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Resumo

Nesta tese estamos interessados na existéncia e concentracao de solugoes de energia

minima para a classe de problema

—Au+V(x)u = Alex)f(u), z€RN
u € HY(RY).
Quando € ~ 0%, supondo que V é uma funcdo continua Z"-periédica, supondo que

0¢o(—A+V)e f:R — R éuma fungao continua com crescimento subcritico e

critico para N > 2. Aqui A : RV — R ¢ uma funcdo continua que verifica

0<Ay= inf A(x) < lim A(z) < sup A(z).

xRN |z| =400 zERN

Quando A = 1 também mostramos a existéncia de solugoes de energia minima.

Palavras-chave: Equagao de Schrodinger nao linear (NLSE), métodos variacionais,

equacoes elipticas, funcional fortemente indefinido, concentragao de solugoes.
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Abstract

In this thesis we are interested in the existence and concentration of ground state

solutions for the following class of problem

—Au+V(r)u = Alex)f(u), € RN
u € HY(RY).

When € ~ 0%, by supposing that V is ZN-periodic continuous function, with 0 ¢
o(—A+V)and f: R — Ris a continuous function with subcritical or critical growth

for N > 2. Here A : RV — R is continuous function that verifies

xRN |z| =400 zERN

0<Ay= inf A(x) < lim A(z) < sup A(z).

When A = 1 we have also shown the existence of ground state solution.

Keywords: Nonlinear Schrédinger Equation (NLSE), variational methods, elliptic

equations, indefinite strongly functional, concentration of solutions.
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Introducao

Desenvolvida por Erwin Schrédinger, a equagao de Schrodinger descreve a evolugao
temporal de particulas massivas subatomicas em sua natureza ondulatéria e nao re-
lativistica. Isto significa que é uma interpretacao matematica para o comportamento
de particulas subatomicas. Por seus trabalhos em dire¢ao ao entendimento quantico
Schrodinger, em 1933, ganha o prémio Nobel da fisica. Desde entao se tem explorado
bastante suas equagoes para os cientistas entenderem as nuances do mundo quantico.
Destacamos aqui o trabalho [50].

Nos tltimos anos, varios artigos tém sido publicados utilizando a equacao de
Schrodinger. Muitos desses trabalhos tém abordado a equacao de Schrodinger nao
linear independente do tempo com diversos tipos de funcao potencial e diversos tipos

de nao linearidade que sao equagodes com o seguinte formato:

h2
E¥(z) = (—ﬂvz + V(x)) U(x)+ f(U(x))
No caso em que a nao linearidade f é uma funcao nula tal equacao descreve
. . .~ . e sy h2 2

exatamente a energia total do sistema como uma adicao da energia cinética <—EV >
com a energia potencial V (z).

Floer e Weinstein [19] estudaram uma equagao de Schrodinger de dimensao 1 da
forma

ov €

—fe— = —— U — ~|U]2¥ R F
iemr = —5 Vo + V(@)U —1|VPT, o€ (EW)

onde 7, € > 0, e encontraram uma soluc¢ao no formato
U(x,t) = exp(—iEt/e)v(x) (SW)

denominada solugoes de onda estaciondria (em inglés, standing wave), onde v : R — R

é uma fungao a ser encontrada. Note que para ¥ ser uma solugdo para (FW) uma



condigao necessaria e suficiente é que

2

FEv(x) = —;—mv”(x) +V(z)v(z) —ylv(x)|*v(z), z€R

que é o formato da equacao de Schrodinger independente do tempo. Quando a nao
linearidade for |¥|P~1¥, com p € (1,2* — 1), a solucio do tipo onda estacionéria deve

satisfazer

62

—%v”(:v) + (V(z) — E)v(z) = ylv() [P~ v(z), x€eR. (SWE)

Motivados pelos estudos realizados em [19], Oh em [36], estudou a equagao

—iea—qj = —E—QA\II + V(z)¥ — 4|V, » e RY (OH)
ot 2m 7 ’

e obteve resultados similares a [19]. Apds os estudos realizados por Oh [36] diversos tra-
balhos foram publicados com o intuito de encontrar solugoes do tipo onda estacionéria
da equagado (OH) quando 2m = 1 e uma nao linearidade f(¥), desta forma (SWE)

toma forma

—Au+V(z)u= f(u), z € RN (s).

u € HY(RY).
O problema (). tem sido abordado para diversos tipos de potenciais e nao linearidades.
Dentre estes trabalhos alguns abordam o comportamento dos valores de maximo das
solugdes de (59)., geralmente demonstrando que esses valores se concentram em pontos
criticos nao degenerados de V. Nesta direcao citamos os trabalhos de Wang [54], del
Pino e Felmer [16], Ambrosetti, Badiale e Cingolani [12], Ambrosetti e Malchiodi [11],
Alves e Souto [8], Gui [22], Wang e Zeng [55], Alves e Soares [9] e [10], Noussair e Wei
[35].

Nesta abordagem dos problemas de concentracao, como dito acima, geralmente
as solucoes estao concentradas no conjunto
V= {x cRY ; V(z) = min V(z)} .
2€RN

Além disso, em muitos trabalhos a multiplicidade de solucées tem uma associagao

direta com a riqueza topoldgica de V e a geometria do potencial V.

Em [42], Rabinowitz prova a existéncia de solugoes positivas para (S). quando

liminf V(z) > inf V(z) =V, >0 (R)

|z|—+o00 z€RN
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e com algumas condigoes sobre a nao linearidade que engloba o caso em que a nao
linearidade ¢ f(u) = ~|u/P~'u. Continuando o estudo, em [54], Wang provou que tais
solucoes se concentram em )V quando € — 0.

Em [16], del Pino e Felmer melhoram os resultados encontrados em [42] e [54]

generalizando a condigao (R) para a condigao

. . S
min Vi(x) > ;r€1£V(x) e V(z)>a>0

onde A C RY ¢ um dominio compactamente contido em RY e com a n#o linearidade

satisfazendo as condigoes

(f1) @ — 0 quando t — 0;

@)
f2) lim Y =0 I 1,2° — 1);
(£2) Jim tfp para algum p € (1, );

(f3) existe 6 > 2 tal que
0 <OF(t) < f(t)t, paratodote R\ {0}

onde F\(t) := f(f f(s)ds;

(f4) a fungao t — @ é crescente em R™ e decrescente em R™.

Para estabelecer a existéncia de solugao para (5), quando € ~ 0" foi usado um método
denominado método de penalizagao e foi estabelecido que as solugoes se concentram

no ponto minimo de V' quando € — 0. Observe que (f2) é equivalente a condigao

t
(f2) existe p € (1,2* — 1) tal que limsup U] < +oo

[t|—+oo |t‘p .

Vale a pena destacar que outras geometrias sobre o potencial V' foram consi-
deradas no estudo da existéncia de solucao para (S)., como por exemplo potenciais
coercivos, periddicos e assintoticamnte periédicos. Novamente em [42], Rabinowitz es-
tabelece existéncia de solugao nao nula como um primeiro resultado de solugoes de (S);

para um potencial V' coercivo, isto é,
V(z) = 400 quando |t| = 400

e algumas hipdteses sobre a nao linearidade que englobam o caso f(u) = v|u[P~'u

com p € (1,2 —1). Em [59], Coti Zelati estabelece existéncia de solucao positiva de

3



energia minima para (5); com a nao linearidade satisfazendo as condigbes (f1)-(f4) e

V : RY — R um potencial continuo e Z"-periddico, isto é,
V(r+z)=V(z), paratodo (r,2) € RY x ZN.

Para contornar a falta de compacidade é utilizado o Teorema do Passo da Montanha e
um lema devido a Lions.

Em [3], Alves, Carrido e Miyagaki estudaram o problema (P) para dimensoes
N > 3, onde o potencial possui o formato V — W onde V é ZN-periédico, continuo
e positivo e W é nao negativa e assintoticamente nula no infinito, além da nao linea-
ridade possuir crescimento subcritico com algumas condigoes técnicas. Na literatura,
problemas com esses tipos de potenciais sao chamados problemas com potencial as-
sintoticamente periddico, os quais sao uma generalizagao dos problemas com potencial
assintoticamente constante.

Em [2], Alves, do Oe Miyagaki motivados pela desigualdade de Trundiger-Moser
e utilizando uma desigualdade devido a Cao [13] estudaram o problema (P) e estabe-
leceram existéncia de solugao para o caso em que o potencial V' é continuo, positivo e
assintoticamente peridédico e uma condicao sobre a nao linearidade que engloba casos

em que f tem crescimento critico exponencial, de uma forma mais precisa:

(f5*) existe I' tal que |f(x,t)| < [e*™ para todo (z,t) € RN x R;

e mais algumas condigoes técnicas sobre a nao linearidade, como por exemplo:
f(z.t)

f1*) L&Y, 0 uniformemente em x quando t — 0;
t

(£3*) existe 6 > 2 tal que
0 < OF(x,t) < f(z,t)t, ¥V (z,t) € RY x R*
onde F(xz,t) := f(f f(z,s)ds.

Lembramos aqui que a definicao de f possuir crescimento critico exponencial

significa que existe oy > 0 tal que

) =0, paratodo a > ap, lim £l

2 2
[t|—+oo el |t —+oo el

= 400, para todo o < ayp (ver [18])



Em grande parte dos artigos mencionados acima o potencial V' possui a condicao

inf V(z) > 0 o que implica em
z€RN

inf(c(—A+V)) >0, (Z)

caracterizando o problema como sendo fortemente definido.
O estudo dos problemas periddicos e assintoticamente periddicos também tem sido
feitos para problemas fortemente indefinidos. Em [27], Kryszewski e Szulkin estudaram

o problema
—Au+V(x)u= f(x,u), v € RY

(P)
u e HY(RY)

onde f : RY x R — R é uma funcao continua, Z"-periédica na coordenada z, possui

crescimento subcritico, isto é,
(f2%) existe C' > 0 tal que |f(x,t)| < C(1+[t[P~!) onde p € (2,2%),

além das condigoes (f1*) e (f3*). Além disso, o potencial V : RY — R satisfaz a

seguinte hipotese
V é continua, Z"-periédica e 0¢ o(—A+V), oespectrode —A+V (V).
O funcional energia J : H'(RY) — R associado ao problema (P) ¢ definido por

J(w) =+ /R (VU + V() / F(z,u)dz, ue H'(RY)

2 RN

e sabemos, por argumentos usuais, que J é um funcional de classe C' com

J (u)v = /RN(VuVU + V(x)uv)dr — f(z,w)vde, u,v e H'(RN).

RN

Note que a forma bilinear, definida por
B(u,v) = / (VuVou + V(z)uv)dz,
RN

nao é necessariamente positiva definida. O que caracteriza o problema como sendo
fortemente indefinido.

Com a condigao (V') conseguimos encontrar subespacos ET e E~ fechados de

HY(RY) tais que HY(RY) = E* @ E~ e que satisfazem:
e B é positiva definida sobre ET e negativa definida sobre E~.

5



e £t e E~ sao ortogonais com o produto interno usual de H'(RY) e também

ortogonais em relacao a forma bilinear B.

e Existe uma norma || - || que provém de um produto interno sobre H!(RY) equi-

valente a norma usual e tal que

B(u,u) = ||u|?, paratodou € ET e B(u,u) = —||u||?, para todo u € E~.

Maiores detalhes das afirmagoes podem ser vistas no Apéndice A. E importante
mencionar aqui que grande parte das ideias que aparecem nesse apéndice surgiram de
notas de estudos individuais dos professores Marco Aurélio e Claudianor Alves.

As condig¢oes mencionadas acima garantem que o funcional energia do problema

(P) possui o seguinte formato

1

1
I = Gl | = [ Poads, we HYERY)

Kryszewski e Szulkin introduzem um teorema muito semelhante ao Teorema de
Link devido a Rabinowitz, distinto principalmente pelas dimensdes infinitas dos espagos
vetoriais da decomposigao. Em [31], Li e Szulkin utilizam o Teorema de Link devido a
Kryzewski e Szulkin para estabelecer solucdo para a equagao (P) supondo (V) e a nao

linearidade f : RY x R — R assintoticamente linear no infinito, isto é,

Jool, u)

f(z,u) = Vo (2)u+ foo (z,u), onde V,, é periédica e ————= — 0 quando |u| = co.
u

Muitos trabalhos na literatura utilizam o Teorema de Link acima mencionado,
como exemplo: Chabrowski e Szulkin [14] para nao linearidade com crescimento critico;
Furtado e Marchi [20] e os trabalhos de Tang [51] e [52] para nado linearidade com
crescimento subcritico e suas referéncias.

Em [39], Pankov e Pfluger trabalharam no problema (P) com hipéteses similares
a Kryszewski e Szulkin em [27], mas utilizando o Teorema de Link devido a Rabinowitz

[40]. Continuando tal estudo, em [38], Pankov estudou problemas do tipo

—Au+V(z)u==£f(z,u), z € RN
u € HY(RN)

com f satisfazendo (f1), (f2) e a condicao (V). E importante ressaltar que tanto

[39] como [38] estabelecem solugoes nao nulas de energia minima, denominada solugoes

6



ground state, mediante a condigao

t
0< f(i’ ) < 0f(z,t), (x,t) € RY x R*. (f*)
Para isso é utilizado o método de minimizagao do funcional energia J sobre o conjunto
O:={uec HR\E™; J(u)u=J(u)v=0, Yo € E}.

E interessante observar que no caso em que £~ = {0} entao O é exatamente a variedade
de Nehari associado ao funcional energia J.

Em [45], Szulkin e Weth complementaram os estudos de Pankov [38] estabele-
cendo solugoes do tipo ground state para (P), porém com condigoes mais fracas sobre
a nao linearidade, sem utilizar condicoes sobre a derivada da f e também enfraquecendo

a condigao (f3*) de Ambrosetti Rabinowitz para

F(x,t)

2 — 400, quando t — +o0

que é conhecida como condicao de super quadraticidade. Para encontrar solucao que

possui energia minima ¢é crucial a utilizagao da seguinte condigao:

é crescente sobre o conjunto R\ {0}. (f4%)

Na literatura observamos que existem poucos estudos sobre problemas fortemente
indefinidos de equagoes do tipo (P) cuja nao linearidade possui crescimento critico.
Podemos citar para N > 4 os trabalhos de Chabrowski e Szulkin [14], Zhang, Xu e
Zhang [61] e Schechter e Zou [49]. Nestes trés trabalhos a nao linearidade possui o
formato

fla,t) = k@)t 7t + g(a, 1), (F)
onde ¢ possui crescimento subcritico e k : RY — R é uma funcao positiva. Para o caso
N = 2 encontramos apenas o trabalho de do O e Ruf [17], que trata do caso em que a
nao linearidade possui crescimento critico exponencial.

Motivados por [45] e [3], no Capitulo 1 desta tese encontramos solugoes de energia

minima para o problema
—Au+ (V—-=W)u= f(x,u), r € RY
(Pw)
u € HY(RY)

onde a nao linearidade f possui crescimento critico e satisfaz (f4*), V' cumpre a condigao

(V) e W > 0 verifica:



(Wy) W:RY — R é continua e lim W (x) = 0.

|| =400

(W3) 0 < W(z) <O = sup W(x) < A:=inf(c(—A+V)N[0,+00)), VrecRY.

zeRN
No caso especifico N > 3 a nao linearidade possui o formato (F) com g(z,t) =
h(z)|t[P~' onde p € (1,2* —1). No caso N = 2 a nao linearidade satisfaz (f1*),
(£3%), (f4*) e (f5*) e mais algumas condigoes técnicas. Ressaltamos que nao existem

trabalhos similares para o caso N = 3. O resultado principal deste capitulo é

Teorema 1.1.1 Assuma que o potencial V satisfaz (V), e W : RY — R satisfaz
(W) — (Ws), com nao linearidade (z,t) — f(x,t), no caso N > 3, satisfazendo (F)
com g(x,t) = h(z)|t|]9 't com g € (1,2 —1) e

(C1) h(z) = ho(x) + hi(z) € k(z) = ko(x) + ki(x), onde hg, hs, ko, ks : RY — R sao

fungoes continuas, hg, ko sao ZN -periddicas, lim h,(z) = lim k() =0 ¢
|z| =400 |z| =400

ho, hy, ko, ki sdo mao negativas;
(Cy) Eziste 1o € RY tal que

k(xo) = max k(z) e k(x)— k(o) =o(|lz — 20*) quando x — xg;
TE

(C3) Seinf,cgn h(x) =0, assumimos que V (zg) < 0,

no caso N = 2 a nao linearidade f cumpre f(x,t) = fo(x,t) + f*(z,t), (f17), (f3%) e
(f4*) onde fo € uma fungao continua nao negativa Z*-periédica em relagdo a coordenada
x, satisfazendo (f1%), (f3%), (f4%), (f5%) e com a condi¢io de que existem q > 2 e
D :R? = R tal que

Fy(z,t) > D(x)[t]?, ¥V (z,t) e R* xR, e inf D(z) >0

rER2

e f* uma funcgao continua nao negativa satisfazendo:

(D1) Eriste T € (1,2) tal que |f*(z,t)| < H(z)e*™" ™ para todo (z,t) € R x R, onde
H € [2(R?) N L*(R?);

(D2) Para todos € >0 e >0, existe R > 0 tal que
|F*(z,8)| < e(e® —1) para |t| >R e xR\ Bg(0).
Entao, o problema (Py) tem uma solu¢do de energia minima.

No caso N = 3 existem restrigoes técnicas que vem de restricoes de argumentos

devidos a Brezis e Nirenberg.



Apds uma revisao bibliografica, percebemos que nao existem artigos para proble-

mas fortemente indefinidos onde
f(@,1) = Aex) f(1), (2,8) € RY X R,
e A satisfazendo

0<Ap= inf A(z) < lim A(z) < sup A(x). (A)

zeRN |z| =00 z€RN

Para os Capitulos 2 e 3 fomos motivados pelas idéias de Rabinowitz [42], Wang
[54] e Alves e Germano [5] para estudar a existéncia e concentragao de solucao para o
problema
—Au+V(z)u = Alex) f(u), v € RY P,
u € HY(RY)
com as condigoes (A) e (V) satisfeitas.
O funcional energia I, : H'(RY) — R do problema (P). é definido por

L(u) = %/RN(WuF +V (@)u)de — /RN Alex)F(u)de, ue HRY) (L)

onde F(t) = [ f(s)ds. Por argumentos usuais temos que I, € C'(H*(RY),R) com

I'(u)v = %/RN (VuVov + V(z)uv)dx — /]R Alex) f(u)vdz.

N

Nestes dois ultimos capitulos da tese faremos um estudo sobre o comportamento
do ntimero

c. = inf [
€ UGME ¢

onde

M, ={uec H' R ; I'(u)u = I'(u)v = 0, para todov € E~}

e a nao linearidade f : R — R satisfaz (f1), (£3), (f4). Especificamente no Capitulo 2
consideramos a nao linearidade f com crescimento subcritico. Enquanto no Capitulo
3 a nao linearidade assume a condicao de crescimento critico. Além disso, para N > 3

especificamente, consideramos
fO) =€+ t* 2, €>0, g€ (1,2 = 1), t€R

e no caso N = 2 as condigoes sobre a nao linearidade sao

9



(f5) Existe I' > 0 tal que | f(t)| < De*™*’
(f6) Existem 7 > 0, ¢ > 2 tal que F'(t) > 7|t|9, para todo t € R.

Nos Capitulos 2 e 3 estabelecemos existéncia de solucoes de energia minima para

(P). e mostramos a concentragdo no conjunto

A= {a: cRY; A(z) = maXA(:z:)}.

zCRN

Mais especificamente o teorema principal do Capitulo 2 é

Teorema 2.1.1 Assuma V,A : RN — R satisfazendo (V'),(A) e ndo linearidade f
satisfazendo as condigdes como mencionadas acima, isto €, (f1)-(f}). Entao, existe
€0 > 0 tal que (P). tem uma solugao de energia minima u, para todo € € (0,¢€y). Além
disso, se x. € RY denota o ponto de mdzimo global de |u|, entdo

lim A(ex.) = sup A(x).

e—0 zERN

Enquanto que no Capitulo 3 o teorema principal é

Teorema 3.1.1 Assuma V, A : RY — R satisfazendo (V),(A) e ndo linearidade sa-
tisfazendo as condigoes como mencionadas acima. Entao, existe &, 1o, €9 > 0 tal que
(P)e tem uma solugdo de energia minima u. para todo € € (0,¢y), com & < & para
N =3¢ecomT <7y para N = 2. Além disso, se x. € RN denota o ponto de mdzimo

global de |u|, entao
lim A(ex.) = sup A(x).

e—0 rERN
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Capitulo 1

Solucoes de energia minima para
uma classe de problemas
variacionais indefinidos com

crescimento critico.

