, B) > 0 such that
Fi(s) <és*+ Cs*, for |s| < B.

Denoting Q% = {r € R?*\Bg(0) : |u,(z)] < B} and using the fact that u, — 0 in
L*(R?), we have that

lim sup /

n—00 QO

since (un, vy)y, is bounded in E and € is arbitrary. Combining (3.20), (3.21) and (3.22)
we get the second limit in (3.19). The same idea can be used to get the third limit in

(3.19), and Assertion 3.3.3 is proved.
By using (3.15) and Assertion 3.3.3 we deduce that

Fa(uwy) do < Esup [[un [} < Esup | (un, va) |2 < 5, (3.22)

c
B

extu(1) = St 0n) = [ (Filun) + Fafwn) + Ale)untn) do = 3.} 0, (1),

which together with Proposition 3.2.5 implies that

4
lim sup || (tp, va)||2 = 20 < —. (3.23)
(0

n—o00 0

It follows from (3.23) that we can consider o > «a and r > [ > 1 sufficiently close to 1
such that ra||(uy,, v,)||* < 4m. Thus, by using (3.7) and (3.9) we have that

/Rz(fl(un)un + fa(vn)vn) dz < eCill(un, va) I* + Call (un, va) g0 (3.24)

for ¢ > 2. By choosing € > 0 such that 1 —C; > 0, it follows from (3.15), (3.19) and
(3.24) that
(1 —eCh)l|(un, UH)HQ < eCs| (tn, va) |5 + 0n(1),

ql’
which jointly with Lemma 1.3.1 implies that ||(uy, v,)|| — 0 and the lemma follows. W

Proposition 3.3.4. The weak limit (ug, vo) is a critical point of 1.

Proof. For any (¢, 1) € C°(R?) x Cg°(R?) we have by the weak convergence that

((um UN)v (¢a ¢)) — ((u07 UO)? (¢a ¢))

Moreover, also by weak convergence we have the following convergences

/ AMz)Yu, de — | Mx)pug dz, and / Az)pv, de — [ Nx)pyy de.
R2 R2

R? R2
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Thus, if we get the convergences
fi(up)o dz — fi(ug)¢ dz, and fo(vp)¢ dz — fa(vo)p dx, (3.25)
R2 R?2 R2 R?2

we conclude that
<I/(um Un)’ (Qb, ¢)> — <[/(U0, UO)? <¢> ¢)>7

for any (¢,¢) € C°(R?) x C5°(R?), which together with (3.15) and the fact that
C5°(R?) is dense in H'(R?), implies that (ug,vg) is a critical point of 7. In order to
prove (3.25), notice that the convergences holds if and only if

/K i ()] dz > /K |fi(wo) dz, and /K o)) d — /K fo(eo)| dz,  (3.26)

for any compact set K C R% Tt follows by Theorem A that fi(uy,), fa(v,) € L'(R?),
for any n € N. Thus, by a quiet similar argument to used to obtain (2.33), we get
(3.26). |

Let us now complete the proof of the existence of ground state for System (.59).
We split the argument into two cases.
Case 1 uy # 0 and vy # 0.

In this case (ug, vg) is a nontrivial critical point of I, thus (ug,v9) € N. We only
need to prove that I(ug,vg) = cy. Since (ug,vo) € N we have ¢y < I(ug, vo). On the
other hand,

1

e = I(tup,v,) — %(I'(un,vn), (Un, V) + 0n(1) = 3 /RQ(Hl(un) + Ha(vy,)) dz + 0, (1),

which together with (3.3) and Fatou’s lemma implies that
1 1
ex = [ (Halu) + Halon)) do+-0a(1) 2 5 [ (Ha(uo) + Haluo)) d = Lo, )
Therefore cyr > I(ug, v) and (ug, vg) is a ground state for System (.5).
Case 2 upg =0 or vg =0.
Recalling that I(u,,,v,) = ¢y > 0 and [ is continuous, we conclude that (u,, v, ),
can not converge to zero strongly in £. Thus, it follows from Proposition 3.3.2 that the

sequence is non-vanishing, that is, there exists a sequence (y,), C R? and constants

R, & > 0 such that

n—oo

lim inf/ (u2 +v2) de > € > 0.
Br(yn)
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We may assume, without loss of generality, that (y,), C Z2?. Let us consider the
shift sequence (@, (), 0n(2)) = (un(x + Yn), vn(z + y,,)). By the invariance of I under

translations of the form (u,v) — (u(- — 2),v(- — z)) with z € Z*, we conclude that
| (s 00 || = Nl (s )5 L(Tny 0n) = I(tny00) = ey and  I'(@y, 0,) — 0.

We may assume that (,), is bounded in Z?. Repeating the same arguments used in
Propositions 3.3.1 and 3.3.4, we can deduce that (4, U,), is a bounded sequence in F,

which implies that (@, 0,) — (4,0) and I'(@,0) = 0. Thus,

lim mf/ (@2 +2) do = lim inf/ (u2 +v2) de > € > 0.
BR(0) Br(yn)

n—oo n—o0

Therefore, @ # 0 or v #Z 0. Let us consider without loss of generality that © % 0. If we
suppose that @ = 0, then using the fact that I'(u,0) = 0, we get

0= (I'(@, 9), (3,0)) = — /R AM)i? de.

Since A(z) > 0 we must have © = 0. This contradiction implies that 4 # 0 and © # 0.

The conclusion follows from the same idea used in the Case 1.

Remark 3.3.5. If (a,0) € E is a ground state for System (S), then there ezists
C = C(6, 1) > 0 such that C||(a,0)||* < en. In fact, by a similar argument used to get
(3.16) we can deduce that

1 1

v =10,0) 2 (3= 1) (L= Dl P
We note by assumptions (/) and (Hj3) that for each i = 1,2 we have
Fi(s) < Fi(]s]) for all s € R.

Thus, I(|a|,|o]) < I(a@,d). Since (|al,|o]) € E\{(0,0)}, it follows from Lemma 3.2.4
that there exists a unique to > 0 such that (to|a|,to|0]) € N. Moreover, since

(,0) € N, we point out that maxo I(tw,tv) = I(u,0). Thus,
I(tolal, tolv]) < I(tou, tod) < r?;aoxl(tﬂ,tﬁ) = 1(a,0) = cy.

Therefore, (to|t|,to|0|) € N is a nonnegative ground state for System (S5). The
positivity and regularity are obtained by a similar argument used to get in the proof

of Theorem 2.1.2 (see Chapter 2).
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Let K be the set of all ground state solutions for System (5)
K :={(u,v) € E: (u,v) € N, I(u,v) = ¢y and I'(u,v) = 0}.

Let (tun,vn)n C K be a bounded sequence. Thus, I(u,,v,) = ey and I'(u,,v,) = 0.
Passing to a subsequence we have (u,,, v,) — (u,v) weakly in E. By a similar argument

used before, we can prove that there exists a sequence (y,), C R? and constants

R, & > 0 such that
lim inf/ (u2 +v2) dz > £ > 0.
Br(yn)

n—o0
By the invariance of I, we may assume that (y,), is bounded in Z2. Therefore,
(u,v) # 0. Repeating the same argument used in Proposition 3.3.4, we conclude
that I'(u,v) = 0. As before, we have also that I(u,v) = cy. By using (H3), the weakly

lower semi-continuity of the norm and Fatou’s lemma, we can deduce that

e +on(l) = f(un,w—%<I’<umvn>,<umvn>>

> I(u,0) — ~(I'(u,0), (1, 0)) + 0n(1)

=

= oy +o,(1).

