Programa de Pós-Graduação em ngenharía Cívil e Ambiental

Universidade Federal de Campina Grande Centro de Tecnologia e Recursos Naturais Departamento de Engenharia Civil

ESTUDO DO COMPORTAMENTO MECÂNICO DE MISTURAS ASFÁLTICAS RECICLADAS

MARIA DAS VITÓRIAS DO NASCIMENTO

Campina Grande Data: JUNHO / 2011

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE TECNOLOGIA E RECURSOS NATURAIS PROGRAMA DE PÓS-GRÁDUAÇÃO EM ENGENHARIA CIVIL E AMBIENTAL CAMPUS I – CAMPINA GRANDE ÁREA GEOTÉCNICA

ESTUDO DO COMPORTAMENTO MECÂNICO DE MISTURAS ASFÁLTICAS RECICLADAS

Maria das Vitórias do Nascimento

Dissertação submetida ao Programa de Pós-Graduação em Engenharia Civil e Ambiental da Universidade Federal de Campina Grande, como parte dos requisitos para obtenção do título de Mestre (Msc) em Engenharia Civil e Ambiental.

Campina Grande – PB 2011

FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA CENTRAL DA UFCG

N244e	Nascimento, Maria das Vitórias do. Estudo do Comportamento Mecânico de Misturas Asfálticas
	Recicladas / Maria das Vitórias do Nascimento — Campina Grande
	2011
	97 f.: il. col.
	Dissertação (Mestrado em Engenharia Civil e Ambiental) – Universidade Federal de Campina Grande, Centro de Tecnologia e Recursos Naturais.
	Orientador: Prof. Dr. Adriano Elisio de Figueiredo Lopes Lucena.
	Referências.
	1. Material fresado. 2. Reciclagem. 3. Pavimentos flexíveis. I. Título.
	CDU - 693.7(043)

SISTEMOTECA - UFCG

DIGITALIZAÇÃO:

FOLHA DE APROVAÇÃO

Autor: Maria das Vitórias do Nascimento Título: ESTUDO DO COMPORTAMENTO MECÂNICO DE MISTURAS ASFÁLTICAS RECICLADAS

Dissertação Defendida e Aprovada em: 29/06/11

Pela Banca Examinadora

(Assinatura): <u>Adviana Eliria de F. L. Invena</u> Prof. Dr. (Orientador) Adriano Elísio de Figueiredo Lopes Lucena Universidade Federal de Campina Grande – UFCG

(Assinatura):

Prof. Dr. (Examinador Externo) Erinaldo Hilário Cavalcante Universidade Federal de Sergipe - UFS

(Assinatura): Prof. Dr. (Examinador Interno) John Kennedy Guedes/Rodrigues Universidade Federal de Campina Grande – UFCG

ESTUDO DO COMPORTAMENTO MECÂNICO DE MISTURAS ASFÁLTICAS RECICLADAS

Maria das Vitórias do Nascimento

DISSERTAÇÃO SUBMETIDA AO PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA CIVIL E AMBIENTAL DA UNIVERSIDADE FEDERAL DE CAMPINA GRANDE, COMO PARTE DOS REQUISITOS PARA OBTENÇÃO DO TÍTULO DE MESTRE (Msc) EM ENGENHARIA CIVIL E AMBIENTAL.

Área de Concentração – Geotécnica

Prof. Dr. Adriano Elísio de Figueiredo Lopes Lucena Orientador

Campina Grande – Paraíba Junho de 2011

DEDICATÓRIA

A Deus, pela conquista. Aos meus encantadores filhos, Ana Júlia e Pedro Lucas. Ao meu esposo João Belarmino, pela dedicação e apoio. A minha mãe, pelas orações. A minhas irmãs, pelo companheirismo. Ao meu pai in memorian.

AGRADECIMENTOS

Ao Professor Dr. Adriano Elísio de Figueiredo Lopes Lucena, pela orientação desta pesquisa.

Ao Professor Dr. John Kennedy Guedes Rodrigues, pelos esforços em dar subsídios para o desenvolvimento da pesquisa.

À CAPES pela bolsa de estudo concedida.

Ao Centro de Tecnologia e Recursos Naturais da UFCG e a Coordenação de

Pós - Graduação em Engenharia Civil e Ambiental.

À ATECEL pelo apoio dado a pesquisa.

À empresa Maia Melo Ltda., pelo fornecimento de materiais para esta pesquisa.

Aos alunos do Programa de Pós-Graduação em Engenharia Civil e Ambiental: José Carvalho Filho.

José de Arimatéia Almeida e Silva.

Lêda Christiane de Figueiredo Lopes Lucena.

Aos funcionários da área de Geotecnia:

Josete e Jadilson.

RESUMO

A fresagem de pavimentos asfálticos consiste na remoção total ou parcial de revestimentos deteriorados, enquanto que, a reciclagem é a reutilização do material fresado in loco, por meio da aplicação de agente rejuvenescedor e reaplicação imediata da mistura no pavimento, ou pela incorporação do material fresado em misturas asfálticas juntamente com agregados novos. O objetivo desta pesquisa consistiu em estudar o comportamento físico e mecânico de seis misturas asfálticas tipo CBUQ, com percentuais de material fresado pré-estabelecidos (5%, 10%, 15%, 20%, 25% e 30%). As composições granulométricas das misturas se enguadram na camada de rolamento, faixa C do DNIT. Inicialmente foram determinados os teores ótimos de CAP em função do material fresado incorporado, com auxílio da metodologia de dosagem Marshall. A caracterização mecânica consistiu na realização de ensaios de Estabilidade Marshall, de Resistência à Tração, de Lottman Modificado e de Módulo de Resiliência. Os ensaios de RT, MR e Lottman também foram realizados utilizando-se o método de compactação por amassamento, da metodologia SUPERPAVE. A partir da análise dos resultados foi possível inferir que, das misturas estudadas, as contendo 10%, 15% e 20% de material fresado, compactadas tanto por impacto, quanto por amassamento, apresentaram-se como as mais adequadas para uso na pavimentação. Estas misturas recicladas apresentaram propriedades físicas e mecânicas compatíveis com as exigências do DNIT.

Palavras - Chaves: Material fresado, Reciclagem, Pavimentos flexíveis

ABSTRACT

The milling of the surface laye consists of the total or partial removal of deteriorated pavements, while the recycling is the reusing of the recycled asphalt pavement (RAP) in loco by the application of modified emulsion and immediate reapplication in the flexible pavements layers, or by the incorporation of the RAP in asphalt mixtures together with new aggregates. This work presents a study about the mechanical and physical behavior of mixtures with different recycled asphalt pavement percentages (5, 10, 15, 20, 25 and 30%). Thus, laboratory tests were carried out to dosagem asphalt concrete based on the Marshall methodology, within "C" graduation, according to DNIT's Standards. The asphalt cement content had been determined in function of the RAP. The mixtures were submitted to indirect tensile strength, Lottman, resilient modulus and Stability Marshall and were compacted with the Superpave Gyratory Compactor (SGC) and the Marshall compactor. The results showed the mixtures with 10,15 and 20 percentages of the recycled asphalt pavements compacted by gyration (SUPERPAVE) or by impact (Marshall) are the most adequate for use in the pavement. These mixtures had presented the physical and mechanical properties compatible with the DNIT's requirements.

Keywords: Recycled asphalt pavement, recycling, flexible pavements

SUMÁRIO

CAPÍTULO 1	1
1.0 INTRODUÇÃO	1
1.1 JUSTIFICATIVA	2
1.2 OBJETIVOS	2
1.2.1 Objetivo Geral	2
1.2.2 Objetivos Específicos	3
1.3 ORGANIZAÇÃO DO TRABALHO	3
CAPÍTULO 2	4
2.0 FUNDAMENTAÇÃO TEÓRICA	4
2.1 AGREGADOS MINERAIS	4
2.1.1 Classificação quanto à natureza	5
2.1.2 Classificação quanto ao tamanho	7
2.1.3 Classificação quanto à granulometria	8
2.1.4 Características dos agregados para uso na pavimentação	9
2.2 CIMENTO ASFÁLTICO DE PETRÓLEO (CAP)	16
2.2.1 Propriedades físicas do CAP	17
2.3 CONCRETO BETUMINOSO USINADO A QUENTE (CBUQ)	21
2.3.1 Dosagem de misturas asfálticas	21
2.3.1.1 Metodologia Marshall	22
2.3.1.2 Metodologia Hveem	23
2.3.1.3 Metodologia SUPERPAVE	23
2.3.2 Ensaios de caracterização mecânica das misturas asfálticas	25
2.4 FRESAGEM DE PAVIMENTOS ASFÁLTICOS	29
2.4.1 Tipos de fresagem de pavimentos	30
2.5 APLICAÇÃO DA TÉCNICA DE FRESAGEM NA CORREÇÃO DE DE	FEITOS
	31
2.5.1 Vantagens da utilização da técnica de fresagem	
2.6 RECICLAGEM DE PAVIMENTOS FLEXÍVEIS	
2.6.1 Tipos de reciclagem	37
CAPÍTULO 3	40
3.0 MATERIAIS E MÉTODOS	40
3.1 MATERIAIS	41
3.1.1 Material Fresado	41

i

3.1.2 Brita 19mm	41
3.1.3 Brita 9,5mm	42
3.1.4 Pó de pedra	42
3.1.5 Filer	43
3.1.6 Cimento Asfáltico de Petróleo	43
3.2 MÉTODOS	44
3.2.1 Caracterização física dos agregados	44
3.2.2 Dosagem MARSHALL	45
3.2.3 Caracterização mecânica das misturas asfálticas recicladas	49
CAPÍTULO 4	56
4.0 RESULTADOS E DISCUSSÕES	56
4.1 CARACTERIZAÇÃO FÍSICA DOS AGREGADOS	56
4.1.1 Material fresado	56
4.1.2 Agregados naturais – Brita 19mm, Brita 9,5mm e Pó de pedra	57
4.2 DOSAGEM MARSHALL	59
4.2.1 Distribuição dos tamanhos das partículas dos agregados das misturas	\$
asfálticas	59
4.2.2 Determinação dos teores ótimos de CAP	63
4.3 CARACTERIZAÇÃO MECÂNICA DAS MISTURAS ASFÁLTICAS	
RECICLADAS	71
4.3.1 Estabilidade Marshall	71
4.3.2 Compactação Giratória SUPERPAVE	75
4.3.3 Ensaio de Tração Indireta por Compressão Diametral	76
4.3.4 Ensaio de Lottman	78
4.3.5 Módulo de Resiliência	80
CAPÍTULO 5	84
5.0 CONCLUSÕES	84
5.1 CONSIDERAÇÕES FINAIS	85
5.2 SUGESTÕES PARA PESQUISAS FUTURAS	86
REFERÊNCIAS BIBLIOGRÁFICAS	87
Anexos	97

Tabela 4.11: Parâmetros volumétricos e Estabilidade Marshall das misturas
recicladas
Tabela 4.12: Parâmetros volumétricos para compactação SUPERPAVE76
Tabela 4.13: Comparação entre as densidades aparentes obtidos pela compactação
Marshall e SUPERPAVE76
Tabela 4.14: Resultados dos ensaios de Resistência a Tração Indireta por
Compressão Diametral77
Tabela 4.15: Resultados dos ensaios de Lottman modificado para compactação
Marshall
Tabela 4.16: Resultados dos ensaios de Lottman modificado para compactação
SUPERPAVE
Tabela 4.17: Módulos de resiliências e resistências á tração das misturas81
Tabela 4.18: Resultados dos ensaios mecânicos utilizando material fresado
(Vasconcelos, 2003)
Tabela 4.19: Modelos para previsão indireta do Módulo de Resiliência83

LISTAS DE QUADROS

Quadro 3.1: Descrição e quantitativos dos Corpos de prova moldados para	
determinação dos teores ótimos de CAP (Compactação por Impacto)	49
Quadro 3.2 : Descrição e quantitativos dos Corpos de prova moldados para	
caracterização mecânica das misturas asfálticas recicladas	51

LISTAS DE FIGURAS

Figura 2.1: Representação convencional de curvas granulométricas9
Figura 2.2: Linha de densidade máxima e pontos de controle utilizando o gráfico de
potência 0,45 [Fonte: Marques 2009]12
Figura 2.3: Sistema simplificado do CGS (a) Partes constituintes do compactador
giratório SUPERPAVE (b) configuração do molde e parâmetros da compactação25
Figura 2.4: Compactadores de misturas asfálticas (a) compactador Marshall (b)
compactador giratório SUPERPAVE25
Figura 2.5: Trincas interligadas, PB 306, trecho Maturéia à Princesa Isabel (a)
Trincas interligadas em bloco (b) Trincas interligadas couro de jacaré
Figura 2.6: Trincas interligadas, com aparecimento das camadas inferiores para as
superiores do pavimento, PB 306, trecho Maturéia à Princesa Isabel
Figura 2.7: Panelas resultantes da deterioração do pavimento, PB 306, trecho
Maturéia à Princesa Isabel
Figura 3.1: Material fresado utilizado na pesquisa41
Figura 3.2: Brita 19mm utilizada na pesquisa41
Figura 3.3: Brita 9,5mm utilizada na pesquisa42
Figura 3.4: Pó de pedra utilizado na pesquisa42
Figura 3.5: Filer utilizado na pesquisa43
Figura 3.6: CAP 50-70 utilizado na pesquisa43
Figura 3.7: (a) aparelho extrator utilizado na pesquisa (b) pesagem da amostra antes
da extração44
Figura 3.8: Exemplo de gráfico utilizado para determinação do teor ótimo de CAP
[Bernucci et al, 2006]
Figura 3.9: Seqüência executiva da compactação giratória
Figura 3.10: Ensaio para determinação da Estabilidade Marshall (a) execução da
mistura (b) compactador automático (c) prensa Marshall
Figura 3.11: Ensaio de Resistência à Tração (RT) (a) pórtico (b) ruptura do corpo de
prova (c) corpo de prova pós rompimento52
Figura 3.12: Ensaio de Lottman modificado (a) bomba a vácuo (b) saturação dos
corpos de prova (c) resfriamento53
Figura 3.13: Software UTS003 1.39 Indirect Tensile Modulus Test54
Figura 3.14: Equipamento UTM-25 utilizado no ensaio de Módulo de Resiliência55

Figura 3.15: LVDTs instalados no corpo de prova55
Figura 4.1: Curva granulométrica do material fresado utilizado na pesquisa
Figura 4.2: Curva granulométrica dos agregados naturais
Figura 4.3: Distribuição dos tamanhos das partículas dos agregados da mistura
reciclada contendo 5% de material fresado60
Figura 4.4: Distribuição dos tamanhos das partículas dos agregados da mistura
reciclada contendo 10% de material fresado60
Figura 4.5: Distribuição dos tamanhos das partículas dos agregados da mistura
reciclada contendo 15% de material fresado61
Figura 4.6: Distribuição dos tamanhos das partículas dos agregados da mistura
reciclada contendo 20% de material fresado61
Figura 4.7: Distribuição dos tamanhos das partículas dos agregados da mistura
reciclada contendo 25% de material fresado62
Figura 4.8: Distribuição dos tamanhos das partículas dos agregados da mistura
reciclada contendo 30% de material fresado62
Figura 4.9: Gráficos dos parâmetros volumétricos e Estabilidade Marshall para
mistura contendo 5% de material fresado65
Figura 4.10: Gráficos dos parâmetros volumétricos e Estabilidade Marshall para
mistura contendo 10% de material fresado66
Figura 4.11: Gráficos dos parâmetros volumétricos e Estabilidade Marshall para
mistura contendo 15% de material fresado67
Figura 4.12: Gráficos dos parâmetros volumétricos e Estabilidade Marshall para
mistura contendo 20% de material fresado68
Figura 4.13: Gráficos dos parâmetros volumétricos e Estabilidade Marshall para
mistura contendo 25% de material fresado69
Figura 4.14: Gráficos dos parâmetros volumétricos e Estabilidade Marshall para
mistura contendo 30% de material fresado70
Figura 4.15: Volume de vazios em função do percentual de material fresado73
Figura 4.16: Relação betume vazios em função do percentual de material fresado .74
Figura 4.17: Vazios do agregado mineral em função do percentual de material
fresado74
Figura 4.18: Estabilidade Marshall das misturas recicladas74
Figura 4.19: Estabilidade Marshall em função do incremento percentual de material
fresado [Santana, 2009]75

Figura 4.20: Resistência à Tração das misturas recicladas	.77
Figura 4.21: Resistência à tração com e sem condicionamento – Compactação	
Marshall	78
Figura 4.22: Resistência à Tração com e sem condicionamento – Compactação	
SUPERPAVE	79
Figura 4.23: Relação da Resistência à Tração – Compactação Marshall e	
SUPERPAVE	.80
Figura 4.24: Resultados do ensaio de Módulo de Resiliência	.81
Figura 4.25: Relação entre MR e RT (Compactação Marshall)	.82
Figura 4.26: Relação entre MR e RT (Compactação SUPERPAVE)	.82

LISTAS DE FLUXOGRAMAS

Fluxograma 3.1 - Seqüência da pesquisa laboratorial40

LISTAS DE ABREVIATURAS E SÍMBOLOS

AASHTO	American Association of State Highway and Transportation Officials		
ASTM	American Society for Testing and Materials		
CAP	Cimento Asfáltico de Petróleo		
CBUQ	Concreto Betuminoso Usinado a Quente		
CGS	Compactador Giratório Superpave		
DNIT	Departamento Nacional de Infraestrutura e Transporte		
ECA	Ensaio de Efeito do Calor e do Ar		
FHWA	Federal Highway Administration		
IDML	Índice de Degradação de Rochas após Compactação Marshall, com		
	Ligante		
IDM	Índice de Degradação de Rochas após Compactação Marshall, sem		
	Ligante		
MARQ's	Misturas Asfálticas Recicladas à Quente		
MF	Material Fresado		
MR	Módulo de Resilência		
OPEP	Organização dos Países Exportadores de Petróleo		
PNMA	Política Nacional de Meio Ambiente		
RBV	Relação Betume-Vazios		
RT	Resistência à Tração		
SHRP	Strategic Highway Research Program		
SUPERPAVE	Superior Performance Asphalt Pavements		
VAM	Vazios no Agregado Mineral		
Vv	Volume de Vazios		

CAPÍTULO 1

1

1 .

1.0 INTRODUÇÃO

A opção pelo transporte rodoviário, traz consigo diversas consequencias ambientais. Sabe-se que as atividades de construção de estradas, como: mobilização, instalação do canteiro de obras, implantação da obra e a posterior desmobilização, além da manutenção e recuperação dos pavimentos quando deteriorados, causam impactos ambientais. Os impactos são ocasionados por serviços de terraplanagens, exploração de jazidas, bota-foras, evasão de fauna, processos migratórios, desapropriações, acessibilidade, alterações, a qualidade da água, do ar e do solo, (COSTA et. al, 2010).

Com a preocupação mundial pelo desenvolvimento sustentável e a implantação do Brasil da Política Nacional de Meio Ambiente (PNMA), instituída pela lei 6.938/81, as obras de infraestruturas tiveram que adequarem suas atividades desde a fase de planejamento até a implantação da obra, além da fase de conservação e da restauração após a deterioração das rodovias, em função do excesso de peso dos veículos, má execução das obras, ou mesmo pelo desgaste natural da vida útil dos pavimentos.

A escassez de matéria-prima como o petróleo, devido ao consumo em maiores quantidades e a velocidade de descoberta de novas jazidas, utilizado na produção de asfalto, e dos agregados minerais, também obriga o desenvolvimento de tecnologias que preservem o meio ambiente.

A reciclagem de pavimentos surgiu na década de 30, no entanto, só despertou interesse na década de 70 com a crise do petróleo, e foi aprimorada a partir do desenvolvimento do equipamento de fresagem simultaneamente na Europa e na América do Norte, porém, no Brasil o equipamento foi utilizado somente na década de 80. A fresagem de pavimentos asfálticos, é uma técnica consolidada no processo de restauração de pavimentos, no entanto, a remoção desses pavimentos gera um acúmulo de resíduos, com potencial para incorporação na composição de novas misturas asfálticas.

A técnica de reciclagem de pavimentos, surgiu para atender questões ambientais, pois traz a possibilidade de reaproveitamento de materiais que compõem as camadas de sua estrutura, contribuindo para dois aspectos

CAPÍTULO 2

2.0 FUNDAMENTAÇÃO TEÓRICA

Neste capítulo são abordados os assuntos de maior relevância para o desenvolvimento desta pesquisa. Primeiramente faz-se uma abordagem sobre os agregados minerais, classificação, função nas misturas asfálticas e características tecnológicas, que os tornam adequados para o uso na pavimentação.

Em seguida aborda-se o asfalto, destacando-se os tipos, composição e propriedades físicas. Também é abordada a mistura asfáltica à quente e os métodos de dosagens e compactação, além de medidas de resistências mais usuais. Finalmente, faz-se uma abordagem sobre as técnicas de fresagem e reciclagem de pavimentos asfálticos.

2.1 AGREGADOS MINERAIS

A ABNT NBR 9935/2005 define agregados como sendo material sem forma ou volume definidos, geralmente inerte, de dimensões e propriedades adequadas para produção de argamassas e concretos.

Para Bernucci et al (2006), agregado é um termo genérico para areias, pedregulhos e rochas minerais em seu estado natural ou britadas em seu estado processado.

Para Woods (1960), agregado é uma mistura de pedregulhos, areias, pedras britadas, escória ou outros materiais usados na combinação com um ligante para formar concretos ou argamassas.

A American Society for Testing and Materials (ASTM) define como "materiais minerais inertes que podem ser aglutinados por um ligante para formar uma argamassa, concreto, etc..."

Para Bauer (1995), agregado é um material particulado incoesivo, de atividade química praticamente nula, constituído de partículas cobrindo extensa gama de tamanhos.

Existe uma grande variedade de agregados passíveis de utilização em revestimentos asfálticos. Porém para obtenção de uma melhor performance são necessários conhecer características como: composição mineralógica, composição

química, granulometria, grau de alteração, tendência à degradação, abrasão ou fratura sob tráfego e o potencial de adesão do ligante asfáltico em sua superfície.

Para melhor detalhamento dessas características os agregados foram divididos em três grandes grupos, de acordo com: sua natureza, com o tamanho e distribuição dos tamanhos dos grãos.

2.1.1 Classificação quanto à natureza

São classificados em: natural, artificial e reciclado.

• Agregados naturais

São aqueles obtidos na natureza por escavações e dragagem, como: pedregulhos, britas, seixos, areias etc. Podem ser utilizados na pavimentação como encontrado na natureza, ou podem ainda serem submetidos a processos de lavagem e britagem. Os agregados de rochas naturais são originados de três tipos principais de rochas, que são: rochas ígneas ou magmáticas, sedimentares e metamórficas.

Rochas ígneas ou magmáticas: rocha que provém de solidificação de materiais em fusão denominados magmas (ABNT NBR 6502/1995). São classificadas quanto a profundidade de ocorrência em plutônica formada em grandes profundidades, possuindo textura grossa a média e extrusiva ou vulcânica, rocha ígnea formada pelo extravasamento do magma na superfície terrestre. São exemplos de rochas ígneas plutônica: diorito, gabro, sienito e de rocha extrusiva: basalto, riólito e tufo.

Rochas sedimentares: rocha originada pela consolidação de detritos de outras rochas que foram transportados, depositados e acumulados ou também originada de produtos de atividade orgânica, atividade bioquímica ou precipitação química por evaporação. São caracterizadas por camadas estratificadas, são exemplos dessas rochas: arenito, siltito, argilito, folhelho, carvão mineral, gipsita, evaporito e calcário, etc.

Rochas metamórficas: rocha proveniente de transformações sofridas por rochas ígneas ou sedimentares, que foram submetidas à ação de processos

5

termodinâmicos de origem endógena, os quais produziram novas texturas e novos minerais, são exemplos dessas rochas: gnaisse, xisto e filito.

Na Tabela 2.1 são apresentados os principais tipos de rochas utilizados como agregados.

Denominação Petrológica	Descrição
Andesito	Variedade de diorito vulcânico, de granulação fina
Basalto	Rocha básica de granulação fina, usualmente vulcânica
Conglemerado	Rocha constituída de blocos arredondados ligados por cimento
Congiomerado	natural
Diorito	Rocha plutônica intermediária, constituída de plagioclásio com
Dionto	hornblenda, augita ou biotita
Cohro	Rocha plutônica básica de granulação grossa, constituída de
Gabro	plagioclásio cálcico e piroxênio, algumas vezes com olivina
Gnaisse Rocha riscada, produzida por condição metamórfica intensa	
Cranita	Rocha plutônica ácida, constituída principalmente de feldspatos
Granito	alcalinos e quartzo
Calcário	Rocha sedimentar, constituída principalmente de carbonato de cálcio
Questrite	Rocha metamórfica ou sedimentar constituída quase que totalmente
Quartzito	por grãos de quartzo
Riolito	Rocha ácida, de granulação fina, usualmente vulcânica
Cionita	Rocha plutônica intermediária, constituída de feldspatos alcalinos
Sienito	com plagioclásios, hornblenda, biotita ou augita
Traquito	Variedade de sienito de granulação fina, usualmente vulcânica

Tabela 2.1: Tipos de rochas comumente usados como fonte de agregados para pavimentação no país

[Fonte: BERNUCCI et al 2006]

Agregados artificiais

São resíduos resultantes de processos industriais, como britagem de rocha ou pedregulho, escória de alto-forno e de aciaria, ou fabricados para atingir certos desempenhos, como argila calcinada e argila expandida. De acordo com Bernucci et al (2006), o agregado artificial mais usado no momento, são os vários tipos de escórias, subprodutos da indústria do aço. Porém esse agregado pode apresentar problemas de expansibilidade e heterogeneidade, requerendo tratamento adequado para utilização na pavimentação, no entanto, podem apresentar alta resistência ao atrito.

Agregados Reciclados

Com o desenvolvimento da reciclagem de pavimentos, e a utilização do material removido do pavimento deteriorado, denominado de material fresado, na composição de uma nova mistura asfáltica, surge um novo agregado para pavimentação, o material fresado.

2.1.2 Classificação quanto ao tamanho

- Agregado miúdo: material com dimensões maiores que 0,075mm, sendo a dimensão máxima característica de 4,8mm, são exemplos de agregados miúdos areia e pó-de-pedra.
- Agregado graúdo: material com dimensões superiores a 2,0mm e dimensão máxima de 50mm, são exemplos britas, cascalhos, seixos e etc.

Nas misturas betuminosas, que constituem os revestimentos asfálticos os agregados minerais representam cerca de 90 a 95% em peso e 70 a 85% em volume (ASPHALT INSTITUTE, 1989). Portanto, as propriedades dos agregados utilizados nos pavimentos são de extrema importância para o bom desempenho dos mesmos (WESSELING, 2002) apud (BUENO, 2008).

A deterioração precoce dos pavimentos, com o surgimento de defeitos como desagregação e deformação permanente, pode estar diretamente relacionada à escolha inadequada dos agregados. Daí, a necessidade dos agregados possuírem propriedades físico-químicas e mecânicas adequadas, que garantam o bom desempenho do pavimento (WESSELING, 2002) apud (BUENO, 2008).

Para Brondani e Pinheiro (2010), os agregados devem apresentar características adequadas para suportar as pressões aplicadas pelos veículos, sem se fraturarem e resistirem as ações dos agentes do intemperismo, sem se alterarem.

Os agregados são responsáveis pela resistência mecânica e química das misturas asfálticas. Portanto, para serem utilizados em pavimentação devem apresentar características tais como:

- Resistência ao choque, (tenacidade):

 Resistência ao desgaste (dureza), capacidade de resistir ao desgaste causado pelos veículos; - Resistência à compressão, para suportar o peso dos veículos e transmitir os esforços para as carnadas inferiores do pavimento;

- Resistência química (sanidade), baixo coeficiente de expansão na presença de argilominerais expansivos ou por ação de calor, para resistir às ações do clima; e

- Adesividade ao ligante asfáltico, características físico-químicas que garantem adesão ao betume.

Filer: material em que pelo menos 65% passam na peneira 200 (abertura de 0,075mm), são exemplos cimento portland, cal hidratada, pós-calcários, cinza volante, etc.

A principal finalidade do filer é melhorar as características de misturas asfálticas, quanto ao desempenho reológico, mecânico, térmico e de sensibilidade à água.

O filer por ser um material finamente dividido, com superfície específica bastante alta, atua preenchendo os vazios das misturas asfálticas. De acordo com Bertollo (2002) apud Beck (2005), o filer atua de duas maneiras nas misturas asfálticas na primeira, parte do filer considerado inerte, preenchendo os vazios, e a outra considerada ativa, fica em suspensão no ligante. O preenchimento dos vazios pelo filer aumenta a viscosidade do asfalto, consequentemente têm-se o aumento do ponto de amolecimento, diminuição da suscetibilidade térmica, aumento na estabilidade, no módulo de resiliência e na resistência à tração da mistura asfáltica.

Segundo Takatu (2004) apud Beck (2005), em misturas densas, onde o esqueleto pétreo é integrado por agregados graúdos e miúdos devidamente adensados, os vazios deixados são em partes preenchidos pelo conjunto coesivo formado pelo asfalto, e o filer encontra-se disperso. O filer preenche os vazios, contribuindo para fechar as misturas, oferecendo maior equilíbrio à estrutura e aumento de estabilidade, sem necessitar aumentar o teor de asfalto.

2.1.3 Classificação quanto à granulometria

Bernucci et al (2006), cita que a distribuição granulométrica dos agregados é uma das principais características que influi efetivamente no comportamento de misturas asfálticas, influenciando em propriedades como: rigidez, estabilidade, durabilidade, permeabilidade, resistência ao dano por umidade, etc.

8

- Agregado de graduação densa ou bem-graduado: material que apresenta distribuição granulométrica contínua, próxima à de densidade máxima.
- Agregado de graduação aberta: material que apresenta distribuição granulométrica contínua, porém com pouco material fino, resultando em maior volume de vazios.
- Agregado de graduação uniforme: material que apresenta a maioria de suas partículas com tamanhos em uma faixa bastante estreita.
- Agregado de graduação com degrau ou descontínua: material que apresenta pequena porcentagem de agregados com tamanhos intermediários, dando origem a um patamar na curva granulométrica.

A Figura 2.1 apresenta a distribuição convencional dos tamanhos dos grãos de acordo com a classificação.

Figura 2.1: Representação convencional de curvas granulométricas [Fonte: Bernucci et al 2006]

2.1.4 Características dos agregados para uso na pavimentação

As misturas asfálticas são compostas de agregados de várias dimensões e proporções unidos entre si pelo ligante asfáltico. O nível de desempenho do pavimento dependerá do entendimento de como seus constituintes reagem juntos.

De acordo com Roberts et al. (1996) apud Bernucci et al. (2006), são as propriedades físicas dos agregados que determinam principalmente a adequação para o uso em misturas asfálticas, e as propriedades químicas exercem menor influência. As propriedades físicas e mecânicas básicas são: resistência, porosidade e densidade. A umidade, a adesividade e, em consequência, o deslocamento da película de asfalto, propriedades físico-químicas, são função da composição e da estrutura dos minerais do agregado.

Segundo Marques (2009), a adequação dos agregados minerais para serem usados em revestimentos asfálticos é determinada pela avaliação das características seguintes:

- a. Tenacidade;
- b. Resistência abrasiva;
- c. Dureza;
- d. Durabilidade;
- e. Sanidade;
- f. Forma da partícula (lamelaridade e angulosidade);;
- g. Textura superficial;
- h. Limpeza / Materiais Deletérios;
- i. Afinidade ao asfalto;
- j. Porosidade e absorção;
- k. Características expansivas;
- I. Polimento e características friccionais;
- m. Diâmetro e graduação; e
- n. Densidade Específica / Massa Específica.

Diâmetro e graduação

A espessura mínima de execução de uma camada de concreto asfáltico determina diretamente o diâmetro do agregado a ser usado na mistura asfáltica. A distribuição granulométrica garante a estabilidade da mistura, pois determina o entrosamento entre as partículas e o conseqüente atrito entre elas.