Ground state solution for a class of indefinite
variational problems with critical growth

CLAUDIANOR O. ALVES and GEILSON F. GERMANO

Abstract

In this paper we study the existence of ground state solution for an indefinite

variational problem of the type

(P)

—Au+ (V(z) = W(z))u= f(xr,u) in RN,
u € HYRY),

where N > 2, V,W :RY - R and f: RY x R — R are continuous functions verifying
some technical conditions and f possesses critical growth. Here, we will consider the
case where the problem is asymptotically periodic, that is, V is Z"-periodic, W goes

to 0 at infinity and f is asymptotically periodic.

Mathematics Subject Classifications (2010): 35B33, 35A15, 35J15 .



Keywords: critical growth, variational methods, elliptic equations, indefinite strongly

functional.

1.1 Introduction

In this paper we study the existence of ground state solution for an indefinite

variational problem of the type

—Au+ (V(z) = W(z))u = f(z,u), in RV,

(P)
u € HYRY),

where N > 2, V,IWW : RY — R are continuous functions verifying some technical
conditions and f has critical growth. Here, we will consider the case where the problem
is asymptotically periodic, that is, V is Z"¥-periodic, W goes to 0 at infinity and f is
asymptotically periodic.

In [27], Kryszewski and Szulkin have studied the existence of ground state solution

for an indefinite variational problem of the type

—Au+V(z)u= f(z,u), in RN,
u e HY(RY),

where V : RY — R is a Z"-periodic continuous function such that
0¢&o(—A+V), the spectrum of — A+ V. (V1)

Related to the function f : RY x R — R, they assumed that f is continuous, Z"-

periodic in z with

If(z, )] <c(jt|7t +[tP™"), VteR and zcRY (h1)
and
t
0 < aF(x,t) <tf(xz,t) VteR, F(:U,t):/ f(z,s)ds (ha)
0
forsomec>0,a>2and2<q<p<2*wher62*:ﬁ—gifNZ?)andT:—i-oo

if N = 2. The above hypotheses guarantee that the energy functional associated with
(Py) given by

() = 1/RN<|W|2+V<Q;>|U\2dx) —/ Flz,u)dz, uc H'(RY),

2 RN

12



is well defined and belongs to C*(H*(RY),R). By (V}), there is an equivalent inner
product ( , ) in H'(RY) such that
1 1., _
I =t = Sl = [P da,

where ||u| = v/(u,u) and H'(RY) = E* @ E~ corresponds to the spectral decompo-
sition of —A 4+ V with respect to the positive and negative part of the spectrum with
u=u"+u", where ut € E* and v~ € E~. In order to show the existence of solution
for (P;), Kryszewski and Szulkin introduced a new and interesting generalized link
theorem. In [31], Li and Szulkin have improved this generalized link theorem to prove
the existence of solution for a class of indefinite problem with f being asymptotically
linear at infinity.

The link theorems above mentioned have been used in a lot of papers. We would
like to cite Chabrowski and Szulkin [14], do O and Ruf [17], Furtado and Marchi [20],
Tang [51, 52] and their references.

Pankov and Pfliiger [39] also have considered the existence of solution for problem
(P;) with the same conditions considered in [27], however the approach is based on an
approximation technique of periodic function together with the linking theorem due to
Rabinowitz [40]. After, Pankov [38] has studied the existence of solution for problems

of the type
—Au+V(x)u=+f(z,u), in RY

(F2)
u e HYRY),

by supposing (V1), (h1) — (hy) and employing the same approach explored in [39]. In
[38] and [39], the existence of ground state solution has been established by supposing
that f is C' and there is 6 € (0, 1) such that

0<t'f(x,t) <Of(x,t), Vt#0 and x€RY. (h3)

However, in [38], Pankov has found a ground state solution by minimizing the energy

functional J on the set
O={ueH'R")\E ; J'(w)u=0and J'(u)v=0,VveEE}.

The reader is invited to see that if J is definite strongly, that is, when E~ = {0},

the set O is exactly the Nehari manifold associated with J. Hereafter, we say that

13



ug € HY(RY) is a ground state solution if

J(ug) =0, wy€e O and J(ug) = inf J(w).

weO

In [45], Szulkin and Weth have established the existence of ground state solution
for problem (P;) by completing the study made in [38], in the sense that, they also
minimize the energy function on O, however they have used weaker conditions on f,

for example f is continuous, Z"-periodic in x and satisfies
f(z, )| < CA+[tfPh), Vt€R and z€RY (f1)

for some C' > 0 and p € (2,2%).

f(z,t) = o(t) uniformly in z as [t| — 0 (f2)
F(x,t)/|t|> = +oo uniformly in z as |t| — +o0 (f3)

and
t— f(x,t)/|t| is strictly increasing on R\ {0}. (fa)

The same approach has been used by Zhang, Xu and Zhang [60, 61] to study a
class of indefinite and asymptotically periodic problem.

After a bibliography review, we have observed that there are few papers involving
indefinite problem whose the nonlinearity has critical growth. For example, the critical

case for N > 4 was considered in [14], [49] and [61] when f is given by
flat) = gla,t) + k(x)[t]* 7,

with g : RN x R — R being a function with subcritical growth and k& : RN — R be
a continuous function satisfying some conditions. For the case N = 2, we only know
the paper [17] which considered the periodic case with f having an exponential critical

growth, namely there is ay > 0 such that

£ ()]

ea|t‘2

£ ()]

€a|t|2

=0, Va > ap, lim = 400, Va < ag.

[t| =400 [t| =400
Motivated by ideas found in Szulkin and Weth [45, 46] together with the fact
that there are few papers involving critical growth for N = 2 and N > 3 and inde-

finite problem, we intend in the present paper to study the existence of ground state
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solution for (P), with the nonlinearity f having critical growth and the problem being
asymptotically periodic. Since we will work with the dimensions N = 2 and N > 3,
we will state our conditions in two blocks, however the conditions on V' and W are the

same for any these dimensions.

The conditions on V and W.

On the functions V' and W, we assume the following conditions:
(V1) V :RY — R is continuous and Z"-periodic.
(Vo) A :=sup(c(=A+ V)N (-00,0]) <0< A :=inf(c(—=A + V) N[0, +00)).

(W) W :RY — R is continuous and lim W (x) = 0.

|z| =400

(Wy) 0<W(z) <O =sup W(z) <A, VrecRY.

z€RN

Concerning the function f, we assume the following conditions:
Dimension N > 3:

For this case, we suppose that f is the form

*__
2 2t

flx,t) = h(z)[t|T 't + k(z)|t

with 1 < ¢ < 2*—1 and
(C1) h(x) = ho(z) + h.(x) and k(x) = ko(x) + k.(x), where hg, hs, ko, ks : RY — R are

continuous function, hg, kg are Z"-periodic, | |lim h(z) = | ‘lim k«(xz) =0 and
T|—+00 T|—+00

ho, Iy, ko, k are nonnegative;
(Cy) there is 2y € RY such that

k(xo) = m%]g k(x) and k(z)— k(zo) = o(|z — wo\Q) as T — To;
A

(C3) if inf epn h(z) = 0, we assume that V' (zg) < 0.

Dimension N = 2:

15



(f1) there exist functions fo, f* : R? x R — R such that

f(l‘,t) = fo(xvt) + f*(x,t),

where fy and f* are continuous functions, fy is Z2-periodic with respect to z, f*
is nonnegative and satisfies the following condition: given € > 0 and 8 > 0, there

exists R > 0 such that

|f*(z,8)| < e(e? —1) for |t| >R and z€R>\ Bg(0);

(f2) f(f’t), fo(f’t) — 0 as t — 0 uniformly with respect to z € R?;

(fs) for each fixed = € R?, the functions t — £ (j’t) and t — @ are increasing on

(0,400) and decreasing on (—o00,0);
(f1) there exist 6, u > 2 such that
0 < O0Fy(z,t) < tfo(z,t) and 0 < puF(x,t) <tf(x,t)
for all (z,t) € R? x R*, where

Fo(z,t) = /Ot fo(x,s)ds and F(z,t):= /Otf(a:,s)ds;

(f5) There exist I' > 0 and 7 € (1,2) such that |fy(z,t)] < De*™ and |f*(z,t)| <
TH (x)e* 1" for all (z,t) € R? x R, where H € L*(R?) N L®(R?);

(fs) Fo(x,t) > D(x)|t|?, V (z,t) € R* xR, for some positive continuous function D

with inf,egz D(z) > 0 and ¢ > 2.

An example of a function f verifying (f1) — (fs) is

|t|p—2t64’ﬂ'|t|772t

Flx,t) = M3 — sin((z1 4 32)27)) [t]7 2t + , VteR

R |
with z = (z1,22), A > 0,9 € (0,47),q,p € (2,400) and 7 € (1,2).

The above conditions imply that f has a critical growth if N =2 or N > 3.

Our main theorem is the following:
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Theorem 1.1.1 Assume that (V1) — (Va), (Wy) — (W), (Cy) — (Cs) and (f1) — (f6)
hold. Then, problem (P) has a ground state solution for N > 4. If N = 2,3, there
is \* > 0 such that if infcge D(x),inf cgn h(x) > X*, then problem (P) has a ground

state solution.

The Theorem 1.1.1 completes the study made in some of the papers above menti-
oned, in the sense that we are considering others conditions on V' and f. For example,
for the case N > 3, it completes the study made in [45], because the critical case was
not considered for N > 3 or N = 2, and the case asymptotically periodic was not also
analyzed. The Theorem 1.1.1 also completes [17], because in that paper was proved the
existence of a solution only for periodic case, while we are finding ground state solution
for the periodic and asymptotically periodic case by using a different method. Finally,
the above theorem completes the main result of [49] and [60], because the authors
considered only the case W = 0, and also the paper [14], because the dimension N = 3
was not considered as well as the asymptotically periodic case. Moreover, in [14] and

[49] the authors considered only the
V(zo) <0 and k(z) — k(x) = o(|z — x0|*) as z — 0.

In Theorem 1.1.1 this condition was not assumed if inf,cgn~ h(x) > 0.

Before concluding this introduction, we would like point out that the reader

can find others interesting results involving indefinite variational problem in Jeanjean
[25], Schechter [47, 48], Lin and Tang [32], Willem and Zou [57], Yang [58] and their

references.

Notation: In this paper, we use the following notations:

e The usual norms in H'(R"Y) and LP(R") will be denoted by || ||zig~) and | |,
respectively.

e (' denotes (possible different) any positive constant.

e Bpr(z) denotes the open ball with center z and radius R in RY.

(RY) when

e We say that u,, — u in L

loc

u, > u in LP(Bg(0)), VR >0.
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e If g is a mensurable function, the integral [y g(x) dz will be denoted by [ g(z) dz.

The plan of the paper is as follows: In Section 2 we will show some technical
lemmas and prove the Theorem 1.1.1 for N > 3, while in Section 3 we will focus our

attention to the dimension N = 2.

1.2 The case N >3

In this section, our intention is to prove the Theorem 1.1.1 for the case N > 3.
Some technical lemmas this section also are true for dimension N = 2 and they will be
used in Section 3.

In this section, our focus is the indefinite problem

—Au+ (V(z) = W(x))u = h(x)|u|t u + k() |ul* 2u, in RY

(2.1)
u € HY(RY),
whose the energy functional @y, : H'(RY) — R given by
By (u) = ~B(u u)—l/W(x)m\?dx—L/h(x)\uwﬂdx—l/k(x)yu ” gp (2.2)
W 27\ Ty g+ 1 2 ’

is well defined, ®y € C(H'(RY), R) and its critical points are precisely weak solutions
of (2.1). Here, B is the bilinear form

B(u,v) = /(Vqu + V(z)uw) dz. (2.3)

Note that the bilinear form B is not positive definite, therefore it does not induce a

norm. As in [45], there is an inner product ( , ) in H*(RY) such that

B (0) = gt |2 = 5w = 5 [ W@l o~ [ Fawds, 24

where |[ul| = \/(u,u) and HY(RY) = E* @ E~ corresponds to the spectral decompo-

sition of —A + V with respect to the positive and negative part of the spectrum with
uw=u"+u", where ut € ET and v~ € E~. It is well known that B is positive definite

on ET, negative definite on £~ and the norm || || is equivalent to the usual norm in

HY(RY), that is, there are a,b > 0 such that

blull < |lullm@yy < allull, ¥ ue H'(RY). (2.5)
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Hereafter, we denote by ® : H'(RY) — R the functional defined by

1 1 1 .
(P(U) = §B(U,U,) — m ho(x)|u|q+1d{[ — ;/k0($)|u|2 d.ﬂU,
or equivalently,
1
B() = 3l I = gl P = [ ol e = o [ K@l d (26)

Note that the critical points of ® are weak solutions of the periodic problem

A+ V(@) = ho(@)lul~u + kola)[uf? 2, in RY,

(2.7)
u € H' (RY).
In the sequel, M, E(u) and E(u) denote the following sets
M:={uec H®R\ E~; & (u)u=0and &}, (u)v=0,Yv e E}
and
E():=E~ ®Ru and E(u):= E~ & [0, +00)u.
Therefore
E(w)=E~ ®Ru* and E(u) = E~ @ [0, 4oc0)u”
Moreover, we denote by vy and 7 the real numbers
YW= 1/1\1/lf Oy and = 1j{1/lf<1>. (2.8)

1.2.1 Technical lemmas

In this section we are going to show some lemmas which will be used in the proof

of main Theorem 1.1.1.
Lemma 1.2.1 Ifu € M and w = su+v where s > 1, v € E~ and w # 0, then

Proof. In the sequel, we fix

1 1 1
Gl 1) i= W)+ —h@lt" + k()

and

g(x,t) := W ()t + h(z)|t]T 't + k(x)[t]* ~2t.
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Then by a simple computation,

Oy (u+ w) — Py (u) =
32+ <g(x,u) [(7 +S) wt (s +1)v] + Gz, u) — G(:c,u—i—w)) dz.

Now, the proof follows by adapting the ideas explored in [45, Proposition 2.3]. =

Lemma 1.2.2 Let K C E* \ {0} be a compact subset, then there exists R > 0 such
that Sy (w) <0, Vw € E(u)\ Br(0) and u € K.

Proof. Setting the functional

2 dx

. (u) = %B(u,u) _ 2i/|u

we have

Py (u) < Uo(u), Yue HY(RY).

Now, we apply the same idea from [45, Lemma 2.2] to the functional ¥, to get the
desired result. m

Lemma 1.2.3 For all u € H'(RY), the functional ®w|p is weakly upper semicon-

tinuous.

Proof. First of all, note that E(u) is weakly closed, because it is convex strongly

closed. Now, we claim that the functional

¢ : Eu — R

W %fVV(x)|w|2 dx + qul fh(x)|w|q+1 dr + 2% fk:(m)|w 2

is weakly lower semicontinuous. Indeed, if w, — w on E(u), then after passing to a

subsequence w,(z) — w(z) a.e. in RY. Then by Fatou’s Lemma,

d(w) :/W(x)w2 dx+?/h(x)|w|q+1 dx+§/k:(x)]w|2 dr <
q

1 1
< lim inf [/ W (x)w? do + m/h(m)|wn|q+1 dx + g/k:(xﬂwn

n—-+o0o

z dm} ,
leading to
®(w) < liminf ®(w,).

n—-+0o0o

Furthermore, the functional

v : Eu — R
—

w B(w,w)

1
2
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is weakly upper semicontinuous. In fact, since
T 1 +112 -2
V(w) = ([ = [lw™[),

if w, = sp,u™ + v, = w = su™ + v with v,,v € E~, then s, — s in R and v,, — v in

H'(RY). Thus,

~ 1 . 1 ) ~
W(w) = (" [[u"I]* = lof]*) = fim sup 5 (salle 1P = llonl*) = fim sup U (wn).

As Oy |pw) = U — 5, the result is proved. m

Lemma 1.2.4 For eachu € H'(RYN)\E~, MNE(u) is a singleton set and the element
of this set is the unique global mazimum of (I)W|E(u)
Proof. The proof follows very closely the proof of [45, Lemma 2.6]. m

Lemma 1.2.5 There exists p > 0 such that inf Py > 0.
B,(0)NE+

Proof. In what follows, let us fix h := sup,cg~ h(x) and k := sup,cgn k(z). For

ue ET,
Oy (u) = Lul? — L [ W (o) |uPde — L5 [ h(@)|ult de — & [ k(@)|uf* dz
> gllull® = § [ [uPPde — g [ lul*de = 5 [ ul* da
> sllull® = Fllull? = 2 lul[ 7 — 52| ful[*
=1 (1= ) [Jull® — Zet]u|r! — E2{ju) >

Thereby, the lemma follows by taking p > 0 satisfying

1 G hCl ECQ *
(1= ) p2 = /- 252 5.
2( A)p q+1p 2*p

Lemma 1.2.6 The real number vy given in (2.8) is positive. In addition, if u € M

then |[u™]| = max{[u~[|, v2w}.

Proof. By Lemma 1.2.5, there is p > 0 such that
[:= inf Py > 0.

B,(0)NE+

For all u € M, we know that u* # 0, then by Lemma 1.2.4,

Py (u) > Py (m?ﬁ) > 1,
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from where it follows that

= inf Oy > )
Y 1/{1/1 w=>10>0

In addition, for all u € M,

1 _
yw < Pw (u) < 5B(u,u) = S([[u™[]* = [[w7]]%),

implying that |[u™|| > max{||u"||,v/2vw} =

Next we will show a boundedness from above for vy, which will be crucial in our
approach. However, before doing this we need to prove two technical lemmas. The

first one is true for N > 2 and it has the following statement

Lemma 1.2.7 Consider N > 2 and let u € ET\ {0}, p € (2,2*) and r, sy > 0. Then
there exists & > 0 such that
&lsul, < [su+vlp, (2.9)

for all s > sy and v € E~ with ||su+v|| < 7.
Proof. If the lemma does not hold, there are s, > sy and v,, € E~ satisfying

|spu 4+ vp|| <7 and [syul, > n|s,u+ vy, Y€ N

Setting a,, := |s,ul,, we obtain

w1

|u|p COn p n
Thus, passing to a subsequence if necessary,

wy = ae. in RY. (2.10)
Qn |u|p
On the other hand,
vn|? Sl + V| 2 r?
HwnH2: HQnHQ < || n 5 2n|| < 5 VTLEN,
Sn‘u’p 80|u|p SOlu‘p

showing that (w,) is a bounded sequence in H'(RY). As w, € E~, there is w € £~

such that for some subsequence (not renamed) w,—w in E~. Then by (2.10),
L- e E~,

Jul,

which is absurd, since v € E*\ {0}. =
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Lemma 1.2.8 Let u € E*\ {0} be fized. Then there are r,so > 0 satisfying

sup Py (w) = sup Oy (su + v). (2.11)
weB(u) llsu+ ol < 7
s> so,v € BT

Proof. From Lemma 1.2.2,

supPy = sup Dy

E(u) E(u)NBr(0)
for some r > 0. Hence, there are (s,) C [0,400) and (v,) C E~ with ||s,u+ v,|| <7
and

Dy (spu+v,) —  sup Dy (2.12)

E(w)NB,(0)

Next, we will prove that there exists so > 0 such that

sup Dy = sup Oy (su+v).
E(u)NB;(0) llsu+ol| <r
s> so,v€E BT

Arguing by contradiction, suppose that for all sy > 0

sup Dy > sup Dy (su+ ). (2.13)
E(u)NB-(0) [[su4v]] <7
s> s0,v€EE™

Such supposition permit us to conclude that s, — 0. On the other hand, recalling that
L, 2
(I)W(snu + U”) < §SnHuH )
we are leading to

1
0<yw= i/r\l/lf Py < sup Py = Py (s,u+ v,) + 0,(1) < §siHuH2 + 0,(1),
E(u)

which is a contradiction. This completes the proof. m

Now, we are ready to show the estimate from above involving the number ~yy,

given in (2.8)

Proposition 1.2.9 Assume the conditions of Theorem 1.1.1. If N > 4, then
1

If N =3, there is \* > 0 such that the estimate (2.14) holds for inf h(xz) > \*.
rz€eR
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Proof. Since vy < 7, it is enough to prove that
1
v < SN2
If N >4 and inf gy h(x) = 0, the estimate is made in [14, Proposition 4.2]. Next we
will do the proof for N > 4 and inf g~ h(x) > 0. To this end, we follow the same

notation used in [14]. Let
N
eny(a)e 2
= N_2

pe(z) =
(2 + [z[>) ="

where ¢y = (N(N — 2))¥,e > 0 and 1 € C°(RY) is such that
|z| > 1.

