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Campina Grande - PB

Fevereiro/2018

†Este trabalho contou com apoio financeiro da CAPES

iii



iv





vi



Resumo

Nesta tese estamos interessados na existência e concentração de soluções de energia

mı́nima para a classe de problema





−∆u+ V (x)u = A(ǫx)f(u), x ∈ R
N

u ∈ H1(RN).

Quando ǫ ≈ 0+, supondo que V é uma função cont́ınua Z
N -periódica, supondo que

0 /∈ σ(−∆ + V ) e f : R → R é uma função cont́ınua com crescimento subcŕıtico e

cŕıtico para N ≥ 2. Aqui A : RN → R é uma função cont́ınua que verifica

0 < A0 = inf
x∈RN

A(x) ≤ lim
|x|→+∞

A(x) < sup
x∈RN

A(x).

Quando A ≡ 1 também mostramos a existência de soluções de energia mı́nima.

Palavras-chave: Equação de Schrödinger não linear (NLSE), métodos variacionais,

equações eĺıpticas, funcional fortemente indefinido, concentração de soluções.
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Abstract

In this thesis we are interested in the existence and concentration of ground state

solutions for the following class of problem





−∆u+ V (x)u = A(ǫx)f(u), x ∈ R
N

u ∈ H1(RN).

When ǫ ≈ 0+, by supposing that V is Z
N -periodic continuous function, with 0 /∈

σ(−∆+ V ) and f : R → R is a continuous function with subcritical or critical growth

for N ≥ 2. Here A : RN → R is continuous function that verifies

0 < A0 = inf
x∈RN

A(x) ≤ lim
|x|→+∞

A(x) < sup
x∈RN

A(x).

When A ≡ 1 we have also shown the existence of ground state solution.

Keywords: Nonlinear Schrödinger Equation (NLSE), variational methods, elliptic

equations, indefinite strongly functional, concentration of solutions.
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Introdução

Desenvolvida por Erwin Schrödinger, a equação de Schrödinger descreve a evolução

temporal de part́ıculas massivas subatômicas em sua natureza ondulatória e não re-

lativ́ıstica. Isto significa que é uma interpretação matemática para o comportamento

de part́ıculas subatômicas. Por seus trabalhos em direção ao entendimento quântico

Schrödinger, em 1933, ganha o prêmio Nobel da f́ısica. Desde então se tem explorado

bastante suas equações para os cientistas entenderem as nuances do mundo quântico.

Destacamos aqui o trabalho [50].

Nos últimos anos, vários artigos têm sido publicados utilizando a equação de

Schrödinger. Muitos desses trabalhos têm abordado a equação de Schrödinger não

linear independente do tempo com diversos tipos de função potencial e diversos tipos

de não linearidade que são equações com o seguinte formato:

EΨ(x) =

(
− ~

2

2µ
∇2 + V (x)

)
Ψ(x) + f(Ψ(x))

No caso em que a não linearidade f é uma função nula tal equação descreve

exatamente a energia total do sistema como uma adição da energia cinética
(
− ~2

2µ
∇2
)

com a energia potencial V (x).

Floer e Weinstein [19] estudaram uma equação de Schrödinger de dimensão 1 da

forma

−iǫ∂Ψ
∂t

= − ǫ2

2m
Ψxx + V (x)Ψ− γ|Ψ|2Ψ, x ∈ R (FW )

onde γ, ǫ > 0, e encontraram uma solução no formato

Ψ(x, t) = exp(−iEt/ǫ)v(x) (SW )

denominada soluções de onda estacionária (em inglês, standing wave), onde v : R → R

é uma função a ser encontrada. Note que para Ψ ser uma solução para (FW ) uma



condição necessária e suficiente é que

Ev(x) = − ǫ2

2m
v′′(x) + V (x)v(x)− γ|v(x)|2v(x), x ∈ R

que é o formato da equação de Schrödinger independente do tempo. Quando a não

linearidade for γ|Ψ|p−1Ψ, com p ∈ (1, 2∗ − 1), a solução do tipo onda estacionária deve

satisfazer

− ǫ2

2m
v′′(x) + (V (x)− E)v(x) = γ|v(x)|p−1v(x), x ∈ R. (SWE)

Motivados pelos estudos realizados em [19], Oh em [36], estudou a equação

−iǫ∂Ψ
∂t

= − ǫ2

2m
∆Ψ+ V (x)Ψ− γ|Ψ|p−1Ψ, x ∈ R

N (OH)

e obteve resultados similares a [19]. Após os estudos realizados por Oh [36] diversos tra-

balhos foram publicados com o intuito de encontrar soluções do tipo onda estacionária

da equação (OH) quando 2m = 1 e uma não linearidade f(Ψ), desta forma (SWE)

toma forma 



−ǫ2∆u+ V (x)u = f(u), x ∈ R
N

u ∈ H1(RN).
(S)ǫ

O problema (S)ǫ tem sido abordado para diversos tipos de potenciais e não linearidades.

Dentre estes trabalhos alguns abordam o comportamento dos valores de máximo das

soluções de (S)ǫ, geralmente demonstrando que esses valores se concentram em pontos

cŕıticos não degenerados de V . Nesta direção citamos os trabalhos de Wang [54], del

Pino e Felmer [16], Ambrosetti, Badiale e Cingolani [12], Ambrosetti e Malchiodi [11],

Alves e Souto [8], Gui [22], Wang e Zeng [55], Alves e Soares [9] e [10], Noussair e Wei

[35].

Nesta abordagem dos problemas de concentração, como dito acima, geralmente

as soluções estão concentradas no conjunto

V =

{
x ∈ R

N ; V (x) = min
z∈RN

V (z)

}
.

Além disso, em muitos trabalhos a multiplicidade de soluções tem uma associação

direta com a riqueza topológica de V e a geometria do potencial V .

Em [42], Rabinowitz prova a existência de soluções positivas para (S)ǫ quando

lim inf
|x|→+∞

V (x) > inf
x∈RN

V (x) = V0 > 0 (R)

2



e com algumas condições sobre a não linearidade que engloba o caso em que a não

linearidade é f(u) = γ|u|p−1u. Continuando o estudo, em [54], Wang provou que tais

soluções se concentram em V quando ǫ→ 0.

Em [16], del Pino e Felmer melhoram os resultados encontrados em [42] e [54]

generalizando a condição (R) para a condição

min
x∈∂Λ

V (x) > inf
x∈Λ

V (x) e V (x) ≥ α > 0

onde Λ ⊂ R
N é um domı́nio compactamente contido em R

N e com a não linearidade

satisfazendo as condições

(f1) f(t)
t

→ 0 quando t→ 0;

(f2) lim
|t|→+∞

|f(t)|
|t|p = 0 para algum p ∈ (1, 2∗ − 1);

(f3) existe θ > 2 tal que

0 < θF (t) ≤ f(t)t, para todo t ∈ R \ {0}

onde F (t) :=
∫ t
0
f(s)ds;

(f4) a função t 7→ f(t)
t

é crescente em R
+ e decrescente em R

−.

Para estabelecer a existência de solução para (S)ǫ quando ǫ ≈ 0+ foi usado um método

denominado método de penalização e foi estabelecido que as soluções se concentram

no ponto mı́nimo de V quando ǫ→ 0. Observe que (f2) é equivalente a condição

(f2) existe p ∈ (1, 2∗ − 1) tal que lim sup
|t|→+∞

|f(t)|
|t|p < +∞.

Vale a pena destacar que outras geometrias sobre o potencial V foram consi-

deradas no estudo da existência de solução para (S)ǫ, como por exemplo potenciais

coercivos, periódicos e assintoticamnte periódicos. Novamente em [42], Rabinowitz es-

tabelece existência de solução não nula como um primeiro resultado de soluções de (S)1

para um potencial V coercivo, isto é,

V (x) → +∞ quando |t| → +∞

e algumas hipóteses sobre a não linearidade que englobam o caso f(u) = γ|u|p−1u

com p ∈ (1, 2∗ − 1). Em [59], Coti Zelati estabelece existência de solução positiva de

3



energia mı́nima para (S)1 com a não linearidade satisfazendo as condições (f1)-(f4) e

V : RN → R um potencial cont́ınuo e Z
N -periódico, isto é,

V (x+ z) = V (x), para todo (x, z) ∈ R
N × Z

N .

Para contornar a falta de compacidade é utilizado o Teorema do Passo da Montanha e

um lema devido a Lions.

Em [3], Alves, Carrião e Miyagaki estudaram o problema (P ) para dimensões

N ≥ 3, onde o potencial possui o formato V −W onde V é Z
N -periódico, cont́ınuo

e positivo e W é não negativa e assintoticamente nula no infinito, além da não linea-

ridade possuir crescimento subcŕıtico com algumas condições técnicas. Na literatura,

problemas com esses tipos de potenciais são chamados problemas com potencial as-

sintoticamente periódico, os quais são uma generalização dos problemas com potencial

assintoticamente constante.

Em [2], Alves, do Ó e Miyagaki motivados pela desigualdade de Trundiger-Moser

e utilizando uma desigualdade devido a Cao [13] estudaram o problema (P ) e estabe-

leceram existência de solução para o caso em que o potencial V é cont́ınuo, positivo e

assintoticamente periódico e uma condição sobre a não linearidade que engloba casos

em que f tem crescimento cŕıtico exponencial, de uma forma mais precisa:

(f5*) existe Γ tal que |f(x, t)| ≤ Γe4πt
2
para todo (x, t) ∈ R

N × R;

e mais algumas condições técnicas sobre a não linearidade, como por exemplo:

(f1*) f(x,t)
t

→ 0 uniformemente em x quando t→ 0;

(f3*) existe θ > 2 tal que

0 < θF (x, t) ≤ f(x, t)t, ∀ (x, t) ∈ R
N × R

∗

onde F (x, t) :=
∫ t
0
f(x, s)ds.

Lembramos aqui que a definição de f possuir crescimento cŕıtico exponencial

significa que existe α0 > 0 tal que

lim
|t|→+∞

|f(t)|
eα|t|2

= 0, para todo α > α0, lim
|t|→+∞

|f(t)|
eα|t|2

= +∞, para todo α < α0 (ver [18])

4



Em grande parte dos artigos mencionados acima o potencial V possui a condição

inf
x∈RN

V (x) > 0 o que implica em

inf(σ(−∆+ V )) ≥ 0, (I)

caracterizando o problema como sendo fortemente definido.

O estudo dos problemas periódicos e assintoticamente periódicos também tem sido

feitos para problemas fortemente indefinidos. Em [27], Kryszewski e Szulkin estudaram

o problema 



−∆u+ V (x)u = f(x, u), x ∈ R
N

u ∈ H1(RN)
(P )

onde f : RN × R → R é uma função cont́ınua, ZN -periódica na coordenada x, possui

crescimento subcŕıtico, isto é,

(f2*) existe C > 0 tal que |f(x, t)| ≤ C(1 + |t|p−1) onde p ∈ (2, 2∗),

além das condições (f1*) e (f3*). Além disso, o potencial V : R
N → R satisfaz a

seguinte hipótese

V é cont́ınua, ZN -periódica e 0 /∈ σ(−∆+ V ), o espectro de −∆+ V (V ).

O funcional energia J : H1(RN) → R associado ao problema (P ) é definido por

J(u) =
1

2

∫

RN

(|∇u|2 + V (x)u2)dx−
∫

RN

F (x, u)dx, u ∈ H1(RN)

e sabemos, por argumentos usuais, que J é um funcional de classe C1 com

J ′(u)v =

∫

RN

(∇u∇v + V (x)uv)dx−
∫

RN

f(x, u)vdx, u, v ∈ H1(RN).

Note que a forma bilinear, definida por

B(u, v) =

∫

RN

(∇u∇v + V (x)uv)dx,

não é necessariamente positiva definida. O que caracteriza o problema como sendo

fortemente indefinido.

Com a condição (V ) conseguimos encontrar subespaços E+ e E− fechados de

H1(RN) tais que H1(RN) = E+ ⊕ E− e que satisfazem:

• B é positiva definida sobre E+ e negativa definida sobre E−.

5



• E+ e E− são ortogonais com o produto interno usual de H1(RN) e também

ortogonais em relação a forma bilinear B.

• Existe uma norma || · || que provém de um produto interno sobre H1(RN) equi-

valente a norma usual e tal que

B(u, u) = ||u||2, para todo u ∈ E+ e B(u, u) = −||u||2, para todo u ∈ E−.

Maiores detalhes das afirmações podem ser vistas no Apêndice A. É importante

mencionar aqui que grande parte das ideias que aparecem nesse apêndice surgiram de

notas de estudos individuais dos professores Marco Aurélio e Claudianor Alves.

As condições mencionadas acima garantem que o funcional energia do problema

(P ) possui o seguinte formato

J(u) =
1

2
||u+||2 − 1

2
||u−||2 −

∫

RN

F (x, u)dx, u ∈ H1(RN).

Kryszewski e Szulkin introduzem um teorema muito semelhante ao Teorema de

Link devido a Rabinowitz, distinto principalmente pelas dimensões infinitas dos espaços

vetoriais da decomposição. Em [31], Li e Szulkin utilizam o Teorema de Link devido a

Kryzewski e Szulkin para estabelecer solução para a equação (P ) supondo (V ) e a não

linearidade f : RN × R → R assintoticamente linear no infinito, isto é,

f(x, u) = V∞(x)u+f∞(x, u), onde V∞ é periódica e
f∞(x, u)

u
→ 0 quando |u| → ∞.

Muitos trabalhos na literatura utilizam o Teorema de Link acima mencionado,

como exemplo: Chabrowski e Szulkin [14] para não linearidade com crescimento cŕıtico;

Furtado e Marchi [20] e os trabalhos de Tang [51] e [52] para não linearidade com

crescimento subcŕıtico e suas referências.

Em [39], Pankov e Pfluger trabalharam no problema (P ) com hipóteses similares

a Kryszewski e Szulkin em [27], mas utilizando o Teorema de Link devido a Rabinowitz

[40]. Continuando tal estudo, em [38], Pankov estudou problemas do tipo




−∆u+ V (x)u = ±f(x, u), x ∈ R
N

u ∈ H1(RN)
(P ′)

com f satisfazendo (f1), (f2) e a condição (V ). É importante ressaltar que tanto

[39] como [38] estabelecem soluções não nulas de energia mı́nima, denominada soluções

6



ground state, mediante a condição

0 <
f(x, t)

t
≤ θft(x, t), (x, t) ∈ R

N × R
∗. (f ∗)

Para isso é utilizado o método de minimização do funcional energia J sobre o conjunto

O := {u ∈ H1(RN) \ E− ; J ′(u)u = J ′(u)v = 0, ∀v ∈ E−}.

É interessante observar que no caso em que E− = {0} entãoO é exatamente a variedade

de Nehari associado ao funcional energia J .

Em [45], Szulkin e Weth complementaram os estudos de Pankov [38] estabele-

cendo soluções do tipo ground state para (P ), porém com condições mais fracas sobre

a não linearidade, sem utilizar condições sobre a derivada da f e também enfraquecendo

a condição (f3*) de Ambrosetti Rabinowitz para

F (x, t)

t2
→ +∞, quando t→ +∞

que é conhecida como condição de super quadraticidade. Para encontrar solução que

possui energia mı́nima é crucial a utilização da seguinte condição:

t 7→ f(x, t)

|t| é crescente sobre o conjunto R \ {0}. (f4*)

Na literatura observamos que existem poucos estudos sobre problemas fortemente

indefinidos de equações do tipo (P ) cuja não linearidade possui crescimento cŕıtico.

Podemos citar para N ≥ 4 os trabalhos de Chabrowski e Szulkin [14], Zhang, Xu e

Zhang [61] e Schechter e Zou [49]. Nestes três trabalhos a não linearidade possui o

formato

f(x, t) = k(x)|t|2∗−2t+ g(x, t), (F )

onde g possui crescimento subcŕıtico e k : RN → R é uma função positiva. Para o caso

N = 2 encontramos apenas o trabalho de do Ó e Ruf [17], que trata do caso em que a

não linearidade possui crescimento cŕıtico exponencial.

Motivados por [45] e [3], no Caṕıtulo 1 desta tese encontramos soluções de energia

mı́nima para o problema




−∆u+ (V −W )u = f(x, u), x ∈ R
N

u ∈ H1(RN)
(PW )

onde a não linearidade f possui crescimento critico e satisfaz (f4*), V cumpre a condição

(V ) e W ≥ 0 verifica:
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(W1) W : RN → R é cont́ınua e lim
|x|→+∞

W (x) = 0.

(W2) 0 ≤ W (x) ≤ Θ = sup
x∈RN

W (x) < Λ := inf(σ(−∆+ V ) ∩ [0,+∞)), ∀x ∈ R
N .

No caso espećıfico N ≥ 3 a não linearidade possui o formato (F ) com g(x, t) =

h(x)|t|p−1t onde p ∈ (1, 2∗ − 1). No caso N = 2 a não linearidade satisfaz (f1*),

(f3*), (f4*) e (f5*) e mais algumas condições técnicas. Ressaltamos que não existem

trabalhos similares para o caso N = 3. O resultado principal deste caṕıtulo é

Teorema 1.1.1 Assuma que o potencial V satisfaz (V ), e W : R
N → R satisfaz

(W1) − (W2), com não linearidade (x, t) 7→ f(x, t), no caso N ≥ 3, satisfazendo (F)

com g(x, t) = h(x)|t|q−1t com q ∈ (1, 2∗ − 1) e

(C1) h(x) = h0(x) + h∗(x) e k(x) = k0(x) + k∗(x), onde h0, h∗, k0, k∗ : RN → R são

funções cont́ınuas, h0, k0 são Z
N -periódicas, lim

|x|→+∞
h∗(x) = lim

|x|→+∞
k∗(x) = 0 e

h0, h∗, k0, k∗ são não negativas;

(C2) Existe x0 ∈ R
N tal que

k(x0) = max
x∈RN

k(x) e k(x)− k(x0) = o(|x− x0|2) quando x→ x0;

(C3) Se infx∈RN h(x) = 0, assumimos que V (x0) < 0,

no caso N = 2 a não linearidade f cumpre f(x, t) = f0(x, t) + f ∗(x, t), (f1*), (f3*) e

(f4*) onde f0 é uma função cont́ınua não negativa Z
2-periódica em relação a coordenada

x, satisfazendo (f1*), (f3*), (f4*), (f5*) e com a condição de que existem q > 2 e

D : R2 → R tal que

F0(x, t) ≥ D(x)|t|q, ∀ (x, t) ∈ R
2 × R, e inf

x∈R2
D(x) > 0

e f ∗ uma função cont́ınua não negativa satisfazendo:

(D1) Existe τ ∈ (1, 2) tal que |f ∗(x, t)| ≤ H(x)e4π|t|
τ−2t para todo (x, t) ∈ R

2×R, onde

H ∈ L2(R2) ∩ L∞(R2);

(D2) Para todos ǫ > 0 e β > 0, existe R > 0 tal que

|f ∗(x, t)| ≤ ǫ(eβt
2 − 1) para |t| > R e x ∈ R

2 \BR(0).

Então, o problema (PW ) tem uma solução de energia mı́nima.

No caso N = 3 existem restrições técnicas que vem de restrições de argumentos

devidos a Brezis e Nirenberg.
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Após uma revisão bibliográfica, percebemos que não existem artigos para proble-

mas fortemente indefinidos onde

f(x, t) = A(ǫx)f(t), (x, t) ∈ R
N × R,

e A satisfazendo

0 < A0 = inf
x∈RN

A(x) ≤ lim
|x|→∞

A(x) < sup
x∈RN

A(x). (A)

Para os Caṕıtulos 2 e 3 fomos motivados pelas idéias de Rabinowitz [42], Wang

[54] e Alves e Germano [5] para estudar a existência e concentração de solução para o

problema 



−∆u+ V (x)u = A(ǫx)f(u), x ∈ R
N

u ∈ H1(RN)
(P )ǫ

com as condições (A) e (V ) satisfeitas.

O funcional energia Iǫ : H
1(RN) → R do problema (P )ǫ é definido por

Iǫ(u) =
1

2

∫

RN

(|∇u|2 + V (x)u2)dx−
∫

RN

A(ǫx)F (u)dx, u ∈ H1(RN) (Iǫ)

onde F (t) =
∫ t
0
f(s)ds. Por argumentos usuais temos que Iǫ ∈ C1(H1(RN),R) com

I ′ǫ(u)v =
1

2

∫

RN

(∇u∇v + V (x)uv)dx−
∫

RN

A(ǫx)f(u)vdx.

Nestes dois ultimos caṕıtulos da tese faremos um estudo sobre o comportamento

do número

cǫ = inf
u∈Mǫ

Iǫ,

onde

Mǫ = {u ∈ H1(RN) ; I ′ǫ(u)u = I ′ǫ(u)v = 0, para todo v ∈ E−}

e a não linearidade f : R → R satisfaz (f1), (f3), (f4). Especificamente no Caṕıtulo 2

consideramos a não linearidade f com crescimento subcŕıtico. Enquanto no Caṕıtulo

3 a não linearidade assume a condição de crescimento cŕıtico. Além disso, para N ≥ 3

especificamente, consideramos

f(t) = ξ|t|q−1t+ |t|2∗−2t, ξ > 0, q ∈ (1, 2∗ − 1), t ∈ R

e no caso N = 2 as condições sobre a não linearidade são

9



(f5) Existe Γ > 0 tal que |f(t)| ≤ Γe4πt
2

(f6) Existem τ > 0, q > 2 tal que F (t) ≥ τ |t|q, para todo t ∈ R.

Nos Caṕıtulos 2 e 3 estabelecemos existência de soluções de energia mı́nima para

(P )ǫ e mostramos a concentração no conjunto

A =

{
x ∈ R

N ; A(x) = max
x∈RN

A(x)

}
.

Mais especificamente o teorema principal do Caṕıtulo 2 é

Teorema 2.1.1 Assuma V,A : RN → R satisfazendo (V ), (A) e não linearidade f

satisfazendo as condições como mencionadas acima, isto é, (f1)-(f4). Então, existe

ǫ0 > 0 tal que (P )ǫ tem uma solução de energia mı́nima uǫ para todo ǫ ∈ (0, ǫ0). Além

disso, se xǫ ∈ R
N denota o ponto de máximo global de |uǫ|, então

lim
ǫ→0

A(ǫxǫ) = sup
x∈RN

A(x).

Enquanto que no Caṕıtulo 3 o teorema principal é

Teorema 3.1.1 Assuma V,A : RN → R satisfazendo (V ), (A) e não linearidade sa-

tisfazendo as condições como mencionadas acima. Então, existe ξ0, τ0, ǫ0 > 0 tal que

(P )ǫ tem uma solução de energia mı́nima uǫ para todo ǫ ∈ (0, ǫ0), com ξ < ξ0 para

N = 3 e com τ < τ0 para N = 2. Além disso, se xǫ ∈ R
N denota o ponto de máximo

global de |uǫ|, então
lim
ǫ→0

A(ǫxǫ) = sup
x∈RN

A(x).
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Caṕıtulo 1

Soluções de energia mı́nima para

uma classe de problemas

variacionais indefinidos com

crescimento cŕıtico.

Ground state solution for a class of indefinite

variational problems with critical growth

CLAUDIANOR O. ALVES and GEILSON F. GERMANO

Abstract

In this paper we study the existence of ground state solution for an indefinite

variational problem of the type




−∆u+ (V (x)−W (x))u = f(x, u) in R
N ,

u ∈ H1(RN),
(P )

where N ≥ 2, V,W : RN → R and f : RN ×R → R are continuous functions verifying

some technical conditions and f possesses critical growth. Here, we will consider the

case where the problem is asymptotically periodic, that is, V is ZN -periodic, W goes

to 0 at infinity and f is asymptotically periodic.

Mathematics Subject Classifications (2010): 35B33, 35A15, 35J15 .



Keywords: critical growth, variational methods, elliptic equations, indefinite strongly

functional.

1.1 Introduction

In this paper we study the existence of ground state solution for an indefinite

variational problem of the type




−∆u+ (V (x)−W (x))u = f(x, u), in R
N ,

u ∈ H1(RN),
(P )

where N ≥ 2, V,W : R
N → R are continuous functions verifying some technical

conditions and f has critical growth. Here, we will consider the case where the problem

is asymptotically periodic, that is, V is ZN -periodic, W goes to 0 at infinity and f is

asymptotically periodic.

In [27], Kryszewski and Szulkin have studied the existence of ground state solution

for an indefinite variational problem of the type




−∆u+ V (x)u = f(x, u), in R
N ,

u ∈ H1(RN),
(P1)

where V : RN → R is a Z
N -periodic continuous function such that

0 6∈ σ(−∆+ V ), the spectrum of −∆+ V. (V1)

Related to the function f : RN × R → R, they assumed that f is continuous, ZN -

periodic in x with

|f(x, t)| ≤ c(|t|q−1 + |t|p−1), ∀t ∈ R and x ∈ R
N (h1)

and

0 < αF (x, t) ≤ tf(x, t) ∀t ∈ R, F (x, t) =

∫ t

0

f(x, s) ds (h2)

for some c > 0, α > 2 and 2 < q < p < 2∗ where 2∗ = 2N
N−2

if N ≥ 3 and 2∗ = +∞
if N = 2. The above hypotheses guarantee that the energy functional associated with

(P1) given by

J(u) =
1

2

∫

RN

(|∇u|2 + V (x)|u|2 dx)−
∫

RN

F (x, u) dx, u ∈ H1(RN),
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is well defined and belongs to C1(H1(RN),R). By (V1), there is an equivalent inner

product 〈 , 〉 in H1(RN) such that

J(u) =
1

2
‖u+‖2 − 1

2
‖u−‖2 −

∫

RN

F (x, u) dx,

where ‖u‖ =
√
〈u, u〉 and H1(RN) = E+ ⊕ E− corresponds to the spectral decompo-

sition of −∆+ V with respect to the positive and negative part of the spectrum with

u = u+ + u−, where u+ ∈ E+ and u− ∈ E−. In order to show the existence of solution

for (P1), Kryszewski and Szulkin introduced a new and interesting generalized link

theorem. In [31], Li and Szulkin have improved this generalized link theorem to prove

the existence of solution for a class of indefinite problem with f being asymptotically

linear at infinity.

The link theorems above mentioned have been used in a lot of papers. We would

like to cite Chabrowski and Szulkin [14], do Ó and Ruf [17], Furtado and Marchi [20],

Tang [51, 52] and their references.

