UNIVERSIDADE FEDERAL DE CAMPINA GRANDE
CENTRO DE ENGENHARIA ELETRICA E INFORMATICA
CURSO DE BACHARELADO EM CIENCIA DA COMPUTACAO

ICARO DANTAS DE ARAUJO LIMA

SCALABLE WEB-BASED FPGA BOARD SIMULATOR

CAMPINA GRANDE - PB
2021

ICARO DANTAS DE ARAUJO LIMA

SCALABLE WEB-BASED FPGA BOARD SIMULATOR

Trabalho de Conclusao Curso
apresentado ao Curso Bacharelado em
Ciéncia da Computacio do Centro de
Engenharia Elétrica e Informatica da
Universidade Federal de Campina
Grande, como requisito parcial para
obtencio do titulo de Bacharel em
Ciéncia da Computacio.

Orientador: Professor Dr. ElImar Uwe Kurt Melcher.

CAMPINA GRANDE - PB

2021

L732s

Lima, fcaro Dantas de Aratjo.
Scalable web-based FPGA board simulator. / Icaro
Dantas de Aratjo Lima. - 2021.

9 f.

Orientador: Prof. Dr. Elmar Uwe Kurt Melcher.

Trabalho de Conclusédo de Curso - Artigo (Curso de
Bacharelado em Ciéncia da Computacdo) - Universidade
Federal de Campina Grande; Centro de Engenharia Elétrica
e Informética.

1. Simulador de placa FPGA. 2. Cédigo em
systemverilog. 3. Field-programable gate array - FPGA.
4. Aprendizagem de HDLs. 5. Linguagens de descrigdo de
hardware - HDL. I. Melcher, Elmar Uwe Kurt. II. Titulo.

CDU:004 (045)

Elaboragdo da Ficha Catalografica:

Johnny Rodrigues Barbosa
Bibliotecdrio-Documentalista
CRB-15/626

ICARO DANTAS DE ARAUJO LIMA

SCALABLE WEB-BASED FPGA BOARD SIMULATOR

Trabalho de Conclusao Curso
apresentado ao Curso Bacharelado em
Ciéncia da Computacdo do Centro de
Engenharia Elétrica e Informatica da
Universidade Federal de Campina
Grande, como requisito parcial para
obtencio do titulo de Bacharel em
Ciéncia da Computacio.

BANCA EXAMINADORA:

Professor Dr. ElImar Uwe Kurt Melcher

Orientador —- UASC/CEEI/UFCG

Professor Dr. Thiago Emmanuel Pereira da Cunha Silva

Examinador —- UASC/CEEI/UFCG

Professor Tiago Lima Massoni

Professor da Disciplina TCC — UASC/CEEI/UFCG

Trabalho aprovado em: 20 de Outubro de 2021.

CAMPINA GRANDE - PB

RESUMO (ABSTRACT)

Os métodos de aprendizagem de HDLs (linguagens de descri¢cdo de hardware) incluem
principalmente a pratica com placas reprogramaveis e simuladores. Os maiores obstaculos para o
aprendizado sdo o custo dessas placas, a interface hostil desses simuladores e, as vezes, a tediosa
configuracao do ambiente, necessdria até mesmo para executar uma Unica linha de cddigo. Este

trabalho apresenta um simulador de placa FPGA (field-programmable gate array) baseado em web. O
sistema é composto por 2 componentes principais: um front-end e um back-end, seguindo uma
arquitetura de microsservicos. E possivel escrever codigo em SystemVerilog e interagir com ele

usando uma placa FPGA virtual, exigindo apenas um navegador e acesso a internet. As etapas
envolvidas entre a submissao do cédigo do usudrio e a simulacdo, sdo duas conversoes de cédigo.
Uma vez que essas conversoes podem ser executadas em uma Unica tarefa, o sistema pode ser
escalado horizontalmente. Gracas aos eventos enviados pelo servidor e um emulador de console, o
usudrio pode ver tudo o que esta acontecendo nessas tarefas em tempo real.