Marques (2009), diz que a graduação é talvez a propriedade mais importante de um agregado, tendo influência sobre propriedades importantes das misturas asfálticas, como: rigidez, estabilidade, durabilidade, permeabilidade, trabalhabilidade, resistência à fadiga, resistência por atrito e resistência ao dano por umidade. Portanto, a graduação é a primeira consideração num projeto de misturas asfálticas. Por isso, em todas as especificações de CBUQ é estabelecido, que as partículas dos agregados devam estar enquadrados em uma determinada faixa granulométrica, e que cada tamanho de partícula esteja presente em certa proporção.

Para Roberts et al (1996) apud Marques (2009), a graduação mais adequada para uma mistura betuminosa é aquela que garanta um arranjo das partículas mais denso, proporcionando aumento na estabilidade, por meio do aumento dos contatos interpartículas e a redução nos vazios no agregado mineral. No entanto, a graduação da mistura deve garantir que existam vazios suficientes para permitir que o cimento asfáltico seja incorporado para assegurar durabilidade e para evitar exsudação e/ou afundamento no revestimento.

Uma das mais conhecidas graduações para obtenção da densidade máxima é a proposta por Fuller e Thompson em 1907, em que a equação para a densidade máxima é a seguinte (Equação 2.1):

$$P = \left(\frac{d}{D}\right)^n x \, 100 \tag{2.1}$$

Onde:

P - é a percentagem total passante ou mais fina que a peneira;

d - é o diâmetro da peneira em questão;

D - é o tamanho máximo do agregado; e

n - é um coeficiente variável.

Para se obter a densidade máxima de um agregado, o coeficiente "n" deve ser igual a 0,5.

No início dos anos 60, a Federal Highway Administration (FHWA), lançou um gráfico de graduação de agregados baseado na Curva de Fuller e Thompson, porém, usando o expoente 0,45 na equação. O gráfico proposto pela FHWA é muito utilizado para determinar a linha de densidade máxima e para ajustar a graduação do agregado.

A Figura 2.2 apresenta um exemplo deste gráfico, onde a linha de densidade máxima pode ser obtida facilmente ligando-se através de uma reta a origem do gráfico (canto inferior esquerdo) até o ponto da porcentagem total do tamanho

máximo. O tamanho nominal máximo é definido como o maior tamanho de peneira, acima do qual nenhum material é retido.

Abertura das Peneiras, mm Elevado Potência de 0,45

Figura 2.2: Linha de densidade máxima e pontos de controle utilizando o gráfico de potência 0,45 [Fonte: Marques 2009]

Materiais deletérios

Os agregados podem conter materiais como: vegetação, conchas, torrões de argila, etc, que em quantidades elevadas os tornam impróprios para utilização em misturas asfálticas.

A norma DNER-ME 054/97, ensaio de equivalente de areia, determina a proporção relativa de materiais deletérios em amostras de agregados miúdos. De acordo com a norma do DNIT 031/2006 – ES, para que o agregado miúdo seja usado na pavimentação, seu equivalente de areia tem que ser igual ou superior a 55%.

Resistência à abrasão

Os agregados devem resistir a quebras, degradação e desintegração, devido à ação do tráfego e até mesmo durante o manuseio na execução do pavimento. Na Tabela 2.2 estão listados uma série de normas brasileiras para determinação da resistência dos agregados à abrasão, e os respectivos limites de aceitação. O ensaio mais utilizado é a abrasão Los Angeles.

Métodos de ensaio	Valores Limites		
DNER – ME 035/98 Agregados – determinação	1.0 < 50%		
da abrasão Los Angels	LA 2 50%		
DNER – ME 197/97 Agregados – determinação			
da resistência ao esmagamento de agregados	E ≥ 60%		
graúdos			
DNER – ME 096/98 Agregado graúdo –			
avaliação da resistência mecânica pelo método	10% finos ≥ 60 kN		
dos 10% finos			
DNER - ME 397/99 Agregados - determinação	IDW > 20%		
do índice de degradação Washington (IDW)	IDW ≥ 30%		
DNER – ME 398/99 Agregados – determinação			
do índice de degradação após compactação	IDP ≤ 6%		
Proctor (IDP)			
DNER - ME 399/99 Agregados - determinação	T < 60%		
da perda ao choque no aparelho Treton $T \le 60\%$			
DNER - ME 401/99 Agregados - determinação			
do índice de degradação de rochas após	IDML com ligante ≤ 5%		
compactação Marshall, com ligante - IDML e	IDML sem ligante ≤ 8%		
sem ligante – IDM			

Tabela 2.2: Método de ensaio para determinação de características mecânicas de agregados e

valores de aceitação

[Fonte: Bernucci et al 2006]

A norma do DNIT 031/2006 – ES recomenda que, o desgaste Los Angeles, realizado de acordo com (DNER-ME 035), seja igual ou inferior a 50%. Porém, admitem-se excepcionalmente agregados com valores maiores, no caso de terem apresentado comprovadamente desempenho satisfatório em utilização anterior. Cita a norma DNER-ME 401 determinação de degradação de rochas após compactação Marshall, com ligante IDML, e sem ligante IDM, cujos valores de degradação para julgamento da qualidade de rochas para uso em pavimentação, são: IDML menor ou igual a 5% e IDM menor ou igual a 8%.

Marques (2001) apresenta um exemplo desta situação, ocorrido no município do Rio de Janeiro, onde, a abrasão Los Angeles chegou a valores de até 65%. Devido à impossibilidade de encontrarem agregados que atendessem à norma, nas proximidades da obra, várias rodovias foram pavimentadas usando esses agregados. No entanto, observações mostraram que o desempenho das rodovias ao

longo dos anos foi satisfatório, a partir daí o DNER passou a recomendar ensaios complementares para determinação da resistência à abrasão como os listados anteriormente.

Textura superficial

A textura superficial dos agregados tem influência na trabalhabilidade, adesividade, resistência ao atrito e ao cisalhamento. Agregados com rugosidades elevadas, a exemplo da maioria das rochas britadas, têm perda na trabalhabilidade, requerendo maior consumo de cimento asfáltico, devido ao elevado volume de vazios, por outro lado tem aumento na resistência ao cisalhamento.

Já os agregados de textura superficial lisa podem ser mais facilmente envolvidos pelo filme do cimento asfáltico, porém o cimento asfáltico forma usualmente ligações mecânicas mais fortes com os agregados de textura rugosa (ROBERTS et al, 1996) apud (MARQUES, 2009).

Forma das partículas

A forma das partículas também influi na trabalhabilidade e na resistência ao cisalhamento, além disso, muda a energia de compactação necessária para se alcançar certa densidade.

Existem duas normas brasileiras para caracterização das partículas dos agregados, são elas: DNIT – ME 086/94 e a ABNT NBR 6954/1989, a Tabela 2.3 mostra a classificação segundo estas duas normas.

(ABNT NBR 6954/1989)		(DNIT- ME 086/94)	
Média das Relações b/a e c/d	Classificação da Forma	Classificação	Índice de forma
b/a > 0,5 e c/d > 0,5	Cúbica	Ótima cubicidade	f = 1,0
b/a < 0,5 e c/d > 0,5	Alongada	Lamelar	f = 0,0
b/a > 0,5 e c/d < 0,5	Lamelar	Limite mínimo de	f = 0,5
b/a < 0,5 e c/d < 0,5	Alongada - lamelar	aceitação do agregado quanto à forma	

Tabela 2.3 Classificação da forma das partículas dos agregados

Absorção

De acordo com Bernucci et al (2006), um agregado poroso absorve ligante asfáltico, consumindo parte do ligante necessário para dar coesão à mistura asfáltica, tendo como consequência maior consumo de ligante. Quando esta porosidade é muito elevada, o agregado se torna inadequado para uso em pavimentação.

Antunes et al (2009), estudando a influência dos agregados de diferentes regiões, escolheu dois agregados de mesma natureza geológica (granítica), sendo um de pedreira, localizada no estado do Ceará, e outra localizada no estado do Pernambuco. Realizado o ensaio de absorção em ambos os agregados, a absorção do agregado do Ceará foi 0,52% e a do agregado do Pernambuco foi 0,32%. Todas as misturas foram dosadas pela metodologia SUPERPAVE, sendo que as misturas com agregado do Pernambuco consumiram menos ligante, o que o torna mais vantajoso do ponto de vista econômico, visto que o CAP é o material mais oneroso nas misturas asfálticas.

A norma do DNIT 081/98 – ME, fixa a metodologia para realização deste ensaio, a absorção é determinada pela seguinte expressão (Equação 2.2):

$$a = \left(\frac{M_h - M_s}{M_s}\right) x 100\%$$
(2.2)

Onde:

a = absorção do agregado, em percentagem;

M_h = massa, ao ar, do agregado na condição saturada (imersão em água por 24hs) superfície seca, em g; e

M_s = massa, ao ar, do agregado seco em estufa, em g.

Adesividade ao ligante asfáltico

Os agregados que apresentam alta adesividade ao cimento asfáltico mesmo na presença de água são chamados de hidrofóbicos, porém existem agregados que na presença de água, descola a película de ligante da superfície do agregado, esses são os denominados de hidrofílicos, tornando-se inadequados para uso em misturas asfálticas. A determinação das características de adesividade pode ser realizada visualmente, através do comportamento dos agregados recobertos por ligante asfáltico, procedimento descrito na norma DNIT – ME 078/94. Nesse ensaio o agregado envolvido pelo ligante, ambos em temperaturas adequadas, é colocado sobre uma superfície lisa até esfriar. Em seguida, a amostra é colocada em um becker, totalmente imersa em água destilada e mantida em estufa por 72 horas, sob temperatura de 40°C.

• Sanidade

Determinados agregados podem sofrer desintegração química quando submetidos às condições ambientais no pavimento. Este fenômeno denomina-se sanidade, que é a percentagem de material perdido de uma mistura de agregado, submetidos à presença de sulfato de sódio ou magnésio. A metodologia de ensaio é descrita pela AASHTO T 104, sanidade de agregados usando o sulfato de sódio ou magnésio.

2.2 CIMENTO ASFÁLTICO DE PETRÓLEO (CAP)

Os CAPs são constituídos de 90 a 95% de hidrocarbonetos e de 5 a 10% de heteroátomos (oxigênio, enxofre, nitrogênio e metais, vanádio, níquel, ferro, magnésio e cálcio) unidos por ligações covalentes. A composição química do CAP tem influência no desempenho físico e mecânico, das misturas asfálticas, porém sua maior influência é quando da adição de agentes modificadores (BERNUCCI et al 2006).

Os hidrocarbonetos por sua vez são constituídos por asfaltenos e maltenos. Os asfaltenos constituem a parte sólida do CAP, responsável pela rigidez e coloração, já os maltenos constituem a parte oleosa, responsável pela plasticidade e viscosidade.

Os maltenos são divididos em duas categorias: os saturados e os aromáticos. Os saturados não têm grande influência no processo de oxidação do asfalto, devido sua inércia química. Porém os aromáticos oxidam-se parcialmente e dão lugar às resinas. Parte dos maltenos por terem cadeias curtas se volatilizam com a temperatura, desaparecendo da constituição do asfalto. Como a parte oleosa

16

funciona como veículo, para as resinas e asfaltenos se moverem, sua redução causa aumento da viscosidade do ligante (Balbo, 2007).

As resinas também sofrem oxidação em suas frações mais pesadas, resultando em asfaltenos, esse processo altera as características do asfalto depois de envelhecido, ficando mais viscoso, frágil e quebradiço.

O CAP quando exposto as condições climáticas como: radiação solar, chuvas ácidas, infiltração de águas sulfatadas e condições de derramamento de óleos combustíveis e lubrificantes, sofre reações químicas irreversíveis devido a sua constituição por hidrocarbonetos.

O Cimento asfáltico de petróleo é dúctil suportando deformações plásticas significativas antes de ocorrer a ruptura do material, no entanto a partir de determinados esforços pode ocorrer microfissuras na estrutura do CAP, que progressivamente causará ruptura do material. O fenômeno é percebido através patologias, que podem afetar as camadas inferiores e superiores do pavimento.

De acordo com Leite (2003) apud Marques (2009), o Cimento Asfáltico de Petróleo (CAP) é um material adesivo termoviscoplástico, impermeável à água, e pouco reativo. Porém, apesar de ser pouco reativo, sofre envelhecimento por oxidação lenta pelo contato com o ar e a água.

A característica termoviscoplástico é uma síntese das características de termoplástico, que possibilita o manuseio a quente, sendo que após o resfriamento assume a condição de viscoelasticidade, comportamento elástico sob aplicação de carga curta, e o viscoso sob longos tempos de aplicação de carga.

2.2.1 Propriedades físicas do CAP

As propriedades físicas do CAP são influenciadas pela temperatura. Em temperaturas muito baixas, as moléculas não têm condições de se mover umas em relação às outras e a viscosidade fica muito elevada, o ligante apresenta-se como sólido. Em elevadas temperaturas as moléculas começam a se mover e o ligante se comporta como um líquido.

Um dos critérios mais utilizados de classificação dos ligantes é a avaliação da sua suscetibilidade térmica, medindo consistência ou viscosidade em diferentes temperaturas. O ensaio de penetração mede a penetração em décimos de milímetro, que uma agulha de massa padronizada (100g) penetra numa amostra de volume

padronizado de cimento asfáltico, por 5 segundos, à temperatura de 25°C. Este ensaio é normatizado pela ABNT NBR 6576/98.

Já a viscosidade determina a consistência do cimento asfáltico através da resistência ao escoamento. O equipamento comumente usado no Brasil para medidas de viscosidade é o equipamento Saybolt-Furol, o ensaio é normatizado pela ABNT NBR 14950/2003. A medida de viscosidade é usada para especificação do ligante, e principalmente na determinação da consistência adequada que ele deve apresentar no processo de mistura com os agregados, a fim de, envolve-los completamente.

O ensaio de ponto de amolecimento correlaciona à temperatura na qual o asfalto amolece quando aquecido sob certas condições particulares e atinge uma determinada condição de escoamento. Este ensaio é normatizado pela ABNT NBR 6560/2000.

O ensaio de dutilidade mede a coesão do asfalto, através da capacidade do asfalto de se alongar na forma de um filamento, a medida do alongamento é dada em centímetros e a norma brasileira para realização deste ensaio é ABNT NBR 6293/2001.

O ensaio de solubilidade é normatizado pela ABNT NBR 14855/2002 e serve para medir o grau de pureza do asfalto. O solvente mais indicado é tricloroetileno. Para uso em pavimentação o asfalto deve ser no mínimo 99,0% solúvel neste solvente.

A durabilidade do asfalto é verificada através de ensaios de envelhecimento acelerados chamados de "efeito do calor e do ar" que simulam o envelhecimento do ligante na usinagem. O ensaio de efeito do calor e do ar (ECA), normatizado pela ABNT NBR 14736/2001 equivale ao ensaio usado no exterior, denominado de estufa de filme fino (Thin Film Oven Test – TFOT – ASTM D 1754).

Em 2005 foi criada a norma ABNT NBR 15235 que normatiza um ensaio que substitui o ensaio ECA na caracterização de ligantes asfálticos. Este ensaio é baseado no Rolling Thin Film Oven Test (RTFOT) padronizado pela ASTM D 2872-97, que também substitui o TFOT. O RTFOT também mede o envelhecimento por oxidação e evaporação, no entanto de forma mais severa.

Para Bernucci et al (2006), existem muitos mecanismos envolvidos no envelhecimento dos ligantes asfálticos, no entanto, dois são mais importantes: a

18

perda de componentes voláteis (saturados e aromáticos) e a reação química do asfalto com o oxigênio do ar.

O ensaio do ponto de fulgor é normatizado pela ABNT NBR 11341/2004, e serve como medida de segurança no manejo do asfalto (transporte, estocagem e usinagem). O ponto de fulgor é a menor temperatura na qual os vapores resultantes do aquecimento do ligante asfáltico pegam fogo em contato com uma chama padronizada.

Outra características importante dos CAPs, é que, eles não devem conter água, pelo fato de representar perigo nos tanques e no transporte, devido aos ricos de explosões. O CAP quando aquecido e se tiver presença de água pode formar espumas, pois há dificuldades de liberação das bolhas de água.

A massa específica do CAP é obtida com a utilização do picnômetro para a determinação do volume do ligante e é definida como a relação entre a massa e o volume. O ensaio é normatizado pela norma ABNT NBR 6296/2004, o valor da massa específica geralmente é torno de 1 a 1,02g/cm³.

A Tabela 2.4 traz as especificações do CAP aprovadas pela Agência Nacional de Petróleo, Gás e Energia (ANP) adotada no Brasil.

Características	Unid.	Limites				Métodos	
euruotoriotiodo		CAP30-45	CAP50-70	CAP85-100	CAP150-200	ABNT	ASTM
Penetração (100g, 5s, 25℃)	0,1mm	30 a 45	50 a 70	85 a 100	150 a 200	NBR 6576	D 5
Ponto de amolecimento, mín.	ũ	52	46	43	37	NBR 6560	D 36
Viscosidade Saybolt-Furol							
A 135℃, mín.	S	192	141	110	80	NPD	
A 150°C, mín.		90	50	43	36	14050	14050 E 102
A 135℃		40 a 150	30 a 150	15 a 60	15 a 60	14950	
Viscosidade Brookfield							
A 135℃, mín. SP21, 20rpm, mín	сР	374	274	214	155	NBR 15184	D 4402
A 150℃, mín.		203	112	97	81		
A 177℃, SP 21		76 a 285	57 a 285	28 a 114	28 a 114		
Índice de suscetibilidade térmica		(-1,5) a (+0,7)	(-1,5) a (+0,7)	(-1,5) a (+0,7)	(-1,5) a (+0,7)	-	-
Ponto de fulgor, mín	C	235	235	235	235	NBR 11341	D 92
Solubilidade em tricloroetileno, mín	% massa	99,5	99,5	99,5	99,5	NBR 14855	D 2042
Dutilidade a 25℃	cm	60	60	100	100	NBR 6293	D 113
Efeito do calor e do ar a 163°C por 85 minutos							
Variação em massa, máx.	% massa	0,5	0,5	0,5	0,5		D 2872
Dutilidade a 25℃, mín.	cm	10	20	50	50	NBR 6293	D 113
Aumento do ponto de amolecimento, máx. Penetracão	°C	8	8	8	8	NBR 6560 NBR 6576	D 36 D5
retida, mín. (*)						and Million Control (C)	

Tabela 2.4: Especificação brasileira de cimento asfáltico de petróleo (CAP)

[Fonte: Bernucci et al 2006]

(*) Relação entre a penetração após o efeito do calor e do ar em estufa RTFOT e a penetração original, antes do ensaio do efeito do calor e do ar.
2.3 CONCRETO BETUMINOSO USINADO A QUENTE (CBUQ)

O Concreto Betuminoso Usinado a Quente (CBUQ), é a mistura asfáltica a quente mais empregada no País. O CBUQ é uma mistura homogênea de agregados minerais (naturais ou artificiais), material de enchimento – filer (cal hidratada, cimento portland, etc.) e cimento asfáltico de petróleo (CAP). É utilizada na camada de rolamento e nas camadas de ligação (binder) imediatamente subjacentes aos revestimentos e em camadas de regularização do greide de pavimentos antigos. A Tabela 2.5 apresenta as espessuras mínimas e máximas recomendadas para as camadas de concretos asfálticos com os respectivos teores de CAP.

CAMADA	FAIXA	Espessura Máxima (mm)	Espessura Mínima (mm)	Teor de asfalto (em % do peso de agregado)
De regularização ou de ligação	А	90	65	4,0-7,0
De ligação ou de rolamento	В	75	50	4,5 - 7,5
De rolamento	С	50	25	4,5 - 9,0

Tabela 2.5: Espessuras recomendadas para concretos asfálticos

[Fonte: Balbo, 2007]

2.3.1 Dosagem de misturas asfálticas

As misturas asfálticas devem apresentar como propriedades básicas estabilidade, durabilidade, flexibilidade, e resistência ao cisalhamento. Normalmente são dosadas baseadas nos seguintes critérios:

- · Escolha dos materiais: agregados, filer e material betuminoso;
- Determinação das percentagens com que os agregados e filer devem compor a mistura, para atender as especificações impostas, de acordo com as camadas do pavimento;
- Determinação do teor ótimo de asfalto; e
- Comparação da mistura dosada com as exigências das especificações de parâmetros como: volume de vazios, vazios do agregado mineral, relação betume vazios e estabilidade.

Dentre os métodos de dosagem de misturas betuminosas, destacam-se os métodos Marshall, Hveem, e SUPERPAVE criado recentemente pelo Strategic Highway Research Program (SHRP), dos Estados Unidos.

2.3.1.1 Metodologia Marshall

A metodologia Marshall foi desenvolvida na década de 40 por Bruce Marshall do Departamento de Transporte do Estado do Mississipi (EUA). Este método foi baseado em um experimento laboratorial, que faz a dosagem de uma mistura asfáltica de forma a atender especificações tais como: estabilidade, fluência e parâmetros volumétricos. Porém acredita-se que a compactação executada em laboratório (por impacto) não simula adequadamente a que ocorre no pavimento. Outro fato é que a resistência ao cisalhamento do CBUQ, também não é simulada adequadamente pela estabilidade Marshall.

> A dosagem de uma mistura asfáltica constitui um processo de formulação no qual é buscada uma composição granulométrica de agregados com naturezas específicas além de uma adição de CAP, de tal sorte que, após mistura à temperatura adequada e subseqüente compactação, formem tais materiais um outro material que ofereça condições mecânicas adequadas para suportar cargas que solicitam a um dado pavimento, consideradas as condições climáticas locais, a posição relativa da mistura na estrutura do pavimento etc., cujo material não deverá apresentar deterioração precoce (Balbo, 2007, p.171).

De acordo com Balbo (2007), a dosagem de uma mistura asfáltica devem atender objetivos como:

- Ser uma mistura trabalhável, facilitando os trabalhos de execução do pavimento como lançamento e compactação;
- Apresenta-se estável sob ação de cargas estáticas ou móveis;
- Ter ótima durabilidade, com teor de asfalto adequado;
- Apresentar baixa deformação permanente;
- Ser pouco suscetível à fissuras por fadiga; e
- Possuir volume de vazios adequados.

A Tabela 2.6 apresenta os possíveis defeitos e os respectivos estudos que devem ser realizados durante o processo de dosagem da mistura asfáltica, a fim de combatê-los.

TIPO DE PATOLOGIAS A SEREM COMBATIDAS	TIPO DE DOSAGEM APROPRIADA		
Exsudação, escorregamento lateral	Estabilidade, fluência		
Deformação plástica em trilhas de roda	Deformação plástica, estática ou dinâmica		
Fissuração por fadiga	Ensaio dinâmico de fadiga		
Reflexão de fissuras	Ensaios combinados de fratura e de fadiga		
[Fonte: Balbo, 2007]			

Tabela 2.6: Possíveis critérios de dosagem de misturas asfálticas

2.3.1.2 Metodologia Hveem

A metodologia Hveem foi criada por Francis Hveem, engenheiro de Materiais e Pesquisa do Departamento de Transporte (DOT) da California (EUA). Neste método a dosagem da mistura asfáltica é realizada em função dos parâmetros volumétricos e estabilidade. Apesar da compactação pulsante e a estabilidade Hveem serem consideradas vantagens do método, os equipamentos utilizados (compactador e o estabilômetro), são mais caros que o equipamento Marshall, além de serem difíceis de transportar, dificultando o controle da mistura em campo.

2.3.1.3 Metodologia SUPERPAVE

Nos anos 50, John L. McRae, do Corpo de Engenheiros do Exército Americano, desenvolveu um compactador por amassamento giratório, uma vez que as pesquisas daquela época indicavam que a compactação por impacto Marshall não simulava apropriadamente as densidades das misturas nas trilhas das rodas sob tráfego pesado. Ele acreditava que as propriedades mecânicas das amostras produzidas pelo impacto do soquete Marshall não simulavam as propriedades das amostras extraídas dos pavimentos (HARMAN et al., 2002)

A metodologia SUPERPAVE (Superior Performance Asphalt Pavements) foi desenvolvida em 1987 pelo Programa Estratégico de Pesquisa Rodoviária (SHRP) americano (MOTTA et al, 1996). Os pesquisadores do SHRP desejavam um compactador que compactasse a mistura betuminosa realisticamente, em que as densidades finais fossem aquelas obtidas no pavimento através de condições reais de clima e carregamento, além disso, o equipamento deveria fornecer uma medida de compatibilidade, de modo a identificar problemas de compactação e prever comportamento de misturas potencialmente frágeis (MOTTA et al, 1996).

Após analisar as pesquisas sobre a disponibilidade de compactadores giratórios, os pesquisadores do SHRP selecionaram um compactador giratório que operasse de maneira similar ao compactador francês, porém sua compactação era realizada com 6 rpm. No entanto, o objetivo do SHRP era reduzir o tempo de compactação pelo aumento do número de rpm, se possível. Foi desenvolvido um projeto experimental para comparar o teor ótimo de asfalto da mistura, o índice de vazios, VAM, RBV e densidade baseada nos giros de 6, 15 e 30 rpm. Nesse estudo apenas pequenas diferenças foram observadas dentre estes valores de rpm. Como os resultados dos teores de vazios, para o teor de asfalto de projeto foram estatisticamente os mesmos para 6, 15 e 30 rpm, o SHRP escolheu a velocidade de 30 rpm em substituição a de 6 rpm do procedimento francês, atingindo seu objetivo, pois o número de rotações é inversamente proporcional ao tempo de compactação de laboratório na preparação de amostras para projeto de misturas (COMINSKY et al, 1994-a) apud (MARQUES, 2004).

Projetos experimentais também foram desenvolvidos para determinar o ângulo de giro e a pressão vertical. Ao final, chegou-se ao consenso de adotar o ângulo de compactação do CGS igual a 1,25°. A veloc idade de compactação foi definida em 30 rpm sendo acionada por um motor elétrico que atua sobre a base rotativa e a pressão de compactação do corpo de prova é de 600 kPa e é fornecida por um sistema hidráulico ou mecânico. A Figura 2.3 apresenta o esquema do CGS utilizado pelo SUPERPAVE.

Figura 2.3: Sistema simplificado do CGS (a) Partes constituintes do compactador giratório SUPERPAVE (b) configuração do molde e parâmetros da compactação [Fonte: Motta et al, 1996]

A principal diferença na moldagem dos corpos de prova entre a dosagem Marshall e a SUPERPAVE está na compactação. No Marshall a compactação é realizada por impacto (Figura 2.4a) e no SUPERPAVE é realizada por amassamento (Figura 2.4b).

Figura 2.4: Compactadores de misturas asfálticas (a) compactador Marshall (b) compactador giratório SUPERPAVE

2.3.2 Ensaios de caracterização mecânica das misturas asfálticas

De acordo com Balbo (2007), a resistência de um material, é a força ou tensão que causa sua ruptura. A elasticidade de um material é a propriedade que ele tem de não preservar deformações residuais, portanto, quando passada a ação das forças que causam deformação no material, ele volta à sua posição original. Já plasticidade dos materiais é capacidade que os materiais têm de preservar as

deformações resíduas, mesmo depois de cessada a força que causou tal deformação, daí ser chamada de deformação permanente.

Módulo de resiliência

Tanto o Módulo de Resiliência (MR) como o Módulo de Elasticidade (E), são definidos como relação entre tensão (σ) e deformação (ε). Porém, o Módulo de Resiliência é determinado em ensaio de carga repetida. O módulo de elasticidade é a capacidade que os materiais têm de não resguardar deformações após a ação das cargas. O termo resiliência, é definido classicamente como energia armazenada num corpo deformado elasticamente, a qual é devolvida quando cessam as tensões causadoras das deformações. Também pode ser definido como a capacidade de um material não resguardar deformações depois de cessada a ação da carga. Este parâmetro é usado na formalização de análises de sistemas de camadas dos materiais de pavimentação.

O ensaio do módulo de resiliência pode ser realizado em amostras produzidas no laboratório a partir de corpos de prova moldados no compactador Marshall ou SUPERPAVE (diâmetro de 100mm e altura de 63,5 aproximadamente) ou extraídos em campo com diâmetro de 100mm e altura entre 35mm e 65mm.

De acordo com Marques (2009), o Módulo de Resiliência de concreto asfáltico pode ser determinado por vários tipos de ensaios de cargas repetidas. Porém, os mais utilizados são:

- a. Ensaio de tração uniaxial;
- b. Ensaio de compressão uniaxial;
- c. Ensaio de flexão em viga;
- d. Ensaio de tração diametral indireta; e
- e. Ensaio de compressão triaxial.

O ensaio de MR de acordo com a norma brasileira (DNIT – ME 133/94), é realizado em duas etapas. A primeira etapa consiste no condicionamento do corpo de prova, a partir da aplicação de uma carga vertical repetida por 200 vezes diametralmente num corpo de prova cilíndrico, a fim de obter uma tensão menor ou igual a 30% da resistência à tração determinada no ensaio de compressão diametral estática. A freqüência de aplicação da carga é de 60 ciclos por minutos e duração de 0,10 segundo. A segunda etapa consiste em aplicar uma carga vertical repetida por 300, 400 e 500 vezes sucessivamente. O Módulo de Resiliência será a média

aritmética dos módulos obtidos a partir da relação da carga aplicada para 300, 400 e 500 repetições, pelas respectivas deformações.

No procedimento americano descrito pela norma D 4123 – 82 (ASTM), o ensaio é realizado aplicando-se uma força vertical repetida 50 a 200 vezes, no corpo de prova, e este deve estar sob temperatura de 25°C. A força a ser aplicada varia de 10 a 50% da resistência à tração por compressão diametral sob temperatura também de 25°C. Outra forma de determinar a força é através da densidade do corpo de prova, variando de 4 a 35N/mm. O equipamento para determinação do Módulo de Resiliência é controlado através de computador, por software, sendo o resultado do MR obtido diretamente.

A relação entre o módulo de resiliência e a resistência à tração tem sido empregada simultaneamente em projetos de dosagens, em especial, de misturas asfálticas. Quanto mais rígido se apresenta um material, maior é sua capacidade como camada, de reter esforços em si mesma (BALBO, 2007).

• Estabilidade Marshall

O ensaio de estabilidade Marshall é realizado em corpos de prova cilíndricos dosados e compactados de acordo com a metodologia Marshall. A carga de compressão é aplicada por meio de cabeçotes curvos, a uma temperatura de ensaio de 60°C e taxa de carregamento de 5cm/minuto. O resultado deste ensaio é a estabilidade Marshall (carga máxima em que o corpo de prova rompe) e a fluência dada pelo deslocamento vertical total do parto. A mistura asfáltica é adequada para pavimentação se possuir Estabilidade Marshall mínima (75 golpes em cada face) de 500 Kgf, (DNIT 031/2006 ES).

Resistência à tração

O ensaio de resistência à tração por compressão diametral também denominado de ensaio Brasileiro, proposição do prof. Luís Fernando Lobo Carneiro, da Universidade Federal do Rio de Janeiro, constitui um arranjo simples que permite impor um plano de ruptura idêntico ao plano de aplicação da carga. O ensaio é bastante empregado na atualidade para a medida da resistência à tração indireta de amostras de concretos asfálticos (BALBO, 2007).

Na norma do DNIT-ME 138/94, são descritos os procedimentos para realização do ensaio de resistência à tração por compressão diametral, este ensaio

27

determina a resistência de forma indireta. O ensaio de RT é realizado em corpos de prova cilíndricos de dimensões aproximadas de 100mm e 63,5mm de diâmetro e altura respectivamente. A carga é aplicada através de frisos metálicos de 12,7mm progressivamente, em prensa com velocidade do êmbolo de 0,8 ± 0,1 mm/s até a ruptura do corpo de prova, segundo o plano diametral vertical, havendo a separação em duas metades do corpo de prova. O resultado do RT é obtido pela expressão (Equação 2.3):

$$\sigma_R = \frac{2F}{100\pi DH} \tag{2.3}$$

Onde: σ_R , resistência à tração (MPa);

- F, carga de ruptura (N);
- D, diâmetro do corpo de prova (cm);
- H, altura do corpo de prova (cm).