Pankov and Pflüger [39] also have considered the existence of solution for problem

(P1) with the same conditions considered in [27], however the approach is based on an

approximation technique of periodic function together with the linking theorem due to

Rabinowitz [40]. After, Pankov [38] has studied the existence of solution for problems

of the type 



−∆u+ V (x)u = ±f(x, u), in R
N ,

u ∈ H1(RN),
(P2)

by supposing (V1), (h1) − (h2) and employing the same approach explored in [39]. In

[38] and [39], the existence of ground state solution has been established by supposing

that f is C1 and there is θ ∈ (0, 1) such that

0 < t−1f(x, t) ≤ θf ′
t(x, t), ∀t 6= 0 and x ∈ R

N . (h3)

However, in [38], Pankov has found a ground state solution by minimizing the energy

functional J on the set

O =
{
u ∈ H1(RN) \ E− ; J ′(u)u = 0 and J ′(u)v = 0, ∀ v ∈ E−} .

The reader is invited to see that if J is definite strongly, that is, when E− = {0},
the set O is exactly the Nehari manifold associated with J . Hereafter, we say that
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u0 ∈ H1(RN) is a ground state solution if

J ′(u0) = 0, u0 ∈ O and J(u0) = inf
w∈O

J(w).

In [45], Szulkin and Weth have established the existence of ground state solution

for problem (P1) by completing the study made in [38], in the sense that, they also

minimize the energy function on O, however they have used weaker conditions on f ,

for example f is continuous, ZN -periodic in x and satisfies

|f(x, t)| ≤ C(1 + |t|p−1), ∀t ∈ R and x ∈ R
N (f1)

for some C > 0 and p ∈ (2, 2∗).

f(x, t) = o(t) uniformly in x as |t| → 0 (f2)

F (x, t)/|t|2 → +∞ uniformly in x as |t| → +∞ (f3)

and

t 7→ f(x, t)/|t| is strictly increasing on R \ {0}. (f4)

The same approach has been used by Zhang, Xu and Zhang [60, 61] to study a

class of indefinite and asymptotically periodic problem.

After a bibliography review, we have observed that there are few papers involving

indefinite problem whose the nonlinearity has critical growth. For example, the critical

case for N ≥ 4 was considered in [14], [49] and [61] when f is given by

f(x, t) = g(x, t) + k(x)|t|2∗−2t,

with g : RN × R → R being a function with subcritical growth and k : RN → R be

a continuous function satisfying some conditions. For the case N = 2, we only know

the paper [17] which considered the periodic case with f having an exponential critical

growth, namely there is α0 > 0 such that

lim
|t|→+∞

|f(t)|
eα|t|2

= 0, ∀α > α0, lim
|t|→+∞

|f(t)|
eα|t|2

= +∞, ∀α < α0.

Motivated by ideas found in Szulkin and Weth [45, 46] together with the fact

that there are few papers involving critical growth for N = 2 and N ≥ 3 and inde-

finite problem, we intend in the present paper to study the existence of ground state
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solution for (P ), with the nonlinearity f having critical growth and the problem being

asymptotically periodic. Since we will work with the dimensions N = 2 and N ≥ 3,

we will state our conditions in two blocks, however the conditions on V and W are the

same for any these dimensions.

The conditions on V and W .

On the functions V and W , we assume the following conditions:

(V1) V : RN → R is continuous and Z
N -periodic.

(V2) Λ := sup(σ(−∆+ V ) ∩ (−∞, 0]) < 0 < Λ := inf(σ(−∆+ V ) ∩ [0,+∞)).

(W1) W : RN → R is continuous and lim
|x|→+∞

W (x) = 0.

(W2) 0 ≤ W (x) ≤ Θ = sup
x∈RN

W (x) < Λ, ∀x ∈ R
N .

Concerning the function f , we assume the following conditions:

Dimension N ≥ 3:

For this case, we suppose that f is the form

f(x, t) = h(x)|t|q−1t+ k(x)|t|2∗−2t

with 1 < q < 2∗ − 1 and

(C1) h(x) = h0(x) + h∗(x) and k(x) = k0(x) + k∗(x), where h0, h∗, k0, k∗ : RN → R are

continuous function, h0, k0 are Z
N -periodic, lim

|x|→+∞
h∗(x) = lim

|x|→+∞
k∗(x) = 0 and

h0, h∗, k0, k∗ are nonnegative;

(C2) there is x0 ∈ R
N such that

k(x0) = max
x∈RN

k(x) and k(x)− k(x0) = o(|x− x0|2) as x→ x0;

(C3) if infx∈RN h(x) = 0, we assume that V (x0) < 0.

Dimension N = 2:
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(f1) there exist functions f0, f
∗ : R2 × R → R such that

f(x, t) = f0(x, t) + f ∗(x, t),

where f0 and f
∗ are continuous functions, f0 is Z2-periodic with respect to x, f ∗

is nonnegative and satisfies the following condition: given ǫ > 0 and β > 0, there

exists R > 0 such that

|f ∗(x, t)| ≤ ǫ(eβt
2 − 1) for |t| > R and x ∈ R

2 \BR(0);

(f2)
f(x,t)
t
, f0(x,t)

t
→ 0 as t→ 0 uniformly with respect to x ∈ R

2;

(f3) for each fixed x ∈ R
2, the functions t 7→ f(x,t)

t
and t 7→ f0(x,t)

t
are increasing on

(0,+∞) and decreasing on (−∞, 0);

(f4) there exist θ, µ > 2 such that

0 < θF0(x, t) ≤ tf0(x, t) and 0 < µF (x, t) ≤ tf(x, t)

for all (x, t) ∈ R
2 × R

∗, where

F0(x, t) :=

∫ t

0

f0(x, s)ds and F (x, t) :=

∫ t

0

f(x, s)ds;

(f5) There exist Γ > 0 and τ ∈ (1, 2) such that |f0(x, t)| ≤ Γe4πt
2
and |f ∗(x, t)| ≤

ΓH(x)e4π|t|
τ−2t for all (x, t) ∈ R

2 × R, where H ∈ L2(R2) ∩ L∞(R2);

(f6) F0(x, t) ≥ D(x)|t|q, ∀ (x, t) ∈ R
2×R, for some positive continuous function D

with infx∈R2 D(x) > 0 and q > 2.

An example of a function f verifying (f1)− (f6) is

f(x, t) = λ(3− sin((x1 + x2)2π))|t|q−2teα0t2 +
1

x21 + x22 + 1
|t|p−2te4π|t|

τ−2t, ∀t ∈ R

with x = (x1, x2), λ > 0, α0 ∈ (0, 4π), q, p ∈ (2,+∞) and τ ∈ (1, 2).

The above conditions imply that f has a critical growth if N = 2 or N ≥ 3.

Our main theorem is the following:
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Theorem 1.1.1 Assume that (V1) − (V2), (W1) − (W2), (C1) − (C3) and (f1) − (f6)

hold. Then, problem (P ) has a ground state solution for N ≥ 4. If N = 2, 3, there

is λ∗ > 0 such that if infx∈R2 D(x), infx∈RN h(x) ≥ λ∗, then problem (P ) has a ground

state solution.

The Theorem 1.1.1 completes the study made in some of the papers above menti-

oned, in the sense that we are considering others conditions on V and f . For example,

for the case N ≥ 3, it completes the study made in [45], because the critical case was

not considered for N ≥ 3 or N = 2, and the case asymptotically periodic was not also

analyzed. The Theorem 1.1.1 also completes [17], because in that paper was proved the

existence of a solution only for periodic case, while we are finding ground state solution

for the periodic and asymptotically periodic case by using a different method. Finally,

the above theorem completes the main result of [49] and [60], because the authors

considered only the case W = 0, and also the paper [14], because the dimension N = 3

was not considered as well as the asymptotically periodic case. Moreover, in [14] and

[49] the authors considered only the

V (x0) < 0 and k(x)− k(x0) = o(|x− x0|2) as x→ x0.

In Theorem 1.1.1 this condition was not assumed if infx∈RN h(x) > 0.

Before concluding this introduction, we would like point out that the reader

can find others interesting results involving indefinite variational problem in Jeanjean

[25], Schechter [47, 48], Lin and Tang [32], Willem and Zou [57], Yang [58] and their

references.

Notation: In this paper, we use the following notations:

• The usual norms in H1(RN) and Lp(RN) will be denoted by ‖ ‖H1(RN ) and | |p
respectively.

• C denotes (possible different) any positive constant.

• BR(z) denotes the open ball with center z and radius R in R
N .

• We say that un → u in Lploc(R
N) when

un → u in Lp(BR(0)), ∀R > 0.
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• If g is a mensurable function, the integral
∫
RN g(x) dx will be denoted by

∫
g(x) dx.

The plan of the paper is as follows: In Section 2 we will show some technical

lemmas and prove the Theorem 1.1.1 for N ≥ 3, while in Section 3 we will focus our

attention to the dimension N = 2.

1.2 The case N ≥ 3

In this section, our intention is to prove the Theorem 1.1.1 for the case N ≥ 3.

Some technical lemmas this section also are true for dimension N = 2 and they will be

used in Section 3.

In this section, our focus is the indefinite problem





−∆u+ (V (x)−W (x))u = h(x)|u|q−1u+ k(x)|u|2∗−2u, in R
N

u ∈ H1(RN),
(2.1)

whose the energy functional ΦW : H1(RN) → R given by

ΦW (u) =
1

2
B(u, u)−1

2

∫
W (x)|u|2dx− 1

q + 1

∫
h(x)|u|q+1dx− 1

2∗

∫
k(x)|u|2∗dx (2.2)

is well defined, ΦW ∈ C1(H1(RN),R) and its critical points are precisely weak solutions

of (2.1). Here, B is the bilinear form

B(u, v) =

∫
(∇u∇v + V (x)uv) dx. (2.3)

Note that the bilinear form B is not positive definite, therefore it does not induce a

norm. As in [45], there is an inner product 〈 , 〉 in H1(RN) such that

ΦW (u) =
1

2
‖u+‖2 − 1

2
‖u−‖2 − 1

2

∫
W (x)|u|2 dx−

∫
F (x, u) dx, (2.4)

where ‖u‖ =
√

〈u, u〉 and H1(RN) = E+ ⊕ E− corresponds to the spectral decompo-

sition of −∆+ V with respect to the positive and negative part of the spectrum with

u = u++u−, where u+ ∈ E+ and u− ∈ E−. It is well known that B is positive definite

on E+, negative definite on E− and the norm ‖ ‖ is equivalent to the usual norm in

H1(RN), that is, there are a, b > 0 such that

b||u|| ≤ ||u||H1(RN ) ≤ a||u||, ∀ u ∈ H1(RN). (2.5)
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Hereafter, we denote by Φ : H1(RN) → R the functional defined by

Φ(u) =
1

2
B(u, u)− 1

q + 1

∫
h0(x)|u|q+1dx− 1

2∗

∫
k0(x)|u|2

∗
dx,

or equivalently,

Φ(u) =
1

2
‖u+‖2 − 1

2
‖u−‖2 − 1

q + 1

∫
h0(x)|u|q+1dx− 1

2∗

∫
k0(x)|u|2

∗
dx. (2.6)

Note that the critical points of Φ are weak solutions of the periodic problem




−∆u+ V (x)u = h0(x)|u|q−1u+ k0(x)|u|2∗−2u, in R
N ,

u ∈ H1(RN).
(2.7)

In the sequel, M, E(u) and Ê(u) denote the following sets

M := {u ∈ H1(RN) \ E− ; Φ′
W (u)u = 0 and Φ′

W (u)v = 0, ∀ v ∈ E−}

and

E(u) := E− ⊕ Ru and Ê(u) := E− ⊕ [0,+∞)u.

Therefore

E(u) = E− ⊕ Ru+ and Ê(u) = E− ⊕ [0,+∞)u+.

Moreover, we denote by γW and γ the real numbers

γW := inf
M

ΦW and γ := inf
M

Φ. (2.8)

1.2.1 Technical lemmas

In this section we are going to show some lemmas which will be used in the proof

of main Theorem 1.1.1.

Lemma 1.2.1 If u ∈ M and w = su+ v where s ≥ 1, v ∈ E− and w 6= 0, then

ΦW (u+ w) < ΦW (u).

Proof. In the sequel, we fix

G(x, t) :=
1

2
W (x)t2 +

1

q + 1
h(x)|t|q+1 +

1

2∗
k(x)|t|2∗

and

g(x, t) := W (x)t+ h(x)|t|q−1t+ k(x)|t|2∗−2t.
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Then by a simple computation,

ΦW (u+ w)− ΦW (u) =

−1
2
||v||2 +

∫ (
g(x, u)

[(
s2

2
+ s
)
u+ (s+ 1)v

]
+G(x, u)−G(x, u+ w)

)
dx.

Now, the proof follows by adapting the ideas explored in [45, Proposition 2.3].

Lemma 1.2.2 Let K ⊂ E+ \ {0} be a compact subset, then there exists R > 0 such

that ΦW (w) ≤ 0, ∀ w ∈ E(u) \BR(0) and u ∈ K.

Proof. Setting the functional

Ψ∗(u) =
1

2
B(u, u)− 1

2∗

∫
|u|2∗ dx

we have

ΦW (u) ≤ Ψ∗(u), ∀u ∈ H1(RN).

Now, we apply the same idea from [45, Lemma 2.2] to the functional Ψ∗ to get the

desired result.

Lemma 1.2.3 For all u ∈ H1(RN), the functional ΦW |E(u) is weakly upper semicon-

tinuous.

Proof. First of all, note that E(u) is weakly closed, because it is convex strongly

closed. Now, we claim that the functional

Φ̃ : E(u) → R

w 7→ 1
2

∫
W (x)|w|2 dx+ 1

q+1

∫
h(x)|w|q+1 dx+ 1

2∗

∫
k(x)|w|2∗ dx

is weakly lower semicontinuous. Indeed, if wn ⇀ w on E(u), then after passing to a

subsequence wn(x) → w(x) a.e. in R
N . Then by Fatou’s Lemma,

Φ̃(w) =

∫
W (x)w2 dx+

1

q + 1

∫
h(x)|w|q+1 dx+

1

2∗

∫
k(x)|w|2∗ dx ≤

≤ lim inf
n→+∞

[∫
W (x)w2

n dx+
1

q + 1

∫
h(x)|wn|q+1 dx+

1

2∗

∫
k(x)|wn|2

∗
dx

]
,

leading to

Φ̃(w) ≤ lim inf
n→+∞

Φ̃(wn).

Furthermore, the functional

Ψ̃ : E(u) → R

w 7→ 1
2
B(w,w)
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is weakly upper semicontinuous. In fact, since

Ψ̃(w) =
1

2
(||w+||2 − ||w−||2),

if wn = snu
+ + vn ⇀ w = su+ + v with vn, v ∈ E−, then sn → s in R and vn ⇀ v in

H1(RN). Thus,

Ψ̃(w) =
1

2
(s2||u+||2 − ||v||2) ≥ lim sup

n→+∞

1

2
(s2n||u+||2 − ||vn||2) = lim sup

n→+∞
Ψ̃(wn).

As ΦW |E(u) = Ψ̃− Φ̃, the result is proved.

Lemma 1.2.4 For each u ∈ H1(RN)\E−, M∩Ê(u) is a singleton set and the element

of this set is the unique global maximum of ΦW |Ê(u)

Proof. The proof follows very closely the proof of [45, Lemma 2.6].

Lemma 1.2.5 There exists ρ > 0 such that inf
Bρ(0)∩E+

ΦW > 0.

Proof. In what follows, let us fix h := supx∈RN h(x) and k := supx∈RN k(x). For

u ∈ E+,

ΦW (u) = 1
2
||u||2 − 1

2

∫
W (x)|u|2dx− 1

q+1

∫
h(x)|u|q+1dx− 1

2∗

∫
k(x)|u|2∗dx

≥ 1
2
||u||2 − Θ

2

∫
|u|2dx− h

q+1

∫
|u|q+1dx− k

2∗

∫
|u|2∗dx

≥ 1
2
||u||2 − Θ

2Λ
||u||2 − hc1

q+1
||u||q+1 − kc2

2∗ ||u||2
∗

= 1
2

(
1− Θ

Λ

)
||u||2 − hc1

q+1
||u||q+1 − kc2

2∗ ||u||2
∗
.

Thereby, the lemma follows by taking ρ > 0 satisfying

1

2

(
1− Θ

Λ

)
ρ2 − hc1

q + 1
ρq+1 − kc2

2∗
ρ2

∗
> 0.

Lemma 1.2.6 The real number γW given in (2.8) is positive. In addition, if u ∈ M
then ||u+|| ≥ max{||u−||,√2γW}.

Proof. By Lemma 1.2.5, there is ρ > 0 such that

l := inf
Bρ(0)∩E+

ΦW > 0.

For all u ∈ M, we know that u+ 6= 0, then by Lemma 1.2.4,

ΦW (u) ≥ ΦW

(
ρ

||u+||u
+

)
≥ l,
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from where it follows that

γW = inf
M

ΦW ≥ l > 0.

In addition, for all u ∈ M,

γW ≤ ΦW (u) ≤ 1

2
B(u, u) =

1

2
(||u+||2 − ||u−||2),

implying that ||u+|| ≥ max{||u−||,√2γW}.

Next we will show a boundedness from above for γW which will be crucial in our

approach. However, before doing this we need to prove two technical lemmas. The

first one is true for N ≥ 2 and it has the following statement

Lemma 1.2.7 Consider N ≥ 2 and let u ∈ E+ \ {0}, p ∈ (2, 2∗) and r, s0 > 0. Then

there exists ξ > 0 such that

ξ|su|p ≤ |su+ v|p, (2.9)

for all s ≥ s0 and v ∈ E− with ||su+ v|| ≤ r.

Proof. If the lemma does not hold, there are sn ≥ s0 and vn ∈ E− satisfying

||snu+ vn|| ≤ r and |snu|p ≥ n|snu+ vn|p, ∀n ∈ N.

Setting αn := |snu|p, we obtain

∣∣∣∣
u

|u|p
+
vn
αn

∣∣∣∣
p

≤ 1

n
.

Thus, passing to a subsequence if necessary,

wn :=
vn
αn

→ − u

|u|p
a.e. in R

N . (2.10)

On the other hand,

||wn||2 =
||vn||2
s2n|u|2p

≤ ||snu+ vn||2
s20|u|2p

≤ r2

s20|u|2p
∀n ∈ N,

showing that (wn) is a bounded sequence in H1(RN). As wn ∈ E−, there is w ∈ E−

such that for some subsequence (not renamed) wn⇀w in E−. Then by (2.10),

u

|u|p
= −w ∈ E−,

which is absurd, since u ∈ E+ \ {0}.
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Lemma 1.2.8 Let u ∈ E+ \ {0} be fixed. Then there are r, s0 > 0 satisfying

sup
w∈Ê(u)

ΦW (w) = sup
||su+ v|| ≤ r

s ≥ s0, v ∈ E−

ΦW (su+ v). (2.11)

Proof. From Lemma 1.2.2,

sup
Ê(u)

ΦW = sup
Ê(u)∩Br(0)

ΦW

for some r > 0. Hence, there are (sn) ⊂ [0,+∞) and (vn) ⊂ E− with ||snu + vn|| ≤ r

and

ΦW (snu+ vn) → sup
Ê(u)∩Br(0)

ΦW . (2.12)

Next, we will prove that there exists s0 > 0 such that

sup
Ê(u)∩Br(0)

ΦW = sup
||su+ v|| ≤ r

s ≥ s0, v ∈ E−

ΦW (su+ v).

Arguing by contradiction, suppose that for all s0 > 0

sup
Ê(u)∩Br(0)

ΦW > sup
||su+ v|| ≤ r

s ≥ s0, v ∈ E−

ΦW (su+ v). (2.13)

Such supposition permit us to conclude that sn → 0. On the other hand, recalling that

ΦW (snu+ vn) ≤
1

2
s2n||u||2,

we are leading to

0 < γW = inf
M

ΦW ≤ sup
Ê(u)

ΦW = ΦW (snu+ vn) + on(1) ≤
1

2
s2n||u||2 + on(1),

which is a contradiction. This completes the proof.

Now, we are ready to show the estimate from above involving the number γW

given in (2.8)

Proposition 1.2.9 Assume the conditions of Theorem 1.1.1. If N ≥ 4, then

γW <
1

N |k0|
N−2

2∞
SN/2. (2.14)

If N = 3, there is λ∗ > 0 such that the estimate (2.14) holds for inf
x∈RN

h(x) > λ∗.
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Proof. Since γW ≤ γ, it is enough to prove that

γ <
1

N |k0|
N−2

2∞
SN/2.

If N ≥ 4 and infx∈RN h(x) = 0, the estimate is made in [14, Proposition 4.2]. Next we

will do the proof for N ≥ 4 and infx∈RN h(x) > 0. To this end, we follow the same

notation used in [14]. Let

ϕǫ(x) =
cNψ(x)ǫ

N−2
2

(ǫ2 + |x|2)N−2
2

where cN = (N(N − 2))
N−2

4 , ǫ > 0 and ψ ∈ C∞
0 (RN) is such that

ψ(x) = 1 for |x| ≤ 1

2
and ψ(x) = 0 for |x| ≥ 1.

From [56], we know that the estimates below hold

|∇ϕǫ|22 = S
N
2 +O(ǫN−2), |∇ϕǫ|1 = O(ǫ

N−2
2 ), |ϕǫ|2∗2∗ = S

N
2 +O(ǫN),

|ϕǫ|2
∗−1

2∗−1 = O(ǫ
N−2

2 ), |ϕǫ|qq = O(ǫ
N−2

2 ), |ϕǫ|1 = O(ǫ
N−2

2 )

(2.15)

and

|ϕǫ|22 =





bǫ2|logǫ|+O(ǫ2), if N = 4

bǫ2 +O(ǫN−2), if N ≥ 5.
(2.16)

Adapting the same idea explored in [14, Proposition 4.2], for each u ∈ E− we

obtain

Φ(sϕǫ + u) ≤ Φ(sϕǫ) +O(ǫN−2), ∀s ≥ 0,

where O(ǫN−2) does not depend on u. Now, arguing as in [1], we get

sup
s≥0

Φ(sϕǫ) ≤
1

N |k0|
N−2

2∞
SN/2 +O(ǫN−2) + c1

∫

B1(0)

|ϕǫ|2 dx− c2

∫

B1(0)

|ϕǫ|q+1 dx,

implying that

sup
s≥0, u∈E−

Φ(sϕǫ+u) ≤
1

N |k0|
N−2

2∞
SN/2+c1

∫

B1(0)

|ϕǫ|2 dx−c2
∫

B1(0)

|ϕǫ|q+1 dx+O(ǫN−2).

Moreover, in [1], we also find that

lim
ǫ→0

1

ǫN−2

(
c1

∫

B1(0)

|ϕǫ|2 dx− c2

∫

B1(0)

|ϕǫ|q+1 dx

)
= −∞,
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from where it follows that there exists ǫ > 0 small enough verifying

c1

∫

B1(0)

|ϕǫ|2 dx− c2

∫

B1(0)

|ϕǫ|q+1 dx+O(ǫN−2) < 0,

and so,

sup
s≥0, u∈E−

Φ(sϕǫ + u) <
1

N |k0|
N−2

2∞
SN/2

for some ǫ > 0 small enough.

Now, we will consider the case N = 3. For each u ∈ E+ \ {0}, the Lemma 1.2.8

guarantees the existence of r, s0 > 0 satisfying

sup
w∈Ê(u)

Φ(w) = sup
||su+ v|| ≤ r

s ≥ s0, v ∈ E−

Φ(su+ v).

Therefore, applying Lemma 1.2.7,

supÊ(u) Φ = sup ||su+ v|| ≤ r

s ≥ s0, v ∈ E−

Φ(su+ v)

≤ sup ||su+ v|| ≤ r

s ≥ s0, v ∈ E−

(
s2||u||2

2
− λ

q+1

∫
|su+ v|q+1dx

)

≤ sup ||su+ v|| ≤ r

s ≥ s0, v ∈ E−

(
s2||u||2

2
− λξ

q+1

∫
|su|q+1dx

)

≤ maxs≥0(As
2 − λBsq+1),

where

λ = inf
x∈RN

h(x), A =
||u||2
2

and B =
ξ

q + 1

∫
|u|q+1dx.

As

max
s≥0

(As2 − λBsq+1) → 0 as λ→ +∞,

there is λ∗ > 0 such that

sup
w∈Ê(u)

Φ(w) <
1

N |k0|
N−2

2∞
SN/2 ∀λ ≥ λ∗,

showing the desired result.

Lemma 1.2.10 Let (un) ⊂ H1(RN) be a sequence verifying

ΦW (un) ≤ d, ±Φ′
W (un)u

±
n ≤ d||un|| and − Φ′

W (un)un ≤ d||un||

for some d > 0. Then, (un) is bounded in H1(RN).
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Proof. In the sequel, let θ := χ[−1,1] : R → R be the characteristic function on interval

[−1, 1],

g(x, t) := θ(t)f(x, t) and j(x, t) := (1− θ(t))f(x, t),

where f(x, t) = h(x)|t|q−1t+ k(x)|t|2∗−2t. Fixing

r :=
q + 1

q
and s =

2∗

2∗ − 1
,

it follows that

(r − 1)q = (s− 1)(2∗ − 1) = 1.

Note that

|g(x, t)|r−1 = θ(t)r−1|f(x, t)|r−1 ≤ θ(t)(|h|∞|t|q + |k|∞|t|2∗−1)r−1

≤ θ(t)2r−1C(|t|(r−1)q + |t|(r−1)(2∗−1)) ≤ K|t|

for some C > 0 sufficiently large. So

|g(x, t)|r−1 ≤ C|t|, ∀ (x, t) ∈ R
N+1. (2.17)

Analogously,

|j(x, t)|s−1 ≤ C|t|, ∀ (x, t) ∈ R
N+1. (2.18)

Since tf(x, t) ≥ 0, (x, t) ∈ R
N+1, the inequalities (2.17) and (2.18) give

|g(x, t)|r ≤ Ctg(x, t) and |j(x, t)|s ≤ Ctj(x, t), ∀(x, t) ∈ R
N+1. (2.19)

The last two inequalities lead to

d+ d||un|| ≥ ΦW (un)− 1
2
Φ′
W (un)un =(

1
2
− 1

q+1

) ∫
h(x)|u|q+1dx+

(
1
2
− 1

2∗

) ∫
k(x)|u|2∗dx ≥

(
1
2
− 1

q+1

) ∫
h(x)|u|q+1dx+

(
1
2
− 1

q+1

) ∫
k(x)|u|2∗dx =

(
1
2
− 1

q+1

) ∫
(g(x, un)un + j(x, un)un)dx ≥

(
1
2
− 1

q+1

)
1
C

(∫
|g(x, un)|rdx+

∫
|j(x, un)|sdx

)
,

from where it follows

|g(x, un)|rr + |j(x, un)|ss ≤ C(1 + ||un||) (2.20)

26



for some C > 0. On the other hand,

||u−n ||2 = −Φ′
W (un)u

−
n −

∫
W (x)unu

−
n dx−

∫
f(x, un)u

−
n dx

≤ d||u−n || −
∫
W (x)unu

−
n dx+ |g(x, un)|r|u−n |q+1 + |j(x, un)|s|u−n |2∗

≤ −
∫
W (x)unu

−
n dx+ C||u−n || (1 + |g(x, un)|r + |j(x, un)|s)

≤ −
∫
W (x)unu

−
n dx+ C||u−n ||

(
1 + (1 + ||un||)1/r + (1 + ||un||)1/s

)

≤ −
∫
W (x)unu

−
n dx+ C||u−n ||

(
1 + ||un||1/r + ||un||1/s

)
.