Therefore ||(un, vn)|| — ||(w,v)||, which implies that (u,,v,) — (u,v) strongly in E.

3.4 Proof of Proposition 3.2.5

First, it follows from (Hj3), (3.11) and Lemma 3.2.3 that for any (u,v) € N we

have

I(u,v) > (% _ %) (||(u,v)|]2 _ Q/RQ Az)uw dx) > (% _ %) (1=8)p >0,

which implies that ¢y > 0. Now, let f : (0,00) — R defined by f(r) = 4e”*/2/r2. Thus

B 467”2/2(7‘2 - 1)
=

f'(r)

Hence, r = /2 is the unique critical point and it is a minimum for f. Therefore,
min,o4e”/2/r2 = 2e. Thus, it follows from assumption (H;) that there exists r > 0

such that
4er’/?

Bo > (3.27)

oor?
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We consider the following Moser’s sequence of functions (see [26,35,57])

log(n) if o[ <,
L loelle) o ey

D=7 Vg

0 it |z >

It is well known that [|[Vw,||3 =1 and |jw,||3 = r?/4log(n) + 0,(r*/log(n)). Thus,

d, 2
H%W=“ﬁﬁ%’ﬂﬂe¢m=%+%m.
Let us define @,, = w,/||w,||. Notice that ||, || = 1 and for |z| < r/n we have

1 log(n)

I 1 log(n)
(@n)2(z) = %mg(n)bg(n) () n (log(n) - dn<7")10g<n> n dn(r)> :

Therefore, for n sufficiently large we deduce that

(@n)*(x) > % (log(n) — d,(r)), for |z| < L (3.28)

3

In light of the minimax characterization (3.14), we note that to prove (3.13) it suffices
to get (w, z) € E such that max;>o I(tw,tz) < 27/ap. The idea is to prove that there
exists ng € N such that

max [ (twy,,0) < 2—7T (3.29)

t>0 Q)

Arguing by contradiction, we suppose that (3.29) does not hold, that is

2
max [ (tw,,0) > _7r7 for all n € N. (3.30)
>0 Qo

By using Lemma 3.2.4 for each n € N, there exists ¢,, > 0 such that

(tnwn,0) € N and [(t,w,,0) = max I(tw,,0).

We claim that the sequence (t,), C (0,+00) is bounded. In fact, it follows from (H5)
that for any € > 0, there exists R = R(g) > 0, such that

sfi(s) > (Bo —€)e®, forall s> R.
Moreover, since (t,w,,0) € N we have that
2 = .2 = / Fr (b1, do
RQ
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Thus, we can conclude that
t2 > (B — 5)/ @ dz,  for all t,w, > R. (3.31)
R2
Notice that if z € Bx (0), then

. tn log(n)

Loy, =
lwall V27

Thus, for given € > 0, we can consider n sufficiently large such that t,w, > R.

— +00, as n — +oo.

Therefore, by using (3.28) and (3.31) we get

ti > (ﬂ(] - 5)/ eaotiwﬁ dz > 7_‘_742(50 _ 6)eao/(27r)t%(log(n)fr2/4fon(1))f2log(n)’ (332>
B (0)

which implies that the sequence (2),, is bounded. It follows from (3.30) that

t2
5" = I(t,w,,0) +/

RQ

14w
@,) dz > I(t,@,,0) = @, 0) > ——
F\(t,w,) dz > I(t,w,,0) max I(tw,,0) > 5oy

which implies that t2 > 47 /ag. Thus, up to a subsequence, t2 — to € [47/ag, +00).
We claim that ¢y = 47 /. In fact, suppose by contradiction that ¢ty = 47 /ag + 7, for
some v > 0. For n € N large enough such that t2 > 47/ + € we have

2

T2t (log(n) 1 /4= 0,(1)) ~2log(n) > T log(n) - (2+ =) (Tz ! On“)) o

as n — +o0o, which contradicts (3.32). Since t2 > 47 /aq and 2 — 47 /ay, we get

L. 22 . 2 .2 .2
lim inf e®t@n g > lim inf g0t log(n)=r*/dton(1) g > p2e=7 /2,
n n

which together with (3.31) implies that

4m
— = lim £ > (B — e)mrle 2,
(o7} n—-+o0o

Since ¢ is arbitrary, we conclude that 8, < 4e"/2/(aqr?), which contradicts (3.27).
Therefore, there exists ng € N such that (3.29) holds. Thus,
ey = inf I(u,v) < inf max/(tu,tv) < max I(twy,,0) < —,

(u,v)eN (u,w)EEL t2>0 >0 Qp

which finishes the proof of Proposition 3.2.5.
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Chapter 4

Coupled systems involving the square
root of the Laplacian and critical

exponential growth

4.1 Introduction

In the last few years, a great attention has been focused on the study of
problems involving fractional Sobolev spaces and corresponding nonlocal equations,
both from a pure mathematical point of view and their concrete applications, since they
naturally arise in many different contexts, such as, among the others, obstacle problems,
flame propagation, minimal surfaces, conservation laws, financial market, optimization,
crystal dislocation, phase transition and water waves, see for instance [13,30] and
references therein. This chapter deals with the existence of ground states to the

following class of coupled systems involving fractional nonlinear Schrodinger equations

(=) 2u+Vi(z)u = fi(u) + M), = €R,

()
(—2) 20 + Va(a)o = fo(v) + A(z)u, = € R,

where (—A)Y2 denotes the square root of the Laplace operator, the potentials Vi(x),
Va(x) are nonnegative and satisfy |A(x)| < 6+/Vi(x)Va(x), for some § € (0,1) and for
all z € R. Here we consider the case when Vi(x), Vo(z) and A(x) are periodic, and also
when these functions are asymptotically periodic, that is, the limits of V;(z), Va(x)
and A(z) are periodic functions when |z| — +o00. Our main goal here is to study the
existence of ground states for (5), when the nonlinearities fi(u), fa(v) have critical

exponential growth motivated by a class of Trudinger-Moser inequality introduced by
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T. Ozawa (see Theorem B in the Section 4.2).

4.1.1 Assumptions

We start this subsection recalling some preliminary concepts about the fractional
operator, for a more complete discussion we refer the readers to [30]. For s € (0, 1),

the fractional Laplace operator of a measurable function u : R — R is defined by

(~8)u(e) = —50(s) [ UL R g,

The particular case when s = 1/2 its called the square root of the Laplacian. We recall

where

the definition of the fractional Sobolev space

HY?*(R) = {u € L*(R) : g % de dy < oo},

endowed with the natural norm

Julliy2 = <[UE/Q+/RU2 dx)m, e = ( [ Ju(z) — u(y)? . dy)l/z

|z =yl
where the term [u]; /o is the so-called Gagliardo semi-norm of the function . In light

of [30, Proposition 3.6] we have that

1 . 2
[u(z) = uly)I* dz dy, for all u e HY*(R).

