
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE
CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA

CURSO DE BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

JOÃO MAURÍCIO ALVES VALVERDE CARVALHO

REQUIREMENTS SPECIFICATION FOR DEVELOPERS IN AGILE

PROJECTS:

EVALUATION BY ONE INDUSTRIAL CASE

CAMPINA GRANDE - PB
2021

JOÃO MAURÍCIO ALVES VALVERDE CARVALHO

REQUIREMENTS SPECIFICATION FOR DEVELOPERS IN AGILE

PROJECTS:

EVALUATION BY ONE INDUSTRIAL CASE

Trabalho de Conclusão Curso apresentado ao
Curso Bacharelado em Ciência da Computação do
Centro de Engenharia Elétrica e Informática da
Universidade Federal de Campina Grande, como
requisito parcial para obtenção do título de
Bacharel em Ciência da Computação.

Orientador: Dr. Tiago Lima Massoni.

CAMPINA GRANDE - PB
2021

Elaboração da Ficha Catalográfica:

Johnny Rodrigues Barbosa

Bibliotecário-Documentalista

CRB-15/626

 C331r Carvalho, João Maurício Alves Valverde.
 Requirements specification for developers in agile

projects: evaluation by one industrial case. / João

Maurício Alves Valverde Carvalho. – 2021.

 11 f.

 Orientador: Prof. Dr. Tiago Lima Massoni.

 Trabalho de Conclusão de Curso - Artigo (Curso de

Bacharelado em Ciência da Computação) - Universidade

Federal de Campina Grande; Centro de Engenharia Elétrica

e Informática.

 1. Software requirements specifications. 2. Agile

software development. 3. Requirement enginer. 4.

Qualitative research. 5. Grounded theory. 6. Brazilian

developers. I. Massoni, Tiago Lima. II. Título.

 CDU:004(045)

JOÃO MAURÍCIO ALVES VALVERDE CARVALHO

REQUIREMENTS SPECIFICATION FOR DEVELOPERS IN AGILE

PROJECTS:

EVALUATION BY ONE INDUSTRIAL CASE

Trabalho de Conclusão Curso apresentado ao
Curso Bacharelado em Ciência da Computação do
Centro de Engenharia Elétrica e Informática da
Universidade Federal de Campina Grande, como
requisito parcial para obtenção do título de
Bacharel em Ciência da Computação.

BANCA EXAMINADORA:

Professor Dr. Tiago Lima Massoni

Orientador – UASC/CEEI/UFCG

Professor Dr. Hyggo Oliveira de Almeida

Examinador – UASC/CEEI/UFCG

Professor Tiago Lima Massoni

Professor da Disciplina TCC – UASC/CEEI/UFCG

Trabalho aprovado em: 20 de Outubro de 2021.

CAMPINA GRANDE - PB

RESUMO

A adoção de métodos de desenvolvimento ágil cresceu nos últimos anos. Os métodos ágeis tratam a
Especificação de Requisitos de Software (SRS) de forma diferente dos métodos de desenvolvimento tradicionais.

As ‘User Stories’ são uma das abordagens mais amplamente utilizadas para especificar requisitos em projetos
ágeis. No entanto, estudos empíricos na indústria apontam que as USs são direcionadas aos clientes, cobrem

apenas requisitos simples e funcionais visíveis para os usuários e não abordam requisitos de sistema e não
funcionais. A abordagem de Especificação de Requisitos para Desenvolvedores (RSD) visa fornecer informações

mais próximas das necessidades de desenvolvimento. Este artigo apresenta um estudo empírico avaliando a
abordagem RSD em um caso industrial.