Thus,

||u−n ||2 ≤ −
∫
W (x)unu

−
n dx+ C||un||

(
1 + ||un||1/r + ||un||1/s

)
. (2.21)

The same argument works to prove that

||u+n ||2 ≤
∫
W (x)unu

+
n dx+ C||un||

(
1 + ||un||1/r + ||un||1/s

)
. (2.22)

Recalling that ||un||2 = ||u+n ||2 + ||u−n ||2, the estimates (2.21) and (2.22) combined give

||un||2 ≤
∫
W (x)un(u

+
n − u−n )dx+ C||un||

(
1 + ||un||1/r + ||un||1/s

)
. (2.23)

On the other hand, we know that

∫
W (x)un(u

+
n − u−n )dx =

∫
W (x)(u+n + u−n )(u

+
n − u−n )dx

=
∫
W (x)(u+n )

2dx−
∫
W (x)(u−n )

2dx

≤
∫
W (x)(u+n )

2dx ≤ Θ
∫
(u+n )

2dx ≤ Θ
Λ
||u+n ||2

that is, ∫
W (x)un(u

+
n − u−n )dx ≤ Θ

Λ
||un||2, (2.24)

where Λ was fixed in (W2). Now, (2.23) combines with (2.24) to give

(
1− Θ

Λ

)
||un||2 ≤ C||un||

(
1 + ||un||1/r + ||un||1/s

)
.

This concludes the verification of Lemma 1.2.10.

As a byproduct of the last lemma, we have the corollaries below

Corollary 1.2.11 If (un) is a (PS) sequence for ΦW , then (un) is bounded. In addi-

tion, if un ⇀ u in H1(RN), then u is a solution of (2.1).

Corollary 1.2.12 ΦW is coercive on M, that is, ΦW (u) → +∞ as ||u|| → +∞ and

u ∈ M.
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The Lemma 1.2.4 permits to consider a function

m : E+ \ {0} → M where m(u) ∈ Ê(u) ∩M, ∀u ∈ E+ \ {0}. (2.25)

The above function will be crucial in our approach. Next, we establish its conti-

nuity.

Lemma 1.2.13 The function m is continuous.

Proof. Suppose un → u in E+ \ {0}. Since
un

||un||
→ u

||u|| , m

(
un

||un||

)
= m(un) and m

(
u

||u||

)
= m(u),

without loss of generality, we may assume that ||un|| = ||u|| = 1.

There are tn, t ∈ [0,+∞) and vn, v ∈ E− such that

m(un) = tnun + vn and m(u) = tu+ v.

Note that K := {un}n∈N∪{u} is a compact set. Thereby, by Lemma 1.2.2, there exists

R > 0 such that ΦW (w) ≤ 0 in E(z) \BR(0) for all z ∈ K. Hence,

0 < ΦW (m(un)) = sup
Ê(un)

ΦW = sup
Ê(un)∩BR(0)

ΦW ≤ sup
w∈Ê(un)∩BR(0)

1

2
||w+||2 ≤ 1

2
R2,

showing that (ΦW (m(un))) is a bounded sequence, and so, by Corollary 1.2.12, (m(un))

is a bounded sequence. The boundedness of (m(un)) implies that (tn) and (vn) are also

bounded. Then, for some subsequence (not renamed),

tn → t0 in R, vn ⇀ v0 in E− and m(un)⇀ t0u+ v0 in E−. (2.26)

Recalling that ΦW (m(un)) ≥ ΦW (tun + v), we obtain

lim inf
n→+∞

ΦW (m(un)) ≥ ΦW (m(u)).

Thus, the Fatou’s Lemma combined with the weakly lower semicontinuous of the norm

gives

ΦW (m(u)) ≤ lim infn→+∞ ΦW (m(un)) ≤ lim supn→+∞ ΦW (m(un))

lim supn→+∞
[
1
2
t2n||un||2 − 1

2
||vn||2 − 1

2

∫
W (x)m(un)

2dx

− 1
q+1

∫
h(x)|m(un)|q+1dx− 1

2∗

∫
k(x)|m(un)|2∗dx

]

≤ 1
2
t20 − 1

2
||v0||2 −−1

2

∫
W (x)|t0u+ v0|2dx

− 1
q+1

∫
h(x)|t0u+ v0|q+1dx− 1

2∗

∫
k(x)|t0u+ v0|2∗dx

= ΦW (t0u+ v0) ≤ ΦW (m(u)),
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implying that

lim
n→+∞

||vn|| = ||v0|| and ΦW (t0u+ v0) = ΦW (m(u)). (2.27)

From (2.26) and (2.27), vn → v0 in E−. Now, the Lemma 1.2.1 together with (2.27)

guarantees that t0u+ v0 = m(u). Consequently,

m(un) = tnun + vn → t0u+ v0 = m(u),

finishing the proof.

Hereafter, we consider the functional Ψ̂ : E+ \ {0} → R defined by Ψ̂(u) :=

ΦW (m(u)). We know that Ψ̂ is continuous by previous lemma. In the sequel, we

denote by Ψ : S+ → R the restriction of Ψ̂ to S+ = B1(0) ∩ E+.

The next three results establish some important properties involving the functi-

onals Ψ and Ψ̂ and their proofs follow as in [45].

Lemma 1.2.14 Ψ̂ ∈ C1(E+ \ {0},R), and

Ψ̂′(y)z =
||m(y)+||

||y|| Φ′
W (m(y))z, ∀y, z ∈ E+, y 6= 0. (2.28)

Corollary 1.2.15 The following assertions hold:

(a) Ψ ∈ C1(S+), and

Ψ′(y)z = ||m(y)+||Φ′
W (m(y))z, for z ∈ TyS

+.

(b) (wn) is a (PS)c sequence for Ψ if and only if (m(wn)) is a (PS)c sequence for

ΦW .

(c) If γW = infM ΦW is attained by u ∈ M, then Φ′
W (u) = 0.

Proposition 1.2.16 There exists a (PS)γW sequence for ΦW .

Our next lemma will be used to prove the existence of ground state solution for

the periodic case.

Lemma 1.2.17 Let (un) be a (PS)c sequence for the functional Φ given in (2.6) with

c 6= 0. Then, there are r, ǫ > 0 and (yn) in Z
N satisfying

lim sup
n∈N

∫

Br(yn)

|un|2
∗
dx ≥ ǫ. (2.29)

In addition, if c ∈ (−∞, SN/2|k0|
2−N

2∞ /N) \ {0}, the sequence vn = un(· − yn) is also a

(PS)c sequence for Φ, and for some subsequence, vn ⇀ v in H1(RN) with v 6= 0.
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Proof. By Corollary 1.2.11, the sequence (un) is bounded in H1(RN). Arguing by

contradiction, we suppose that

lim sup
n→+∞

sup
y∈RN

∫

BR(y)

|un|2
∗
dx = 0,

for some R > 0. Applying [43, Lemma 2.1], it follows that un → 0 in L2∗(RN), and so,

by interpolation on the Lebesgue spaces, un → 0 in Lp(RN) for all p ∈ (2, 2∗]. As

Φ′(un)(u
−
n ) = −||u−n ||2 −

∫
h0(x)|un|q−1unu

−
n dx−

∫
k0(x)|un|2

∗−2unu
−
n dx,

we deduce that u−n → 0 in H1(RN). By a similar argument u+n → 0 in H1(RN). Hence

un → 0 in H1(RN).

Thereby, by continuity of Φ, c = limΦ(un) = Φ(0) = 0, which is absurd. Thus, there

are (zn) ⊂ R
N and η > 0 satisfying

∫

BR(zn)

|u+n |2
∗
dx ≥ η > 0, ∀n ∈ N.

Recalling that for each n ∈ N there is yn ∈ Z
N such that

BR(zn) ⊂ BR+
√
N(yn),

we have ∫

BR+
√

N (yn)

|u+n |2
∗
dx ≥ η > 0, ∀n ∈ N,

finishing the proof of (2.29).

Now, assume c ∈ (−∞, SN/2|k0|
2−N

2∞ /N) \ {0} and set vn := un(· − yn). By a

simple computation, we see that (vn) is also a (PS)c sequence for Φ with

lim sup
n→+∞

∫

Br(0)

|v+n |2
∗
dx ≥ ǫ. (2.30)

By Corollary 1.2.12, (vn) is bounded, and so, for some subsequence ( still denoted by

(vn) ), vn ⇀ v in H1(RN) for some v ∈ H1(RN). Suppose by contradiction v = 0 and

assume that

|∇vn|2 ⇀ µ and |vn|2
∗
dx ⇀ ν in M+(RN). (2.31)
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By Concentration-Compactness Principle II due to Lions [29], there exist a countable

set J , (xj)j∈J ⊂ R
N and (µj)j∈J , (νj)j∈J ⊂ [0,+∞) such that

ν =
∑

j∈J
νjδxj µ ≥

∑

j∈J
µjδxj with µj ≥ Sν

2
2∗
j . (2.32)

Now, our goal is showing that νj = 0 for all j ∈ J . First of all, note that

c = lim
n→+∞

[
Φ(vn)−

1

2
Φ′(vn)vn

]
≥ 1

N

∑

j∈J
k0(xj)νj. (2.33)

On the other hand, setting ψǫ(x) := ψ((x − xj)/ǫ), ∀ x ∈ R
N , ∀ ǫ > 0, where

ψ ∈ C∞
c (RN) is such that ψ ≡ 1 in B1(0), ψ ≡ 0 in R

N \ B2(0) and |∇ψ| ≤ 2, with

0 ≤ ψ ≤ 1, we have that ψǫvn ∈ H1(RN) and (ψǫvn) is bounded in H1(RN). So

Φ′(vn)(ψǫvn) → 0

or equivalently
∫

∇vn∇(ψǫvn) dx+

∫
V (x)ψǫv

2
n dx−

∫
h0(x)ψǫ|vn|q+1dx−

∫
k0(x)|vn|2

∗
ψǫdx→ 0.

By using the definition of ν and µ together with the last limit, we derive
∫

∇v(∇ψǫ)v dx+
∫
V (x)ψǫv

2 dx−
∫
h0(x)ψǫ|v|q+1dx+

∫
ψǫdµ−

∫
k0ψǫdν = 0.

Now, taking the limit ǫ→ 0, we find

µ(xj) = k0(xj)νj.

By (2.32), µj ≤ µ(xj). Then,

Sν
2/(2∗)
j = µj ≤ µ(xj) = k0(xj)νj.

If νj 6= 0, the last inequality gives

νj ≥
SN/2

|k0|
N−2

2∞
. (2.34)

Thereby, by (2.33) and (2.34), if there exists j ∈ J such that νj 6= 0, we would have

c ≥ SN/2

N |k0|
N−2

2∞

which is absurd. Hence νj = 0 for all j ∈ J , so ν ≡ 0, and by (2.31), |vn|2∗ ⇀ 0 in

M+(RN). Consequently vn → 0 in L2∗
loc(R

N) which contradicts (2.30), showing that

v 6= 0.
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1.2.2 Proof of Theorem 1.1.1: The case N ≥ 3.

The proof will be divided into two cases, more precisely, the Periodic Case and

the Asymptotically Periodic Case.

1- The Periodic Case:

Proof. From Proposition 1.2.16, there exists a (PS)γ sequence (un) for Φ, where γ was

given in (2.8). By Lemma 1.2.17, passing to a subsequence if necessary, un ⇀ u 6= 0

and u ∈ H1(RN) is a solution of problem (2.7), and so, Φ(u) ≥ γ. On the other hand

γ = lim
n→+∞

[
Φ(un)−

1

2
Φ′(un)(un)

]
= lim inf

n→+∞

[(
1

2
− 1

q + 1

)∫
h(x)|un|q+1dx

+

(
1

2
− 1

2∗

)∫
k(x)|un|2

∗
dx

]
≥
[(

1

2
− 1

q + 1

)∫
h(x)|u|q+1dx +

+

(
1

2
− 1

2∗

)∫
k(x)|u|2∗ dx

]
= Φ(u)− 1

2
Φ′(u)u = Φ(u).

From this, u ∈ H1(RN) is a ground state solution for the problem (2.7).

2- Asymptotically Periodic Case

Proof. From definition of ΦW and Φ, we have the inequality

γW ≤ γ.

Next, our analysis will be divide into two cases, more precisely, γW = γ and γW < γ.

Assume firstly γW = γ. Let u ∈ H1(RN) be a ground state solution of (2.7) for

the periodic case and v ∈ Ê(u) such that

ΦW (v) = sup
Ê(u)

ΦW .

Then,

γW ≤ ΦW (v) ≤ Φ(v) ≤ Φ(u) = γ = γW ,

implying that ΦW (v) = γW with v ∈ M. By Corollary 1.2.15, part (c), we deduce that

v is a ground state solution of (2.1).

Now, assume γW < γ and let (un) be a (PS)γW sequence for ΦW given by Propo-

sition 1.2.16. By Lemma 1.2.10, (un) is a bounded sequence, then for some subsequence
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(still denoted by (un)) un ⇀ u in H1(RN). We claim that u 6= 0. Indeed, if u = 0 it is

easy to see that

∫
W (x)u2ndx→ 0 and sup

‖ψ‖≤1

∣∣∣∣
∫
W (x)unψdx

∣∣∣∣→ 0.

In addiction, by (C1), we also have

∫
h∗(x)|un|q+1dx→ 0 and sup

‖ψ‖≤1

∣∣∣∣
∫
h∗(x)|un|q−1uψdx

∣∣∣∣→ 0.

Arguing as in Lemma 1.2.17, we derive that un → 0 in L2∗
loc(R

N), and so,

∫
k∗(x)|un|2

∗
dx→ 0 and sup

‖ψ‖≤1

∣∣∣∣
∫
k∗(x)|un|2

∗−2unψdx

∣∣∣∣→ 0.

Hence

ΦW (un) → γW and ||Φ′
W (un)|| → 0,

that is, (un) is a (PS)γW sequence for ΦW . By Proposition 1.2.9,

γW <
SN/2

N |k0|
N−2

2∞
.

Then, Proposition 1.2.17 guarantees the existence of (yn) ⊂ Z
N such that vn := un(· −

yn)⇀ v 6= 0 in H1(RN) and Φ′(v) = 0. Consequently

γW = limn→+∞ ΦW (un) = limn→+∞ Φ(un)

= limn→+∞ Φ(vn) = limn→+∞
[
Φ(vn)− 1

2
Φ′(vn)vn

]

≥ Φ(v)− 1
2
Φ′(v)v = Φ(v) ≥ γ

which is absurd, proving that u 6= 0. Now, we repeat the same argument explored in

the periodic case to conclude that u is a ground state solution of (2.1).

1.3 The case N = 2

In this section we are going to show the existence of ground state solution for the

following indefinite problem




−∆u+ (V (x)−W (x))u = f(x, u), in R
2,

u ∈ H1(R2),
(3.35)

by assuming (V1), (V2), (W1), (W2) and (f1)− (f6). Since we will work with exponential

critical growth, in the next subsection we recall some facts involving this type of growth.
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1.3.1 Results involving exponential critical growth

The exponential critical growth on f is motivated by the following estimates

proved by Trudinger [53] and Moser [34].

Lemma 1.3.1 (Trudinger-Moser inequality for bounded domains) Let Ω ⊂ R
2

be a bounded domain. Given any u ∈ H1
0 (Ω), we have

∫

Ω

eα|u|
2

dx <∞, for every α > 0.

Moreover, there exists a positive constant C = C(|Ω|) such that

sup
||u||≤1

∫

Ω

eα|u|
2

dx ≤ C, for all α ≤ 4π,

The next result is a version of the Trudinger-Moser inequality for whole R
2, and

its proof can be found in Cao [13] ( see also Ruf [44] ).

Lemma 1.3.2 (Trudinger-Moser inequality for unbounded domains) For all

u ∈ H1(R2), we have
∫ (

eα|u|
2 − 1

)
dx <∞, for every α > 0.

Moreover, if |∇u|22 ≤ 1, |u|2 ≤ M < ∞ and α < 4π, then there exists a positive

constant C = C(M,α) such that
∫ (

eα|u|
2 − 1

)
dx ≤ C,

The Trudinger-Moser inequalities will be strongly utilized throughout this sec-

tion in order to deduce important estimates. The reader can find more recent results

involving this inequality in [15], [23], [24], [33] and references therein

In the sequel, we state some technical lemmas found in [4] and [18], which will

be essential to carry out the proof of our results.

Lemma 1.3.3 Let α > 0 and t ≥ 1. Then, for every β > t, there exists a constant

C = C(β, t) > 0 such that

(
e4π|s|

2 − 1
)t

≤ C
(
eβ4π|s|

2 − 1
)
, ∀s ∈ R.

Lemma 1.3.4 Let (un) be a sequence such that un(x) → u(x) a.e. in R
2 and (f(x, un)un)

is bounded in L1(R2). Then, f(x, un) → f(x, u) in L1(BR(0)) for all R > 0, and so,
∫
f(x, un)φ dx→

∫
f(x, u)φ dx, ∀φ ∈ C∞

0 (R2).
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1.3.2 Technical Lemmas

In this subsection we have used the same notations of Section 2, however we will

recall some of them for the convenience of the reader. In what follows, we denote by

ΦW : H1(R2) → R the energy functional given by

ΦW (u) :=
1

2
B(u, u)− 1

2

∫
W (x)|u|2dx−

∫
F (x, u)dx,

where B : H1(R2)×H1(R2) → R is the bilinear form

B(u, v) :=

∫
(∇u∇v + V (x)uv)dx, ∀ u, v ∈ H1(R2).

It is well known that ΦW ∈ C1(H1(R2),R) with

Φ′
W (u)v = B(u, v)−

∫
W (x)uvdx−

∫
f(x, u)vdx, ∀u, v ∈ H1(R2).

Therefore critical points of ΦW are solutions of (3.35). Moreover, we can rewrite the

functional ΦW of the form

ΦW (u) =
1

2
‖u+‖2 − 1

2
‖u−‖2 − 1

2

∫
W (x)|u|2 dx−

∫
F (x, u) dx,

In what follows, we also consider the C1-functional Φ : H1(R2) → R

Φ(u) :=
1

2
B(u, u)−

∫
F0(x, u)dx

or equivalently

Φ(u) =
1

2
‖u+‖2 − 1

2
‖u−‖2 −

∫
F0(x, u) dx,

whose the critical points are weak solutions of periodic problem




−∆u+ V (x) = F0(x, u), in R
2,

u ∈ H1(R2)
(3.36)

As in Section 2, we will consider the sets

M := {u ∈ H1(R2) \ E− ; Φ′
W (u)u = 0 and Φ′

W (u)v = 0, ∀ v ∈ E−},

E(u) := E− ⊕ Ru and Ê(u) := E− ⊕ [0,+∞)u

Hence

E(u) = E− ⊕ Ru+ and Ê(u) = E− ⊕ [0,+∞)u+.

Moreover, we fix the real numbers

γW := inf
M

ΦW and γ := inf
M

Φ.

35



Lemma 1.3.5 If u ∈ M and w = su + v where s ≥ 1 and v ∈ E− such that w 6= 0,

then

ΦW (u+ w) < ΦW (u)

Proof. The proof follows as in Lemma 1.2.1.

Lemma 1.3.6 Let K ⊂ E+ \ {0} be a compact subset, then there exists R > 0 such

that ΦW (w) ≤ 0, ∀ w ∈ E(u) \BR(0) and u ∈ K.

Proof. We repeat the argument used in the proof from [45, Lemma 2.2]

Lemma 1.3.7 For all u ∈ H1(R2), the functional ΦW |E(u) is weakly upper semiconti-

nuous.

Proof. See proof of Lemma 1.2.3.

Lemma 1.3.8 For all u ∈ H1(R2) \E−, M∩ Ê(u) is a singleton set and the element

of this set is the unique global maximum of ΦW |Ê(u)

Proof. See proof of Lemma 1.2.4.

In the proof of next lemma the fact that f has an exponential critical growth

brings some difficulty and we will do its proof.

Lemma 1.3.9 There exists ρ > 0 such that inf
Bρ(0)∩E+

ΦW > 0.

Proof. Given p > 2 and ǫ > 0, there is Cǫ > 0 such that

|F (x, t)| ≤ ǫ|t|2 + Cǫ|t|p(e4πt
2 − 1), ∀(x, t) ∈ R

2 × R.

Then, for all u ∈ E+, the Lemmas 1.3.2 and 1.3.3 lead to

ΦW (u) = 1
2
||u||2 − 1

2

∫
W (x)|u|2dx−

∫
F (x, u)dx

≥ 1
2
||u||2 − Θ

2

∫
|u|2dx− ǫ

∫
|u|2dx− Cǫ

∫
|u|p(e4πu2 − 1)dx

= 1
2
||u||2 − Θ

2Λ
|||u||2 − ǫ

Λ
||u||2 − Cǫ|u|p2p

(∫
(e8πu

2 − 1)dx
) 1

2

≥
[
1
2

(
1− Θ

Λ

)
− ǫ

Λ

]
||u||2 − C||u||p

(∫
(e8πu

2 − 1)dx
) 1

2
.

By Lemma 1.3.2, if ρ <
√
3

2
√
2
,

sup
‖u‖=ρ

∫
(e8πu

2 − 1)dx ≤ sup
‖v‖≤1

∫
(e3πu

2 − 1)dx = C <∞.
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So,

ΦW (u) ≥
[
1

2

(
1− Θ

Λ

)
− ǫ

Λ

]
||u||2 − C||u||p.

Hence, decreasing ρ if necessary and fixing ǫ small enough, we get

ΦW (u) ≥
[
1

2

(
1− Θ

Λ

)
− ǫ

Λ

]
ρ2 − Cρp = β > 0.

Lemma 1.3.10 The real number γW is positive. In addition, if u ∈ M then ||u+|| ≥
max{||u−||,√2γW}.

Proof. See proof of Lemma 1.2.6

The next lemma shows that (PS) sequences of ΦW are bounded, as we are working

with the exponential critical growth the arguments explored in Section 2 does not work

in this case and a new proof must be done.

Lemma 1.3.11 If (un) is a sequence such that

ΦW (un) ≤ d, ±Φ′
W (un)u

±
n ≤ d||un|| and − Φ′

W (un)un ≤ d

for some d > 0, then (un) is bounded in H1(R2) and (f(un)un) is bounded in L1(R2).

Proof. First of all, note that

(
1

2
− 1

θ

)∫
f(x, un)undx ≤ ΦW (un)−

1

2
Φ′
W (un)un ≤ 2d.

Hence,
(∫

f(x, un)undx
)
is bounded. Recalling that f(x, t)t ≥ 0 for all t ∈ R and

x ∈ R
2, it follows that (f(x, un)un) is bounded in L1(R2). On the other hand, we know

that

||u+n ||2 ≤ d||u+n ||+
∫
f(x, un)u

+
n dx+

∫
W (x)unu

+
n dx

and so,

||u+n ||2 ≤ d||u+n ||+
(∫

f(x, un)vndx

)
||u+n ||H1(R2) +

∫
W (x)unu

+
n dx (3.37)

where vn := u+n
||u+n ||H1(R2)

.

Claim 1.3.12
(∫

f(x, un)vndx
)
is a bounded sequence.
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Indeed, by a direct computation, there exists K > 0 such that

|f(x, t)| ≤ Γe1/4 implies |f(x, t)|2 ≤ Kf(x, t)t, uniformly in x. (3.38)

Moreover, by [17, Lemma 2.11],

rs ≤ (er
2 − 1) + s(log+s)1/2 +

1

4
s2χ[0,e1/4](s) ∀r, s ≥ 0. (3.39)

Now, the Lemma 1.3.2 combined with the above inequalities for r = |vn| and s =

1
Γ
|f(un)| leads to

∣∣∫ f(x, un)vndx
∣∣ ≤ Γ

∫
1
Γ
|f(un)||vn|dx ≤ Γ

∫
(ev

2
n − 1)dx+

+
∫
|f(x, un)|

(
log+

(
1
Γ
|f(x, un)|

))1/2
dx+

1
4Γ

∫
|f(x, un)|2χ[0,e1/4]

(
1
Γ
|f(x, un)|

)
dx ≤

ΓT +
∫
|f(x, un)|

(
log+

(
e4πu

2
n

))1/2
dx+ 1

4Γ

∫
|f(x,un)|≤Γe1/4

|f(x, un)|2dx ≤
ΓT +

∫
|f(x, un)||un|

√
4πdx+ 1

4Γ

∫
|f(x,un)|≤Γe1/4

Kf(x, un)undx.

As (f(x, un)un) is bounded in L1(R2), the last inequality yields
(∫

f(x, un)vndx
)
is

bounded. Consequently, there exists A0 > 0 satisfying
∣∣∣∣
∫
f(x, un)vndx

∣∣∣∣ ≤ A0 ∀n ∈ N.

Thereby, by (3.37),

||u+n ||2 ≤ d||u+n ||+ A0||u+n ||H1(RN ) +

∫
W (x)unu

+
n dx. (3.40)

Analogously, there is B0 > 0 such that

||u−n ||2 ≤ d||u−n ||+B0||u−n ||H1(RN ) −
∫
W (x)unu

−
n dx. (3.41)

The inequalities (3.40) and (3.41) combine to give

||un||2 ≤ C||un||+ C||un||+
∫
W (x)(unu

+
n − unu

−
n )dx = 2C||un||+

+
∫
W (x)((u+n )

2 − (u−n )
2)dx ≤ 2C||un||+

∫
W (x)(u+n )

2dx ≤ 2C||un||+ Θ
Λ
||u+n ||2

for some C > 0. Hence, (
1− Θ

Λ

)
||un||2 ≤ 2C̃||un||,

from where it follows that (un) is bounded.

As a byproduct of the last lemma we have the corollary below
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Corollary 1.3.13 ΦW is coercive on M, that is, ΦW (u) → +∞ as ||u|| → +∞, u ∈
M.