Scalable Web-Based FPGA Board Simulator

Icaro Lima Elmar Melcher Joseana Fechine
Federal University of Campina Federal University of Campina Federal University of Campina
Grande Grande Grande

Campina Grande, Brazil
icaro.lima@ccc.ufcg.edu.br

ABSTRACT

Methods of learning HDLs (hardware description languages) mainly
include practice with reprogrammable boards and simulators. The
biggest obstacles to learning are the cost of these cards, the un-
friendly interface of these simulators, and sometimes the tedious
environment setup needed even to run a single line of code. This
work presents a web-based FPGA (field-programmable gate array)
board simulator. The system is composed of 2 main components: a
front-end and a back-end, following a microservices architecture.
It is possible to write code in SystemVerilog and interact with it
using a virtual FPGA board, requiring only a browser and inter-
net access. The steps involved between the user code input and
the simulation are two code conversions. Since these conversions
can run on a one-shot task, the system can be scaled horizontally.
Thanks to server-sent events and a console emulator, the user can
see everything happening on these tasks in real-time.

KEYWORDS
Simulator, FPGA board, HDL, SystemVerilog.

REPOSITORIES

https://github.com/orgs/learn-systemverilog/repositories

1 INTRODUCTION

Knowing logic circuits is critical for electrical and computer engi-
neers [2]. In order to deeply understand the concepts, it is essential
to study by reading materials and practicing actively [4].

With the increase in the complexity of logic circuits, HDLs gained
more and more relevance. Because due to the growing number of
logic gates (e.g., 100,000), it became impossible to design or verify
these circuits using manual methods, like paper or breadboards [3].

Reprogrammable FPGAs have been widely used to teach HDLs
[2] by allowing students to practice logic circuit design incremen-
tally, similar to software development.

The cost of FPGAs is an impediment for many students, making
many educational institutions need to provide one for each student,
which in addition to raising the expense, does not solve the problem
entirely. Equipment provided by these institutions are usually kept
in laboratories for exclusive use during classes, or permissions
and additional bureaucracy are imposed to be accessed or taken
home. Even those students who can afford to buy an FPGA end up
facing problems, including the difficulty in preparing the computing
environment, choosing a model, and the need for extra hardware
to make these FPGAs stay with a friendlier interface. Having all
this ready;, it is still necessary for the student to keep cables and/or
adapters connecting the FPGA to their computer, which can be
inconvenient.

Campina Grande, Brazil
elmar@computacao.ufcg.edu.br

Campina Grande, Brazil
joseana@computacao.ufcg.edu.br

Simulators have been used to solve most of the problems men-
tioned above. However, most simulators are intended to be used
for verification, requiring a testbench to be created in order to be
able to simulate a design. Another problem with these simulators
is that most of them need to be installed on the student’s computer,
available only for specific operating systems.

2 SOLUTION

The proposed solution is an FPGA board simulator where the user
can write code in SystemVerilog and then interact with it using any
device, requiring only a modern web browser with internet access:
https://learn-systemverilog.github.io.

2.1 Architecture

The system is composed of two main parts: a front-end and a back-
end. The front-end runs on the users’ browsers, and the back-end
is one or more services whose primary purpose is to convert Sys-
temVerilog code into JavaScript.

Figure 1 shows the currently deployed architecture. Thanks to
the stateless nature of the services, a load balancer can be used to
distribute user requests.

2.1.1 Server-side vs. Client-side. There were two options to sim-
ulate and interact with code written in SystemVerilog. The dif-
ferences between these two options are similar to the differences
between client-side vs. server-side rendering.

The first option would be to leave the simulation running on
the server, where it would be necessary to receive commands and
continuously report the simulation status back to the front-end.
This option has some problems:

o Resource consumption: the server needs to maintain at
least a process and an open connection for each simultane-
ous running simulation.

e Security: user-submitted code can be malicious.

o Delay: network delay between client and server can affect
user experience, especially on poor network connections
or high-frequency simulations.

The second and chosen option is to simulate the SystemVerilog
code in the user’s machine, which does not have the problems
mentioned above. However, it would be necessary that the code
in SystemVerilog somehow be interpreted by the front-end. Fortu-
nately, it is possible to convert code written in SystemVerilog to
JavaScript server-side.