Requirements specification for developers in agile
projects: Evaluation by one industrial case

João Maurício Carvalho
Orientador: Tiago Massoni

Departamento de Sistemas e Computação
Universidade Federal de Campina Grande

Campina Grande, Paraíba, Brasil

joao.carvalho@ccc.ufcg.edu.br

ABSTRACT
Agile Software Development (ASD) adoption has grown in recent
years. The agile methods treat the Software Requirements
Specification (SRS) differently from the traditional development
methods. User stories are one of the most widely used approaches
to specifying requirements in agile projects. However, empirical
studies in the industry point out that user stories are targeted to
customers, only cover simple, functional requirements visible to
the users, and do not address system and non-functional
requirements. The Requirements Specification for Developers
(RSD) approach aims to provide information closer to
development needs. This paper presents an empirical study
evaluating the RSD approach in an industrial case.

Keywords
Software requirements specifications, Agile software
development, Requirement engineer

1. Introduction
The 15th Annual State of Agile Report, conducted by

VersionOne[1], showed that software development teams'
adoption of Agile methods has increased from 37% in 2020 to
86% in 2021. However, 46% of respondents pointed out
inconsistencies in processes and practices are the most significant
Agile adoption barrier. In particular, some studies have identified
problems related to the requirements engineering activities, such
as low availability of the customer, ambiguity of requirements
artifacts, and the management of requirements due to frequent
changes [2-5].

User stories have become the most commonly used
requirements notation in agile projects[6-7]. By definition, a user
story is an informal, general explanation of a software feature
written from the end user's perspective. User stories' purpose is to
articulate how a software feature will provide value to the
customer. However, it does not address system and non-functional
requirements, which are essential for an engineer to properly
code, test, and maintain certain features.

Consequently, developers consider that software
requirement specifications based on User Stories are brief, vague,
ambiguous, and insufficient for capturing the complexities of the
up-front design.[4,8]. The Requirements Specifications for

Developers (RSD) seeks to provide an integrated view of the
requirements linking the benefits of identifying the problem
domain concepts (conceptual modeling), the visual representation
of interface requirements (mockups), the business rules,
nonfunctional requirements, and technical constraints (acceptance
criteria). Motivated by this scenario, we conducted an empirical
study, evaluating the RSD approach [9] content and how its uses
affect teamwork.

Empirical studies in the context of requirements
specification activities have been developed for a long time.
However, most studies were not conducted in the context of Agile
Software Development. According to Schön et al. [12], agile
practices in Requirements Engineering need additional attention
as a research theme. More empirical studies are required to
understand the impact of agile methods in Requirements
Engineering.

This study aimed to evaluate the impact of the RSD in
practice and identify its strengths and limitations. Results showed
the engineers believe the approach provides more effectiveness in
visualizing and understanding requirements. However, a
proprietary platform for using the method may be necessary to use
its capabilities thoroughly.

The remainder of this paper was organized as follows:
Section 2 presents an overview of the RSD approach. Section 3
describes the methodology used. Section 4 presents the results of
the case study. Some related work is discussed in Section 5.
Finally, Section 6 presents our conclusions and direction for future
work.

2. RSD Approach overview
The RSD approach[9] replaces User Stories or other

SRS methods in ASD. The approach structures customer needs
and system requirements using a single view that integrates three
perspectives. The first perspective models the business concepts
(entities, attributes, and relationships). The second describes the
acceptance criteria representing the business rules and technical
requirements, NFR, or other constraints. The third describes the
visual interface elements between the system and the user
(mockups). Thus, it provides a more comprehensive requirements
coverage when compared to User Stories, which only addresses
user requirements.

The approach does not impose any particular tool to
create and maintain artifacts and acceptance criteria items. RSD

can be used with XP, Scrum, or any other agile method where the
client validates the requirements through working software, as
established in the Agile Manifesto[11]. RSD approach focuses on
the development team, and the RSR produced is not intended to
be used as a mechanism for requirements validation with the
customer.

2.1 Design and structure of the RSD
approach

Fig 1. Structure of RSD artifact.