As in Section 2, the Lemma 1.3.8 permits to define a function

m : E+ \ {0} → M where m(u) ∈ Ê(u) ∩M ∀u ∈ E+ \ {0}.

Now, we invite the reader to observe that the same approach used in Section 2

works to guarantee that the proposition below holds

Proposition 1.3.14 There exists a (PS)γW sequence for ΦW .

Our next proposition is crucial when f has an exponential critical growth.

Proposition 1.3.15 Fixed Ã ∈ (0, 1/a) , there is λ∗ > 0 such that γW < Ã2

2
for

infR2 D(x) > λ∗, where a was given in (2.5).

Proof. Let u ∈ E+ with u 6= 0 and set

hD(s) := As2 − λBsq,

where

λ = inf
x∈R2

D(x), A =
1

2
||u||2 and B = ξ

∫
|u|qdx,

with ξ given in Lemma 1.2.7. Then, a straightforward computation leads to

max
s≥0

hD(s) =

(
A− 2A

q

)(
q−2

√
2A

qBλ

)2

.

Thereby, by (f6) and Lemma 1.2.7,

c ≤ sup s ∈ [0,+∞)

v ∈ E−

ΦW (su+ v) = sup ||su+ v|| ≤ r

s ≥ s0, v ∈ E−

ΦW (su+ v)

≤ sup ||su+ v|| ≤ r

s ≥ s0, v ∈ E−

[
1
2
s2||u||2 −

∫
F (x, su+ v)dx

]

≤ sup ||su+ v|| ≤ r

s ≥ s0, v ∈ E−

[
1
2
s2||u||2 − λ

∫
|su+ v|qdx

]

≤ sup ||su+ v|| ≤ r

s ≥ s0, v ∈ E−

[
1
2
s2||u||2 − λξsq

∫
|u|qdx

]

= sup ||su+ v|| ≤ r

s ≥ s0, v ∈ E−

hD(s)

≤ maxs≥0 hD(s) =
(
A− 2A

q

)(
q−2

√
2A
qBλ

)2
.
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From the last inequality there is λ∗ > 0 such that

(
A− 2A

q

)(
q−2

√
2A

qBλ

)2

<
Ã2

2
, ∀λ ≥ λ∗,

finishing the proof.

Proposition 1.3.16 Fix infx∈R2 D(x) ≥ λ∗ and r > 0. Then, there exist a sequence

(yn) ⊂ R
2 and η > 0 such that

∫

Br(yn)

|u+n |2dx ≥ η > 0, ∀n ∈ N.

Moreover, increasing r if necessary, the sequence (yn) can be chosen in Z
2.

Proof. Suppose by contradiction that the lemma does not hold for some r > 0. Then,

by a lemma due to Lions [28],

u+n → 0 in Lp(R2), ∀ p ∈ (2,+∞).

Define wn := Ã u+n
||u+n || . Since un ∈ M for all n ∈ N, from Lemma 1.3.10 we have

lim inf
n∈N

||u+n || > 0, and so,

wn → 0 in Lp(R2), ∀ p ∈ (2,+∞).

On the other hand, we also know that

||wn||H1(R2) = Ã
||u+n ||H1(R2)

||u+n ||
≤ Ãa

||u+n ||
||u+n ||

= Ãa < 1.

As wn ∈ Ê(un) and un ∈ M, we derive that

Φ(un) ≥ Φ(wn) =
1

2
Ã2 −

∫
F (x, wn)dx. (3.42)

By [2, Proposition 2.3], we have
∫
F (x, wn)dx → 0. Therefore, passing to the limit in

(3.42) as n→ +∞, we obtain

γW ≥ Ã2

2
,

which contradicts the Proposition 1.3.15. Thus, there are (zn) ⊂ R
2 and η > 0 such

that ∫

Br(zn)

|u+n |2dx ≥ η > 0, ∀n ∈ N.

Now, we repeat the same idea explored in Lemma 1.2.17 to conclude the proof.
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1.3.3 Proof of Theorem 1.1.1: The case N = 2.

As in Section 2, the proof will be divided into two cases, the Periodic Case and

the Asymptotically Periodic Case.

1.3.4 Periodic Case

Proof. First of all, we recall there is a (PS)γW sequence (un) for Φ which must be

bounded. Thus, there is u ∈ H1(R2) such that for some subsequence of (un), still

denoted by itself, we have

un ⇀ u in H1(R2)

and

un(x) → u(x) a.e. in R
2.

Moreover, by Lemma 1.3.11 the sequence (f(x, un)un) is bounded in L1(R2). Therefore,

by Lemma 1.3.4,

Φ′(u)φ = 0, ∀φ ∈ C∞
0 (R2).

If we combine the Lemma 1.3.2 with the density of C∞
0 (R2) in H1(R2), we see that u

is a critical point of Φ, that is,

Φ′(u)v = 0, ∀v ∈ H1(R2).

Moreover, by Fatou’s Lemma, we also have

Φ(u) ≤ γ.

If u 6= 0, we must have

Φ(u) ≥ γ,

showing that Φ(u) = γ, and so, u is a ground state solution.

If u = 0, we can apply Lemma 1.3.16 to get a sequence (yn) ⊂ Z
2 and real

numbers r, η > 0 verifying

∫

Br(yn)

|u+n |2dx ≥ η > 0, ∀n ∈ N.
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Setting vn(x) = un(x+ yn), a direct computation gives that (vn) is also a (PS)γ for Φ.

Moreover, for some subsequence, there is v ∈ H1(R2) such that

vn ⇀ v in H1(R2) and

∫

Br(0)

|v+|2dx ≥ η > 0,

showing that v 6= 0. Therefore, arguing as above, v is a ground state solution for Φ.

1.3.5 The Asymptotically Periodic Case

Proof. First of all, we recall that ΦW ≤ Φ, and so, γW ≤ γ. As in Section 2, we will

consider the cases γW = γ and γW < γ. The first one follows as in Section 2, and we

will omit its proof.

In what follows, we are considering γW < γ and (un) be a (PS)γW sequence for

ΦW which was given in Lemma 1.3.14. The sequence (un) is bounded by Lemma 1.3.11.

Thus, there is u ∈ H1(R2) and a subsequence of (un), still denoted by itself, such that

un ⇀ u in H1(R2). Suppose by contradiction u = 0. Repeating the arguments explored

in the case N ≥ 3, we have

∫
W (x)|un|2dx→ 0 and sup

‖ψ‖≤1

∣∣∣∣
∫
W (x)unψdx

∣∣∣∣→ 0.

From (f1), given ǫ > 0 and β > 0 such that

β <
2π

supn∈N ||un||2
,

it must exist η > 0 satisfying

|f ∗(x, s)| ≤ ǫ(eβs
2 − 1) for |t| ≥ η and x ∈ R

2 \Bη(0).

Therefore, by Lemma 1.3.2

∫
[|x|≥η]∩[|un|≥η] |f

∗(x, un)||ψ|dx ≤
∫
[|x|≥η]∩[|un|≥η] ǫ|e

βu2n − 1||ψ|dx ≤
≤ ǫ

(∫
R2 |eβu2n − 1|2dx

)1/2 (∫
R2 |ψ|2dx

)1/2
dx ≤ ǫK||ψ||H1(R2).

On the other hand, fixing R large enough

∫
[|x|≥R]∩[|un|≤η] |f

∗(x, un)||ψ|dx ≤ C
∫
|x|≥RH(x)|ψ|dx

≤
(∫

|x|≥R |H(x)|2dx
)1/2 (∫

R2 |ψ|2dx
)1/2

≤ ǫC||ψ||H1(R2).
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Thus,

sup
‖ψ‖≤1

∣∣∣∣
∫

|x|≥η
f ∗(x, un)ψ dx

∣∣∣∣ ≤ ǫ(C +K)||ψ||H1(R2).

Now, as f ∗ has a subcritical growth and un → 0 in L2(Bη(0)), we have that

sup
‖ψ‖≤1

∣∣∣∣
∫

|x|≤η
f ∗(x, un)ψ dx

∣∣∣∣→ 0.

Thus,

sup
‖ψ‖≤1

∣∣∣∣
∫

R2

f ∗(x, un)ψ dx

∣∣∣∣→ 0.

A similar argument works to prove that

0 ≤
∫
F ∗(x, un)dx ≤

∫
f ∗(x, un)undx→ 0.

The above limits yield

Φ(un) → γW and ||Φ′(un)|| → 0.

Arguing as in the periodic case, without loss of generality, we can assume that

un ⇀ u in H1(R2), u 6= 0 and Φ′(u) = 0.

Thus, Φ(u) ≥ γ. On the other hand, by Fatou’s Lemma,

Φ(u) ≤ lim inf
n→+∞

Φ(un) = γW ,

which is absurd, because we are supposing γW < γ. Thereby, u 6= 0 and since

(f(x, un)un) is bounded in L1(R2), we can conclude that u is a ground state solution

of ΦW .
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Caṕıtulo 2

Existência e concentração de

soluções de energia mı́nima para

uma classe de problemas

variacionais indefinidos

Existence and concentration of ground state

solution for a class of indefinite variational problems

CLAUDIANOR O. ALVES and GEILSON F. GERMANO

Abstract

In this paper we study the existence and concentration of solution for a class of

strongly indefinite problem like




−∆u+ V (x)u = A(ǫx)f(u) in R
N ,

u ∈ H1(RN),
(P )ǫ

where N ≥ 1, ǫ is a positive parameter, f : R → R is a continuous function with

subcritical growth and V,A : RN → R are continuous functions verifying some technical

conditions. Here V is a ZN -periodic function, 0 6∈ σ(−∆+V ), the spectrum of −∆+V ,

and

0 < inf
x∈RN

A(x) ≤ lim
|x|→+∞

A(x) < sup
x∈RN

A(x).



Mathematics Subject Classifications (2010): 35B40, 35J2, 47A10 .

Keywords: concentration of solutions, variational methods, indefinite strongly func-

tional.

2.1 Introduction

This paper concerns with the existence and concentration of ground state solution

for the semilinear Schrödinger equation





−∆u+ V (x)u = A(ǫx)f(u) in R
N ,

u ∈ H1(RN),
(P )ǫ

where N ≥ 1, ǫ is a positive parameter, f : R → R is a continuous function with

subcritical growth and V,A : R → R are continuous functions verifying some technical

conditions.

In whole this paper, V is ZN -periodic with

0 6∈ σ(−∆+ V ), the spectrum of −∆+ V, (V1)

which becomes the problem strongly indefinite. Related to the function A, we assume

that it is a continuous function satisfying

0 < A0 = inf
x∈RN

A(x) ≤ A∞ = lim
|x|→+∞

A(x) < sup
x∈RN

A(x). (A1)

The present article has as first motivation some recent articles that have studied

the existence of ground state solution for related problems with (P )ǫ, more precisely

for strongly indefinite problems of the type





−∆u+ V (x)u = f(x, u), in R
N ,

u ∈ H1(RN).
(P1)

In [27], Kryszewski and Szulkin have studied the existence of ground state solution for

(P1) by supposing the condition (V1). Related to the function f : RN × R → R, they

assumed that f is continuous, ZN -periodic in x with

|f(x, t)| ≤ c(|t|q−1 + |t|p−1), ∀t ∈ R and x ∈ R
N (h1)

46



and

0 < αF (x, t) ≤ tf(x, t) ∀(x, t) ∈ R
N × R

∗, F (x, t) =

∫ t

0

f(x, s) ds (h2)

for some c > 0, α > 2 and 2 < q < p < 2∗ where 2∗ = 2N
N−2

if N ≥ 3 and 2∗ = +∞ if

N = 1, 2. The above hypotheses guarantee that the energy functional associated with

(P1) given by

J(u) =
1

2

∫

RN

(|∇u|2 + V (x)|u|2 dx)−
∫

RN

F (x, u) dx, ∀u ∈ H1(RN),

is well defined and belongs to C1(H1(RN),R). By (V1), there is an equivalent inner

product 〈 , 〉 in H1(RN) such that

J(u) =
1

2
‖u+‖2 − 1

2
‖u−‖2 −

∫

RN

F (x, u) dx,

where ‖u‖ =
√
〈u, u〉 and H1(RN) = E+ ⊕ E− corresponds to the spectral decom-

position of −∆ + V with respect to the positive and negative part of the spectrum

with u = u+ + u−, where u+ ∈ E+ and u− ∈ E−. In order to show the existence of

solution for (P1), Kryszewski and Szulkin introduced a new and interesting generalized

link theorem. In [31], Li and Szulkin have improved this generalized link theorem to

prove the existence of solution for a class of strongly indefinite problem with f being

asymptotically linear at infinity.

The Link theorems above mentioned have been used in a lot of papers, we would

like to cite Chabrowski and Szulkin [14], do Ó and Ruf [17], Furtado and Marchi [20],

Tang [51, 52] and their references.

Pankov and Pflüger [39] also have considered the existence of solution for problem

(P1) with the same conditions considered in [27], however the approach is based on an

approximation technique of periodic function together with the linking theorem due to

Rabinowitz [40]. After, Pankov [38] has studied the existence of solution for problems

of the type 



−∆u+ V (x)u = ±f(x, u), in R
N ,

u ∈ H1(RN),
(P2)

by supposing (V1), (h1) − (h2) and employing the same approach explored in [39]. In

[38] and [39], the existence of ground state solution has been established by supposing

that f is C1 and there is θ ∈ (0, 1) such that

0 < t−1f(x, t) ≤ θf ′
t(x, t), ∀t 6= 0 and x ∈ R

N . (h3)
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However, in [38], Pankov has found a ground state solution by minimizing the energy

functional J on the set

O =
{
u ∈ H1(RN) \ E− ; J ′(u)u = 0 and J ′(u)v = 0, ∀ v ∈ E−} .

The reader is invited to see that if J is strongly definite, that is, when E− = {0},
the set O is exactly the Nehari manifold associated with J . Hereafter, we say that

u0 ∈ H1(RN) is a ground state solution if

J ′(u0) = 0, u0 ∈ O and J(u0) = inf
w∈O

J(w).

In [45], Szulkin and Weth have established the existence of ground state solution

for problem (P1) by completing the study made in [38], in the sense that, they also

minimize the energy functional on O, however they have used more weaker conditions

on f , for example f is continuous, ZN -periodic in x and satisfies

|f(x, t)| ≤ C(1 + |t|p−1), ∀t ∈ R and x ∈ R
N (h4)

for some C > 0 and p ∈ (2, 2∗).

f(x, t) = o(t) uniformly in x as |t| → 0. (h5)

F (x, t)/|t|2 → +∞ uniformly in x as |t| → +∞, (h6)

and

t 7→ f(x, t)/|t| is strictly increasing on R \ {0}. (h7)

The same approach has been used by Zhang, Xu and Zhang [60, 61] to study a

class of indefinite and asymptotically periodic problem.

After a review bibliography, we have observed that there are no papers involving

strongly indefinite problem whose the nonlinearity is of the form

f(x, t) = A(ǫx)f(t), ∀x ∈ R
N and ∀t ∈ R,

with A verifying the condition (A1) and ǫ > 0. The motivation to consider this type

of nonlinearity comes from many studies involving the existence and concentration of

standing-wave solutions for the nonlinear Schrödinger equation

iǫ
∂Ψ

∂t
= −ǫ2∆Ψ+ (V (x) + E)Ψ− f(Ψ) for all x ∈ R

N , (NLS)
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where N ≥ 1, ǫ > 0 is a parameter and V, f are continuous functions verifying some

conditions. This class of equation is one of the main objects of the quantum phy-

sics, because it appears in problems that involve nonlinear optics, plasma physics and

condensed matter physics.

Knowledge of the solutions for the elliptic equation like




−ǫ2∆u+ V (x)u = f(u) in R
N ,

u ∈ H1(RN),
(S)ǫ

or equivalently 



−∆u+ V (ǫx)u = f(u) in R
N ,

u ∈ H1(RN),
(S ′)ǫ,

has a great importance in the study of standing-wave solutions of (NLS). In recent

years, the existence and concentration of positive solutions for general semilinear elliptic

equations (S)ǫ have been extensively studied, see for example, Floer and Weinstein [19],

Oh [36, 37], Rabinowitz [42], Wang [54], Ambrosetti and Malchiodi [11], Ambrosetti,

Badiale and Cingolani [12], del Pino and Felmer [16] and their references.

In some of the above mentioned papers, the existence, multiplicity and concen-

tration of positive solutions have been obtained in connection with the geometry of the

potential V by supposing that

inf(σ(−∆+ V )) > 0.

By using the above condition, we have that the problem is strongly definite, which

permits to show, in some cases, that the energy functional satisfies the mountain pass

geometry and that the mountain pass level is a critical level. In some papers it was

proved that the maximum points of the solutions are close to the set

V =

{
x ∈ R

N : V (x) = min
z∈RN

V (z)

}
,

when ǫ is small enough. Moreover, in a lot of problems, the multiplicity of solutions is

associated with the topology richness of V .
In [42], by a mountain pass argument, Rabinowitz proved the existence of positive

solutions of (S)ǫ, for ǫ > 0 small, whenever

lim inf
|x|→∞

V (x) > inf
x∈RN

V (x) = V0 > 0.

49



Later Wang [54] showed that these solutions concentrate at global minimum points of

V as ǫ tends to 0.

In [16], del Pino and Felmer have found solutions that concentrate around local

minimum of V by introducing of a penalization method. More precisely, they assume

that

V (x) ≥ inf
z∈RN

V (z) = V0 > 0 for all x ∈ R
N

and there is an open and bounded set Ω ⊂ R
N such that

inf
x∈Ω

V (x) < min
x∈∂Ω

V (x).

Here, we intend to study the existence of standing-wave solutions for (NSL) by

supposing h = 1 and g be a function of the type

g(x, t) = A(ǫx)f(t),

where ǫ is a positive number with V,A satisfying the conditions (V1) and (A1) respec-

tively. More precisely, we will prove the existence of ground state solution uǫ for (P )ǫ

when ǫ is small enough. After, we study the concentration of the maximum points of

|uǫ| with related to the set of maximum points of A. We would like point out that

one of the main difficulties is the loss of the mountain pass geometry, because we are

working with a strongly indefinite problem. Then, if Iǫ denotes the energy functional

associated with (P )ǫ, we were taken to do a careful study involving the behavior of

number cǫ given by

cǫ = inf
u∈Mǫ

Iǫ(u) (1.1)

where

Mǫ =
{
u ∈ H1(RN) \ E− ; I ′ǫ(u)u = 0 and I ′ǫ(u)v = 0, ∀ v ∈ E−} . (1.2)

The understanding of the behavior of cǫ is a key point in our approach to show the

existence and concentration of ground state solution when ǫ is small enough.

Hereafter, f : R → R is a continuous function that verifies the following assump-

tions:

(f1)
f(t)

t
→ 0 as t→ 0.
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(f2) lim sup
|t|→+∞

|f(t)|
|t|q < +∞ for some q ∈ (1, 2∗ − 1).

(f3) t 7→ f(t)/t is increasing on (0,+∞) and decreasing on (−∞, 0).

(f4) (Ambrosetti-Rabinowitz) There exists θ > 2 such that

0 < θF (t) ≤ f(t)t, ∀ t 6= 0

where F (t) :=
∫ t
0
f(s)ds.

Our main theorem is the following

Theorem 2.1.1 Suppose that (V1), (A1) and (f1)−(f4) hold. Then, there exists ǫ0 > 0

such that (P )ǫ has a ground state solution uǫ for all ǫ ∈ (0, ǫ0). Moreover, if xǫ ∈ R
N

denotes a global maximum point of |uǫ|, then

lim
ǫ→0

A(ǫxǫ) = sup
x∈RN

A(x).

The plan of the paper is as follows: In Section 2 we do a study involving the

autonomous problem. In Section 3 we show the existence of ground state solution for

ǫ small, while in Section 4 we establish the concentration phenomena.

Notation. In this paper, we use the following notations:

• on(1) denotes a sequence that converges to zero.

• If g is a mensurable function, the integral
∫
RN g(x) dx will be denoted by

∫
g(x) dx.

• BR(z) denotes the open ball with center z and radius R in R
N .

• The usual norms in H1(RN) and Lp(RN) will be denoted by ‖ ‖H1(RN ) and | |p
respectively.

• For each u ∈ H1(RN), the equality u = u+ + u− yields u+ ∈ E+ and u− ∈ E−.

2.2 Some results involving the autonomous problem.

Consider the following autonomous problem




−∆u+ V (x)u = λf(u) in R
N ,

u ∈ H1(RN),
(AP )λ
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where λ > 0 and V, f verify the conditions (V1) and (f1)− (f4) respectively. Associated

with (AP )λ we have the energy functional Jλ : H
1(RN) → R given by

Jλ(u) =
1

2

∫
(|∇u|2 + V (x)|u|2 dx)− λ

∫
F (u) dx,

or equivalently

Jλ(u) =
1

2
‖u+‖2 − 1

2
‖u−‖2 − λ

∫
F (u) dx.

In what follows, let us denote by dλ the real number defined by

dλ = inf
u∈Nλ

Jλ(u); (2.3)

where

Nλ =
{
u ∈ H1(RN) \ E− ; J ′

λ(u)u = 0 and J ′
λ(u)v = 0, ∀ v ∈ E−} . (2.4)

Moreover, for each u ∈ H1(RN), the sets E(u) and Ê(u) designate

E(u) = E− ⊕ Ru and Ê(u) = E− ⊕ [0,+∞)u. (2.5)

The reader is invited to observe that E(u) and Ê(u) are independent of λ, more

precisely they depend on only of the operator −∆+ V . This remark is very important

because these sets will be used in the next sections.

In [45], Szulkin and Weth have proved that for each λ > 0, the problem (AP )λ

possesses a ground state solution uλ ∈ H1(RN), that is,

uλ ∈ Nλ, Jλ(uλ) = dλ and J ′
λ(u) = 0.

In the above mentioned paper, the authors also proved that

0 < dλ = inf
u∈E+\{0}

max
v∈Ê(u)

Jλ(u). (2.6)

Moreover, an interesting and important fact is that for each u ∈ H1(RN)\E−, Nλ∩Ê(u)
is a singleton set and the element of this set is the unique global maximum of Jλ|Ê(u),

that is, there are t∗ ≥ 0 and v∗ ∈ E− such that

Jλ(t
∗u+ v∗) = max

w∈Ê(u)
Jλ(w). (2.7)

The next two lemmas will be used in the study of the behavior of dλ and cǫ.
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Lemma 2.2.1 For all u = u+ + u− ∈ H1(RN) and y ∈ Z
N , if uy(x) := u(x+ y) then

uy ∈ H1(RN) with u+y (x) = u+(x+ y) and u−y (x) = u−(x+ y).

Proof. Define

T : H1(RN) → H1(RN)

u 7→ uy

such that uy(x) := u(x + y) for all x ∈ R
N . A direct computation gives T (E+) ⊂ E+

and T (E−) ⊂ E−. Consequently,

u(x+ y) = u+(x+ y) + u−(x+ y)

or equivalently

T (u) = T (u+) + T (u−).

Since T (u+) ∈ E+ and T (u−) ∈ E−, we derive that T (u)+ = T (u+) and T (u)− =

T (u−), obtaining the desired result.

The next lemma is a weak version of [45, Lemma 2.5].

Lemma 2.2.2 Let V ⊂ E+ \ {0} be a bounded set with 0 /∈ Vσ(H
1(RN ),H1(RN )′)

, W ∈
C(RN) ∩ L∞(RN) with infx∈RN W (x) = W0 > 0 and F : R → R be a continuous

function verifying

(i) F (t)
t2

→ +∞ as |t| → +∞.

(ii) F (t) ≥ 0 for all t ∈ R.

For the functional ϕ : H1(RN) → R ∪ {−∞} given by

ϕ(u) =
1

2
||u+||2 − 1

2
||u−||2 −

∫
W (x)F (u)dx,

there exists R > 0 such that ϕ(u) < 0 on Ê(u) \BR(0), for all u ∈ V.

Proof. Suppose by contradiction that there exist (un) ⊂ V and (wn) ⊂ Ê(un) \Bn(0)

with ϕ(wn) ≥ 0. First of all, note that ϕ(wn) ≥ 0 implies that

0 ≤
∫
W (x)F (wn) dx < +∞, for all n ∈ N.

As ||wn|| → +∞, we set vn := wn

||wn|| ∈ Ê(un). Then, there is sn ≥ 0 such that

vn = snun + v−n .

53



Consequently wn = ||wn||snun + ||wn||v−n and

0 ≤ ϕ(wn)

||wn||2
=

1

2
s2n||un||2 −

1

2
||v−n ||2 −

∫
W (x)F (wn)

||wn||2
dx. (2.8)

From this, snun 6→ 0. In fact, otherwise, sn||un|| → 0 leads to

0 ≤ 1

2
||v−n ||2 +

∫
W (x)F (wn)

||wn||2
dx ≤ 1

2
s2n||un||2 → 0.

Therefore v−n → 0 and vn = snun + v−n → 0, which is absurd, because ||vn|| = 1 for

all n ∈ N. Thereby, snun 6→ 0. As (un) is bounded, we have sn 6→ 0. On the other

hand, since 0 /∈ Vσ(H
1(RN ),H1(RN )′)

, it follows that un 6⇀ 0, and so, un 6→ 0. Since

s2n||un||2 ≤ ||vn||2 = 1, we conclude that sn 6→ +∞. Thus, for some subsequence,

sn → s 6= 0, un ⇀ u 6= 0 and

vn = snun + v−n ⇀ v = su+ v− 6= 0.

So, by Fatou’s Lemma,

∫
W (x)F (wn)

||wn||2
dx ≥

∫
W (x)F (wn)

|wn|2
|vn|2dx ≥

∫

[v 6=0]

W (x)F (wn)

|wn|2
|vn|2dx→ +∞,

contradicting (2.8).

After the above commentaries we are ready to prove the main result this section.

Proposition 2.2.3 The function λ 7→ dλ is decreasing and continuous on (0,+∞).

Proof. In the sequel, uλ and uµ denote a ground state solution for Jλ and Jµ respec-

tively. Note that if λ > µ, then

Jµ(u)− Jλ(u) = (λ− µ)

∫
F (u) dx ≥ 0, ∀u ∈ H1(RN).