1
Y(x)=1 for |z]| < 5 and ¢(x)=0 for
From [56], we know that the estimates below hold
Vi = 5% +0(V2), Vo =0('2),  |odf: = 5% +O(Y),
(2.15)
- N-2 N-2 N2
el T1=0(e7 ), lpli=0(7"), loh =0(7)
and
be?|loge| +O(e?), if N =4
fogel +O(e) -

it N >05.

| 6|2_

Pelz =
be? + O(eN72),
Adapting the same idea explored in [14, Proposition 4.2], for each v € E~ we

obtain
(s +u) < B(sp) +O(N72), Vs >0,

where O(eV?) does not depend on u. Now, arguing as in [1], we get

1
SO 4 g / o2 dz — e / o7 de,
B1(0) B1(0)

sup P(sp,) <
50 NlkolsZ
implying that
1
sup  P(sp.+u) < N_QSN/2+01/ le|? dx—CQ/ |7 do + O (N 72).
Nlkolo? B1(0) B1(0)

s>0, ueE—

Moreover, in [1], we also find that

<cl/ || do — CQ/ o2t dx> = —00,
B1(0) B1(0)

lim
e—0 eN—Q
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from where it follows that there exists € > 0 small enough verifying

o / od? de — o3 / o dz + O(N2) < 0,
B1(0) B1(0)

and so,
sup  P(spe +u) < ;Ni_QSN/2
>0, ueE~ Nko|sZ
for some € > 0 small enough.
Now, we will consider the case N = 3. For each v € ET \ {0}, the Lemma 1.2.8

guarantees the existence of r, sy > 0 satisfying

sup @(w) = sup O (su+v).
weE(u) [lsu+v|| <7
s> sp,v € BT

Therefore, applying Lemma 1.2.7,

SUPf(,y P = SUP 1y < s O (su+v)

s> s0,v € E™
s2|lull® A g+l
<swp pue, (B - 2 st ol
s > sp,v e BT
%[ |ul? AE q+1
< sup [lsu+ || < ( 2 mf’8u| dx
s> s0,v € E”

< masto(ASQ — )\B5q+1),

where

mggc(AsQ —ABs™™h) =50 as A — +oo,
there is A* > 0 such that

1
sup d(w) < ——=55V2 VA >\,

weB(u) Nlkolo

showing the desired result. m
Lemma 1.2.10 Let (u,) C HY(RY) be a sequence verifying
Dy (un) < d, Oy (up)us < dl|un|| and — 4y (un)u, < d||uy]|

for some d > 0. Then, (u,) is bounded in H'(RY).
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Proof. In the sequel, let 6 := x(_1;) : R — R be the characteristic function on interval
[—1.1],

gl t) = 0(t)f(z,t) and j(z,1):=(1=0(t))f(x,1),
where f(z,t) = h(x)[t|7 1t + k(x)|t|* ~2t. Fixing

1 A
r::& and s =

it follows that

Note that

lg(z, )~ = 0) | f(z, )™ < OE)(|hloo]t]? + K] oot
< OO O(|t 0D+ [ DE) < K

2*71)“1

for some C' > 0 sufficiently large. So
lg(x, )"~ < C|t|,V (x,t) € RNTL (2.17)

Analogously,
(@, ) < OtV (z,t) € RV (2.18)

Since tf(x,t) >0, (z,t) € R¥*! the inequalities (2.17) and (2.18) give
lg(z,t)[" < Ctg(x,t) and |j(x,t)|* < Ctj(x,t), V(x,t) € RV (2.19)

The last two inequalities lead to

d+ dl[unl] = Pw (up) — 5% (un)uy =

(3= o) J @l + (3 = ) J k@) uf? de >
(% %) [ h(x)|u|t de + (- - m) [ k(@) de =
(% _ q%) [ (9@, wn ) + (2, un )ty )da >

(5= 755) & (U lotsun)lrde + f |, w)lde)

from where it follows

|9 (@, un)l7 4 172, un) |3 < C(1+ [Jual]) (2.20)
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for some C' > 0. On the other hand,

g |1* = =@ty (un)uy, — [ W (@) unuy de — [ f (2, un)u, do
< dlfug || = [ W (@ )unuy do + |g(z, wn) e[y [gr1 + 152, un) | s[uy

2%

< — [ W(@)unu dw + Clluz || (1 + g, un)ls + (@, w)]s)
< — [ W@ do + Cllug ]| (14 (1+ )77+ (1 + [l ])*)
< — [ W)ty do -+l ]| (14 [fual [+ [fua[2)
Thus,
luzlP < = [ Wiapunydo -+ Cllunl| (14 a7+ il ). (220

The same argument works to prove that
a1 < /W(w)unUIdx + Cllun]| (1 + [fual [+ [Jun][*) - (2.22)
Recalling that ||u,||* = ||} ]|* + ||u, ||, the estimates (2.21) and (2.22) combined give
|Jun|[* < /W(I)un(%f —tuy )d + Clfun|| (14 a7+ [[un] %) - (2.23)
On the other hand, we know that

W @iy —u)dz = [ W) (e +ui) (st — uy)da
= [ W) ()2 — [ W () )l
< J W) () Pde < © [(uf e < §Juf |

that is,
[ W@~ u)do < 2lunl (2.24)

where A was fixed in (W3). Now, (2.23) combines with (2.24) to give

o - s
@—x)mw§cmmu+mm”+mm”)

This concludes the verification of Lemma 1.2.10. =

As a byproduct of the last lemma, we have the corollaries below

Corollary 1.2.11 If (u,) is a (PS) sequence for @y, then (u,) is bounded. In addi-

tion, if u, — u in HY(RYN), then u is a solution of (2.1).

Corollary 1.2.12 &y, is coercive on M, that is, Py (u) — +00 as ||u|| = +oo and
ue M.
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The Lemma 1.2.4 permits to consider a function
m: ET\ {0} = M where m(u) € E(u)N M, Yue ET\{0}. (2.25)

The above function will be crucial in our approach. Next, we establish its conti-
nuity.

Lemma 1.2.13 The function m s continuous.

Proof. Suppose u, — u in E*\ {0}. Since

Uy, U Uy, u
T T T n d e ;
HWH%WM’m(WM) m{un) - an meO m{u)

without loss of generality, we may assume that ||u,|| = ||u|| = 1.

There are t,,t € [0, +00) and v,,v € E~ such that
m(u,) = thu, +v, and m(u) =tu+ v.

Note that K := {u, }nenU{u} is a compact set. Thereby, by Lemma 1.2.2, there exists
R > 0 such that &y (w) < 0in E(z) \ Bgr(0) for all z € K. Hence,

1
0< ®w(m(uy)) = sup Py = sup Py < sup “Jlwt||* < =R,

E(un) E(un)NBg(0) wEE (un)NBR(0) 2

showing that (®y (m(u,))) is a bounded sequence, and so, by Corollary 1.2.12, (m(u,,))

1
2

is a bounded sequence. The boundedness of (m(u,)) implies that (¢,,) and (v,) are also

bounded. Then, for some subsequence (not renamed),
th >ty in R v,—vy in E- and m(u,) =tou+vy in E. (2.26)
Recalling that @y (m(u,)) > Py (tu, + v), we obtain

lim inf QO (m(uy,)) > Py (m(u)).

n—400
Thus, the Fatou’s Lemma combined with the weakly lower semicontinuous of the norm
gives
Py (m(u)) <liminf, 1 Pw(m(u,)) < limsup,_, . Pw(m(uy))
lirnsup,HJrOO [262][un| [ = 3]|val > = 5 [ W (2)m(uy,)?da
— o1 S @) m(un) [ da — 55 [ k(@) m(u, Q*dx]
s%ﬁ—me——i/W@wW+mwm

— o1 J (@) [tou + vo| e — 5 [ k() [tou + vol* da
= Py (tou + vg) < Py (m(u)),
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implying that

nginoo lloal| = [lvo|]|] and Py (tou + vo) = Py (m(u)). (2.27)

From (2.26) and (2.27), v, — v in £~. Now, the Lemma 1.2.1 together with (2.27)

guarantees that tyu + vy = m(u). Consequently,
m(u,) = tpt, + v, — tou + vg = m(u),

finishing the proof. m

Hereafter, we consider the functional ¥ : E* \ {0} — R defined by W(u) :=
Dy (m(u)). We know that U is continuous by previous lemma. In the sequel, we
denote by ¥ : S* — R the restriction of ¥ to St = B;(0) N E*.

The next three results establish some important properties involving the functi-

onals ¥ and W and their proofs follow as in [45].

Lemma 1.2.14 ¥ € C'(E*\ {0},R), and

T/ . ||m(y)+|| / +
U'(y)z = T Oy (m(y))z, Yy,z€ ET, y #0. (2.28)

Corollary 1.2.15 The following assertions hold:
(a) ¥ € CY(ST), and

V'(y)z = |Im(y) "1y (m(y))z, for z € T,S".

(b) (wy) is a (PS). sequence for U if and only if (m(wy,)) is a (PS). sequence for
Dy

(¢) If yw = inf pg Py is attained by u € M, then O, (u) = 0.

Proposition 1.2.16 There exists a (PS).,, sequence for Oy, .

Our next lemma will be used to prove the existence of ground state solution for

the periodic case.

Lemma 1.2.17 Let (u,) be a (PS). sequence for the functional ® given in (2.6) with
c# 0. Then, there are r,e > 0 and (y,) in Z" satisfying

neN

lim sup/ up|? dx > . (2.29)
Br(yn)

2N
In addition, if ¢ € (—o00, SN?|koloz /N)\ {0}, the sequence v, = u,(- — yn) is also a

(PS). sequence for ®, and for some subsequence, v, — v in H'(RY) with v # 0.
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Proof. By Corollary 1.2.11, the sequence (u,) is bounded in H*(RY). Arguing by

contradiction, we suppose that

lim sup sup / |un|* dz = 0,
Br(y)

n—+oo ycRN

for some R > 0. Applying [43, Lemma 2.1], it follows that u, — 0 in L* (R"), and so,

by interpolation on the Lebesgue spaces, u,, — 0 in LP(RY) for all p € (2,2*]. As
() ) = Il | = [ Bl e = [ o)y
we deduce that u; — 0 in H'(R"). By a similar argument u;” — 0 in H*(R"). Hence
u, — 0in  H'(RY).

Thereby, by continuity of ®, ¢ = lim ®(u,) = ®(0) = 0, which is absurd. Thus, there

are (z,) C RY and 7 > 0 satisfying
/ luf|*"de >n >0, VneN.
Br(zn)
Recalling that for each n € N there is 3, € Z" such that

BR(Zn) - BRJr\/N(yn))

we have
/ luf|*"de >n >0, V¥neN,
BR+\/N(yn)
finishing the proof of (2.29).

2-N
Now, assume ¢ € (—o00, SV?|kg|s2 /N) \ {0} and set v, := u,(- — y,). By a

simple computation, we see that (v,) is also a (PS), sequence for ® with

lim sup/ lu ¥ dr > e. (2.30)
B:(0)

n—-+oo

By Corollary 1.2.12, (v,) is bounded, and so, for some subsequence ( still denoted by
(vp) ), vp — v in HY(RYN) for some v € H'(RY). Suppose by contradiction v = 0 and

assume that

Vo, |> = p and v, |* dz — v in MT(RY). (2.31)
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By Concentration-Compactness Principle II due to Lions [29], there exist a countable

set J, (2j)jer C RY and (p)jer, (v5)jes C [0, +00) such that

2
3

v = Zl/jéxj o> Z,ujéxj with  p; > Sv?. (2.32)
JET J€T
Now, our goal is showing that v; = 0 for all 7 € J. First of all, note that
. 1., 1
C:nT&i@@“_éé“%WJE?NEZ%“”W‘ (2.33)

On the other hand, setting ¢.(z) := ¥((x — z;)/¢),V x € RNV ¢ > 0, where
Y € C*(RY) is such that 1 = 1 in By(0), ¥ = 0 in RNV \ By(0) and |V| < 2, with
0 <+ <1, we have that v, € H'(RY) and (¢v,,) is bounded in H'(RY). So

@' (vn) (Yevn) = 0

or equivalently

/ﬁ%wwmm+/vwwﬁm—/%@MMWWF/%@MHMM%o

By using the definition of v and p together with the last limit, we derive

/VU(V@be)vdﬁ—i—/V(z)@ber dx—/ho(x)¢e|v|q+ld:l:—l—/Mdu—/kmbgluz 0.

Now, taking the limit ¢ — 0, we find
() = ko(x;)v;.
By (2.32), pj < p(z;). Then,
U2 =y < palry) = kol

If v; # 0, the last inequality gives

SN/2
Vi 2 — x5 (2.34)
|Folod’
Thereby, by (2.33) and (2.34), if there exists j € J such that v; # 0, we would have
SN/2
=
Nlkolo
which is absurd. Hence v; = 0 for all j € J, so v = 0, and by (2.31), |v,]> — 0 in
MF(RYN). Consequently v, — 0 in LZ (RY) which contradicts (2.30), showing that

loc
v#0. =
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1.2.2 Proof of Theorem 1.1.1: The case N > 3.

The proof will be divided into two cases, more precisely, the Periodic Case and

the Asymptotically Periodic Case.
1- The Periodic Case:

Proof. From Proposition 1.2.16, there exists a (P.S).,, sequence (u,,) for ®, where y was
given in (2.8). By Lemma 1.2.17, passing to a subsequence if necessary, u, — u # 0

and u € H*(RY) is a solution of problem (2.7), and so, ®(u) > v. On the other hand

v = lim [@(un) - %@’(un)(un)} = liminf K% — L) /h(x)\un|q“da:

n——+00 n——+o00 q —+ 1

+ (% _ 2l> /k(x)|un|2* dx} > K% _ q%) /h(m)|u|q+1dx +

+(5-3) [ H@E da] = 00 - o= o0

From this, u € H'(R") is a ground state solution for the problem (2.7). m
2- Asymptotically Periodic Case
Proof. From definition of ®y, and ®, we have the inequality

Tw <.

Next, our analysis will be divide into two cases, more precisely, vy = v and vy < 7.
Assume firstly v = 7. Let uw € H'(R"Y) be a ground state solution of (2.7) for
the periodic case and v € E(u) such that
Py (v) = sup Py
E(u)
Then,

w < Pw(v) < @(v) < u) =7 =,

implying that &y (v) = yw with v € M. By Corollary 1.2.15, part (c), we deduce that
v is a ground state solution of (2.1).
Now, assume vy < 7 and let (u,) be a (PS),,, sequence for @y, given by Propo-

sition 1.2.16. By Lemma 1.2.10, (u,,) is a bounded sequence, then for some subsequence
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(still denoted by (u,)) u, — u in HY(RY). We claim that u # 0. Indeed, if u = 0 it is

easy to see that

/W(x)uid:r; — 0 and sup — 0.

¥l<1

/ W(z)u,dx

In addiction, by (C}), we also have

/h*(x)|un|q+1dx — 0 and sup — 0.

¥ll<1

/h* () |un | urpda

Arguing as in Lemma 1.2.17, we derive that u,, — 0 in L? (RY), and so,

loc

/k*(m)|un|2*dx —0 and sup — 0.

[¥ll<1

[ @l s

Hence

Cw (un) = 3w and || Dy (un)][ =0,

that is, (u,) is a (PS),,, sequence for ®y,. By Proposition 1.2.9,

w
SN/Q

RL

Then, Proposition 1.2.17 guarantees the existence of (y,) C Z" such that v, := u,(- —

Yn) — v # 0in HY(RY) and ®'(v) = 0. Consequently

= lim, 100 P(v,,) = limy, 4 oo [@(vn) - %@’(vn)vn}

> B(v) — 10/ (v)o = B(v) > 4

which is absurd, proving that u # 0. Now, we repeat the same argument explored in

the periodic case to conclude that u is a ground state solution of (2.1). =

1.3 The case N =2

In this section we are going to show the existence of ground state solution for the
following indefinite problem
—Au+ (V(z) = W(x))u = f(x,u), in R?
(V@) = Wia))u = (2 u) .
u € H'(R?),

by assuming (V1), (V2), (Wy), (W2) and (f1) — (fs). Since we will work with exponential

critical growth, in the next subsection we recall some facts involving this type of growth.
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1.3.1 Results involving exponential critical growth

The exponential critical growth on f is motivated by the following estimates

proved by Trudinger [53] and Moser [34].

Lemma 1.3.1 (Trudinger-Moser inequality for bounded domains) Let Q) C R?

be a bounded domain. Given any u € H}(Q), we have
/ el gy < 0o, for every a > 0.
Q
Moreover, there exists a positive constant C' = C(|Q2]) such that

sup / e?lul g < C, forall a <4m,
Q

llull<1
The next result is a version of the Trudinger-Moser inequality for whole R?, and

its proof can be found in Cao [13] ( see also Ruf [44] ).

Lemma 1.3.2 (Trudinger-Moser inequality for unbounded domains) For all
u € HY(R?), we have

/ (ealu‘2 — 1) dr < oo, for every a > 0.

Moreover, if |Vuls < 1, |ul, < M < oo and a < 4r, then there ewists a positive
constant C = C(M, «) such that

/ (66”“‘2 — 1) dr < C,

The Trudinger-Moser inequalities will be strongly utilized throughout this sec-
tion in order to deduce important estimates. The reader can find more recent results
involving this inequality in [15], [23], [24], [33] and references therein

In the sequel, we state some technical lemmas found in [4] and [18], which will

be essential to carry out the proof of our results.

Lemma 1.3.3 Let a« > 0 and t > 1. Then, for every B > t, there exists a constant
C =C(p,t) > 0 such that

t
<e4”|5|2 — 1) <C (6547”3‘2 - 1) , VseR.

Lemma 1.3.4 Let (u,) be a sequence such that u,(x) — u(x) a.e. inR? and (f(z,u,)u,)
is bounded in L'(R?). Then, f(z,u,) — f(z,u) in L*(Bg(0)) for all R > 0, and so,

/f(x,un)¢dx—>/f(x,u)¢dx, Vo € C°(R?).
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1.3.2 Technical Lemmas

In this subsection we have used the same notations of Section 2, however we will
recall some of them for the convenience of the reader. In what follows, we denote by
Oy : H'(R?) — R the energy functional given by

1

Oy (u) == EB(U’ u) — %/W(x)|u|2dx — /F(:E,u)dx,

where B : H'(R?) x H'(R?) — R is the bilinear form
B(u,v) := /(Vqu + V(z)w)dz, YV u,v € H'(R?).
It is well known that @y, € C'(H'(R?),R) with
Oy (u)v = B(u,v) — /W(:r)uvdx — /f(x,u)vdx, Yu,v € H'(R?).

Therefore critical points of @y are solutions of (3.35). Moreover, we can rewrite the

functional ®y, of the form

1 1, _ 1
B (0) = gl I = 5w = 5 [ W@l do [ Fla)de

In what follows, we also consider the C'-functional ® : H'(R?) — R

1

O(u) = §B(u,u) — /Fo(x,u)dx

or equivalently
1 1, _
B(u) = 5[ = 3l I = [ Folo, )
whose the critical points are weak solutions of periodic problem

—Au+V(z) = Fy(z,u), in R?

(3.36)
u € H'(R?)

As in Section 2, we will consider the sets
M :={uec H R\ E~; &} (v)u =0 and &}y (u)v =0,V ve E},
E():=E~ ®Ru and E(u) := E~ & [0, +o0)u

Hence

E(u)=E~ ®Ru* and E(u) = E~ &[0, 4oc0)u™.
Moreover, we fix the real numbers

YW = i/{l/tf ®y, and v := ij]ilAfCI).
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Lemma 1.3.5 Ifu € M and w = su+ v where s > 1 and v € E~ such that w # 0,
then

Proof. The proof follows as in Lemma 1.2.1. =

Lemma 1.3.6 Let K C E* \ {0} be a compact subset, then there exists R > 0 such
that Py (w) <0, Y w € E(u) \ Br(0) and u € K.

Proof. We repeat the argument used in the proof from [45, Lemma 2.2] m

Lemma 1.3.7 For all u € H'(R?), the functional @y |pq, is weakly upper semiconti-

nuous.

Proof. See proof of Lemma 1.2.3. =

Lemma 1.3.8 For allu € H'(R*)\ E=, M N E(u) is a singleton set and the element

of this set is the unique global mazimum of (I)W|E(u)

Proof. See proof of Lemma 1.2.4. m

In the proof of next lemma the fact that f has an exponential critical growth

brings some difficulty and we will do its proof.