To illustrate the use of the RSD approach, Fig. 1 shows
the RSD artifact related to the sign-in of a web application system.
We can see that in addition to the application description and other
data, we also have a mockup that defines an outline of how the
page should be implemented and describes the acceptance criteria
associated not only with the application but specifically for each
widget. The RSD approach proposes the adoption of three
well-established design practices that make the SRS targeted to
the software engineer: Conceptual Modeling, Mockups Modeling
and Specification of Acceptance Criteria (AC+, an extension of
the Acceptance Criteria to be further explained in this section).

We can break the RSD artifact into five parts:

● High-Level Description
○ Identifies the requirement. This section

includes Label, High-Level description,
priority, requestor stakeholder, and sprint in
which it will be implemented.

● Mockup
○ If applicable, the mockup allows visualization

of the data and how they will be presented in
the system, facilitating teamwork
development.

● Widget
○ Presents the widget present in the mockup

model.
● Data Entities

○ Presents the data entities and attributes
extracted from the conceptual model, which
are related to each widget.

● Acceptance Criteria
○ Presents the ID of the Acceptance Criteria.

Acceptance Criteria are supposed to be
re-used in the RSD Approach. They are
written in another table and referenced by ids
in the artifacts.

2.2 Acceptance Criteria Plus
An essential aspect of the RSD approach is Acceptance

Criteria + (AC+), an extension of the Acceptance Criteria concept.
AC+ defines not only business rules but also validation rules,
interface, technical, or any other type of constraint necessary for
the system coding. They can be classified into six types:

● Business - Represents a restriction related to the nature
of the business.

● Validation - Represents some validation the application
needs to perform but is not directly related to the
business.

● Interface - Represents any restriction related to the user
interface.

● Technical - Represents a technical restriction on how
the solution should be implemented.

● Non-Functional - Represents concerns about tracking
quality.

● Other - When it does not fit in any of the previous
types.

Table 1
Acceptance Criteria Examples.

Id Description type

09 Login using
google account
must be enabled on
Keycloak.

T

18 Email field must
be auto-completed
if previously done
in the login screen

I

02 Username and
email should be
considered as login
options

B

07 Before sending a
request, frontend
should validate
that all fields were
filled out.

V

24 Authentication
must be available
99.99% of the time

N

22 'Password' field
must hide what is
being typed

I

25 To save, it is
necessary that all
required fields (*)
are filled

V

26 The dropdown list
must only display
active clients

B

40 Failed webhooks
notifications must
be placed in an
SQL table so that a
new attempt can be
made.

T

41 Notification retries
must be made
every 1 hour
within the 24 hour
period and
discarded
thereafter.

B

A requirement may have many AC+s with different
priorities than can also be allocated to different sprints. New
AC+s can be identified at any moment throughout the

development process. Some examples of AC+s are presented in
Table 1.

Acceptance criteria are associated with id's so that reuse
is possible. The type of language used in each varies according to
the kind of AC+. For example, the AC+ of ID 40 is of the
technical category and talks about handling errors in webhook
notifications. Therefore, in the description, we can find a much
more technical language, such as database technologies.
Meanwhile, in business-related AC+, the language is more
informal and does not go into technical implementation details.
Like in AC+ #26 where the content of a dropdown is discussed.

Different requirements may reuse AC+s. Reuse also can
occur in the same RSD. Two or more widgets may share the same
AC+, for example. Some AC+ has nothing to do with widgets,
such as AC+ regarding the implementation of algorithms or
non-functional requirements, for example. In that case, they must
be added in a row with the column 'widget' blank. Some Widgets
are also not related to any data entities and should also be added
in a row with the column ‘concept’ blank.

3. Methodology
The goal of the study was to qualitatively assess how

the RSD approach works in practice. The studies followed a
protocol that describes the procedures to collect and analyze the
data. An interview script was built to guide the interviews with the
software engineers. We intend to answer the following Research
Questions:

● RQ1: How does the team evaluate the SRS produced
using the RSD approach?

● RQ2: How does the RSD approach affect teamwork?