CAWA2 = —
O e e P s

In view of the potentials Vi (z) and V5(z), we define the following subspace of H'/?(RR)
E; = {u € HY(R) : /Rm-(:c)u? dz < +oo} , fori=1,2,
endowed with the inner product
(u,v)p, = /R(—A)lﬂu(—A)l/% dr —i—/RW(:c)uQ du,

to which corresponds the induced norm |lu||3, = (u,u)p,. In order to establish a
variational approach to treat System (.5), we need to require suitable assumptions on

the potentials. For each i = 1,2, we assume that

(V1) Vi(x), M(x) are periodic, that is, V;(z) = Vi(x + z), A(z) = Ma + 2), for all x € R,

z € 7.
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(Va) Vi(z) € L2(R), Vi(z) > 0 for all z € R and

loc
— 1 2 g 2 . 2 —
Vi —Jggi{%[u]l/2+/H{%(x)u dx : /Ru dz = 1} > 0.
(V3) [Mx)] < 5/ Vi(z)Va(z), for some 6 € (0, 1), for all z € R.

We set the product space E = F; x Fy endowed with the scalar product

((1,0), (w, )5 = / ((—A) (= A) 1w+ Vi (w)uw + (—A) P o(—A) 2 + Vy(a)vz)

to which corresponds the induced norm ||(u,v)||% = ((u,v), (u,v))g = |lull%, + ||v]|%,-
It follows from assumption (V5) that E is a Hilbert space.
We are also concerned with the existence of ground states for the following class

of coupled systems

(=8)"2u+ Vi(z)u = fi(u) + Mz)o, = €R, )
(=A)"20 + Va(z)o = fo(v) + Mz)u, x€R,

when the potentials V;(z), Va(x) and \(z) are asymptotically periodic. In analogous
way, we may define the suitable space E = E; x F, considering V;(x) instead Vi(z). In

order to establish an existence theorem for (), for i = 1,2 we introduce the following

assumptions:
(Vi) ‘Z(SU) < Vi(z), Mz) < 5\(1‘) and

lim |Vi(z) = Vi(z)] =0 and lim [\(z)— A(z)| = 0.

|z|—+o0 |z|—=+o0

(Vs) |A(=)| < 64/ Vi(z)Va(z), for some § € (0,1), for all z € R.

We suppose here that the nonlinearities fi(s) and fy(s) have critical exponential
growth. Precisely, we say that f; : R — R for ¢ = 1,2 has «j-critical growth at oo if

there exists af) > 0 such that

(CG) lim sup fils) = 0 if a>a,
sotoo €77 —1 +oo if a<aj.

66



This notion of criticality is motivated by a class of Trudinger-Moser type inequality
introduced by T. Ozawa (see Section 4.2). Furthermore, for i = 1,2 we make the

following assumptions on the nonlinearities:

(Hy) The function f; belongs to C*'(R), convex function on R, fi(—s) = —f;(s) for

s € R, and
lim _f@(S)

s—0 S

=0.
(Hy) The function s — s f;(s) is increasing for s > 0.
(H3) There exists u; > 2 such that
0 < wiFi(s) := p /S fi(r) dr < fi(s)s, for all s € R\{0}.
0
(H4) There exist ¢ > 2 and ¥ > 0 such that

Fi(s) > 9]s|?, for all s€R.

4.1.2 Statement of the main results

We are in condition to state our existence theorem for the case when the potentials are

periodic.

Theorem 4.1.1. Suppose that assumptions (V1)-(V3) hold. Assume that for each
i = 1,2 fi(s) and f](s)s have of-critical growth (CG) and satisfy (Hy)-(H,). Then,
System (S) possesses a nonnegative ground state solution provided O in (Hy) is large

enough.
Theorem 4.1.2. Suppose that assumptions (V1)-(Vs) hold and for each i = 1,2 assume
that f;(s) has aj-critical growth (CG), satisfies (Hy)-(H,) and f!(s)s has of-critical

growth (CG). Then, System (S) possesses a nonnegative ground state solution provided
¥ in (Hy) is large enough.

Remark 4.1.3. We collect the following remarks on our assumptions:
(i) A typical example of nonlinearity which satisfies the assumptions (H;)-(Hy) is
F(s) = 9q|s|972s + q|s|T25(e°% — 1) + 2ap|s]95¢**", for 2 < p < qand s € R,
where «p is the critical exponent introduced in (CG).
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(ii)

(iii)

(iv)

The assumption (H,) could be replaced by the following local condition: there
exists ¢ > 2 and ¥ such that

lim inf Fi(s)

s—0 |5|q

> > 0. (4.1)

In fact, we can use the critical exponential growth of the nonlinearities,
Ambrosetti-Rabinowitz condition (H3) and assumption (4.1) to deduce (H,). In
order to make ease the presentation of this paper and avoid certain technicalities,

we simply assume (H,).

The assumption (H,) plays a very important role in the proof of
Theorems 4.1.1 and 4.1.2. We will prove the existence of ground states when

¥ is large enough. Precisely, if

Sa 1 ) -1\ (¢=2)/2
> 190 =1 . dor ) (42)
g \1—-opu—2 q w
where oy = max{a, a3}, p = min{u, e}, w is introduced in Theorem B,
k™t = max{k; "', ky '} where &; is introduced in Lemma 4.2.3 and S, is introduced

in Section 4.5. The estimate (4.2) will allow us to apply the Trudinger-Moser
inequality (see Section 4.2, Theorem B) in the minimizing sequence obtained by
Ekeland’s variational principle (see Lemma 4.5.2) in order to prove that the weak

limit of this sequence belongs to Nehari manifold.

Theorems 4.1.1 and 4.1.2 may be considered as the extension of the main result
for the scalar case in [36], because we consider a class of potentials and the
nonlinear term different from them. If we take u = v and A = 0 in System (5)

then we solve the single equation found in that paper but under our hypotheses.

4.1.3 Outline

The remainder of this chapter is organized as follows. In Sections 4.2 and 4.3, we

collect some results which are crucial to give a variational approach for our problem.

In Section 4.4, we introduce and give some properties of the Nehari manifold. In

Section 4.5, we study the periodic case. For this purpose, we make use of the Ekeland’s

variational principle to obtain a minimizing sequence for the energy functional on the

Nehari manifold. We shall use a fractional version of a lemma introduced by P.L. Lions,
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a Brezis-Lieb type lemma and a Trudinger-Moser type inequality to prove that the weak
limit of this sequence will be a ground state solution for the problem. In the periodic
case, the key point is to use the invariance of the energy functional under translations
to recover the compactness of the minimizing sequence. Finally, in Section 4.6 we
study the asymptotically periodic case. For this matter, the key point is a relation

obtained between the ground state energy associated with Systems (S5) and (5) (see
Lemma 4.6.1).

4.2 Preliminary results

In this section we provide preliminary results which will be used throughout the
chapter. One of the features of the class of the systems (S) and (S) is the presence
of the nonlocal operator, square root of the Laplacian. Another feature is the critical
exponential behavior of the nonlinearities in the sense of Trudinger-Moser. We are
motivated by the following Trudinger-Moser type inequality which was introduced by
T. Ozawa, see [58].

Theorem B. There ezists w € (0,m) such that, for all a € (0,w], there exists H, > 0
with
[ =1 de < Bl (13
R

for all uw € HY2(R) such that ||(—A)Y4ul|2 < 1.
The following result is a consequence of Theorem B, more details can be found
in [36, Lemma 2.2].

