
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE
CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA

CURSO DE BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

MATHEUS DA CUNHA MELO ALMEIDA

A STUDY OF CONFIDENTIAL COMPUTING AS A WAY TO PREVENT SENSITIVE

INFORMATION EXPOSURE ON INFORMATION SYSTEMS

CAMPINA GRANDE - PB

2021

MATHEUS DA CUNHA MELO ALMEIDA

A STUDY OF CONFIDENTIAL COMPUTING AS A WAY TO PREVENT SENSITIVE

INFORMATION EXPOSURE ON INFORMATION SYSTEMS

Trabalho de Conclusão Curso
apresentado ao Curso Bacharelado em
Ciência da Computação do Centro de
Engenharia Elétrica e Informática da
Universidade Federal de Campina
Grande, como requisito parcial para
obtenção do título de Bacharel em
Ciência da Computação.

Orientador: Professor Dr. Andrey Brito.

CAMPINA GRANDE - PB

2021

Elaboração da Ficha Catalográfica:

Johnny Rodrigues Barbosa

Bibliotecário-Documentalista

CRB-15/626

 A447s Almeida, Matheus da Cunha Melo.
 A study of confidential computing as a way to prevent

sensitive information exposure on information systems.

/ Matheus da Cunha Melo Almeida. – 2021.

 9 f.

 Orientador: Prof. Dr. Andrey Elísio Monteiro Brito.

 Trabalho de Conclusão de Curso - Artigo (Curso de

Bacharelado em Ciência da Computação) - Universidade

Federal de Campina Grande; Centro de Engenharia Elétrica

e Informática.

 1. confidential computing. 2. Privacy. 3. Application

security. 4. SCONE. 5. Sensitive information exposure -

prevent. I. Brito, Andrey Elísio Monteiro. II. Título.

 CDU:004(045)

MATHEUS DA CUNHA MELO ALMEIDA

A STUDY OF CONFIDENTIAL COMPUTING AS A WAY TO PREVENT SENSITIVE

INFORMATION EXPOSURE ON INFORMATION SYSTEMS

Trabalho de Conclusão Curso
apresentado ao Curso Bacharelado em
Ciência da Computação do Centro de
Engenharia Elétrica e Informática da
Universidade Federal de Campina
Grande, como requisito parcial para
obtenção do título de Bacharel em
Ciência da Computação.

BANCA EXAMINADORA:

Professor Dr. Andrey Brito

Orientador – UASC/CEEI/UFCG

Professor Dr. Rohit Gheyi

Examinador – UASC/CEEI/UFCG

Professor Tiago Lima Massoni

Professor da Disciplina TCC – UASC/CEEI/UFCG

Trabalho aprovado em: 20 de Outubro de 2021.

CAMPINA GRANDE - PB

RESUMO (ABSTRACT)

A privacidade do usuário é uma das maiores preocupações dos desenvolvedores de aplicações hoje

em dia. Com o advento de novas regulamentações e ciber ataques se tornando mais comuns e caros,

a demanda por novas tecnologias que podem ajudar a reduzir ou mitigar o risco de exposição da

informação está aumentando. Como os humanos são os mais suscetíveis à falha na maioria dos

sistemas, é importante procurar um método para reduzir potenciais erros humanos ou exposição

intencional de informações. Neste artigo, a computação confidencial é estudada como uma forma de

prevenir tais vazamentos de dados executando aplicações dentro de um ambiente de execução

confiável.. Neste contexto, um ambiente de execução confiável é definido como uma área segura de

um processador principal, o que garante que o código e os dados carregados internamente são

protegidos com respeito à confidencialidade e integridade. Para avaliação, um sistema de informação

usando SCONE foi implementado e uma série de testes de segurança e desempenho em uma

aplicação genérica foram executados. Os resultados mostraram uma melhoria considerável na

segurança do aplicativo e uma deterioração considerável no desempenho da aplicação. Os resultados

sugerem que a computação confidencial pode proteger os aplicativos contra os ataques de nível de

administrador mencionados, mas seu uso deve se adequar a certos casos de uso onde o desempenho

não é fundamental para o aplicativo comportamento ou o fato de que são necessários mais recursos

para funcionar no mesmo nível de desempenho.