Hence

dλ = inf
u∈E+\{0}

max
v∈Ê(u)

Jλ(u) ≤ inf
u∈E+\{0}

max
v∈Ê(u)

Jµ(u) = dµ,

showing that λ 7→ dλ is monotone non-creasing. We claim that dλ < dµ. Indeed,

suppose dλ = dµ and let tµ ≥ 0 and vµ ∈ E− satisfying

Jλ(tµuµ + vµ) = max
u∈Ê(uµ)

Jλ(u). (see (2.7))
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Therefore,

dλ ≤ Jλ(tµuµ + vµ) = (µ− λ)
∫
F (tµuµ + vµ) dx+ Jµ(tµuµ + vµ)

≤ (µ− λ)
∫
F (tµuµ + vµ) dx+ Jµ(uµ)

= (µ− λ)
∫
F (tµuµ + vµ) dx+ dµ.

As dλ = dµ, it follows that

(µ− λ)

∫
F (tµuµ + vµ) dx ≥ 0.

By using the fact that λ > µ and (f4), we get tµuµ + vµ = 0 a.e. in R
N , and so,

dλ ≤ Jλ(tµuµ + vµ) = 0, contradicting (2.6) . From this, the function λ 7→ dλ is

injective and decreasing.

Now we are going to prove the continuity of λ 7→ dλ. To this end, we will divide

into two steps our arguments:

Step 1: Let (λn) be a sequence with λ1 ≤ λ2 ≤ ... ≤ λn → λ. Our goal is to prove

that limn→+∞ dλn = dλ. Since λ 7→ dλ is decreasing then dλ ≤ dλn , ∀ n ∈ N. For each

n ∈ N, let us fix tn ≥ 0 and vn ∈ E− verifying

Jλn(tnuλ + vn) = max
u∈Ê(uλ)

Jλn(u).

From Lemma 2.2.2, there exists R > 0 such that Jλ1(u) ≤ 0 for all u ∈ Ê(uλ) \BR(0).

Recalling that Jλn ≤ Jλ1 , we have

Jλn(u) ≤ 0, ∀ u ∈ Ê(uλ) \BR(0) and ∀ n ∈ N. (2.9)

On the other hand Jλn(tnuλ + vn) = max
u∈Ê(uλ)

Jλn(u) ≥ dλn ≥ dλ > 0, i. e.,

Jλn(tnuλ + vn) > 0, ∀ n ∈ N. (2.10)

By (2.9) and (2.10), ||tnuλ + vn|| ≤ R for all n ∈ N. Then, (tnuλ + vn) is bounded in

H1(RN) and

dλn ≤ Jλn(tnuλ + vn)

= (λ− λn)
∫
F (tnuλ + vn)dx+ Jλ(tnuλ + vn)

≤ (λ− λn)
∫
F (tnuλ + vn)dx+ Jλ(uλ) = on(1) + dλ.

From this,

dλn ≤ on(1) + dλ and dλ ≤ dλn , ∀n ∈ N,
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implying that lim
n→+∞

dλn = dλ.

Step 2: Let (λn) be a sequence with λ1 ≥ λ2 ≥ ... ≥ λn → λ. Our goal is to prove

limn→+∞ dλn = dλ. Since λ 7→ dλ is decreasing then dλ1 ≤ dλn ≤ dλ, for all n ∈ N.

From [45], for each n ∈ N let un be a ground state solution of (AP )λn , tn ≥ 0 and

vn ∈ E− verifying

Jλ(tnun + vn) = max
u∈Ê(un)

Jλ(u).

Our next goal is to show that (un) is bounded. Inspired by [45, Proposition 2.7],

suppose by contradiction that ||un|| → +∞ and let wn := un
||un|| . As ||u+n || ≥ ||u−n ||,

then ||w+
n ||2 ≥ ||w−

n ||2. Using the equality ||w+
n ||2 + ||w−

n ||2 = ||wn||2 = 1, we derive

||w+
n ||2 ≥ 1/2, ∀ n ∈ N. Consequently there exist (yn) ⊂ Z

N and r, η > 0 such that

∫

Br(yn)

|w+
n (x)|2dx ≥ η, ∀ n ∈ N. (2.11)

Otherwise, we can apply Lions [30, Lemma I.1] to conclude that w+
n → 0 in Lp(RN)

for p ∈ (2, 2∗). Then,
∫
F (sw+

n )dx→ 0 for each s > 0 and

dλ ≥ dλn = Jλn(un) ≥ Jλn(sw
+
n ) =

1
2
s2||w+

n ||2 − λn
∫
F (sw+

n )dx

≥ s2

4
− λn

∫
F (sw+

n )dx→ s2

4
,

which is absurd because s is arbitrary, showing (2.11). Now, we set

ũn(x) := un(x+ yn) and w̃n(x) := wn(x+ yn).

By Lemma 2.2.1, w̃+
n (x) = w+

n (x + yn). Moreover, by (2.11), w̃n ⇀ w with w+ 6= 0,

because w̃+
n ⇀ w+. Since ũn = w̃n||un||, it follows that |ũn(x)| → +∞ for each x ∈ R

N

with w(x) 6= 0. Therefore, by Fatou’s Lemma,

∫
F (ũn)

|ũn|2
|w̃n|2dx→ +∞.

Hence

0 ≤ Jλn (un)

||un||2 = 1
2
||w+

n ||2 − 1
2
||w−

n ||2 − λn
∫ F (un)

|un|2 |wn|
2dx

= 1
2
||w+

n ||2 − 1
2
||w−

n ||2 − λn
∫ F (ũn)

|ũn|2 |w̃n|
2dx→ −∞

obtaining a contradiction. This proves that (un) is bounded.

Now, we are ready to prove that lim
n→+∞

dλn = dλ. First of all, there exists η > 0

such that

max
y∈RN

∫

B1(y)

|u+n (x)|2dx ≥ η, ∀ n ∈ N. (2.12)
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Otherwise, Lions [30, Lemma I.1] ensures that u+n → 0 in Lp(RN), ∀ p ∈ (2, 2∗). Then,

by (f1)− (f2),
∫
f(un)u

+
n dx→ 0. Now, combining this limit with the equality below

0 = J ′
λn(un)u

+
n = ||u+n ||2 − λn

∫
f(un)u

+
n dx = ||u+n ||2 + on(1),

we derive ||u+n || → 0, contradicting the inequality ||u+n || ≥
√

2dλn ≥
√

2dλ1 for all

n ∈ N. This proves (2.12), and so, there exist (yn) ⊂ Z
N and r > 0 such that

∫

Br(yn)

|u+n (x)|2dx ≥ η

Defining ũn(x) := un(x+ yn), we have that (ũn) is bounded and ũ+nj
6⇀ 0 as nj → +∞

for any subsequence. Fixing V := {ũ+n }n∈N ⊂ E+ \ {0}, it follows that V is bounded

and 0 /∈ Vσ(H
1(RN ),H1(RN )′)

. Thus, by Lemma 2.2.2, there exists R > 0 such that

Jλ(w) < 0 for w ∈ E(u) \BR(0), ∀ u ∈ V . (2.13)

On the other hand, if ṽn(x) := vn(x+ yn), we have

Jλ(tnũn + ṽn) = Jλ(tnun + vn) = max
u∈Ê(un)

Jλ(u) ≥ dλ > 0, ∀ n ∈ N. (2.14)

By (2.13) and (2.14), it follows that ||tnũn + ṽn|| ≤ R, for all n ∈ N. Therefore

||tnun + vn|| ≤ R, for all n ∈ N, that is, (tnun + vn) is bounded. Finally,

dλ ≤ Jλ(tnun + vn)

= (λn − λ)
∫
F (tnun + vn)dx+ Jλn(tnun + vn)

≤ on(1) + Jλn(un) = on + dλn ,

that is,

dλ ≤ on(1) + dλn , ∀ n ∈ N.

Since dλ ≥ dλn for all n ∈ N, we have lim
n→+∞

dλn = dλ, finishing the proof.

2.3 Existence of ground state for problem (P )ǫ.

In this section our main goal is proving that cǫ given in (1.1) is a critical level for

Iǫ when ǫ small enough. Hereafter, for each ǫ ≥ 0, we denote by Iǫ : H
1(RN) → R the

energy functional associated with (P )ǫ given by

Iǫ(u) =
1

2

∫
(|∇u|2 + V (x)|u|2 dx)−

∫
A(ǫx)F (u) dx,
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or equivalently

Iǫ(u) =
1

2
‖u+‖2 − 1

2
‖u−‖2 −

∫
A(ǫx)F (u) dx.

Here, it is very important to observe that by using the notations explored in

Section 2, we derive that

c0 = dA(0), I0 = JA(0) and M0 = NA(0).

From now on, without loss of generality we assume that

A(0) = sup
x∈RN

A(x). (3.15)

The same idea explored in [45, Lemma 2.4] gives

0 < cǫ = inf
u∈E+\{0}

max
v∈Ê(u)

Iǫ(u). (3.16)

Moreover, the Lemma 2.2.2 permits to argue as in [45, Lemma 2.6] to prove that for

each u ∈ H1(RN) \E−, Mǫ ∩ Ê(u) is a singleton set and the element of this set is the

unique global maximum of Iǫ|Ê(u), that is, there are t∗ ≥ 0 and v∗ ∈ E− such that

Iǫ(t∗u+ v∗) = max
w∈Ê(u)

Iǫ(w). (3.17)

Our first lemma shows an important relation between cǫ and c0.

Lemma 2.3.1 It occurs the limit lim
ǫ→0

cǫ = c0.

Proof. Consider ǫn → 0 with ǫn > 0. Our goal is to prove that cǫn → c0. First of

all, note that c0 ≤ cǫn for all n ∈ N, which leads to c0 ≤ lim infn→+∞ cǫn . On the

other hand, by (3.17), if w0 ∈ H1(RN) is a ground state solution of (P )0, there are

tn ∈ [0,+∞) and vn ∈ E− such that tnw
+
0 + vn ∈ Mǫn , implying that

Iǫn(tnw
+
0 + vn) ≥ cǫn > 0, ∀ n ∈ N.

As in the previous section, (tnw
+
0 + vn) is bounded. Thus, without loss of generality,

we can consider that tn → t0 and vn ⇀ v in H1(RN). Note that

cǫn ≤ Iǫn(tnw
+
0 + vn) =

1

2
t2n||w+

0 ||2 −
1

2
||vn||2 −

∫
A(ǫnx)F (tnw

+
0 + vn)dx.
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Hence, since the norm is weakly lower semicontinous, the Fatou’s Lemma gives

lim supn→+∞ cǫn ≤ lim supn→+∞
(
1
2
t2n||w+

0 ||2 − 1
2
||vn||2

)
+

lim supn→+∞
(
−
∫
A(ǫnx)F (tnw

+
0 + vn)dx

)

≤ 1
2
t20||w+

0 ||2 − 1
2
||v||2 −

∫
A(0)F (t0w

+
0 + v)dx

= I0(t0w
+
0 + v) ≤ I0(w0) = c0.

From this, limn→+∞ cǫn = c0.

As an immediate consequence of the last lemma we have the corollary below

Corollary 2.3.2 There exists ǫ0 > 0 such that for all ǫ ∈ (0, ǫ0) yields cǫ < dA∞,

where A∞ = lim|x|→+∞A(x).

Proof. By condition (A1), A(0) > A∞, then the Proposition 2.2.3 ensures that dA(0) <

dA∞ , or equivalently, c0 < dA∞ . Now it is enough to apply the Lemma 2.3.1 to get the

desired result.

As a byproduct of the proof of Lemma 2.3.1, we also have the following result,

which can be useful for related problems.

Lemma 2.3.3 Let (tn) ⊂ [0,+∞) and (vn) ⊂ E− the sequences defined in the proof

of Lemma 2.3.1. Then, for some subsequence,

tn → 1 and vn → w−
0 .

Hence, tnw
+
0 + vn → w0 in H1(RN).

Proof. Note that in the proof of Lemma 2.3.1, we find that

lim inf
n→+∞

||vn||2 = ||v||2.

Then for some subsequence limn→+∞ ||vn|| = ||v||, and so, vn → v. Furthermore, from

the previous lemma I0(w0) = I0(t0w
+
0 + v), where w0 ∈ M0. Hence t0w

+
0 + v = w0,

from where it follows that t0 = 1 and v = w−
0 . Thereby, tn → 1 and vn → w−

0 .

Our next result is related to the [45, Proposition 2.7], however as in the present

paper A is not periodic, we cannot repeat the same arguments explored in that paper,

then some adjustments are necessary in the proof to get the same result.

Proposition 2.3.4 Iǫ is coercive on Mǫ.
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Proof. Suppose that there exists (un) ⊂ Mǫ verifying

Iǫ(un) ≤ d and ||un|| → +∞,

for some d ∈ R. Setting vn := un
||un|| , it follows that ||v

+
n || ≥ ||v−n || and ||v+n ||2 ≥ 1

2
. On

the other hand, there exist (yn) ⊂ Z
N and r, η > 0 such that,

∫

Br(yn)

|v+n |2dx > η, ∀n ∈ N. (3.18)

In fact, suppose by contradiction that (3.18) does not hold. Then, applying again

Lions [30, Lemma I.1], v+n → 0 in Lp(RN) for all p ∈ (2, 2∗). Hence, by (f1) − (f2),
∫
F (sv+n )dx→ 0 for all s > 0. Thereby,

d ≥ Iǫ(un) ≥ Iǫ(sv
+
n ) =

1
2
s2||v+n ||2 −

∫
A(ǫx)F (sv+n )dx ≥

≥ s2

4
−
∫
A(0)F (sv+n )dx→ s2

4
,

which absurd, because s is arbitrary. This shows that (3.18) is valid.

Fixing ũn(x) := un(x + yn) and ṽn(x) := vn(x + yn), by Lemma 2.2.1, we have

ṽ+n (x) := v+n (x + yn) and ũn = ṽn||un||. Since vn ⇀ v, by (3.18), v 6= 0. Then,

ũn(x) → +∞ when v(x) 6= 0. By using the Fatou’s Lemma, we get

∫
F (un)

||un||2
dx ≥

∫
F (un)

|un|2
|vn|2dx =

∫
F (ũn)

|ũn|2
|ṽn|2dx ≥

∫

[v 6=0]

F (ũn)

|ũn|2
|ṽn|2dx→ +∞.

The above limit yields

0 ≤ Iǫ(un)
||un||2 = 1

2
||v+n ||2 − 1

2
||v−n ||2 −

∫
A(ǫx)F (un)

||un||2dx

≤ 1
2
− A0

∫ F (un)
||un||2dx→ −∞,

obtaining a new absurd.

Now, we can repeat the same arguments found in [45, see proof of Theorem 1.1]

to guarantee the existence of a (PS) sequence (un) ⊂ Mǫ associated with cǫ, that is,

Iǫ(un) → cǫ and I ′ǫ(un) → 0.

Theorem 2.3.5 The problem (P )ǫ has a ground state solution for all ǫ ∈ (0, ǫ0), where

ǫ0 > 0 was given in Corollary 2.3.2.

Proof. First of all, the fact that (un) ⊂ Mǫ leads to

0 = I ′ǫ(un)u
+
n = ||u+n ||2 −

∫
A(ǫx)f(un)u

+
n dx ≥ 2cǫ −

∫
A(ǫx)f(un)u

+
n dx.
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Therefore
∫
A(ǫx)f(un)u

+
n dx 6→ 0. Since (un) is bounded, by Lions [30, Lemma I.1],

there exist η, δ > 0 and (zn) ⊂ Z
N such that

∫

Bδ(zn)

|u+n |2dx > η, ∀n ∈ N.

Claim 2.3.6 (zn) is a bounded sequence.

If (zn) is unbounded, for some subsequence, we must have |zn| → +∞. Fixing wn(x) :=

un(x+ zn), we derive wn ⇀ w 6= 0. Now, for each φ ∈ C∞
0 (RN),

on = I ′ǫ(un)φ(· − zn) = B(un, φ(· − zn))−
∫
A(ǫx)f(un)φ(· − zn)dx

= B(wn, φ)−
∫
A(ǫx+ ǫzn)f(wn)φdx,

where

B(u, v) =

∫
(∇u∇v + V (x)uv) dx, ∀u, v ∈ H1(RN).

Taking the limit n→ +∞, we obtain

0 = B(w, φ)−
∫
A∞f(w)φdx = J ′

A∞(w)φ, ∀ φ ∈ C∞
0 (RN).

Now, the density of C∞
0 (RN) in H1(RN) gives

0 = B(w, v)−
∫
A∞f(w)vdx = J ′

A∞(w)v, ∀ v ∈ H1(RN).

The last equality says that w is a nontrivial solution of (AP )A∞ . From characterization

of dA∞ and Fatou’s Lemma,

dA∞ ≤ JA∞(w) = JA∞(w)− 1
2
J ′
A∞(w)w =

∫
A∞

(
1
2
f(w)w − F (w)

)
dx

≤ lim infn→+∞
∫
A(ǫx+ ǫzn)

(
1
2
f(wn)wn − F (wn)

)
dx

= lim infn→+∞
∫
A(ǫx)

(
1
2
f(un)un − F (un)

)
dx

= lim infn→+∞
(
Iǫ(un)− 1

2
I ′ǫ(un)un

)
= cǫ

that is

dA∞ ≤ cǫ, ∀ǫ > 0.

On the other hand, by Corollary 2.3.2, cǫ < dA∞ when ǫ < ǫ0, which is absurd.

Therefore, (zn) is bounded.

As (zn) is bounded, there exists r > 0 such that Bδ(zn) ⊂ Br(0) for all n ∈ N.

Then, ∫

Br(0)

|u+n |2dx ≥
∫

Bδ(zn)

|u+n |2dx > η, ∀n ∈ N.

From this, un ⇀ u with u 6= 0. Now, it is enough to repeat the arguments found [5,

page 23] to conclude that u is a ground state solution for (P )ǫ.
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2.4 Concentration of the solutions

In this section, we denote by uǫ the ground state solution obtained in Section 3.

Our main goal is to show that if xǫ is a maximum point of |uǫ|, then

lim
ǫ→0

A(ǫxǫ) = A(0).

Of a more precise way, we have proved that if ǫn → 0, for some subsequence, ǫnxǫn → x0

for some x0 ∈ A where

A = {z ∈ R
N : A(z) = A(0)}.

In what follows, we set (ǫn) ⊂ (0, ǫ0) with ǫn → 0, In = Iǫn , cn := cǫn and

un = uǫn , that is,

I ′n(un) = 0 and In(un) = cn.

By (A1), cn ≥ c0 > 0 for all n ∈ N.

Next, we will prove some technical lemmas that are crucial to get the concentra-

tion of the solutions.

Lemma 2.4.1 The sequence (un) is bounded.

Proof. The proof follows as in Proposition 2.3.4.

Lemma 2.4.2 There exist (yn) ⊂ Z
N and R, η > 0 verifying

∫

BR(yn)

|u+n |2dx ≥ η, ∀n ∈ N.

Proof. If the lemma does not hold, by Lions [30, Lemma I.1], u+n → 0 in Lp(RN) for

all p ∈ (2, 2∗). Therefore ||u+n ||2 =
∫
A(ǫnx)f(un)u

+
n dx → 0. On the other hand, from

[45, Lemma 2.4], we know that ||u+n || ≥
√
2cn ≥ √

2c0, which contradicts the last limit.

In the sequel, vn(x) := un(x + yn) for all x ∈ R
N . Thus, for some subsequence,

vn ⇀ v 6= 0.

Lemma 2.4.3 The sequence (ǫnyn) is bounded in R
N . Furthermore, if for a subse-

quence ǫnyn → z, then z ∈ A and I ′0(v) = 0.
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Proof. First of all, we will prove the boundedness of the sequence (ǫnyn). Arguing by

contradiction, suppose that for some subsequence |ǫnyn| → +∞. Since un is a ground

state solution for (P )ǫn ,

∫
(∇un∇φ(x− yn) + V (x)unφ(x− yn))dx =

∫
A(ǫnx)f(un)φ(x− yn)dx,

for all φ ∈ C∞
0 (RN). Hence, by a change variable,

∫
(∇vn∇φ+ V (x)vnφ)dx =

∫
A(ǫnx+ ǫnyn)f(vn)φdx

for all φ ∈ C0(R
N). Now, taking the limit as n→ +∞, we find

∫
(∇v∇φ dx+ V (x)vφ)dx =

∫
A∞f(v)φdx

for all φ ∈ C0(R
N). This combined with the density of C∞

0 (RN) in H1(RN) gives

∫
(∇v∇ψ + V (x)vψ)dx =

∫
A∞f(v)ψdx, ∀ψ ∈ H1(RN).

Then v is a nontrivial solution of (AP )A∞ , and so, v ∈ MA∞ . By Fatou’s lemma,

dA∞ ≤ JA∞(v) = JA∞(v)− 1
2
J ′
A∞(v)v =

∫
A∞

(
1
2
f(v)v − F (v)

)
dx

≤ lim infn→+∞
∫
A(ǫx+ ǫnyn)

(
1
2
f(vn)vn − F (vn)

)
dx

= lim infn→+∞
∫
A(ǫnx)

(
1
2
f(un)un − F (un)

)
dx

= lim infn→+∞
(
In(un)− 1

2
I ′n(un)un

)

= lim infn→+∞ In(un) = limn∈N cn = c0 < dA∞ ,

obtaining a contradiction. Consequently (ǫnyn) is bounded, and we can assume that

ǫnyn → z. The same argument works to prove that

∫
(∇v∇ψ + V (x)vψ)dx =

∫
A(z)f(v)ψdx, ∀ψ ∈ H1(RN).

Hence v is a nontrivial solution of (AP )A(z), and so, v ∈ MA(z). The previous arguments

lead to dA(z) ≤ c0 = dA(0). Then the monotonicity of λ→ dλ implies that A(0) ≤ A(z).

As A(0) ≥ A(z), it follows that A(0) = A(z), showing that z ∈ A.

From now on, we are considering that ǫnyn → z with z ∈ A, i.e., A(z) = A(0).

Here, it is very important to observe that

JA(z) = JA(0) = I0 and I ′0(v) = 0.
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By growth condition on f , we know that for each τ > 0 there exists δ := δτ ∈ (0, 1)

such that
|f(t)|
|t| < τ, ∀t ∈ (−δ, δ).

In what follows, we set gτ (t) := χδ(t)f(t) and jτ (t) := χ̃δ(t)f(t), where χδ is the

characteristic function on (−δ, δ) and χ̃δ(t) = 1− χδ(t).

Lemma 2.4.4 For each τ > 0, there is cτ > 0 such that

|gτ (t)| ≤ τ |t| and |jτ (t)|r ≤ cτ tf(t), ∀t ∈ R,

where r = q+1
q

with q given in (f2).

Proof. By using the definition of gτ , it is obvious that above inequality involving the

function gτ holds.

In order to prove the second inequality, note that [−1,−δ]∪ [δ, 1] ⊂ R is compact

set, then there exists c̃τ > 0 such that

|f(t)|r−1

|t| ≤ c̃τ , ∀t ∈ [−1,−δ] ∪ [δ, 1],

consequently

|jτ (t)|r−1 ≤ c̃τ |t|, ∀t ∈ [−1,−δ] ∪ [δ, 1].

On the other hand, there exists b̃τ > 0 verifying

|f(t)| ≤ τ |t|+ b̃τ |t|q, ∀ t ∈ R.

Thus, there exist Aτ , Bτ , ĉτ > 0 such that

|jτ (t)|r−1 = |f(t)|r−1 ≤ Aτ |t|r−1 +Bτ |t|(r−1)q = Aτ |t|r−1 +Bτ |t| ≤ ĉτ |t|, ∀|t| > 1.

From this,

|jτ (t)|r−1 ≤ cτ |t|, ∀t ∈ R,

for some cτ > 0. Thereby,

|jτ (t)|r ≤ cτ |t||jτ (t)| ≤ cτ tf(t), ∀t ∈ R,

finishing the proof.

The last lemma permit us to prove an important convergence involving the se-

quence (vn).
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Proposition 2.4.5 The sequence (vn) converges strongly to v in H1(RN).

Proof. First of all, note that

c0 ≤ I0(v) = I0(v)− 1
2
I ′0(v)v =

∫
A(0)

(
1
2
f(v)v − F (v)

)
dx

=
∫
A(z)

(
1
2
f(v)v − F (v)

)
dx

≤ lim infn→+∞
∫
A(ǫnx+ ǫnyn)

(
1
2
f(vn)vn − F (vn)

)
dx

≤ lim supn→+∞
∫
A(ǫnx+ ǫnyn)

(
1
2
f(vn)vn − F (vn)

)
dx

= lim supn→+∞
∫
A(ǫnx)

(
1
2
f(un)un − F (un)

)
dx

= lim supn→+∞
(
In(un)− 1

2
I ′n(un)un

)

= limn→+∞ cn = c0.

Therefore

lim
n→+∞

∫
A(ǫnx+ ǫnyn)

(
1

2
f(vn)vn − F (vn)

)
dx =

∫
A(z)

(
1

2
f(v)v − F (v)

)
dx.

Since

A(ǫnx+ ǫnyn)

(
1

2
f(vn)vn − F (vn)

)
≥ 0, ∀n ∈ N,

and supposing that

vn(x) → v(x) a.e. in R
N ,

we deduce that

A(ǫnx+ ǫnyn)

(
1

2
f(vn)vn − F (vn)

)
→ A(z)

(
1

2
f(v)v − F (v)

)
in L1(RN).

Thus, for some subsequence, there exists H ∈ L1(RN) such that

A0

(
1

2
f(vn)vn − F (vn)

)
≤ A(ǫnx+ ǫnyn)

(
1

2
f(vn)vn − F (vn)

)
≤ H a.e. in R

N

for all n ∈ N. Then, by (f4),

A0

(
1

2
− 1

θ

)
f(vn)vn ≤ H, ∀n ∈ N.

Consequently there exists c > 0 such that

f(vn)vn ≤ cH, ∀n ∈ N.

In what follows, we set

Qn := f(vn)v
+
n − f(v)v+.
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Our goal is to prove that ∫
|Qn|dx→ 0.

First of all, as f has subcritical growth,

∫

BR(0)

|Qn|dx→ 0, ∀R > 0. (4.19)

On the other hand, for each τ > 0, we can fix R large enough a such way that

∫

BR(0)c
|f(v)v+|dx < τ.

Claim 2.4.6 Increasing R if necessary, we also have
∫

BR(0)c
|f(vn)v+n |dx < 2Θτ, ∀n ∈ N

where

Θ := sup
n∈N

{(∫
|v+n |q+1dx

) 1
q+1

,

∫
|vnv+n |dx

}
.

In fact, for each τ > 0, the Lemma 2.4.4 ensures the existence of cτ > 0 such that

|jτ (t)|r ≤ cτ tf(t), where r =
q + 1

q
.