Figures 2 and 3 show the sequence of events that occur between
client and server during code conversion. Server-Sent Events are
used for logging the stdout/stderr/internal messages of the con-
version process to the user in real-time. They are also used for

https://github.com/orgs/learn-systemverilog/repositories
https://learn-systemverilog.github.io

delivering the output JavaScript code if the conversion is success-
ful.

Services

Service 1

Users Load Balancer Service 2

Service 3

Figure 1: The system architecture

2.1.2 Back-end Workspaces. In order to convert from SystemVer-
ilog to JavaScript, a workspace needs to be created for each simulta-
neous request. These workspaces are temporary folders that isolate
output and residuals generated during the process. Each workspace
is a copy of the folder workspace_template, which contains only
two files: Makefile and simulator. cpp.

The Makefile mentioned above helps to simplify commands
needed to execute during the conversion.

The simulator.cpp is a C++ wrapper file that, when converted
to JavaScript, serves as an interface to the front-end to call the
simulation itself.

2.2 Technologies

2.2.1 Back-end. The back-end services were implemented using
GoLang along with Gin. GoLang is a fast, lightweight, and widely-
used programming language for implementing web servers [5].
Gin is a martini-like API web framework, has good support for
Server-Sent Events, and has excellent performance [8].

Verilator and Emscripten are used to convert between Sys-
temVerilog and JavaScript. Verilator is a Verilog/SystemVerilog
simulator capable of turning SystemVerilog code into a callable
C++ code [10]. Emscripten is an open-source compiler toolchain

icaro Lima, EImar Melcher, and Joseana Fechine

Client Server

/transpile?code={SYSTEMVERILOG_CODE} |

\
I
‘ -
‘ Lall
\
| Converting SystemVerilog
| to JavaScript
\
!
Server-Sent Events J
[
‘m {[internal][info]: Creating temporary workspace.”_ |
I
\4_ "[internal][info]: Transpiling from SystemVer..."
ST TR TR O T
[
%
[
‘ﬁ {[stdout]: emcc I /usr/local/share/verilator...” |
[
JAVASCRIPT_CODE
PR {JAVASCRTPT, _CooE}] | |
\ |
I |
I |
I |
Figure 2: Conversion successful
Client Server

/transpile?code={SYSTEMVERILOG_CODE} |

Converting SystemVerilog
to JavaScript

LV v

Server-Sent Events J
I
:.4_ "[internal][info]: Creating temporary workspace."
I
\4_ "[internal][info]: Transpiling from SystemVer..."
(oSS TR L ST
I
5
I
‘ﬂ‘ "[stderr]: %Error: top.sw:18:15: syntax error..."
:4_ "[internal][error]: exit status 2"

________________________________ -

Figure 3: Conversion syntax error

to WebAssembly capable of converting C++ code into JavaScript
[11]. Using Verilator followed by Emscripten was one of the few
ways found to make this conversion. Previous successful projects
supported the decision to use Verilator [6, 7].

2.2.2 Front-end. The web page was implemented using JavaScript
along with React and PatternFly. JavaScript is the most well-
known scripting language for Web pages. React is a framework
for building user interfaces with JavaScript. Patternfly is an open-
source design system that can power React, providing standards,
tools, and ready-to-use components.

Scalable Web-Based FPGA Board Simulator

As the web page is simple and has only a few components,
JavaScript was enough instead of using a more robust language like
TypeScript.

The log-in system is currently only implemented on the front-
end. It uses React Google Login, powered by Google OAuth

[1].