A mistura asfáltica é adequada para pavimentação se possuir resistência à tração por compressão diametral estática, a 25°C, i gual ou superior 0,65 MPa, (DNIT 031/2006 ES).

Ensaio de Lottman modificado

O ensaio de Lottman modificado é descrito pela norma AASHTO T 283. Nesse ensaio, a mistura asfáltica é submetida, primeiramente, a uma pressão que varia de 254-660mmHg, a fim de obter grau de saturação dos vazios entre 55 e 80% de água. Em seguida, a amostra é mantida sob congelamento (-18°C), envolvida em sacos plásticos com 10ml de água destilada por cerca de 24 horas. Após o congelamento, a mistura é mantida por cerca 24 de horas, imersa em banho, a temperatura de 60°C. A última etapa do condicioname nto é a imersão em água, sob temperatura de 25°C, por 02 horas. Após os condicio namentos, realiza-se o ensaio de resistência à tração por compressão diametral.

A ação deletéria da água é medida através da comparação da resistência de misturas não submetidas à ação da umidade. Para considerar os resultados satisfatórios, é necessário que as misturas submetidas à ação da água apresentem resistência igual ou superior a 70% da resistência dos corpos de prova não submetidos ao condicionamento, conforme mostrado na Equação 2.4.

$$Lottman = \left(\frac{RT'}{RT}\right) x \, 100\% \tag{2.4}$$

Onde: RT', resistência à tração após o condicionamento (MPa);

RT, resistência à tração antes do condicionamento (MPa).

2.4 FRESAGEM DE PAVIMENTOS ASFÁLTICOS

No início da década de 70 a fresagem do pavimento era realizado através da escarificação e transporte para processamento em usinas. Porém, esse método era inadequado, pois resultava em blocos muito grandes, que precisavam ser quebrados, ou rebritados para utilização na mistura reciclada. Além disso, como utilizavam-se equipamentos tipo ponteiras, a escarificação provocava a extração da camada betuminosa por completo, sendo um empecilho à extração de uma espessura pré-determinada em projeto.

No entanto, a fresagem de pavimento foi facilitada na segunda metade da década de 70, quando foi desenvolvido o equipamento de fresagem, simultaneamente na Europa e na América do Norte. O equipamento possibilitou a fresagem em diversas espessuras do revestimento, além de resultar num material fresado com granulometria adequada. Em 1980 teve início a utilização do equipamento no Brasil, fresadora de origem americana (Roto-Mill PR-525 da C.M.I na Via Anchieta, serviço prestado a DERSA - Desenvolvimento Rodoviário S. A. (BONFIM, 2001).

Consolidada, a fresagem de pavimentos asfálticos é uma técnica bastante utilizada no processo de restauração de pavimentos deteriorados, solução de problemas tipicamente de vias urbanas, tais como: elevação de calçadas e da drenagem pluvial, além de interromper e atenuar a propagação de trincas no pavimento, que acabam por causarem desagregação do revestimento betuminoso e posteriormente panelas ou buracos, prejudicando sua funcionalidade.

۰ ً ,

2.4.1 Tipos de fresagem de pavimentos

Foram desenvolvidos dois tipos de equipamentos e processos para fresagem de pavimentos, um a frio e outro a quente. Na fresagem a frio, o processo é executado na temperatura ambiente, ocorrendo a quebra de parte dos agregados, o que proporciona alteração da curva granulométrica do material existente na pista.

A fresagem a quente é executada efetuando-se o pré-aquecimento do revestimento, e posterior desbaste da camada, que oferece pouca resistência ao corte, devido ao aquecimento da estrutura. Não há alteração significativa da granulometria do material, pois o método causa apenas desagregação do revestimento betuminoso, o que permite realizar a mistura do material fresado com material novo, sem necessidade de processos adicionais de rebritagem.

A técnica de fresagem também pode ser aplicada em pavimentos rígidos de cimento Portland, para desbastar espessuras delgadas, regularização em pistas de concreto e galpões industriais.

Fresagem superficial

Denominada também de fresagem de regularização, corrige apenas defeitos superficiais no revestimento. O recapeamento não é obrigatório, pois a textura da pista pós fresagem permite rolamento de forma segura, porém vale salientar que não é muito confortável. Mas, dependendo da densidade dos dentes de corte do cilindro, a superfície após a fresagem pode ser bem mais confortável ao rolamento.

Essa técnica pode ser empregada para corrigir defeitos tipo exsudação, deformação plástica e aderência pneu-pavimento.

Fresagem rasa

Este processo normalmente é realizado com profundidades de corte em torno de 5cm. É aplicado, principalmente em vias urbanos na correção de defeitos funcionais e em remendos superficiais.

Fresagem profunda

Neste processo o corte pode atingir além da camada de revestimento, as camadas de ligação, de base e até de sub-base do pavimento. Utiliza-se quando da

recomposição da estrutura do pavimento, reciclagem com incorporação do revestimento à base.

2.5 APLICAÇÃO DA TÉCNICA DE FRESAGEM NA CORREÇÃO DE DEFEITOS

Tricamentos: é uma fenda existente no revestimento, podendo apresenta-se de forma isolada, nos sentidos transversais e longitudinais aos eixos da via. Com a evolução dessas trincas elas se interligam, formando a trinca sem direções preferenciais conhecida como couro de jacaré, ou em blocos, caracterizadas pela configuração de blocos com lados bem definidos (Figura 2.5), (DNIT 005/2003-TER).

De acordo com Bonfim (2001), quando o mecanismo de propagação das trincas acontece de cima para baixo no revestimento asfáltico, a fresagem é uma solução bastante adequada, que poderá eliminar completamente o problema. Porém, quando o fenômeno das fissuras começa nas camadas de sub-base e base do pavimento atingindo a camada de revestimento (Figura 2.6), a fresagem com posterior recapeamento, funciona apenas como medida paliativa, aumentando a vida útil do pavimento, no entanto, as trincas fatalmente votarão a aparecer .

Figura 2.5: Trincas interligadas, PB 306, trecho Maturéia à Princesa Isabel (a) Trincas interligadas em bloco (b) Trincas interligadas couro de jacaré

Figura 2.6: Trincas interligadas, com aparecimento das camadas inferiores para as superiores do pavimento, PB 306, trecho Maturéia à Princesa Isabel

Panelas: Cavidades que se formam no revestimento devido à evolução de defeitos (trincas, deformações e desgaste do revestimento), falta de aderência entre camadas superpostas, causando a desagregação entre o ligante betuminoso e os agregados minerais (Figura 2.7).

A fresagem neste caso pode ser realizada de forma descontínua, apenas onde existem os buracos, objetivando a remoção do revestimento deteriorado e proporcionando aderência entre a camada de recapeamento e o pavimento remanescente e evitando o desnível nas emendas.

Figura 2.7: Panelas resultantes da deterioração do pavimento, PB 306, trecho Maturéia à Princesa Isabel

Afundamentos: São cavidades que aparecem no pavimento. Os afundamentos encontrados na superfície dos pavimentos decorrentes principalmente de falhas na aplicação da mistura asfáltica são ditos plásticos e os resultantes de recalques na base, sub-base e até subleito, são ditos de consolidação. Esses afundamentos também podem aparecer isolados (local) ou ao longo das trilhas de rodas.

Portanto, para os casos de afundamentos plásticos, a fresagem da parte do pavimento que se apresenta com defeito é uma técnica bastante adequada. Dependendo do nível de severidade dos defeitos o recapeamento da área é dispensável.

Exsudação: Misturas mal dosadas com excesso de ligante provocam o afloramento do material betuminoso na superfície e prejudica a aderência pneu-pavimento. Este defeito funcional é irreversível, pois não se consegue retirar o excesso de ligante da mistura. Portanto, a fresagem superficial do revestimento sem recapeamento para promover a aderência entre pneu-pavimento, não é um procedimento adequado, pois novas exsudações irão surgir em pouco tempo. A ação mais eficaz para resolver o problema é a remoção de todo revestimento e recapeamento com mistura adequada.

Bombeamento de finos: Em pavimentos com muitas trincas e sub-leito constituído de material pouco permeável, a infiltração de água através das trincas, provoca o acúmulo de água no interior do pavimento, pois a drenagem é muito lenta. A passagem dos veículos provoca o bombeamento dessa água para a superfície carreando partículas finas, a continuação desse fenômeno provoca o colapso do pavimento.

A fresagem com recapeamento não é uma técnica adequada para tratar esse defeito, pois as trincas se propagarão novamente, permitindo a infiltração de água no pavimento com manifestação do problema.

Para Bonfim (2001), o ideal é a retirada de todo pavimento e estabilização do material do sub-leito e posterior reconstrução das camadas.

2.5.1 Vantagens da utilização da técnica de fresagem

Quando são realizados sucessivos recapeamentos sem a remoção das camadas existente do pavimento alterando a seção transversal da pista, isto provoca problemas de ordem estética, funcional e de segurança (BONFIM, 2001). A manutenção do greide da pista possibilita pela fresagem é uma importante ferramenta, evitando problemas de drenagem, acidentes, diminuição do gabarito sob pontes, viadutos e túneis.

Outra vantagem oferecida pela técnica de fresagem é o nivelamento entre emendas e o pavimento. Quando são realizados reparos em áreas específicas ou

33

escavações para serviços públicos, a fresagem possibilita uma emenda sem desnível, evitando desconforto aos usuários, deformações e escorregamentos do material.

Misturas com excesso de ligante, fluência elevadas e em locais de alta temperaturas, geralmente apresentam deformações plásticas, principalmente nos corredores de ônibus, curvas de pequeno raio e rotatórias. A fresagem dessas áreas corrige esses defeitos promovendo a regularização da pista.

Outra vantagem a destacar é o nivelamento junto às interferências de serviços públicos como: rede de águas e esgotos, drenagem de águas pluviais, energia e telefonia. Quando executam-se sucessivos recapeamentos nas vias urbanas sem realização da fresagem, isto pode ocasionar desníveis elevados entre o pavimento e estas interferências, o que gera situação de risco aos usuários.

2.6 RECICLAGEM DE PAVIMENTOS FLEXÍVEIS

O uso da técnica de reciclagem a quente teve início na Índia e em Singapura, no início da década de 30. No final dos anos 30 o *Road Research Laboratory* iniciou experimentos com reciclagem à frio *in situ* (SULLIVAN, 1996; NICHOLLS, 1996) apud MOREIRA (2005).

Mesmo produzindo pavimentos com desempenho equivalente ao de misturas novas, apenas a partir da década de 70 começou-se haver maior interesse pela técnica de reciclagem de pavimentos. Em 1973 os países árabes que integravam a Organização dos Países Exportadores de Petróleo (OPEP) embargaram a venda de petróleo para o Ocidente durante a guerra árabe-israelense, (PHILIPPI, 2005).

O embargo da venda do petróleo gerou uma crise, que consequentemente aumentou os custos de construção rodoviária decorrente da alta do preço do asfalto. Antes da crise o custo de remover e reciclar o pavimento era maior do que o de utilizar novo material. Outro fato que impulsionou o desenvolvimento da técnica de reciclagem foi o aperfeiçoamento das máquinas de fresagem.

A reciclagem de pavimentos é indicada principalmente nos casos em que a avaliação estrutural e funcional indique um grau de deterioração, representado pelas trincas bastante avançado, causando reflexão de trincas em recuperação convencional como o recapeamento, ou em situações onde há problema geométrico

a ser corrigido, como a elevação do greide devido a sucessivos recapeamentos sem a remoção da camada do pavimento antigo.

De acordo Momm e Domingues (1995) apud Costa (2010), a reciclagem de pavimentos é a reutilização total ou parcial dos materiais existentes no revestimento, base e sub-base, onde os materiais são remisturados no estado em que se encontram, ou tratados por energia térmica e/ou aditivados com ligantes novos ou rejuvenescedores, com ou sem recomposição de sua granulometria. O princípio básico da reciclagem é fragmentar, triturar e retirar a camada antiga do pavimento e reutilizá-la combinando-a com materiais novos.

O Manual Básico de Reciclagem de Pavimentos da Asphalt and Reclaiming Association apud Ramos (2009), apresenta estudos demonstrando que um pavimento que recebe um nível adequado de manutenção oferece um custo inferior aos usuários. Ainda segundo Ramos (2009), um estudo do Banco Mundial mostra que cada dólar investido na conservação de um pavimento, até 40% de queda de sua vida útil, causará uma economia de 3 a 4 dólares, quando comparado com os gastos de manutenção praticados aos 80% de queda da vida útil do pavimento.

Apesar do consenso entre pesquisadores sobre o desempenho satisfatório de misturas recicladas, eles acreditam que é muito difícil controlar alguns parâmetros de fabricação como a granulometria, teor de betume, grau de oxidação do asfalto, índice de vazios e sua estabilidade quando da fabricação dessas misturas em campo.

Várias técnicas têm sido desenvolvidas para restaurar pavimentos, porém as que contemplam a reciclagem das camadas do pavimento apresentam significativo crescimento. Nesta técnica atingem-se vários objetivos almejados no meio rodoviário, tais como: aspectos técnicos, econômicos e ambientais.

O Asphalt Institute (1983) apud Moreira (2005) propôs um método de dosagem para misturas asfálticas a frio, semelhante ao método proposto para misturas asfálticas a quente. O método é baseado na graduação resultante da combinação de material fresado e agregado mineral novo, além disso, prevê a seleção de emulsões asfálticas, sem citar o uso de agentes rejuvenescedores.

Moreira (2005) estudando misturas recicladas a frio obteve em laboratório valores baixos de RT quando comparadas ao CBUQ convencional. Portanto, ele não recomenda o uso dessa mistura para vias de alto volume de tráfego.

Ainda de acordo com Moreira (2005), o aumento na taxa de incorporação do teor de fresado nas misturas asfálticas à frio mostrou-se inversamente proporcional para a resistência mecânica, isto é, a elevação do teor de material fresado representou diminuição nos parâmetros mecânicos.

Dantas et al. (2007) propôs uma nova técnica de reciclagem utilizando solventes e microemulsões, onde em ensaios realizados revelou-se muito promissora devido à simplicidade da extração e a eficiência elevada do processo. A reciclagem com solventes consiste em extrair o CAP da mistura betuminosa e, através de destilação, recuperar o solvente para ser reutilizado. De acordo com o autor essa nova técnica tem como principal vantagem, um ganho ambiental e econômico substancial devido à recuperação de todos os constituintes da mistura asfáltica, minimizando o uso dos recursos minerais.

Porém, a principal desvantagem desta técnica é o uso de produto químicos para extração do CAP. O Tolueno e o Xileno são solventes de baixo ponto de ebulição e alto poder de extração por refluxo, para sistemas fechados, mas, são altamente tóxicos ao homem e ao meio ambiente. O LCO (resíduo líquido proveniente do refino de petróleo), Diesel e o Querosene também apresentam resultados promissores, quanto à capacidade de extração, porém, apresentam elevado ponto de ebulição, sendo a toxicidade moderada (DANTAS et. al., 2007).

Vasconcelos e Soares (2003) estudaram a dosagem de uma mistura asfáltica do tipo concreto betuminoso usinado a quente (CBUQ), e de duas Misturas Asfálticas Recicladas à Quente (MARQ's) com 10% e 50% de material fresado, sendo todas com a mesma distribuição granulométrica. As misturas recicladas foram dosadas pela metodologia do Asphalt Institute (1995), que é semelhante à metodologia Marshall, com adição da análise do material fresado. Os resultados dos ensaios mecânicos apontam que a utilização de material fresado em misturas asfálticas não compromete o comportamento mecânico das mesmas.

Santana (2009) estudou misturas asfálticas (CBUQ) incorporando 10%, 30%, 50%, 75% e 100% de material fresado, de acordo com seus estudos as misturas recicladas que apresentaram propriedades físicas e mecânicas compatíveis com as especificações do DNIT e AASHTO, foram 10% e 30%, e estas continham 3% de filer (cal). Vale ressaltar, no entanto, que todas as misturas apresentaram valores de Resistência à Tração acima do mínimo exigido pelo DNIT, que é de 0,65MPa.

Além dos diversos estudos apontarem à viabilidade técnica da reciclagem de pavimentos, outro aspecto importante é a questão do meio ambiente, onde a população mundial está sendo sensibilizada para a preservação dos recursos naturais. Além disso, a rigorosidade da legislação ambiental, no sentido de controlar as atividades potencialmente poluidoras, impulsionam esta tecnologia.

Na reciclagem de pavimentos vários benefícios podem ser evidenciados tais como:

- Reutilização e conservação de recursos naturais;

- Preservação do meio ambiente;

- Conservação de energia;

- Redução do congestionamento de tráfego;

- Maior rapidez na execução; e

- Economia de custos em relação ao método tradicional.

Os revestimentos asfálticos sofrem um processo de envelhecimento devido às intempéries e à aplicação de cargas, causando um processo denominado de oxidação do ligante, o que os torna mais duro e quebradiço, este processo é evidenciado através de trincamentos ao final da via útil do pavimento.

A técnica de reciclagem consiste em rejuvenescer o ligante através da recomposição da fração maltênica que se transformou em asfaltenos, pela adição de maltenos. A adição, executada de forma adequada, reconduz o ligante asfáltico às características adequadas.

Atualmente no Brasil a técnica de reciclagem de pavimentos vem se expandindo cada vez mais. Porém, a opção pela reciclagem tem sido feita exclusivamente com base no fator econômico. Na maioria das obras não é realizado um estudo prévio capaz de selecionar a modalidade mais apropriada, segundo os critérios técnico, econômico e ambiental (RAMOS, 2009).

2.6.1 Tipos de reciclagem

Existem dois tipos de reciclagem para material resultante do processo de fresagem. No primeiro método o material recebe uma nova dosagem de asfalto *in loco* e é aplicado imediatamente no pavimento. Já no segundo método, o material entra na composição de misturas asfálticas à quente como o CBUQ juntamente com agregados novos, numa proporção adequada.

A reciclagem pode ser realizada à frio ou à quente. Na técnica à quente o material fresado é transportado até à usina de asfalto, onde é realizada a reciclagem com adição de agente de reciclagem e agregado pétreo, se necessário.

O procedimento de reciclagem à quente em usina estacionária é realizado através da remoção de parte ou de toda estrutura, geralmente através da fresagem a frio e transporte deste material até à usina para ser misturado e recuperado. Neste processo há adição de novos agregados, material de enchimento, cimento asfáltico de petróleo (CAP) e, caso necessário um agente rejuvenescedor.

A técnica de reciclagem a quente também pode ser executada *in situ*, através de recicladores e equipamentos que aquecem a superfície do revestimento permitindo a sua reciclagem. Esta técnica é realizada pelo aquecimento da camada de rolamento através de aquecedores a base de infravermelho, fresagem a baixa rotação até a profundidade desejada, porém, esta profundidade nunca deve ultrapassar 7 cm. A adição do agente de reciclagem é espalhado por uma vibro-acabadora acoplada ao equipamento.

A reciclagem a quente em usina estacionária, com instalações fixas, ou *in situ*, obedece as especificações de serviço do DNIT, ES 033/2005 (usina estacionária) e ES 034/2005 (reciclagem *in situ*).

A técnica de reciclagem a frio *in situ* consiste simplesmente na fresagem com adição de agente de reciclagem na forma emulsionada, seguida de compactação e imediata liberação ao tráfego. Este processo tem o custo extremamente baixo, quando comparado com recapeamento convencional, além da vantagem de geralmente não utilizar agregado novo, atendendo à questão ambiental.

A técnica de reciclagem a frio é bastante utilizada em países europeus, sendo a porcentagem de reaproveitamento do material fresado de cerca de 90%, DNER (1996) apud COSTA (2010).

De acordo com o DNIT (2006), a experiência mostra que a reciclagem a frio para restauração de pavimentos apresenta-se mais eficiente em rodovias de baixo volume de tráfego (vicinais), em acostamentos defeituosos de rodovias principais e na utilização do material reciclado como base estabilizadora.

Por volta do ano 2000, iniciou-se a técnica de espuma de asfalto, que é bastante semelhante à reciclagem a frio com emulsão, com uma diferença de o ligante ser adicionado na forma de espuma e que pode conter ou não agente de reciclagem. Esta técnica de utilização do ligante asfáltico consiste em promover o

38

encontro condicionado a certas condições, entre o asfalto aquecido às temperaturas típicas de utilização a quente com água aspergida à temperatura ambiente. O choque térmico entre o asfalto quente e a água, torna o sistema instável, cujo termo regulador para a boa qualidade do serviço é a expansão do ligante, e o tempo de meia vida (tempo em que o volume expandido se reduz à metade). O aumento de volume provoca a diminuição da viscosidade do asfalto, permitindo a cobertura parcial dos componentes granulares (RAMOS, 2009).

A técnica de espuma de asfalto é utilizada na construção de base e sub-base produzidas por estabilização química de solos e restauração de revestimentos envelhecidos ou trincados, transformando-os em base.

Uma obra urbana onde foi utilizada a técnica de espuma de asfalto em sua restauração em 2000 é a Avenida das Américas, Rio de Janeiro, que após nove anos, ainda se encontrava em excelente estado (RAMOS, 2009).

CAPÍTULO 3

3.0 MATERIAIS E MÉTODOS

Neste capítulo inicialmente descrevem-se os materiais utilizados na pesquisa, em seguida os procedimentos para caracterização física dos agregados e a caracterização mecânica das misturas asfálticas. Os ensaios foram realizados de acordo com normas da Associação Brasileira de Normas Técnicas (ABNT), do Departamento de Infraestrutura e Transportes (DNIT), American Society for Testing and Materials (ASTM) e American Association of State Highway and Transportation Officials (AASHTO). O Fluxograma 3.1 apresenta o programa experimental adotado para pesquisa.

Fluxograma 3.1 - Seqüência da pesquisa laboratorial

3.1 MATERIAIS

3.1.1 Material Fresado

O material fresado utilizado na pesquisa (Figura 3.1) foi removido com auxílio da técnica de fresagem de pavimentos deteriorados da camada de rolamento da BR-101/PB - Lote 05, foram utilizados 43 quilos. A coleta da amostra representativa foi selecionada através do método B (Quarteamento) conforme a norma de procedimento PRO 199/96 (DNIT). O material fresado foi incorporado às misturas *in natura*, ou seja, com o CAP envelhecido.

Figura 3.1: Material fresado utilizado na pesquisa

3.1.2 Brita 19mm

A brita 19mm (Figura 3.2) foi fornecida pelo empresa Maia Melo LTDA, e foi extraída de pedreira localizada na BR 230, sendo utilizados 30 quilos. A amostra foi selecionada por quarteamento (método B) da norma PRO 199/96 (DNIT).

Figura 3.2: Brita 19mm utilizada na pesquisa

3.1.3 Brita 9,5mm

A brita 9,5mm (Figura 3.3) também foi fornecida pela empresa Maia Melo LTDA, e foi extraída de pedreira localizada na BR 230, sendo utilizados 56 quilos. A amostra foi selecionada através de quarteamento (método B) de acordo com a norma PRO 199/96 (DNIT).

Figura 3.3: Brita 9,5mm utilizada na pesquisa

3.1.4 Pó de pedra

A exemplo das britas, o pó de pedra (Figura 3.4) foi fornecido pela empresa Maia Melo LTDA, e foi extraído de pedreira localizada na BR 230, sendo utilizados 108,5 quilos. A amostra foi selecionada de acordo com o método C da norma PRO 199/96 (DNIT).

Figura 3.4: Pó de pedra utilizado na pesquisa

3.1.5 Filer

O filer (Figura 3.5) empregado na pesquisa foi a cal hidratada da marca MegaO, e foram utilizados 7,5 quilos.

Figura 3.5: Filer utilizado na pesquisa

3.1.6 Cimento Asfáltico de Petróleo

Utilizou-se o CAP 50-70 (Figura 3.6) oriundo da LUBNOR-Fortaleza/CE, tendo as características de viscosidade 320 s, densidade 1,027 g/cm³, ponto de fulgor mínimo 295 °C e penetração 50-70 mm. Sendo utilizados cerca 13 quilos.

Figura 3.6: CAP 50-70 utilizado na pesquisa

3.2 MÉTODOS

3.2.1 Caracterização física dos agregados

Material fresado

A Tabela 3.1 apresenta a lista de ensaios realizados para caracterização deste material.

Tabela 3.1: Ensaios e normas utilizados na caracteriz	ação do material fresado
---	--------------------------

ENSAIO	NORMA
Distribuição dos tamanhos das partículas	DNIT ME 083/98
Determinação da massa específica de agregados miúdos por meio do frasco Chapman	DNIT ME 194/98
Determinação da absorção e da massa específica de agregado graúdo	DNIT ME 195/97
Percentagem de betume	DNER ME 053/94

A determinação da densidade do material fresado foi realizada pela ponderação das densidades dos agregados graúdos e miúdos. Inicialmente fez-se a extração de betume utilizando o aparelho extrator Rotarex e o solvente Xileno (Figura 3.7). No processo de extração do betume foram utilizados 450ml de xileno para cada 1000g de material fresado. Em seguida realizou-se o ensaio de granulometria e separação da fração graúdo e miúdo do material.

(a)

(b)

Figura 3.7: (a) aparelho extrator utilizado na pesquisa (b) pesagem da amostra antes da extração

Agregados graúdos – Brita 19mm e Brita 9,5mm

Na Tabela 3.2 a seguir têm-se a lista de ensaios que foram realizados para caracterização dos agregados graúdos.

Tabela 3.2: Ensaios e normas utilizados na caracterização do agregado graud	Tabela 3.2:	: Ensaios e	normas	utilizados na	caracterização	do a	gregado	graúdo
---	-------------	-------------	--------	---------------	----------------	------	---------	--------

ENSAIO	NORMA
Distribuição dos tamanhos das partículas	DNIT ME 083/98
Determinação da absorção e da densidade do agregado graúdo	DNIT ME 081/98
Abrasão a Los Angeles	DNER ME 035/98

Após a caracterização os agregados graúdos foram utilizados na composição da mistura asfáltica em proporções adequadas segundo a curva de Fuller.

Agregado miúdo – Pó de pedra

Na Tabela 3.3 a seguir têm-se a lista de ensaios realizados para caracterização deste material:

Tabela 3.3: Ensaios e normas utilizados	na caracterização do	agregado miúdo
---	----------------------	----------------

ENSAIO	NORMA
Distribuição dos tamanhos das partículas	DNIT ME 083/98
Determinação da densidade real do agregado miúdo	DNIT ME 084/95

Após a caracterização o pó de pedra foi utilizado na composição da mistura asfáltica contendo material fresado em proporções adequadas segundo a curva de Fuller.

3.2.2 Dosagem MARSHALL

Como o objetivo inicial desta pesquisa consistia em identificar o teor ótimo de CAP para misturas recicladas contendo percentagens pré-determinadas de material fresado, nos teores (5%, 10%, 15%, 20%, 25% e 30%), realizou-se as dosagens pela metodologia Marshall segundo a norma DNER – ME 43/95. A seguir têm-se o detalhamento das dosagens:

a) De posse da granulometria do material fresado e dos agregados minerais novos, realizou-se com auxílio de planilha Excel a composição das misturas recicladas, isto

é, para cada teor de fresado foram obtidas percentagens de agregados novos diferentes, lembrando que neste momento não se considera ainda o teor de asfalto. As misturas foram dosadas com a finalidade de que suas granulometrias se enquadrassem na faixa "C" do DNIT da Especificação de Serviço ES - 031/2006, faixa esta mais comumente utilizada na região Nordeste (Tabela 3.4). Além disso, elas também obedecem às zonas de restrição e pontos de controle do SUPERPAVE.

Peneira qua	de malha drada	% em massa passando			
Série ASTM	Abertura (mm)	Faixa A	Faixa B	Faixa C	Tolerâncias
2"	50,8	100	-	-	-
1 ½ "	38,1	95-100	100	-	+/- 7%
1"	25,4	75-100	95-100	-	+/- 7%
3⁄4"	19,1	60-90	80-100	100	+/- 7%
1⁄2"	12,7		-	80-100	+/- 7%
3/8"	9,5	35-65	45-80	70-90	+/- 7%
Nº 4	4,8	25-50	28-60	44-72	+/- 5%
Nº 10	2,0	20-40	20-45	22-50	+/- 5%
Nº 40	0,42	10-30	10-32	8-26	+/- 5%
Nº 80	0,18	5-20	8-20	4-16	+/- 3%
Nº 200	0,075	1-8	3-8	2-10	+/- 2%
Asfalto CS2	solúvel no (+) (%)	4,0-7,0 Camada de ligação	4,5-7,5 Ligação e rolamento	4,5-9,0 Camada de Rolamento	+/- 0,3%

Tabela 3.4: Especificações do DNIT

[Fonte: DNIT-ES 031/2006]

b) Para determinação do teor de CAP, cada mistura contendo determinada percentagem de material fresado (com o CAP envelhecido) foi executada com cinco teores de CAP diferentes, (3,5%, 4,0%, 4,5%, 5,0% e 5,5%), sendo que para cada teor de CAP foram feitos três corpos de prova.

c) A densidade máxima teórica (DMT) foi determinada pelo método da fórmula (Equação 3.1), por meio da ponderação das densidades reais dos materiais que compunham as misturas asfálticas.

$$DMT = \frac{100}{\frac{\% a}{G_a} + \frac{\% B19}{G_{19}} + \frac{\% B9,5}{G_{9,5}} + \frac{\% P \acute{o} de Pedra}{G_{P\acute{o} de Pedra}} + \frac{\% f}{G_f} + \frac{\% M f}{G_{Mf}}}$$
(3.1)

Onde:

% a, % B19, % B9,5, $\% P \acute{o} de Pedra$, % f e % M f = porcentagens de asfalto, brita 19mm, brita 9,5mm, pó de pedra, filer e material fresado, respectivamente, expressas em relação à massa total da mistura asfáltica;

 G_a , G_{B19} , $G_{B9,5}$, $G_{PodePedra}$, G_f e G_{Mf} = massas específicas reais do asfalto, brita 19mm, brita 9,5mm, pó de pedra, filer e material fresado, respectivamente.

d) A escolha do teor ótimo de CAP para cada percentagem de material fresado foi realizada segundo os critérios de dois parâmetros volumétricos, o volume de vazios (Vv) e relação betume vazios (RBV). O Teor ótimo de CAP foi obtido traçando-se um gráfico com os cinco valores médios de Vv e RBV dos teores de CAP dosados (no eixo X) versus Vv (no eixo y1) e RBV (no eixo y2). O gráfico traçado continha os valores máximos e mínimos para o Vv e o RBV preconizados pelo DNIT pela Especificação de Serviço ES – 031/2006 (Tabela 3.5). Os teores de asfaltos para as respectivas percentagens de material fresado, foram obtidos a partir da interseção da linha de tendência do Vv e do RBV com os respectivos limites mínimos e máximos desses parâmetros. Tendo como resultado quatro teores de CAP, porém, o valor de CAP selecionado foi a média dos valores centrais (Figura 3.8).

Figura 3.8: Exemplo de gráfico utilizado para determinação do teor ótimo de CAP [Bernucci et al, 2006]

CARACTERÍSTICAS	MÉTODO DE ENSAIO	CAMADA DE ROLAMENTO	CAMADA DE LIGAÇÃO	
Vv, %	DNER-ME 043	3 - 5	4 - 6	
RBV, %	DNER-ME 043	75 - 82	65 - 72	
Estabilidade mín., Kgf (75 golpes)	DNER-ME 043	500	500	
RT a 25℃, mín., MPa	DNER-ME 138	0,65	0,65	

Tabela 3.5: Parâmetros de dosagem de concreto asfáltico do DNIT 031/2006

O Quadro 3.1 apresenta os quantitativos de corpos de prova utilizados para a determinação dos teores ótimos de CAP, em função da percentagem de material fresado.