A study of confidential computing as a way to prevent sensitive
information exposure on information systems

Matheus da Cunha Melo Almeida
Federal University of Campina Grande

Campina Grande, Brazil
matheus.almeida@ccc.ufcg.edu.br

Andrey Brito
Federal University of Campina Grande

Campina Grande, Brazil
andrey@computacao.ufcg.edu.br

ABSTRACT
User privacy is one of the biggest concerns of application devel-
opers nowadays. With the advent of new regulations and cyber
attacks becoming more common and expensive, the demand for
new technology that can help reduce or mitigate the risk of sensitive
information exposure is rising. As humans are the most substantial
liability in most systems, it’s important to search for a method to
reduce potential human errors or intentional information exposure.
In this article, confidential computing is studied as a way to prevent
such data leaks by running applications inside a trusted execution
environment. In this context, a trusted execution environment is
defined as a secure area of a main processor, which guarantees code
and data loaded inside to be protected with respect to confidential-
ity and integrity. For evaluation, a information system using the
SCONE runtime was implemented and a series of security and per-
formance tests against a sample application were performed. The
results showed a considerable improvement in application security
and a considerable deterioration in application performance. The
results suggest that confidential computing can protect applications
against the mentioned admin-level attacks, but its use must fit cer-
tain use cases where performance is not key to the application’s
behaviour or the fact that it needs more resources to run on the
same performance level is acceptable.

1 INTRODUCTION
Information security is one of the biggest challenges of today’s
software development research and Computer Science in general.
This concern is evidenced as new data regulations start to be im-
plemented, such as the European Union’s General Data Protection
Law and Brazilian government’s Lei Geral de Proteção de Dados
Pessoais (general personal data protection law). With the number,
severity, and cost of data breaches increasing over the years, and
the fact that most of them are caused by human error, some ques-
tions are raised more and more often: how to ensure a system is
trustworthy? How to reduce human liability?

In standard applications, some level of human trust is needed in
order to make it viable. Companies need to trust their developers,
code reviewers, testers and, mostly, system administrators, will not
insert potential attack targets in their software or infrastructure,
leak sensitive credentials or even breach it themselves. According
to recent studies, human errors are the cause of the majority of
cyber-attacks[1].

The admin-level attack model is a much common and easy way
of sabotaging standard applications and breach user privacy by
changing application code or running database queries, for example.
It can be caused by a malicious admin-level user themselves or by
a malicious attacker with stolen admin-level credentials.

Although some data breaches are caused by human error while
programming the application, many are caused by insufficient pro-
tection of key parts of the system, such as credentials or network
traffic. To prevent some of such data breaches caused by human
liability, one possible solution is to use confidential computing tech-
nologies, such as Intel SGX and SCONE, where the application runs
in a safe environment and needs to be attested before every run,
and transfer the trust to hardware and software rather than people.

In this paper, a use case of an application which stores sensitive
user data and how secure this application becomes by using Intel
SGX and SCONE in order to prevent admin-level attacks. This
application has served as one of the pillars for what today is the
AMTS project, which targets the identification of possibly infected
people by using thermal camera footage. This article also evaluates
the solution’s security and performance, and compares it to a non
secure version, in order to show potential trade-offs of the trusted
computing solution.

1.1 Intel SGX and SCONE
Intel Software Guard Extensions (SGX)[3] is a set of instructions and
changes to memory access added to the Intel X86 architecture. They
allow user level code to define enclaves, which are private regions
of memory, whose contents are protected and unable to be read
by any process outside of the enclave. It does that by encrypting a
portion of memory, which is decrypted on the fly only within the
CPU, and only for code and data running from within the enclave
itself.

SCONE[2] is a toolset, including runtime, compiler, and curated
images that aim to provide secure container mechanisms based on
SGX to protect container processes from outside attacks. SCONE
provides a user-level threading implementation which maximizes
the time threads spend inside the enclave. It also maps OS threads
to logical application threads in the enclave, scheduling OS threads
between application threads when they are blocked due to thread
synchronization.

SCONE provides new concepts that were used in the context
of this paper. For the presented use case, SCONE is capable of
encrypting disk and memory content, while attesting that the code
was not modified prior to its execution. Along with other known
techniques, such as HTTPS and mutual TLS, it is possible to make
applications much more resilient to admin-level attacks.

Before running the application for the first time, it is needed
to create a session in a CAS instance. A session is a set of appli-
cation security policies which are described in a session file. In
the session file, it is possible to configure TLS certificate genera-
tion, environment variables, disk protection, and much more. All
confidential configurations are stored in the CAS instance and are

provided to applications after the CAS instance has verified their
integrity and authenticity. A LAS instance is responsible for being
the middleware between the CAS instance and the application to
be attested.