Lemma 4.2.1. Let u € HY*(R) and py > 0 be such that ||ulli2 < po. Then, there
exists C = C(a, po) > 0 such that

/(eo‘”2 —1)dz <O, for every 0 < apj < w.
R

Remark 4.2.2. In light of [53, Theorem 8.5/, for any p > 2, there exists C = C(p),
such that
llull, < Cllullijz, for all u e HY(R). (4.4)

Lemma 4.2.3. Assume that (V5) holds. Then for each i = 1,2 there exists k; > 0 such
that .
Killull 5 < 2—[u]f/2 + / Vi(z)u? do, for all u € Ej. (4.5)
Q R
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Proof. The proof can be found in [27] and for the sake of convenience, we sketch the
proof here. Suppose that (4.5) does not holds. Thus, there exists a sequence (u,,), C E;
such that [ju,||1/2 = 1 and

1 9 9 1
5 [u ]1/2—|-/\/ (x)un xr <

n
By using (1%3), we have that

1 1 1 1
O< A< +—3 (—[un]2 + / Vi(x)u? dx) < -
lunll3 \ 2720 Jg nJ|ugl3

which implies that [|u,||3 — 0 and [u,]] o — 1. Therefore, since V; > 0, we conclude
that
n 2w o

which is not possible and finishes the proof. [ |

1 1 1
0(1) = w2 < / Vi) de <+ — L2, o -

Notice that combining Remark 4.2.2 and Lemma 4.2.3 we have that FE; is
continuously embedded into LP(R), for any p > 2. The next lemma is a very important
tool to overcome the lack of compactness. The vanishing lemma was proved originally
by P.L. Lions [52, Lemma I.1| and here we use the following version to fractional

Sobolev spaces.

Lemma 4.2.4. Assume that (uy,), is a bounded sequence in HY?(R) satisfying

y+R
(4.6) lim Sup/ |u,|* dz = 0,

n—-+0o yeR y—R
for some R > 0. Then, u, — 0 strongly in LP(R), for 2 < p < oc.

Proof. Given r > p, R > 0 and y € R it follows by standard interpolation that

||Un||LP(BR(y)) < ||un‘|;(93R(y))HunHeLr(BR(y))v

for some 6 € (0,1) such that
1-0 6 1

2 r o q
Using a locally finite covering of R consisting of open balls of radius R, the continuous
embedding H'/?(R) = L"(R), the fact that |u,|[1/» < C and assumption (4.6), we can
conclude that

yR (1-6)/2
lim ||lu,ll, <C lim sup (/ |, |? da:) =0.
00 n—+ y

n—+ yeR "R

70



4.3 The Variational Setting

The energy functional I : E — R associated to System () is defined by

I(u,v) = % (||(u, W)|I% - Q/RA(:U)W dx) —/R(Fl(u) + Fy(v)) de.

Under our assumptions on f;(s), V;(z) and A(x), its standard to check that I is well
defined. Moreover, I € C%(E) and its differential is given by

(), (6:8)) = (1w, 0), () — / (fi(u)é + faw)d) da — / A(z) (uh + v6) dz.

The critical points of I are precisely solutions (in the weak sense) to (5).

Definition 4.3.1. We say that a pair (u,v) € E\ {(0,0)} is a ground state solution
(least energy solution) of (S), if (u,v) is a solution of (S) and its energy is minimal
among the energy of all nontrivial solutions of (5), i.e., I(u,v) < I(w, 2) for any other

nontrivial solution (w,z) € E.

Lemma 4.3.2. If (H,)-(H3) hold, then we have the following facts:

fi(s)s® = fi(s)s > 0, (4.7)
fi(s) >0, (4.8)
oi(s) = fi(s)s — 2F;(s) > 0, (4.9)
oi(s) > ¢i(ts), forallt € (0,1), (4.10)
for each i = 1,2 and for all s € R\{0}.
Proof. The proof is quite similar to Lemma 2.2.4 and we omitted here. [

Lemma 4.3.3. Suppose that (H,) and (H3) hold. If f;(s) and f!(s)s have o-critical
growth, then for each i = 1,2, for any ¢ > 0, a > af) and p > 2, there exists
C = C(g,p) > 0 such that

fi(s) <els| +C(e*” = 1)|s]", (4.11)
Fl(s)s <els| + C(e*" = 1)|s|P 1, (4.12)
Fi(s) < es® + C(e™ —1)]s]7., (4.13)

for each i = 1,2 and for all s € R\{0}.

Proof. The proof is similar to Lemma 2.2.5 and we omitted here. |
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4.4 The Nehari manifold

We introduce the Nehari manifold associated to System (5)
N ={(u,v) € EN{(0,0)} : {I'(u,v), (u,v)) = O}.
Notice that if (u,v) € N then

| (w, ) ||% — 2/ AMz)uv dz = / fi(u)u dz + / fa(v)v de. (4.14)
R R R
Lemma 4.4.1. N is a C'-manifold and there exists p > 0, such that
|(u,v)||g > p, for all (u,v) € N. (4.15)

Proof. The proof of the lemma is similar to Lemma 3.2.3, but for the sake of convenience
we give the proof here. Let J : E\{(0,0)} — R be the C''-functional defined by

J(u,v) = (I'(u,v), (u,v)) = ||(u,v)||% — Q/R)\(x)uv dz — /Rfl(u)u dz — /RfQ(U)U dz.

Notice that N'= J71(0). If (u,v) € NV, it follows from (4.7) and (4.14) that

(J'(u,v), (u,v)) = /R (filwu — fi(w)u®) dz+ /R (fa(v)v — fi(v)v?) dz < 0. (4.16)

Therefore, 0 is a regular value of .J which implies that A is a C''-manifold.
To prove the second part, we suppose by contradiction that (4.15) does not hold.

Thus, we have a sequence
(Un, V) C N, such that ||(un,v,)||z — 0 as n — +o0. (4.17)

Let us consider py > 0 such that ap? < w. As consequence of (4.17), there exists

1

no € N such that £7||(un, va)||% < p2 < p2, for n > ng, where k™1 = max{r; "', x5 }.

For given p > 2 and ¢ > 0, it follows from estimate (4.11) that

/fl(un)un da < el|un2 +02/(eau% ) un? de (4.18)
R R
We recall from Lemma 2.2.2 that for « > 0, [ > 1 and r» > [ we have

2

(e —1)' < (" —1), forall seR. (4.19)

Let > [ > 1 be sufficiently close to 1 such that rapi < w. Thus, it follows from
Lemma 4.2.1, (4.19) and Hoélder inequality that

11
au2 Tau2
/R(e = Dl do < (/R(e ") dw) lnlly < Clltall
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which together with (4.18) and Sobolev embedding implies that
/ Fi(un)un dz < eChllun [, + Collunll, < Cull(tn, va)llE + Call (un, va) 1%
R

Analogously, we deduce that

/ Fo(vn)vn dw < eCs]|(un, va) [ + Cill (n, v0) |-
R

Combining theses estimates we get,
/(fl(un)un + fo(vn)vn) do < Eélu(um Un)HQE + é2||(unv ) || (4.20)
R

Since e > 0 is arbitrary and C; does not depend of & and n, we can choose ¢ sufficiently
small such that 1 — ¢ — 56’1 > 0. We recall from Lemma 1.2.1 that

| (w, ) || — 2/R2 Mz)uv dz > (1 —0)||(u,v)||3, for all (u,v) € E. (4.21)

Thus, combining (4.20), (4.21) and the fact that (u,,v,), C N we get

(1= )l (tn, vn) 7 < /R(fl(un)un + fa(vp)vn) do < ECN’lH(una va) |5 + é2||(un7vn)||%v
which yields
0 < (1 =0 —eC)ll(un, va) [ < Col (tn, v) |-
Hence, denoting p, = (1 — 6 — eCy)/Cy we obtain
0 < /"™ < || (un, 00|11
(p—2

Choosing p; < p = min{py, p2/ } we get a contradiction and we conclude that (4.15)
holds. |

Remark 4.4.2. If (ug,v9) € N is a critical point of I |y, then I'(ug,v9) = 0. In
fact, recall the notation J(ug,ve) = (I'(ug,vo), (1o, v0)) and notice that I'(ug,vy) =
nd'(ug, vo), where n € R is the corresponding Lagrange multiplier. Taking the scalar
product with (ug,vo) and using (4.16) we conclude that n = 0.