To properly evaluate the effectiveness of the RSD
approach, we should consider the following aspects:

● The interaction between the development team and the
customer. Collaboration with the customer is essential in
every step of a development cycle. Furthermore, it is
necessary to observe if the RSD approach decreases
stakeholder dependence during the development stage.

● How the use of the approach influences the
understanding of the demands. The objective of the
RSD approach is, among many, to promote less
ambiguity in requirements, promote reuse and avoid
rework. To assess these factors, it is necessary to look at
the effects of the approach within a real context.

Since there are some real-world variables to take into
account, the reductionism of a controlled experiment would not be
appropriate in our case. Consequently, we chose case study as the
research method to evaluate the RSD approach. Thus, we
conducted one empirical qualitative case study to assess the
effectiveness of the approach in practice.

3.1 Participants
The case study was conducted over 1 month in the

development of a customer service system for a digital marketing
company. The scope of the project ranges from registering new
customers to generating customer follow-up presentations. The
development team consisted of four software engineers and the
company uses traditional Scrum practices. The method used to

specify requirements was User Stories from the beginning of the
company's software projects.

3.2 Study Procedure
The team adopted the RSD approach in a new project

for the period of two sprints. Each sprint lasted for two weeks.
Several Scrum and XP practices were well established in the
project, such as backlog, frequent releases, continuous integration,
and retrospective. The developer team was composed of four
engineers where one of them also played the software analyst role.
All of them had at least two years of experience with ASD
practices. The analyst elaborated the RSD in collaboration with
the other engineers and the internal product owner during the
planning session before the beginning of each sprint. Artifacts
were updated throughout the sprint when discoveries were made
regarding the requirement. The team managed the product
backlog in the Jira software. All the RSD were written in
Atlassian Jira. Javascript language was used to code the
requirements. The analyst used the Pencil tool for modeling the
mockups.

There was a conversation with the development team to
introduce the approach. Examples were presented to demonstrate
the differences between the RSD approach and user stories. A
demo planning was also made to clarify doubts and make the team
familiar with the approach. In the demo planning, we produced 6
RSD artifacts regarding a fictional game statics software. The
paper's author is part of the engineering team and conducted the
sprint planning where artifacts were made together with the entire
team.

Observations were made during the daily meetings
where the team was induced to comment on the impressions they
were having using the RSD approach so far. Throughout two
sprints of 2 weeks each, the team created 14 RSD documents.
There was no comparison with another group not using the
approach. Each document was evaluated by the software engineer
in charge of coding it. They were asked to evaluate with a score
from 1 to 5 in the following items: Objectivity, Clearness, and
completeness of scope. This assessment was based on a list of
factors that affect ASD requirements engineering[13].

Interviews were conducted individually with each of the
developers involved at the end of the second sprint. Before the
start, it was explained to the interviewee that the purpose of the
interview was to assess the approach and suggest improvements.
The questions were prepared sequentially, but the interviews were
conducted freely. If the respondent showed interest in
commenting on a specific point, the interviewer would skip to the
related question and return to the script afterward. The following
script was prepared to conduct the interviews:

● Q1: What roles did you play in the project?
● Q2: How were the requirements specified in the projects

you worked on previously?
● Q3: Can you describe what you think is the ideal SRS

for the developer?
● Q4: On a scale of one (inadequate) to five (very

adequate), how do you assess the structure of RSD?

● Q5: Could you point out the main differences between
the RSD approach and the methodologies you've used in
the past?

● Q6: How do you assess the reuse of requirements in the
project?

● Q7: Do you consider that the use of the approach
reduced the frequency of interactions with the customer
to resolve doubts during the development process?

● Q8: Did you notice anything specific about the approach
that improved your performance?

● Q9: Did you notice anything specific about the approach
that worsened your performance?

● Q10: Using a discrete scale (lower, equal, higher), how
do you evaluate the effort required to specify using the
RSD approach compared to others approaches you have
used before? Do you think it is worth it?