2.3 Code Conversion

Every time the front-end submits a SystemVerilog code through
the /transpile endpoint of the back-end services, few steps are
required to convert this code to JavaScript and send it back to the
front-end. Some of these steps are the creation of a workspace and
the conversion of SystemVerilog to an intermediate language before
turning it into JavaScript. These workspaces are intended to isolate
conversions happening at the same time for different requests.
The module responsible for this conversion can be found at
back-end/transpiler/transpiler.go.Itreceives the SystemVer-
ilog code as a string and a channel where the results will be reported
in real-time.
Below is a more detailed step-by-step on how this conversion
happens:
(1) A temporary folder (workspace) with a random name is cre-
ated, e.g., /tmp/lsv_api_transpiler_workspace_12345.
(2) The contents of the folder workspace_template are copied
to the folder created in the last step.
(3) The SystemVerilog code is converted to C++ by executing
the command make obj_dir.
(4) The C++ code is converted to JavaScript by executing the
command make simulator.js.
(5) The workspace is deleted.
For each step, logs are sent to the front-end through the channel
and then through Server-Sent Events.
It is valid to mention that the workspace is also deleted if any
errors occur during this process.

2.4 Interface

The interface can be broken into 4 main components:

2.4.1 Header. This is a standard page header. It includes the page
title, a button that leads to the project repositories, and a sign-in
button (Figure 4).

Q Signin -

Figure 4: The page header

24.2 Simulator. This is an interactive virtual FPGA board. It has 8
switches, 8 LEDs, and a 7-segment display (Figure 5). The user can
interact by clicking on the switches, turning them on or off. The
LEDs and the 7-segments display are read-only, depending on the
simulation to be turned on or off.

2.4.3 Code Editor. This component is a code editor where the user
can write code in SystemVerilog. The component also includes
three buttons: one to submit the code for simulation (Simulate!),

Simulator

SystemVerilog

Figure 5: The virtual FPGA board

one to reset the code to the template (Reset), and another to reset
the code to the last submitted code (Reload) (Figure 6).

This code editor is powered by the Monaco Editor (the same
used by VS Code), with extra features compared to a simple text
editor. Ex: Syntax highlighting [9].

Code Editor

// DESCRIPTION: SystemVerilog example module.

1

2

3 parameter NBITS_TOP = 3;

4 module top(input logic clk_ 2,
5 input logic [NBITS_TOP-1:0] SWI,
6 output logic [NBITS_TOP-1:8] LED,
7 output logic [NBITS_TOP-1:0] SEG);
8

a aluays_comb begin

18 LED <= SWI | clk_2;

11 SEG <= SWI;

12 end

14 endmodule

Figure 6: The code editor

2.4.4 Console. This component is a read-only console emulator
where the user can watch the stdout and stderr of the procedure
needed to start the simulation. Its most common use is to see if any

compilation, connection, or conversion errors happened. It includes
a Clear button used to erase the console (Figure 7).

Console

[locall : Connscting...

[local]: Connected!
[internal] [info]: Creating temporary workspace.

[internal] [info]l: Transpiling from SystemVerilog to C++.

[stdout]: verilator -Wno-CASEINCOMPLETE -Wno-WIDTH —Wno-COMBDLY --cc
+1800-2012ext+sv top.sv

[internal] [info]: Transpiling from C++ to JavaScript.

[stdout]: emcc -I /usr/local/share/verilator/include -I
/usr/local/share/verilator/include/vltstd -I obj_dir --bind -s WASM=0 -s
ENVIRONMENT=web -s USE_ZLIB=1

/usr/local/share/verilator/include/verilated.cpp obj_dir/*.cpp

simulator.cpp --no-entry -o simulator.js
[local]: success! Check the simulator to see the results.
[locall: Connsction closed.

Figure 7: The read-only console emulator

2.5 How to use
Step by step for using the simulator:
(1) Once on the main page, sign in by clicking on the Sign in
button at the top right corner of the page.
(2) Modify the code in the Code Editor section (optional).
(3) Click on the Simulate! button.
(4) Watch the Console. Wait for the message "[local]: Success!
Check the simulator to see the results.".
(5) Interact with the simulator in the Simulator section.

3 USER EVALUATION

The simulator was tested by 15 users. They were asked to fill out a
simple form after completing one or more simulations. The form
was presented in Portuguese and the results were translated to Eng-
lish for the purposes of this work. The instructions given to the users
were simple: first access the simulator website, then run at least one
simulation. All users had already had experience with digital cir-
cuits by attending Computer Organization and Architecture classes.
The questionnaire had nine questions, eight linear scale questions
measured from 1 (bad/totally disagree) to 5 (excellent/totally agree),
and one open question for suggestions. Following are the nine
questions, in the same order presented to the users:

(1) "How do you rate the simulator’s usability as a whole?"