Quantidade	Teor de Asfalto %								
de material fresado (%)	3,5	4,0	4,5	5,0	5,5	Total de CPs			
MF 5%	03 CPs	03 CPs	03 CPs	03 CPs	03 CPs	15			
MF 10%	03 CPs	03 CPs	03 CPs	03 CPs	03 CPs	15			
MF 15%	03 CPs	03 CPs	03 CPs	03 CPs	03 CPs	15			
MF 20%	03 CPs	03 CPs	03 CPs	03 CPs	03 CPs	15			
MF 25%	03 CPs	03 CPs	03 CPs	03 CPs	03 CPs	15			
MF 30%	03 CPs	03 CPs	03 CPs	03 CPs	03 CPs	15			
					Total	90			

Quadro 3.1: Descrição e quantitativos dos Corpos de prova moldados para determinação dos teores ótimos de CAP (Compactação por Impacto)

3.2.3 Caracterização mecânica das misturas asfálticas recicladas

Após a determinação dos teores ótimos de CAP para as misturas asfálticas recicladas com as percentagens de 5%, 10%, 15%, 20%, 25% e 30% de material fresado e agregados novos realizaram-se novos ensaios para caracterização mecânica das misturas asfálticas. A caracterização consistiu na realização dos ensaios de Estabilidade Marshall, Resistência à Tração (RT), Ensaio de Lottman Modificado e Módulo de Resiliência (MR).

Nos ensaios de Resistência à Tração (RT), Ensaio de Lottman Modificado e ensaio de Módulo de Resiliência (MR), os corpos de prova foram compactados por duas metodologias. Inicialmente, os ensaios foram realizados utilizando a metodologia MARSHALL, que é mais usada no Brasil sendo a compactação por impacto (golpes). Em seguida, os ensaios foram repetidos com os corpos de prova moldados pela metodologia SUPERPAVE, em que os corpos de prova são compactados por amassamento (giros) no Compactador Giratório SUPERPAVE – CGS. O critério de parada da compactação SUPERPAVE adotado foi a média das alturas dos corpos de prova alcançadas na compactação Marshall. A Figura 3.9 apresenta o detalhamento de como foi realizada esta compactação.

- Realização da mistura do ligante com os agregados, estando os agregados a temperatura de 170 ℃ e ligante a 160 ℃;
- 2. Cilindros do Compactador Giratório SERVOPAC;
- 3. Cilindro mantido em estufa a temperatura 150 °C;
- Transferência da mistura asfáltica reciclada para o cilindro, com auxílio de funil;
- 5. Compactação Giratória SUPERPAVE;
- 6. Corpo de prova após compactação no interior do cilindro;
- 7. Extração do corpo de prova; e
- 8. Corpos de prova moldados pela metodologia SUPERPAVE.

Figura 3.9: Seqüência executiva da compactação giratória

O Quadro 3.2 apresenta os quantitativos do programa experimental para caracterização mecânica das misturas asfálticas recicladas.

	Ensaios realizados							
Quantidade de material fresado (%)	Estabilidade Marshall (Comp. Imp.)	Resistência à Tração (Comp. Imp. e Amassamento)	Módulo de Resiliência (Comp. Imp. e Amassamento)	Ensaio de Lottman (Comp. Imp. e Amassamento)	Quantidade de corpos de prova			
MF 5%	03 CPs	06 CPs	06 CPs	06 CPs	21			
MF 10%	03 CPs	06 CPs	06 CPs	06 CPs	21			
MF 15%	03 CPs	06 CPs	06 CPs	06 CPs	21			
MF 20%	03 CPs	06 CPs	06 CPs	06 CPs	21			
MF 25%	03 CPs	06 CPs	06 CPs	06 CPs	21			
MF 30%	03 CPs	06 CPs	06 CPs	06 CPs	21			
	1	1		Total	126			

Quadro 3.2 : Descrição e quantitativos dos Corpos de prova moldados para caracterização mecânica das misturas asfálticas recicladas

• Estabilidade Marshall

A estabilidade Marshall foi obtida segundo a norma do ME 043/95 do DNIT. Foram moldados três corpos de prova para cada teor ótimo de CAP obtido em função da percentagem de material fresado e os corpos de prova foram compactados de forma automática (Figura 3.10). Neste ensaio, além da estabilidade Marshall foram determinadas também as propriedades volumétricas, a fim de confrontá-las com os valores obtidos através dos cálculos para determinação do dos teores ótimos.

Figura 3.10: Ensaio para determinação da Estabilidade Marshall (a) execução da mistura (b) compactador automático (c) prensa Marshall

• Ensaio de Tração Indireta por Compressão Diametral

O ensaio de Tração Indireta por Compressão Diametral foi realizado segundo a norma ME 138/94 do DNIT com a moldagem dos corpos de prova realizada pela metodologia Marshall e Compactação giratória SUPERPAVE. Para realização destes ensaios foram moldados seis corpos de prova para cada teor ótimo de CAP em função da percentagem de material fresado, obtidos nos ensaios de Dosagem MARSHALL, sendo três compactados por impactos (Marshall) e três compactados por amassamento (SUPERPAVE). O ensaio RT tem como objetivo a determinação do melhor desempenho mecânico da mistura, quanto à Resistência a Tração (Figura 3.11).

Figura 3.11: Ensaio de Resistência à Tração (RT) (a) pórtico (b) ruptura do corpo de prova (c) corpo de prova pós rompimento

Ensaio de Lottman modificado

O ensaio de sensibilidade à ação de umidade induzida foi realizado de acordo com a norma ME 138/94 do DNIT e T 283-02 da American Association of State Highway Officiais (AASHTO). Foram moldados três corpos de prova pela metodologia Marshall e três corpos de prova com compactação giratória para cada teor ótimo de CAP em função do percentual de material fresado, encontrados pela metodologia MARSHALL. Inicialmente os corpos de prova foram submetidos ao condicionamento, e em seguida realizado o ensaio de Resistência à Tração, a fim de comparar os valores de RTs dos corpos de prova condicionados com os valores de RTs dos corpos não condicionados. A Figura 3.12 mostra algumas imagens deste ensaio.

O condicionamento consistiu na saturação dos corpos de prova in natura a vácuo, e vinte e quatro (24) horas de resfriamento a dez graus Celsius (10 $^{\circ}$ C), seguido de disposição em banho-maria a sessenta graus Celsius (60 $^{\circ}$ C) por vinte e quatro (24) horas, e imersão em água a vinte e cinco graus Celsius (25 $^{\circ}$ C) por duas horas (02). Após estes procedimentos, os corpos de prova foram rompidos.

Segundo Furlan (2004) o principal ensaio utilizado na avaliação dos danos por umidade das misturas asfálticas é o ensaio de Resistência à Tração por Compressão Diametral, o que justifica-se por, durante a realização do ensaio, ocorrer o esforço ao qual a película de asfalto é submetida quando deslocada/arrancada e por também apresentar sensibilidade suficiente para diagnosticar variações na resistência ou perdas de coesão da mistura.

Figura 3.12: Ensaio de Lottman modificado (a) bomba a vácuo (b) saturação dos corpos de prova (c) resfriamento

Para Lottman (1978) apud Furlan (2004) a presença de água congelada nos poros da mistura asfáltica simula as tensões de tração no CBUQ, devido à expansão causada pela formação de cristais de gelo. Tendo como conseqüência a expansão, que pode causar ruptura de ligações adesivas mais frágeis ou de agregados porosos ou fissurados, comprometendo a durabilidade da mistura. Porém, na Região Nordeste, é improvável que a temperatura dos revestimentos asfálticos possa apresentar valores de menos dezoito graus Célsius (-18℃), como preconizado pela norma T 283-02 da AASHTO. Por isso, adotou-se para o condicionamento dos corpos de prova uma temperatura próxima ao valor de 10 Graus Célsius (10℃), a qual pode ocorrer em algumas localidades do Nordeste.

Módulo de Resiliência

O ensaio de MR foi realizado de acordo com o procedimento americano descrito pela norma D 4123 – 82 (ASTM). A força vertical aplicada foi de 20% da resistência à tração indireta por compressão diametral, com aplicação no corpo de prova repetida por 50 vezes, e temperatura de 25°C. O Módulo de Resiliência foi obtido diretamente com auxílio do software UTS003 1.39 Indirect Tensile Modulus Test (Figura 3.13), utilizando a prensa UTM-25 (Figura 3.14). Foram realizados ensaios nos corpos de prova compactados pela metodologia Marshall e no compactador giratório SUPERPAVE.

	ptions	View	Help						
d • d			*	C	New	1	Levels	E Start	@ Stop
Set up para	meters	1	Test les	uks	1				
Test method	ASTM	D4123-82	/ AASH	T0 TP3	i (horiz k	vate only.	assumed Po	isson's ratio)	Comments
Project	Disserta	ção Mest	ober						
Operator	vitória								
Data and Vine	-								
Date and othe	18/02/2	011100	5.42						
Template file	C:\IPCg	obal UTS	1003 IT N	fodulus 1	Test/test	e2.P003			
Data file	C:\Vitori	a\5%CP1	D003						
Specimen info	noilemo								Tuning [actuator force]
Identification	5%CP1						_		Increment
Dimensions	Point 1	Point 2	Point 3	Point 4	Point 5	Point 6	Average	Std Dev	Proportional 10500 - 100 - 100
	65,5	66,2	65,6				65,8	0,379	Integral 13 - 1 - /
Length (mm)							101,3	0.000	
Length (mm) Diameter (mm)	101,3	101,3	101,3						P. 1
Length (mm) Diameter (mm) Remarks	101,3	101,3	101,3				X-Section area (mm²)	8059,5	Derivative 1200 _ 10 _ Select
Length (mm) Diameter (mm) Remarks Test control p	101,3	101,3	101,3				X-Section area (mm²)	8059,5	Derivative 1200 _ 10 _ Select
Length (mm) Diameter (mm) Remarks Test control p Target t	101,3	101,3 s se (°C) [2	101,3			Peak loa	L X-Section area (mm²) ding force (M	8059,5	Sealing force
Length (mm) Diameter (mm) Remarks Test control p Target t Loading (101,3 parameter temperatu	101,3 s se (°C) [2 th (ms) [1	101,3 5 00		E	Peak loa	L X-Section area (mm²) ding force (N Poisson's rati	8059,5 () 1550 () 4	Sealing force [7 AASHTO TP31 [102 of peak]] Control force BU
Length (mm) Diameter (mm) Remarks Test control p Target t Loading ; Pulse repet	101,3 barameter temperakt pulse wid	101.3 s se (°C) [2 th (ms) [1 od (ms) [1	101,3 5 00 000		E	Peak loa stimated F Automatic	L X-Section area (mm²) ding force (N Poisson's rati	8059,5 10 1550 10 0.4 14 7	Sealing force AASHTO TP31 [10% of peak] Contact force [N]

Figura 3.13: Software UTS003 1.39 Indirect Tensile Modulus Test

Figura 3.14: Equipamento UTM-25 utilizado no ensaio de Módulo de Resiliência

O corpo de prova permanece na fase elástica durante o carregamento vertical por compressão diametral e as deformações horizontais são medidas através de LVDTs instalados no corpo de prova como mostra a Figura 3.15.

Figura 3.15: LVDTs instalados no corpo de prova

CAPÍTULO 4

4.0 RESULTADOS E DISCUSSÕES

Neste capítulo apresentam-se os resultados obtidos na fase experimental desta pesquisa. São apresentados os resultados da caracterização física dos materiais que compõem as misturas asfálticas recicladas e os resultados da caracterização mecânica das mesmas.

4.1 CARACTERIZAÇÃO FÍSICA DOS AGREGADOS

4.1.1 Material fresado

O teor de CAP extraído do material fresado utilizando-se o xileno como solvente é 6,3%. A Tabela 4.1 e a Figura 4.1 apresentam a granulometria do material fresado antes e depois da extração do betume. Observou-se que o material em estado bruto, após a remoção do pavimento antigo, apresenta uma granulometria mais grossa, devido a existência de torrões de agregados ainda unidos pelo CAP, resultante do processo de fresagem. O processo de extração do CAP causou a desagregação desses torrões através da separação dos agregados minerais do CAP, evidenciando a granulometria dos agregados que compõem a mistura deteriorada.

	Abortura	% passante				
Peneira	(mm)	Material fresado	Material fresado pós- extração			
1 1/2"	38,1	100,00	100,00			
1"	25,4	100,00	98,51			
3/4"	19,1	90,61	96,17			
1/2"	12,7	78,88	88,35			
3/8"	9,5	68,90	82,18			
N ⁰ 4	4,8	41,46	67,28			
N°10	2,0	21,09	55,12			
N° 40	0,42	5,71	32,00			
N ⁰ 80	0,18	3,22	15,23			
N°200	0,074	2,59	6,16			

Tabela 4.1: Distribuição dos tamanhos das part	tículas do material fresado
--	-----------------------------

Figura 4.1: Curva granulométrica do material fresado utilizado na pesquisa

De acordo com a especificação do DNIT 031/2006 ES, o teor de asfalto para camada de rolamento faixa C varia de 4,5 a 9,0%. Portanto, na extração realizada utilizando o xileno como solvente, o teor encontrado está dentro da faixa. Dantas et. al. (2007), realizou extração de betume com diversos solventes (aguarrás, diesel, gasolina, heptano, hexano, LCO, nafta, querosene, tolueno e xileno). De acordo com seus experimentos, os solventes de cadeias aromáticas selecionados em ordem decrescente que se apresentaram como os como melhores extratores: tolueno, xileno, LCO, diesel e querosene, esta classificação foi feita em função do tempo de extração aliado ao poder de extração.

A densidade aparente do material fresado obtida foi de 2,289g/cm³.

4.1.2 Agregados naturais – Brita 19mm, Brita 9,5mm e Pó de pedra

A Tabela 4.2 e a Figura 4.2 apresentam a distribuição dos tamanhos das partículas dos grãos dos materiais granulares utilizados na pesquisa.

	Abortura	A second second	% passante	
Peneira	(mm)	Brita 19mm	Brita 9,5 mm	Pó de Pedra
1 1/2"	38,1	100,00	100,00	100,00
1"	25,4	100,00	100,00	100,00
3/4"	19,1	83,27	100,00	100,00
1/2"	12,7	26,12	99,48	100,00
3/8"	9,5	11,87	90,23	99,84
N0 4	4,8	0,92	8,10	99,59
N°10	2,0	0,53	2,12	78,83
N° 40	0,42	0,48	1,57	35,28
N0 80	0,18	0,39	1,25	17,83
N°200	0,074	0,28	0,88	8,83

Tabela 4.2: Distribuição dos tamanhos das partículas dos agregados novos

Figura 4.2: Curva granulométrica dos agregados naturais

Na Tabela 4.3 estão inseridas as massas específicas reais dos agregados novos e do aglomerante utilizados na pesquisa.

Tabela 4.3: Massa especifica real dos agregados e do aglomerante utilizados na pesquisa

Agregado	Massa específica real (g/cm ³)
Brita 19mm	2,632
Brita 9,5mm	2,632
Pó de Pedra	2,618
Cal	2,535

O ensaio de abrasão Los Angeles e o teste de absorção foram realizados apenas no agregado de tamanho nominal máximo. A brita 19mm apresentou desgaste Los Angeles igual a 30,11%, valor abaixo da especificação do DNIT 031/2006 ES, que recomenda valor máximo igual ou inferior a 50%. Portanto, a brita 19mm utilizada nesta pesquisa atendeu rigorosamente ao critério estabelecido. A absorção da brita 19mm foi de 0,25%. A norma 031/2006 ES do DNIT para pavimento flexíveis não cita valores de absorção para os agregados. No entanto, a absorção está diretamente relacionada com a porcentagem de interstícios ou porosidade existente na massa cristalina das particulas. Lettier et al. (1949) relacionou a porosidade e absorção através da densidade aparente do agregado, verificando que quanto menor a densidade aparente de agregados de mesma origem, maior é a absorção de água, em uma escala linear. E a absorção de asfalto também tem uma forte correlação com a distribuição dos poros sobre as partículas do agregado e com o tamanho ou diâmetro dos poros, sob os efeitos da pressão capilar e da viscosidade, pois poros com diâmetros muito pequenos não conseguem absorver asfalto.

Já Antunes et al. (2009) observou que agregados com valores de absorção baixos consomem menos ligante, sendo portanto, mais vantajoso do ponto de vista econômico, pois o ligante é o material mais oneroso nas misturas asfálticas.

4.2 DOSAGEM MARSHALL

4.2.1 Distribuição dos tamanhos das partículas dos agregados das misturas asfálticas

Nas Figuras 4.3 a 4.8 estão inseridas as distribuições dos tamanhos das partículas dos agregados novos e reciclado (Material fresado) para as Misturas Recicladas contendo percentagens pré-determinadas de material fresado *in natura*, nos teores (5%, 10%, 15%, 20%, 25 e 30%), as quais foram enquadradas na Faixa "C" do DNIT. Destaca-se também, que as misturas se enquadram dentro dos limites preconizados pelo SUPERPAVE, acima da zona de restrição, dentro dos pontos de controle lançados em gráficos, curva de Fuller e Thompson em 1907, com diâmetro máximo nominal de 19,00mm.

59

Figura 4.3: Distribuição dos tamanhos das partículas dos agregados da mistura reciclada contendo 5% de material fresado

Figura 4.4: Distribuição dos tamanhos das partículas dos agregados da mistura reciclada contendo 10% de material fresado

Figura 4.5: Distribuição dos tamanhos das partículas dos agregados da mistura reciclada contendo 15% de material fresado

Figura 4.6: Distribuição dos tamanhos das partículas dos agregados da mistura reciclada contendo 20% de material fresado

Figura 4.7: Distribuição dos tamanhos das partículas dos agregados da mistura reciclada contendo 25% de material fresado

Figura 4.8: Distribuição dos tamanhos das partículas dos agregados da mistura reciclada contendo 30% de material fresado

4.2.2 Determinação dos teores ótimos de CAP

Nas Tabelas 4.4 a 4.9 estão inseridos os resultados das dosagens Marshall realizadas para obtenção do teor ótimo de CAP em função das percentagens de material fresado estabelecidas para estudos do comportamento mecânico dessas misturas recicladas.

fresado					
Teor de Asfalto %	Vazios %	Relação Bet/Vazios	Estabilidade (kgf)	VAM %	
3,5	4,74	63,03	1517,83	12,76	
4,0	3,61	71,90	1311,70	12,80	
4,5	3,57	74,23	1140,51	13,80	
5,0	1,89	85,93	970,56	13,45	
5,5	1,71	88,11	1033,33	14,34	

Tabela 4.4: Resultados da dosagem Marshall para mistura reciclada contendo 5% de material

fresado					
Teor de Asfalto %	Vazios %	Relação Bet/Vazios	Estabilidade (kgf)	VAM %	
3,5	7,23	51,55	816,70	14,91	
4,0	6,56	57,32	1060,73	15,37	
4,5	4,50	69,06	1100,44	14,54	
5,0	3,75	75,09	979,66	15,00	
5,5	1,66	88,36	1017,05	14,25	

Tabela 4.5: Resultados da dosagem Marshall para mistura reciclada contendo 10% de material

Tabela 4.6: Resultados da dosagem Marshall para mistura reciclada contendo 15% de material

fresado						
Teor de Asfalto %	Vazios %	Relação Bet/Vazios	Estabilidade (kgf)	VAM %		
3,5	10,80	40,53	878,08	18,15		
4,0	7,23	54,55	683,29	15,90		
4,5	7,63	55,79	770,89	17,26		
5,0	5,69	65,66	770,65	16,57		
5,5	3,10	79,74	1063,88	15,29		

fresado						
Teor de Asfalto %	Vazios %	Relação Bet/Vazios	Estabilidade (kgf)	VAM %		
3,5	9,32	44,31	933,31	16,74		
4,0	6,74	56,30	925,73	15,42		
4,5	5,56	63,84	958,90	15,36		
5,0	3,55	75,65	927,31	14,59		
5,5	2,07	85,59	1115,73	14,34		

Tabela 4.7: Resultados da dosagem Marshall para mistura reciclada contendo 20% de material

Tabela 4.8: Resultados da dosagem Marshall para mistura reciclada contendo 25% de material

tresado					
Teor de Asfalto %	Vazios %	Relação Bet/Vazios	Estabilidade (kgf)	VAM %	
3,5	7,98	48,46	950,79	15,47	
4,0	6,80	55,89	956,67	15,40	
4,5	6,79	58,61	824,71	16,39	
5,0	5,52	66,16	894,39	16,29	
5,5	1,75	87,47	1070,16	13,96	

Tabela 4.9: Resultados da dosagem Marshall para mistura reciclada contendo 30% de material

fresado						
Teor de Asfalto %	Vazios %	Relação Bet/Vazios	Estabilidade (kgf)	VAM %		
3,5	6,82	52,50	856,49	14,34		
4,0	5,68	60,55	1011,43	14,31		
4,5	5,01	66,49	986,89	14,75		
5,0	3,77	74,28	938,85	14,64		
5,5	2,52	82,89	969,43	14,58		

Nas Figura 4.9 a 4.14, apresentam-se os gráficos dos parâmetros volumétricos, Estabilidade Marshall e os gráficos utilizados na determinação dos teores de CAP de cada mistura, em função das percentagens pré-determinadas de material fresado.

Figura 4.9: Gráficos dos parâmetros volumétricos e Estabilidade Marshall para mistura contendo 5% de material fresado

en dia su bioriga

Figura 4.10: Gráficos dos parâmetros volumétricos e Estabilidade Marshall para mistura contendo 10% de material fresado

Figura 4.11: Gráficos dos parâmetros volumétricos e Estabilidade Marshall para mistura contendo 15% de material fresado

Figura 4.12: Gráficos dos parâmetros volumétricos e Estabilidade Marshall para mistura contendo 20% de material fresado

Figura 4.13: Gráficos dos parâmetros volumétricos e Estabilidade Marshall para mistura contendo 25% de material fresado

Figura 4.14: Gráficos dos parâmetros volumétricos e Estabilidade Marshall para mistura contendo 30% de material fresado

70

Na Tabela 4.10 são apresentados os teores ótimos de cimento alfáltico de petróleo (CAP) obtidos através dos gráficos de cada mistura, obedecendo-se os parâmetros preconizados na norma do DNIT 031/2006 ES. Também são apresentadas as densidades máximas teóricas (DMT) para os teores ótimos de CAP das misturas recicladas.

Material Fresado	Teor Ótimo de CAP	Densidade máxima	
(%)	(%)	teórica (DMT)	
5	4,46	2,42	
10	5,00	2,40	
15	5,44	2,35	
20	5,10	2,35	
25	5,32	2,33	
30	5,20	2,32	

Tabela 4.10: Teores ótimos de CAP e DMT das misturas recicladas composta por agregados
novos e material fresado

4.3 CARACTERIZAÇÃO MECÂNICA DAS MISTURAS ASFÁLTICAS RECICLADAS

4.3.1 Estabilidade Marshall

A execução do ensaio Marshall com as misturas recicladas, agora utilizandose o teor ótimo de betume obtido para cada mistura, serviu para a confirmação dos parâmetros volumétricos e Estabilidade Marshall, quanto ao atendimento dos requisitos técnicos para concretos asfálticos segundo, o DNIT 031/2006 ES. A Tabela 4.11 apresenta estes resultados.

Teor de Material	Teor Ótimo de	Volume de Vazios	Relação Betume Vazios RBV	Estabilidade (kgf)	Vazios do Agregado Mineral- VAM
Fresado	CAP	ES 031/	2006 do DNIT par	ra Camada de Ro	lamento
(%)	(%)	3% a 5%	75% a 82%	mínimo, 500 kgf	VAM mínimo 15%
5	4,46	4,38	69,67	909,06	14,43
10	5,00	3,75	75,09	979,66	15,00
15	5,44	3,51	77,65	973,68	15,52
20	5,10	3,03	79,08	1035,88	14,35
25	5,32	3,50	77,26	966,38	15,14
30	5,20	4,64	70,78	855,82	15,84

Tabela 4.11: Parâmetros volumétricos e Estabilidade Marshall das misturas recicladas

Da Figura 4.15 a Figura 4.18, são apresentados os parâmetros volumétricos, volume de vazios, relação betume vazios, vazios do agregado mineral e Estabilidade Marshall, lançados em gráficos, em função dos percentuais pré-estabelecidos de material fresado, alvos do estudo.

Com relação ao parâmetro volume de vazios (Vv), todas as misturas recicladas ficaram dentro dos limites estabelecidos pela 031/2006 ES (DNIT). No quesito relação betume vazios (RBV), as misturas recicladas contendo 5% e 30% de material fresado não atingiram o limite mínimo que é 75%. Para o tamanho nominal máximo do agregado de 19mm, casos das misturas em estudo, a norma diz que o valor mínimo do parâmetro volumétrico vazios do agregado mineral (VAM) deve ser de 15%. Porém, nas misturas recicladas com percentuais de 5% e 20% de material fresado, este valores não foram atendidos. Entretanto, apesar do critério de dosagem utilizado na escolha do teor ótimo de CAP das misturas ser baseado no atendimento total a esses parâmetros, algumas misturas atenderam parcialmente tais critérios. Salienta-se que, os critérios volumétricos não asseguram que o teor ótimo de projeto, corresponda necessariamente ao melhor teor para todos os aspectos do comportamento de uma mistura asfáltica.

Todas as misturas apresentaram valores elevados de Estabilidade Marshall, indicando que é possível a utilização de material fresado em misturas asfálticas, em qualquer das percentagens estudadas. No entanto, em dosagem racional, a mistura deve ser projetada para um determinado nível de resistência à tração e de módulo de resiliência. Portanto, para confirmação da viabilidade técnica de uso desses resíduos, além da Estabilidade Marshall e parâmetros volumétricos são necessários estudos complementares, a exemplo dos ensaios de: Tração Indireta por Compressão Diametral, Lottman Modificado e Módulo de Resiliência.

Figura 4.15: Volume de vazios em função do percentual de material fresado

Da Figura 4.15 nota-se que existe uma tendência de diminuição do volume de vazios com a incorporação do material fresado até o teor de 20%. A partir de 25% o volume de vazios aumenta com a incorporação de material fresado. O volume de vazios é função do arranjo estrutural proporcionado pela composição granulométrica e pelo teor de CAP adicionado à mistura.

Segundo Bonfim (2001), nas curvas granulométricas do material fresado sem a extração de betume, a porcentagem de material passante em cada peneira é menor, se comparadas as curvas de material com extração de betume. Este fato se deve à presença de grumos e pela ausência de finos. Fato semelhante foi observado nesta pesquisa. Na composição granulométrica das misturas com 25 e 30% de fresado, ambas continham a mesma quantidade de pó de pedra e filer, no entanto, para enquadrar na faixa de projeto, houve uma diminuição nos teores das britas 19mm e 9,5mm, compensada pelo aumento no percentual de material fresado. Como o fresado tem uma quantidade menor de finos, o aumento de suas proporções ocasionou a elevação do volume de vazios dessas misturas, com influência nas propriedades mecânicas tais como: estabilidade e resistência à tração.

Figura 4.16: Relação betume vazios em função do percentual de material fresado

Figura 4.17: Vazios do agregado mineral em função do percentual de material fresado

Figura 4.18: Estabilidade Marshall das misturas recicladas

Da Figura 4.18 nota-se que existe uma tendência de crescimento dos valores da estabilidade Marshall até o teor de 20%, e em seguida há uma tendência de decrescimento, justificado pelo maior volume de vazios, observado para estes teores. Santana (2009), também observou esse comportamento, em seus experimentos, nas misturas recicladas com filer. A incorporação de material fresado até 50% foi proporcional ao crescimento da estabilidade, e em seguida há a diminuição da estabilidade quando a incorporação de material fresado foi de 75%, conforme mostrado na Figura 4.19.

Figura 4.19: Estabilidade Marshall em função do incremento percentual de material fresado [Santana, 2009]

4.3.2 Compactação Giratória SUPERPAVE

Na Tabela 4.12 estão inseridos os resultados dos parâmetros volumétricos obtidos na compactação giratória SUPERPAVE. Salienta-se que os corpos de prova foram dosados de acordo com a metodologia Marshall e apenas compactados por amassamento (giros). Observa-se que os parâmetros volumétricos especificados da norma do DNIT 031/2006 ES não foram atingidos, assim como o volume de vazios (Vv = 4%) e a relação betume vazios (65% < RBV < 75%) especificados na dosagem SUPERPAVE, embora o VAM esteja dentro do que é determinado (VAM >11%). No entanto, o não atendimento dos parâmetros volumétricos na compactação SUPERPAVE, já era esperado, pois os corpos de prova foram dosados pela metodologia Marshall. Foi demonstrado pelos resultados obtidos o quanto mais eficiente é a compactação SUPERPAVE, visto que ocorreu uma redução substancial do volume de vazios das misturas, dando origem a misturas mais densas, tendo como resultados maiores resistências à tração e consequentemente valores de módulos de resiliências também maiores.

Marques (2004), também observou que o volume de vazios diminui com a compactação giratória, ele notou ainda que, misturas compactadas pela metodologia Marshall, os vazios são distribuídos de maneira uniforme ao longo da altura do corpo

de prova, enquanto que, na compactação SUPERPAVE os vazios são mais concentrados próximos às faces horizontais indicando que existe maior densificação na parte central. Segundo Marques (2004), a forma de distribuição dos vazios deve influenciar na obtenção dos parâmetros mecânicos, especialmente aqueles obtidos nos estados últimos de ruptura, como a resistência à tração por compressão diametral.

A Tabela 4.13 apresenta a comparação das densidades aparentes das misturas recicladas, onde nota-se que as misturas compactadas no compactador giratório SUPERPAVE apresentam densidades aparentes sempre superiores.

Teor de Material Fresado (%)	Teor Ótimo de CAP (%)	Volume de Vazios (%)	Relação Betume Vazios RBV (%)	Densidade Aparente - Gmb (g/cm ³)	Vazios do Agregado Mineral- VAM	Altura do CP (mm)
5	4,46	1,47	87,67	2,384	11,82	65,20
10	5,00	0,41	96,71	2,390	12,04	64,30
15	5,44	0,25	98,01	2,344	12,67	66,10
20	5,10	0,71	94,13	2,373	12,18	65,80
25	5,32	0,46	96,28	2,369	12,30	66,80
30	5,20	0,47	96,14	2,362	12,38	67,60

Tabela 4.12: Parâmetros volumétricos para compactação SUPERPAVE

Tabela 4.13: Comparação entre as densidades aparentes obtidos pela compactação Marshall e SUPERPAVE

Toor de Material	Densidade Aparente (g/cm ³)			
Fresado (%)	Compactação Marshall	Compactação SUPERPAVE		
5	2,314	2,384		
10	2,310	2,390		
15	2,268	2,344		
20	2,279	2,373		
25	2,249	2,369		
30	2,212	2,362		

4.3.3 Ensaio de Tração Indireta por Compressão Diametral

Na Tabela 4.14 apresentam-se os resultados de Resistência à Tração (RT) obtida dos corpos de prova moldados pela metodologia Marshall, compactação por impacto (golpes) e pela metodologia SUPERPAVE, compactados por amassamentos (giros), para as misturas recicladas contendo 5%, 10%, 15%, 20%, 25% e 30% de material fresado. Na Figura 4.20 são apresentados na forma gráfica

os resultados destas resistências comparando-se com a mínima exigida na norma do DNIT, para a camada de rolamento, faixa C.

Pela análise da Tabela 4.14 e Figura 4.20 observa-se que todas as misturas ensaiadas atenderam às especificações contidas na ES 031/2006. Nota-se também que as Resistências à Tração das misturas recicladas compactadas pela metodologia SUPERPAVE foram sempre superiores às compactadas no sistema Marshall. Um exemplo é a mistura contendo 5% de fresado, que apresentou um acréscimo de 55,4% no valor da RT, o que justifica-se, pelo fato da compactação giratória ser mais eficiente, dando origem a misturas mais densas, consequentemente com RTs maiores.

Tabela 4.14: Resultados dos ensaios de Resistência a Tração Indireta por Compressão Diametral

Quantidade de	Resistência à Tração (MPa)			
Material Fresado (%)	Compactação Marshall	Compactação SUPERPAVE		
5	0,74	1,15		
10	0,96	1,24		
15	1,05	1,14		
20	0,92	1,17		
25	0,96	0,99		
30	0,91	1,05		
OBS.: Valor mír	nimo para RT = 0,65 l	MPa, camada de		

Figura 4.20: Resistência à Tração das misturas recicladas

Salienta-se que existe uma tendência de queda da resistência à tração a partir da mistura reciclada com 25% de fresado. O volume de vazios também aumenta com a incorporação de material fresado a partir da percentagem de 25% de

fresado, consequentemente dando origem a misturas menos resistentes. Este fato se deve a pouca quantidade de finos do material fresado e aos grumos formados pelos agregados e betume, então a maior proporção de fresado nas misturas em detrimento aos agregados novos, tornam as misturas menos densas com valores de resistências à tração também menores.