Let us define the ground state energy associated with System (.59)

= f I
N = (ulgeN (u,v).

We point out that ¢y is positive. In fact, if (u,v) € N it follows from (Hj3) that

I(u,v) > %(H(u,v)HQE—Q/R)\( uvdx)——/fl uda:——/fg Yo da
(3-3) (Hwoz -2 [ Ao ac),

Thus, combining with (4.21) we conclude that

I(u,v) > (% - %) (1= 6)||(w, )% > (% - %) (1—6)p>0, forall (u,v)€N.

v
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Lemma 4.4.3. Suppose that (V3) and (Hy)-(Hy) hold. For any (u,v) € E\{(0,0)},
there exists a unique ty > 0, depending only of (u,v), such that

(tou, tov) € N and  I(tou,tov) = max I(tu, tv).

Moreover, if (I'(u,v), (u,v)) <0, then ty € (0,1).

Proof. Let (u,v) € E\{(0,0)} be fixed and consider the function g : [0,00) — R
defined by ¢(t) = I(tu,tv). Notice that

(I'(tu, tv), (tu, tv)) = tg'(t).

The result follows if we find a positive critical point of g. After integrating (Hj), we
deduce that
Fi(s) = Co(ls

#i— 1), forall s+#0,

which implies that

2 R 3
o) < 5 <|y<u,v)|\g - 2/RA(:U)W dx) ~Co [ @l ) do - €

—-R

Since p1, pig > 2, we obtain g(t) < 0 for ¢t > 0 sufficiently large. On the other hand, for
some a > ap and py > 0 satisfying ap? < w, we consider ¢ > 0 sufficiently small such
that ¢tk (u,v)||% < p3. Thus, for e > 0 and p > 2, we can use (4.13) and the same
ideas used to obtain (4.20) to get

t2
/R(Fl(tu) + Fy(tv)) dz < 56’15\|(u, )15 + Cot? || (u, v) |5 (4.22)
Since (' does not depends of £ which is arbitrary, we can take it small enough such
that 1 — § — Cye > 0. Hence, by using (4.21) and (4.22) we have

1-0—-0C4

o0 ol (25

o, v>||5’;2) -

Thus, g(t) > 0 provided ¢ > 0 is sufficiently small. Therefore, g has maximum points in

(0,00). In order to prove the uniqueness, we note that every critical point of g satisfies

t t
o)l —2 [ A gz = | GOLI / ROV 4 (423)
R R t R t
Furthermore, by using (4.7) we get

d (fits)s\ _ fl(ts)ts® — fi(ts)s  fl(ts)t*s* — fi(ts)ts
dt ( t ) B 2 B 3

> 0, (4.24)

which implies that the right-hand side of (4.23) is strictly increasing on ¢ > 0, and

consequently, the critical point ¢y € (0, +00) is unique.
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Finally, we assume that (I'(u,v), (u,v)) < 0 and we suppose by contradiction

that ty > 1. Since ty is a critical point of g, we have

PRI ey ey L

Therefore, by using the monotonicity obtained above, we conclude that

0< ||<u,v>||%—2/

R

Az)uv dz — /Rfl(u)u dz + /R fo(v)v do = (I'(u, v), (u,v)) <0,

which is a contradiction and the lemma is proved. |

4.5 Proof of Theorem 4.1.1

For g > 2 considered in (H,), we define the constant

S, = inf S, (u,v),
T (uw)eB\{(0,0)} o)

(Il =2 | Moo ao) "

[, v)lg ’

Lemma 4.5.1. Let ¢ and q be the constants introduced in (Hy).

where

Sq(u,v) = for (u,v) € E\{(0,0)}.

(a) The constant S, is positive.

(b) For any (u,v) € E\{(0,0)}, we have

2 1 1\ S,(xu, U)2q/(q*2)
e (S P ) o001 ) = (5= ) s

>0 q
Proof. The proof is the same of Lemma 2.2.9 and we omitted here. |

By Ekeland’s variational principle (see [38]), there exists a sequence (uy, vy)n, C N
such that
I(up,v,) = cn and  I'(uy,v,) — 0. (4.25)

Now we summarize some properties of (u,, v,), which are useful to study our problem.

Lemma 4.5.2. The minimizing sequence (uy, vy), satisfies the following properties:

(a) (Un,vy)n is bounded in E.
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1 I 2 S(?Q/(Q*Q)
—op—2 q (qv)2’

(8) timsup (w00 [} < 5

n—-+00

(¢) (Un,Vn)n does not converge strongly to zero in L™(R) x L™(R), for some m > 2.

(d) There exists a sequence (y,), C R and constants 5, R > 0 such that

yn+R
lim inf/ (u2 +v2)dr > 8> 0. (4.26)
Y.

n—-+00 n—R

Proof. 1t follows from assumption (4.25) that

env+0on(1) = I(uy, v,) = % <||(Umvn)||2E - Q/R)\(x)unvn dx) —/R(Fl(un)JrFQ(vn)) dz.

Thus, by using (H3), (4.21) and the fact that (u,,v,), C N, we deduce that

extonl) 2 (5 =) (1= 0 a0

Therefore, (u,,v,), is bounded in E. Moreover, the preceding estimate implies that

1 2
lm sup |1, 00 [ < ﬂu—f?w (4.27)

To prove item (b), we have from (H,) that
Fi(s) 4+ Fa(t) > O(|s|? + |t]?), for all s,t € R. (4.28)

By using Lemma 4.4.3, for any (w, z) € E\{(0,0)} there exists a unique ¢, > 0 such
that (tow,tpz) € N. Thus, since that cyr < I(tow, tpz) < maxy>o I (tw,tz), we can use
(4.28) to get

ex < max {5 (w2 =2 [ Moz as) — 001w, 2}

£>0
Recalling the definition of S,(w, z) and using Lemma 4.5.1 (b), we conclude that

t? 1 1\ S,(w, z)*/(a=2)
ex < mare{ 55,002, 1 - oo, 2y | = (5 - 1) Py

q
Combining (4.27), (4.29) and taking the infimum over (w, z) € E\{(0,0)} we have that

. (4.29)

‘ 1 wog—2 qu/(q—Q)
1 ny) ¥n 7 < ’
imsup || (un, vn) |l < 1—6pu—2 q (q0)¥a?

n—oo

Concerning (c), let a, pp > 0 be such that a > ap and 0 < ap? < w. By using
item (b), there exists Jy > 0 such that

k" lim sup ”(unavn)HJQE < pgv for ¥ > ¥y.

n——4o00
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By similar arguments used in the proof of Lemma 4.4.1, for given p > 2, r > [ > 1,

sufficiently close to 1, such that rap3 < w and a suitable € > 0, we can deduce that

0<(1=0d—eC)p* < (1=0—eC)l(un,va)ll5 < Coll(un, vn)lly

pl’

where 1/1 + 1/I' = 1. Therefore, (u,,v,), cannot converge to zero in L”'(R).
Finally to prove item (d), we suppose by contradiction that (4.26) does not holds.
Thus, for any R > 0, we have

y+R ) )
lim su uz +v) dx = 0.
Jim_sup / )

By using Lemma 4.2.4, it follows that (u,,v,) — 0 strongly in LP(R) x LP(R) for any
p > 2. In particular, for pl’ > 2 contradicting item (c). [ |

Proposition 4.5.3. There exists a minimizing sequence which converges to a nontrivial

weak limit.