Lemma 1.3.9 There exists p > 0 such that inf Py > 0.
B,(0)NE+

Proof. Given p > 2 and € > 0, there is C. > 0 such that
|F(2,1)| < €|t + Clt]P(e*™ — 1), V(z,t) € R x R.
Then, for all w € ET, the Lemmas 1.3.2 and 1.3.3 lead to

Py (u) = %||uH2 — %fW(a:)]ude — [ F(x,u)dx
%]|u||2 — %f |ul*dx — ef |u|*dx — C, f |u|1”(e47”‘2 — 1)dx
— 4l = Sl Kl = Coul (fe = 1yda)
1
3

[5(1=2) = &] llulP = Clul? ( (5 = 1)dx)

Y

N

v

By Lemma 1.3.2, if p < %,

sup /(68’”‘2 —1)dz < sup /(63’”‘2 —1)dr = C < .

l[ull=p flofl<1
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So,

A

Hence, decreasing p if necessary and fixing € small enough, we get

o) 2 |5 (1- ) = £] Il -

1 S €

Dy (u) > [i(l—f)—i]p2—0ﬂ25>0.

Lemma 1.3.10 The real number vy is positive. In addition, if u € M then |[u™|| >

max{ ||, V2w }.

Proof. See proof of Lemma 1.2.6 m

The next lemma shows that (PS) sequences of @y are bounded, as we are working
with the exponential critical growth the arguments explored in Section 2 does not work

in this case and a new proof must be done.
Lemma 1.3.11 If (u,) is a sequence such that
Sy (u,) <d, O (up)ud < d||un|| and  — Oy (un)u, < d

for some d > 0, then (uy,) is bounded in H'(R?) and (f(uy,)u,) is bounded in L'(R?).
Proof. First of all, note that

1 1 1
(5 — 5) /f(x,un)unda: < Dy (uy,) — 5‘5%/(%)“71 < 2d.

Hence, (f f(ac,un)und:v) is bounded. Recalling that f(x,t)t > 0 for all £ € R and
x € R?) it follows that (f(z,u,)u,) is bounded in L'(R?). On the other hand, we know
that

1P < i1+ [ Fow)uido+ [ Wauutdo

and so,

i P < a1+ ( [ oo ) il + [ Wanagas @30

uy

where v,, (= —/22——.
" ||ui|\H1(R2)

Claim 1.3.12 ([ f(x, u,)vndz) is a bounded sequence.
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Indeed, by a direct computation, there exists K > 0 such that
|f(x,t)] <Te* implies |f(z,t)]> < Kf(z,t)t, uniformlyin . (3.38)
Moreover, by [17, Lemma 2.11],
rs < (&7 —1) + s(log*s)"/? + ;182)([0’61/4](8) Vr,s > 0. (3.39)

Now, the Lemma 1.3.2 combined with the above inequalities for r = |v,| and s =

£ f(uy)] leads to

[ f(z,un)vndz| < T [ L] f(u)|Jvaldz < T f(e — 1)dz+
1/2
+ [ 1f @wn)l (tog* (£, un)])) " dat
% f |f($, un)|2X[0,el/4] (%|f(x,un)|) dx S
+ Aru2 1/2 1 2
I'r + f |f(xaun>| (log (e ")) dr + IT J|f(zun)|<Tel/4 |f(:1:,un)| dr <
UT + [ |f(, un)l|un|VArde + 45 P <rer/s K (T, un)unda.
As (f(z,un)uy,) is bounded in L'(R?), the last inequality yields ([ f(z,u,)vndz) is

bounded. Consequently, there exists Ay > 0 satisfying

‘/f(m,un)vndx <Ay VneN.
Thereby, by (3.37),
1P < et ]+ Aol ey + [ W ()i (3.40)
Analogously, there is By > 0 such that
[luz |* < dlfug || + Bollug [ vy — /W(w)unUEdI- (3.41)

The inequalities (3.40) and (3.41) combine to give

[lun|[* < Cllunl + Cllun|| + [ W (@) (unti} — unw, )d = 2C][un||+
+ [ W(@)((h)? = (u)?)de < 20 |un|| + [ W (2)(uf)?de < 2CJun|| + S|} |

for some C' > 0. Hence,
s} ~
(1= 2) llf < 2Cu, L

from where it follows that (u,) is bounded. =

As a byproduct of the last lemma we have the corollary below
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Corollary 1.3.13 @y is coercive on M, that is, Py (u) — 400 as ||u|| — +oo, u €
M.

As in Section 2, the Lemma 1.3.8 permits to define a function
m: EY\ {0} = M where m(u) € E(u)N M VYu e ET\ {0}.

Now, we invite the reader to observe that the same approach used in Section 2

works to guarantee that the proposition below holds

Proposition 1.3.14 There ezists a (PS).,, sequence for ®y .

Our next proposition is crucial when f has an exponential critical growth.

Proposition 1.3.15 Fized A € (0,1/a) , there is \* > 0 such that yw < % for
infgz D(x) > \*, where a was given in (2.5).

Proof. Let v € Et with u # 0 and set
hp(s) := As* — ABs",
where

zeR?2

1
A= inf D(x), A:§HUH2 and B—f/\u|qu,

with & given in Lemma 1.2.7. Then, a straightforward computation leads to

2
24 ] 24
21§3<hD<S>:<A—7)< \/@) -

Thereby, by (fs) and Lemma 1.2.7,

CSSUP [ yo Pwlsutv)=sup .., Pwlsu+v)

ve B~ s> sp,v € E™
<SUD |y <o [1s%]|u]]? = [ F(z, su+ v)dz]
s> so,v € BT

S SUP gyt ol <7 [35[[ull® = A [ |su + v|*dz]

s> so,v€E E™

SSUD gy <r L35 Ull? = AES? [ ultda]
s> so,v € E™

=SUD |4y <, D(5)
s> so,v € B

< maxsaahols) = (4 - 2 (/28"
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From the last inequality there is A* > 0 such that

2

2A 2A A?
A__ LIy — - > *
( Q)(\/qBA)<2’ A

finishing the proof. =

Proposition 1.3.16 Fiz inf,cg2 D(xz) > A" and r > 0. Then, there ezist a sequence
(yn) C R? and n > 0 such that

/ lut|*de >n >0, V¥neN.
By (yn)
Moreover, increasing r if necessary, the sequence (y,) can be chosen in Z>.

Proof. Suppose by contradiction that the lemma does not hold for some r > 0. Then,

by a lemma due to Lions [28],
uwl — 0 in LP(R?), ¥ p € (2, 4+00).

~
Define w,, == A-1—.
[lua

liminf ||u || > 0, and so,
neN

Since u, € M for all n € N, from Lemma 1.3.10 we have

w, — 0 in LP(R?), V p € (2, +0).

On the other hand, we also know that

Audllmes _ + [lutll — ~
l|wnl| ey = A————= < Ada——+ = Aa < 1
" [ | [ |
As w, € E(un) and u,, € M, we derive that
1 ~
O(uy,) > d(w,) = §A2 — /F(w,wn)dx. (3.42)

By [2, Proposition 2.3], we have [ F(x,w,)dz — 0. Therefore, passing to the limit in
(3.42) as n — +o00, we obtain
A2
w2 o>
which contradicts the Proposition 1.3.15. Thus, there are (z,) C R? and 7 > 0 such
that

/ lut|?’dz >n >0, VnéEN,
By (zn)
Now, we repeat the same idea explored in Lemma 1.2.17 to conclude the proof. m
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1.3.3 Proof of Theorem 1.1.1: The case N = 2.

As in Section 2, the proof will be divided into two cases, the Periodic Case and

the Asymptotically Periodic Case.

1.3.4 Periodic Case

Proof. First of all, we recall there is a (PS),,, sequence (u,) for ® which must be

w

bounded. Thus, there is u € H'(R?) such that for some subsequence of (u,), still
denoted by itself, we have
U, —u in H'(R?)

and

Up(r) = u(r) ae in R2

Moreover, by Lemma 1.3.11 the sequence ( f(z, u,)u,) is bounded in L*(R?). Therefore,
by Lemma 1.3.4,
®'(u)p =0, Vo e C°(R?).

If we combine the Lemma 1.3.2 with the density of C§°(R?) in H'(R?), we see that u

is a critical point of ®, that is,
®'(u)v =0, Yove H'(R?).

Moreover, by Fatou’s Lemma, we also have

If u # 0, we must have

showing that ®(u) = v, and so, u is a ground state solution.
If w = 0, we can apply Lemma 1.3.16 to get a sequence (y,) C Z* and real

numbers 7,7 > 0 verifying

/ lut[’de >n >0, VneN.
Br(yn)
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Setting v, (x) = u,(z + yy,), a direct computation gives that (v,) is also a (PS), for .

Moreover, for some subsequence, there is v € H*(R?) such that
v, = v in H'(R?* and / lvT|?dx > n > 0,
»(0)

showing that v # 0. Therefore, arguing as above, v is a ground state solution for ¢. m

1.3.5 The Asymptotically Periodic Case

Proof. First of all, we recall that ¢y < &, and so, vy < 7. As in Section 2, we will
consider the cases v = v and vy < . The first one follows as in Section 2, and we
will omit its proof.

In what follows, we are considering vy < 7 and (u,) be a (PS5),,, sequence for
®y which was given in Lemma 1.3.14. The sequence (u,,) is bounded by Lemma 1.3.11.
Thus, there is u € H'(R?) and a subsequence of (u,,), still denoted by itself, such that
u, — win H*(R?). Suppose by contradiction u = 0. Repeating the arguments explored

in the case N > 3, we have

/W(:I:)\un|2dx —0 and sup — 0.

l¥ll<1

/ W(x)u,dx

From (f1), given € > 0 and 8 > 0 such that

27

f< ——
SUPen | [un||

it must exist > 0 satisfying

2

1f*(2,8)] <e(€® —1) for [t|>n and z€R*\ B,(0).

Therefore, by Lemma 1.3.2

* u2
Juatznrtianzm (2 “nm/w’df’f < Jioizinttunza €167 = Ul¥ldz <
1/2 .
<S¢ <fR2 ‘eﬁu% - 1‘2d;€) (fRQ |’(/J‘2d$) / dz < EKHwHHl(RQ)

On the other hand, fixing R large enough

j‘[|x‘>Rﬂ[|un|<n | (@ un)|[Y]de - < Cfpr (2)[¢|dx
< (o H@)Pd2) " (oo 0f2ar) "

S €C||¢||H1(R2)
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Thus,
[z, up) de

|z|>n

sup
lvll<1

< e(C+ K)|[Y||mrg2)-

Now, as f* has a subcritical growth and u, — 0 in L?(B,(0)), we have that

sup [ (z,up)tp dz| — 0.
<11 ]z|<n
Thus,
sup f(z,up)pdz| — 0.
l¥lI<1 1JR2

A similar argument works to prove that
0< /F*(x,un)dx < /f*(a;,un)und:c — 0.
The above limits yield
®(u,) = yw and |[|®'(u,)|| — 0.
Arguing as in the periodic case, without loss of generality, we can assume that
u, = u in H'(R*),u#0 and ®'(u)=0.
Thus, ®(u) > 7. On the other hand, by Fatou’s Lemma,
®(u) < liminf ®(u,) = Yw,

n—-+o0o

which is absurd, because we are supposing Yy < <. Thereby, u # 0 and since
(f(z,un)u,) is bounded in L'(R?), we can conclude that u is a ground state solution

of (I)W |
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Capitulo 2

Existéncia e concentracao de
solucoes de energia minima para
uma classe de problemas

variacionails indefinidos

Existence and concentration of ground state
solution for a class of indefinite variational problems

CLAUDIANOR O. ALVES and GEILSON F. GERMANO

Abstract

In this paper we study the existence and concentration of solution for a class of

strongly indefinite problem like

—Au 2)u = A(ex)f(u) in N
{ +V(@)u=Aler) () i RY, .

u € HY(RY),

where N > 1, € is a positive parameter, f : R — R is a continuous function with
subcritical growth and V, A : RV — R are continuous functions verifying some technical
conditions. Here V is a ZN-periodic function, 0 € o(—A+V), the spectrum of —A+V,
and

0< inf A(z) < lim A(z) < sup A(x).

xRN |z| =400 zeRN



Mathematics Subject Classifications (2010): 35B40, 35J2, 47A10 .

Keywords: concentration of solutions, variational methods, indefinite strongly func-

tional.

2.1 Introduction

This paper concerns with the existence and concentration of ground state solution

for the semilinear Schrodinger equation

—Au+V(z)u= A(ex)f(u) in RN

(P)e
u € HY(RY),

where N > 1, € is a positive parameter, f : R — R is a continuous function with
subcritical growth and V, A : R — R are continuous functions verifying some technical
conditions.

In whole this paper, V is Z"-periodic with
0 o(—A+V), thespectrumof —A+7V, (V1)

which becomes the problem strongly indefinite. Related to the function A, we assume
that it is a continuous function satisfying

0< Ay = xieI]}&fN Alz) < Ay = mli}rﬁoo Ax) < JUselgl)v A(x). (Ay)

The present article has as first motivation some recent articles that have studied

the existence of ground state solution for related problems with (P)., more precisely

for strongly indefinite problems of the type

—Au+V(z)u= f(z,u), in R,

(1)
u e HY(RY).

In [27], Kryszewski and Szulkin have studied the existence of ground state solution for
(P)) by supposing the condition (V7). Related to the function f : RY x R — R, they

assumed that f is continuous, Z"-periodic in z with

|f(z, )] <c(|t|Tt +tP™Y), VteR and xecRY (h1)
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and
0 < aF(z,t) < tf(z,t) Y(z,t) e RN xR*, Flzt) = /tf(x,s) ds  (hy)
0

forsomec>0,a>2and2<q<p<2*where2*:%ifNZSand?*:+mif
N =1,2. The above hypotheses guarantee that the energy functional associated with

(Py) given by

J(u) = 1/RN(|VU|2 + V(z)|ul? dx) —/ F(z,u)dz, Yu € H'(RY),

2 RN
is well defined and belongs to C*(H*(RY),R). By (V}), there is an equivalent inner
product ( , )in H*(RY) such that

1 1., _
I =t = Sl = [ P de,

where |lul| = \/{u,u) and H'(RY) = E* & E~ corresponds to the spectral decom-
position of —A + V' with respect to the positive and negative part of the spectrum
with v = u™ + u~, where u™ € E* and v~ € E~. In order to show the existence of
solution for (Py), Kryszewski and Szulkin introduced a new and interesting generalized
link theorem. In [31], Li and Szulkin have improved this generalized link theorem to
prove the existence of solution for a class of strongly indefinite problem with f being
asymptotically linear at infinity.

The Link theorems above mentioned have been used in a lot of papers, we would
like to cite Chabrowski and Szulkin [14], do O and Ruf [17], Furtado and Marchi [20],
Tang [51, 52] and their references.

Pankov and Pfliiger [39] also have considered the existence of solution for problem
(Py) with the same conditions considered in [27], however the approach is based on an
approximation technique of periodic function together with the linking theorem due to
Rabinowitz [40]. After, Pankov [38] has studied the existence of solution for problems

of the type
—Au+V(x)u=*f(r,u), in RN
(£2)
u e H'(RY),
by supposing (V1), (h1) — (h2) and employing the same approach explored in [39]. In
[38] and [39], the existence of ground state solution has been established by supposing

that f is C* and there is 6 € (0, 1) such that
0<t'f(x,t) <Of(x,t), Vt#0 and =z ¢cRY. (hs)
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However, in [38], Pankov has found a ground state solution by minimizing the energy

functional J on the set
O={ueHR")\E ; J'(wyu=0and J'(u)jv=0,VveEE }.

The reader is invited to see that if J is strongly definite, that is, when E~ = {0},
the set O is exactly the Nehari manifold associated with J. Hereafter, we say that

ug € HY(RY) is a ground state solution if
J(ug) =0, wy€e O and J(up) = ing) J(w).
we

In [45], Szulkin and Weth have established the existence of ground state solution
for problem (P;) by completing the study made in [38], in the sense that, they also
minimize the energy functional on O, however they have used more weaker conditions

on f, for example f is continuous, Z"-periodic in x and satisfies
f(z, )| < CA+[tfPh), VE€R and z€RY (hy)

for some C' > 0 and p € (2,2%).

f(z,t) = o(t) uniformly in z as |t| — 0. (hs)
F(z,t)/|t|* = +oo uniformly in z as [t| — +oo, (he)

and
t— f(x,t)/|t| is strictly increasing on R\ {0}. (hz)

The same approach has been used by Zhang, Xu and Zhang [60, 61] to study a
class of indefinite and asymptotically periodic problem.
After a review bibliography, we have observed that there are no papers involving

strongly indefinite problem whose the nonlinearity is of the form
f(z,t) = A(ex) f(t), Yoz €RY and VteR,

with A verifying the condition (A;) and € > 0. The motivation to consider this type
of nonlinearity comes from many studies involving the existence and concentration of

standing-wave solutions for the nonlinear Schrodinger equation

ie%—\f = —AV + (V(2) + E)¥ — f(U) for all x € RY, (NLS)
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where N > 1, € > 0 is a parameter and V, f are continuous functions verifying some
conditions. This class of equation is one of the main objects of the quantum phy-
sics, because it appears in problems that involve nonlinear optics, plasma physics and
condensed matter physics.

Knowledge of the solutions for the elliptic equation like

—Au+V(z)u= f(u) in RY,
u € H'(RY),
or equivalently
—Au+V(ex)u = f(u) in RY, ().
ue HY(RY),
has a great importance in the study of standing-wave solutions of (NLS). In recent
years, the existence and concentration of positive solutions for general semilinear elliptic
equations (5), have been extensively studied, see for example, Floer and Weinstein [19],
Oh [36, 37], Rabinowitz [42], Wang [54], Ambrosetti and Malchiodi [11], Ambrosetti,
Badiale and Cingolani [12], del Pino and Felmer [16] and their references.
In some of the above mentioned papers, the existence, multiplicity and concen-

tration of positive solutions have been obtained in connection with the geometry of the

potential V' by supposing that
inf(c(—A+V)) > 0.

By using the above condition, we have that the problem is strongly definite, which
permits to show, in some cases, that the energy functional satisfies the mountain pass
geometry and that the mountain pass level is a critical level. In some papers it was
proved that the maximum points of the solutions are close to the set

V:{xERN . V(z) = min V(z)},

2€RN
when € is small enough. Moreover, in a lot of problems, the multiplicity of solutions is
associated with the topology richness of V.
In [42], by a mountain pass argument, Rabinowitz proved the existence of positive

solutions of (5)., for € > 0 small, whenever

liminf V(z) > inf V(z) =V, > 0.

|z|—o0 zeRN
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Later Wang [54] showed that these solutions concentrate at global minimum points of
V as € tends to 0.

In [16], del Pino and Felmer have found solutions that concentrate around local
minimum of V' by introducing of a penalization method. More precisely, they assume
that

V() > inf V(2) =V, >0 forall 2 ¢ RY

2€RN

and there is an open and bounded set Q C R such that

inf V(z) < min V(z).

€N €N

Here, we intend to study the existence of standing-wave solutions for (NSL) by

supposing h = 1 and g be a function of the type

gla,t) = Alex) f(2),

where € is a positive number with V, A satisfying the conditions (V;) and (A;) respec-
tively. More precisely, we will prove the existence of ground state solution u. for (P).
when € is small enough. After, we study the concentration of the maximum points of
|ue| with related to the set of maximum points of A. We would like point out that
one of the main difficulties is the loss of the mountain pass geometry, because we are
working with a strongly indefinite problem. Then, if I. denotes the energy functional
associated with (P)., we were taken to do a careful study involving the behavior of

number ¢, given by

Ce = uler/l\i I (u) (1.1)

where
Mc={ue H'®RM\E™; I'(u)u=0and I/(u)v =0,YveEE }. (1.2)

The understanding of the behavior of ¢, is a key point in our approach to show the
existence and concentration of ground state solution when ¢ is small enough.
Hereafter, f : R — R is a continuous function that verifies the following assump-
tions:
ft)

(fl) T%O&St%()
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(f2) limsup ()]
[t|—+o0 |tP
(f3) t — f(t)/t is increasing on (0, +00) and decreasing on (—o0,0).

< 400 for some ¢ € (1,2* —1).

(f1) (Ambrosetti-Rabinowitz) There exists § > 2 such that
0<0F(t) < f(t)t, Vt#£0

where F(t) := [ f(s)ds.

Our main theorem is the following

Theorem 2.1.1 Suppose that (V1), (A1) and (f1)—(fs4) hold. Then, there exists ¢y > 0
such that (P). has a ground state solution u. for all € € (0,¢). Moreover, if z. € RY

denotes a global mazimum point of |uc|, then

11_1)1(1) A(ex.) = sup A(x).

x€RN
The plan of the paper is as follows: In Section 2 we do a study involving the
autonomous problem. In Section 3 we show the existence of ground state solution for

e small, while in Section 4 we establish the concentration phenomena.

Notation. In this paper, we use the following notations:

e 0,(1) denotes a sequence that converges to zero.