4.3.4 Ensaio de Lottman

Na Tabela 4.15 estão mostradas os valores dos resultados de RT antes e após a ação da umidade (condicionamento), para os corpos de prova moldados pela metodologia Marshall, e a Figura 4.21 apresenta esses dados graficamente. Nota-se que mesmo após o condicionamento, as resistências se mantiveram acima do mínimo exigido, que é de 0,65MPa, além disso, superiores a 70% das resistências iniciais (sem condicionamento), como preconiza a ES 031/2006 do DNIT.

Resistência à Tração Quantidade RT'/RT (MPa) de Material (RT) Sem (RT') Com (%) Fresado (%) Condicionamento Condicionamento 5 0,74 94,25 0,69 10 0,96 0,85 88,31 15 1,05 0,76 72,51 81,75 20 0,92 0,75 25 0.96 0.69 72,82 30 0,91 0,78 85,41

Tabela 4.15: Resultados dos ensaios de Lottman modificado para compactação Marshall

Sem condicionamento 📕 Com condicionamento

Figura 4.21: Resistência à tração com e sem condicionamento – Compactação Marshall

78

Na Tabela 4.16 e a Figura 4.22 apresentam-se os resultados do ensaio de Lottman modificados, agora com os corpos de prova moldados no Compactador Giratório SUPERPAVE. Nota-se também que para essa compactação todas as Resistências se mantiveram acima do mínimo exigido.

Quantidade	Resistênci (M	RT'/RT		
Fresado (%)	Sem Condicionamento	Com Condicionamento	(%)	
5	1,15	0,78	68,10	
10	1,24	0,90	72,68	
15	1,14	0,89	78,03	
20	1,17	0,83	70,59	
25	0,99	0,83	84,22	
30	1.05	0.85	80.30	

Tabela 4.16: Resultados dos ensaios de Lottman modificado para compactação SUPERPAVE

Sem condicionamento 🔳 Com condicionamento

Figura 4.22: Resistência à Tração com e sem condicionamento – Compactação SUPERPAVE

O ensaio de Lottman Modificado realizado com misturas recicladas compactadas pela metodologia Marshall, contendo 5%, 10%, 15%, 20%, 25% e 30% de material fresado, revela que as misturas têm resistência satisfatória à ação deletéria da água. Pois todas as misturas recicladas ensaiadas de acordo com a norma da AASHTO T 283, apresentaram Resistência à Tração (RT') que superou 70% da Resistência à Tração (RT) inicial.

Na compactação SUPERPAVE apenas a mistura reciclada contendo 5% de material fresado apresentou perda de resistência superior a 30%, ou seja, após o condicionamento está mistura atingiu apenas 68,10% da resistência antes da mistura ser submetida à umidade, enquanto que, as demais misturas apresentaram

RT dentro dos limites aceitáveis. Na Figura 4.23 apresentam-se estes resultados graficamente.

Figura 4.23: Relação da Resistência à Tração – Compactação Marshall e SUPERPAVE

4.3.5 Módulo de Resiliência

Na Tabela 4.17 e Figura 4.24 apresentam-se os resultados dos ensaios de módulo de resiliência, tanto para os corpos de prova compactados pela metodologia Marshall como no Compactador Giratório SUPERPAVE. Os valores de MR variaram com o tipo de compactação, o que pode atribuir às estruturas do esqueleto mineral que diferem de uma compactação para outra, sendo que na compactação por amassamento os módulos de resiliências são superiores, a exemplo do teor de 20%, que apresentou um acréscimo no valor de MR de 78,9%. Os valores encontrados em ambas as compactações estão dentro da faixa reportada na literatura técnica, que é de 2.000 a 8.000 MPa para concretos asfálticos a 25°C (BERNUCCI et al, 2006).

Sabe-se que quanto mais rígido for o material maior a capacidade de reter esforços em si mesmo, portanto, o concreto asfáltico com alto módulo de resiliência indica alta rigidez, absorvendo elevadas tensões que poderão causar o trincamento prematuro da estrutura.

Material Fresado (%)	Compa	Compactação Marshall			Compactação SUPERPAVE		
	MR (MPa)	RT (MPa)	MR/RT	MR (MPa)	RT (MPa)	MR/RT	
5	2841	0,74	3839,2	4489	1,15	3903,5	
10	3206	0,96	3339,6	4743	1,24	3825,0	
15	2864	1,05	2727,6	4166	1,14	3654,4	
20	2445	0,92	2657,6	4375	1,17	3739,3	
25	3704	0,96	3858,3	3945	0,99	3984,8	
30	2805	0,91	3082,4	3984	1,05	3794,3	

Compactação Marshall Compactação SUPERPAVE

Figura 4.24: Resultados do ensaio de Módulo de Resiliência

Vasconcelos (2003), estudando misturas recicladas a quente tipo CBUQ e compactação por impacto, com teores de fresado de 0, 10 e 50%, obteve valores de RT e MR semelhantes aos obtidos nesta pesquisa. A Tabela 4.18 apresenta esses resultados.

Tabela 4.18: Resultados dos ensaios mecânicos utilizando material fresado (Vasconce

Fresado (%)	Módulo de Resiliência (MPa)	Resistência à Tração (MPa)	MR/RT	
0	2680	1,02	2624	
10	2822	0,92	3072	
50	3163	1,15	2745	

As Figuras 4.25 e 4.26 apresentam a relação entre os parâmetros MR e RT, para compactação Marshall e SUPERPAVE, respectivamente. Na compactação

Marshall não foi possível estabelecer uma correlação entre o Módulo de Resiliência e a Resistência à Tração, provavelmente pelo mecanismo de compactação que não é uniforme, sendo muito influenciada por fatores externos. Entretanto, na compactação SUPERPAVE foi possível estabelecer uma correlação linear entre os valores de Resistência à Tração e os de Módulo de Resiliência (R² = 0,86). Segundo Morilha (2004), a relação indica a compatibilidade entre a rigidez e a resistência da mistura, pois misturas com Módulos de Resiliência altos, necessitam de altos valores de resistência à tração devido à concentração de esforços no interior da mistura. As misturas recicladas de 10%, 15% e 20% obtiveram os maiores MRs, compatíveis com os valores de RTs, que também foram os mais elevados, além das estabilidades, demonstrando que dentre as misturas estudas estas são as mais adequadas.

Figura 4.25: Relação entre MR e RT (Compactação Marshall)

Figura 4.26: Relação entre MR e RT (Compactação SUPERPAVE)

82

CAPÍTULO 5

5.0 CONCLUSÕES

Nesta pesquisa de caracterização mecânica de misturas asfálticas recicladas tipo CBUQ, foram estudadas seis misturas contendo 5%, 10%, 15%, 20%, 25% e 30% de material fresado em peso.

Granulometria

As composições granulométricas dos agregados (agregado + material fresado) para as misturas recicladas, se enquadraram nas especificações para pavimento de concreto asfáltico, Faixa C do DNIT, bem como dentro dos pontos de controles e fora da zona de restrição da metodologia SUPERPAVE, para o tamanho nominal máximo do agregado de 19,00mm.

Estabilidade Marshall e parâmetros volumétricos

Todas as misturas recicladas obtiveram estabilidade Marshall acima da mínima exigida, porém, apenas as misturas com proporção de 10%, 15% e 25% atenderam todos os parâmetros volumétricos.

Compactação giratória SUPERPAVE

As misturas recicladas se apresentaram mais densas, devido este método de compactação ser mais eficiente. No entanto, os parâmetros volumétricos preconizados pelo DNIT 031/2006 ES não foram atingidos. O não atendimento de tais parâmetros justifica-se pelo fato de que foi realizada a compactação SUPERPAVE utilizando como critério de parada a altura final do CP moldado pela metodologia Marshall.

84

Resistência à tração

Todas as misturas apresentam valores de resistência à tração superiores ao preconizado pelo DNIT, sendo que na compactação SUPERPAVE os valores de RT foram sempre superiores aos obtidos pela compactação Marshall.

Lottman modificado

Na compactação Marshall todas as misturas recicladas apresentaram resistência à tração após o condicionamento superior a 70% da resistência à tração das misturas sem condicionamento. Na compactação SUPERPAVE apenas a mistura com proporção de 5% de material fresado não atingiu a RT mínima exigida após ser submetida ao processo de umidade induzida.

Módulo de resiliência

Os valores encontrados para os dois métodos de compactação estão dentro da faixa reportada, na literatura para CBUQ, sob temperatura de 25℃, porém, analisando os valores de MR e a relação MR/RT, as misturas com proporção de 10%, 15% e 20% de material fresado apresentam-se como as mais adequadas, sendo a menos adequada a mistura contendo 25% de material fresado.

5.1 CONSIDERAÇÕES FINAIS

Considerando uma análise conjunta dos ensaios de estabilidade Marshall, de resistência à tração por compressão diametral, de módulo de resiliência e de Lottman modificado conclui-se que: das misturas asfálticas recicladas tipo CBUQ estudadas, as mais adequadas para serem usadas como camada de rolamento de pavimento flexíveis são as que têm em sua composição 10%, 15% e 20% de material fresado.

5.2 SUGESTÕES PARA PESQUISAS FUTURAS

Sugere-se que novas pesquisas sejam realizadas para entendimento do comportamento mecânico das misturas asfálticas recicladas. Apesar de várias pesquisas já apontarem para a viabilidade técnica do reaproveitamento desses resíduos, ainda é necessário o entendimento mais apurado das propriedades físicas e mecânicas dessas misturas, bem como dos materiais que as compõem. Sugere-se:

estudar misturas com incorporação de material fresado utilizando a metodologia de dosagem SUPERPAVE;

 estudar misturas com adição de agente rejuvenescedor para melhorar o CAP antigo contido no material fresado, além de considerar na dosagem o CAP existente no material fresado;

 estudar a influência do tipo de filer e proporção, em função da percentagem de material fresado incorporado à mistura reciclada;

 estudar as misturas recicladas utilizando também ensaio de fadiga e cantabro;

 estudar as misturas recicladas realizando o ensaio de módulo resiliência com valores de 10% a 50% da RT;

 estudar trechos experimentais construídos utilizando-se misturas asfálticas recicladas que em laboratório apresentam-se como satisfatórias. Nestes estudos poderiam ser realizadas medições deflectométricas, monitoramento de defeitos superficiais e determinação da vida útil desses pavimentos.

REFERÊNCIAS BIBLIOGRÁFICAS

ABNT – ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6954: Lastro padrão: Determinação da forma do material. Rio de Janeiro, 1989.

ABNT - ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6502: Rochas e solos: Terminologia. Rio de Janeiro, 1995.

ABNT - ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6576: Materiais betuminosos: Determinação da penetração. Rio de Janeiro, 1998.

ABNT - ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6560: Materiais betuminosos: Determinação do ponto de amolecimento: método do anel e bola. Rio de Janeiro, 2000.

ABNT - ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6293: Materiais betuminosos: Determinação da ductilidade. Rio de Janeiro, 2001.

ABNT - ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 14736: Materiais asfálticos: Determinação do efeito do calor e do ar: método da película delgada. Rio de Janeiro, 2001.

ABNT - ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 14855: Materiais betuminosos: Determinação da solubilidade em tricloroetileno. Rio de Janeiro, 2002.

ABNT - ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 14950: Materiais betuminosos: Determinação da viscosidade Saybolt-Furol. Rio de Janeiro, 2003.

ABNT - ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 11341: Derivados de petróleo: Determinação dos pontos de fulgor e de combustão em vaso aberto Cleveland. Rio de Janeiro, 2004. ABNT - ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6296: Produtos betuminosos semi-sólidos: determinação da massa específica e da densidade relativa. Rio de Janeiro, 2004.

ABNT - ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 15235: Materiais asfálticos: Determinação do efeito do calor e do ar em uma película delgada rotacional. Rio de Janeiro, 2005.

ABNT – ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 9935: Agregados: Terminologia. Rio de Janeiro, 2005.

AMERICAN SOCIETY FOR TESTING AND MATERIALS ASTM – D 4123. standard test method for indirect tension test for resilient modulus of bituminous. USA, 1982.

AMERICAN SOCIETY FOR TESTING AND MATERIALS ASTM - D 2872: effect of heat and air on a moving film of asphalt (rolling thin-film oven test). USA, 1997.

AMERICAN SOCIETY FOR TESTING AND MATERIALS ASTM - D 1754-97: standard test method for effect of heat and air on asphaltic materials (thinfilm oven test). usa, 2002.

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS AASHTO AASHTO T 104: standard method of test for soundness of aggregate by use of sodium sulfate or magnesium sulfate. USA, 1999.

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS AASHTO T 283-02 - resistance of compacted bituminous mixture to moisture induced damage. USA, 2002.

ANTUNES, F. F. L. et al. Influência dos Agregados de Diferentes Fontes nas Misturas Asfálticas. Reunião de Pavimentação Urbana - 16ª RPU. Belo Horizonte – MG, 2009. ASPHALT INSTITUTE. Asphalt Cold-Mix Recycling, manual series no. 21, first edition, U.S.A, 1983.

ASPHALT INSTITUTE, The Asphalt Handbook. Edição 1989. Lexington, KY. Asphalt Institute (MS-4), 1989.

BALBO, J. T. Pavimentação asfáltica: Materiais, projetos e restauração. Oficina de textos. São Paulo, 2007.

BAUER, L. A. F. Materiais de Construção. Volume 1. Editora LTC, 5ª edição. Rio de Janeiro, 1995.

BECK, J. J. K. Estudo do Comportamento de Misturas Asfálticas Convencionais e Modificadas Preparadas com Diferentes Teores de Filer. Trabalho de Conclusão de Curso (Engenharia Civil). Universidade Regional do Noroeste do Estado do Rio Grande do Sul – UNIJUI, Ijuí – RS, 2005.

BERNUCCI, L. B. ...[et al.]. Pavimentação asfáltica: Formação básica para engenheiros. PETROBRAS. ABEDA. Rio de Janeiro, 2006.

BERTOLLO, S. A. M. Avaliação Laboratorial de Misturas Asfálticas Densas Modificadas com Borracha Reciclada de Pneus. Tese (Doutorado em Engenharia Civil). Escola de Engenharia de São Carlos. São Carlos – SP, 2002.

BONFIM, V. Fresagem de pavimentos asfálticos. São Paulo: Fazendo Arte, 2001.

BRASIL. LEI Nº 6.938, de 31 de Agosto de 1981. Dispõe sobre a Política Nacional do Meio Ambiente, seus fins e mecanismos de formulação e aplicação, e dá outras providências.

BRONDANI, V e PINHEIRO, R. Materiais para Infraestrutura de Transporte. Notas de Aula. Universidade de Uberaba, 2010.

BUENO, E. S. Avaliação das Propriedades Tecnológicas dos Agregados Britados Produzidos na Região de Ijuí – RS. Trabalho de Conclusão de Curso (Engenharia Civil). Universidade Regional do Noroeste do Estado do Rio Grande do Sul – UNIJUI, Ijuí – RS, 2008.

CARNEIRO, F.L. Um novo método para determinação da resistência à tração dos concretos. Rio de Janeiro: Instituto Nacional de Tecnologia, 1943.

COMINSKY, R., LEAHY, R. B., HARRIGAN, E. T. Level One Mix Design: Materials Selection, Compaction, and Conditioning. In: Report No. A-408, Strategic Highway Research Program, National Research Council, Washington, D.C. 1994-a.

COSTA, C. J. B. Aplicação de Técnicas de Reciclagem de Pavimentos, como Forma de Minimizar os Impactos Ambientais Causados em Obras Rodoviários no Brasil. Revista ABPv, Associação Brasileira de Pavimentação, Ano V, nº 16, p. 38-49, Jan/Fev/Mar de 2010.

COSTA, L. C.; COSTA, A. N.; MARTINS, C. F. A Gestão Ambiental Aplicada a Projetos de Engenharia -- O Caso da Rodovia BR-101-Trecho Sul. Revista ABPv, Associação Brasileira de Pavimentação, Ano V, nº 16, p. 6-22, Jan/Fev/Mar de 2010.

DANTAS, T. N. C. et al. Reciclagem de material asfáltico fresado com a utilização de solventes e microemulsões. Campinas - SP. 4° PDPETR O, 21 a 24 de Outubro de 2007.

DEPARTAMENTO NACIONAL DE INFRAESTRUTURA E TRANSPORTE DNIT -ME 138/94 - Misturas betuminosas - determinação da resistência à tração por compressão diametral. Rio de Janeiro, 1994.

DEPARTAMENTO NACIONAL DE INFRAESTRUTURA E TRANSPORTE DNIT -ME 078/94 – Adesividade a ligante betuminoso. Rio de Janeiro, 1994.

DEPARTAMENTO NACIONAL DE INFRAESTRUTURA E TRANSPORTE DNIT -ME 269/94 – Projeto de restauração de pavimentos flexíveis. Rio de Janeiro, 1994. DEPARTAMENTO NACIONAL DE INFRAESTRUTURA E TRANSPORTE DNIT -DNER-ME 086/94 – Agregado - Determinação do índice de forma. Rio de Janeiro, 1994.

DEPARTAMENTO NACIONAL DE INFRAESTRUTURA E TRANSPORTE DNIT -ME 133/94 – Misturas betuminosas – determinação do módulo de resiliência. Rio de Janeiro, 1994.

DEPARTAMENTO NACIONAL DE INFRAESTRUTURA E TRANSPORTE DNIT -ME 084/95 – Agregado miúdo – Determinação da densidade real. Rio de Janeiro, 1995.

DEPARTAMENTO NACIONAL DE INFRAESTRUTURA E TRANSPORTE DNIT -ME 043/95 - Misturas betuminosas a quente - ensaio Marshall. Rio de Janeiro, 1995.

DEPARTAMENTO NACIONAL DE INFRAESTRUTURA E TRANSPORTE DNIT – PRO 199/96 – Redução de amostra de campo de agregados para ensaio de laboratório. Rio de Janeiro, 1996.

DEPARTAMENTO NACIONAL DE INFRAESTRUTURA E TRANSPORTE DNIT - ME 054/97- Equivalente de areia. Rio de Janeiro, 1997.

DEPARTAMENTO NACIONAL DE INFRAESTRUTURA E TRANSPORTE DNIT – ME 195/97 - Agregados - determinação da absorção e da massa específica de agregado graúdo. Rio de Janeiro, 1997.

DEPARTAMENTO NACIONAL DE INFRAESTRUTURA E TRANSPORTE DNIT – ME 197/97- Agregados – Determinação da resistência ao esmagamento de agregados graúdos. Rio de Janeiro, 1997.

DEPARTAMENTO NACIONAL DE INFRAESTRUTURA E TRANSPORTE DNIT -ME 194/98 - Agregados - determinação da massa específica de agregados miúdos por meio do frasco Chapman. Rio de Janeiro, 1998. DEPARTAMENTO NACIONAL DE INFRAESTRUTURA E TRANSPORTE DNIT -ME 083/98 – Analise Granulométrica. Rio de Janeiro, 1998.

DEPARTAMENTO NACIONAL DE INFRAESTRUTURA E TRANSPORTE DNIT -ME 081/98 – Agregados – Determinação da absorção e da densidade de agregado graúdo. Rio de Janeiro, 1998.

DEPARTAMENTO NACIONAL DE INFRAESTRUTURA E TRANSPORTE DNIT -ME 035/98 – Agregados – Determinação da abrasão a Los Angeles. Rio de Janeiro, 1998.

DEPARTAMENTO NACIONAL DE INFRAESTRUTURA E TRANSPORTE DNIT – ME 096/98 - Agregado graúdo – Avaliação da resistência mecânica pelo método dos 10% finos. Rio de Janeiro, 1998.

DEPARTAMENTO NACIONAL DE INFRAESTRUTURA E TRANSPORTE DNIT – ME 397/99 - Agregados – Determinação do índice de degradação Washington (IDW). Rio de Janeiro, 1999.

DEPARTAMENTO NACIONAL DE INFRAESTRUTURA E TRANSPORTE DNIT – ME 398/99 - Agregados – Determinação do índice de degradação após compactação Proctor (IDP). Rio de Janeiro, 1999.

DEPARTAMENTO NACIONAL DE INFRAESTRUTURA E TRANSPORTE DNIT – ME 399/99 - Agregados – Determinação da perda ao choque no aparelho Treton; Rio de Janeiro, 1999.

DEPARTAMENTO NACIONAL DE INFRAESTRUTURA E TRANSPORTE DNIT – ME 401/99 - Agregados – Determinação do índice de degradação de rochas após compactação Marshall, com ligante – IDML e sem ligante – IDM. Rio de Janeiro, 1999. DEPARTAMENTO NACIONAL DE INFRAESTRUTURA E TRANSPORTE DNIT – TER 005/2003 – Defeitos nos pavimentos flexíveis e semi-rígidos, Terminologia. Rio de Janeiro, 2003.

DEPARTAMENTO NACIONAL DE INFRAESTRUTURA E TRANSPORTE. Manual de pavimentação. 2ª ed. Rio de Janeiro. 2006.

DEPARTAMENTO NACIONAL DE INFRAESTRUTURA E TRANSPORTE DNIT – ES 031/2006 - Pavimentos flexíveis - Concreto asfáltico - Especificação de serviço. Rio de Janeiro, 2006.

FURLAN, A.P. et al., Algumas Considerações Acerca de Ensaios para Avaliação do Dano por Umidade em Mistura Asfáltica Densa, in: 35^a Reunião Anual de Pavimentação. Rio de Janeiro, 2004.

HARMAN, T.; BUKOWSKI, J. R; MONTIER F., et al. The History and Future Challenges of Giratory Compaction 1939 to 2001. In: Transportation Research Board - TRB, Washington, USA, 2002.

LEITE, L. F. M. Curso Básico Intensivo de Pavimentação Urbana – Módulo Básico – Ligantes Asfálticos. Rio de janeiro, 2003.

LETTIER, J. A.; FINK, D. F.; WILSON, N. B.; FARLEY, F. F. Mechanism of absorption of bituminous materials by aggregate. Association of Asphalt Pavement Technologists, v.18, p.278 – 300. 1949

LIMA, A. T. Caracterização Mecânica de Misturas Asfálticas Recicladas a Quente. Dissertação de Mestrado, Programa de Mestrado em Engenharia de Transportes, Universidade Federal do Ceará, Fortaleza, CE, 99 fls, 2003.

LOTTMAN, R. P. NCHRP Report 192: Predicting Moisture – Induced Damage to Asphaltic Concrete, Transportation Research Board, National Research Council, 24p. . Washington, D. C., 1978.
MOMM, L. ; DOMINGUES, F. A. A., Reciclagem de Pavimentos a Frio in situ Superficial e Profunda. IN: Reunião Anual de Pavimentação, 29ª, Cuiabá, 1995.

MARQUES, G.L.O. Procedimentos de Avaliação e Caracterização de Agregados Minerais Usados na Pavimentação Asfáltica. Seminário de qualificação ao doutoramento – Coordenação dos Programas de Pós-graduação de Engenharia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2001.

MARQUES, G. L. O. Utilização do Módulo de Resiliência como Critério de Dosagem de Mistura Asfáltica; efeito da Compactação por Impacto e Giratória. Tese de doutorado, COPPE/UFRJ, Rio de Janeiro, Brasil, 2004.

MARQUES, G. L. O. Agregados para Pavimentação. Notas de Aula. Universidade Federal de Juiz de Fora, 2009.

MARQUES, G. L. O. Materiais Asfálticos. Notas de Aula. Universidade Federal de Juiz de Fora, 2009.

MOREIRA, H. S. Comportamento Mecânico de Misturas Asfálticas a Frio com Diferentes Teores de Agregado Fresado Incorporado e Diferentes modos de Compactação. Dissertação de Mestrado, Programa de Mestrado em Engenharia de Transportes, Universidade Federal do Ceará, Fortaleza, CE, 110 fls, 2005.

MORILHA JUNIOR, A., Estudo sobre a Ação de Modificadores no Envelhecimento dos Ligantes Asfálticos e nas suas Propriedades Mecânicas e de Fadiga das Misturas Asfálticas. Dissertação de Mestrado. Universidade Federal de Santa Carina, Florianópolis, 2004.

MOTTA, L.M.G.; TONIAL, I.; LEITE, L.M.; CONSTANTINO, R.S. Princípios do Projeto e Análise SUPERPAVE de Misturas Asfálticas. Rio de Janeiro: IBP, 1996.

MOTTA, L. M. G.; PINTO, S. O Uso de Ensaios Estáticos na Definição de Parâmetros de Comportamento das Misturas asfálticas. In: 12° Encontro de Asfalto, Instituto Brasileiro do Petróleo, Rio de Janeiro-RJ, 1994.

NICHOLLS, C. Asphalt Surfacings – A Guide to Asphalt Surfacing and Treatments Used for the Surface Course of Road Pavements. Transport Research Laboratory – Londres, 1996.

PHILIPPI Jr. A., editor. Saneamento, saúde e ambiente: fundamentos para um desenvolvimento sustentável (Coleção Ambiental; 2). Manole. Barueri-SP, 2005.

PINTO, S., Tópicos Especiais em Mecânica dos Pavimentos, COPPE/UFRJ, Rio de Janeiro, 1989.

RAMOS, C. R. Reciclagem de Pavimentos Flexíveis. Asfalto em Revista, Ano I, nº 7, p. 20-23, Set/Out de 2009.

ROBERTS, F. L.; Kandhal, P. S. e Brown, E. R.; Lee D. Y. e Kennedy T. W. Hot Mix Asphalt Materials, Mixture Design and Construction. NAPA Research and Education Foundation, Lanham, Maryland, 2^a edição. NCAT. USA, 1996.

SANTANA, E. P. Estudos das propriedades físicas e mecânicas de misturas asfálticas recicladas com materiais fresados: estudo de caso - BR-230. Dissertação de Mestrado, Universidade Federal de Campina Grande, Centro Tecnologia e Recursos Naturais, Campina Grande - PB, 2009.

SHELL. The Shell bitumen handbook. 5. ed. Cambridge, 2003.

SULLIVAN, J. Pavement Recycling Executive Summary and Report. FHWA-AS-95-060, U.S.A. 1996.

TAKATU, R. M. Utilização dos Resíduos de Pneus Inservíveis na Fabricação do Asfalto Borracha. Dissertação (Mestrado em Engenharia Civil). Escola Senai Mário Amato – SBC. São Bernardo do Campo – SP, 2004.

VASCONCELOS, K. L. ; SOARES, Jorge Barbosa . Projeto de Mistura de Concreto Betuminoso Reciclado a Quente com Diferentes Teores de Material Fresado. In: XII Congresso Ibero-Latino Americano Del Asfalto, 2003, Quito. Anais do XII Congresso Ibero-Latino Americano del Asfalto, 2003.

WESSELING, D. H. Avaliação Laboratorial do Comportamento de Misturas em Concreto Asfáltico. Trabalho de Conclusão de Curso (Engenharia Civil). Universidade Regional do Noroeste do Estado do Rio Grande do Sul – UNIJUI, Ijuí – RS, 2002.

WOODS, K.B. Highway engineering handbook. New York: McGraw Hill, 1960.

ANEXOS

Anexos A

Composições das curvas granulométricas das misturas recicladas.

Anexos B

Indirect Tensile Módulos Test – resumo do ensaio de Módulo de Resiliência para corpos de prova compactados pela metodologia Marshall.

Anexo C

Indirect Tensile Módulos Test – resumo do ensaio de Módulo de Resiliência para corpos de prova compactados pela metodologia SUPERPAVE.

Anexo D

Gráficos da compactação SUPERPAVE.