● Q11: What changes would you like to make in the RSD
approach?

The interviews were recorded and then transcribed.
Relevant excerpts from the interviews were highlighted and given
tags describing what was being said to group similar responses.
The data collected in the interviews were then triangulated with
the data obtained in the evaluations of the RSD artifacts and the
observations made during the study to increase the credibility of
the data.

4. Results
In this section, we present the evaluation results by

organizing them by research questions.

4.1 How does the team evaluate the SRS
produced?

The developer team evaluated each RSD artifact they
worked on, considering two aspects: content and structure. During
the two sprints, 14 artifacts were created with 55 AC+s in total.

● Content:

All RSD artifacts were evaluated in
compliance with all quality factors. In the Q8 interview
script, mockups were presented as a performance
improvement factor by 75% of respondents. 93% (13)
of the artifacts were described without ambiguity. The
artifact that was considered ambiguous did not clarify
how the system should technically handle the deletion
of a specific entity. It was not clear whether the system
should do a hard delete or a soft delete.

The team considered 86% of the RSD artifacts
sufficient to be implemented without consulting
complementary sources. One of the artifacts judged as
insufficient to implement by the responsible developer
had a lack of business AC+ related to an alternative use
flow of the feature. The other one lacked technical AC+,
as some complexities related to implementation had not
been taken into account. Considering this, we can
conclude that the reported problems are not related to
the content of the approach but rather because the team
neglected some aspects of certain features during the
planning phase.

We asked the engineers to compare the SRS
produced by the RSD approach and the methodologies

they have used in the past in Q5 and Q10. Old artifacts
are accessible in the project management tool, but
respondents were not asked to review them prior to the
interview. All participants claimed that they used User
Stories in past experiences to produce SRS. The fact
that RSD is designed for the developer was mentioned
in two of the interviews. Mockups were also mentioned
in two interviews as a pro RSD factor. Only one
respondent evaluated that the effort required to produce
an RSD artifact is more significant than other
methodologies, as highlighted by Interviewee #2: “The
effort is higher because it is necessary to draw the
mockup. However, I think it is worth it.”.

When asked whether they thought that the
SRS produced with the RSD approach was better than
others they had already used, all responded positively.
However, one of the engineers mentioned that he
believed that the same result could be achieved using
User Stories. He believes that although the structure of
the approach provides a more aligned view of what
developers need, the determining factor for projects
with incomplete SRSs is because teams neglect the
planning phases in developing a feature.

“I believe the same result can be achieved
using User Stories, but teams tend to neglect the effort
required to produce good SRS" Interviewee #4, Q5.

● Structure

Some questions were focused on how the
RSD approach structures data. The approach was
evaluated as very adequate by most respondents (3) and
adequate by the other. In Q6, most respondents pointed
out that it is hard to keep AC+ organized and reuse them
without a proper tool to catalog and search them.
Traceability was compromised because the team made
the relationship between AC+ and requirements
manually on sprint planning. The approach does not
define any specific tools for organizing the requirements
and acceptance criteria. One of the interviewees
mentioned in Q11 that he would like the AC+ to be
embedded within the artifact to avoid checking two
different documents. On the other hand, the team did
not report any problem regarding using the Pencil tool
for elaboration of mockups.

"I think the RSD structure itself is fine, but a
tool of its own would be beneficial since it is difficult to
catalog and reuse AC+ manually. Also, it is painful to
have to check the content of AC+ in another document.
So it would be better if they were embedded in the
requirements". Interviewee #4, Q11.

In Q8, mockups were mentioned as a factor
that increases engineers' productivity, as they have a
simple and objective view of what should be
implemented.

4.2 How does the RSD approach affect
teamwork?

Only one engineer reported the effort to create an RSD
artifact as higher than other approaches. The effort was considered
higher because it is necessary to draw the mockups. However, the
engineer pointed out it was worth it because mockups help
visualize the feature. He pointed out that despite believing that
more significant effort is needed in the planning phase, the effort
is reduced in the development phase.