Proof. Let (un,v,), C E be the minimizing sequence satisfying (4.25). By
Lemma 4.5.2 (a), (uy,v,), is bounded in E. Thus, passing to a subsequence, we
may assume that (u,,v,) — (ug,vo) weakly in E. Let us define the shift sequence
(Un (), 0 () = (un(T + Yn),vn(z + yn)). Notice that the sequence (ay,vy), is also
bounded in E which implies that, up to a subsequence, (u,,?,) — (@,0) weakly in
E. By using assumption (1), we can note that the energy functional is invariant by
translations of the form (u,v) — (u(- — z),v(- — 2)), with z € Z. Thus, by a careful

computation we can deduce that

| (s O || = Nl (s )5 L (s D) = I(tny ) — ey and  I'(@y, 0,) — 0.
Therefore,
R yn+R
lim (@2 4+ 92) dz = lim (u2 +v2)de > B >0,
n—+oo [ _p n——+00 yn—R
which implies (@, ?) # (0,0). |

For the sake of simplicity, we will keep the notation (u,,v,), and (ug,vp). In
order to prove that (ug,vy) € N, we will use the following Brezis-Lieb type lemma

which has been proved by J.M. do O et al. [36, Lemma 2.6].

Lemma 4.5.4. Let (u,), C HY?(R) be a sequence such that u, — u weakly in H/*(R)

and ||un||1/2 < po with pg > 0 small. Then, as n — oo, we have

/Rf(un)un d = /Rf(un — )y — u) dz + /R Fluyu dz + on(1),
/RF(un) dz = /RF(un ) de + /RF(U) dz + on(1).
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As consequence of Lemma 4.5.4, we have the following lemma:
Lemma 4.5.5. If w, = u, —ug and z, = v, — vy, then

(I'(ug, vo), (ug, vo)) + Uminf (I’ (wy, 2,), (wy, 2,)) = 0. (4.30)

n—-+o0o

Therefore, either (I'(ug, vg), (ug, vo)) < 0 or liminf, o (I'(wy, 2,), (Wy, 2,)) < 0.

Proof. By easy computations we can deduce that

lunll, = lwallE, + luollE, +2 (/R(—A)”“wn(—ﬁ)l/% dz +/

Vi(z)w,ug dx) :
R

anH%Q = ||zn||fg2 + HUOHZE2 + 2 (/R(—A)l/‘lzn(—A)l/‘lvo dz + /RVg(:c)znvo dx) )

Thus, since (wy, z,) — 0 weakly in E, we have

(s )l = [1(wn, 20) [ + [l (o, v0) | + 2((wn, 20), (o, v0)) 5

= ||(wn, 20) I + [l (w0, v0) | + 0n(1). (4.31)

Moreover, we have also that

/)\(:v)wnzn dx:/)\(:v)unvn dx—i—/)\(x)uovo dx—/)\(x)unvo dx—/)\(x)vnuo dz.
R R R R

R

By the weak convergence we have the following convergences

/)\(ac)voun dx—>/)\(x)vou0 dr and /)\(a:)uovn d:z:—>/)\(x)vou0 dz,
R R R R

which yields

/R Mz)wn 2, do = /R @) nvy da — /R M@)uovo do + op(1).  (4.32)

By using Lemma 4.5.4, (4.31), (4.32) and the fact that (un,v,), C N, we conclude
that

hminf<[/<wna Zn)a (wna Zn)) = _<[I(u0> UO)a <u07 UO)>7
n—-+0oo

which completes the proof. [ |
Proposition 4.5.6. The weak limit (ug,vo) satisfies (I'(ug,vo), (1o, o)) = 0.

Proof. We have divided the proof into two steps.

Step 1. (I'(ug, vo), (ug,vo)) > 0.

Suppose by contradiction that (I'(ug, vo), (ug, v9)) < 0. Thus, from Lemma 4.4.3,
there exists ¢ty € (0,1) such that (¢tyuo, tove) € N. By using (4.9) and Fatou’s lemma,

we obtain

x +0,(1) = 5 [ (B1(1)+ 60)) do = 5 [ (61(u0) + ) o +-0(1)
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Since to € (0, 1), it follows from (4.10) that

%/R(%(Uo) + ¢2(vo)) dz + 0, (1) > %/ﬂg(@bl(touo) + ¢a(tove)) do + 0, (1).

Combining these estimates and using the fact that (toug, tove) € N, we conclude that

1
CN + On(l) > [(toUo, toU()) — §<Il(t0U0, to'l)o), (toUO, t(ﬂ}())> + On(1> = I(toUo, t(]?)()) + On<1)

Hence, I(touo, tovg) < car, which is a contradiction. Therefore, (I'(ug, vo), (ug, vo)) > 0.
Step 2. (I'(ug, vo), (uo, vo)) < 0.

Suppose by contradiction, that (I’(ug,vo), (ug,v9)) > 0. By Lemma 4.5.5, we
have that
liminf (' (wy, 2,), (Wn, 2,)) < 0. (4.33)

n—+oo
Thus, passing to a subsequence, we have (I'(wp,z,), (W, 2,)) < 0, for n € N
sufficiently large. By Lemma 4.4.3, there exists a sequence (t,), C (0,1) such that
(tnWn, thzn)n C N. Passing to a subsequence, we may assume that ¢, — to € (0,1].

Arguing by contradiction, we suppose that ¢ty = 1. Thus, it follows that

| (W, 20) |5 — 2 /R M2 )wpz, dz = || (tpwn, tazn)||% — Q/R)\(x)tnwntnzn dz + 0,(1).

(4.34)
If we prove the following convergences
/ fi(wn)wn de = / £ (bwwa) bt dz + 00 (1), (4.35)
R R
/ fa(zn)z, do = / fo(tnzn)tnzn dx + 0, (1), (4.36)
R R

then combining with (4.34) and the fact that (¢t,wy, t,2,), C N we conclude that

(I'(wy, 20), (Wn, 20)) = I (EnwWny tn2n), (Enn, thzn)) + 0n(1) = 0,(1),

which contradicts (4.33). This contradiction implies that ty € (0, 1). It remains to prove

(4.35) and (4.36). For this purpose, for each i = 1,2 we apply the mean value theorem

to the function g;(t) = f;(t)t. Thus, we get a sequence of functions (), C (0,1) such
that

frlwp)w, = fi(tawn)tww, = (fi(07,)0, + f1(oy,))wa (1 = t), (4.37)

fo(zn)zn = fotnzn)tnzn = (fa(07)0, + f2(07,)) 2 (1 = tn), (4.38)

where o) = w, + 7}w,(t, — 1) and % = 2, + 722,(t, — 1). By using Lemma 4.5.2 (b),

there exists ¥y > 0 such that k= !||(un, v,)[|% < pg, for some o > g, 0 < ap? < w and