Anexos A

Composições das curvas granulométricas das misturas recicladas

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA CIVIL E AMBIENTAL

ÁREA - GEOTÉCNICA

COMPOSIÇÃO GRANULOMÉTRICA - MISTURA RECICLADA COM 5% DE MATERIAL FRESADO

ഗ						PORCE	NTAGEM	PASSAN	IDO		•	• • • • • • • • • • • • • • • • • • •	
ENEIRA	MAT. FRE	SADO	BRIT	A 19	BRITA	A 9,5	PÓ DE F	PEDRA	FILL	ER	COMBIN. RESULT.	ESPECIF	FICAÇÃO
C	TOTAL	5%	TOTAL	18%	TOTAL	35%	TOTAL	39%	TOTAL	3%		PT. MED.	LIMITES
1 1/2"	100,00	5,00	100,00	18,00	100,00	35,00	100,00	39,00	100,00	3,00	100,00	-	-
1"	100,00	5,00	100,00	18,00	100,00	35,00	100,00	39,00	100,00	3,00	100,00	-	-
3/4"	90,61	4,53	83,27	14,99	100,00	35,00	100,00	39,00	100,00	3,00	96,52	100	100
1/2"	78,88	3,94	26,12	4,70	99,48	34,82	100,00	39,00	100,00	3,00	85,46	90	80-100
3/8"	68,90	3,45	11,87	2,14	90,23	31,58	99,84	38,94	100,00	3,00	79,10	80	70-90
N ^o 4	41,46	2,07	0,92	0,17	8,10	2,83	99,59	38,84	100,00	3,00	46,91	58	44-72
N ⁰ 10	21,09	1,05	0,53	0,10	2,12	0,74	78,83	30,74	100,00	3,00	35,64	36	22-50
N ⁰ 40	5,71	0,29	0,48	0,09	1,57	0,55	35,28	13,76	100,00	3,00	17,68	17	8-26
N ⁰ 80	3,22	0,16	0,39	0,07	1,25	0,44	17,83	6,95	100,00	3,00	10,62	10	4-16
N ⁰ 200	2,59	0,13	0,28	0,05	0,88	0,31	8,83	3,44	100,00	3,00	6,93	6	2-10

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA CIVIL E AMBIENTAL

ÁREA - GEOTÉCNICA

COMPOSIÇÃO GRANULOMÉTRICA - MISTURA RECICLADA COM 10% DE MATERIAL FRESADO

S						PORCE	NTAGEM I	PASSAN	00				
ENEIRA	MAT. FR	ESADO	BRIT	A 19	BRIT	A 9,5	PÓ DE F	PEDRA	FILLE	ĒR	COMBIN. RESULT.	ESPECIFI	CAÇÃO
L	TOTAL	10%	TOTAL	15%	TOTAL	27%	TOTAL	45%	TOTAL	3%		PT. MED.	LIMITES
1 1/2"	100,00	10,00	100,00	15,00	100,00	27,00	100,00	45,00	100,00	3,00	100,00	-	-
1"	100,00	10,00	100,00	15,00	100,00	27,00	100,00	45,00	100,00	3,00	100,00	-	-
3/4"	90,61	9,06	83,27	12,49	100,00	27,00	100,00	45,00	100,00	3,00	96,55	100	100
1/2"	78,88	7,89	26,12	3,92	99,48	26,86	100,00	45,00	100,00	3,00	86,66	90	80-100
3/8"	68,90	6,89	11,87	1,78	90,23	24,36	99,84	44,93	100,00	3,00	80,96	80	70-90
N ⁰ 4	41,46	4,15	0,92	0,14	8,10	2,19	99,59	44,82	100,00	3,00	54,29	58	44-72
N ⁰ 10	21,09	2,11	0,53	0,08	2,12	0,57	78,83	35,47	100,00	3,00	41,24	36	22-50
N ⁰ 40	5,71	0,57	0,48	0,07	1,57	0,42	35,28	15,88	100,00	3,00	19,94	17	8-26
N ⁰ 80	3,22	0,32	0,39	0,06	1,25	0,34	17,83	8,02	100,00	3,00	11,74	10	4-16
N ⁰ 200	2,59	0,26	0,28	0,04	0,88	0,24	8,83	3,97	100,00	3,00	7 <u>,</u> 51	6	2-10

1

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA CIVIL E AMBIENTAL

ÁREA - GEOTÉCNICA

COMPOSIÇÃO GRANULOMÉTRICA - MISTURA RECICLADA COM 15% DE MATERIAL FRESADO

6						PORCE	NTAGEM	PASSAN	DO				
ENEIRA:	MAT. FRI	ESADO	BRIT	A 19	BRITA	A 9,5	PÓ DE F	PEDRA	FILLI	ER	COMBIN. RESULT.	ESPECIF	ICAÇÃO
٩	TOTAL	15%	TOTAL	10%	TOTAL	25%	TOTAL	47%	TOTAL	3%		PT. MED.	LIMITES
1 1/2"	100,00	15,00	100,00	10,00	100,00	25,00	100,00	47,00	100,00	3,00	100,00	-	-
1"	100,00	15,00	100,00	10,00	100,00	25,00	100,00	47,00	100,00	3,00	100,00	-	-
3/4"	90,61	13,59	83,27	8,33	100,00	25,00	100,00	47,00	100,00	3,00	96,92	100	100
1/2"	78,88	11,83	26,12	2,61	99,48	24,87	100,00	47,00	100,00	3,00	89,31	90	80-100
3/8"	68,90	10,34	11,87	1,19	90,23	22,56	99,84	46,92	100,00	3,00	84,01	80	70-90
N ⁰ 4	41,46	6,22	0,92	0,09	8,10	2,02	99,59	46,81	100,00	3,00	58,14	58	44-72
N ⁰ 10	21,09	3,16	0,53	0,05	2,12	0,53	78,83	37,05	100,00	3,00	43,80	36	22-50
N ⁰ 40	5,71	0,86	0,48	0,05	1,57	0,39	35,28	16,58	100,00	3,00	20,88	17	8-26
N ⁰ 80	3,22	0,48	0,39	0,04	1,25	0,31	17,83	8,38	100,00	3,00	12,22	10	4-16
N ⁰ 200	2,59	0,39	0,28	0,03	0,88	0,22	8,83	4,15	100,00	3,00	7,79	6	2-10

UFCG/5/BLIOTECA

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA CIVIL E AMBIENTAL

ÁREA - GEOTÉCNICA

COMPOSIÇÃO GRANULOMÉTRICA - MISTURA RECICLADA COM 20% DE MATERIAL FRESADO

s l				, ,		PORCE		ASSAN	00				
ENEIRA	MAT. FR	ESADO	BRIT	A 19	BRIT	A 9,5	PÓ DE F	PEDRA	FILL	ER	COMBIN. RESULT.	ESPECIF	ICAÇÃO
	TOTAL	20%	TOTAL	12%	TOTAL	22%	TOTAL	43%	TOTAL	3%		PT. MED.	LIMITES
1 1/2"	100,00	20,00	100,00	12,00	100,00	22,00	100,00	43,00	100,00	3,00	100,00	-	-
1"	100,00	20,00	100,00	12,00	100,00	22,00	100,00	43,00	100,00	3,00	100,00	-	-
3/4"	90,61	18,12	83,27	9,99	100,00	22,00	100,00	43,00	100,00	3,00	96,12	100	100
1/2"	78,88	15,78	26,12	3,13	99,48	21,88	100,00	43,00	100,00	3,00	86,80	90	80-100
3/8"	68,90	13,78	11,87	1,42	90,23	19,85	99,84	42,93	100,00	3,00	80,99	80	70-90
N ⁰ 4	41,46	8,29	0,92	0,11	8,10	1,78	99,59	42,82	100,00	3,00	56,01	58	44-72
N ⁰ 10	21,09	4,22	0,53	0,06	2,12	0,47	78,83	33,90	100,00	3,00	41,65	36	22-50
N ⁰ 40	5,71	1,14	0,48	0,06	1,57	0,35	35,28	15,17	100,00	3,00	19,72	17	8-26
N ⁰ 80	3,22	0,64	0,39	0,05	1,25	0,28	17,83	7,67	100,00	3,00	11,63	10	4-16
N ⁰ 200	2,59	0,52	0,28	0,03	0,88	0,19	8,83	3,80	100,00	3,00	7,54	6	2-10

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA CIVIL E AMBIENTAL

ÁREA - GEOTÉCNICA

COMPOSIÇÃO GRANULOMÉTRICA - MISTURA RECICLADA COM 25% DE MATERIAL FRESADO

S						PORCE		PASSAN	IDO				
ENEIRA	MAT. FRE	SADO	BRITA	19	BRITA	9,5	PÓ DE P	EDRA	FILLE	R	COMBIN. RESULT.	ESPECIF	ICAÇÃO
d	TOTAL	25%	TOTAL	10%	TOTAL	17%	TOTAL	45%	TOTAL	3%		PT. MED.	LIMITES
1 1/2"	100,00	25,00	100,00	10,00	100,00	17,00	100,00	45,00	100,00	3,00	100,00	-	-
1"	100,00	25,00	100,00	10,00	100,00	17,00	100,00	45,00	100,00	3,00	100,00	-	-
3/4"	90,61	22,65	83,27	8,33	100,00	17,00	100,00	45,00	100,00	3,00	95,98	100	100
1/2"	78,88	19,72	26,12	2,61	99,48	16,91	100,00	45,00	100,00	3,00	87,24	90	80-100
3/8"	68,90	17,23	11,87	1,19	90,23	15,34	99,84	44,93	100,00	3,00	81,68	80	70-90
N ⁰ 4	41,46	10,37	0,92	0,09	8,10	1,38	99,59	44,82	100,00	3,00	59,65	58	44-72
N ⁰ 10	21,09	5,27	0,53	0,05	2,12	0,36	78,83	35,47	100,00	3,00	44,16	36	22-50
N ⁰ 40	5,71	1,43	0,48	0,05	1,57	0,27	35,28	15,88	100,00	3,00	20,62	17	8-26
N ⁰ 80	3,22	0,81	0,39	0,04	1,25	0,21	17,83	8,02	100,00	3,00	12,08	10	4-16
N ⁰ 200	2,59	0,65	0,28	0,03	0,88	0,15	8,83	3,97	100,00	3,00	7,80	6	2-10

......

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA CIVIL E AMBIENTAL

ÁREA - GEOTÉCNICA

COMPOSIÇÃO GRANULOMÉTRICA - MISTURA RECICLADA COM 30% DE MATERIAL FRESADO

S					1	PORC	ENTAGEM	PASSAI	NDO		• •• •• ••		
ENEIRA	MAT. FR	ESADO	BRITA	19	BRIT	4 9,5	PÓ DE F	PEDRA	FILLI	ER	COMBIN. RESULT.	ESPECIF	ICAÇÃO
<u>a</u>	TOTAL	30%	TOTAL	7%	TOTAL	15%	TOTAL	45%	TOTAL	3%		PT. MED.	LIMITES
1 1/2"	100,00	30,00	100,00	7,00	100,00	15,00	100,00	45,00	100,00	3,00	100,00	-	-
1"	100,00	30,00	100,00	7,00	100,00	15,00	100,00	45,00	100,00	3,00	100,00	-	-
3/4"	90,61	27,18	83,27	5,83	100,00	15,00	100,00	45,00	100, 00	3,00	96,01	100	100
1/2"	78,88	23,66	26,12	1,83	99,48	14,92	100,00	45,00	100,00	3,00	88,41	90	80-100
3/8"	68,90	20,67	11,87	0,83	90,23	13,53	99,84	44,93	100,00	3,00	82,97	80	70-90
N ⁰ 4	41,46	12,44	0,92	0,06	8,10	1,21	99,59	44,82	100,00	3,00	61,53	58	44-72
N ⁰ 10	21,09	6,33	0,53	0,04	2,12	0,32	78,83	35,47	100,00	3,00	45,16	36	22-50
N ⁰ 40	5,71	1,71	0,48	0,03	1,57	0,24	35,28	15,88	100,00	3,00	20,86	17	8-26
N ⁰ 80	3,22	0,97	0,39	0,03	1,25	0,19	17,83	8,02	100,00	3,00	12,21	10	4-16
N ⁰ 200	2,59	0,78	0,28	0,02	0,88	0,13	8,83	3,97	100,00	3,00	7,90	6	2-10

Anexos B

Indirect Tensile Módulos Test – resumo do ensaio de Módulo de Resiliência para corpos-de-prova compactados pela metodologia Marshall

0.15 1

1.05

1,1

1.15 2

2.05

2.1

Time (sec)

2.15 3

3,05

3,1

0

0.05

0.1

Printed 23/3/2011 16:20:51

4,1

4,15

4,05

3,15 4

Test m	thod: ASTN	D4122 82 /	ACUTO TO2	4 (havin 1 - 14							STR. Internet
Data filel	Jame: E-Wit	1 04123-82 //	ASHIO 1P3	1 (horiz. lvdts	only, ass	sumed F	oisson's rati	0)			
Template file	name: 122	011a(3/0CF2.DC	103								
Test date &	time: 18/02/	2011 10-15-24									
P	niect: Disse	dacão Mestrad	•								
Ope	rator: vitória	nayao mesilau	0								
Com	nents:										
- 7654400											
s _8 - +											
Setup Parameters											
Target temperature	e (°C): 25			Pea	k loading	force ()	N): 1550				
Loading pulse width	(ms): 100			Estima	ted Poiss	son's rat	io: 0.4				
Pulse repetition period	(ms): 1000										
Conditioning pulse	count: 50				Sea	ting for	CE: AASHTC	TP31	(10% of peak)		
									(reve or peak)		
Specimen Information											
Remarks			Dimonsion	Daint	Deint 2	Detet				10.10	
i tomano			Length (mr	m) 64.8	64.6	Fornt 3	Point 4 Po	INT 5 PC	Average	e Std Dev	
			Diameter (mm) 101,5	101,8	101.4			101.6	0.2	
						C	ross-section	al area (mm ²): 8102.0	1.01	
Test Deside											
Test Results				Description							
Core temperature	uises. 30			Permit nori	z'i der'n/p	uise (µr	n): 0,798200				
Skin temperature	(°C): 29.4										
	(-/	Pulse 1	Pulse 2	Pulse 3	Pulse 4	F	ulse 5	Mean	Std. De	W %CV	
Resilient modulus (MPa)		2641	2506	2430	2367	2	309	2450	115,51	4.71	
Total recoverable horiz. de	form. (µm)	6,09	6,41	6,61	6,78	6	,95	6,57	0,30	4,55	
Recoverable horiz, deform	. #1 (µm)	0,64	0,68	0.78	0.86		.96	0.78	1,15	0,07	
Recoverable horiz. deform	. #2 (µm)	5,46	5,73	5,83	5,93	5	,99	5,79	0,19	3,25	
Seating force (IN)		155	155	155	155	1	56	155	0,32	0,21	
			Horizonta	deformation	#1	- Hori	zontal deform	nation #2	2		
Pulse 1	Pulse	2	Puls	e 3		Puls	e 4		Pulse 5		
		\bigwedge					\bigwedge				
				\int		5	\int			\frown	-

Time (sec)

Test method: ASTM D4123-82 / AASHTO T	P31 (horiz. lvdts only, assumed Poisson's ratio)
Data fileName: F:\Vitoria\5%CP3.D003	 Periodic and the second s
Template file name: 122	
Test date & time: 18/02/2011 10:38:27	
Project: Dissertação Mestrado	
Operator: vitória	
Comments:	

Setup Parameters

Target temperature (°C): 25 Loading pulse width (ms): 100 Pulse repetition period (ms): 1000 Conditioning pulse count: 50

Peak loading force (N): 1550 Estimated Poisson's ratio: 0.4

Seating force: AASHTO TP31 (10% of peak)

Specimen Information

Identification: 5%CP3 Remarks...

Dimensions	Point 1	Point 2	Point 3	Point 4	Point 5	Point 6	Average	Std Dev
Length (mm)	65,6	65,1	65,0				65,2	0.3
Diameter (mm)	101,6	101,6	101,3				101,5	0.2
	4 constraints		C-		innel en	- (2)		1 - 1

Cross-sectional area (mm²): 8091,4

Test Results

Conditioning pulses: 50 Core temperature (°C): 29,4 Skin temperature (°C): 29,4			Perm't ho	oriz'l def'n/puls	e (µm): 0,714	600		
	Pulse 1	Pulse 2	Pulse 3	Pulse 4	Pulse 5	Mean	Std. Dev.	%CV
Resilient modulus (MPa)	3493	3371	3360	3320	3332	3375	61.88	1.83
Total recoverable horiz. deform. (µm)	4,55	4,71	4.73	4.78	4.77	4.71	0.08	1 78
Peak loading force (N)	1547	1547	1546	1546	1546	1547	0.38	0.02
Recoverable horiz. deform. #1 (µm)	2,40	2,48	2.53	2.58	2.59	2.51	0.07	2.80
Recoverable horiz. deform. #2 (µm)	2.15	2.24	2.20	2.21	2.18	2 19	0.03	1.33
Seating force (N)	155	155	155	155	155	155	0,32	0,21

Time (sec)

Printed 23/3/2011 16:26:30

Test method: A Data fileName: F Template file name: 1 Test date & time: 1 Project: D	STM D4123-82 / :\Vitoria\10%CP2. 122 8/02/2011 12:16:2 Dissertação Mestra	AASHTO TP31 D003 7	(horiz. lvdts	only, assi	umed Poisson's	ratio)		in hadd ffyr de fer a dalar men ar
Operator: vi	itória							
Comments.								
Sofue Deservation								
Target temperature (°C):	25		D		())) - O ()			
Loading pulse width (ms):	25		Pea	k loading	torce (N): 2040)		
Pulse repetition period (ms):	1000		Cound	ieu Poiss	UITS TALIO. 0.4			
Conditioning pulse count:	5			Seat	ting force: AAS	HTO TP31 (10	% of peak)	
Specimen Information								
Identification: 10%CP2								<i>v</i>
Remarks		Length (mm	Point 1	Point 2	Point 3 Point 4	Point 5 Point	6 Average	e Std Dev
		Diameter (m	m) 101,7	101.7	101.6		101.7	0,3
			1997 BALL 1997 BALL	1	Cross-sec	tional area (mn	n²): 8118,0	1
						10.	8 D	
Test Results Conditioning pulses: 5 Core temperature (°C): 2	5 29,4		Perm't horiz	t'l def'n/pu	ulse (µm): 1,749	9000		
Skin temperature (C).	Pulse 1	Puise 2	Pulse 3	Pulse 4	Duleo 5	Mean	Std Da	W INCV
Resilient modulus (MPa) Total recoverable horiz. deform. (J Peak loading force (N) Recoverable horiz. deform. #1 (µr Recoverable horiz. deform. #2 (µr	2557 µm) 8,24 2040 m) 3,81 n) 4,43	2459 8,58 2043 4,00 4,58	2433 8,67 2043 4,01 4,66	2402 8,78 2041 4,05 4,73	2410 8,75 2042 4,02 4,73	2452 8,60 2042 3,98 4,62	55,98 0,19 1,26 0,09 0,11	2,28 2,26 0,06 2,15 2,42
Seating force (N)	204	204	205	204	204	204	0,34	0,17
		Horizontal	deformation	#1	- Horizontal de	formation #2	unin instan se ministre co-	an ha an star an an star an
Pulse 1 Pu	ulse 2	Pulse	3		Pulse 4		Pulse 5	
			\bigwedge	J				

3,05

3,1

2,15 3

Industrial Process Controls Global Ltd UTS003 Ver:1.39 (1.39)

0,15 1

1,05

1,1

1,15 2

2,05

2,1

Time (sec)

0,05

0

0,1

Printed 23/3/2011 16:27:45

443

4,1

4,15

4,05

3,15 4

Data fileName: F:\Vitor Template file name: 122	ria\10%CP3.D00	3		,,					
Project: Dissert Operator: vitória Comments:	011 11:39:10 ação Mestrado								
Setup Parameters									
Target temperature (°C): 25			Peal	loading	force (N):	2040			
Loading pulse width (ms): 100			Estimat	ed Poiss	on's ratio:	0.4			
Conditioning pulse count: 50				Sea	ting force:	AASHTO TP	31 (10%	of peak)	
Specimen Information Identification: 10%CP3 Remarks		Dimensions	Point 1	Point 2	Point 3 F	Point 4 Point 5	Point 6	Average	Std Dev
		Length (mm) 63,9	63,9	63,4			63,7	0,3
		Diameter (m	102,2 nm)	102,4	102,3		(102,3	0,1
					010	ss-sectional an	ea (mm-)	. 0219,4	
Test Results Conditioning pulses: 50 Core temperature (°C): 29,4 Skin temperature (°C): 29,4 Resilient modulus (MPa)	Pulse 1 Pi 3132 30	ulse 2 003	Perm't horiz Pulse 3 2990	'l def'n/p Pulse 4 2963	ulse (µm): Pul 292	0,974400 se 5 Mea 1 300	an 2	Std. Dev 70,85	%CV 2,36
Total recoverable horiz. deform. (µm) Peak loading force (N) Recoverable horiz. deform. #1 (µm) Recoverable horiz. deform. #2 (µm) Seating force (N)	6,83 7, 2036 20 4,45 4, 2,38 2, 204 20	13 036 59 54	7,16 2037 4,53 2,63 204	7,23 2038 4,62 2,61 205	7,3- 203 4,6 2,6	4 7,14 9 203 8 4,57 6 2,56	4 7 5	0,17 1,06 0,08 0,10 0,37	2,36 0,05 1,69 3,88 0 18
	204			200	110	204	- #0	0,01	0,10
Pulse 1 Pulse 2	2	Pulse	detormation a	F1	Pulse	4	n#2	Pulse 5	
				1 -			5 1		~

2,05

2,1

Time (sec)

2,15 3

3,05

3,1

3,15 4

Industrial Process Controls Global Ltd UTS003 Ver:1.39 (1.39)

0.15 1 1.05 1.1 1.15 2

ó

0,05

0,1

Printed 23/3/2011 16:28:54

4,1

4,15

4,05

Test method: ASTM D4123-82 / AASHTO TP31 (horiz. lvdts only, assumed Poisson's ratio)
Data fileName: F:\Vitoria\15%CP1.D003
Femplate file name: 122
Test date & time: 18/02/2011 10:29:10
Project: Dissertação Mestrado

Operator: vitória

Comments:

Setup Parameters			
Target temperature (°C): 25		Peak loading force (N):	2220
Loading pulse width (ms): 100		Estimated Poisson's ratio:	0.4
Pulse repetition period (ms): 1000			
Conditioning pulse count: 50		Seating force:	AASHTO TP31 (10% of peak)
Specimen Information			
Identification: 15%CP1			
Remarks	Dimensions	Point 1 Point 2 Point 3 F	Point 4 Point 5 Point 6 Average

Dimensions	Point 1	Point 2	Point 3	Point 4	Point 5	Point 6	Average	Std Dev
Length (mm)	64,7	64,4	64,6				64,6	0,2
Diameter (mm)	101,7	101,8	101,8				101,8	0,1
			-					A 8

Cross-sectional area (mm2): 8133,9

Test Results

Conditioning pulses: 50			Perm't ho	riz'l def'n/puls	e (µm): 1,401	000		
Core temperature (°C): 29,4								
Skin temperature (°C): 29,4								
	Pulse 1	Pulse 2	Pulse 3	Pulse 4	Pulse 5	Mean	Std. Dev.	%CV
Resilient modulus (MPa)	2607	2530	2490	1794	2475	2379	296 25	12 45
Total recoverable horiz. deform. (µm)	8,84	9,12	9.26	9.21	9.33	9.15	0.17	1.85
Peak loading force (N)	2221	2223	2222	1591	2225	2096	252 52	12 04
Recoverable horiz. deform. #1 (µm)	4,64	4,76	4,80	4,75	4.80	4.75	0.06	1.24
Descently is the work of	1							

Industrial Process Controls Global Ltd UTS003 Ver:1.39 (1.39)

Test method: ASTM [D4123-82 / AASHTO TP31	(horiz. lvdts only,	assumed Poisson's ratio)
Data fileName: F:\Vitori	a\15%CP2.D003		

Template file name: 122

Test date & time: 18/02/2011 11:51:18

Project: Dissertação Mestrado Operator: vitória

Comments:

Comments:

Setup Parameters		
Target temperature	(°C).	25

raiger temperature (C).	25
Loading pulse width (ms):	100
Pulse repetition period (ms):	1000
Conditioning pulse count:	50

Peak loading force (N): 2220 Estimated Poisson's ratio: 0.4

Seating force: AASHTO TP31 (10% of peak)

Specimen Information

Identification: 15%CP2 Remarks...

Dimensions	Point 1	Point 2	Point 3	Point 4	Point 5	Point 6	Average	Std Dev
Length (mm)	64,2	64,9	65,2				64,8	0.5
Diameter (mm)	101,7	102,1	101,8				101,9	0.2
						0 54	52	1.000

Cross-sectional area (mm²): 8149,9

Test Results

Conditioning pulses: 50 Perm't horiz'l def'n/pulse (µm): 1,280000 Core temperature (°C): 29,4 Skin temperature (°C): 29,4 Pulse 3 Pulse 1 Pulse 2 Pulse 4 Pulse 5 Mean Std. Dev. %CV Resilient modulus (MPa) 2843 2716 2674 2646 2638 2704 74,82 2,77 Total recoverable horiz. deform. (um) 8,07 8,44 8.66 8.57 8,70 8,49 0,23 2,68 Peak loading force (N) 2218 2217 2217 2216 2220 2217 1,30 0,06 Recoverable horiz. deform. #1 (µm) 5,89 6,08 2,64 3,10 6.23 6,29 6,33 6,16 0.16 Recoverable horiz. deform. #2 (µm) 2,19 2,37 2,35 2,37 2,37 2,33 0,07 Seating force (N) 222 222 222 223 222 222 0,36 0,16

Test method: ASTM D4123-82 / AASHTO TP31 (horiz. lvdts only, assumed Poisson's ratio) Data fileName: F:\Vitoria\15%CP3.D003

Template file name: 122

Test date & time: 18/02/2011 11:58:45 Project: Dissertação Mestrado

Operator: vitória

Comments:

Target temperature (°C): 25

Setup Parameters

Loading pulse width (ms): 100		Estimated Poisson's ratio: 0.4								
Pulse repetition period (ms): 1000										
Conditioning pulse count: 50		Seating force: AASHTO TP31 (10% of peak)								
Specimen Information										
Identification: 15%CP3										
Remarks	Dimension		Point 1	Point 2	Point 3	Point 4	Point 5	Point 6	Average	Std Dev
		Length (mm)	65,1	65,4	65,4 65,2				65,2	0,2
		Diameter (mn	n) 102,1	101,7	101,6				101,8	0,3
		Cross-sectional area (mm ²): 8139,3								
Test Results										
Conditioning pulses: 50			Perm't horiz	'l def'n/p	ulse (µm	1): 0,835	200			
Core temperature (°C): 29,4										
Skin temperature (°C): 29,4										
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Pulse 1	Pulse 2 P	ulse 3	Pulse 4	P	ulse 5	Mea	n	Std. Dev	. %CV
		0010		0000						

Peak loading force (N): 2220

	Pulse 1	Pulse 2	Pulse 3	Pulse 4	Pulse 5	Mean	Std. Dev.	%CV
Resilient modulus (MPa)	3112	3045	2990	2989	2979	3023	50,10	1,66
Total recoverable horiz. deform. (um)	7.33	7,49	7,63	7,62	7,64	7,54	0,12	1,58
Peak loading force (N)	2220	2220	2220	2218	2215	2219	1,83	0,08
Recoverable horiz. deform. #1 (um)	5,22	5,25	5,36	5,38	5,42	5,33	0.08	1,47
Recoverable horiz. deform. #2 (um)	2,11	2.24	2,26	2,24	2,22	2,21	0,05	2,47
Seating force (N)	222	222	221	221	222	222	0,48	0,22

4

Printed 23/3/2011 16:32:27

Indirect Tensile Modul	us Test							
Test method: ASTI Data fileName: F:\Vi Template file name: 122 Test date & time: 18/02 Project: Disso Operator: vitória Comments:	M D4123-82 / oria\20%CP1. /2011 11:22:02 ertação Mestrad	AASHTO TP D003 2 do	31 (horiz. lvdts	only, assur	ned Poisson's	ratio)		
Setup Parameters								
Target temperature (°C): 25 Loading pulse width (ms): 100 Pulse repetition period (ms): 1000	1		Pea Estima	k loading fo ted Poissor	rce (N): 1990 n's ratio: 0.4			
Conditioning pulse count: 50 Specimen Information Identification: 20%CP1 Remarks		Dimension Length (m Diameter (ns Point 1 m) 66,1 (mm) 101,6	Seatin Point 2 P 65,6 6 101,7 1	g force: AASH toint 3 Point 4 16,1 101,6 Cross-sect	Point 5 Point 6	6 of peak) 6 Average 5 65,9 0 101,6 0 2): 8112,6	Std Dev),3),1
Test Results Conditioning pulses: 50 Core temperature (°C): 29,4 Skin temperature (°C): 29,4			Perm't horiz	'l def'n/puls	se (µm): 0,3080	500		
Resilient modulus (MPa) Total recoverable horiz. deform. (µm) Peak loading force (N) Recoverable horiz. deform. #1 (µm) Recoverable horiz. deform. #2 (µm) Seating force (N)	Pulse 1 2538 7,97 1991 1,56 6,41 198	Pulse 2 2474 8,16 1987 1,70 6,46 199	Pulse 3 2472 8,17 1988 1,76 6,42 200	Pulse 4 2473 8,18 1991 1,80 6,38 199	Pulse 5 2465 8,22 1993 1,81 6,41 198	Mean 2484 8,14 1990 1,72 6,42 199	Std. Dev. 27,20 0,09 2,03 0,09 0,03 0,46	%CV 1,09 1,07 0,10 5,37 0,42 0,23
Pulse 1 Pulse	2	Horizonta Puls	e 3	#1	Horizontal def Pulse 4	ormation #2	Puise 5	

0,05 0,1 0,15 1 1,05 1,1

0

1,15 2

2,05 2,1

Time (sec)

4,1

4,15

4,05

2,15 3 3,05 3,1 3,15 4

Test method: ASTM D4123-82 / AASHTO TP31 (horiz. lvdts only, assumed Poisson's ratio) Data fileName: F:\Vitoria\20%CP2.D003

Template file name: 122

Test date & time: 18/02/2011 11:28:50 Project: Dissertação Mestrado

Operator: vitória

Comments:

Setup	Parameters
-------	------------

Target temperature (°C): 25 Loading pulse width (ms): 100 Pulse repetition period (ms): 1000 Conditioning pulse count: 50 Peak loading force (N): 1990 Estimated Poisson's ratio: 0.4

Seating force: AASHTO TP31 (10% of peak)

Specimen Information

Identification: 20%CP2 Remarks...

Dimensions	Point 1	Point 2	Point 3	Point 4	Point 5	Point 6	Average	Std Dev
Length (mm)	66,1	65,4	65,4				65,6	0,4
Diameter (mm)	101,3	101,3	101,3				101,3	
			11		50 1000 F	101 1020	121201207207307	

Cross-sectional area (mm²): 8059,5

Test Results

Conditioning pulses: 50 Perm't horiz'l def'n/pulse (µm): 0,526200 Core temperature (°C): 29,4 Skin temperature (°C): 29,4 Pulse 1 Pulse 2 Pulse 3 Pulse 4 Pulse 5 Std. Dev. %CV Mean 2334 2433 2395 2366 2406 58,66 2,44 Resilient modulus (MPa) 2504 Total recoverable horiz. deform. (µm) 8,11 8,35 8,47 8,58 8,70 8,44 0,20 2,39 Peak loading force (N) 1990 1989 1987 1989 1989 1989 0,80 0,04 Recoverable horiz. deform. #1 (um) 1,46 1,42 1,35 1,32 1,22 1,35 0,08 6,27 7,26 Recoverable horiz. deform. #2 (µm) 6,65 7,09 0,28 7,12 4,01 6.93 7.48 0,17 Seating force (N) 199 199 199 198 199 199 0,33

Test method: ASTM D4123-82 / AASHTO TP31 (horiz. lvdts only, assumed Poisson's ratio) Data fileName: F:\Vitoria\20%CP3.D003

Template file name: 122

Test date & time: 18/02/2011 11:05:20

Project: Dissertação Mestrado

Operator: vitória

Comments:

Setup Parameters

Resilient modulus (MPa Total recoverable horiz. Peak loading force (N) Recoverable horiz. defo Recoverable horiz. defo Seating force (N)	deform. (μm) rm. #1 (μm) rm. #2 (μm)	7,06 1986 2,06 4,99 199	7,25 7,3 1988 199 2,14 2,2 5,15 5,10 199 199 Horizontal def	0 1 5 ormation 1	1987 2,24 5,23 199	19 2, 5, 19 Horiz	990 26 20 99 ontal def	1988 2,18 5,15 199	8 n #2	1,69 0,07 0,08 0,20	2,06 2,08 0,08 3,37 1,58 0,10	
Resilient modulus (MPa Total recoverable horiz. Peak loading force (N) Recoverable horiz. defo Recoverable horiz. defo Seating force (N)	ay deform. (μm) rm. #1 (μm) rm. #2 (μm)	7,06 1986 2,06 4,99 199	7,29 7,3 1988 199 2,14 2,2' 5,15 5,10 199 199	0	1987 2,24 5,23 199	19 2, 5, 19	26 20 99	1980 2,18 5,15 199	B	1,69 0,07 0,08 0,20	2,06 2,08 0,08 3,37 1,58 0,10	
Resilient modulus (MPa Total recoverable horiz.	deform. (µm)	7,06	1,29 1,3					1.00		0.10	2,06	
	2)	2875	2787 275	7	2715 7,47	27	725 46	2772	2	57,20	1 1 SAD 1 SA	
Skin temperat	ure (°C): 29,4	Pulse 1	Pulse 2 Pul	se 3	Pulse 4	P	ulse 5	Mea	n	Std. Dev	%C1	
Core temperat	ure (°C): 29,4											
Test Results Conditioning	g pulses: 50		Pe	rm't horiz	'l def'n/pi	ulse (µm): 0,651	800				
						Cr	oss-sect	ional are	ea (mm²)	: 8107,3		
			Diameter (mm)	101,6	101,6	101,6				101,6	0,0	
			Length (mm)	65,4	65,7	65,7				65,6	0,2	
Specimen Information Identification: 20%CF Remarks	23		Dimensions	Point 1	Point 2	Point 3	Point 4	Point 5	Point 6	Average	Std Dev	
Conditioning puts	se count: 50				Sea	ting forc	e: AASH	ITO TP:	31 (10%	of peak)		
Conditioning puls												
Pulse repetition per	iod (ms): 1000			Estimated Poisson's ratio: 0.4								
Loading pulse wie Pulse repetition per	dth (ms): 100 iod (ms): 1000			Peak loading force (N): 1990								

%CV

2,06 2,08 0,08

3,37 1,58

0,10

		the second s	No. of Concession, Name and Address of Concession, Name of Concess	All Course of Local Solar Solar	AT A THE DRIVE WAS A VALUE OF A DRIVE OF A D	OF MERCENSING	and the same the same descent of the second
Test method: ASTN	1 D4123-82 / /	AASHTO TP31 (ho	riz. lvdts only, ass	umed Poisson's	ratio)		
Data fileName: F:\Vit	oria\25%CP1.D	0003					
Template file name: 122							
Test date & time: 18/02	2011 11:44:25						
Project: Disse	rtação Mestrad	0					
Operator: vitória							
Comments:							
Sotup Paramotors							
Setup Parameters							
Target temperature (°C): 25			Peak loading	force (N): 2080			
Loading pulse width (ms): 100			Estimated Poiss	son's ratio: 0.4			
Pulse repetition period (ms): 1000							
Conditioning pulse count: 50			Sea	ting force: AASI	HTO TP31 (109	6 of peak)	
Specimen Information							
Identification: 10%CP3							
Remarks		Dimensions	Point 1 Point 2	Point 3 Point 4	Point 5 Point 6	Average S	td Dev
		Length (mm)	65,4 65,7	66,0		65,7 0	,3
		Diameter (mm)	101,6 101,6	101,6		101,6 0	,0
				Cross-sect	tional area (mm ³	2): 8107,3	
Test Results							
Conditioning pulses: 50		Pe	m't horiz'l def'n/p	ulse (um): 0.692	900		
Core temperature (°C): 29,4							
Skin temperature (°C): 29,4							
	Pulse 1	Pulse 2 Puls	e 3 Pulse 4	Pulse 5	Mean	Std. Dev.	%CV
Resilient modulus (MPa)	3454	3355 3344	4 3295	3301	3350	57,10	1,70
Peak loading force (N)	2080	2078 208	2 2079	0,43	6,34	0,11	1,/1
Recoverable horiz. deform. #1 (µm)	3,01	3,06 3,10	3,22	3,17	3,11	0,07	2,40
Recoverable horiz. deform. #2 (µm)	3,13	3,26 3,25	3,22	3,27	3,22	0,05	1,55
Sealing force (14)	200	209 207	200	200	208	0,69	0,33
		Horizontal defo	rmation #1	Horizontal def	formation #2		
Pulse 1 Pulse	2	Pulse 3		Pulse 4		Pulse 5	
			~				
				1		11	
	IA	1	\wedge	1 1/			
					1		
				1 1/	V II		
	6 N						
							1 mar
			Jun 1				
				m		~	
				~			
The second secon	05 44	1 15 2 205	21 215	3 3.05	3,1 3,15	4 4.05	4.1 4.15
0 0,05 0,1 0,15 1 1	.05 1,1	1,15 2 2,05	and a subject of				(31 S) (31 (31)
0 0,05 0,1 0,15 1 1	,05 1,1	1,15 2 2,05 Tin	ne (sec)	e de l'artes			
0 0,05 0,1 0,15 1 1	.05 1,1	1,15 2 2,05 Tin	ne (sec)				