From Lemma 2.4.4,

∫

BR(0)c
|f(vn)v+n |dx =

∫

BR(0)c
|gτ (vn)||v+n |dx+

∫

BR(0)c
|jτ (vn)||v+n |dx ≤

≤ τ

∫

BR(0)c
|vn||v+n |dx+

(∫

BR(0)c
|jτ (vn)|rdx

)1/r (∫

BR(0)c
|v+n |q+1dx

)1/(q+1)

≤ τΘ+

(∫

BR(0)c
cτf(vn)vndx

)1/r

Θ ≤ τΘ+ cτ

(∫

BR(0)c
cH dx

)1/r

Θ.

Now, increasing R if necessary, a such way that

cτ

(∫

BR(0)c
cH dx

)1/r

< τ

we get ∫

BR(0)c
|f(vn)v+n |dx ≤ 2τΘ,

proving the claim. From (4.19) and Claim 2.4.6,

∫
|Qn| dx→ 0.
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Therefore

f(vn)v
+
n → f(v)v+ in L1(RN).

Analogously,

f(vn)v
−
n → f(v)v− in L1(RN).

Since I ′n(un)u
+
n = 0, it follows that

||v+n ||2 =
∫
A(ǫnx+ ǫnyn)f(vn)v

+
n dx→

∫
A(z)f(v)v+dx = ||v+||2,

showing that v+n → v+ in H1(RN), because v+n ⇀ v+ in H1(RN). Likewise v−n → v− in

H1(RN). Thereby vn = v+n + v−n → v+ + v− = v in H1(RN), finishing the proof.

Corollary 2.4.7 ||vn||L∞(RN ) 6→ 0.

Proof. If ||vn||L∞(RN ) → 0, by Proposition 2.4.5, we must have v = 0, which is absurd.

Lemma 2.4.8 For all n ∈ N, vn ∈ C(RN). Furthermore, there exist a continuous

function P : R → R with P (0) = 0 and K > 0 such that

||vn||C(B1(z))
≤ K · P

(
||vn||L2∗ (B2(z))

)
,

for all n ∈ N and for all z ∈ R
N .

Proof. Since un is solution of (P )ǫn , vn is a solution of




−∆vn + V (x)vn = A(ǫnx+ ǫnyn)f(vn) in R
N ,

vn ∈ H1(RN).

Setting Ψn(x, t) := A(ǫnx + ǫnyn)f(t), it is easy to check that there exists C > 0,

independently of n ∈ N, verifying

Ψn(x, t) ≤ C(|t|+ |t|q), ∀x ∈ R
N and ∀t ∈ R.

Moreover, for each R > 0 and z ∈ R
N , we have that u ∈ Ls(B2(z)) with s ≥ q,

Ψn(·, u(·)) ∈ Ls/q(B2(z)) and there exist Cs = C(s) > 0, independent of z, such that

||Ψn(·, u(·))||Ls/q(B2(z)) ≤ Cs(||u||Ls/q(B2(z)) + ||u||qLs(B2(z))
), ∀n ∈ N.

Here we have used the fact that A is a bounded function. Now, recalling that potential

V is also a bounded function, we can proceed in the same manner as in [41, Proposition

2.15] to get the desired result.

As a byproduct of the last lemma we have the corollary below
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Corollary 2.4.9 Given δ > 0, there exists R := Rδ > 0 such that |vn(x)| ≤ δ for all

x ∈ R
N \BR(0), that is, lim|x|→+∞ vn(x) = 0 uniformly in N.

Proof. Since vn → v in H1(RN), given τ > 0 there are R > 0 such that

‖vn‖L2∗ (B2(z)) < τ, for all |z| ≥ R and n ∈ N.

As P is a continuous function and P (0) = 0, given β > 0, there is τ > 0 such that

|P (t)| < β/K, for |t| < τ.

Hence, by Lemma 2.4.8,

||vn||C(B1(z))
< β for |z| ≥ R and n ∈ N.

This proves the corollary.

Finally we are ready to show the concentration.

Concentration of the solutions:

From Corollary 2.4.9, there is zn ∈ R
N such that |vn(zn)| = maxx∈RN |vn(x)|.

Now, applying Corollary 2.4.7, there exists δ > 0 such that |vn(zn)| ≥ δ for all n ∈ N,

implying that (zn) is bounded. Therefore if ξn := zn + yn, it follows that

|un(ξn)| = max
x∈RN

|un(x)|

and

ǫnξn = ǫnzn + ǫnyn → 0 + z = z

with z ∈ A, finishing the study of the concentration phenomena.
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Caṕıtulo 3

Existência e fenômeno de

concentração para uma classe de

problemas variacionais indefinidos

com crescimento cŕıtico

Existence and concentration phenomena for a class

of indefinite variational problems with critical

growth

CLAUDIANOR O. ALVES and GEILSON F. GERMANO

Abstract

In this paper we are interested to prove the existence and concentration of ground

state solution for the following class of problems

−∆u+ V (x)u = A(ǫx)f(u), x ∈ R
N , (P )ǫ

where N ≥ 2, ǫ > 0, A : RN → R is a continuous function that satisfies

0 < inf
x∈RN

A(x) ≤ lim
|x|→+∞

A(x) < sup
x∈RN

A(x) = A(0), (A)

f : R → R is a continuous function having critical growth, V : RN → R is a continuous

Z
N–periodic with 0 /∈ σ(∆+V ). By using variational methods, we prove the existence



of solution for ǫ small enough. After that, we show that the maximum points of the

solutions concentrate around of a maximum point of A.

Mathematics Subject Classifications (2010): 35B40, 35J2, 47A10 .

Keywords: concentration of solutions, variational methods, indefinite strongly func-

tional, critical growth.

3.1 Introduction

This paper concerns with the existence and concentration of ground state solution

for the semilinear Schrödinger equation




−∆u+ V (x)u = A(ǫx)f(u), x ∈ R
N ,

u ∈ H1(RN),
(P )ǫ

where N ≥ 2, ǫ is a positive parameter, f : R → R is a continuous function with

critical growth and V,A : R → R are continuous functions verifying some technical

conditions.

In whole this paper, V is ZN -periodic with

0 6∈ σ(−∆+ V ), the spectrum of −∆+ V, (V )

which becomes the problem strongly indefinite. Related to the function A, we assume

that it is a continuous function satisfying

0 < A0 = inf
x∈RN

A(x) ≤ lim
|x|→+∞

A(x) = A∞ < sup
x∈RN

A(x). (A)

The present article has as first motivation some recent articles that have studied

the existence of ground state solution for related problems with (P )ǫ, more precisely

for strongly indefinite problems of the type




−∆u+ V (x)u = f(x, u), x ∈ R
N ,

u ∈ H1(RN).
(P1)

In [27], Kryszewski and Szulkin have studied the existence of ground state solution for

(P1) by supposing the condition (V ). Related to the function f : RN × R → R, they

assumed that f is continuous, ZN -periodic in x with

|f(x, t)| ≤ c(|t|q−1 + |t|p−1), ∀t ∈ R and x ∈ R
N (h1)
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and

0 < αF (x, t) ≤ tf(x, t) ∀(x, t) ∈ R
N × R

∗, F (x, t) =

∫ t

0

f(x, s) ds (h2)

for some c > 0, α > 2 and 2 < q < p < 2∗ where 2∗ = 2N
N−2

if N ≥ 3 and 2∗ = +∞ if

N = 1, 2. The above hypotheses guarantee that the energy functional associated with

(P1) given by

J(u) =
1

2

∫

RN

(|∇u|2 + V (x)|u|2) dx−
∫

RN

F (x, u) dx, ∀u ∈ H1(RN),

is well defined and belongs to C1(H1(RN),R). By (V ), there is an equivalent inner

product 〈 , 〉 in H1(RN) such that

J(u) =
1

2
‖u+‖2 − 1

2
‖u−‖2 −

∫

RN

F (x, u) dx,

where ‖u‖ =
√
〈u, u〉 and H1(RN) = E+ ⊕ E− corresponds to the spectral decom-

position of −∆ + V with respect to the positive and negative part of the spectrum

with u = u+ + u−, where u+ ∈ E+ and u− ∈ E−. In order to show the existence of

solution for (P1), Kryszewski and Szulkin introduced a new and interesting generalized

link theorem. In [31], Li and Szulkin have improved this generalized link theorem to

prove the existence of solution for a class of strongly indefinite problem with f being

asymptotically linear at infinity.

The link theorems above mentioned have been used in a lot of papers, we would

like to cite Chabrowski and Szulkin [14], do Ó and Ruf [17], Furtado and Marchi [20],

Tang [51, 52] and their references.

Pankov and Pflüger [39] also have considered the existence of solution for problem

(P1) with the same conditions considered in [27], however the approach is based on an

approximation technique of periodic function together with the linking theorem due to

Rabinowitz [40]. After, Pankov [38] has studied the existence of solution for problems

of the type 



−∆u+ V (x)u = ±f(x, u), x ∈ R
N ,

u ∈ H1(RN),
(P2)

by supposing (V ), (h1) − (h2) and employing the same approach explored in [39]. In

[38] and [39], the existence of ground state solution has been established by supposing

that f is C1 and there is θ ∈ (0, 1) such that

0 < t−1f(x, t) ≤ θf ′
t(x, t), ∀t 6= 0 and x ∈ R

N . (h3)
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However, in [38], Pankov has found a ground state solution by minimizing the energy

functional J on the set

O =
{
u ∈ H1(RN) \ E− ; J ′(u)u = 0 and J ′(u)v = 0, ∀ v ∈ E−} .

The reader is invited to see that if J is strongly definite, that is, when E− = {0},
the set O is exactly the Nehari manifold associated with J . Hereafter, we say that

u0 ∈ H1(RN) is a ground state solution if

J ′(u0) = 0, u0 ∈ O and J(u0) = inf
w∈O

J(w).

In [45], Szulkin and Weth have established the existence of ground state solution

for problem (P1) by completing the study made in [38], in the sense that, they also

minimize the energy functional on O, however they have used more weaker conditions

on f , for example f is continuous, ZN -periodic in x and satisfies

|f(x, t)| ≤ C(1 + |t|p−1), ∀t ∈ R and x ∈ R
N (h4)

for some C > 0 and p ∈ (2, 2∗).

f(x, t) = o(t) uniformly in x as |t| → 0. (h5)

F (x, t)/|t|2 → +∞ uniformly in x as |t| → +∞, (h6)

and

t 7→ f(x, t)/|t| is strictly increasing on R \ {0}. (h7)

The same approach has been used by Zhang, Xu and Zhang [60, 61] to study a class

of indefinite and asymptotically periodic problem.

In [5], Alves and Germano have studied the existence of ground state solution

for problem (P1) by supposing the f has a critical growth for N ≥ 2, while in [6] the

authors have established the existence and concentration of solution for problem (P )ǫ

by supposing that f has a subcritical growth and V,A verify the conditions (V ) and

(A) respectively.

Motivated by results found [5, 6], in the present paper we intend to study the

existence and concentration of solution for problem (P )ǫ for the case where function f

has a critical growth. Since the critical growth brings a lost of compactness, we have
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established new estimates for the problem. Here, the concentration phenomena is very

subtle, because we need to be careful to prove some estimates involving the L∞ norm

of the solutions for ǫ small enough, for more details see Section 2.2 for N ≥ 3, and

Section 3.3 for N = 2. Moreover of the conditions (V ) and (A) on the functions V and

A respectively, we are supposing the following conditions on f :

The Case N ≥ 3:

In this case f : R → R is of the form

(f0) f(t) = ξ|t|q−1t+ |t|2∗−2t, ∀t ∈ R;

with ξ > 0, q ∈ (2, 2∗) and 2∗ = 2N/N − 2.

The Case N = 2:

In this case f : R → R is a continuous function that satisfies

(f1)
f(t)
t

→ 0 as t→ 0 ;

(f2) The function t 7→ f(t)
t

is increasing on (0,+∞) and decreasing on (−∞, 0);

(f3) There exists θ > 2 such that

0 < θF (t) ≤ f(t)t, ∀t ∈ R \ {0}

where

F (t) :=

∫ t

0

f(s)ds;

(f4) There exists Γ > 0 such that |f(t)| ≤ Γe4πt
2
for all t ∈ R;

(f5) There exist τ > 0 and q > 2 such that F (t) ≥ τ |t|q for all t ∈ R.

The condition (f4) says that f can have an exponential critical growth. Here, we recall

that a function f has an exponential critical growth, if there is α0 > 0 such that

lim
|t|→+∞

|f(t)|
eα|t|2

= 0, ∀α > α0, lim
|t|→+∞

|f(t)|
eα|t|2

= +∞, ∀α < α0.

Our main theorem is the following
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Theorem 3.1.1 Assume (V ), (A), (f0) for N ≥ 3, (f1)− (f5) for N = 2. Then, there

exist τ0, ξ0, ǫ0 > 0 such that (P )ǫ has a ground state solution uǫ for all ǫ ∈ (0, ǫ0), with

ξ ≥ ξ0 if N = 3 and τ ≥ τ0 if N = 2. Moreover, if xǫ ∈ R
N denotes a global maximum

point of |uǫ|, then
lim
ǫ→0

A(ǫxǫ) = sup
x∈RN

A(x).

In the proof of Theorem 3.1.1, we will use variational methods to get a critical

point for the energy function Iǫ : H
1(RN) → R given by

Iǫ(u) =
1

2
B(u, u)−

∫

RN

A(ǫx)F (u)dx,

where B : H1(RN)×H1(RN) → R is the bilinear form

B(u, v) =

∫

RN

(∇u∇v + V (x)uv) dx, ∀u, v ∈ H1(RN). (1.1)

It is well known that Iǫ ∈ C1(H1(RN),R) with

I ′ǫ(u)v = B(u, v)−
∫

RN

A(ǫx)f(u)vdx, ∀u, v ∈ H1(RN).

Consequently, critical points of Iǫ are precisely the weak solutions of (P )ǫ.

Note that the bilinear form B is not positive definite, therefore it does not induce

a norm. As in [45], there is an inner product 〈 , 〉 in H1(RN) such that

Iǫ(u) =
1

2
‖u+‖2 − 1

2
‖u−‖2 −

∫

RN

A(ǫx)F (u) dx, (1.2)

where ‖u‖ =
√

〈u, u〉 and H1(RN) = E+ ⊕ E− corresponds to the spectral decompo-

sition of −∆+ V with respect to the positive and negative part of the spectrum with

u = u++u−, where u+ ∈ E+ and u− ∈ E−. It is well known that B is positive definite

on E+, B is negative definite on E− and the norm ‖ ‖ is an equivalent norm to the

usual norm in H1(RN), that is, there are a, b > 0 such that

b||u|| ≤ ||u||H1(RN ) ≤ a||u||, ∀ u ∈ H1(RN). (1.3)

From now on, for each u ∈ H1(RN), Ê(u) designates the set

Ê(u) = E− ⊕ [0,+∞)u. (1.4)

The plan of the paper is as follows: In Section 2 we will study the existence and

concentration of solution for N ≥ 3, while in Section 3 we will focus our attention to

dimension N = 2.

Notation: In this paper, we use the following notations:
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• The usual norms in H1(RN) and Lp(RN) will be denoted by ‖ ‖H1(RN ) and | |p
respectively.

• C denotes (possible different) any positive constant.

• BR(z) denotes the open ball with center z and radius R in R
N .

• We say that un → u in Lploc(R
N) when

un → u in Lp(BR(0)), ∀R > 0.

• If g is a mensurable function, the integral
∫
RN g(x) dx will be denoted by

∫
g(x) dx.

• We denote δx the Dirac measure.

• If ϕ ∈ C∞
c (RN), the set {x ∈ RN ; ϕ(x) 6= 0} will be denoted by suppϕ.

3.2 The case N ≥ 3.

We begin this section by studying the case where A is a constant function. More

precisely, we consider the following autonomous problem




−∆u+ V (x)u = λf(u), x ∈ R
N ,

u ∈ H1(RN),
(AP )λ

with λ ∈ [A0,+∞) and f : R → R being of the form

f(t) = ξ|t|q−1t+ |t|2∗−2t ∀t ∈ R;

with ξ > 0, q ∈ (2, 2∗) and 2∗ = 2N/N − 2.

Associated with (AP )λ, we have the energy functional Jλ : H1(RN) → R given

by

Jλ(u) =
1

2

∫
(|∇u|2 + V (x)|u|2) dx− λ

∫
F (u) dx,

or equivalently

Jλ(u) =
1

2
‖u+‖2 − 1

2
‖u−‖2 − λ

∫
F (u) dx.

In what follows, let us denote by dλ the real number defined by

dλ = inf
u∈Nλ

Jλ(u); (2.5)
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where

Nλ =
{
u ∈ H1(RN) \ E− ; J ′

λ(u)u = 0 and J ′
λ(u)v = 0, ∀ v ∈ E−} . (2.6)

In [5], Alves and Germano have proved that for each λ ∈ [A0,+∞), the problem

(AP )λ possesses a ground state solution uλ ∈ H1(RN), that is,

uλ ∈ Nλ, Jλ(uλ) = dλ and J ′
λ(u) = 0.

A key point to prove the existence of the ground state uλ are the following informations

involving dλ:

0 < dλ = inf
u∈E+\{0}

max
v∈Ê(u)

Jλ(u) (2.7)

and

dλ <
1

N

SN/2

λ
N−2

2

, ∀λ > A0. (2.8)

Here, we would like to point out that (2.8) holds for N = 3 if ξ is large enough, while

for N ≥ 4 there is no restriction on ξ. This fact justifies why ξ must be large for N = 3

in Theorem 3.1.1.

An interesting and important fact is that for each u ∈ H1(RN) \ E−, Nλ ∩ Ê(u)
is a singleton set and the element of this set is the unique global maximum of Jλ|Ê(u),

that is, there are t∗ ≥ 0 and v∗ ∈ E− such that

Jλ(t
∗u+ v∗) = max

w∈Ê(u)
Jλ(w). (2.9)

After the above commentaries we are ready to prove an important result involving

the function λ 7→ dλ.

Proposition 3.2.1 The function λ 7→ dλ is decreasing and continuous on [A0,+∞).

Proof. From [6, Proposition 2.3], the function λ 7→ dλ is decreasing, and if λ1 ≤ λ2 ≤
λ3 ≤ ... ≤ λn → λ then lim

n
dλn = dλ. It suffices to check that λ1 ≥ λ2 ≥ λ3 ≥ ... ≥

λn → λ implies lim
n
dλn = dλ. Let un be a ground state solution of (AP )λn , tn > 0 and

vn ∈ E− verifying

Jλ(tnun + vn) = max
Ê(un)

Jλ.

Our goal is to show that (un) is bounded in H1(RN). First of all, note that
(
1

2
− 1

q

)∫
f(un)undx ≤

∫ (
1

2
f(un)un − F (un)

)
dx = (2.10)
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=
1

λn

(
Jλn(un)−

1

2
J ′
λn(un)un

)
=

1

λn
Jλn(un) =

1

λn
dλn ≤ 1

λ
dλ,

which proves the boundedness of
(∫

f(un)undx
)
. Fixing g(t) = χ[−1,1](t)f(t) and l(t) =

χ[−1,1]c(t)f(t), we have that

g(t) + l(t) = f(t), ∀t ∈ R.

From definition of g and l, there exists k > 0 such that

|g(t)|r ≤ ktf(t) and |l(t)|s ≤ ktf(t), ∀t ∈ R,

where r := q+1
q

and s := 2∗

2∗−1
. Thus,

∣∣∣∣
∫
f(un)u

+
n dx

∣∣∣∣ ≤
∫

|g(un)u+n |dx+
∫

|l(un)u+n |dx ≤

≤
(∫

|g(un)|rdx
)1/r

|u+n |q+1 +

(∫
|l(un)|sdx

)1/s

|u+n |2∗ ≤

≤ C

(∫
f(un)undx

)1/r

||u+n ||+ C

(∫
f(un)undx

)1/s

||u+n || ≤ C||un||.

Suppose by contradiction that ||un|| → +∞. Then

∫
f(un)u

+
n

||un||2
dx→ 0.

On the other hand, the equality

0 =
J ′
λn
(un)u

+
n

||un||2
=

||u+n ||2
||un||2

− λn

∫
f(un)u

+
n

||un||2
dx

leads to
||u+n ||2
||un||2

→ 0.

As un ∈ Nλn , it follows that ‖u−n ‖ ≤ ‖u+n ‖, and thus,

1 =
||u+n ||2
||un||2

+
||u−n ||2
||un||2

≤ 2
||u+n ||2
||un||2

→ 0,

a contradiction. This shows the boundedness of (un). We claim that there are (yn) ⊂
Z
N and r, η > 0 such that

∫

Br(yn)

|un|2
∗
dx > η, ∀n ∈ N. (2.11)
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Arguing by contradiction, if the inequality does not occur, from [43, Lemma 2.1],

un → 0 in Lp(RN) for all p ∈ (2, 2∗], and so,
∫
f(un)u

+
n dx→ 0. This together with the

equality below

0 = J ′
λn(un)u

+
n = ||u+n ||2 − λn

∫
f(un)u

+
n dx.

gives ||u+n || → 0, which is a contradiction because ||un|| ≥
√
2dλn ≥

√
2dλ1 . Thereby

(2.11) follows.

Define ũn(x) := un(x + yn). By [6, Lemma 2.1], ũ+n (x) = u+n (x + yn) and (ũn) is

bounded in H1(RN). In the sequel, let us assume that for some subsequence ũn ⇀ u in

H1(RN). Our goal is to show that u 6= 0. Inspired by [5, Lemma 2.17], let us suppose

by contradiction u = 0 and

|∇ũn|2 ⇀ µ, |ũn|2
∗
⇀ ν in M+(RN).

By Concentration-Compactness Principle due to Lions [29], there exist a countable set

J, (xi)i∈J ⊂ R
N and (µi)i∈J, (νi)i∈J ⊂ [0,+∞) such that

ν =
∑

i∈J
νiδxi , µ ≥

∑

i∈J
µiδxi , and µi = Sν

2/2∗

i .

We will prove that νi = 0 for all i ∈J. Suppose there exists i ∈J such that νi 6= 0.

Then,

dλ ≥ lim
n
dλn = lim

n

(
Jλn(un)−

1

2
J ′
λn(un)un

)

≥ lim
n
λn

(
1

2
− 1

2∗

)∫
|un|2

∗
dx

= lim
n

λn
N

∫
|ũn|2

∗
dx =

λ

N

∑

j∈J
νj,

which means

dλ ≥
λ

N

∑

j∈J
νj. (2.12)

Let ϕδ(x) := ϕ
(
x−xi
δ

)
for all x ∈ R

N and δ > 0, where ϕ ∈ C∞
c (RN) is such that ϕ ≡ 1

on B1(0), ϕ ≡ 0 on R
N \ B2(0), 0 ≤ ϕ ≤ 1 and |∇ϕ| ≤ 2. Consequently (ϕδũn) is

bounded in H1(RN) and

J ′
λn(ũn)(ϕδũn) = 0,

that is,

∫
∇ũn∇(ϕδũn)dx+

∫
V (x)ϕδũ

2
ndx = λnξ

∫
|ũn|q+1ϕδdx+ λn

∫
|ũn|2

∗
ϕδdx.
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Passing to the limit as n→ +∞,

∫
ϕδdµ = λ

∫
ϕδdν

Now, taking the limit δ → 0,

µ(xi) = λνi.

From the fact that µ(xi) ≥ µi, we derive

Sν
2/2∗

i = µi ≤ µ(xi) = λνi,

and so

SN/2 ≤ λN/2νi.

Consequently,
λ

N
νi ≥

1

N

SN/2

λ
N−2

2

. (2.13)

From (2.12) and (2.13),

dλ ≥
1

N

SN/2

λ
N−2

2

,

contrary to (2.8). From this, νi = 0 for all i ∈J and ũn → 0 in L2∗
loc(R

N), which

contradicts (2.11). This permit us to conclude that u 6= 0.

Claim 3.2.2 If u+ = 0, then u− = 0.

In fact, if u+ = 0,

∫
f(u)u−dx =

∫
f(u)u+dx+

∫
f(u)u−dx =

∫
f(u)udx ≥ 0.

On the other hand, letting n→ +∞ in the equality below

0 = Jλn(ũn)u
− = B(ũn, u

−)− λn

∫
f(ũn)u

−dx

we find

−||u−||2 = B(u, u−) = λ

∫
f(u)u−dx ≥ 0,

thereby showing that u− = 0.

The Claim 3.2.2 implies that u+ 6= 0, because u 6= 0 and u = u+ + u−. Define

V := {ũ+n }n∈N. Since ũ+n ⇀ u+ 6= 0, then 0 /∈ Vσ(H
1(RN ),H1(RN )′)

and V is bounded in

H1(RN). Applying [6, Lemma 2.2], there exists R > 0 such that

Jλ ≤ 0 on Ê(u) \BR(0), for all u ∈ V . (2.14)
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Setting ṽn(x) := vn(x+ yn),

Jλ(tnũn + ṽn) = Jλ(tnun + vn) ≥ dλ > 0. (2.15)

By (2.14) and (2.15), ||tnũn + ṽn|| ≤ R for all n ∈ N. As ||tnun + vn|| = ||tnũn + ṽn||,
(tnun + vn) is also bounded in H1(RN) and

dλ ≤ Jλ(tnun + vn) = (λn − λ)
∫
F (tnun + vn)dx+ Jλn(tnun + vn) ≤

≤ on + Jλn(un) = on + dλn ≤ on + dλ,

from where it follows that lim
n
dλn = dλ.

3.2.1 Existence of ground state for problem (P )ǫ.

In the sequel, we fix

Mǫ := {u ∈ H1(RN) \ E− ; I ′ǫ(u)u = I ′ǫ(u)v = 0, for all v ∈ E−}

and

cǫ = inf
Mǫ

Iǫ.

By using the same arguments found in [5], it follows that cǫ > 0, and for each u ∈
H1(RN) \ E−, there exist t ≥ 0 and v ∈ E− verifying

Iǫ(tu+ v) = max
Ê(u)

Iǫ and {tu+ v} = Mǫ ∩ Ê(u).

The same idea of [5, Lemma 2.6] proves that

||u+||2 ≥ 2cǫ, for all u ∈ Mǫ and ǫ > 0. (2.16)

In what follows, without loss of generality we assume that

A(0) = max
x∈RN

A(x).

Our first result in this section establishes an important relation involving the

levels cǫ and c0.

Lemma 3.2.3 The limit limǫ→0 cǫ = c0 holds. Moreover, let w0 be a ground state

solution of the problem (P )0, tǫ ≥ 0 and vǫ ∈ E− such that tǫw0 + vǫ ∈ Mǫ. Then

tǫ → 1 and vǫ → 0 as ǫ→ 0.
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Proof. See [6, Lemmas 3.1 and 3.3].