¥ > 1Jy. Since we have
[nlly = llwnlls, + [luollz, + on(1),
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it follows that £~ limsup,,_, . ||[wn |7, < p§. Thus, up to a subsequence, we get
lonlle, = lwn + Tawn(ta = Dlle, = [1 = (1 = ta) 7y llwall g, < o,

for n € N sufficiently large. We claim that

Sup/ fileHw, dr < oo and sup/ fi(eHotw, dr < oo, (4.39)
n R n R

sup/ f2(0%)z, dz < 00 and sup/ f3(03)o22, dz < co. (4.40)
n R n R
In fact, for p > 2 it follows from (4.4), (4.11) and Holder inequality that

fileHw, dz < C||ot|| g, |wallz, + C e@n)® _ 1)|gtpt w,| dz.
n n 1 1 n
R R

Consider 7 > [ > 1, sufficiently close to 1, such that 0 < rap? < w. By using Sobolev
embedding, Lemma 4.2.1, (4.19) and Hélder inequality we get

W
[ o e < ( / (P _ 1) ) ( / o1 g | dx)
R
1/21 1/21
</‘ 1|21(p 1) ) (/ |wn|21' dx)

Cllonll, llwall 2,

IN

IN

where 1/l +1/I" =1 and we have used the fact that 2/'(p — 1) > 2. Therefore,
/ filop)wy d < Cllog e, lwalle, + Cllogll, lwalle, < Cog + Cph" po < 0.
By using (4.12) and similar computations we obtain
/Rf{(Ui)inn dz < Ollog |z [wallz + Cllonll, lwallz, < oo

Analogously we obtain (4.40) and the claim is proved. From (4.39) and (4.40) we
conclude that

sup/ |fi(eh)ol + fi(o})||w,] dz < 0o and sup/ |f2(02)02 + fo(02)||2n] do < 0.
" " (4.41)

Finally, combining (4.37), (4.38), (4.41) and ¢, — 1, we get (4.35) and (4.36).
The preceding arguments concluded that, up to a subsequence, ¢, — ¢y € (0,1).

By a similar argument used in the Step 1, we can deduce that

W+%m—%éwmm+@%»mz%é@ﬁww+@@%»m. (4.42)

Notice that t,u, — toup and &'t u, |5, < pg. Thus, by using Lemma 4.5.4 we have

‘/Q@%ymz/¢¢WW4wwm+/@ﬁwwm. (4.43)
R R R
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Let us denote t,, = t,, — tg — 0. By the mean value theorem, there exists a sequence of
functions (v,), C (0, 1) such that

B1(tntty, — totg) — 1 (tnwn) = &) ((1 — ) (Entin — toto) + Ytnwy )tnto.
Notice that t,u, — toug = taw, + taug. Thus, it follows that
1 (tntn — totio) — G1(tnwn) = ¢} (Ca)Entio, (4.44)
where ¢, = (1 — V)tnu0 + tyw,. Recalling that £~ ||w,[|%, < p§ we have
IGall e = 11 = )tnuo + tawall s < Ealluolle, + tallwalle, < po,

for n sufficiently large. Repeating the same argument used to deduce (4.41), we get

sup [ 164Gl de < sup [ 1GIG + Gl do <00 (445)
By using (4.44), (4.45) and the fact that ¢, — 0, we conclude that
/Rgbl(tnun — toug) do = /R¢1(z€nwn) dz + 0,(1). (4.46)
Since t,v,, — tovg and £ |t,v,]|%, < p§, we can check analogously that
/ Po(tpvy,) do = / Go(tnvn, — tovo) do + / ba(tovo) dz, (4.47)
R R R
/]R ooy — tovo) s = /R bs(tnzn) it + 0n(1). (4.48)

Therefore, by using (4.42), (4.43), (4.46), (4.47), (4.48) and the fact that (t,w,,t,2,) €
N, we have that

ey tou(l) > %/R(qzﬁl(tnun) + ¢a(tnvn)) dz
1 1
= 3 /R(¢1(tnun — toto) + Pa2(tnvn, — tovy)) do + 5 /R(gbl(touo) + ¢a(tovo)) d
— %/R(%(tnwn) + ¢2(tnzn)) do + % /R(d)l(touo) + ¢a(tovg)) da + 0, (1),

which implies that

en 4 on(1) > I(tywn, thz,) + (¢1(touo) + P2(tovo)) dz + 0, (1).

1
2 Jr
Since (ug, vg) # (0,0), it follows from (4.9) that

1

3 /R(%(touo) + ¢2(tovo)) dz > 0,

which jointly with (4.49) implies that I(t,wy, t,z,) < ¢y for n large, contradicting the
definition of ¢yr. Therefore, (I'(ug, vp), (ug, v9)) = 0 and the proof is complete. |
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Proof of Theorem /j.1.1 completed. Finally, we will conclude that (ug,v) is in fact a
ground state solution for System (.5), even though we do not know if (u,, v, ) converges
strongly in E. By Propositions 4.5.3 and 4.5.6, we have that (ug,vq) € N. Thus,
cn < I(ug,vp). On the other hand, by using (4.9) and similar arguments as used
before, we deduce that

envton(l) = %/R(@(un)—l—(bg(vn)) dx > %/R(¢1(Uo)+¢2(vo>> dz+0,(1) = I(ug, vo)+o,(1),

which implies that cy > I(ug,vg). Therefore I(ug,v9) = cn and jointly with
Remark 4.4.2 implies that (ug,vp) is a ground state solution for System (5.

In order to get a nonnegative ground state, we note that I(|ug|, |vg|) < I(ug,vp).
Moreover, by using Lemma 4.4.3, there exists ty > 0, depending on (|ug, |vo]), such
that (to|uol, tolve]) € N. Since (ug,v9) € N, we have also from Lemma 4.4.3 that

max;>o I (tug, tvg) = I(uo,vo). Hence,
I(t0|U0|,t0|’U0|) S ](tou()a tOUO) S I?BOX [(tUO,tvo) = ](U()’UO) =cy.

Therefore, (to|ugl,to|ve]) € N is a nonnegative ground state solution for System (.5)
which finishes the proof of Theorem 4.1.1. [ |

Remark 4.5.7. Let IC be the set of all ground state solutions for System (S), that is,
K :={(u,v) € E: (u,v) € N, I(u,v) = cy and I'(u,v) = 0}.

Let (up,vp)n C K be a bounded sequence. Thus, up to a subsequence, we may assume
(U, vy) = (u,v) weakly in E. Proceeding analogously to the proof of Proposition J.5.5,
we can conclude that there ezists a sequence (yn)n, C Z and constants R,& > 0 such
that

n—oo

lim inf/ (u2 +v2) dz > € > 0.
Br(yn)

Using the invariance of I, we may conclude that (u,v) # 0. Repeating the same
arguments used in the proof of Proposition 4.5.6, we deduce that (u,v) € N'. As before,
we see also that I(u,v) = cn. Thus, using (Hs), the weakly lower semi-continuity of

the norm and Fatou’s lemma, we have

ex+on(l) = I(unv,) — i([/(un,vn), (1, V)

> I(u,0) — S (u,v), (1, 0)) + on(1)

=

= cx +ou(1).

Thus, |[(tn,vn)|| — ||[(u,v)||, which implies that (u,,v,) — (u,v) strongly in E.