Industrial Process Controls Global Ltd UTS003 Ver:1.39 (1.39)

Printed 23/3/2011 16:37:01

Test method: AST Data fileName: F:\Vi Template file name: 122	M D4123-82 / A toria\25%CP2.D	AASHTO TP31 003	(horiz. lvdts o	only, assu	umed Po	isson's r	atio)			
Test date & time: 18/02 Project: Diss	2/2011 10:57:38 ertação Mestrad	0								
Operator: vitória	a									
Comments:										
Setup Parameters										
Target temperature (°C): 25			Peak	loading	force (N): 2080				
Loading pulse width (ms): 100			Estimat	ed Poiss	on's ratio	0: 0.4				
Pulse repetition period (ms): 100	0									
Conditioning pulse count: 50				Seat	ting force	e: AASH	ITO TP3	1 (10%	of peak)	
Specimen Information										
Remarks		Dimensions	Point 1	Point 2	Point 3	Point 4	Point 5	Point 6	Average	Std Dev
		Length (mn	1) 65,9	65,8	66,1				65,9	0,2
		Diameter (n	101,0	101,5	101,5 Cn	nss-serti	ional are	a (mm²)	101,5	0,1
					01	033-3000		a (mn)	. 0090,7	
Tost Posuite										
Conditioning pulses: 50			Perm't horiz	'l def'n/pi	ulse (µm): 0,748	200			
Core temperature (°C): 29,4	1									
Skin temperature (°C): 29,4					-					
Resilient modulus (MPa)	Pulse 1 3092	Pulse 2 3001	Pulse 3	Pulse 4	Pi	uise 5	Mea	n)	Std. Dev 48.77	. %CV
Total recoverable horiz. deform. (µm)	6,83	7,05	7,12	7,15	7,	08	7,05	,	0,11	1,59
Peak loading force (N) Recoverable horiz deform #1 (um)	2079	2082	2080	2077	20)80 25	2080)	1,57	0,08
Recoverable horiz. deform. #2 (µm)	3,25	3,06	2,95	2,95	2,	83	3,01		0,14	4,69
Seating force (N)	208	208	208	208	20	8	208		0,25	0,12
Dules 1 Dule	- 2	Horizontal Bulc	deformation i	H	- Horiz	ontal def	ormation	#2	Duice 5	
Fulse i Fuls			: 5		Fuise	F 49			ruise o	<u> </u>
)					
									1	

Industrial Process Controls Global Ltd UTS003 Ver:1.39 (1.39)

		and an and an an an and an	And a second second second property	A CONTRACTOR OF THE OWNER	STATES OF THE REAL PROPERTY.	CONTRACTOR OF A DESCRIPTION OF A DESCRIP	A CONTRACTOR OF THE OWNER WATCHING TO THE	NAME OF TAXABLE PARTY.	National Conductor Service Service Services
Test method: ASTM Data fileName: F:\Vite	D4123-82 // pria\25%CP3.D	AASHTO TP3	1 (horiz. lvdts	only, ass	umed Po	oisson's rat	lio)		
Template file name: 122									
Test date & time: 18/02/	2011 11:13:07								
Project: Disse	tação Mestrad	0							
Operator: vitória									
Comments:									
Setup Parameters									
Target temperature (°C): 25			Pea	ak loading	force (N): 2080			
Loading pulse width (ms): 100			Estima	ated Poiss	son's ratio	o: 0.4			
Pulse repetition period (ms): 1000									
Conditioning pulse count: 50				Sea	ting force	e: AASHT	O TP31 (109	of peak)	
Specimon Information									
Identification: 25%CP3	2								
Remarks		Dimension	s Point	1 Doint 2	Doint 3	Doint 4 D	aint & Daint (Autorano	Ctd Davi
		Length (mr	m) 65,4	66.0	65.7	r one 4 re		65.7	0.3
		Diameter (mm) 101,8	101,7	101,4			101,6	0,2
					Cr	oss-section	nal area (mm): 8112,6	
Test Results									
Conditioning pulses: 50			Perm't hori	z'l def'n/n	uleo (um). 1 11000	0		
Core temperature (°C): 29.4			Contraction	e i dei liip	use (µm). 1,11900	0		
Skin temperature (°C): 29,4									
	Pulse 1	Pulse 2	Pulse 3	Pulse 4	P	ulse 5	Mean	Std. Dev	. %CV
Resilient modulus (MPa)	4223	4065	4014	4039	39	950	4058	90,66	2,23
l otal recoverable horiz. deform. (µm) Peak loading force (N)	5,03	5,22	5,29	5,26	5,	37	5,23	0,11	2,17
Recoverable horiz. deform. #1 (µm)	3,67	3,73	3.77	3.76	3.	83	3.75	0.05	1.39
Recoverable horiz. deform. #2 (µm)	1,35	1,49	1,52	1,49	1,	54	1,48	0,06	4,37
Seating force (N)	208	208	208	208	20)8	208	0,08	0,04
		Horizonta	i deformation	#1	- Horiz	ontal deform	mation #2		
Pulse 1 Pulse	2	Puls	e 3		Pulse	4		Pulse 5	
I I								1 4150 0	
	~		\wedge		1	A			
\wedge	Λ		$ \langle \Lambda $			0			
$ f \rangle$	$ f - \lambda $					$ /\rangle$			
						1/ \		1	
						. / \		1	
	V					1		1	hanner
			1	man	1 /		man		\mathbf{h}
					1/	1		mar 1	
1 Junior /					F	1			
				~			1		
					1 7				
	1				1 /			1	
			1		part.				
		-			~			~	
	05 44		2.05					~	

Test method: ASTM D4123-82 / AASHTO TP31 (horiz. lvdts only, assumed Poisson's ratio) Data fileName: F:\Vitoria\30%CP1.D003 Template file name: 122 Test date & time: 18/02/2011 12:04:26 Project: Dissertação Mestrado Operator: vitória Comments:

Setup Parameters

Target temperature (°C):	25
Loading pulse width (ms):	100
Pulse repetition period (ms):	1000
Conditioning pulse count:	50

Peak loading force (N): 1990 Estimated Poisson's ratio: 0.4

Seating force: AASHTO TP31 (10% of peak)

Specimen Information

Identification: 30%CP1 Remarks...

Dimensions	Point 1	Point 2	Point 3	Point 4	Point 5	Point 6	Average	Std Dev
Length (mm)	65,8	65,8	65,9				65,8	0,1
Diameter (mm)	101,6	101,3	101,4				101,4	0,2
						- an - cal		

Cross-sectional area (mm²): 8080,7

Test Results

Conditioning pulses: 50 Core temperature (°C): 29,4 Skin temperature (°C): 29,4

Perm't horiz'l def'n/pulse (µm): 0,441400

	Pulse 1	Pulse 2	Pulse 3	Pulse 4	Pulse 5	Mean	Std. Dev.	%CV
Resilient modulus (MPa)	3542	3397	3355	3395	3349	3408	69.97	2.05
Total recoverable horiz. deform. (µm)	5,71	5,96	6.03	5.96	6.05	5.94	0.12	2.04
Peak loading force (N)	1988	1989	1988	1989	1991	1989	1.23	0.06
Recoverable horiz. deform, #1 (µm)	3.00	3,10	3.15	3.08	3.14	3.09	0.05	1 65
Recoverable horiz. deform. #2 (µm)	2,71	2.86	2.89	2.88	2.91	2.85	0.07	2 56
Seating force (N)	199	199	199	199	199	199	0.19	0 10

Test method: ASTM	D4123-82 / AASHTO TP31 (horiz. lvdts only, assumed Poisson's ratio)
Data fileName: F:\Vito	ria\30%CP2.D003
Template file name: 122	
Test date & time: 18/02/2	2011 10:48:37
Project: Dissert	ação Mestrado

Operator: vitória Comments:

Setup	Parameters

Target temperature (°C):	25
Loading pulse width (ms):	100
Pulse repetition period (ms):	1000
Conditioning pulse count:	50

Peak loading force (N): 1990 Estimated Poisson's ratio: 0.4

Seating force: AASHTO TP31 (10% of peak)

Specimen Information

Identification: 30%CP2 Remarks...

Dimensions	Point 1	Point 2	Point 3	Point 4	Point 5	Point 6	Average	Std Dev
Length (mm)	66,7	66,7	66,9				66.8	0.1
Diameter (mm)	101,7	101,5	101,5				101,6	0,1
	×							1.0000

Cross-sectional area (mm²): 8102,0

Test Results

Conditioning pulses: 50 Core temperature (°C): 29,4 Skin temperature (°C): 29,4

Perm't horiz'l def'n/pulse (µm): 0,627700

	Pulse 1	Pulse 2	Pulse 3	Pulse 4	Pulse 5	Mean	Std. Dev.	%CV
Resilient modulus (MPa)	3232	3130	3070	3043	2992	3093	82.51	2 67
Total recoverable horiz. deform. (µm)	6,18	6,38	6,51	6,56	6.67	6.46	0.17	2.60
Peak loading force (N)	1992	1991	1991	1990	1989	1991	0.82	0.04
Recoverable horiz. deform. #1 (µm)	0,60	0,62	0,71	0.69	0.78	0.68	0.07	9.72
Recoverable horiz. deform. #2 (µm)	5,59	5,76	5,79	5.88	5.89	5.78	0.11	1.88
Seating force (N)	199	198	199	199	199	199	0.46	0.23

Test method: ASTM	D4123-82 / AASHTO TP3	1 (horiz. lvdts only,	assumed Poisson's ratio)
Data fileName: F:\Vito	oria\30%CP3.D003		
1.1. []			

Template file name: 122

Test date & time: 18/02/2011 12:21:21 Project: Dissertação Mestrado

Operator: vitória

Comments:

Setup Parameters											
Target temperature (°C): 25			Peal	k loading	force	(N): 1990					
Loading pulse width (ms): 100			Estimat	ted Poiss	on's ra	atio: 0.4					
Pulse repetition period (ms): 1000											
Conditioning pulse count: 50				Sea	ting fo	rce: AASH	TO TP	31 (10%	of peak)		
Specimen Information Identification: 30%CP3 Remarks		Dimension Length (mr	s Point 1 n) 67,1	Point 2 66,7	Point 66,9	3 Point 4	Point 5	Point 6	Average 66,9	Std D	ev
		Diameter (mm) 101,6	101,9	101,	5			101,7	0,2	
						Cross-sec	tional are	ea (mm²)	: 8118,0		
Test Results											
Conditioning pulses: 50			Perm't horiz	'l def'n/pu	ulse (µ	um): 0,674	900				
Core temperature (°C): 29,4											
Skin temperature (°C): 29,4											
	Pulse 1	Pulse 2	Pulse 3	Pulse 4		Pulse 5	Mea	n	Std. Dev	. %	CV
Total recoverable horiz, deform, (um)	2570	2502	2506	2508		2497	251	7	26,90	1,	07
Peak loading force (N)	1989	1989	1986	1990		1991	198	9	1,57	0,	08
Recoverable horiz. deform. #1 (µm)	4,16	4,15	4,12	4,09		4,13	4,13	}	0,03	0,	64
Seating force (N)	3,58	3,82	3,82	3,86	1	3,86	3,79)	0,10	2,	73
					1	100	100		0,40	0,	20
				#1	- Ho	rizontal del	formation	n #2			
Pulse 1 Pulse	2	Puls	e 3		Pul	se 4		1	Pulse 5		
0 0,05 0,1 0,15 1 1.	.05 1.1	1,15 2	2,05 2,1	2.15	3	3.05	3.1	3,15 4	4.05	5 4	.1 4.

Time (sec)

Ó

4,05 4,1 4,15

Anexo C

Indirect Tensile Módulos Test – resumo do ensaio de Módulo de Resiliência para corpos-de-prova compactados pela metodologia SUPERPAVE

Test method: ASTM D41	23-82 / AASHTO TP31 (horiz. lvdts only, assumed Poisson's ratio)
Data fileName: F:\Vitoria\G	iratorio\G MF5% - CP1.D003
Template file name: 122	

Test date & time: 22/03/2011 10:22:16 Project: Dissertação Mestrado

Operator: Vitória Comments:

Setup Parameters

Target temperature (Loading pulse width ((°C): 25 ms): 100	Peak loading force (N): 2347 Estimated Poisson's ratio: 0.4										
Pulse repetition period (Conditioning pulse co	ms): 1000 ount: 50					Sea	ting force	e: AASI	НТО ТР	31 (10%	of peak)	
Specimen Information Identification: G MF5% -	CP1											
Remarks			Dimensio	ons	Point 1	Point 2	Point 3	Point 4	Point 5	Point 6	Averano	Std Dev
			Length (n	nm)	65.0	65,2	65.2		i onte o	T ONLE O	65.1	0.1
			Diameter	(mm)	99,9	99,9	99,8				99.9	0.1
							Cr	oss-sec	tional are	ea (mm²)	: 7833,1	1-1-
Test Results												
Conditioning pul	ses: 50			Perr	n't horiz	'l def'n/pi	ilse (um) 1 015	000			
Core temperature (°C): 29,4							<i>j.</i> 1,010	000			
Skin temperature (°C): 29,4											
		Pulse 1	Pulse 2	Pulse	3	Pulse 4	P	ulse 5	Mea	n	Std. Dev	%CV
Resilient modulus (MPa) Total recoverable horiz. defor Peak loading force (N) Recoverable horiz. deform. a Recoverable horiz. deform. a Seating force (N)	rm. (μm) ⊭1 (μm) ⊭2 (μm)	5103 4,74 2349 3,29 1,45 235	4809 5,01 2344 3,52 1,50 235	4624 5,21 2344 3,57 1,65 236		4514 5,35 2349 3,63 1,73 234	44 5, 23 3, 1, 23	141 43 344 71 72 35	469 5,15 234 3,54 1,61 235	8	237,17 0,25 2,58 0,14 0,11 0,45	5,05 4,86 0,11 4,03 7,09 0,19
			Horizon	tal defor	mation #	F1	- Horiz	ontal de	formation	n #2		
Pulse 1	Pulse	2	Pul	se 3			Pulse	4		. 1	Pulse 5	
		A	La	1	~	ww		r	h	~~~		A

1,05

1,1

1,15 2

2,05

2,1

Time (sec)

2,15 3

3,05

3,1

3,15 4

4,05

0,15 1

Ó

0,05

0,1

4,1

4,15

and the second	the second se
Test method: ASTM D4123-82 / AAS Data fileName: F:\Vitoria\Giratoria\G ME	HTO TP31 (horiz. lvdts only, assumed Poisson's ratio)
Template file name: 122	
Test date & time: 22/03/2011 10:54:26	
Project: Dissertação Mestrado	
Operator: vitória	
Comments:	
Setup Parameters	
Target temperature (°C): 25	Peak loading force (N): 2347
Loading pulse width (ms): 100	Estimated Poisson's ratio: 0.4
Pulse repetition period (ms): 1000	
Conditioning pulse count: 50	Seating force: AASHTO TP31 (10% of peak)
Specimen Information	

Identification: G MF 5% - CP2 Remarks...

Dimensions	Point 1	Point 2	Point 3	Point 4	Point 5	Point 6	Average	Std Dev
Length (mm)	65,0	65,1	65,0				65,0	0,1
Diameter (mm)	100,0	99,7	99,8				99,8	0.2

Cross-sectional area (mm2): 7827,8

Test Results

Conditioning pulses: 50 Core temperature (°C): 29,4 Skin temperature (°C): 29,4		Perm't horiz'l def'n/pulse (µm): 1,212000									
	Pulse 1	Pulse 2	Pulse 3	Pulse 4	Pulse 5	Mean	Std. Dev.	%CV			
Resilient modulus (MPa) Total recoverable horiz. deform. (µm) Peak loading force (N) Recoverable horiz. deform. #1 (µm) Recoverable horiz. deform. #2 (µm) Seating force (N)	4367 5,53 2346 2,05 3,48 235	4164 5,81 2350 2,15 3,66 235	4090 5,91 2347 2,19 3,72 235	4004 6,04 2349 2,25 3,79 235	3998 6,06 2350 2,31 3,75 235	4125 5,87 2348 2,19 3,68 235	135,96 0,19 1,67 0,09 0,11 0,19	3,30 3,26 0,07 4,02 2,94 0,08			

Test method: ASTM D4123-82 / AASHTO TP31 (horiz. lvdi	s only, assumed Poisson's ratio)
Data fileName: F:\Vitoria\Giratorio\G MF5% - CP3.D003	,
Template file name: 122	
Test date & time: 22/03/2011 10:09:46	
Project: Dissertação Mestrado	

Operator: Vitória

Comments:

Setup Parameters												
Tarnet temperatur	e (°C) · 25				Deak	looding	force (h)	1. 0047				
l codina pulso width	$(m_{0}) \cdot 100$				Peak	loading	TOFCE (N): 2347				
Dules resulting pulse wide	1 (ms): 100			t	stimat	ed Poiss	on's ratio	0: 0.4				
Pulse repetition period	1 (ms): 1000											
Conditioning pulse	count: 50					Seat	ting force	e: AASH	ITO TP	31 (10%	of peak)	
Specimen Information Identification: G MF5%	- CP3											
Remarks			Dimensio	ns	Point 1	Point 2	Point 3	Point 4	Point 5	Point 6	Average	Std Dev
			Length (n	nm)	65.2	65.0	64.9			· our o	65.0	0.2
			Diameter	(mm)	99,7	99,7	99,7				99,7	o,c
						1	Cr	oss-sect	ional are	ea (mm²)	7806.9	
										. ,		
Toot Beautte												
Conditioning of	ulace: EO			0								
Core temperature	(°C): 20 4			Perm	it noriz	i defin/pu	Jise (µm): 1,261	000			
Skin tomperature	C(C): 29,4											
Skill temperature	c (U). 29,4	Pulse 1	Pulse 2	Pulse	3	Pulse A	D	deo 5	Mon		Std Day	NOV
Resilient modulus (MPa)		4471	4255	4207		4231	42	136 0	427	0	07 18	2 27
Total recoverable horiz. de	eform. (µm)	5,42	5,69	5,76		5,72	5.	72	5.66	5	0.12	2,20
Peak loading force (N)		2350	2351	2351		2349	23	50	235	0	0,64	0,03
Recoverable horiz. deform	1. #1 (μm)	4,83	4,99	4,96		4,94	4,	94	4,93	5	0,05	1,11
Recoverable noriz. deform	i. #2 (µm)	0,59	0,70	0,80		0,78	0,	78	0,73	5	0,08	10,71
Dealing force (14)		233	235	234		230	23	10	235		0,16	0,07
			Horizont	al deform	nation #	F1	- Horiz	ontal def	ormation	n #2		
Pulse 1	Pulse	2	Puls	se 3			Pulse	4		1	Pulse 5	
		\bigwedge		(\int		1		
				1				-	~			~

0,15 1

1,05

1,1

1,15 2

2,05

2,1

Time (sec)

2,15 3

3,05

3,1

3,15 4

4,05

0

0,05

0,1

4,1

4,15

Test method: ASTM D4123-82 / AASHTO TP31 (horiz. lvdts only, assum	ed Poisson's ratio)
Data fileName: F:\Vitoria\Giratorio\G MF 10% - CP1.D003	
Template file name: 122	

Test date & time: 22/03/2011 10:40:41

Project: Dissertação Mestrado Operator: vitória Comments:

Comments.

Setup Parameters

Target temperature (°C): 25 Peak loading force (N): 2502 Loading pulse width (ms): 100 Estimated Poisson's ratio: 0.4 Pulse repetition period (ms): 1000 Conditioning pulse count: 5 Seating force: AASHTO TP31 (10% of peak) Specimen Information Identification: G MF 10% - CP1 Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Average Std Dev Remarks... Dimensions Length (mm) 64,2 64,1 64.1 64.1 0.1 Diameter (mm) 99,8 99,8 100,0 99.9 0.1 Cross-sectional area (mm²): 7833,1 **Test Results** Conditioning pulses: 5 Perm't horiz'l def'n/pulse (µm): 2,336000 Core temperature (°C): 29,4 Skin temperature (°C): 29,4 Pulse 1 Pulse 2 Pulse 3 Pulse 4 Pulse 5 Mean Std. Dev. %CV Resilient modulus (MPa) 4233 4056 3992 3976 3906 4033 110,92 2,75 Total recoverable horiz. deform. (µm) 6.17 6.44 6,55 6,57 6,69 6,48 0,17 2,68 Peak loading force (N) 2501 2501 2501 2499 2501 2501 0.91 0,04 Recoverable horiz. deform. #1 (µm) 4,94 5,01 5,03 5,03 5,14 5.03 0,07 1,31 Recoverable horiz. deform. #2 (µm) 1,24 1,43 1.52 1,53 1.55 1,45 0,12 7,91 Seating force (N) 250 250 251 250 251 250 0,37 0,15 Horizontal deformation #2 Pulse 1 Pulse 2 Pulse 3 Pulse 4 Pulse 5

Setup Parameters

Target temperature (°C): 25

Loading pulse width (ms): 100

Test method: ASTM D4123-82 / AASHTO TP31 (horiz. lvdts only, assumed Poisson's ral	tio)
Data fileName: F:\Vitoria\Giratorio\G MF10% - CP2.D003	- 5
Template file name: 122	
Test date & time: 22/03/2011 09:40:28	
Project: Dissertação Mestrado	
Operator: Vitória	
Comments:	

Louding pulse main (ma). Too			5	Sunat	eu roiss	onstati	0. 0.4					
Pulse repetition period (ms): 1000												
Conditioning pulse count: 5	Seating force: AASHTO TP31 (10% of peak)											
Specimen Information Identification: G MF10% - CP2												
Remarks		Dimensio	ns I	Point 1	Point 2	Point 3	Point 4	Doint 5	Doint 6	Autorago	Ctd Day	
		l ength (mm)		64.4	64.1	64.2	1 0111 4	FOILT	FUILO	Average	Stu Dev	
		Diameter	(mm)	8 00	100.0	00.7				09,2	0,2	
		e amotor (mm) 33,0				Cross-sectional area (mn				99,0 : 7827.8	0,2	
Test Results												
Conditioning pulses: 5			Perm	t horiz'	l def'n/p	ulse (µm): 2,653	000				
Core temperature (°C): 29,4					•	ų						
Skin temperature (°C): 29,4												
	Pulse 1	Pulse 2	Pulse	3	Pulse 4	P	ulse 5	Mea	n	Std. Dev	%CV	
Resilient modulus (MPa)	3118	3106	3010		3043	3(010	305	7	46 57	1.52	
Total recoverable horiz. deform. (µm)	8,37	8,41 8,67			8,58		8,67 8		,54 0,13		1.49	
Peak loading force (N)	2502	2506	2503		2504	2502		250	3	1,31	0,05	
Recoverable horiz, deform, #1 (µm)	7,61	7,82	8,08		8,06		12	7,94	ļ.	0,20	2,46	
Section force (N)	0,70	0,59	0,59	0,59		0,55		0,61		0,08	13,74	
	201	200	250 250		23	50	250		0,25	0,10		
					1	- Horiz	ontal def	ormatio	n #2			
Pulse 1 Pulse 2		Pulse 3			Pulse 4				1	Pulse 5		
	A			K				K				

1,15 2

2,05

2,1

Time (sec)

Peak loading force (N): 2502

Estimated Poisson's ratio: 0.4

2,15 3

3,05

3,1

3,15 4

4,05

0,15 1

1,05

1,1

0,05

0,1

0

Printed 23/3/2011 16:46:16

4,1

4,15
	New years of a straining to the second	and the second second		the second s	A DESCRIPTION OF REAL PROPERTY.			and the second second second		
Test	method: ASTM	-D4123-82 /	AASHTO TP3	31 (horiz. lvdt	s only, as	sumed	Poisson's ra	atio)		
Data f	fileName: F:\Vito	oria\Giratorio\G	6 MF10% - CP	3.D003						
Template f	file name: 122									
Test date	e & time: 22/03/	2011 10:58:51	6							
	Project: Disse	rtação Mestrad	io							
0	Operator: vitória									
Co	omments:									
Setup Parameters										
Target tempera	ture (°C): 25			Do	ak looding	forma	(NI) 2502			
Loading pulse wi	idth (ms): 100			Ectim	at idauling		(IV). 2002			
Pulse repetition per	riod (ms): 1000			Louin	alcu Puis	5011512	10. 0.4			
Conditioning out	se count: 50				0		4400			
Conditioning put	se count. So				Sea	ating for	rce: AASH	TO TP31 (109	% of peak)	
Specimen Information	n									
Identification: G MF1	10% - CP3									
Remarks			Dimension	s Point	1 Point 2	Point	3 Point 4	Point 5 Point	6 Average	Std Dev
			Length (m	m) 64,4	64,2	64,0			64,2	0,2
			Diameter (mm) 99,9	99,7	99,8		-	99,8	0,1
						(Cross-section	onal area (mm	²): 7822,6	
Test Results										
Conditionin	a pulses: 50			Perm't hor	iz'l def'n/n	ulse (u	m)· 0 5761	00		
Core temperat	ture (°C): 29,4					ande (b	1117. 0,0701	00		
Skin temperat	ture (°C): 29,4									
		Pulse 1	Pulse 2	Pulse 3	Pulse 4	4	Pulse 5	Mean	Std. Dev	. %CV
Resilient modulus (MPa	a)	5571	5514	5411	5405		5361	5452	77,49	1,42
Total recoverable horiz.	deform. (µm)	4,68	4,73	4,83	4,82	1	4,86	4,79	0,07	1,42
Recoverable horiz, defo	orm, #1 (um)	2,20	2.23	2.25	2496		2499	2 24	1,50	0,06
Recoverable horiz. defo	orm. #2 (µm)	2,48	2,50	2,58	2,56		2,60	2,54	0,04	1,74
Seating force (N)		251	250	250	249		251	250	0,47	0,19
			Herizonte	deformation		Hor	otob letnori	rmation #2		1
Dulas 4	Deles					HUI	IZONILAI GEIO	ritiduori #2	-	
Pulse 1	Pulse	Z	Puls	e 3		Puls	se 4		Pulse 5	
										\wedge
							A			
							1/1			
										N.
				1			1	8		
			111			11	1	1		
		1					1	N		
		1								
				1			1			
				1	m		1	m		mana
			~		man		1			
	-	1	7							
	74 1								m	
						Im			m	
and a	1									
	0.15.1	05 44	1 15 0	205			2.05	21 245	4 405	
0 0.05 0.1	0,15 1 1,	,uo 1,1	1,15 2	2,00 2,1	2,15	5 0	3,05	3,1 3,15	4 4,05	4,1 4,15

Time (sec)

	and the second se	
Test method: ASTM D4123-82 / AASHTO Data fileName: F:\Vitoria\Giratorio\G MF15%	TP31 (horiz. lvdts only, assumed Pois - CP1.D003	sson's ratio)
Template file name: 122		
Test date & time: 22/03/2011 09:54:25		
Project: Dissertação Mestrado		
Operator: Vitória		
Comments:		
Setup Parameters		
Target temperature (°C): 25	Peak loading force (N):	2360
Loading pulse width (ms): 100	Estimated Poisson's ratio:	0.4
Pulse repetition period (ms): 1000		
Conditioning pulse count: 5	Seating force:	AASHTO TP31 (10% of peak)
Specimen Information		
Identification: G ME15% - CP1		

Identification: G MF15% - CP1 Remarks...

	Cutt 1	POINT	Point 3	Point 4	Point 5	Point 6	Average	Std Dev
Length (mm) 6	55,7	65,9	66,2				65,9	0,3
Diameter (mm) 9	9,9	99,8	99,8				99,8	0,1

Cross-sectional area (mm²): 7827,8

Printed 23/3/2011 16:48:23

Urcuididididitece

Test Results

Conditioning pulses: 5 Core temperature (°C): 29,4 Skin temperature (°C): 20,4

Perm't horiz'l def'n/pulse (µm): 2,029000

	Pulse 1	Pulse 2	Pulse 3	Pulse 4	Pulse 5	Mean	Std. Dev.	%CV
Resilient modulus (MPa)	3345	3186	3105	3098	3109	3168	93.69	2.96
Total recoverable horiz. deform. (µm)	7,17	7,53	7,73	7.75	7.70	7.58	0.22	2.87
Peak loading force (N)	2360	2361	2363	2362	2357	2360	2 15	0.09
Recoverable horiz. deform. #1 (µm)	5.84	6.09	6.18	6.19	6.11	6.08	0.13	2 11
Recoverable horiz. deform. #2 (µm)	1.33	1.44	1.55	1.56	1.59	1.50	0.10	6.41
Seating force (N)	236	236	236	237	237	236	0.13	0.05

Test method:	ASTM	D4123-82	/ AASHTO	TP31 (horiz.	lvdts only	y, assumed Po	isson's ratio)
Data fileName:	F:\Vito	ria\Giratorlo	NG MF 15%	- CP2.D003			
remplate file name:	122			1			

Test date & time: 22/03/2011 10:46:51

Project: Dissertação Mestrado Operator: vitória

Comments:

Setup Parameters

Target temperature (°C): 25 Loading pulse width (ms): 100 Pulse repetition period (ms): 1000 Conditioning pulse count: 5

Peak loading force (N): 2360 Estimated Poisson's ratio: 0.4

Perm't horiz'l def'n/pulse (µm): 1,174000

Seating force: AASHTO TP31 (10% of peak)

Specimen Information

Identification: G MF 15% - CP2 Remarks...