In Q8, mockups were mentioned as a factor that
increases engineers' productivity, as they have a simple and
objective view of what should be implemented. When asked if
they thought the approach reduced the frequency of interaction
with stakeholders during the development process, almost all
respondents indicated that using the approach decreased the
frequency. Only one engineer pointed out that he did not notice
any differences in this aspect. He mentioned that although
mockups are good for visualizing features, interactions with
stakeholders are still necessary for detail alignment. Some details
are only observed when the developer is going to code the
requirement, and therefore, it is necessary to consult stakeholders
and add new information to the RSD artefact in the middle of the
development process.

Acceptance tests were done by the internal Product
Owner using the RSD as a reference. Some interviewees
mentioned that this helped the feature validation process and the
understanding of what was wrong or missing. Previously,
acceptance tests were done arbitrarily, only considering how the
internal Product Owner imagined the final solution. Respondents
pointed out that the RSD artifact helped them have a more
transparent and accurate idea of ​​what was expected and reduced
rework. When a feature was not accepted, the product owner
indicated to the developer which AC+ was missing or wrongly
implemented.

5. Related Work
In this section, we discuss some other Empirical Studies

to evaluate the effectiveness of the RSD approach. One work
assessing the RSD approach in two industrial cases was identified.
In a work published in 2019[10], the approach was conducted for
12 months in one of the projects and 3 in the other. The engineer
responsible for coding the feature evaluated the artifact
individually, and one interview was conducted with each engineer
at the end of the study. The study interviewed 14 engineers in
total, and the result shows that in the long term, the lack of a
specific tool to use the approach hinders its use. On the other
hand, as in our study, the results regarding the content of the RSD
artifacts were positive. One of the case studies pointed out that the
team tends to neglect AC+s related to non-functional
requirements. Therefore, it was suggested that the approach have
an initial catalog of non-functional requirements.

6. Conclusions
The study aimed to evaluate the use of the RSD

approach in practice and identify its strengths and limitations. The
details of the study procedures have been detailed and can be used
in other contexts to develop new studies.

For RQ1, the results show that the approach met the
engineers' expectations and provided a more suitable view of what
should be coded. The interviewed engineers considered that

artifacts produced using the RSD approach are more suitable for
implementation than the previously used approaches.

For RQ2, the result suggests that using the method adds
little or no additional effort to the specification activity and can
reduce the effort to code, test, and maintain software. It was also
suggested that mockups might lessen the frequency of iterations
with stakeholders during the development process. On the other
hand, the team found it difficult to reuse AC+ completely. The
fact that there is no specific tool for using the approach makes the
process of cataloging and searching for acceptance criteria costly.
The fact that AC+ was not embedded in the artifact page emerged
as a factor in decreasing productivity, as it is necessary to check
two separate documents.

This paper and related works show the RSD approach
promotes a promising technique for specifying requirements in
agile software development. However, a tool must be explicitly
created for the application of the methodology. For example, an
open-source application could be developed initially just as a
repository to store and search AC+ and evolve into a complete
platform where artifacts are created and stored in one place.

More evaluations of the RSD approach are still required
to assess, for example, its impact on knowledge transfer between
team members, how it works in different contexts like
open-source projects, and how it performs with large distributed
teams. In addition, an experiment directly comparing the approach
with other methodologies already consolidated in the market
would be interesting to understand the advantages of its use better.

7. References
[1] Version One, The 15th Annual State of Agile Report,

Technical Report, Version One, 2021 accessed on November
10, 2021.,

[2] R. Kasauli, G. Liebel, E. Knauss, S. Gopakumar and B.
Kanagwa, "Requirements Engineering Challenges in
Large-Scale Agile System Development," 2017 IEEE 25th
International Requirements Engineering Conference (RE),
2017, pp. 352-361, doi: 10.1109/RE.2017.60.