Therefore, IC is a compact set in E.
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4.6 Proof of Theorem 4.1.2

In this section we will be concerned with the existence of ground states for the
asymptotically periodic case. The idea is the same used in the proof of Theorem 1.5.
We emphasize that the only difference between the potentials V;(z), A(z) and Vj(z),
A(x) is the periodicity by translations required to V;(z) and A(x). Thus, if V;(z) and
S\(x) are periodic potentials, we can make use of Theorem 4.1.1 to get a ground state

solution for System (.5). Let us suppose that they are not periodic.

Associated to System (.5), we have the following energy functional

1 -
I(u,v) = 3 (||(u7 v)||% — 2/ AMz)uw dx) — / (F1(u) + F3(v)) de.
R R
The Nehari manifold for System (S) is defined by

N ={(u,v) € E\{(0,0)} : (I(u,v), (u,v))},

and the ground state energy associated ¢y = inf g f(u, v). Similarly to Section 4.4, for
any (u,v) € N, we can deduce that

Hun) = (5-5) @=olwals = (3-1) a-p>0

Hence, ¢ > 0. The next step is to establish a relation between the levels cyr and cy.

Lemma 4.6.1. Assume the hypotheses of Theorem 4.1.2. Then cg < cyr.

Proof. The proof is quite similar to Lemma 1.5.1 and we omitted here. [

As in the proof of Theorem 4.1.1, there exists a sequence (u,,v,), C N such that
I(tp,v,) = e and  I'(uy,v,) — 0. (4.49)

Notice that in the proof of Theorem 4.1.1 the only step we used the periodicity of
the potentials was to guarantee that a minimizing sequence converges to a nontrivial
limit (see Proposition 4.5.3). Thus, Lemma 4.5.2 remains true for the minimizing
sequence obtained above to the asymptotically periodic case. Since (uy,v,), is a
bounded sequence in E, we may assume up to a subsequence that (u,,v,) — (uo, vo)
weakly in E. The main difficulty is to prove that the weak limit is nontrivial.

Proposition 4.6.2. The weak limit (ug,vy) of the minimizing sequence (uy,vy), is

nontrivial.
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Proof. Arguing by contradiction, we suppose that (ug,v9) = (0,0). We may assume
that
e u, — 0 and v, — 0 strongly in Lj (R), for all 2 < p < oo;

e u,(x) = 0 and v,(z) — 0 almost everywhere in R.
It follows from (V) that for any € > 0 there exists R > 0 such that
Vi(z) = Vi)l <&, [Va(z) = Va(z)| <&, [A(z) = A(z)| <&, for |z > R. (4.50)
By the same idea used to get (1.12) we can deduce that
I(up, vy) =iy +0,(1) and  (I'(un, ), (Un, Us)) = 0,(1). (4.51)
Using Lemma 4.4.3, there exists (t,,), C (0,+00) such that (t,u,, t,v,), CN.

Claim 1. limsup,,_, t, < 1.

In fact, we suppose by contradiction that there exists 5 > 0 such that, up to a
subsequence, we have t, > 1+ &g, for all n € N. Combining (4.51) and the fact that
(tntin, tav,) C N, we can deduce that

/R(M _ fl(un)un) dgz:Jr/]R (M _ fz(vn)vn) d = o, (1)

tn tn

By using (4.7) (see (4.24)) and the fact that ¢, > 1 + ¢, we have that

/R <f1((1 + €0)un)n f1(un)un) der/]R (fz((l +€0)Un)Un f2<Un)Un) do = on(D).

14 ¢€g 1+¢g
(4.52)

Arguing similar to the proof of Proposition 4.5.3 we consider the shift sequence

(U (), 50(2)) = (Un(T + Yn),vn( + yn)). The sequence (ii,(x),7,(x)) is bounded
in E and, up to a subsequence, (i, (z), o, (z)) = (@, 7). Therefore,
R yn+R
lim (@2 4+ 92) dz = lim (u +v2) dz > B >0,
n—-+00 R n——+o0o yn—R
which implies (@,0) # (0,0). Thus, by using (4.7), (4.52) and Fatou’s lemma, we
conclude that

0</R<f1(<1+50)&)ﬁ —fl(ﬂ)ﬂ) dx+/R (M—h(@)@) dz = o (1),

1+50 1+€0

which is not possible and finishes the proof of Claim 1.

Claim 2. There exists ng € N such that t,, > 1, for n > ng.
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In fact, arguing by contradiction, we suppose that up to a subsequence, ¢, < 1.
By using (4.10) and the fact that (¢,un, t,v,), C N we have

o < 5 [ (@rltata) + 0a(tatn)) de < 5 [ (90(10) + 6(01) do = e+ 0n(0)

Therefore, cyr < ¢ which contradicts Lemma 4.6.1 and finishes the proof of Claim 2.

Combining Claims 1 and 2, we can deduce that

/R(Fl(tnun)—Fl(un)—i—Fg(tnvn)—Fg(vn)) dz = /1 ’ /R(fl(Tun)un—l—fg(Tvn)vn) dzdr = 0,(1).

Moreover, we have that

t’%; ! (Il(un,vn)H% —2/RA(x)unvn dfﬂ) = on(1).

These convergences imply that I(t,u,, t,v,) — I(tn, v,) = 0,(1). Thus, it follows from
(4.51) that
ey < I (tptn, thvy) = Iy, vn) + 0,(1) = ¢ + 0n(1),

which contradicts Lemma 4.6.1. Therefore, (ug,v9) # (0,0) and the proposition is
proved. [

Proof of Theorem /.1.2 completed. We point out that we did not use the periodicity on
the potentials V;(x) and A(z) to prove Proposition 4.5.6. Thus, since (ug, v9) # (0,0),
we can repeat the same proof to conclude that (ug,vg) € N. Therefore, we have
¢y < I(ug,v9). On the other hand, by using (4.9) and similar arguments as used

before, we deduce that

vt o) = 5 [ (Gun) +éaf0) da

> 5 [ @a(uo) + da(un)) de -+ 0,(1)

= I(ug, v) + 0n(1),
which implies that ¢y > I(ug,vp). Therefore I (uo,v9) = cn. Repeating the same
argument used in the proof of Theorem 4.1.1, we can deduce that there exists ty > 0
such that (Zo|uol, to|ve|) € N is a ground state solution for System (S) which finishes
the proof of Theorem 4.1.2. [ |

Remark 4.6.3. Let K be the set of all ground state solutions for System (g), that s,

K :={(u,v) € E: (u,v) €N, I(u,v) = cg and I'(u,v) = 0}.

Using Proposition 4.40 instead Proposition 4.5.3, we can apply a similar argument used

in Remark /.6.2 , with I replaced by I, to conclude that K is a compact set in E.
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Remark 4.6.4. The main goal of this chapter was to prove the existence of ground
states for Systems (S) and (S), when the constant ¥ introduced in (H,) is large enough.
In the lemma 4.4.1, we proved that the norm of any element that belongs to the Nehari
manifold is greater or equal to a positive constant p, which is strictly less than kw/ay.
However, we note by Lemma /.5.2 (b) that the norm of the minimizing sequence is so
small as we want, and it is controlled by the choice of ¥. Thus, our proof holds for any

Y contained in a bounded interval of the real line. Let us consider, for instance,
V" :=sup{v € R: (5) has ground states}.

Naturally, it arises the following questions: U* is finite? If 9* is finite, then there exists
ground states at 9 = 9* 7
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