1.2 Kubernetes
Kubernetes is currently the industry standard for container orches-
tration. It was launched in 2014 by Google, and was heavily inspired
by the company’s internal container orchestration solution, Borg
[5]. A Kubernetes cluster is a set of master and worker nodes, where
the former runs control plane components, such as the API server
and the controller manager, and the latter runs user applications.
Kubernetes creates an abstraction layer between application con-
tainers and infrastructure, enabling users to focus on new features
and how their applications behave, rather than how the applications
will run.

2 OUR SOLUTION
The application consists of an Angular 9 frontend, a Python 3.7 with
Flask backend, and MariaDB as the database. The backend handles
sensitive user data, such as pictures, addresses, phone numbers,
and interactions the user had with the application. It can also reset
passwords and send emails.

With all that said, there is a huge risk of admin-level attacks
for this use case, since in standard application development and
deployment infrastructure professionals such as system admins, De-
vOps engineers, and software developers in some cases, have access
to databases, network traffic, and virtual machines or containers
where sensitive data is exposed to them.

The idea is to prevent system admins to analyze the code using
encryption at rest, to look into the application’s memory using
RAM encryption, and to modify the application using remote at-
testation. The database is also protected by creating and storing a
new password for it. This password is a random string generated
by the backend in the first run, then encrypted and stored in the
container’s storage volume. By creating the password inside the
SGX enclave, it will never be exposed to the operating system and,
consequently, also not to the system administrator. The application
also uses JWT tokens as authentication. SCONE is responsible for
creating certificates for HTTPS, encrypting disk and memory, and
attesting that the application was not modified. The architecture
for the final solution can be found on Figure 1.

When accessing the application for the first time, the user sees a
login page. There, the user can fill their login information if they
already have an approved registration. In case they do not, there is
a link which leads to the registration page. There is also another
link to reset their password in case they have forgotten it.

On the registration page, information such as email, phone num-
ber, address, professional email, job title, account type, and picture,
needs to be filled. Images are stored as BLOB types in the database.
There are two account types: users and operators. Users and op-
erators can add their picture and edit their registered information.
Operators can approve or deny a user registration.

2.1 Architectural downsides
Because the database password is stored in the container volume,
at first it is not possible to scale the application over one replica.
This could be fixed by mounting the encrypted code inside each
container at run time, which is possible using various techniques
such as simply copying it from a secure storage or using NFS.

Another downside of the database password local storage is that
the code cannot be modified after it is first run, meaning it is not
possible to apply patches or add new functionalities to the code
once the database password is set without losing the data stored in
the database. This can be mitigated by creating a separate service
responsible only for setting and storing the database password in
a safe way, and to provide this password only to authorized and
attested applications or by configuring the session to trust code
signed by an specific entity, such as the trusted developers or the
Continuous Deployment pipeline.

3 EVALUATION
In order to find the possible trade-offs involved in adding SCONE
to the application, security and performance tests were developed
and ran against two versions of the application: with and without
SCONE.

The evaluation process for the application is divided in two main
sections: security and performance. For security, the capacity of
adding malicious code and exposing sensitive data is evaluated. For
performance, the average response time is evaluated.

3.1 Security
For security evaluation, a series of different possible admin-level
attacks were chosen to test how the application reacts to all of them.

The first and most simple one is to run a terminal inside the con-
tainer and run malicious Python code inside of it. The second was
to get the database credentials from the container’s environment
variables and connect to the database. The third was to dump and
read the container’s memory.

3.1.1 No SCONE:. Running Python code inside the container
It is possible to run the Python CLI or any Python script from

inside the container.

Figure 2: Python CLI running inside the unprotected
container

This enables the attacker to run any command, read sensitive
information, or creating backdoors, taking full control of the appli-
cation.

3.1.2 No SCONE:. Connecting to the database
It is possible to retrieve the database credentials from the con-

tainer and connect to it.
2

Figure 1: Architecture of the final solution

Figure 3: Successful connection to the database

This enables the attacker to read sensitive information or editing
access control policies, basically taking full control of the applica-
tion.

3.1.3 No SCONE:. Dumping application memory
It is possible to dump and read the application memory.

Figure 4: Readable text in the memory dump

This enables the attacker to continuously dump the memory
for further inspection, potentially exposing sensitive data that is
passing through the application.

3.1.4 SCONE enabled: Running Python code inside the container
When trying to run the Python CLI, an attestation error happens.

Figure 5: Attestation error when trying to run the Python
CLI

The attestation error will happen for every command ran outside
of the SCONE session, for which only attested code have access.
This prevents malicious code to be executed inside of the container.