Corollary 3.2.4 There exists ǫ0 > 0 such that

cǫ < dA∞ and cǫ <
SN/2

NA(0)
N−2

2

, ∀ǫ ∈ (0, ǫ0).

Proof. Since c0 < dA∞ and

c0 <
SN/2

NA(0)
N−2

2

, (see (2.8))

the corollary is an immediate consequence of Lemma 3.2.3.

The next result is essential to show the existence of ground state solution of (P )ǫ

for ǫ small enough. Since it follows as in [5, Proposition 2.16], we omit its proof.

Proposition 3.2.5 There exists a bounded sequence (un) ⊂ Mǫ such that (un) is

(PS)cǫ for Iǫ.

The following result is the main result this section

Theorem 3.2.6 The problem (P )ǫ has a ground state solution for all ǫ ∈ (0, ǫ0), where

ǫ0 > 0 was given in Corollary 3.2.4.

Proof. Let (un) ⊂ Mǫ be the (PS)cǫ sequence for Iǫ given in Proposition 3.2.5. Then,

there exist (zn) ⊂ Z
N and η, r > 0 such that

∫

Br(zn)

|un|2
∗
dx > η, ∀n ∈ N. (2.17)

In fact, otherwise, by [43, Lemma 2.1], un → 0 in Lp(RN) for all p ∈ (2, 2∗]. Then,

||u+n ||2 =
∫
A(ǫx)f(un)u

+
n dx→ 0,

which is a contradiction with (2.16), and (2.17) is proved.

Claim 3.2.7 The sequence (zn) is bounded in R
N .

Arguing by contradiction, suppose |zn| → +∞ and define wn(x) := un(x + zn). Then

(wn) is bounded, and for some subsequence, wn ⇀ w in H1(RN). Our goal is to prove

that w 6= 0. Suppose w = 0 and

|∇wn|2 ⇀ µ, |wn|2
∗
⇀ ν, in M+(RN).
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By Concentration-Compactness Principle due to Lions [29], there exist a countable set

J, (xi)i∈J ⊂ R
N and (µi)i∈J, (νi)i∈J ⊂ [0,+∞) satisfying

ν =
∑

i∈J
νiδxi , µ ≥

∑

i∈J
µiδxi , and µi = Sν

2/2∗

i .

Next, we are going to prove that νi = 0 for all i ∈J. Suppose that there exists i ∈J
such that νi 6= 0. Note that

cǫ = lim
n

(
Iǫ(un)−

1

2
I ′ǫ(un)un

)
≥ 1

N
lim
n

∫
A(ǫx)|un|2

∗
dx =

= 1
N
lim
n

∫
A(ǫx+ ǫzn)|wn|2

∗
dx ≥ 1

N
lim
n

∫

Bδ(xi)

A(ǫx+ ǫzn)|wn|2
∗
dx =

= 1
N
lim
n

∫

Bδ(xi)

(A(ǫx+ ǫzn)− A∞)|wn|2
∗
dx+

1

N
lim
n

∫

Bδ(xi)

A∞|wn|2
∗
dx ≥

≥ 1
N

∫
A∞ϕδ/2(x)dν,

where ϕδ(x) = ϕ
(
x−xi
δ

)
, and ϕ ∈ C∞

c (RN) satisfies 0 ≤ ϕ ≤ 1, |∇ϕ| ≤ 2, ϕ ≡ 1 on

B1(0) and ϕ ≡ 0 on R
N \B2(0).

By Dominated Convergence Theorem,

lim
δ→0

∫
A∞ϕδ/2(x)dν = A∞νi,

thus

cǫ ≥
1

N
A∞νi. (2.18)

On the other hand, by a simple calculus, (ϕδwn) is bounded in H1(RN). Setting

ϕδ,n(x) := ϕt(x− zn),

||ϕδ,nun|| = ||ϕδwn||, ∀n ∈ N

and so,

I ′ǫ(un)(ϕδ,nun) → 0,

or equivalently

∫
|∇wn|2ϕδdx+

∫
(∇wn∇ϕδ)wndx+

∫
V (x)ϕδw

2
ndx−

−
∫
A(ǫx+ ǫzn)|wn|q+1ϕδdx−

∫
A(ǫx+ ǫzn)|wn|2∗ϕδdx→ 0

Taking the limit n→ +∞, and after δ → 0, we obtain

µ(xi) = A∞νi.
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Since Sν
2/2∗

i ≤ µ(xi), it follows that

SN/2 ≤ A
N
2∞νi ≤ A(0)

N−2
2 A∞νi. (2.19)

By (2.18) and (2.19),

cǫ ≥
SN/2

NA(0)
N−2

2

contrary to Corollary 3.2.4. Consequently νi = 0 for all i ∈J, which means wn → 0 in

L2∗
loc(R

N), contrary to (2.17). From this, w 6= 0.

Now, consider ψ ∈ H1(RN) and ψn(x) := ψ(x+ zn). Then,

on(1) = I ′ǫ(un)ψn = B(un, ψn)−
∫
A(ǫx)f(un)ψndx

or equivalently

on = B(wn, ψ)−
∫
A(ǫx+ ǫzn)f(wn)ψdx.

Taking the limit n → +∞, J ′
A∞(w)ψ = 0. As ψ ∈ H1(RN) is arbitrary, w is a critical

point of JA∞ , and thus, by Fatou’s Lemma

dA∞ ≤ JA∞(w) = JA∞(w)− 1
2
J ′
A∞(w)w

=
∫
A∞

(
1
2
f(w)w − F (w)

)
dx

≤ lim inf
n

∫
A(ǫx+ ǫzn)

(
1

2
f(wn)wn − F (x, wn)

)
dx

= lim inf
n

∫
A(ǫx)

(
1

2
f(un)un − F (un)

)
dx

= lim
n

(
Iǫ(un)−

1

2
I ′ǫ(un)un

)
= cǫ < dA∞ ,

which is impossible. Thereby (zn) is bounded in R
N , and the claim follows.

Consider R > 0 such that Br(zn) ⊂ BR(0). By (2.17),

∫

BR(0)

|un|2
∗
dx > η, ∀n ∈ N.

By considering that un ⇀ u and proceeding as in Claim 3.2.7, u 6= 0. Since u is a

nontrivial critical point for Iǫ, we must have Iǫ(u) ≥ cǫ. On the other hand, by Fatou’s

Lemma,

cǫ = lim
n

(
Iǫ(un)−

1

2
I ′ǫ(un)un

)
= lim

n

∫
A(ǫx)

(
1

2
f(un)un − F (un)

)
dx

≥
∫
A(ǫx)

(
1
2
f(u)u− F (u)

)
dx = Iǫ(u)− 1

2
I ′ǫ(u)u = Iǫ(u).

This proves that u is a ground state solution of (P )ǫ for all ǫ ∈ (0, ǫ0).
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3.2.2 Concentration of the solutions.

In what follows, we consider the set

A := {z ∈ R
N ; A(z) = A(0)},

and a sequence (ǫn) ⊂ (0, ǫ0) with ǫn → 0 as n→ +∞. Moreover, we fix un ∈ H1(RN)

satisfying

In(un) = cn and I ′n(un) = 0,

where In := Iǫn and cn := cǫn . Using the same arguments explored in [5, Lemma 2.6],

||u+n ||2 ≥ 2cn ≥ 2c0, ∀n ∈ N. (2.20)

Lemma 3.2.8 The sequence (un) is bounded in H1(RN).

Proof. See [5, Lemma 2.10].

Lemma 3.2.9 There exist (yn) ⊂ Z
N and r, η > 0 such that

∫

Br(yn)

|un|2
∗
dx > η, ∀n ∈ N.

Proof. Suppose the lemma were false. Then, by [43, Lemma 2.1], un → 0 in Lp(RN)

for all p ∈ (2, 2∗], and so, ∫
A(ǫnx)f(un)u

+
n dx→ 0.

As I ′n(un)u
+
n = 0, it follows that ||u+n ||2 → 0, a contradiction. This proves the lemma.

In the sequel, we fix vn(x) := un(x+yn) for all x ∈ R
N and for all n ∈ N. Thereby,

for some subsequence, we can assume that vn ⇀ v in H1(R2). It is very important to

point out that only one of the cases below holds for some subsequence:

ǫnyn → z ∈ R
N

or

|ǫnyn| → +∞.

For this reason, we will consider a subsequence of (ǫn) such that one of the above

conditions holds. Have this in mind, let us denote

Az :=





A(z), if the condition (1) holds

A∞, if the condition (2) holds.
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Since A is continuous, it follows that |A(ǫnx+ ǫnyn)−Az| → 0 uniformly with respect

to x on bounded Borel sets B ⊂ R
N . Consequently

lim

∫

B

A(ǫnx+ ǫnyn)|vn|2
∗
ϕdx = lim

∫

B

Az|vn|2
∗
ϕdx, (2.21)

for each ϕ ∈ L∞(RN).

By using (2.21) and applying the same idea of Claim 3.2.7, we see that v 6= 0.

Lemma 3.2.10 The sequence (ǫnyn) is bounded in R
N . Moreover, J ′

A(0)(v) = 0 and if

ǫnyn → z ∈ R
N , then z ∈ A.

Proof. First of all, we will prove that (ǫnyn) is bounded. Suppose that |ǫnyn| → +∞.

Consider ψ ∈ C∞
c (RN) and ψn(x) := ψ(x− yn). Since I

′
n(un)ψn = 0 for all n ∈ N, then

∫
∇un∇ψn + V (x)unψndx =

∫
A(ǫnx)f(un)ψndx,

or equivalently

∫
∇vn∇ψ + V (x)vnψdx =

∫
A(ǫnx+ ǫnyn)f(vn)ψdx.

Taking the limit n→ +∞, we derive

∫
∇v∇ψ + V (x)vψdx =

∫
A∞f(v)ψdx,

thereby showing that J ′
A∞(v) = 0. As v 6= 0, the Fatou’s Lemma yields

dA∞ ≤ JA∞(v) = JA∞(v)− 1
2
J ′
A∞(v)v =

∫
A∞

(
1
2
f(v)v − F (v)

)
dx

≤ lim inf
n

∫
A(ǫnx+ ǫnyn)

(
1

2
f(vn)vn − F (vn)

)
dx

= lim inf
n

∫
A(ǫnx)

(
1

2
f(un)un − F (un)

)
dx

= lim inf
n

(
In(un)−

1

2
I ′n(un)un

)
= lim

n
cn = c0,

which is absurd, because c0 < dA∞ . This completes the proof that (ǫnyn) is bounded

in R
N . Now suppose ǫnyn → z ∈ R

N . Arguing as above, we find

∫
∇v∇ψ + V (x)vψdx =

∫
A(z)f(v)ψdx, ψ ∈ C∞

c (RN),

and so J ′
A(z)(v) = 0. Hence,

dA(z) ≤ JA(z)(v)−
1

2
J ′
A(z)(v)v ≤ lim inf

n

(
In(un)−

1

2
I ′n(un)un

)
= c0 = dA(0).
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Since λ 7→ dλ is decreasing and dA(z) ≤ dA(0), we must have A(0) ≤ A(z). From the fact

that A(0) = maxx∈RN A(x), we obtain A(0) = A(z), or equivalently, z ∈ A. Moreover,

we also have J ′
A(0)(v) = J ′

A(z)(v) = 0.

From now on we consider ǫnyn → z with z ∈ A. Our goal is to prove that vn → v

in H1(RN) and vn(x) → 0 as |x| → +∞ uniformly in n. Have this in mind, we need of

the following estimate

Proposition 3.2.11 There exists h ∈ L1(RN) and a subsequence of (vn) such that

|f(vn(x))vn(x)| ≤ h(x), ∀x ∈ R
N and n ∈ N.

Proof. Note that, by Fatou’s Lemma,

dA(0) ≤ JA(0)(v) = JA(0)(v)− 1
2
J ′
A(0)(v)v

=
∫
A(0)

(
1
2
f(v)v − F (v)

)
dx

=
∫
A(z)

(
1
2
f(v)v − F (v)

)
dx

≤ lim inf
n

∫
A(ǫnx+ ǫnyn)

(
1

2
f(vn)vn − F (vn)

)
dx

≤ lim sup
n

∫
A(ǫnx+ ǫnyn)

(
1

2
f(vn)vn − F (vn)

)
dx

= lim sup
n

∫
A(ǫnx)

(
1

2
f(un)un − F (un)

)
dx

= lim sup
n

(
In(un)−

1

2
I ′n(un)un

)
= lim

n
cn = c0 = dA(0),

from where it follows that

lim
n

∫
A(ǫnx+ ǫnyn)

(
1

2
f(vn)vn − F (vn)

)
dx =

∫
A(z)

(
1

2
f(v)v − F (v)

)
dx.

Since

A(ǫnx+ ǫnyn)

(
1

2
f(vn)vn − F (vn)

)
≥ 0

and

A(ǫnx+ ǫnyn)

(
1

2
f(vn)vn − F (vn)

)
→ A(z)

(
1

2
f(v)v − F (v)

)
a.e. in R

N ,

we can ensure that

A(ǫnx+ ǫnyn)

(
1

2
f(vn)vn − F (vn)

)
→ A(z)

(
1

2
f(v)v − F (v)

)
in L1(RN).

Thereby, there exists h̃ ∈ L1(RN) such that, for some subsequence,

A(ǫnx+ ǫnyn)

(
1

2
f(vn)vn − F (vn)

)
≤ h̃(x), ∀n ∈ N.
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As (
1

2
− 1

q + 1

)(
inf
RN

A

)
f(vn)vn ≤ A(ǫnx+ ǫnyn)

(
1

2
f(vn)vn − F (vn)

)
,

we get the desired result.

An immediate consequence of the last proposition is the following corollary

Corollary 3.2.12 vn → v in L2∗(RN).

Proof. The result follows because |vn|2∗ ≤ f(vn)vn for all n ∈ N and vn(x) → v(x)

a.e. in R
N .

Our next result establishes a key estimate involving the L∞ norm on balls for the

sequence (vn). To this end, we fix vn,+ = max{0, vn} and vn,− = max{0,−vn}.

Lemma 3.2.13 There exist R > 0 and C > 0 such that

|vn|L∞(BR(x)) ≤ C|vn|L2∗ (B2R(x)), ∀n ∈ N and ∀x ∈ R
N (2.22)

Hence, as (vn) is a bounded sequence in L2∗(RN), vn ∈ L∞(RN) and there is C > 0

such that

|vn|∞ ≤ C, ∀n ∈ N. (2.23)

Proof. It suffices to check that

|vn,+|L∞(BR(x)) ≤ C|vn,+|L2∗ (B2R(x)),

for all n ∈ N and x ∈ R
N , because similar reasoning proves

|vn,−|L∞(BR(x)) ≤ C|vn,−|L2∗ (B2R(x)),

for all n ∈ N and x ∈ R
N . To begin with, we recall that there exist c1, c2 > 0 satisfying

|f(t)| ≤ c1|t|+ c2|t|2
∗−1, for all t ∈ R (2.24)

and that vn is a solution for the problem





−∆vn + V (x)vn = A(ǫnx+ ǫnyn)f(vn) in R
N ,

vn ∈ H1(RN).
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We consider η ∈ C∞
c (RN), L > 0 and β > 1 arbitrary, and define zL,n := η2v

2(β−1)
L,n vn,+

and wL,n := ηvn,+v
β−1
L,n where vL,n = min{vn,+, L}. Applying zL,n as a test function, we

find ∫
η2v

2(β−1)
L,n |∇vn,+|2dx ≤ |A|∞

∫
|f(vn)|η2v2(β−1)

L,n vn,+dx− (2.25)

−
∫
V (x)vnv

2(β−1)
L,n η2vn,+dx− 2

∫
(∇vn∇η)ηv2(β−1)

L,n vn,+dx.

Since ∣∣∣∣
∫
v
2(β−1)
L,n (vn,+∇η)(η∇vn)dx

∣∣∣∣ ≤ C

∫
v
2(β−1)
L,n v2n,+|∇η|2dx+ (2.26)

+
1

4

∫
v
2(β−1)
L,n η2|∇vn,+|2dx,

combining (2.24), (2.25) and (2.26), we obtain

∫
η2v

2(β−1)
L,n |∇vn,+|2dx ≤ C

∫
|vn,+|2η2v2(β−1)

L,n dx+ (2.27)

+C

∫
|vn|2

∗
η2v

2(β−1)
L,n dx+ C

∫
v
2(β−1)
L,n v2n,+|∇η|2dx

where C > 0 is independently of β > 1, η ∈ C∞
c (RN) and L > 0.

On the other hand, since H1(RN) →֒ D1,2(RN) →֒ L2∗(RN),

|wL,n|22∗ ≤ C

∫
|∇wL,n|2dx ≤ C

∫
|∇η|2v2(β−1)

L,n v2n,+dx+ (2.28)

C

∫
η2v

2(β−1)
L,n |∇vn,+|2dx+ C

∫
η2|∇v(β−1)

L,n |2v2n,+dx,

and thus

|wL,n|22∗ ≤ Cβ2

(∫
|∇η|2v2(β−1)

L,n v2n,+dx+

∫
η2v

2(β−1)
L,n |∇vn,+|2dx

)
. (2.29)

Then, from (2.27) and (2.29),

|wL,n|22∗ ≤ Cβ2

(∫
|vn,+|2η2v2(β−1)

L,n dx+ (2.30)

+

∫
|vn|2

∗
η2v

2(β−1)
L,n dx+

∫
v
2(β−1)
L,n v2n,+|∇η|2dx

)
,

where C > 0 is independently of n ∈ N, β > 1, L > 0 and η ∈ C∞
c (RN).

Claim 3.2.14 There exists R > 0 such that

sup
n∈N,x∈RN

∫

B3R(x)

v
2∗2
2

n,+dx < +∞.
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In fact, fix β0 :=
2∗

2
. By using the limit vn → v in L2∗(RN), we can fix R > 0 sufficiently

small verifying

Cβ2
0

(∫

B4R(x)

v2
∗
n,+dx

) 2∗−2
2

<
1

2
, for all n ∈ N and x ∈ R

N , (2.31)

where C is given in (2.30). On the other hand, consider ηx ∈ C∞
c (RN , [0, 1]) such that

ηx ≡ 1 on B3R(x), ηx ≡ 0 on R
N \ B4R(x) and x 7→ ||∇ηx||∞ is a constant function.

Then,
∫
v2

∗
n,+η

2
xv

2(β0−1)
L,n =

∫
v2

∗
n,+η

2
xv

2∗−2
L,n =

∫

B4R(x)

(
v2n,+η

2
xv

2∗−2
L,n

)
v2

∗−2
n,+ dx ≤

≤
(∫ (

vn,+ηxv
2∗−2

2
L,n

)2∗

dx

) 2
2∗ (∫

B4R(x)

v2
∗
n,+dx

) 2∗−2
2

≤ 1

2Cβ2
0

|wL,n|22∗

Applying (2.30) with η = ηx and β = β0, we get

|wL,n|22∗ ≤ Cβ2
0

(∫
η2xv

2∗
n,+dx+

1

2Cβ0
|wL,n|22∗ +

∫
v2

∗
n,+|∇ηx|2dx

)
,

which leads to

|wL,n|22∗ ≤ Cβ2
0 (1 + ||∇ηx||∞)

∫
v2

∗
n,+dx.

By using Fatou’s Lemma for L→ +∞, we obtain

(∫

B3R(x)

v
2∗2
2

n,+dx

) 2
2∗

≤ Cβ2
0

∫
v2

∗
n,+dx

for all n ∈ N and for all x ∈ R
N . This proves Claim 3.2.14.

In what follows, we fix R > 0 as in Claim 3.2.14, rm := 2R
2m

,

t :=
2∗2

2(2∗ − 2)
and χ :=

2∗(t− 1)

2t
> 1.

Claim 3.2.15 Consider β > 1 arbitrary such that vn,+ ∈ Lβ
2∗
χ (BR+rm(x)) for all n ∈ N

and for some m ∈ N. Then

|vn,+|L2∗β(BR+rm+1
(x)) ≤ C1/ββ1/2β(1 + 4m)1/2β|vn,+|

L
2∗ β

χ (BR+rm (x))
(2.32)

where C > 0 is independently of n,m ∈ N, β > 1 and x ∈ R
N .

In fact, since 2∗ β
χ

= β 2t
t−1

, vn,+ ∈ L
2βt
t−1 (BR+rm(x)) for all n ∈ N. Consider ηx,m ∈

C∞
c (RN , [0, 1]) such that ηx,m ≡ 1 in BR+rm+1(x), ηx,m ≡ 0 in R

N \ BR+rm(x) and

|ηx,m|∞ < 2
rm+1

. Using η = ηx,m in (2.30),

|wL,n|22∗ ≤ Cβ2

(∫

BR+rm (x)

|vn,+|2βdx+
∫

BR+rm (x)

v2
∗−2
n,+ v2βn,+dx+
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+

(
2

rm+1

)2 ∫

BR+rm (x)

v2βn,+dx

)
≤ Cβ2

(
(1 + 4m)

∫

BR+rm (x)

v2βn,+dx+

+

∫

BR+rm (x)

v2
∗−2
n,+ v2βn,+dx

)
≤ Cβ2

(
(1 + 4m)

(∫

B3R(0)

1dx

)1/t

.

.

(∫

BR+rm (x)

v
2βt/(t−1)
n,+ dx

)(t−1)/t

+

(∫

B3R(x)

v
(2∗−2)t
n,+ dx

)1/t

.

(∫

BR+rm (x)

v
2βt/(t−1)
n,+ dx

)(t−1)/t

 ≤

≤ Cβ2


(1 + 4m)

(∫

BR+rm (x)

v
2βt/(t−1)
n,+ dx

)(t−1)/t

 .

Thus

|wL,n|22∗ ≤ Cβ2(1 + 4m)|vn,+|2βL2βt/(t−1)(BR+rm (x))
.

Applying Fatou’s Lemma as L→ +∞ we get (2.32). Consequently, by induction,

|vn,+|L2∗χm
(BR+rm+1

(x)) ≤ C
∑m

i=1
1

χiχ
∑m

i=1
i

2χi

m∏

i=1

(1 + 4i)
1

2χi |vn,+|L2∗ (B2R(x)) (2.33)

Since
(∑m

i=1
1
χi

)
m
and

(∑m
i=1

i
χi

)
m
are convergent because χ > 1, and that

m∏

i=1

(1 + 4i)
1

2χi = 4
∑m

i=1
log4(1+4i)

2χi ≤ 4
∑m

i=1
log4(4

i+1)

2χi = 4
∑m

i=1
i+1

2χi ,

there exists C > 0 independently of n,m ∈ N and x ∈ R
N such that

|vn,+|L2∗χm(BR(x)) ≤ C|vn,+|L2∗ (B2R(x)).

Now (2.22) follows by taking the limite of m→ +∞.

Corollary 3.2.16 For each δ > 0 there exist R > 0 such that |vn(x)| ≤ δ for all

x ∈ R
N \BR(0) and n ∈ N.

Proof. By Lemma 3.2.13,

|vn|L∞(BR(x)) ≤ C|vn|L2∗ (B2R(x)), for all n ∈ N and x ∈ R
N .

This fact combined with the limit vn → v in L2∗(RN) proves the result.
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Concentration of the solutions:

As v 6= 0, we must have |vn|L∞(RN ) 6→ 0. Hence, we can assume that |vn|L∞(RN ) >

δ for any δ > 0 and n ∈ N. In what follows, we fix zn ∈ R
N verifying

|vn(zn)| = max
x∈RN

|vn(x)|.

Since vn(x) = un(x+ yn), the point xn := zn + yn satisfies

|un(xn)| = max
x∈RN

|un(x)|.

From Corollary 3.2.16, (zn) is bounded in R
N , then

ǫnxn = ǫnzn + ǫnyn → z ∈ A.

and

lim
n
A(ǫnxn) = A(z) = A(0).

3.3 The case N = 2.

In this section we will consider the case where f has an exponential critical growth.

For this type of function, it is well known that Trundiger-Moser type inequalities are

key points to apply variational methods. In the present paper we will use a Trudinger-

Moser type inequality for whole R
2 due to Cao [13] ( see also Ruf [44] ).

Lemma 3.3.1 (Trudinger-Moser inequality for unbounded domains) For all

u ∈ H1(R2), we have
∫ (

eα|u|
2 − 1

)
dx <∞, for every α > 0.

Moreover, if |∇u|22 ≤ 1, |u|2 ≤ M < ∞ and α < 4π, then there exists a positive

constant C = C(M,α) such that
∫ (

eα|u|
2 − 1

)
dx ≤ C.

The reader can find other Trundiger-Moser type inequalities in [15], [23], [24],

[33] and references therein

As in the previous section, firstly we need to study the autonomous case.
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3.3.1 A result involving the autonomous problem.

We consider the problem




−∆u+ V (x)u = λf(u), x ∈ R
2,

u ∈ H1(R2),
(AP )expλ

where f : R → R satisfies (f1)−(f5). Associated with this problem, we have the energy

function Jλ : H
1(R2) → R given by

Jλ(u) =
1

2
||u+||2 − 1

2
||u−||2 − λ

∫
F (u)dx.

It is well known that Jλ ∈ C1(H1(R2),R) with

J ′
λ(u)v = B(u, v)− λ

∫
f(u)vdx, ∀u, v ∈ H1(R2).

In the sequel,

Nλ = {u ∈ H1(R2) \ E− ; J ′
λ(u)u = J ′

λ(u)v = 0, ∀ v ∈ E−}

and

dλ = inf
Nλ

Jλ.

In [5], Alves and Germano have proved that there exists a constant τ0 > 0 such that

(AP )expλ has a ground state solution if

λ ≥ A(0) and τ ≥ τ0, (3.34)

where τ was fixed in (f5). More precisely, it has been shown that for λ ≥ A(0) and

τ ≥ τ0, there exists uλ ∈ H1(R2) verifying

J ′
λ(uλ) = 0 and Jλ(uλ) = dλ

with

dλ <
Ã2

2
(3.35)

where Ã < 1/a and a was given in (1.3). This restriction on τ has been mentioned in

Theorem 3.1.1, and it will be assume in whole this section.

Moreover, the authors have proved that for all u ∈ H1(R2)\E− the set Nλ∩Ê(u)
is a singleton set and the element of this set is the unique global maximum of Jλ|Ê(u),

which means precisely that there exist uniquely t∗ ≥ 0 and v∗ ∈ E− such that

Jλ(t
∗u+ v∗) = max

w∈Ê(u)
Jλ(w) and {t∗u+ v∗} = Nλ ∩ Ê(u)

As in the case N ≥ 3, we begin by studying the behavior of the function λ 7→ dλ.
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Proposition 3.3.2 The function λ 7→ dλ is decreasing and continuous on [A0,+∞).