If g is a mensurable function, the integral [,y g(x) dz will be denoted by [ g(x) da.

e Bg(z) denotes the open ball with center z and radius R in RY.

The usual norms in ' (RY) and LP(RY) will be denoted by || |zi@~) and | |,

respectively.

For each u € H'(RY), the equality u = u™ +u~ yields u™ € ET and u™ € E".

2.2 Some results involving the autonomous problem.

Consider the following autonomous problem

—Au+V(x)u=Af(u) in RN

(AP)y
u e HY(RY),
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where A > 0 and V f verify the conditions (V}) and (f1) — (f1) respectively. Associated
with (AP)y we have the energy functional Jy : H(RY) — R given by

() = %/(|VU|Q+V(x)|u|2dx) _ )\/F(u) d,

or equivalently
1 1
) = P = Sl P = A [ e

In what follows, let us denote by d, the real number defined by

d)\ = uleI}\f},\ J)\(u); (23)
where
M={ue HR")\E™; Ji(wu=0and Ji(u)v =0,V veEE"}. (2.4)

Moreover, for each u € HY(RY), the sets E(u) and E(u) designate
E(u)=E" @®Ru and E(u) = E~ &[0, +00)u. (2.5)

The reader is invited to observe that F(u) and E(u) are independent of A, more
precisely they depend on only of the operator —A + V. This remark is very important
because these sets will be used in the next sections.

In [45], Szulkin and Weth have proved that for each A > 0, the problem (AP),

possesses a ground state solution uy € H'(RY), that is,
uy €Ny, I(uy) =dy and Ji(u) =0.
In the above mentioned paper, the authors also proved that

0<dy= inf max Jy(u). (2.6)
w€ET\{0} yeE(u)

Moreover, an interesting and important fact is that for each u € HY(RM)\ E~, NANE(u)
is a singleton set and the element of this set is the unique global maximum of J,| B>

that is, there are t* > 0 and v* € E~ such that

I(t'u+v") = max Jy(w). (2.7)
weE(u)

The next two lemmas will be used in the study of the behavior of d) and c..
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Lemma 2.2.1 For allu=u"+u" € H'RY) and y € ZV, if u,(z) := u(z + y) then
uy, € H'(RY) with uf (z) = ut(z 4+ y) and u, (z) = u™(z +y).

Proof. Define
T: Hl(RN) — HI(RN)
U — Uy

such that u,(x) := u(z + y) for all x € RY. A direct computation gives T(E™) C E*
and T'(E~) C E~. Consequently,

wr+y)=u"(zx+y)+u (z+vy)
or equivalently
T(u)=Tu")+T(u").

Since T(u™) € ET and T(u~) € E~, we derive that T(u)™ = T(u") and T(u)” =

T'(u™), obtaining the desired result. m

The next lemma is a weak version of [45, Lemma 2.5].

—0 1N 1LmNYy
Lemma 2.2.2 Let V C E1\ {0} be a bounded set with 0 ¢ V (HRD)LHR ))7 =

C(RN) N L®°(RY) with infyepny W(z) = Wy > 0 and F : R — R be a continuous

function verifying
(i) B9 = o0 as [t| = +oo.
(i5) F(t) >0 forallt € R.
For the functional ¢ : H'(RY) — RU {—oc} given by
plw) = 311t = Sl = [ W) P

there exists R > 0 such that p(u) < 0 on E(u)\ Bg(0), for all u € V.

Proof. Suppose by contradiction that there exist (u,) C V and (w,) C E(u,) \ By (0)
with p(w,) > 0. First of all, note that ¢(w,) > 0 implies that

0< /W(x)F(wn) dr < 400, foralln € N.

As ||w,|| = 400, we set v, 1= 22 € E(un) Then, there is s,, > 0 such that

[[wn ]| -
Up = SpUp + 0, .

23



Consequently wy, = |[wy|[sptn + [[wn|[v, and

W(x
0< 2 Lt - Jiezi - [ LDE ) 28)

[|wn

From this, s,u, # 0. In fact, otherwise, s,||u,|| — 0 leads to

W(x 1
0 < 3llorli+ [ R e < S o

Therefore v, — 0 and v, = s,u, + v, — 0, which is absurd, because ||v,|| = 1 for
all n € N. Thereby, s,u, # 0. As (u,) is bounded, we have s, /4 0. On the other

—o(H'RN),HYRNY) . .
hand, since 0 ¢ V , it follows that u, 4 0, and so, u, # 0. Since
[ua]|? < ||va]]? = 1, we conclude that s, 4 +oc. Thus, for some subsequence,

nl

Sp = s # 0, u, = u#0 and
Up = Sply +v, v =su+v #D0.

So, by Fatou’s Lemma,

W(x W(x n W(x)F(w,
/ 5 d > /¢| Vp|Pdz > M|vn|2dx—>+oo,
‘wnH |wh| [v£0]

2 [, |2
contradicting (2.8). =

After the above commentaries we are ready to prove the main result this section.

Proposition 2.2.3 The function \ — dy is decreasing and continuous on (0,400).

Proof. In the sequel, uy and u, denote a ground state solution for J\ and J, respec-

tively. Note that if A > pu, then
() = Jy(w) = (A — p) /F(u) dr >0, Yue H'(RY).

Hence

dy= inf max Jy(u) < inf max J,(u)=d,,
g uEET\{0} ve E(u) 3 )_u€E+\{0}ueE(u) () g

showing that A + dy is monotone non-creasing. We claim that dy < d,. Indeed,

suppose dy = d,, and let ¢, > 0 and v, € E~ satisfying

In(tuu, +v,) = max Jy(u). (see (2.7))

u€E (uy)
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Therefore,

dy < I(tuup+ve) = (= A) [ F(tuu, + ) do+ Ju(tuy, + vy)
< (=N [ F(tuu, + o) do + Ju(uy,)
= (p—=AN) [ F(tyu, +v,)dz +d,.

As dy = d,,, it follows that

(n—A) /F(tuuu +v,)dz > 0.

By using the fact that A\ > p and (f1), we get t,u, + v, = 0 a.e. in RY, and so,
dy < J(tyu, +v,) = 0, contradicting (2.6) . From this, the function A — d) is
injective and decreasing.

Now we are going to prove the continuity of A — d,. To this end, we will divide
into two steps our arguments:
Step 1: Let (\,) be a sequence with A\; < Ay < ... < X\, — A. Our goal is to prove
that lim,, o dy, = dy. Since A\ — d, is decreasing then d) < d,, , ¥V n € N. For each
n € N, let us fix ¢, > 0 and v,, € E~ verifying

Iy, (tpuy +v,) = max Jy, (u).
ueE(uy)

From Lemma 2.2.2, there exists R > 0 such that Jy, (u) < 0 for all u € E(uy) \ Br(0).

Recalling that Jy, < Jy,, we have

Jy, (1) 0, VY ue E(uy)\ Bg(0) and VneN. (2.9)
On the other hand J,, (t,uy +v,) = max Jy,(u) > dy, > dy >0, 1. e,
u€E(uy)
Iy, (tpuy +v,) >0, VneN. (2.10)

By (2.9) and (2.10), ||t ux + v,|| < R for all n € N. Then, (t,u) + v,) is bounded in
HY(RY) and

dy, < Iy, (thun +vy,)
= (/\ — )\n) fF(tnU)\ + Un)dI + J)\(tnu,\ + Un)

< (A=) [ Fltyuy + vy)de + Jy(uy) = 0,(1) + d.

n

From this,

d)\n < On(l) +dy, and d) < d)\m Vn € N,
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implying that nl_lgloo dy, = dy.

Step 2: Let (\,) be a sequence with A\; > Ay > ... > )\, — A. Our goal is to prove
lim, 400 dy, = dy. Since A — dy is decreasing then d), < dy, < dy, for all n € N.
From [45], for each n € N let w, be a ground state solution of (AP),,, t, > 0 and
v, € E~ verifying

In(tnun + v,) = max Jy(u).
u€E(uy)

Our next goal is to show that (u,) is bounded. Inspired by [45, Proposition 2.7],
suppose by contradiction that |[un|| — +o0 and let wy, := per. As Nulr|l > ||u, |l
then [[wF][* > [Jw;[|*. Using the equality [Jw;f||* + [[w;[[* = [Jwa|[* = 1, we derive

[|wi||?> > 1/2, ¥ n € N. Consequently there exist (y,) C Z" and r, > 0 such that

/ lw (x)|*dz >n, ¥neN. (2.11)
By (yn)

Otherwise, we can apply Lions [30, Lemma I.1] to conclude that w;” — 0 in LP(RY)
for p € (2,2*). Then, [ F(sw;)dx — 0 for each s > 0 and

dy > dy, = Jn, (un) = Iy, (swh) = 382wl [> = Xy [ F(sw))da
> %—)\an(szf)dx% %,

which is absurd because s is arbitrary, showing (2.11). Now, we set
Un () = up(x +y,) and wy(x) = wy(T + yn).

By Lemma 2.2.1, w; (z) = w! (x 4+ y,). Moreover, by (2.11), w,, — w with w™ # 0,
because w,” — w*. Since u, = wWy,||u,]], it follows that |u,(x)| — +oo for each z € RY

with w(z) # 0. Therefore, by Fatou’s Lemma,
F(uy,), -
/& W |*dx — +00.
|, |2

Hence

I, (un _
0 < Pt = it |P — g1y | = A [ T

< T 3l 2w, [2da

|u

w2 = ez ]2 = A [ 52|, 2w — —oo

obtaining a contradiction. This proves that (u,,) is bounded.
Now, we are ready to prove that lim d,, = d,. First of all, there exists n > 0
n—+o00

such that
max/ lut(2)|*dz >n, VneEN. (2.12)
Bi(y)

yeRN

26



Otherwise, Lions [30, Lemma 1.1] ensures that u;t — 0in LP(RY), V p € (2,2*). Then,
by (f1) = (f2), [ f(un)udz — 0. Now, combining this limit with the equality below

0= J5, (un)uy = [Jug || — An/f(un)uidiv = |luy |I* + 0n(1),

we derive ||uf|| — 0, contradicting the inequality ||u}|| > 1/2dy, > +/2d,, for all
n € N. This proves (2.12), and so, there exist (y,) C Z" and r > 0 such that

/ uf (2)Pda >
B, Yn

Defining u,(x) := u,(z + yn), we have that (u,) is bounded and u, # 0 as n; — 400
for any subsequence. Fixing V := {&} },en € E1\ {0}, it follows that V is bounded

—0 1 N 1 Ny’
and 0 ¢ V (HEGRDLEDD. Thus, by Lemma 2.2.2, there exists R > 0 such that

Jr(w) <0 for w e E(u) \ Br(0), VueV. (2.13)
On the other hand, if v, (x) := v,(x + y,), we have

In(tntn + ) = In(thty +v,) = max Jy(u) >dy >0, VneN. (2.14)
u€E (un)

By (2.13) and (2.14), it follows that ||t,@, + U,|| < R, for all n € N. Therefore
||tnun + vp|| < R, for all n € N| that is, (t,u, + v,) is bounded. Finally,

d)\ S J,\(tnun + Un)
= (A = A) [ Ftyu, + vp)de + Jy, (tnty, + vy)
< on(1) + Jy, (un) = 0n + dy,,,

that is,
dy < On(l) + d)\n, VneN.

Since dy > dy, for all n € N, we have lim d,, = d,, finishing the proof. m

n——+0o

2.3 Existence of ground state for problem (P)..

In this section our main goal is proving that ¢ given in (1.1) is a critical level for
I. when € small enough. Hereafter, for each € > 0, we denote by I, : H'(RY) — R the

energy functional associated with (P). given by
1
L) = [(9uP 4 V@ do) - [ Ale)Plu)da,
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or equivalently
1 1, _
L(w) = 5w = Sl P = [ Ale)P(u)do,

Here, it is very important to observe that by using the notations explored in

Section 2, we derive that
Co = dA(O), [0 = JA(O) and Mo - NA(O)-
From now on, without loss of generality we assume that

A(0) = sup A(x). (3.15)

z€RN

The same idea explored in [45, Lemma 2.4] gives

0<ce= inf max [ (u). (3.16)

u€ET\{0} veE(u)

Moreover, the Lemma 2.2.2 permits to argue as in [45, Lemma 2.6] to prove that for
each u € H'(RN)\ E~, M. N E(u) is a singleton set and the element of this set is the

unique global maximum of I| Bu)> that is, there are t, > 0 and v, € E~ such that

I(tsu+ v.) = max I(w). (3.17)
weE(u)

Our first lemma shows an important relation between ¢, and c¢y.

Lemma 2.3.1 It occurs the limit lir% Ce = Cp.
€

Proof. Consider ¢, — 0 with €, > 0. Our goal is to prove that c., — cy. First of
all, note that ¢y < ¢, for all n € N, which leads to ¢y < liminf, ,,c.,. On the
other hand, by (3.17), if wy € H'(RY) is a ground state solution of (P)g, there are
t, € [0,4+00) and v, € E~ such that t,wi + v, € M., , implying that

I, (thwg +v,) > ¢, >0, VneN

As in the previous section, (t,wg + v,) is bounded. Thus, without loss of generality,

we can consider that ¢, — ¢y and v, — v in H'(R"). Note that

1 1
Ce, < I (tawd +vy,) = itinaﬂF — §||vn||2 — /A(enx)F(tan + v,)dx.
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Hence, since the norm is weakly lower semicontinous, the Fatou’s Lemma gives

hm Supn—>+oo Cen S hm Supn—>+oo (%t%”w(—]‘rHQ - %HUTL”Z) +
limsup,_,, . (— [ A(e,2)F(t,wg + v,)dx)
< 5tallwg I = 5lvll* = [ A0)F(tows + v)dx

= Io(towa_ + U) < I()(U)()) = Cp.

From this, lim,, ¢, =co. W

As an immediate consequence of the last lemma we have the corollary below

Corollary 2.3.2 There exists ¢g > 0 such that for all € € (0,¢) yields cc < da_,

where Ao = limyg|— 400 A().

Proof. By condition (A;), A(0) > A, then the Proposition 2.2.3 ensures that d4) <
da.,, or equivalently, ¢y < d4_ . Now it is enough to apply the Lemma 2.3.1 to get the

desired result. m

As a byproduct of the proof of Lemma 2.3.1, we also have the following result,

which can be useful for related problems.

Lemma 2.3.3 Let (t,) C [0,+00) and (v,) C E~ the sequences defined in the proof

of Lemma 2.3.1. Then, for some subsequence,
t, > 1 and v, = wy,.
Hence, t,wd + v, — wo in HY(RY).
Proof. Note that in the proof of Lemma 2.3.1, we find that
tim inf o = [ o]

Then for some subsequence lim,, ., ||v.|| = ||v]|, and so, v, — v. Furthermore, from
the previous lemma Iy(wp) = Ip(towy + v), where wy € My. Hence towg + v = wy,

from where it follows that ¢ty =1 and v = w, . Thereby, ¢,, =+ 1 and v,, = w;. ®

Our next result is related to the [45, Proposition 2.7], however as in the present
paper A is not periodic, we cannot repeat the same arguments explored in that paper,

then some adjustments are necessary in the proof to get the same result.

Proposition 2.3.4 I, is coercive on M,.
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Proof. Suppose that there exists (u,) C M, verifying

I(u,) <d and ||u,|| = +o0,

for some d € R. Setting v, := pzr, it follows that o5 ]| > vy || and ||v;f|]> > 1. On
the other hand, there exist (y,) C Z" and r,n > 0 such that,
/ | |?de > n, ¥Yn€N. (3.18)
By (yn)

In fact, suppose by contradiction that (3.18) does not hold. Then, applying again
Lions [30, Lemma L.1], v;- — 0 in LP(RY) for all p € (2,2*). Hence, by (f1) — (fa),
[ F(sv})dx — 0 for all s > 0. Thereby,

d

v

L(u) > L(sv}) = 352l |[2 = [ A(ex) F(sv; )do >

2 52
> — [A(0)F(sv})de — %,

which absurd, because s is arbitrary. This shows that (3.18) is valid.
Fixing w,(z) := u,(x + y,) and 0,(z) := v,(x + y,), by Lemma 2.2.1, we have
v (x) == vi(x + y,) and @, = Uy||uy,||. Since v, — v, by (3.18), v # 0. Then,

n

tn(z) = 400 when v(x) # 0. By using the Fatou’s Lemma, we get

Fluy, F(ii,) -
<u; / d n) L 2y / ) o 2y >/ N(UQ) Vol 2dz — +o0.
||n]] |Un| |, o] |Unl

The above limit yields

0

IN

T, _
) — %Hv*!P — Mo |12 -

<i-A [

)F(un
[[unl]?

o HQd:L' — —00,

obtaining a new absurd. m

Now, we can repeat the same arguments found in [45, see proof of Theorem 1.1]

to guarantee the existence of a (PS) sequence (u,) C M, associated with ¢, that is,

I.(u,) = ¢ and Il (u,)—0.

Theorem 2.3.5 The problem (P). has a ground state solution for all € € (0, ¢p), where
eg > 0 was given in Corollary 2.3.2.

Proof. First of all, the fact that (u,) C M, leads to
0= I (uy)u = ||ut]|® — /A(ex)f(un)u:dx > 2¢, — /A(ex)f(un)u:dx
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Therefore [ A(ex)f(un)u,dz # 0. Since (u,) is bounded, by Lions [30, Lemma I.1],
there exist 1,6 > 0 and (z,) C Z" such that

/ lut?dz >1n, Vné€N.
Bs(zn)

Claim 2.3.6 (z,) is a bounded sequence.

If (z,) is unbounded, for some subsequence, we must have |z,| — +oo. Fixing w,(z) :=

U, (T + 2,), we derive w,, — w # 0. Now, for each ¢ € C°(RY),

I(un)(- = 2n) = Blun, ¢(- — z0)) — [ Alex) f (un) (- — 2zn)dx
= B(wy, ¢) — [ Alex + €z,) f(w,,) pdz,
where

B(u,v) = /(VUVU +V(2)uww)dz, Yu,ve HY(RY).

Taking the limit n — 400, we obtain

— Blw.0) — [ Af(w)ods = Ty ()6, ¥ 6 € C(R),

Now, the density of Cg°(RY) in H*(RY) gives

0 = B(w,v) — /Aoof(w)vdx — T\ (w), Y v e H'ERY).
The last equality says that w is a nontrivial solution of (AP),_ . From characterization
of d4_, and Fatou’s Lemma,

da, < Ja(w)=Ja (w)—1J) (wyw= [Ay (53f(w)w— F(w))dx
< liminf, e [ Alex + €z, ( (wp)w, — F(wn)) dx
= liminf, ;o [ Alez) (1 f(u — F(uy)) dx

= lim infn—>—|—c>o (Ie(un) - §]é<un)un> = Ce

n)Un

that is

da, <ce, Ye>0.

On the other hand, by Corollary 2.3.2, ¢. < da,_ when € < ¢, which is absurd.
Therefore, (z,) is bounded.

As (z,) is bounded, there exists r > 0 such that Bs(z,) C B,(0) for all n € N.
Then,

/ lut Pdx > / lut|*’de >1n, Vné€N.
B:(0) Bs(zn)

From this, u, — u with u # 0. Now, it is enough to repeat the arguments found [5,

page 23] to conclude that u is a ground state solution for (P).. =
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2.4 Concentration of the solutions

In this section, we denote by u. the ground state solution obtained in Section 3.

Our main goal is to show that if z. is a maximum point of |u.|, then

lim A(ez.) = A(0).

e—0

Of a more precise way, we have proved that if ¢,, — 0, for some subsequence, €,z., — xg

for some zy € A where

A={zeRY : A(z) = A(0)}.

In what follows, we set (¢,) C (0,¢0) with ¢, — 0, I, = I, ¢, := ¢, and

n

Up = U, , that is,

I'(u,) =0 and I,(u,) = c,.

By (A1), ¢, > ¢y >0 for all n € N.
Next, we will prove some technical lemmas that are crucial to get the concentra-

tion of the solutions.

Lemma 2.4.1 The sequence (u,) is bounded.

Proof. The proof follows as in Proposition 2.3.4. =

Lemma 2.4.2 There exist (y,) C ZY and R, n > 0 verifying
/ lut [*dx >1n, Vn eN.
Br(yn)

Proof. If the lemma does not hold, by Lions [30, Lemma 1.1], ;7 — 0 in LP(RY) for
all p € (2,2*). Therefore ||u}||* = [ A(en) f(u,)utde — 0. On the other hand, from
[45, Lemma 2.4], we know that ||| > v/2¢, > v/2¢y, which contradicts the last limit.

In the sequel, v, (z) := u,(z + y,) for all x € RY. Thus, for some subsequence,

v, = v # 0.