(2) "How do you rate the simulator design as a whole?"

(3) "How do you rate the website’s response time?"

(4) "How do you rate the simulator interface response time?"

(5) "How do you assess the waiting time until the start of the

simulation?"

icaro Lima, EImar Melcher, and Joseana Fechine

(6) "Do you agree that the simulator is intuitive?"

(7) "Do you agree that the simulator is helpful for learning
SystemVerilog?"

(8) "Do you agree that the simulator is helpful for learning
Computer Organization and Architecture?"

(9) "Space for suggestions:"

Figure 8 shows a column bar chart with the X-axis representing
the question number, ranging from 1 to 8, and the Y-axis represent-
ing the average user evaluation for that question, ranging from 1
to 5.

Average of answers
(%)

1 2 3 4 5 6 7 8

Question number
Figure 8: User evaluation

Overall ratings were good, with an average of 4.575. Following
are some suggestions collected with question 9:

(1) "Possibility to activate night mode. Allowing visual comfort
for those who will use the simulator for many hours."

(2) "Enable clock frequency change via simulator interface"

(3) "Possibility of adding more files to organize the code in
modules.”

(4) "Remove the need to log in by replacing it with the "I'm
not a robot" button."

(5) "Improve the graphical user interface of the web page as a
whole, except for the virtual FPGA board itself"

Most suggestions (1, 2, and 5) are punctual and can be resolved
on the front-end. Suggestion 4 cannot be attended because it is
important to identify when someone tries to send a malicious code.
Suggestion 3 is more complex but possible to attend. It needs modi-
fications on the back-end and front-end. An advanced mode can be
added to maintain simplicity for those who do not need multiple
files.

No users reported technical problems while using the simulator.

4 EXPERIENCE AND LESSONS LEARNED

4.1 Development Process

The first step was to research how it is possible to simulate the code
written in SystemVerilog on the front-end, that is, using JavaScript.
A direct method for simulating SystemVerilog with JavaScript was
not found, but it has been shown that it is possible to simulate the
SystemVerilog code in C++ by using Verilator [6, 7, 10].

Scalable Web-Based FPGA Board Simulator

The next step was to find a way to call that output C++ code in
JavaScript. Fortunately, Emscripten makes it possible by converting
C++ code into JavaScript.

A test was done successfully to see if it is possible to convert
input code written in SystemVerilog and get JavaScript output using
the method mentioned above. As Verilator and Emscripten do not
run in the browser, a back-end would be needed to do this work.

The architecture was designed so that it could scale to many
users. As conversions can be seen as one-shot tasks, it was easy to
compare with existing architectures.

It would be necessary to report every event happening in the
tasks in real-time to the front-end. There were two leading tech-
nologies capable of doing this: WebSockets and Server-Sent Events.
Server-Sent Events were used because they are simpler and the
events only come in one direction.

At this stage, a prototype of the back-end began to be imple-
mented and tested with Insomnia.

The code started to grow, and a Git repository was created to
serve as a version control system. Then, mainly for security reasons
(maintain data integrity), the repository was pushed to GitHub.

The last step was to develop a user-friendly web page that could
communicate with the back-end and include an animated simulator.
A Git repository was also created to the front-end.

4.2 Main Challenges and their Solutions

4.2.1 Client-side SystemVerilog Simulation. Running the simula-
tion client-side is essential to avoid server overload and allow higher
clock frequencies. It is necessary that the code in SystemVerilog
can somehow be called by the front-end code, written in JavaScript,
which is the language used in web pages. At the current time, no
library can do this.

The solution was first to "verilate” (convert) the SystemVerilog
code to C++ using Verilator, then convert the output code in C++
to JavaScript using Emscripten.

4.2.2 Conversion Feedback. Sometimes converting the SystemVer-
ilog code before simulating can take a long time. Furthermore,
the result can be, for example, a syntax error. In these cases, it is
essential for the user to receive feedback in real-time.