Proof. The monotonicity of λ 7→ dλ and some details of the proof are analogous to

Proposition 3.2.1 and [6, Proposition 2.3]. In order to get the limit lim
n
dλn = dλ, it

suffices to consider λ1 ≥ λ2 ≥ ... ≥ λn → λ. Let un be a ground state solution of the

problem (AP )expλn
. Let tn ≥ 0 and vn ∈ E− such that tnun + vn ∈ Nλ. Consequently

Jλ(tnun + vn) = max
Ê(un)

Jλ ≥ dλ,

and the same ideas explored in Proposition 3.2.1 remain valid to show that
(∫

f(un)undx
)

is bounded in R. Now, arguing as in [5, Lemma 3.11], we see that (un) is bounded in

H1(R2).

Note that there exist (yn) in Z
2, r, η > 0 such that

∫

Br(yn)

|u+n |2dx > η, ∀n ∈ N. (3.36)

Otherwise, u+n → 0 in Lp(R2) for all p > 2. Defining wn(x) := Ãu+n (x)
||un|| where Ã was

given in (3.35), we have

||wn||H1(R2) ≤ Ãa < 1, ∀n ∈ N.

This fact permits to repeat the same approach found in [2, Proposition 2.3] to get the

limit ∫
F (wn)dx→ 0.

As wn ∈ Ê(un) and un ∈ Nλn , it follows that

dλ ≥ dλn = Jλn(un) ≥ Jλn(wn) =
Ã

2
− λn

∫
F (wn)dx.

Passing to the limit as n → +∞ we obtain dλ ≥ Ã/2, which contradicts (3.35),

and (3.36) holds. If ũn(x) := un(x + yn), then ũ+n (x) := u+n (x + yn), and by (3.36),

ũ+n ⇀ u 6= 0. This implies that V := {ũ+n }n∈N satisfies 0 /∈ Vσ(H
1(R2),H1(R2)′)

and V
is bounded in H1(R2). We proceed as in Proposition 3.2.1 to conclude (tnun + vn) is

bounded and dλn ≤ dλ + on. This finishes the proof.
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3.3.2 Existence of ground state for problem (P )ǫ.

The three first results this section follow as in the case N ≥ 3, then we will omit

their proofs.

Lemma 3.3.3 The limit limǫ→0 cǫ = c0 holds. Moreover, if w0 is a ground state so-

lution of the problem (P )0 and let tǫ ≥ 0 and vǫ ∈ E− such that tǫw0 + vǫ ∈ Mǫ.

Then

tǫ → 1 and vǫ → 0

as ǫ→ 0.

Corollary 3.3.4 There exists ǫ0 > 0 such that

cǫ < dA∞ and cǫ <
Ã2

2
, for all ǫ ∈ (0, ǫ0).

Proposition 3.3.5 There exists a bounded sequence (un) ⊂ Mǫ such that (un) is

(PS)cǫ for Iǫ.

Now we are ready to prove the existence of solution for ǫ small enough.

Theorem 3.3.6 Problem (P )ǫ has a ground state solution for ǫ ∈ (0, ǫ0) .

Proof. To begin with, we claim that there are (zn) ⊂ Z
2 and r, η > 0 such that

∫

Br(zn)

|u+n |2dx > η, ∀n ∈ N. (3.37)

In fact, if the claim does not hold, we must have u+n → 0 in Lp(R2) for all p ∈ (2,+∞).

Since un ∈ Mǫ, by (2.16), ||u+n ||2 ≥ 2cǫ ≥ 2c0. Setting w̃n(x) := Ã u+n
||u+n || and arguing as

in Proposition 3.3.2, we find cǫ ≥ Ã2

2
, which is a contradiction. Therefore (3.37) holds.

Claim 3.3.7 (zn) is bounded in R
2.

Suppose |zn| → +∞ and define wn(x) := un(x + zn). From (3.37), we can suppose

that wn ⇀ w 6= 0 in H1(R2). As it was done in (2.10),
(∫

f(wn)wndx
)
is bounded in

L1(R2). By [18, Lemma 2.1],

f(wn) → f(w) in L1(B),

for all B ⊂ R
2 bounded Borel set. Now, we repeat the same idea explored in Claim

3.2.7 to deduce that w is a critical point of JA∞ with dA∞ ≤ cǫ, which is absurd. This

proves the Claim 3.3.7.

To conclude the proof we proceed as in Theorem 3.2.6 to prove that the weak

limit of (un) is a ground state solution for Iǫ.
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3.3.3 Concentration of the solutions.

In this section we fix ǫn → 0 with ǫn ∈ (0, ǫ0) for all n ∈ N. By results of the

previous section, for each n ∈ N there exists un in H1(R2) such that

In(un) = cn and I ′n(un) = 0,

with the notation In := Iǫn and cn := cǫn .

Lemma 3.3.8 The sequence (un) is bounded in H1(R2).

Proof. See proof of [5, Lemma 3.11].

Lemma 3.3.9 There are r, η > 0 and (yn) ⊂ Z
2 such that

∫

Br(yn)

|u+n |2dx > η. (3.38)

Proof. See proof of (3.37).

From now on, we set vn(x) := un(x+yn). Then, by (3.38), vn ⇀ v 6= 0 in H1(R2)

for some subsequence.

Lemma 3.3.10 The sequence (ǫnyn) is bounded in R
2. Moreover, I0(v) = 0 and if

ǫnyn → z ∈ R
2 then z ∈ A or equivalently A(z) = A(0).

Proof. As in the previous section, (f(un)un) is bounded in L1(R2). Then, by [18,

Lemma 2.1],

f(un) → f(u) in L1(B),

for all bounded Borel set B ⊂ R
2 . The above limit permits to repeat the same

arguments explored in Lemma 3.2.10.

Our next proposition follows with the same idea explored in Proposition 3.2.11,

then we omit its proof.

Proposition 3.3.11 There exists h ∈ L1(R2) and a subsequence of (vn) such that

|f(vn(x))vn(x)| ≤ h(x), for all x ∈ R
2 and n ∈ N.

As an immediate consequence of the last lemma, we have the following corollary

Corollary 3.3.12 vn → v in Lq(R2) where q was given in (f5).
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Proof. It suffices to note that f(vn)vn ≥ θF (vn) ≥ θτ |vn|q, for all n ∈ N and vn(x) →
v(x) a.e in R

N .

The next lemma have been motivated by an inequality found [17, Lemma 2.11],

however it is a little different, because we need to adapt it to our problem.

Lemma 3.3.13 For all t, s ≥ 0 and β ∈ (0, 1],

ts ≤
{

4(et
2 − 1)(ln+s) + s(ln+s)1/2, if s > e1/4

e1/4tsβ, if s ∈ [0, e1/4].

Proof. From [17, Lemma 2.11], if s > e1/4 then ln+s > 1/4 and

ts ≤ (et
2 − 1) + s(ln+s)1/2 ≤ 4(et

2 − 1)(ln+s) + s(ln+s)1/2.

For s ∈ [0, 1), we have ts ≤ tsβ ≤ e1/4tsβ, and if s ∈ [1, e1/4], then ts ≤ te1/4 ≤ e1/4tsβ.

This proves the inequality.

Proposition 3.3.14 vn → v in H1(R2).

Proof. To begin with, by (f1), there exists K > 0 such that

|f(t)| ≤ Γe1/4 =⇒ |f(t)|2 ≤ Kf(t)t.

On the other hand,
(
|f(vn)|χ[0,e1/4]

(
1

Γ
|f(vn)|

))2

= |f(vn)|2χ[0,Γe1/4](|f(vn)|) ≤

≤ Kf(vn)vn ≤ Kh ∈ L1(R2).

Thus, there exists h̃ ∈ L2(R2) such that

|f(vn)|χ[0,e1/4]

(
1

Γ
|f(vn)|

)
≤ h̃, ∀n ∈ N.

In what follows, fixing α > 0 such that α2q
q−1

supn∈N ‖v+n ‖2H1(R2) < 1, the Lemma 3.3.1

guarantees that

bn := (eα
2|v+n |2 − 1) ∈ L

q
q−1 (R2) and |bn| q

q−1
≤ C

for all n ∈ N and some C > 0. Applying the Lemma 3.3.13 for t = α|v+n |, s = 1
Γ
|f(vn)|

and β = 1, we obtain

|f(vn)v+n | =
Γ

α

|f(vn)|
Γ

α|v+n | ≤
Γ

α
4(eα

2|v+n |2 − 1)

(
ln+

(
1

Γ
|f(vn)|

))
+
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+
1

α
|f(vn)|

(
ln+

(
1

Γ
|f(vn)|

))1/2

+ e1/4|v+n ||f(vn)|χ[0,e1/4]

(
1

Γ
f(vn)

)
≤

≤ 16Γπ

α
bn|vn|2 +

√
4π

α
f(vn)vn + e1/4|v+n |h̃.

Since bn ⇀ b in L
q

q−1 (R2) and vn → v in Lq(R2), we have that (bn|vn|2) is strongly

convergent in L1(R2). Here, we have used the fact that bn|vn|2 ≥ 0 and vn(x) → v(x) a.e

in R
N . Analogously (|v+n |h̃) converges in L1(R2). Consequently there is H1 ∈ L1(R2)

such that, for some subsequence,

|f(vn)v+n | ≤ H, ∀n ∈ N.

The same argument works to show that there exists H2 ∈ L1(R2) such that, for some

subsequence,

|f(vn)v−n | ≤ H2, ∀n ∈ N.

As an consequence of the above information,

f(vn)v
+
n → f(v)v+ and f(vn)v

−
n → f(vn)v

− in L1(R2).

Now, recalling that I ′0(v) = I ′n(vn)v
+
n = I ′n(vn)v

−
n = 0, v+n ⇀ v+, and v−n ⇀ v− in

H1(R2), we get the desired result.

Lemma 3.3.15 For all n ∈ N, vn ∈ C(R2). Moreover, there exist G ∈ L3(R2), C > 0

independently of x ∈ R
2 and n ∈ N such that

||vn||C(B1(x))
≤ C|G|L3(B2(x)), for all n ∈ N and x ∈ R

2.

Hence, there exists C > 0 such that |vn|L∞(R2) ≤ C and

|vn(x)| → 0 as |x| → +∞, uniformly in n ∈ N.

Proof. We know that there are C1, C2 > 0 such that

|f(t)| ≤ C1|t|+ C2(e
5πt2 − 1) ∀t ∈ R.

By Proposition 3.3.14, there exists H ∈ H1(R2) such that |vn(x)| ≤ H(x) for all n ∈ N

and x ∈ R
2. Setting

G := (||V ||∞ + A(0)C1)H + A(0)C2(e
5πH2 − 1) ∈ L3(R2)
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it follows that

|A(ǫnx+ ǫnyn)f(vn)− V (x)vn| ≤ G(x), for all n ∈ N and x ∈ R
2.

Since 



−∆vn + V (x)vn = A(ǫnx+ ǫnyn)f(vn), in R
2,

vn ∈ H1(R2)

From [21, Theorems 9.11 and 9.13], there exists C3 > 0 independently of x ∈ R
2 and

n ∈ N such that vn ∈ W 2,3(B2(x)) and

||vn||W 2,3(B2(x)) ≤ C3|G|L3(B2(x)), for all n ∈ N. (3.39)

On the other hand, from continuous embedding W 2,3(B2(x)) →֒ C(B1(x)), there is

C4 > 0 independently of x ∈ R
2 such that

||u||C(B1(x))
≤ C4||u||W 2,3(B2(x)), for all u ∈ W 2,3(B2(x)). (3.40)

The result follows from (3.39) and (3.40).

Concentration of the solutions:

The proof of the concentration follows with the same idea explored in the case

N ≥ 3, then we omit its proof.
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Apêndices





Apêndice A

Decomposição Espectral

The main goal this section is to prove the following abstract theorem, which

follows by using some results found in functional analysis.

Theorem A.1 Let (H, 〈, 〉) be a Hilbert space and A : H → H be a bounded and linear

symmetric operator such that 0 /∈ σ(A), or equivalently, A is a bijection. Then there

exist E+, E− ⊂ H closed subspaces such that the bilinear form

B : H ×H → R

(u, v) 7→ 〈Au, v〉 (0.1)

is definite positive on E+ and definite negative on E−, with (E−)⊥ = E+ and (E+)⊥ =

E− and the orthogonality associated with the bilinear form B coincides with the ortho-

gonality of the usual scalar product of H. Moreover there exists a scalar product 〈·, ·〉A
such that its norm ||.||A is equivalently to original norm of Hilbert space H and E+ is

orthogonal to E− and such that

B(u, u) = ||u||2A, ∀u ∈ E+ and B(u, u) = −||u||2A, ∀u ∈ E−.

Moreover, if P+ and P− are the linear projections on E+ and E−, then P+ and P−

commute with A, i.e., AP+ = P+A and AP− = P−A

Proof. First of all, note that A2 is definite positive. In fact, for all x ∈ H, we have

〈A2x, x〉 = 〈Ax,Ax〉 ≥ (||A−||−1)2||x||2,

where ‖ ‖ is the norm associated with the scalar product 〈 , 〉. Therefore, from [26,

Theorem 9.4-2, Theorem 9.8-1(b)] there exists a unique definite positive and continuous



operator C : H → H such that C2 = A2 and AC = CA. Setting

A+ =
1

2
(A+ C), and A− =

1

2
(C − A)

it follows that A+ and A− are symmetric operators and

A = A+ − A−, and C = A+ + A−.

In what follows, we fix E− := kerA+ and E+ := (E−)⊥, where this orthogonality is

associated with the usual scalar product of Hilbert space H.

In the sequel, we will divide the proof into several steps.

Step A.2 P+ and P− commute with A and C.

Indeed, since I = P+ + P−, it suffices to check that P−A = AP− and P−C = CP−.

First of all, note that A(E−) ⊂ E−. In fact, if x ∈ E− then

A+(Ax) =
1

2
(A+ C)Ax = A

(
1

2
(A+ C)x

)
= A(A+x) = 0,

then A(E−) ⊂ E−. Note that for all x ∈ H and for all y ∈ E−,

〈Ax− AP−x︸ ︷︷ ︸
∈E−

, y〉 = 〈x− P−x, Ay︸︷︷︸
∈E−

〉 = 0.

Therefore P−(Ax) = A(P−x), and so, AP− = P−A. Analogously CP− = P−C. This

proves the Step A.2.

Step A.3 A(E−) = E− and there exists α > 0 such that

B(x, x) ≤ −α||x||2, ∀x ∈ E−. (0.2)

Moreover Ax = −A−x for all x ∈ E−.

Note that A(E−) = A(P−(H)) = P−A(H) = P−(H) = E−. Then, A|E− : E− → E− is

a bijective continuous linear operator. As A is symmetric,

M := sup
x ∈ E−,

||x|| = 1

〈Ax, x〉 ∈ σ(A|E−). (0.3)

On the other hand, for x ∈ E−, Ax+Cx = 2A+x = 0 that yields 〈Ax, x〉 = −C(x, x) ≤
0, which givesM ≤ 0. Since A|E− is bijection, we must have 0 /∈ σ(A|E−). ThusM 6= 0,

or equivalently M < 0. Fixing α := −M , by (0.3),

B(x, x) = 〈Ax, x〉 ≤ −α||x||2, ∀x ∈ E−.
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To prove the last part, it is enough to note that for all x ∈ E−, A+x = 0, and thus,

Ax = A+x− A−x = −A−x,

which concludes the claim.

Step A.4 A(E+) = E+, A : E+ → E+ is a bijection, and there exists β > 0 such that

B(x, x) ≥ β||x||2 (0.4)

for all x ∈ E+. Moreover Ax = A+x for all x ∈ E+.

In fact, note that A(E+) = A(P+(H)) = P+(A(H)) = P+(H) = E+. Therefore

A : E+ → E+ is bijection. From equality below

A+ ◦ A− =

[
1

2
(A+ C)

]
◦
[
1

2
(C − A)

]
=

1

4
(C2 − CA+ AC − A2) = 0.

From this, A+(A−(H)) = {0}, from where it follows that A−(H) ⊂ E−. On the other

hand, for x ∈ E+,

||A−x||2 = 〈A−x,A−x〉 = 〈x,A−(A−x)〉 = 0,

which leads to A−x = 0 and Ax = A+x. The inequality (0.4) follows as in (0.2).

Step A.5 E+ = kerA−.

In fact, from Step A.4, if x ∈ E+ then A+x = Ax and x ∈ kerA−. Suppose that

x ∈ kerA− and let y ∈ E−, then

〈x,Ay〉 = 〈Ax, y〉 = 〈A+x− A−x, y〉 = 〈A+x, y〉 = 〈x,A+y〉 = 0

because E− = kerA+. Since, from Step A.3, we conclude that 〈x, w〉 = 0 for all

w ∈ E−, or equivalently x ∈ E+.

Note that, as it was done in proof of Step A.4, we have A+ ◦A− = A− ◦A+ = 0.

Therefore A+(H) ⊂ kerA− and A−(H) ⊂ kerA+, that is,

A+(H) ⊂ E+ and A−(H) ⊂ E−.

Moreover,

{x ∈ H ; B(x, y) = 0, for all y ∈ E−} = E+.
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Indeed, if x ∈ E+ then B(x, y) = 〈Ax, y〉 = 0 for all y ∈ E−. On the other hand, if

x ∈ H verifies B(x, y) = 0 for all y ∈ E−, then

〈x, y〉 = 〈x,A(A−1(y))〉 = 〈Ax,A−1y〉 = B(x,A−1y) = 0,

implying that x ∈ E+.

In what follows, we define on H the bilinear form

〈·, ·〉A : H ×H → R

by

〈x, y〉A = 〈AP+(x), P+y〉 − 〈AP−x, P−y〉.

Then

〈x, y〉A := 〈A+x, y〉+ 〈A−x, y〉 ∀x, y ∈ H. (0.5)

Note that

〈AP+x, P+y〉 = 〈A+P+x︸ ︷︷ ︸
∈E+

−A−P+x︸ ︷︷ ︸
∈E−

, P+y︸︷︷︸
∈E+

〉 = 〈A+P+x, y〉 =

= 〈P+x,A
+y︸︷︷︸

∈E+

〉 = 〈x,A+y〉 = 〈A+x, y〉.

Analogously 〈AP−x, P−y〉 = 〈−A−x, y〉, which proves (0.5).

From the above study, it follows that 〈·, ·〉A is a scalar product on H. Hereafter,

we denotes by ||x||A the norm associated with the inner product, that is,

||x||A :=
√

〈x, x〉A.

Next, we will prove that the scalar product || ||A is equivalent to norm of H.

First of all, note that for all x ∈ H

〈x, x〉A = 〈AP+x, P+x〉 − 〈AP−x, P−x〉 ≥ β||P+x||2 + α||P−x||2

= (β + α)(||P+x||2 + ||P−x||2) = (β + α)||x||2.

On the other hand, from (0.5),

〈x, x〉A ≤ (||A+||+ ||A−||)||x||2,

finishing the proof that ||.||A is equivalent to norm of H.
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By the above analysis,

B(x, x) = 〈Ax, x〉 = 〈P+Ax, P+x〉 − 〈P−Ax, P−x〉︸ ︷︷ ︸
=0

= ||x||2A, ∀x ∈ E+

and

B(x, x) = 〈Ax, x〉 = −〈P+Ax, P+x〉︸ ︷︷ ︸
=0

+〈P−Ax, P−x〉 = −||x||2A, ∀x ∈ E−.

Corollary A.6 Moreover, if T : H → H is a linear isomorphism such that 〈Tx, Tu〉H =

〈x, y〉H and B(Tx, Ty) = B(x, y) for all x, y ∈ H, then T (E+) = E+ and T (E−) = E−.

Proof. First of all, our goal is to prove that A and C commute with T . Note that for

all x, y ∈ H

〈Ax, y〉 = B(x, y) = B(Tx, Ty) = 〈ATx, Ty〉 = 〈T−1ATx, y〉.

Therefore T−1 ◦ A ◦ T = A, or equivalently, A ◦ T = T ◦ A. On the other hand,

〈T−1CTx, x〉 = 〈CTx, Tx〉 ≥ 0, ∀x ∈ H. (0.6)

Moreover

〈T−1CTx, y〉 = 〈CTx, Ty〉 = 〈CTy, Tx〉 = 〈T−1CTy, x〉 (0.7)

for all x, y ∈ H. Since

(T−1CT )2 = T−1C2T = T−1A2T = T−1TA2 = A2

then S := T−1 ◦ C ◦ T is definite positive, symmetric and S2 = A2. Consequently, by

uniqueness of C, we must have S = C, or equivalently T ◦ C = C ◦ T . Now our goal

is to prove that T (E+) = E+. Note that E+ = kerA− = {x ∈ H ; Ax = Cx}. Since

T−1 is bijective and commutes with A and C, we have

T (E+) = T{x ∈ H ; Ax = Cx} = {x ∈ H; AT−1x = CT−1x} =

= {x ∈ H ; T−1Ax = T−1Cx} = {x ∈ H ; Ax = Cx} = E+.

The same argument works to show that T (E−) = E−. This proves the claim and

finishes the proof of the corollary.
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A.1 Construction of the operator A : H → H.

Hereafter, we assume that V : RN → R is continuous and Z
N–periodic. Since

0 /∈ σ(−∆+ V ), the operator

−∆+ V : H2(RN) ⊂ L2(RN) → L2(RN)

u 7→ −∆u+ V u

is a continuous bijection and (−∆ + V )−1 is continuous with relation to topology of

L2(RN). Note that −∆+ V is also continuous in the usual norm of H2(RN), because

∫
| −∆u+ V (x)u|2dx ≤

∫
(4|∆u|2 + 4V (x)2|u|2)dx ≤

≤ C

∫
(
N∑

i=1

|uxixi |2 + |u|2)dx ≤ C||u||2H2(RN )

for all u ∈ H2(RN). Hence,

|(−∆+ V )u|L2(RN ) ≤ C||u||L2(RN ), ∀u ∈ H2(RN).

Defining Q : H1(RN) → R by

Q(u) :=
1

2

∫
(|∇u|2 + V (x)|u|2)dx,

we have that Q ∈ C1(H1(RN),R) and

Q′(u)v =

∫
(∇u∇v + V (x)uv)dx, ∀u, v ∈ H1(RN). (1.8)

Then, by Riesz’s Theorem, there exists A : H1(RN) → H1(RN) such that

Q′(u)v = 〈Au, v〉H1(RN ), ∀u, v ∈ H1(RN). (1.9)

From (1.8) and (1.9), A is linear, symmetric and continuous.

Proposition A.1 0 /∈ σ(A), or equivalently, A is bijective with A−1 : H1(RN) →
H1(RN) being continuous.

Proof. Our first goal is to prove that A is injective. Indeed, if Au = 0, then

〈Au, v〉 = 0, for all v ∈ H1(RN).
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that is, ∫
(∇u∇v + V (x)uv)dx = 0, for all v ∈ H1(RN).

Thus u is a solution of




−∆u+ V (x)u = 0, in R
N ,

u ∈ H1(RN)

From [21, Theorem 9.9], u ∈ H2(RN) and

∫
(−∆u+ V (x)u)vdx = 0, ∀v ∈ H1(RN).

Therefore −∆u + V (x)u = 0 a.e. in R
N . Since (−∆u + V (x)u) = 0 and −∆ + V is

injective, we must have u = 0, by proving that A is injective. Let us to prove that A

is subjective. Consider w ∈ H1(RN) and (wn)n be a sequence in C∞
c (RN) verifying

wn ⇀ w in H1(RN).

By regularity theory, there exists (un)n in H2(RN) such that

(−∆+ V )un = −∆wn + wn, ∀n ∈ N,

because (−∆+ V ) is subjective and −∆wn + wn ∈ L2(RN). Our goal is to prove that

(||un||L2(RN )) is bounded. To see why, consider ϕ ∈ L2(RN) such that ||ϕ||L2(RN ) ≤ 1.

Setting L := −∆+ V , we have

∫
unϕdx =

∫
unLL

−1(ϕ)dx =

∫
LunL

−1(ϕ)dx = (1.10)

=

∫
(−∆un + V (x)un)(L

−1ϕ)dx =

∫
(−∆wn + wn)L

−1(ϕ)dx.

On the other hand,

LL−1ϕ = ϕ, or equivalently, −∆L−1(ϕ) + L−1ϕ = ϕ− V (x)L−1ϕ+ L−1ϕ.

Therefore, by [21, Theorem 9.9], there exists C > 0 independently of ϕ such that

||L−1ϕ||H2(RN ) ≤ C|ϕ− V (x)L−1ϕ+ L−1ϕ|L2(RN ) ≤ (1.11)

≤ C|ϕ|L2(RN ) + (||V ||∞ + 1)|L−1ϕ|L2(RN ) ≤ C + (||V ||∞ + 1)||L−1||.
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Thus, from (1.10) and (1.11),

∫
unϕ =

∫
∇wn∇L−1ϕ+ wnL

−1ϕdx = 〈wn, L−1ϕ〉H1(RN ) ≤

≤ ||wn||H1(RN )||L−1ϕ||H1(RN ) ≤M

where M > 0 is independently of n ∈ N and ϕ ∈ C∞
c (RN) satisfying ||ϕ||L2(RN ) ≤ 1.

Consequently

sup
ϕ ∈ L2(RN ),

||ϕ||
L2(RN )

≤ 1

∫
unϕdx ≤M, ∀n ∈ N

implying that (un) is bounded in L2(RN). On the other hand,

∫
|∇un|2 − ||V ||∞u2ndx ≤

∫
|∇un|2 + V (x)u2ndx =

∫
un(−∆un + V (x)un)dx ≤

≤
∫
unLundx ≤M.|Lun|L2(RN ) ≤M.||L||.|un|L2(RN ) ≤M2||L||.

Then (|∇un|) is bounded in L2(RN), and so, (un) is bounded in H1(RN). Consequently

there exists u ∈ H1(RN) such that, after passing to subsequence,

un ⇀ u in H1(RN).

Note that for all v ∈ H2(RN),

〈un, Lv〉L2(RN ) =

∫
(∇un∇v + V (x)unv)dx = 〈Lun, v〉L2(RN ) =

= 〈−∆wn + wn, v〉L2(RN ) =

∫
(∇wn∇v + wnv)dx = 〈wn, v〉H1(RN )

passing to the limit as n→ +∞,

〈u, Lv〉L2(RN ) = 〈w, v〉H1(RN ), for all v ∈ H2(RN)

or equivalently

〈Au, v〉H1(RN ) = 〈w, v〉H1(RN ), for all v ∈ H2(RN).

This implies that Au = w, showing that A is subjective.
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