Lemma 2.4.3 The sequence (€,y,) is bounded in RY. Furthermore, if for a subse-

quence €,Y, — z, then z € A and I)(v) = 0.
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Proof. First of all, we will prove the boundedness of the sequence (€,y,). Arguing by
contradiction, suppose that for some subsequence |€,y,| — +00. Since u,, is a ground

state solution for (P)e,,

/ (VinV(x — )+ V(@)und(x — )i = / Alent) f ()bl — yn)d,

for all ¢ € C°(RY). Hence, by a change variable,

/(anVqﬁ + V(z)v,¢)dx = /A(en:c + €xyn) [ (v pdx

for all ¢ € Co(RY). Now, taking the limit as n — +oo, we find

/(VUV¢ dr + V(z)vg)dr = /Aoof(v)gbdx

for all ¢ € Co(RY). This combined with the density of Cg°(RY) in H*(RY) gives

/(VUVLD + V(z)vy)de = /Aoof(v)qﬁdx, Vi € HY(RY).
Then v is a nontrivial solution of (AP)4_, and so, v € My_. By Fatou’s lemma,

da. < Ja(v)=Jda(v) = 3T, (v)v=[Ax (3f(v)v— F(v))dz
< liminf, 400 [ A(ex + €ayn) (51 (vn)vy — ( n)) dx
= liminf, i [ Ale,2) (3 (un)un — F(uy)) dx
= liminf, (In(un) — 5[;(un)un)

= liminf, o In(u,) = limpen ¢, = co < da_,

obtaining a contradiction. Consequently (€,y,) is bounded, and we can assume that

€nYn — 2. The same argument works to prove that

/(va + V(z)vy)de = /A(z)f(v)wdx, Vi € HY(RY).

Hence v is a nontrivial solution of (AP) 4(»), and so, v € M 4(.). The previous arguments
lead to da(.) < o = da(). Then the monotonicity of A — d, implies that A(0) < A(z).
As A(0) > A(z), it follows that A(0) = A(z), showing that z € A. =

From now on, we are considering that €,y, — 2z with z € A, i.e., A(z) = A(0).

Here, it is very important to observe that
JA(z) = JA(()) = ]0 and ](/](U) = 0.
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By growth condition on f, we know that for each 7 > 0 there exists § := 4, € (0,1)
such that

1®)] <T, Vte(=6,0).

id

In what follows, we set g,(t) := xs(t)f(t) and j.(t) := Xs(t)f(t), where xs is the
characteristic function on (—¢,0) and xs(¢) =1 — xs(t).

Lemma 2.4.4 For each T > 0, there is ¢; > 0 such that
lg-@O) < 7lt] and | (O)]" < crtf(t), VEER,

where r = ﬂql with q given in (f3).

Proof. By using the definition of g,, it is obvious that above inequality involving the
function ¢, holds.
In order to prove the second inequality, note that [—1, =] U[d, 1] C R is compact

set, then there exists ¢; > 0 such that

fOr—

‘t| < é;'a vt € [_17 _5] U [57 1]7

consequently

GO < Gl Ve [-1, -8l U5, 1]
On the other hand, there exists by > 0 verifying
IF(O)] < 7|t| + bt ¥ t € R,
Thus, there exist A, B;,¢; > 0 such that
eI = )™ < A+ Byt = A + Bt < &ltl, Wt > 1.

From this,

GO <eltl, VieR,

for some ¢, > 0. Thereby,
3= < e[t ()] < et f(t),  VieR,

finishing the proof. m
The last lemma permit us to prove an important convergence involving the se-

quence (vy,).
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Proposition 2.4.5 The sequence (v,) converges strongly to v in H*(RN).

Proof. First of all, note that
co < Iop(v) = Io(v) — 21 (v)v = [ A(0) (3f(v)v — F(v)) dx
= [A(z) (3f(v)v — F(v)) d
<liminf, i [ Al&nz + €:yn) (%f(v Yo — F(vn)) dx
<limsup, . [ Alenz + €:yn) (3 f(vn)vy — F(vy,)) d
n)Un

F(u,)) du

= limsup,,_, . [ Ale,z) (3f(u
= limsup,_, o0 (In(un) — 31 (w,)u,)

= lim,,, 1o ¢y = Cp.

Therefore

lim | A(enz + €ntn) (% F(n)vn — F(vn)) dz = / A(2) (1 fo)o — F@)) dz.

n—-+oo
Since

A(en + €,9n) (—

and supposing that

vp(2) = v(r) ae in RY,

we deduce that

Alent + np) (1

2f(vn)vn - F(vn)) — A(z) (%f(v)v - F(v)) in L'(RY).

Thus, for some subsequence, there exists H € L'(RY) such that

Ay G F(n)on — F(vn)) < Alent + enyn) @ F(n)on — F(vn)) <H aec in RY

for all n € N. Then, by (f4),

1 1

Consequently there exists ¢ > 0 such that

flop)v, <cH, VneN.

In what follows, we set



Our goal is to prove that
/ Ol — 0.

First of all, as f has subcritical growth,

/ |Qn|dz — 0, VR > 0. (4.19)
Br(0)

On the other hand, for each 7 > 0, we can fix R large enough a such way that

/ F(0)ot|dz < 7.
BRr(0)¢

Claim 2.4.6 Increasing R if necessary, we also have

/ oot |de < 207, V€N
Br(0)¢

T
© :=sup { (/ |v:|q+1dx> ,/|vnv:[|dx} :
neN

In fact, for each 7 > 0, the Lemma 2.4.4 ensures the existence of ¢, > 0 such that

where

g+1

170" < ctf(t), where r=
q

From Lemma 2.4.4,

[ Wteetlas= [ lgetwlloflde+ [ o)l lde <
Br(0) Br(0)

BRr(0)°

1/r 1/(g+1)
< 7'/ |vn||v:[|dx + (/ |jT(Un)|7"dx) (/ |U:|Q+1dx>
Br(0)¢ Br(0)¢ Br(0)¢

1/r 1/r
<70 + (/ ch(Un)vndx> O<71O+ec, (/ cH dx) O.
Br(0)° Br(0)°

Now, increasing R if necessary, a such way that

1/r
Cr (/ cH da:) <T
BRr(0)°

/ |f(vo)v) |de < 270,
Br(0)¢

we get

proving the claim. From (4.19) and Claim 2.4.6,

/ 1Ol dz — 0.
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Therefore

f(u)vl — fw)wt in LYRY).
Analogously,

fon)v, = f(v)v™ in LYRY).

Since I (u,)u, = 0, it follows that

n

o1 = [ Alews + cxm)fwa)utds = [ A (@)t do = [lo*
showing that v;F — vt in HY(RY), because v;7 — v in H*(RY). Likewise v, — v~ in
HY(RY). Thereby v, = v} + v, — v" + v~ =v in H(R"), finishing the proof. =
Corollary 2.4.7 [|v,]|pe @y 7 0.
Proof. If ||v,||pe @~y — 0, by Proposition 2.4.5, we must have v = 0, which is absurd.
]

Lemma 2.4.8 For alln € N, v, € C(RY). Furthermore, there exist a continuous
function P : R — R with P(0) =0 and K > 0 such that

||U7l||C(Bl(z)) <K-P (||Un||L2*(BQ(Z))) )
for alln € N and for all z € RY.

Proof. Since u, is solution of (P),,, v, is a solution of

—Av, + V(2)v, = Alenx + €un) f(v,) in RV,

v, € H'(RY).
Setting U, (z,t) = A(e,x + €,y,) f(1), it is easy to check that there exists C' > 0,
independently of n € N, verifying

U, (2,t) < CO(Jt| + [t]7), VrcRY and VtecR.

Moreover, for each R > 0 and z € RY, we have that u € L%(By(z)) with s > g,
WU, (-, u(-)) € L¥9(By(z)) and there exist C; = C(s) > 0, independent of z, such that

W (s u())]

Here we have used the fact that A is a bounded function. Now, recalling that potential

Lo/a(Ba()) < Csl|ullLoraay) + Ul Lo (o)), Y €N

V is also a bounded function, we can proceed in the same manner as in [41, Proposition

2.15] to get the desired result. =

As a byproduct of the last lemma we have the corollary below
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Corollary 2.4.9 Given § > 0, there exists R := Rs > 0 such that |v,(x)| < & for all
x € RV \ Bg(0), that is, im0 vn(2) = 0 uniformly in N.

Proof. Since v, — v in H(RY), given 7 > 0 there are R > 0 such that
vnllr2s By <7, forall [zl >R and neN.
As P is a continuous function and P(0) = 0, given § > 0, there is 7 > 0 such that
|P(t)| < B/K, for |t|<T.
Hence, by Lemma 2.4.8,
|onlle@y <B for [z >R and neN.

This proves the corollary. m

Finally we are ready to show the concentration.
Concentration of the solutions:

From Corollary 2.4.9, there is z, € RY such that |v,(2,)] = max,cpn v, (7).
Now, applying Corollary 2.4.7, there exists § > 0 such that |v,(z,)| > § for all n € N,
implying that (z,) is bounded. Therefore if &, := z, + y,, it follows that

[t (&) = max Ju ()]

and

€nén = €nzn + ey > 0+2 =2

with z € A, finishing the study of the concentration phenomena.
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Capitulo 3

Existéncia e fenémeno de
concentracao para uma classe de
problemas variacionais indefinidos

com crescimento critico

Existence and concentration phenomena for a class
of indefinite variational problems with critical
growth

CLAUDIANOR O. ALVES and GEILSON F. GERMANO

Abstract

In this paper we are interested to prove the existence and concentration of ground

state solution for the following class of problems
—Au+V(z)u= Alex) f(u), =RV, (P).
where N > 2, ¢ >0, A:RY — R is a continuous function that satisfies

0< inf A(z) < lim A(z) < sup A(z) = A(0), (A)

zeRN |z| =400 z€RN

f : R — Ris a continuous function having critical growth, V : RV — R is a continuous

ZN-periodic with 0 ¢ o(A+ V). By using variational methods, we prove the existence



of solution for e small enough. After that, we show that the maximum points of the

solutions concentrate around of a maximum point of A.
Mathematics Subject Classifications (2010): 35B40, 35J2, 47A10 .

Keywords: concentration of solutions, variational methods, indefinite strongly func-

tional, critical growth.

3.1 Introduction

This paper concerns with the existence and concentration of ground state solution

for the semilinear Schrodinger equation

—Au+V(z)u = Alex) f(u), zeRN, P,
ue HY(RY),
where N > 2, € is a positive parameter, f : R — R is a continuous function with
critical growth and V,; A : R — R are continuous functions verifying some technical

conditions.

In whole this paper, V is Z"-periodic with
0Zo(—A+V), thespectrumof —A+7V, (V)

which becomes the problem strongly indefinite. Related to the function A, we assume

that it is a continuous function satisfying

0<Ap= inf A(z) < lim A(zx) = Asx < sup A(x). (A)

zCRN |x| =400 zERN
The present article has as first motivation some recent articles that have studied
the existence of ground state solution for related problems with (P)., more precisely

for strongly indefinite problems of the type

—Au+V(z)u = f(z,u), z€RY,

(1)
u € HY(RY).

In [27], Kryszewski and Szulkin have studied the existence of ground state solution for
(P)) by supposing the condition (V). Related to the function f : RY x R — R, they

assumed that f is continuous, Z"-periodic in z with
|f(@, )] <ec(ft|" "+ [¢tP7"), VteR and xeRY (h1)
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and
0 < aF(z,t) < tf(z,t) Y(z,t) e RN xR*, Flzt) = /tf(x,s) ds  (hy)
0

forsomec>0,a>2and2<q<p<2*where2*:%ifNZSand?*:+mif
N =1,2. The above hypotheses guarantee that the energy functional associated with

(Py) given by

J(u) = 1/RN(|VU|2 + V(z)|ul?) dx —/ F(z,u)dz, Yu € H'(RY),

2 RN
is well defined and belongs to C'(H'(RY),R). By (V), there is an equivalent inner
product ( , )in H*(RY) such that

1 1., _
I =t = Sl = [ P de,

where |lul| = \/{u,u) and H'(RY) = E* & E~ corresponds to the spectral decom-
position of —A + V' with respect to the positive and negative part of the spectrum
with v = u™ + u~, where u™ € E* and v~ € E~. In order to show the existence of
solution for (Py), Kryszewski and Szulkin introduced a new and interesting generalized
link theorem. In [31], Li and Szulkin have improved this generalized link theorem to
prove the existence of solution for a class of strongly indefinite problem with f being
asymptotically linear at infinity.

The link theorems above mentioned have been used in a lot of papers, we would
like to cite Chabrowski and Szulkin [14], do O and Ruf [17], Furtado and Marchi [20],
Tang [51, 52] and their references.

Pankov and Pfliiger [39] also have considered the existence of solution for problem
(Py) with the same conditions considered in [27], however the approach is based on an
approximation technique of periodic function together with the linking theorem due to
Rabinowitz [40]. After, Pankov [38] has studied the existence of solution for problems

of the type
—Au+V(z)u=+f(z,u), xRV,
(F)
ue HY(RY),
by supposing (V'), (hy) — (h2) and employing the same approach explored in [39]. In
[38] and [39], the existence of ground state solution has been established by supposing

that f is C* and there is 6 € (0, 1) such that
0<t'f(x,t) <Of(x,t), Vt#0 and =z <R, (hs)
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However, in [38], Pankov has found a ground state solution by minimizing the energy

functional J on the set
O={ue H'R")\E ; J'(wyu=0and J'(u)jv=0,VveEE}.

The reader is invited to see that if J is strongly definite, that is, when E~ = {0},
the set O is exactly the Nehari manifold associated with J. Hereafter, we say that

ug € HY(RY) is a ground state solution if
J(u) =0, ueO and J(ug) = inf9 J(w).
we

In [45], Szulkin and Weth have established the existence of ground state solution
for problem (P;) by completing the study made in [38], in the sense that, they also
minimize the energy functional on O, however they have used more weaker conditions

on f, for example f is continuous, Z"-periodic in x and satisfies
fz, )| < CA+[tfPh), Vt€R and z€RY (hy)

for some C' > 0 and p € (2,2%).

f(z,t) = o(t) uniformly in z as [t| — 0. (hs)
F(x,t)/|t]> = 400 uniformly in x as |t| — +oo, (he)

and
t— f(x,t)/|t| is strictly increasing on R\ {0}. (hr)

The same approach has been used by Zhang, Xu and Zhang [60, 61] to study a class
of indefinite and asymptotically periodic problem.

In [5], Alves and Germano have studied the existence of ground state solution
for problem (P;) by supposing the f has a critical growth for N > 2, while in [6] the
authors have established the existence and concentration of solution for problem (P).
by supposing that f has a subcritical growth and V| A verify the conditions (V') and
(A) respectively.

Motivated by results found [5, 6], in the present paper we intend to study the
existence and concentration of solution for problem (P), for the case where function f

has a critical growth. Since the critical growth brings a lost of compactness, we have
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established new estimates for the problem. Here, the concentration phenomena is very
subtle, because we need to be careful to prove some estimates involving the L* norm
of the solutions for € small enough, for more details see Section 2.2 for N > 3, and
Section 3.3 for N = 2. Moreover of the conditions (V') and (A) on the functions V' and

A respectively, we are supposing the following conditions on f:

The Case N > 3:

In this case f : R — R is of the form
(fo) f) = €T+ |t 7%, VEER,;

with € > 0,¢ € (2,2%) and 2* = 2N /N — 2.

The Case N = 2:

In this case f : R — R is a continuous function that satisfies

@) .
(fi) 52 = 0ast—0;
(f2) The function t — @ is increasing on (0, 400) and decreasing on (—o0, 0);
(f3) There exists § > 2 such that

0<O0F(t) < f(t)t, VteR\{0}
where
t
Pt = [ fo)is
0
(f1) There exists T' > 0 such that |f(t)| < Te*™ for all t € R;

(f5) There exist 7 > 0 and ¢ > 2 such that F'(t) > 7]t|? for all t € R.

The condition (f;) says that f can have an exponential critical growth. Here, we recall

that a function f has an exponential critical growth, if there is oy > 0 such that

f()] [f()]

€a|t\2 604|’5|2

=0, Va > qy, lim
[t| =40

= +o00, Ya < ayp.

[t| =40

Our main theorem is the following
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Theorem 3.1.1 Assume (V), (A), (fo) for N >3, (f1) — (fs) for N = 2. Then, there
exist Ty, &, €0 > 0 such that (P). has a ground state solution u. for all € € (0, €), with
E>& ifN=3and T > 19 if N = 2. Moreover, if x. € RN denotes a global mazimum
point of |u.|, then

Pi% A(ex.) = sup A(x).

z€RN

In the proof of Theorem 3.1.1, we will use variational methods to get a critical

point for the energy function I, : H'(RY) — R given by

I(u) = %B(u, u) — A(ex)F(u)dx,

RN
where B : H'(RY) x H'(R") — R is the bilinear form

B(u,v) = / (VuVo + V(z)ww) dz, Yu,v € H'(RY). (1.1)
RN
It is well known that I, € C'(H'(RY),R) with

I'(u)v = B(u,v) — / Alex) f(u)vdw, Vu,v e H'(RY).

RN
Consequently, critical points of I. are precisely the weak solutions of (P)..

Note that the bilinear form B is not positive definite, therefore it does not induce

a norm. As in [45], there is an inner product ( , ) in H*(RY) such that
1 1
Ie(u) = Sllu*|)* = Sl | - / Alex) F(u) du, (1.2)
2 2 RN

where [Ju]| = /(u,u) and HY(RY) = ET @ E~ corresponds to the spectral decompo-
sition of —A 4+ V with respect to the positive and negative part of the spectrum with
u=u"+u", where ut € ET and v~ € E~. It is well known that B is positive definite
on ET, B is negative definite on F~ and the norm || || is an equivalent norm to the
usual norm in H'(RY), that is, there are a,b > 0 such that
bllull < lullm @~y < allull, ¥ ue H'(RY). (1.3)
From now on, for each u € H*(RY), E(u) designates the set

E(u) = E~ @ [0, +o0)u. (1.4)

The plan of the paper is as follows: In Section 2 we will study the existence and

concentration of solution for N > 3, while in Section 3 we will focus our attention to
dimension N = 2.

Notation: In this paper, we use the following notations:
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The usual norms in A*(RY) and LP(R") will be denoted by || ||zi@~) and | |,

respectively.

C' denotes (possible different) any positive constant.

e Bg(z) denotes the open ball with center z and radius R in RY.

We say that u, — w in LI (RY) when

loc

u, —u in LP(Bg(0)), VR>D0.

If g is a mensurable function, the integral [y g(x) dz will be denoted by [ g(z) dz.

We denote ¢, the Dirac measure.

If p € C°(RY), the set {x € RY ; ¢(x) # 0} will be denoted by suppep.

3.2 The case N > 3.

We begin this section by studying the case where A is a constant function. More

precisely, we consider the following autonomous problem

—Au+V(z)u=Af(u), ze€RYN,
u e HY(RY),

with A € [Ag, +00) and f: R — R being of the form

f@) = €T+ |t)F %t VEeR,;

with € > 0,¢ € (2,2*) and 2* = 2N/N — 2.
Associated with (AP),, we have the energy functional J, : H'(RY) — R given
by
1
) =3 /(|Vu|2 V(@) |uf?) de — A/F(u) iz,
or equivalently

1 1, _
) = St P = Sl P = A [ e

In what follows, let us denote by d, the real number defined by

dy= inf In(uw); (2.5)

uEN )

75



where
M={ue HR")\E™; Ji(wu=0and Ji(u)v=0,YveEE}. (2.6)

In [5], Alves and Germano have proved that for each \ € [Ag, +00), the problem

(AP), possesses a ground state solution uy € H*(RY), that is,
uy €Ny, I(uy) =dy and Ji(u) =0.

A key point to prove the existence of the ground state u, are the following informations

involving dy:

0<dy= inf max Jy(u) (2.7)
u€ET\{0} yeE(u)
and
1 SN2
dy < N2 YA > Ay. (2.8)

Here, we would like to point out that (2.8) holds for N = 3 if £ is large enough, while
for N > 4 there is no restriction on . This fact justifies why & must be large for N = 3
in Theorem 3.1.1.

An interesting and important fact is that for each u € HY(RN)\ E~, Ny N E(u)
is a singleton set and the element of this set is the unique global maximum of J,| Bu)>
that is, there are t* > 0 and v* € E~ such that

I(t'u+v") = max Jy(w). (2.9)
weE(u)

After the above commentaries we are ready to prove an important result involving

the function A — d,.

Proposition 3.2.1 The function A\ — dy is decreasing and continuous on [Ag, +00).