The solution was logging and sending Server-Sent Events about
everything happening server-side and showing them in the front-
end’s Console section at the same time they arrive on the client-side.

4.3 Limitations and Future Work

4.3.1 Support for other HDLs. The purpose of the simulator is to
simulate a virtual FPGA board, not only to simulate SystemVerilog,
but currently, it is the only language supported.

Other HDLs can be supported if they can be simulated and called
someway by JavaScript. If that is not the case, a simulation running
server-side can be considered.

4.3.2 Sandboxing. Workspaces are essential to separate output
and residuals during code conversions. Although these workspaces
work well, if there is some security issue in any conversion step,
users can send malicious code to gain privileged access to the server,
steal some data, or use large amounts of resources, even without
executing the code server-side.

Instead of using only temporary folders, some sandboxing tech-
nology can block any tentative of access outside of the workspace.
Furthermore, a sandbox can be used to limit resource usage such
as CPU and memory.

4.3.3 Login. Although the user needs to be logged in to perform a
simulation, the current login process is not verified by the server.
Therefore, malicious users can make requests without being logged
in, allowing Denial-of-Service (DoS) attacks.

The solution is simple to implement this verification server-side.

4.3.4 User Suggestions. Most user suggestions will be implemented.
The priority is what can be done faster with greater returns in
overall users satisfaction.

REFERENCES

[1] Anthonyjgrove. 2017. A react Google Login component. https://github.com/
anthonyjgrove/react-google-login

[2] Stephen D Brown. 2007. Fundamentals of digital logic with Verilog design. Tata
McGraw-Hill Education.

[3] Michael D. Ciletti. 2010. Advanced Digital Design with the Verilog HDL (2nd ed.).
Prentice Hall Press, USA.

[4] Daniel C. Hyde. 1998. Using Verilog HDL to Teach Computer Architecture
Concepts. In Proceedings of the 1998 Workshop on Computer Architecture Education
(WCAE ’98). Association for Computing Machinery, New York, NY, USA, 10-es.
https://doi.org/10.1145/1275182.1275192

[5] Nathan Kozyra. 2015. Mastering Go web services : program and deploy fast, scalable
web services and create high-performance RESTful APIs using Go. Packt Publishing,
Birmingham, UK.

[6] Icaro Lima and Elmar Melcher. 2018. Um Simulador Didatico para o Ensino de
SystemVerilog. In Workshop sobre Educagao em Arquitetura de Computadores.

[7] icaro Lima, Elmar Melcher, and Joseana Fechine. 2021. Remote FPGA Lab for
Distance Learning. In sdfsdfs. 28-31.

[8] Manuel Martinez-Almeida. 2014. Gin Web Framework. https://github.com/gin-
gonic/gin

[9] Microsoft. 2016. Monaco Editor. https://microsoft.github.io/monaco-editor/

[10] Wilson Snyder. 2004. Verilator and systemperl. In North American SystemC Users’
Group, Design Automation Conference.

[11] Alon Zakai. 2011. Emscripten: an LLVM-to-JavaScript compiler. In Proceedings
of the ACM international conference companion on Object oriented programming
systems languages and applications companion. 301-312.

https://github.com/anthonyjgrove/react-google-login
https://github.com/anthonyjgrove/react-google-login
https://doi.org/10.1145/1275182.1275192
https://github.com/gin-gonic/gin
https://github.com/gin-gonic/gin
https://microsoft.github.io/monaco-editor/

	1c2da67da60dceed1efd9d5fecd03a4d9039eafee61c53c0ce8ecfda38f0ca5c.pdf
	CAPA - ELMAR
	1c2da67da60dceed1efd9d5fecd03a4d9039eafee61c53c0ce8ecfda38f0ca5c.pdf
	Abstract
	1 Introduction
	2 SOLUTION
	2.1 Architecture
	2.2 Technologies
	2.3 Code Conversion
	2.4 Interface
	2.5 How to use

	3 User Evaluation
	4 EXPERIENCE AND LESSONS LEARNED
	4.1 Development Process
	4.2 Main Challenges and their Solutions
	4.3 Limitations and Future Work

	References