Dimensions	Point 1	Point 2	Point 3	Point 4	Point 5	Point 6	Average	Std Dev
_ength (mm)	66,2	65,8	66,0				66,0	0,2
Diameter (mm)	99,7	100,0	100,0				99,9	0,2
			C-		ing at any	a (7000 0	

Cross-sectional area (mm²): 7838,3

Test Results

Conditioning pulses: 5 Core temperature (°C): 29,4 Skin temperature (°C): 29,4

Pulse 1 Pulse 2 Pulse 3 Pulse 4 Pulse 5 Mean Std. Dev. %CV 3672 Resilient modulus (MPa) 3789 3621 3598 3591 3654 73,19 2,00 Total recoverable horiz. deform. (µm) 6,33 6,54 6,62 6,67 6,67 6,57 0,13 1,93 Peak loading force (N) 2364 2364 2362 2363 2361 2363 1,30 0,05 Recoverable horiz. deform. #1 (µm) 5,20 5,24 5,29 5,31 5,27 5,26 0,04 0,72 Recoverable horiz. deform. #2 (µm) 1,14 1.29 1.36 1.33 1.40 1,31 0,09 7,04 Seating force (N) 236 236 236 236 236 236 0,14 0.06

indifect renoite moduli	us rest		The subcoding of the second					
Test method: AST	M D4123-82 /	AASHTO TP:	31 (horiz. lvdts	only, assu	med Poisson's ra	atio)		
Data fileName: F:\Vi	toria\Giratorio\C	G MF15% - CF	23.D003	20		,		
Template file name: 122								
Test date & time: 22/03	3/2011 11:02:26	6						
Project: Diss	ertação Mestrad	do						
Operator: vitória	1							
Comments:								
Setun Parameters								
Translations								
l arget temperature (°C): 25			Pea	ak loading fo	orce (N): 2360			
Loading pulse width (ms): 100			Estima	ated Poisso	n's ratio: 0.4			
Pulse repetition period (ms): 1000)							
Conditioning pulse count: 50				Seatin	ng force: AASH1	FO TP31 (10	1% of peak)	
Specimen Information								
Identification: G MF15% - CP3		Dimension						
Nemarks		Length (m	ns Point	1 Point 2 F	Point 3 Point 4 F	Point 5 Point	6 Average S	td Dev
		Diameter	(mm) 99.9	100.0	99.8		04,7 0,	,1
				100,0	Cross-sectio	nal area (mn	n2)· 7939 2	11
					01033-30000	Alai alea (IIII	1]. 1030,5	
-								
Test Results								
Conditioning pulses: 50			Perm't hori	z'l def'n/pul:	se (µm): 0,2944	00		
Core temperature (°C): 29,4								
Skin temperature (°C). 29,4	Pulse 1	Pulso 2	Dulco 3	Dulco	Dulco F	Man	011 0	NOV
Resilient modulus (MPa)	4774	4723	4659	4588	A630	4677	Std. Dev.	%CV
Total recoverable horiz. deform. (µm)	5,12	5,18	5,25	5,32	5,27	5,23	0,07	1,39
Peak loading force (N)	2360	2363	2361	2358	2361	2361	1,54	0,07
Recoverable horiz, deform, #1 (pm)	0.01	0.17	0.22	5,05	5,05	5,05	0,03	0,64
Seating force (N)	236	236	236	236	236	236	0,16	0,07
	1	Lindront	I deformation		Harimontal data	mention 40		
Dulso 1 Dulso	2	Dule			- Horizontal delo	mation #2	Dulas P	
		Puis			Puise 4		Pulse 5	
			-		0		1	
\sim	\cap		$\langle \Lambda \rangle$					χ
							1	1
$\Gamma $ λ							1	
	Λ							
			1 1					
			1 1	111				
	I N		/ I A					
								4 1
f = 1					1			1
	\wedge			\sim	1	M		N
	1		1	M		1 7		1 1
			m				-	
R / P	1	In	1		7		m 1	~
	1		/					
↓		┉┉┤┙┞┈┯╸				+		
0 0,05 0,1 0,15 1	1,05 1,1	1,15 2	2,05 2,1	2,15 3	3 3,05	3,1 3,15	4 4,05	4,1 4,15

Test method: ASTM Data fileName: F:\Vitor Template file name: 122 Test date & time: 22/03/20 Project: Dissert	D4123-82 / A ia\Giratorio\G I 011 10:25:41	ASHTO TP31 MF20% - CP1	(horiz. lvdts .D003	only, ass	umed P	oisson's I	ratio)			
Operator: Vitória	•									
Comments:										
Setup Parameters										
Target temperature (°C): 25			De	ak loading	force (h	11. 2300				
Loading pulse width (ms): 100			Estim	ated Poiss	on's rati	in: 0.4				
Pulse repetition period (ms): 1000			he O UTT		ron o nac	10. 0.4				
Conditioning pulse count: 50				Sea	tina forc	e: AASH	TO TP31	(10%)	of peak)	
				000	ang rore			10/0	or pourt)	
Specimen Information										
Identification: G MF20% - CP1		Dimonsion	Deint	1 Daint 2	Deint 2	Deint 4	Deint F	Delet C	A	Chil Davi
Remarks		Length (mn	n) 65.7	65.6	65.4	Point 4	Point 5 P	-01111 6	Average 65.6	O 2
		Diameter (n	nm) 99,7	99,7	99,8				99.7	0,1
					C	ross-sect	tional area	(mm ²):	7812,1	
Test Beautre										
Conditioning pulses: 50			Perm't hor	iz'l def'n/n	uleo /un	n)· 0.005	700			
Core temperature (°C): 29.4			renntho	iz i dei tirp	изе (ри	nj. 0,885	700			
Skin temperature (°C): 29,4										
	Pulse 1	Pulse 2	Pulse 3	Pulse 4	P	ulse 5	Mean		Std. Dev	%CV
Resilient modulus (MPa)	3688	3566	3516	3462	3	466	3540		83,04	2,35
Peak loading force (N)	2398	6,88 2399	6,97	7,08	7	,07	6,93		0,16	2,32
Recoverable horiz. deform. #1 (µm)	4,15	4,20	4,21	4,29	4	,29	4,23		0,05	1,21
Recoverable horiz. deform. #2 (µm)	2,49	2,68	2,76	2,80	2	,79	2,70		0,11	4,21
Seating force (N)	240	240	241	241	2	40	240		0,27	0,11
		Horizontal	deformation	#?	- Horiz	zontal def	formation	#2		
Pulse 1 Pulse 2		Pulse	e 3		Puls	e 4		ş	Pulse 5	
	\wedge		\wedge			R				M
	A						1			1
	11						1			
			1	J.		1		3		
	L			h	-	/	L'm		~	5
		1-1								
			_		~					
0 0,05 0,1 0,15 1 1,0	05 1,1	1,15 2	2,05 2, Time (sec	1 2,15)	i 3	3,05	3,1	3,15 4	4,05	4,1

4,15

Test method: ASTM	D4123-82 / A	ASHTO TP3	1 (hori	z. lvdts o	only, ass	umed P	oisson's	ratio)			
Template file name: 122	IanGiratorioiG	WIF 20% - GP	2.000	13							
Test date & time: 22/03/2	011 00-31-//3										
Project: Dissert	acão Mestradu	D									
Operator: Vitória	ayao mestrau	0									
Comments:											
Setup Parameters											
Target temperature (°C): 25				Peak	loading	force (N	v): 2399				
Loading pulse width (ms): 100				Estimate	ed Poiss	on's rat	io: 0.4				
Pulse repetition period (ms): 1000											
Conditioning pulse count: 50					Sea	ting for	e: AASH	TO TP3	1 (10%	of peak)	
Canadiana Information											
Identification: G ME 20% - CP2											
Remarks		Dimension	2	Point 1	Point 2	Point 3	Point 4	Point 5	Point 6	Average	Std Dav
		Length (mr	n)	65,6	65,7	65,7	T OILL 4	r onte o	r onic o	65.7	0.1
		Diameter (mm)	99,7	99,9	99,7	1			99,8	0,1
						С	ross-sect	tional are	a (mm²)	7817,4	
Test Results											
Conditioning pulses: 50			Pen	m't horiz'	l def'n/n	ulse (un	n)· 0.962	800			
Core temperature (°C): 29,4					i doi inp	aloo (pii	17. 0,002	000			
Skin temperature (°C): 29,4											
	Pulse 1	Pulse 2	Pulse	e 3	Pulse 4	P	ulse 5	Mear	n	Std. Dev	%CV
Resilient modulus (MPa)	4655	4518	4457		4389	4	385	4481		99,80	2,23
Peak loading force (N)	2399	2394	5,50	n i	5,57	5	,58	5,46		0,12	2,22
Recoverable horiz. deform. #1 (µm)	3,10	3,21	3,26		3,25	3	,28	3,22	8	0,07	2,02
Recoverable horiz. deform. #2 (µm)	2,16	2,20	2,24		2,32	2	,31	2,24		0,06	2,74
Sealing force (N)	240	240	240		240	2	28	240		0,43	0,18
	-	- Horizonta	defor	mation #	1	- Horiz	zontal def	formation	#2		
Pulse 1 Pulse 2	2	Puls	e 3			Puls	e 4		1	Pulse 5	
						[A 1
				~			N				(X)
	K		- 11	Δ			1	X			
	\square							N		1	
	$\int $						0	N		1	\wedge
	1		11	\sim						1	$\langle \rangle$
			11				1	12		1	N
	$ \rangle \rangle$		11				1	1		11	2
	$\langle \rangle$		1	X			V	~		1	~
			1	~			1			1	
	1 2		1		m		1			1	
			8	1			18			1	
			1				1			~1	
			1			Fr	1			V	
		1	1								
0 0.05 0.1 0.15 1 1.	05 1,1	1,15 2	2,05	2,1	2,15	3	3,05	3,1	3,15 4	4,05	4,1
			Tim	e (sec)							

Printed 23/3/2011 17:00:38

4,15

. Test method: ASTM Data fileName: F:\Vito Template file name: 122 Test date & time: 22/03/ Project: Disser Operator: Vitória Comments:	D4123-82 / A ria\Giratorio\G 2011 10:17:29 tação Mestrado	ASHTO TP3 MF20% - CP	11 (horiz. lvdts 3.D003	only, assu	med Poisson's ra	tio)		
Setup Parameters							ł	
Target temperature (°C): 25			Pea	k loading f	orce (N): 2399			
Loading pulse width (ms): 100			Estima	ated Poisso	on's ratio: 0.4			
Pulse repetition period (ms): 1000 Conditioning pulse count: 5				Seati	ng force: AASHT	O TP31 (10%	of peak)	
Specimen Information Identification: G MF20% - CP3								
Remarks		Dimension	ns Point	1 Point 2	Point 3 Point 4 P	oint 5 Point 6	Average	Std Dev
		Length (m	m) 65,8	65,5	65,6		65,6	0,2
		Diameter	(mm) 99,4	99,9	SS,I	nal area (mm²)	99,7	0,3
					01055-56010	nai alea (mm ⁻)	. /001,/	
Test Results								
Core temperature (°C): 29.4			Perm't hori	z'i def'n/pu	lse (µm): 1,23200	00		
Skin temperature (°C): 29,4								
, , , , ,	Pulse 1	Pulse 2	Pulse 3	Pulse 4	Pulse 5	Mean	Std. Dev.	%CV
Resilient modulus (MPa)	4483	4313	4210	4174	4168	4269	118,53	2,78
Peak loading force (N)	5,46	5,67	5,81	5,86	5,87	5,74	0,15	2,67
Recoverable horiz. deform. #1 (µm)	2,88	2,96	3,05	3,01	3,08	3,00	0,07	2,40
Recoverable horiz. deform. #2 (µm) Seating force (N)	2,59	2,71	2,76	2,85	2,79	2,74	0,09	3,24
County force (iv)	240	240	240	240	240	240	0,21	0,11
Pulse 1 Pulse	2	Horizont Puls	al deformation e 3	#1	 Horizontal defor Pulse 4 	mation #2	Pulse 5	
								λ
	A		A					
							\mathcal{J}	
0 0,05 0,1 0,15 1 1	,05 1,1	1,15 2	2,05 2,1	2,15	3 3,05 3	3,1 3,15 4	4,05	4,1 4,15

Industrial Process Controls Global Ltd UTS003 Ver:1.39 (1.39)

AND THE REAL PROPERTY AND	Contraction of the second second second	A DESCRIPTION OF STREET, S	A DECKER OF THE OWNER OF THE OWNE	AND THE OWNER OF THE OWNER.	AND INCOMENTATION.	CONTRACTOR OF TAXABLE PARTY.	CONTRACTOR OF STREET, STRE	Contraction of the lot	OR OTHER DESIGNATION.	Statement in the last of the local day in the local day is the second seco	-
Test method: ASTN	A D4123-82 //	AASHTO TP3	1 (horiz. lvd	its only, ass	umed Po	oisson's	ratio)				
Data fileName: F:\Vit	oria\Giratorio\G	MF25% - CP	1.D003								
Template file name: 122											
Test date & time: 22/03	/2011 09:59:01										
Project: Disse	rtação Mestrad	0									
Operator: Vitória	1										
Comments:											
Setup Parameters											
Target temperature (°C): 25			P	eak loading	force (N): 2070					
Loading pulse width (ms): 100			Estin	mated Poiss	on's rati	o: 0.4					
Pulse repetition period (ms): 1000	1										
Conditioning pulse count: 50				Sea	ting forc	e: AASH	TO TP3	31 (10%	of peak)		
Specimen Information											
Identification: G MF25% - CP1		Dimension								0.15	
Remarks		Dimension	s Poli	TT 1 Point 2	Point 3	Point 4	Point 5	Point 6	Average	Std Dev	
		Diameter (mm) 99	9 99 6	99.5				00,5	0,1	
		Diamotor (0 00,0	00,0 Cr	000 000	tional are	a (mm²)	. 7901 7	0,2	
					01	033-360		a (mm)	. 7001,7		
Test Results											
Conditioning pulses: 50			Perm't h	oriz'l def'n/p	ulse (µm	1): 0,422	500				
Core temperature (°C): 29,4											
Skin temperature (°C): 29,4	-										
Desiliest section (MD-)	Puise 1	Pulse 2	Pulse 3	Pulse 4	P	ulse 5	Mea	n	Std. Dev	. %CV	
Total recoverable horiz deform (um)	3.02	3.08	3 23	3.32	0.	33	3 20		256,81	3,93	
Peak loading force (N)	2070	2075	2072	2073	20	075	2073	3	1,66	0,08	
Recoverable horiz. deform. #1 (µm)	1,34	1,34	1,51	1,58	1,	,62	1,48		0,12	8,06	
Seating force (N)	1,69	1,74	1,72	1,74	1,	,71	1,72		0,02	1,13	
	201	201	200	201	2	01	201		0,01	0,15	
	-	Horizonta	l deformati	on #1	- Horiz	contal del	formation	#2			
Pulse 1 Pulse	2	Puls	e 3		Puls	e 4			Pulse 5		
				1						~	٦
		11			1	1					
	$ \Lambda $		11		1	1	1		1	X	1
						1	1		1		
			1			1	1		1		
			1		1	1	7	~11	1	~	-
	1 5		10	my -	1	10			1	A	
	$\left \wedge \right $		1/1	7		11			1		
	1/ 1	MI	111			3/	NI -		11		1
			11		1	11			11		1
			11		1	11			m/1		
			11		m	/	1		~		
		m	/						1	1	
			1	Λ. Π			N		1		
hand						11	5		1		
		m		- mark	m	1					1
				+				┯┥╿			1
0 0.05 0.1 0.15 1	105 11	4 45 0	0.05	14 045	2	2.05	21	3 15 4	4.05	41 41	5
0 0,00 0,1 0,10 1	1,05 1,1	1,15 2	2,05	2,1 2,10	3	3,05	5,1	0,10 4	4,00		

Industrial Process Controls Global Ltd UTS003 Ver:1.39 (1.39)

Printed 23/3/2011 16:52:24

	our restriction of the second second second	to the part of the second	-	-	the second s			and the second second second	the second second second second		
Test method: AST	M D4123-82 /	AASHTO TP3	1 (horiz	z. Ivdts o	only, ass	umed P	'oisson's	ratio)			
Data fileName: F:\\	/itoria\Giratorio\G	MF25% - CP	2.D003	5							
Template file name: 122											
Test date & time: 22/0	3/2011 10:29:56										
Project: Diss	ertação Mestrad	0									
Operator: Vitó	ia										
Comments:											
Setup Parameters											
Target temperature (°C): 25				Peak	loading	force (1	N): 2070				
Loading pulse width (ms): 100)			Estimate	ed Poiss	on's rat	tio: 0.4				
Pulse repetition period (ms): 100	00										
Conditioning pulse count: 50					Sea	ting for	ce: AASI	HTO TP:	31 (10%	of peak)	
Specimen Information											
Remarks		Dimension	C	Doint 1	Doint 2	Daint 2	Daint 4	Doint 5	Daint C	A.1000000	Chil Davi
Troma No		Length (m	m)	65.7	65.6	65.7	P UIIL 4	FUILD	Pointo	65.7	O 1
		Diameter (mm)	99,7	99,7	99.5				99.6	0.1
						C	ross-sec	tional are	a (mm²)	7796 5	
						-					
Test Results			-								
Conditioning pulses: 50	2		Pern	n't horiz'	'i def'n/p	ulse (µn	n): 0,465	600			
Core temperature (°C): 29,	4										
Skin temperature (C). 29,	Pulse 1	Pulse 2	Pulse	3	Pulso A	E	Juleo 5	Mea		Std Day	19/ CV
Resilient modulus (MPa)	4360	4246	4239		4217	4	181	4240	9	60.21	1 42
Total recoverable horiz. deform. (µm) 4,84	4,97	4,98		5,01	5	5,05	4,97		0,07	1,46
Peak loading force (N)	2067	2070	2069		2071	2	2070	2069	9	1,58	0,08
Recoverable horiz deform #1 (µm) Recoverable horiz deform #2 (µm)	2,07	2,09	2,72		2,75	2	34	2,71		0,03	0,99
Seating force (N)	208	207	207		207	2	208	208		0,33	0,16
		1	1			1		1		1	1
						- Hori	zontal de	formation	n#2		
Pulse 1 Puls	e 2	Puls	e 3			Puls	e 4		ŧ	Pulse 5	
							A				\wedge
			1				11				
\wedge	()						1	1			Λ
$\int \Delta $	F						11				
	A		11				15	1			
			11	V			11	1		1	
			1	N			18	1		1	
			11	1			11	1)		18	14
	II N		11	N			1	14		1	
			1				11		2	11	L L
	11	4	1		my		11	N	141	11	M.
	1	WI.	11		h		1		20	1	
	11	-m	11				1			11	
	1		1			1	1			11	
	1		1			hand	1			and	
	/	In				men					
m											
	1.05										
0 0,05 0,1 0,15 1	1,05 1,1	1,15 2	2,05	2,1	2,15	3	3,05	3,1	3,15 4	4,05	4,1 4,15
			1 10 1 10	and the second se							

A TALK OF A DATA OF A	And the second se	And a state of the second s	ALC: NO. OF CO.	ACTING IN CASE OF	And in cash of the local division of the loc	A SHOT WAT IN	STREET, SQUARE, SQUARE	A COMPANY OF THE OWNER OF	No. of Concession, Name	States and states	The second second second second second
Test method: ASTN	D4123-82 //	AASHTO TP3	1 (hori	z. lvdts d	only, ass	umed	Poisson's r	ratio)			
Data fileName: F:\Vit	oria\Giratorio\G	MF25% - CP	3.D00	3							
Template file name: 122											
Test date & time: 22/03/	2011 09:47:47										
Project: Disse	rtação Mestrad	0									
Operator: Vitória	1										
Comments:											
Setup Parameters											
Target temperature (°C): 25				Peak	loading	force	(N): 2070				
Loading pulse width (ms): 100				Estimat	ed Poiss	on's ra	atio: 0.4				
Pulse repetition period (ms): 1000				2001104	54 1 0100						
Conditioning pulse count: 50					Sea	ting fo	TCO AASH	TO TP	21 /10%	of peak)	
g parte count					Gea	ung io	ICE. ANOI	IIO IF.	51 (1076	or peak)	
Specimen Information											
Identification: G MF25% - CP3											
Remarks		Dimension	S	Point 1	Point 2	Point	3 Point 4	Point 5	Point 6	Average	Std Dev
		Length (m	m)	66,9	66,7	66,9				66,8	0,1
		Diameter (mm)	99,3	99,9	99,2				99,5	0,4
						1	Cross-sect	ional are	ea (mm²)	: 7770,4	
Test Results											
Conditioning pulses: 50			Pen	m't horiz'	l def'n/pi	ulse (u	um): 1.307	000			
Core temperature (°C): 29,4											
Skin temperature (°C): 29,4											
	Pulse 1	Pulse 2	Pulse	e 3	Pulse 4	1	Pulse 5	Mea	n	Std. Dev	%CV
Resilient modulus (MPa)	3726	3709	3621		3576		3571	364	1	65,39	1,80
Total recoverable horiz, deform, (µm) Reak leading force (N)	5,56	5,59	5,73		5,80		5,82	5,70		0,10	1,83
Recoverable horiz, deform, #1 (µm)	0.42	0.30	0.31		0.36	1	0.36	0.35	3	0.04	12.75
Recoverable horiz. deform. #2 (µm)	5,14	5,30	5,42		5,44		5,45	5,35		0,12	2,19
Seating force (N)	207	207	208		208		208	207		0,27	0,13
		Horizonta	detor	mation 4	£1	Ho	rizontal def	ormation	#2		
Dulas d	2	Dula	- 2			Deal		of IT lateor	1 17 60		
Puise 1 Puise	2	Puis	es			Pul	se 4		1	Puise 5	
	~			\sim			\wedge				\wedge
	$\left \right\rangle$		1	1			1	1		1	
			1	1			1	1		1	
			1	1			1	1		1	
			1	1			1	1		1	
			1	1			1	1		1	
			1				}	1	11	1	
			1					X		1	AT
			1	11	24		1			1	
			11	m.	M		11		1	~ 1	
	5		11			1				11	
			11				VV			Y	
	1/			1			N			r	
	V		V			-	/			-	
	1										
			205				2.05	24			
0 0,05 0,1 0,15 1 1	,05 1,1	1,15 2	2,05	2,1	2,15	03	3,05	3,1	3,15 4	4,05	4,1 4,15
			1011	(000)							

Industrial Process Controls Global Ltd UTS003 Ver:1.39 (1.39)

Test method: ASTM D4 Data fileName: F:\Vitoria\C Template file name: 122 Test date & time: 22/03/2011 Project: Dissertaçã Operator: vitória Comments:	123-82 / AASH Giratorio\G MF 3 10:49:56 o Mestrado	ГО ТР31 (hoi 0% - СР1.D0	riz. Ivdts (03	only, ass	umed Po	bisson's	ratio)						
Potus Desemptors													
Setup rataliteters													
Target temperature (°C): 25		Peak loading force (N): 2224											
Loading pulse width (ms): 100			Estimat	ed Poiss	on's ratio	0: 0.4							
Pulse repetition period (ms): 1000													
Conditioning pulse count: 50				Sea	ting force	e: AASH	ТО ТРЗ	1 (10%	of peak)				
Specimen Information													
Identification: G MF 30% - CP1													
Remarks	Dir	nensions	Point 1	Point 2	Point 3	Point 4	Point 5	Point 6	Average	Std Dev			
	Ler	ngth (mm)	67,4	67,1	67,5				67,3	0,2			
	Dia	meter (mm)	99,9	99,3	99,5				99,6	0,3			
					Cr	oss-sect	ional area	a (mm²):	7786,1				
Test Results													
Conditioning pulses: 50		Per	m't horiz'	l def'n/pi	ulse (um): 0.329	200						
Core temperature (°C): 29,4					(p.).	,. 0,010	200						
Skin temperature (°C): 29,4													
Pu	se 1 Pulse	2 Puls	e 3	Pulse 4	Pu	ulse 5	Mean	1	Std. Dev.	%CV			
Resilient modulus (MPa) 444	4198	4094	ļ	4066	39	19	4145		175,48	4,23			
I otal recoverable horiz, deform, (µm) 4,9 Peak loading force (N) 222	7 5,27	5,41	5,44		5,64		5,35		0,22	4,16			
Recoverable horiz. deform. #1 (µm) 3,8	1 3.89	3.89 4.00		4.06	4,17		3.99		0.13	0,05			
Recoverable horiz. deform. #2 (µm) 1,1	6 1,38	1,41	1,38		1,47		1,36		0,11	7,73			
Seating force (N) 222	2 222	222		222	22	23	222		0,39	0,17			
	— H	orizontal defo	mation #	1	- Horiza	ontal def	ormation	#2					
Pulse 1 Pulse 2		Dulso 3			Dulco	A			Julco F				
		ruise o			Fuise	: •#			uise o				
			2	245									
0 0,00 0,1 0,151 1,05	1,1 1,15	2 2,05 Tim	Z,1 le (sec)	2,15	5	5,05	3,1	3,15 4	4,05	4,1			

4,15

Test method: ASTM	A D4123-82 / A	ASHTO TP31	(horiz. lvdts	only, ass	umed P	oisson's r	atio)	a a deservation	an teach in the second second	and the second secon
Data fileName: F:\Vit	oria\Giratorio\G	MF30% - CP2.	D003							
Template file name: 122										
Test date & time: 22/03	/2011 10:03:36									
Project: Disse	rtação Mestrado)								
Operator: Vitória	1									
Comments:										
Setup Parameters										
Target temperature (°C): 25			Peal	loading	force (N): 2224				
Loading pulse width (ms): 100			Estimat	ed Poiss	on's rati	0: 0.4				
Pulse repetition period (ms): 1000	0									
Conditioning pulse count: 50				Sea	tina forc	e: AASH	TO TP31	1 (10%	of neak)	
								. (or pourty	
Specimen Information										
Identification: G MF30% - CP2		Dimension								
Remarks		Length (mm)	Point 1	Point 2	Point 3	Point 4	Point 5	Point 6	Average	Std Dev
		Diameter (m	m) 99.6	99.6	99.5				99.6	0,1
			,		Cr	nss-sectio	nal area	(mm ²)	7786 1	0,1
					0.	000 0001		. (. 1100,1	
Test Results			_							
Conditioning pulses: 50			Perm't horiz	'l def'n/pi	ulse (µm): 0,7500	00			
Core temperature (°C): 29,4										
Skin temperature (C). 29,4	Pulse 1	Pulse 2	Juleo 3	Dulco A	D	uleo 5	Moon		Std Day	19/01/
Resilient modulus (MPa)	3964	3815 3	783	3788	37	760	3822		73 11	1.91
Total recoverable horiz. deform. (µm)	5,59	5,80 5	5,86	5,85	5,	89	5,80		0,11	1,88
Peak loading force (N)	2225	2223 2	226	2227	22	224	2225		1,46	0,07
Recoverable horiz. deform. #1 (µm)	3.33	3.56 3	.,29	3.58	3.	61	3.53		0,02	2.81
Seating force (N)	223	223 2	22	222	22	22	222		0,45	0,20
	1	Lingth out of a	Information 1		Lineire	and all also		40		1
		Providential C	renormation		HUHZ	ontal delo	rmation	春乙		
Pulse 1 Pulse	2	Pulse	3		Pulse	e 4		-	Pulse 5	
					[1			\wedge
	1				1				1	
	0		\wedge						1	
	$ \wedge $		$ \rangle$			1			1	V
	11		$\left\{ \right\}$			1	V		1	
			1			1	N		1	
			1			1	X		1	
							1		1	\sim
	$ \rangle$		A			10	1		1/	
	M		$\left \right\rangle$			1			1	
	M		\square	4		\square		1		
			\bigwedge	1		\int		1		
			\cap	1		\int	C			
			\cap					1 1	\int	
			\bigwedge					1 1		
			\bigwedge	1						
			\bigwedge		~					
0 0,05 0,1 0,15 1 1	1,05 1,1	1,15 2 2	05 2.1	2,15	3	3,05	3,1	3,15 4	4,05	4,1 4,15

	A Real Property lies, in which the real of the lies of	Protect of the second s	CARLEN & LOS WELL	A REAL PROPERTY AND ADDRESS	THE NUMBER OF	No. of Lot of Lo	STATE OF A	Sector Sector States	THE R. LEWIS CO., LANSING MICH.	A MARK DO THE WALL	The local design of the	STATISTICS.	
Test metho	d: ASTM	D4123-82 //	AASHTO	TP31 (hori	z. lvdts d	only, ass	umed Po	oisson's	ratio)				
Data fileNam	e: F:\Vito	ria\Giratorio\G	MF30%	- CP3.D00	3								
Template file nam	ie: 122												
Test date & time	e: 22/03/2	2011 10:33:29	Y.										
Projec	t: Disser	tação Mestrad	lo										
Operato	r: Vitória												
Commen	ts:												
Setup Parameters													
Target temperature (°C	1) 25				Deak	looding	forme (N	1. 2224					
Loading pulse width (ms	s): 100				Fedm	ad Doise	on's rati). 2224					
Pulse repetition period (ms	s): 1000				Lound	cu 1 0133	0115 140	0. 0.4					
Conditioning pulse cour	nt: 50					Sea	ling foro	AACL		1 (100/	of each)		
o on an ann an a						Sea	ung lorc	e. Aasi	110 1P3	01 (10%)	or peak)		
Specimen Information													
Identification: G MF30% - C	P3												
Remarks			Dimer	isions	Point 1	Point 2	Point 3	Point 4	Point 5	Point 6	Average	Std Dev 0,2	
			Lengti	n (mm)	66,4	66,5	66,7				66,5		
			Diame	aei (min)	99,9	99,9	99,9			(2)	99,9	0,0	
							G	oss-seci	ional are	nal area (mm²): 7838,3			
Test Results													
Conditioning pulse	s: 50			Perr	m't horiz'	l def'n/pu	ulse (µm): 0,301	200				
Core temperature (°C	;): 29,4												
Skin temperature (°C	;): 29,4						_						
Pagiliant modulus (MDs)		Pulse 1	Pulse 2	Pulse	3	Pulse 4	PI	ulse 5	Mean	n	Std. Dev	. %CV	
Total recoverable horiz. deform	n. (µm)	4.63	4040 473			4000	.77 4		85 476		73,96		
Peak loading force (N)		2221	2226 2224		2222		2223		2223		1,53	0,07	
Recoverable horiz. deform. #1 Recoverable horiz. deform. #2	(µm)	3,85	3,97 3,92		3,94		3,97		3,93		0,05	1,17	
Seating force (N)	(µm)	222	222 222		223		222		222		0,03	0.12	
		1	1	1	1		1		1				
2.2. 1							- Horiz	ontal def	ormation	#2			
Pulse 1	Pulse	2	ş	Pulse 3			Pulse	4		ſ	Puise 5		
		\wedge			\sim			1		ПГ		AT	
		$ \langle \Lambda $					1	11					
		$ 1\rangle$											
				1				1			1		
							1	1			1		
				1			1	1	N				
				1	8		1	1					
				1			1	1			1		
							1	1				1	
					1		1	1	1				
				1				1	n			NK	
		AA		11	~5	m		1	VV		11		
		/V			~	~		1			11		
							1 5	1			N		
	-	/		N			m	V					
	ZV			~			m				\sim		
				, , , , , , , , , , , , , , , , , , , ,						┯┷┥┡			
0 0,05 0,1 0,15	1 1.	05 1,1	1,15 2	2,05	2,1	2,15	3	3,05	3,1	3,15 4	4,05	4,1	
				Tim	e (sec)								

Industrial Process Controls Global Ltd UTS003 Ver:1.39 (1.39)

Printed 23/3/2011 16:56:29

4,15

Anexo D

Gráficos da compactação SUPERPAVE

Industrial Process Controls (Australia) Limited Time: 02:00 Diameter: 100mm SERVOPAC Version 1.26 Date: 10/12/15 MaxDensity: 2420(kg/m3) Run number: 59 Weight: 1200(g) Batch: MF5 Rate: 30 (gyrn/min) Comment: Vertical stress: 600kPa Control mode: 1.25 degrees (gyratory angle) Termination: 65.2mm height At termination: Gyrations=105 Density=2343,39kg/m3 Termination: Height=65,20mm 2 400 2 306 2 306 2 100 1 100 1 100 1 500 1 500 1 500 1 500 1 500 1 500 1 100 1 500 1 000 1 Height (mm) x 50 60 70 90 :00 . 60 70 80 5 6 7 8 9 10 Gyrabor 125 12 1,15 1,15 1,05 60 70 80 B 9 10 40 50 50 70 50 6 9 10 Gyraborn 340 320 15 13 Air Voids (%) 140 60 40 50 68 70 60 5 6 7 8 9 10 Gyrations 48 50 60 70 80 5 6 7 8 5 18 Gyrations

Industrial Process Controls (Australia) Limited

Industrial Process Controls (Australia) Limited

MaxDensity: 2400(kg/m3)

UFCG/BIBLIOTECA

SERVOPAC Version 1.26 Date: 10/12/15 Run number: 56 Batch: MF10

Industrial Process Controls (Australia) Limited

Time: 02:00 Diameter: 100mm Comment:

MaxDensity: 2400(kg/m3)

Industrial Process Controls (Australia) Limited

70 80

58 60 70 90

40

20

4 5 6 7 8 9 10 Gyradions

2

UFCG/BIBLIOTECA

Industrial Process Controls (Australia) Limited

4 5 Gyrations 6

2

7 8 9 10

Industrial Process Controls (Australia) Limited

3

1

and a