Proof. From [6, Proposition 2.3|, the function A — d, is decreasing, and if A\; < Ay <
A3 < ... < A\, — A then li}lrnd,\n = d,. It suffices to check that \y > Xy > A3 > ... >
An — A implies lirrln dy, = dy. Let u, be a ground state solution of (AP),,, t, > 0 and
v, € £~ verifying

In(tntn + v,) = max Jy.
E(un)

Our goal is to show that (u,) is bounded in H'(RY). First of all, note that

(% - %) /f(un)undx < / (%f(un)un - F(“n)) dr = (2.10)
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L
= )\—n (J)\n (Un) — EJ)\n (un)un> = A—nJ)\n(Un> = )\—nd)\n S Xd)\,

which proves the boundedness of ([ f(u,)undz). Fixing g(t) = x(—1,1)(t) f() and I(t) =
X[-1,1]¢(t) f(t), we have that

g(t) +1(t) = f(t), VteR.
From definition of g and [, there exists £ > 0 such that
lg(t)]" < ktf(t) and |I(t)]° < ktf(t), VteR,

r o= q“ and s : . Thus,

'/f up)utdr| < /|g Up U +|dx+/|l up)u,t |de <

1/r 1/s
< ( / |g<un>|rdx) 0l + ( / |Z<un>18dx) i
1/r 1/s
sc( / f(un)undfr> ||u;r||+c( / f(un>undx) ]| < Cffuall

Suppose by contradiction that ||u,|| — +o00. Then

f(un)uy
/—||Un||2 dzr — 0.

On the other hand, the equality

where

2x <

0 Jy, (un)u,t _ lutll* A, S un)uyy u+
[Jun [ [[unl[? Tl
leads to
+12
Il
[[n]|
As u, € Ny, it follows that ||u, || < ||}, and thus,
+[2 — 112 412
N e N
[lunl[* Jun]] 1

a contradiction. This shows the boundedness of (u,). We claim that there are (y,) C

ZN and r,n > 0 such that

/ lup|? dr >n, V¥neN. (2.11)
By (yn)
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Arguing by contradiction, if the inequality does not occur, from [43, Lemma 2.1,
u, — 0 in LP(RY) for all p € (2,2*], and so, [ f(u,)u;fdx — 0. This together with the
equality below

0=, (wn)uf = | = Ao [ e
gives |Ju,}|| — 0, which is a contradiction because ||u,|| > 1/2dy, > /2d,,. Thereby
(2.11) follows.

Define @, (x) := u,(z + y,). By [6, Lemma 2.1], @ (z) = u} (x + y,) and (u,) is
bounded in H*(RY). In the sequel, let us assume that for some subsequence ,, — u in
HY(RY). Our goal is to show that u # 0. Inspired by [5, Lemma 2.17], let us suppose

by contradiction © = 0 and
Vi =, [ — v in MF(RY).

By Concentration-Compactness Principle due to Lions [29], there exist a countable set

J, (73)ic; CRY and (;)ie3, (Vi)ics C [0, +00) such that

V:ZVi(sxw p=> ZM251:17 and Hi :SViQ/Q*‘

i€l i€l
We will prove that v; = 0 for all ¢ €J. Suppose there exists ¢ €J such that v; # 0.
Then,
1
dy >limd,, hm (JM Up) — J/\n (un)un)

> lim A, (— - —) /]un]2 dx

dr= 230,

jed

— lim 2"
ITILTIN

which means
dy > = Z vj. (2.12)
]GJ

Let @s(x) := ¢ (£5%) for all z € RY and 6 > 0, where ¢ € C°(RY) is such that ¢ = 1

on Bi(0), o = 0 on RNV \ By(0), 0 < ¢ < 1 and |Vg| < 2. Consequently (osi,) is
bounded in H'(RY) and

San () (0510n) = 0,
that is,
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Passing to the limit as n — +o0,
/%du = )\/905611/

Now, taking the limit 6 — 0,

From the fact that u(x;) > u;, we derive

Sy = i < plx;) = A,

(2

and so
Consequently,

A 1 SN/

> = 2.13

N TN (2.13)
From (2.12) and (2.13),

1 SN2
d)\ — N T N—2>
AT

contrary to (2.8). From this, 1; = 0 for all : €J and u, — 0 in L (RY), which

contradicts (2.11). This permit us to conclude that u # 0.

Claim 3.2.2 Ifu™ =0, then u™ = 0.

In fact, if u™ =0,

/f(u)u_d:v:/f(u)u+dx+/f(u)u_dx:/f(u)udx20.

On the other hand, letting n — 400 in the equality below

0=J,(a)u" = B(tup,u /f Up)u~dx

we find
12 = Blu,u-) = )\/f(u)ud:r; >0,

thereby showing that u= = 0.
The Claim 3.2.2 implies that u™ # 0, because u # 0 and u = u* + u~. Define
~4 . ~p + —o(HY(RN),HY(RN)")
V = {4 }nen. Since uf — u # 0, then 0 ¢ V ) and V is bounded in

H'(RY). Applying [6, Lemma 2.2], there exists R > 0 such that

Jy <0 on E(u)\ Bg(0), forallueV. (2.14)

79



Setting v, (x) := v, (2 + Yn),
J)\(tnﬂn + /’(771) = J)\(tnun + ’Un) >dy > 0. (215)

By (2.14) and (2.15), |[tpu, + Us|] < R for all n € N. As ||ty u, + vn|| = ||tntin + Unll,
(tptn + v,) is also bounded in H*(RY) and

dy < I(tpun +v,) = Ay = A) [ F(taun + vy)dx + Jy, (tun + v,) <
< Op + J)\n(un) =op + d)\n < 0n + d)\a

from where it follows that limdy,, =d,. =

3.2.1 Existence of ground state for problem (P)..

In the sequel, we fix
Mo={uec H®R")\ E™; I'(u)u = I'(u)v =0, for allv € £~}
and
Ce = inf 1.
By using the same arguments found in [5], it follows that ¢, > 0, and for each u €

HYRN)\ E~, there exist t > 0 and v € E~ verifying

I(tu+v) =max1, and {tu+v} = M.NE(uw).
E(u)

The same idea of [5, Lemma 2.6] proves that
l[uf]]? > 2¢., forallu e M, and e>0. (2.16)
In what follows, without loss of generality we assume that

A(0) = max A(z).

xeRN

Our first result in this section establishes an important relation involving the

levels ¢, and ¢y.

Lemma 3.2.3 The limit lim. ,oc. = co holds. Moreover, let wy be a ground state
solution of the problem (P)g, t. > 0 and v. € E~ such that towy + ve € M. Then

te—>1 and ve >0 as €—0.
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Proof. See [6, Lemmas 3.1 and 3.3]. m

Corollary 3.2.4 There exists ¢g > 0 such that

SN/Z
Ce <da, and cc < ——, Vee (0,¢).
NA(0) =

Proof. Since ¢y < ds and

SN/2

vz (see (28))

cp < ——=
NA®0)*F

the corollary is an immediate consequence of Lemma 3.2.3. =

The next result is essential to show the existence of ground state solution of (P).

for € small enough. Since it follows as in [5, Proposition 2.16], we omit its proof.

Proposition 3.2.5 There exists a bounded sequence (u,) C M, such that (u,) is
(PS)., for I..

The following result is the main result this section

Theorem 3.2.6 The problem (P). has a ground state solution for all € € (0, ¢p), where
€0 > 0 was given in Corollary 3.2.4.

Proof. Let (u,) C M, be the (PS)., sequence for I given in Proposition 3.2.5. Then,

there exist (2,) C Z" and n,r > 0 such that
/ [ de >, YneN. (2.17)
Br(zn)
In fact, otherwise, by [43, Lemma 2.1}, u,, — 0 in LP(RY) for all p € (2,2*]. Then,
a1 = [ Aleo)f(unido = o

which is a contradiction with (2.16), and (2.17) is proved.

Claim 3.2.7 The sequence (2,) is bounded in RY.

Arguing by contradiction, suppose |z,| — +o00 and define w,(z) := u,(x + 2,). Then
(wy,) is bounded, and for some subsequence, w, — w in H'(RY). Our goal is to prove

that w # 0. Suppose w = 0 and
IVw, > =, |wn* — v, in MTRY).
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By Concentration-Compactness Principle due to Lions [29], there exist a countable set

J, (wi)ies CRY and (pi)ies, (vi)ies C [0, +00) satisfying

V:ZVid’w /’LZZMZ(S{EN and :ui:SVz?/T‘

1€J ieJ

Next, we are going to prove that v; = 0 for all ¢ €J. Suppose that there exists ¢ €J

such that v; # 0. Note that

1 1 x
¢ = lim (]E(un) - —I'(un)un) > N lim/A(ex)|un|2 dr =

2 €
* 1 *
- %lign/A(em + €2p)|wp|?* dz > Nlir{n Alex + ez,)|w,|* dz =
Bé(xi)l
== liTan (Alex + €2,) — Ao)|wn|* da + N lirrln Ano|w,|* dx >
Bs(xi) Bs(xi)

> ~ [ Ascpsya(x)dv,

where p;5(z) = ¢ (352), and ¢ € C(RY) satisfies 0 < ¢ < 1, [Vyp| <2, p =1 on

5
B1(0) and ¢ = 0 on RV \ By(0).

By Dominated Convergence Theorem,
li = ;
lim [ Ao psa(2)dv = Asov,

thus

1
6>_Aooi-
C_N v,

On the other hand, by a simple calculus, (psw,) is bounded in H(RY).

Pon(T) = pi(x = zn),
|pomtinl] = [loswnll,  Vn €N

and so,

Ié(”ﬂ)(@&nun) — 0,

or equivalently

[ IVw,|Posdx + [(Vw,Vs)wpde + [V (z)pswide—
— [Alex + ez,)|w,| T psdr — [ A(ex + €2,)|wn|* @sdz — 0

Taking the limit n — +o00, and after 6 — 0, we obtain

p(x;) = Ao
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Since SV?/Q* < u(z;), it follows that
SN2 < A2y, < A(0)" T Ary, (2.19)

By (2.18) and (2.19),
SN/2
Ce 22—~
NA(0)" "
contrary to Corollary 3.2.4. Consequently v; = 0 for all ¢+ €J, which means w,, — 0 in

LE (RY), contrary to (2.17). From this, w # 0.
Now, consider ¢ € H'(RY) and ), () := ¥ (z + 2,). Then,

on(1) = L)t = Bluns ) ~ [ Alea) ()bl
or equivalently
on = B(wy, ) — /A(ex + ezp,) f(wp)dz.
Taking the limit n — +o0, J), _(w)y = 0. As ¢ € H'(R") is arbitrary, w is a critical

point of J,_, and thus, by Fatou’s Lemma

da, < Ja(w)=Ja_(w)— %ng(w)w

= [ A (3f(w)w — F(w)) dx

< lirrhinf/A(ex +€z,) <%f(wn)wn — F(x, wn)> dx
= hrr;inf/A(ew) (%f(un)un - F(un)) dx

1
= lim (Ie(un) - —]'(un)un> = <da,,

e’}

2 €
which is impossible. Thereby (z,) is bounded in R, and the claim follows.

Consider R > 0 such that B,(z,) C Bgr(0). By (2.17),

/ lup|* dz >mn, V¥n €N,
Br(0)

By considering that w, — wu and proceeding as in Claim 3.2.7, u # 0. Since u is a
nontrivial critical point for I, we must have I.(u) > c.. On the other hand, by Fatou’s

Lemma,

n

> [Alex) (3 f(w)u— F(u)) dz = I(u) — 11/ (u)u = I(u).

¢, —lim (Ig(un) _ %Ié(un)un> ~ lim / Alex) (% Flun )y — F(un)) da

This proves that u is a ground state solution of (P), for all € € (0,¢,). m
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3.2.2 Concentration of the solutions.

In what follows, we consider the set
A:={zeRY; A(z) = A(0)},

and a sequence (€,) C (0, ¢) with €, — 0 as n — +o00. Moreover, we fix u,, € H'(RY)
satisfying
L(u,) =¢, and I (u,)=0,

where [, := I, and ¢, := c.,. Using the same arguments explored in [5, Lemma 2.6],

l[wi|)? > 2¢, > 2¢o, VYn €N. (2.20)

Lemma 3.2.8 The sequence (u,) is bounded in H'(RY).

Proof. See [5, Lemma 2.10]. =

Lemma 3.2.9 There exist (y,) C Z" and r,n > 0 such that
/ lun|* dz >1n, Vn € N.
Br(yn)

Proof. Suppose the lemma were false. Then, by [43, Lemma 2.1], u,, — 0 in LP(RY)
for all p € (2,2*], and so,

/A(enx)f(un)u:{dx — 0.
As I/ (uy)u,” = 0, it follows that |u,[|> — 0, a contradiction. This proves the lemma.

In the sequel, we fix v, (1) := u,(x+y,) for all z € RY and for all n € N. Thereby,
for some subsequence, we can assume that v, — v in H*(R?). It is very important to

point out that only one of the cases below holds for some subsequence:
€EnlYn — 2 € RN

or
l€nyn| — +00.

For this reason, we will consider a subsequence of (€,) such that one of the above

conditions holds. Have this in mind, let us denote

A(z), if the condition (1) holds
Ao, if the condition (2) holds.

A, =
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Since A is continuous, it follows that |A(e,z + €,y,) — A.| — 0 uniformly with respect

to x on bounded Borel sets B € RY. Consequently

lim/ Alen + €nyn)|vn|?* pdx = lim/ A, |v|* pdu, (2.21)
B B

for each p € L>®(RY).
By using (2.21) and applying the same idea of Claim 3.2.7, we see that v # 0.

Lemma 3.2.10 The sequence (€,y,) is bounded in RN . Moreover, iy (v) =0 and if
entn — 2 €ERN, then 2 € A.

Proof. First of all, we will prove that (e,y,) is bounded. Suppose that |€,y,| — +oo.
Consider ¢ € C®(RY) and 1, () := ¥(x —y,). Since I (u, )1, = 0 for all n € N, then

/Vunvwn + V(z)upppde = /A(enx)f(un)l/zndx,

or equivalently

/anv¢ + V(z)v,pde = /A(en:c + €nyn) f (V) 0dex.

Taking the limit n — +o00, we derive

/Ww + V(z)vpda = /Aoof(v)wd:c,
thereby showing that J), (v) = 0. As v # 0, the Fatou’s Lemma yields

da, < Ja(v)=Ja (v)=3T4 (v)v=[Ax (3f(v)v— F(v))dz

< lin;inf/A(en:c + €nYn) <%f('un)'un — F(vn)) dx

= lim inf / Alent) (é Fun)un — F(un)) dx

1
= lim inf <[n(un) — ilé(un)un) = limc¢, = ¢y,

n

which is absurd, because ¢y < da,, . This completes the proof that (€,y,) is bounded

in RY. Now suppose €,y, — 2 € RV, Arguing as above, we find

/ VoV + V(e)opds = / A2 fw)pdz, ¢ € CZ(RY),

and so J ) (v) = 0. Hence,

1 1

dae) < Jae(v) — 5*]21(2) (v)v < lim inf ([n(un) - 5%(%)%) = cp = d x(0).-
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Since A = d is decreasing and da(.) < da(o), we must have A(0) < A(z). From the fact
that A(0) = max,cgy A(x), we obtain A(0) = A(z), or equivalently, z € A. Moreover,
we also have J), (v) = Jj,,(v) =0. =

From now on we consider €,y,, — z with z € A. Our goal is to prove that v, — v
in HY(RY) and v, (z) — 0 as |z| — +oo uniformly in n. Have this in mind, we need of

the following estimate
Proposition 3.2.11 There exists h € L'(RY) and a subsequence of (v,) such that

|f (v (2))vn ()] < h(z), Ve RY and neN.

Proof. Note that, by Fatou’s Lemma,

< lim inf/A(enx + €2Un (%f(vn)vn — F(vn)> dz

< lim sup / Alenx + €,yn) %f(vn)vn — F(vn)) dx

= lim Sup / Ale ( (Up)tp, — F(un)) dx

= lim sup I(u I’ un)un> = li7rln cn = Co = da)

from where it follows that

lim / Alent + eng) (% Fon)tm — F(vn)> d = / A(2) (% Fw)o — F@)) da.

Since
Alen + eat) (%f@n)vn _ F(vn>) >0

and

1
A(En.l? + 6nyn) (5

Fvn)on — F(Un)) L A(2) (% Flo)o — F(U)) ae in RY,

we can ensure that

Alent + enyn) (% Fvn)on — F(vn)> s A(2) (1 Flo)o — F(v)) i LI(RY).

2

Thereby, there exists he LY(RY) such that, for some subsequence,

1
A€, + €,yn) (—

3 noa = Flun) ) <Ba). Ve N
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(% - L) <inf A) Fp)vn < Alenz + €nyn) (%f(vn)vn —-F (vn)> )

qg+1 RN

we get the desired result. m

An immediate consequence of the last proposition is the following corollary

Corollary 3.2.12 v, — v in L* (RY).

Proof. The result follows because |v,|>" < f(v,)v, for all n € N and v,(z) — v(z)
a.e. in RY.

Our next result establishes a key estimate involving the L norm on balls for the

sequence (v,,). To this end, we fix v, , = max{0,v,} and v, - = max{0, —v,}.
Lemma 3.2.13 There exist R > 0 and C' > 0 such that
|Un|L°°(BR($)) < C’UnlLQ*(BQR(I))7 VneN and Vz e RN (222)

Hence, as (v,) is a bounded sequence in L* (RN), v, € L(RY) and there is C > 0
such that
[Un]oo < C, Vn eN. (2.23)

Proof. It suffices to check that
|Vn |22 (Br@) < Clvntli2 Byn():
for all n € N and # € RY, because similar reasoning proves
[on,~ Lo (B(2) < Clvn-|L2 Byn(@));
for all n € N and 2 € R™. To begin with, we recall that there exist c1, co > 0 satisfying
If()] < clt| + et 7Y, forallt e R (2.24)

and that v, is a solution for the problem

v+ V(@) = Alent + ) fv) i R,
v, € H'(RY).
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We consider n € C®°(RY), L > 0 and 3 > 1 arbitrary, and define 2y, := 7]2@%(’5_1)@”#

and wy, ,, 1= nvn7+v€; where vy, = min{v, 4, L}. Applying 27, as a test function, we
find

[ P < A [0S e (225)

- / V(@)onvs Vo, sde — 2 / (Vo Vi)ner o, yda.
Since

< C’/vifg_l)vi,ﬁvmzdx—l— (2.26)

[ T

1 -
e R

combining (2.24), (2.25) and (2.26), we obtain
/77 an |an+| dr < C/|vn+\ " an Vx4 (2.27)

+C’/|vn|2 ?5 1>dx+c/v,?f§ Va2 L |VnPda

where C' > 0 is independently of 3 > 1,7 € C®(RY) and L > 0.
On the other hand, since H*(RY) — DV(RY) — L* (RY),

|wL,n

5 < C’/|Vw,;7n|2dx < C’/|Vn|2vi(§ D2 Ldr+ (2.28)

¢ [ oo+ € [ (9o

and thus

|wLn

2. < CpB? (/|V77|21)Ln )vi’erm—i—/nQvi(ﬁ |an,+|2da7). (2.29)
Then, from (2.27) and (2.29),
sl < O ( [ lonPeils s (2.30)
+/\vn|2 77211%5 b dm%—/vi(’ﬁl)viyﬁvmzclx),
where C' > 0 is independently of n € N, 3> 1, L > 0 and n € C>*(R").

Claim 3.2.14 There exists R > 0 such that

*2
2*2
sup / vy dr < +00.
neN,zeRN J B3g(z)
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In fact, fix By := 2. By using the limit v,, — v in L* (RV), we can fix R > 0 sufficiently

small verifying

2% 2

Cps </ U,%,erx) <3 for all n € N and z € RY, (2.31)
Byr(w)

where C is given in (2.30). On the other hand, consider n, € C>(R¥, [0, 1]) such that
Ny = 1 on Bsg(x), n, = 0 on RY \ Byg(z) and z + ||Vn,||« is a constant function.
Then,

2% 2 2(Bo—1) 2% 9 2%_9 2 2%¥_2\ 2%_9
/ n+nva nO _/ n+nvan _/ ( )( n+nvan ) n,+ dx S
Bsr

2

< / (v n v2*22)2* dz i (/ v? dx>222 ! |w
= n,+lx n n, = Ln
b Byr(z) ! 2052

Applying (2.30) with n =7, and 8 = By, we get
%* +/U12;+|V77:c\2d$> )

1
2 < CB (14 |[Vnullo) / o da.

By using Fatou’s Lemma for L — +o00, we obtain

2
22 2% .
(/ Uanrda:) < Cﬁg/vi,erx
B3r(z)

for all n € N and for all z € RY. This proves Claim 3.2.14.