3.1.5 SCONE enabled: Connecting to the database

3

Figure 6: Attestation error while trying to read the
password file

When trying to recover the new database password, an attesta-
tion error happens. This is due to SCONE’s disk protection.

Figure 7: Access denied while trying to connect to the
database

When trying to connect to the database with the default creden-
tials, we get an access denied error. This is due to the application
configuration of changing the password on the first run, securing
the database access.

3.1.6 SCONE enabled: Dumping application memory
It is still possible to dump the memory, but since it is completely

encrypted it is impossible to read it.

Figure 8: Unreadable data in the memory dump

SCONE encrypts the application memory, so only attested code
can read it or write to it.

3.2 Performance
A Python script was developed for performance tests. This script
registers users, 50 by 50, and measures response times for a request
to the get all users API endpoint. It also stores CPU and RAM usage
during the test.

0 100 200 300 400 500 600 700 800 900 1,0000

2

4

6

Registered users

Re
sp
on

se
tim

e
[s
ec
on

ds
]

Response time per row quantity

No SCONE
SCONE enabled

Figure 9: Response time comparison

As noticed in the response times results, the API latency in-
creases as the amount of results to be returned rises. However, it is
noticeable that the response times have a much steeper rise with
SCONE than without it. This might be related to the process of
memory encryption and decryption that SCONE brings to make
the application more secure.

This fact can create serious scalability problems when our appli-
cation must provide a substantial number of results within a single
endpoint, but can be circumvented by implementing result limits
and pagination.

0 1,0000

20

Registered users

RA
M

us
ag
e
[%
]

RAM usage per row quantity

No SCONE
SCONE enabled

Figure 10: Memory usage comparison
4

During the tests, the application used around 7.3% more RAM
with SCONE than without it. This can also cause scalability prob-
lems when the application faces much more parallel traffic than
what is presented in the performance tests.

In the tests, the CPU results did not present any significant
difference between both modes.

4 CONCLUSIONS
SCONE is a very innovative addition to the application security
debate. With a previous container technology knowledge and little
documentation reading and hands-on testing, one can easily make
their application more secure when it comes to admin-level attacks.
The level of security SCONE and Intel SGX brought to the applica-
tion is noticeable. With the implementation of the two technologies
and the use of well-known security techniques, it is possible to
create applications which not even its creators can exploit, but it
might not be the silver bullet.

The results showed that SGX and SCONE add a significant over-
head to Python applications, but that might not be the case for every
hardware. Further tests comparing different Intel processors genera-
tions are needed since this paper focused on bringing a comparison

between two versions of the same application running on the same
Intel system. Recent developments[4] showed improvements on
SGX running on modern Intel processors.

SGX is suitable for a variety of use cases like internal applica-
tions, source code protection in on-premise installations, and to
secure publicly available images. SCONE also has a lot of potential
to become the security standard for admin-level attacks and can
become much more widespread when the trade-offs are reduced or
mitigated.

REFERENCES
[1] [n.d.]. Why Human Error is #1 Cyber Security Threat to Businesses in 2021. https:

//thehackernews.com/2021/02/why-human-error-is-1-cyber-security.html. Ac-
cessed: 2021-09-10.

[2] Sergei Arnautov Bohdan Trach Franz Grego Thomas Knauth Andre Martin Chris-
tian Priebe Joshua Lind Divya Muthukumaran Dan O’Keeff Mark L Stillwell David
Goltzsch Dave Eyers Rüdiger Kapitza Peter Pietzuch Christof Fetzer. 2016. SCONE:
Secure Linux Containers with Intel SGXg. Proceedings of the 12th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI ’16).

[3] Twaha Fuko. 2019. Intel Software Guard Extensions (SGX) Explained.
[4] Simon Johnson Raghunandan Makaram Amy Santoni Vinnie Scarlata. [n.d.]. Sup-

porting Intel® SGX on Multi-Socket Platforms.
[5] Abhishek Verma Luis Pedrosa Madhukar R. Korupolu David Oppenheimer Eric

Tune John Wilkes. 2015. Large-scale cluster management at Google with Borg.
European Conference on Computer Systems.

5

https://thehackernews.com/2021/02/why-human-error-is-1-cyber-security.html
https://thehackernews.com/2021/02/why-human-error-is-1-cyber-security.html

	a73d7e623686f79d6337d603f9235649f54d053ea49c41201e8d10c20416dae4.pdf
	bea8d97cba7bbd1833b71455350132af3efd42b05a602134c34206b339bf2cd8.pdf
	a73d7e623686f79d6337d603f9235649f54d053ea49c41201e8d10c20416dae4.pdf