[3] M. Daneva, E. Van Der Veen, C. Amrit, S. Ghaisas, K.
Sikkel, R. Kumar, N. Ajmeri, U. Ramteerthkar, R. Wieringa,
Agile requirements prioritization in large-scale outsourced
system projects: an empirical study, J. Syst. Softw. 86 (5)
(2013) 1333–1353, doi:10.1016/j.jss.2012.12.046.

[4] A. Read and R. O. Briggs, "The Many Lives of an Agile
Story: Design Processes, Design Products, and
Understandings in a Large-Scale Agile Development
Project," 2012 45th Hawaii International Conference on
System Sciences, 2012, pp. 5319-5328, doi:
10.1109/HICSS.2012.684.

[5] S. Wagner, D. Fernández, M. Felderer, M. Kalinowski,
Requirements engineering practice and problems in agile
projects: Results from an international survey, in:
Proceedings of the XX Iberoamerican Conference on
Software Engineering, Buenos Aires, Argentina., 2017, pp.
389–402.

[6] Kassab M (2015) The changing landscape of requirements
engineering practices over the past decade. In: Proceedings
of the IEEE international workshop on empirical
requirements engineering (EmpiRE). IEEE, pp 1–8.

https://stateofagile.com/#ufh-i-661275008-15th-state-of-agile-report/7027494
https://stateofagile.com/#ufh-i-661275008-15th-state-of-agile-report/7027494
https://stateofagile.com/#ufh-i-661275008-15th-state-of-agile-report/7027494

[7] Wang X, Zhao L, Wang Y, Sun J (2014) The role of
requirements engineering practices in agile development: an
empirical study. In: Proceedings of the Asia Pacific
requirements engineering symposium (APRES), CCIS, vol
432, pp 195–209

[8] Nik Nailah Binti Abdullah, Shinichi Honiden, Helen Sharp,
Bashar Nuseibeh, and David Notkin. 2011. Communication
patterns of agile requirements engineering. In Proceedings of
the 1st Workshop on Agile Requirements Engineering
(AREW '11). Association for Computing Machinery, New
York, NY, USA, Article 1, 1–4.
DOI:https://doi.org/10.1145/2068783.2068784

[9] Medeiros, Juliana & Vasconcelos, Alexandre & Goulão,
Miguel & Silva, Carla & Araújo, João. (2017). An approach
based on design practices to specify requirements in agile
projects. 10.1145/3019612.3019753.

[10] Medeiros, Juliana & Vasconcelos, Alexandre & Silva, Carla
& Goulão, Miguel. (2019). Requirements Specification for
Developers in Agile Projects: Evaluation by two Industrial
Case Studies. Information and Software Technology. 117.
106194. 10.1016/j.infsof.2019.106194.

[11] Beck, K., Beedle, M., van Bennekum, A., Cockburn, A.,
Cunningham, W., Fowler, M., Grenning, J., Highsmith, J.,
Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R. C.,
Mellor, S., Schwaber, K., Sutherland, J. & Thomas, D.
(2001). Manifesto for Agile Software Development
Manifesto for Agile Software Development.

[12] E.-M. Schön, D. Winter, M.J. Escalona, J. Thomaschewski,
Key challenges in agile requirements engineering, in:
International Conference on Agile Software Development,
Springer, 2017, pp. 37–51,
doi:10.1007/978-3-319-57633-6_3.

[13] Medeiros, Juliana & Vasconcelos, Alexandre & Silva, Carla
& Goulão, Miguel. (2018). Quality of software requirements
specification in agile projects: A cross-case analysis of six
companies. Journal of Systems and Software. 142.
10.1016/j.jss.2018.04.064.

https://doi.org/10.1145/2068783.2068784

	TCC-JoaoMauricio
	2b1acb989257846c00938ada57c581c42ad51c9b7e4bef61efb17a2a8c46f032.pdf
	TCC-JoaoMauricio