2
2*

|wL,n

which leads to

‘wL,n

In what follows, we fix R > 0 as in Claim 3.2.14, r,, := g—ﬁ,
2+2 25(t — 1)
ti=——— d = ——">1
2(2- —g2) MO A 2

Claim 3.2.15 Consider B > 1 arbitrary such that v, 4 € Lﬁ%(BRMm (x)) for alln € N

and for some m € N. Then

[Vn |2 8(Bp,, ) S CVPBYPPL 4™ i | (2.32)
X (BR4rm (7))

where C' > 0 is independently of n,m € N, > 1 and x € RY.

In fact, since 2*5 = Bt T, Uny € L%(BRMm(m)) for all n € N. Consider 7,,, €

C*(RM,[0,1]) such that 1., = 1 in Brir, ., (@), Nem = 0 in RN \ By, (x) and

[Mem oo < 72 Using 7 = 1 m in (2.30),

o ([ e [ e
BR+rm (a:) BR+rm (‘T)
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2 \2
+ ( ) / Uiﬁ_d.ﬁ <Op*| (1+ 4m)/ Ui,ﬁ+d$+
T'm41 BR4ry, (€) BRirm ()
1/t
+/ vif;%fﬂd:v <CB [ (1+4m) (/ 1da7> :
BR+rm(w) BSR(O)
(t=1)/t 1/t
. / vfﬁ/(t*l)dx + (/ v,(ermdx) )
BRiry, (€) B3r()
(t—1)/t
[ <
BR+rm($)

(t=1)/t
R+rm (T

Thus

lwp s < CB (14 4m)|”n,+|i€ﬁt/(t—1>

(BRtrm ()"
Applying Fatou’s Lemma as L — 400 we get (2.32). Consequently, by induction,

m

IR R DI N
|Un’+|L2*Xm(BR+rm+1(w)) <Crex Xzz_1 ! H(l +4°) 2 (v 4 2% (Byp(2) (2.33)
=1

Since (Z;L %) and (Z;L j) are convergent because y > 1, and that
m m

m . .
m  logy(1+4") m  logg(4t1) m i+l

[0+ 4750 = 45 750 < g2 — =g

=1

there exists C' > 0 independently of n,m € N and x € R" such that

|Vt p2mBran < Clon ]2 (Byp()-

Now (2.22) follows by taking the limite of m — +oc0. =

Corollary 3.2.16 For each 6 > 0 there exist R > 0 such that |v,(x)| < 0 for all
z € RV \ Br(0) and n € N.

Proof. By Lemma 3.2.13,
[Un|Loo(Br(z) < Clvnlr2s (Byp@y, forall neN and x € RV,

This fact combined with the limit v, — v in L* (RY) proves the result. m

90



Concentration of the solutions:

As v # 0, we must have |vy @y 7 0. Hence, we can assume that vy |peo @y >

§ for any > 0 and n € N. In what follows, we fix 2, € RY verifying

[vn (2n)] = max v, (2)].

Since v, () = un (T + yn), the point x,, := z, + v, satisfies

[t ()| = max fun (2)].

From Corollary 3.2.16, (z,) is bounded in RY, then
€nln = €nZn + €aYn — 2 € A.

and

liTan Alepzy) = A(z) = A(0).

3.3 The case N = 2.

In this section we will consider the case where f has an exponential critical growth.
For this type of function, it is well known that Trundiger-Moser type inequalities are
key points to apply variational methods. In the present paper we will use a Trudinger-

Moser type inequality for whole R? due to Cao [13] ( see also Ruf [44] ).

Lemma 3.3.1 (Trudinger-Moser inequality for unbounded domains) For all
u € HY(R?), we have

/ (eo‘lu‘2 — 1) dr < oo, for every o > 0.

Moreover, if |Vuls < 1, |ul, < M < oo and a < 4=, then there ewists a positive
constant C' = C(M, &) such that

/ (ea‘“‘2 — 1) dr < C.

The reader can find other Trundiger-Moser type inequalities in [15], [23], [24],

[33] and references therein

As in the previous section, firstly we need to study the autonomous case.
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3.3.1 A result involving the autonomous problem.

We consider the problem
—Au+V(x)u = \f(u), z€R?
( ) ( ) <4P>ifﬂp
u € H'(R?),

where f: R — R satisfies (f1) — (f5). Associated with this problem, we have the energy
function Jy : H'(R?) — R given by
Iw) = I = S|P = A [ Plajda,
It is well known that J, € C'(H'(R?),R) with
Ji(u)v = B(u,v) — )\/f(u)vdx, Vu,v € H'(R?).
In the sequel,
Ny={uec H'RH\ E; Jy(wu=J\(u)v=0,Yve E}
and
dy = 1J{[1f I
In [5], Alves and Germano have proved that there exists a constant 75 > 0 such that

(AP)S™ has a ground state solution if
A>A0) and T > 7, (3.34)

where 7 was fixed in (f5). More precisely, it has been shown that for A > A(0) and

T > 79, there exists uy, € H'(R?) verifying
J;\(U,\) =0 and J)\(u/\) = d)\

with

dy < (3.35)

where A < 1/a and a was given in (1.3). This restriction on 7 has been mentioned in
Theorem 3.1.1, and it will be assume in whole this section.

Moreover, the authors have proved that for all u € H*(R2)\ E~ the set Ny N E(u)
is a singleton set and the element of this set is the unique global maximum of J,| Bu)

which means precisely that there exist uniquely ¢* > 0 and v* € E~ such that

IH(t'u+v") = max Jy(w) and {t'u+0v*} :N)\HE(U)
weE (u)

As in the case N > 3, we begin by studying the behavior of the function A\ — d,.
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Proposition 3.3.2 The function X — dy is decreasing and continuous on [Ag, +00).

Proof. The monotonicity of A — d, and some details of the proof are analogous to
Proposition 3.2.1 and [6, Proposition 2.3]. In order to get the limit limd,, = d,, it
suffices to consider Ay > Ay > ... > A\, — A. Let u,, be a ground state solution of the

problem (AP)3”. Let t,, > 0 and v, € £~ such that t,u, + v, € Nx. Consequently

J/\(tnun + Un) max J)\ > d)n

 B(un)

and the same ideas explored in Proposition 3.2.1 remain valid to show that ([ f(u,)u,dz)

is bounded in R. Now, arguing as in [5, Lemma 3.11], we see that (u,) is bounded in
H'(R?).
Note that there exist (y,) in Z?, r,n > 0 such that

/ tPdz >, Vn €N (3.36)
Br(yn)

Otherwise, u;7 — 0 in LP(R?) for all p > 2. Defining w,(x) := A%@ where A was

given in (3.35), we have
w1 @2) < Aa <1, VYn €N,

This fact permits to repeat the same approach found in [2, Proposition 2.3] to get the
limit
/ F(w,)dx — 0.

As w, € E(u,) and u, € Ny, , it follows that

A
d)\ 2 d)\n = J,\n(un) Z J)\n(wn) = 5 — /\n/F(wn)dm

Passing to the limit as n — +oco we obtain dy > A/2, which contradicts (3.35),
and (3.36) holds. If @,(x) := u,(z + y,), then @' (z) := ul(x + y,), and by (3.36),
u; — w # 0. This implies that V := {u },en satisfies 0 ¢ PURELIED) hd v
is bounded in H'(R?). We proceed as in Proposition 3.2.1 to conclude (t,u, + v,) is
bounded and dy, < dy + 0,,. This finishes the proof. m
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3.3.2 Existence of ground state for problem (P)..

The three first results this section follow as in the case N > 3, then we will omit

their proofs.

Lemma 3.3.3 The limit lim._,qc. = ¢o holds. Moreover, if wy is a ground state so-
lution of the problem (P)o and let te > 0 and ve € E~ such that towy + ve € M..
Then

te —1 and v, — 0

as € — 0.

Corollary 3.3.4 There exists ¢g > 0 such that

A2
e <da, and c. < - for all €€ (0,€).

Proposition 3.3.5 There ezists a bounded sequence (u,) C M. such that (u,) is
(PS)., for I..
Now we are ready to prove the existence of solution for ¢ small enough.

Theorem 3.3.6 Problem (P). has a ground state solution for € € (0, ¢p) .
Proof. To begin with, we claim that there are (2,,) C Z? and r,n > 0 such that
/ wtdr >, VneN. (3.37)
By (2zn)

In fact, if the claim does not hold, we must have u;}” — 0 in LP(R?) for all p € (2, +00).
Since u,, € M, by (2.16), ||u;[|* > 2¢c > 2¢,. Setting @, (z) == A i and arguing as

[lun ||

in Proposition 3.3.2, we find ¢, > %, which is a contradiction. Therefore (3.37) holds.

Claim 3.3.7 (z,) is bounded in R2.

Suppose |z,| — +oo and define wy,(x) = u,(z + 2,). From (3.37), we can suppose
that w, — w # 0 in H'(R?). As it was done in (2.10), ([ f(wn)wndz) is bounded in
LY(R?). By [18, Lemma 2.1],

flwn) = f(w) in LY(B),

for all B C R? bounded Borel set. Now, we repeat the same idea explored in Claim
3.2.7 to deduce that w is a critical point of J4_ with d4_ < ¢, which is absurd. This
proves the Claim 3.3.7.

To conclude the proof we proceed as in Theorem 3.2.6 to prove that the weak

limit of (u,) is a ground state solution for /.. m
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3.3.3 Concentration of the solutions.

In this section we fix €, — 0 with €, € (0,¢) for all n € N. By results of the

previous section, for each n € N there exists u,, in H'(R?) such that
L(u,) =¢, and I (u,)=0,

with the notation [, := I, and ¢, :=c,

Lemma 3.3.8 The sequence (u,) is bounded in H'(R?).
Proof. See proof of [5, Lemma 3.11]. m

Lemma 3.3.9 There are r,n > 0 and (y,) C Z* such that

/ lut|2dz > 1. (3.38)
Br(yn)

Proof. See proof of (3.37). m

From now on, we set v, (z) := u,(z +y,). Then, by (3.38), v, — v # 0 in H'(R?)

for some subsequence.

Lemma 3.3.10 The sequence (e,y,) is bounded in R?. Moreover, Iy(v) = 0 and if
€nlyn — 2 € R? then z € A or equivalently A(z) = A(0).

Proof. As in the previous section, (f(u,)u,) is bounded in L'(R?). Then, by [18,

Lemma 2.1],
flun) = f(u) in LY(B),

for all bounded Borel set B C R? . The above limit permits to repeat the same

arguments explored in Lemma 3.2.10. m

Our next proposition follows with the same idea explored in Proposition 3.2.11,

then we omit its proof.

Proposition 3.3.11 There exists h € L*(R?) and a subsequence of (v,,) such that
|f(vp(2))vn(2)] < h(z), forall v €R* and n €N.
As an immediate consequence of the last lemma, we have the following corollary
Corollary 3.3.12 v,, — v in L1(R?) where q¢ was given in (fs).
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Proof. It suffices to note that f(v,)v, > 0F (v,) > 071|v,|?, for all n € N and v,(z) —

v(z) a.ein RY. m
The next lemma have been motivated by an inequality found [17, Lemma 2.11],
however it is a little different, because we need to adapt it to our problem.

Lemma 3.3.13 For allt,s >0 and 8 € (0,1],

4(e” — 1)(In*s) + s(Ints)V/2,  if s > !/t
ts < .
el/4tsP, if s € [0,e'/4].

Proof. From [17, Lemma 2.11], if s > /4 then In*s > 1/4 and
ts < (e — 1)+ s(in*s)/?2 < 4(e” —1)(In"s) + s(in's)"/2.

For s € [0,1), we have ts < ts” < e'/4ts? and if s € [1,e'/4], then ts < tel/* < el/4ts5,

This proves the inequality. m

Proposition 3.3.14 v, — v in H'(R?).

Proof. To begin with, by (f1), there exists K > 0 such that
[f()] <TeV* = [f(O)] < Kf(t)t.

On the other hand,

(17 (F1@1) ) = £ xorars(1Fen)) <
< Kf(vy)v, < Kh € LY(R?).

Thus, there exists h € L2(R?) such that
1 -
e (plFl) <F Ve

In what follows, fixing o > 0 such that (‘;‘TQ’{ SUD,en HU:{H%{l(RQ) < 1, the Lemma 3.3.1
guarantees that
by, 1= (e Iil” —

1) € Li1(R?) and |by| o <C

q—1

for all n € N and some C' > 0. Applying the Lemma 3.3.13 for t = a|v;}|, s = £|f(v,)|

and 8 = 1, we obtain
ol = S < Bageetot — (e (His1) ) +
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1/2
watrel (i (FEE01) )+l (Eren)) <
VT

16I’ ~
< —bulonf? + T f (0a)vn + /o [

Since b, — b in Lq%l(RQ) and v, — v in LY(R?), we have that (b,|v,|?) is strongly
convergent in L'(R?). Here, we have used the fact that b,|v,|* > 0 and v, (z) — v(z) a.e
in RY. Analogously (|v}|h) converges in L!(R2). Consequently there is H, € L'(R?)

such that, for some subsequence,
|f(v)vi| < H, ¥neN.

The same argument works to show that there exists H, € L'(R?) such that, for some

subsequence,

|f(vn)v, | < Hyy, ¥neN.
As an consequence of the above information,
f v = flo)wt and  f(v,)v, = f(v,)v™ in L'(R?).

Now, recalling that Ij(v) = I/ (v,)v) = I (v,)v, = 0,07 — vt and v, — v~ in

H'(R?), we get the desired result. m

Lemma 3.3.15 For alln € N, v, € C(R?). Moreover, there exist G € L3(R?), C' > 0
independently of x € R? and n € N such that

|onlle@@y) < ClGlrema@y, forall ne€N and x € R?.
Hence, there exists C' > 0 such that |v,|pemey < C and
|vn(z)| = 0 as |z| = 400, wuniformly in n € N.
Proof. We know that there are C', Cy > 0 such that
1F(t)] < Chlt| + Ca(e™ —1) Vit eR.

By Proposition 3.3.14, there exists H € H'(R?) such that |v,(z)| < H(z) for all n € N
and x € R?. Setting

G = (||[V]|se + A0)CY) H + A(0)Co (™ — 1) € L¥(R?)
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it follows that
|Alen® + €,9n) f(vn) — V(z)v,| < G(x), forall ne€N and z € R

Since
—Av, + V(2)v, = Alenz + €yn) f(vy), in R2

v, € H(R?)
From [21, Theorems 9.11 and 9.13], there exists C3 > 0 independently of x € R? and
n € N such that v, € W?3(By(x)) and

||Un||W2’3(BQ(CC)) < 03|G|L3(32(x)), for all n € N. (339)

On the other hand, from continuous embedding W?3(By(z)) < C(Bi(z)), there is
C, > 0 independently of x € R? such that

ullo@ray < Callullw2s(s,@y, forallu e W23(By(z)). (3.40)

The result follows from (3.39) and (3.40). =

Concentration of the solutions:

The proof of the concentration follows with the same idea explored in the case

N > 3, then we omit its proof.
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Apendices






Apeéendice A
Decomposicao Espectral

The main goal this section is to prove the following abstract theorem, which
follows by using some results found in functional analysis.
Theorem A.1 Let (H,(,)) be a Hilbert space and A : H — H be a bounded and linear

symmetric operator such that 0 ¢ o(A), or equivalently, A is a bijection. Then there
exist ET,E~ C H closed subspaces such that the bilinear form

B : HxH — R

(u,v) +— (Au,v) 0.1

is definite positive on Et and definite negative on E~, with (E~)* = E* and (ET)+ =
E~ and the orthogonality associated with the bilinear form B coincides with the ortho-
gonality of the usual scalar product of H. Moreover there exists a scalar product (-,-)a
such that its norm ||.||a is equivalently to original norm of Hilbert space H and E™ is

orthogonal to E~ and such that
B(u,u) = ||[u||}, Yu € EY  and B(u,u) = —||u||}, Yu € E™.

Moreover, if P, and P_ are the linear projections on E* and E~, then Py and P_
commute with A, i.e., AP, = P, A and AP_=P_A

Proof. First of all, note that A? is definite positive. In fact, for all x € H, we have
(A%, 2) = (Az, Az) > (||A7[| 71?2,

where || || is the norm associated with the scalar product (, ). Therefore, from [26,

Theorem 9.4-2, Theorem 9.8-1(b)] there exists a unique definite positive and continuous



operator C' : H — H such that C? = A? and AC = C'A. Setting

At = %(A +C), and A = %(C — A)

it follows that AT and A~ are symmetric operators and

A=A"—A", and C=AT4+A4".

In what follows, we fix E~ := kerAT and E* := (E~)*, where this orthogonality is
associated with the usual scalar product of Hilbert space H.

In the sequel, we will divide the proof into several steps.
Step A.2 P, and P_ commute with A and C.
Indeed, since I = P, + P_, it suffices to check that P. A = AP_ and P.C' = CP_.
First of all, note that A(E~) C E~. In fact, if x € £~ then
A*(Az) = %(A +0)Az = A <%(A + cn) — A(A*z) =0,
then A(E~) C E~. Note that for all z € H and for all y € E—,

(Axr — AP_z,y) = (x — P_x, Ay ) = 0.
—— ~~
€E- €E-
Therefore P_(Ax) = A(P_x), and so, AP = P_A. Analogously CP_ = P_C. This
proves the Step A.2.

Step A.3 A(E~) = E~ and there exists o > 0 such that
B(z,7) < —allz||?, Vxe E™. (0.2)
Moreover Ax = —A~x for all x € E~.

Note that A(E~) = A(P_(H)) = P_A(H)=P_(H) = E~. Then, A|lg- : E- — E~ is

a bijective continuous linear operator. As A is symmetric,

M := sup (Az,x) € o(A|g-). (0.3)
rz e E™,
llell =1

On the other hand, for v € E~, Az+Cx = 2ATz = 0 that yields (Az,z) = —C(z,z) <
0, which gives M < 0. Since A|g- is bijection, we must have 0 ¢ o(A|g-). Thus M # 0,
or equivalently M < 0. Fixing o := —M, by (0.3),

B(z,z) = (Az,z) < —allz|*, Ve E".
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To prove the last part, it is enough to note that for all x € E—, ATz = 0, and thus,
Ar=ATx — A 2= —A"x,
which concludes the claim.
Step A.4 A(Et)=E", A: ET — E" is a bijection, and there exists 3 > 0 such that
B(z,z) > B|z|* (0.4)

for all x € E*. Moreover Az = A%x for all x € ET.

In fact, note that A(E*) = A(P.(H)) = P.(A(H)) = P.(H) = E*. Therefore

A: ET — E™T is bijection. From equality below
+ oA 1 1 L 2
AT oA = §(A+C) o 5(0—/1) :Z(O —CA+ AC - A%) =0.

From this, AT(A~(H)) = {0}, from where it follows that A~(H) C E~. On the other

hand, for x € E™,

A 2|l® = (A2, A) = (3, A" (A 2)) = 0,
which leads to A~z = 0 and Az = ATz. The inequality (0.4) follows as in (0.2).
Step A.5 ET = kerA~.

In fact, from Step A4, if x € E* then ATz = Az and = € ker A~. Suppose that
x € kerA™ and let y € E~, then

(z, Ay) = (Az,y) = (Ate — A"a,y) = (ATa,y) = (2, ATy) = 0

because E~ = kerAT. Since, from Step A.3, we conclude that (x,w) = 0 for all
w € E~, or equivalently z € E™.

Note that, as it was done in proof of Step A.4, we have AT o A~ = A~ 0 AT = 0.
Therefore AT(H) C kerA~ and A~ (H) C kerA*, that is,

AY(H)Cc Bt and A (H)C E".

Moreover,

{re H; B(z,y) =0, forallye £~} =FE".
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Indeed, if x € E* then B(x,y) = (Az,y) = 0 for all y € E~. On the other hand, if
x € H verifies B(x,y) =0 for all y € E~, then

(,y) = (2, A(A"(y))) = (Az,A™'y) = B(z,A™'y) = 0,

implying that x € E™T.

In what follows, we define on H the bilinear form

<','>AIHXH—>R

by
(z,y)a = (AP (), Pyy) — (AP_z, P_y).
Then
(,y)a = (Atz,y) + (A" 2,y) Va,y € H. (0.5)
Note that

(AP,x, Pyy) = (A"Pyx — A" Pyx, Pry) = (A" Pia,y) =
—— ==

€eE+ €E~ cE+
= (Pyx, Aty) = (z, ATy) = (AT )
(Pra, ATy) = (z, ATy) = (AT, y)
cE+

Analogously (AP_x, P_y) = (—A~x,y), which proves (0.5).
From the above study, it follows that (-,-) 4 is a scalar product on H. Hereafter,

we denotes by ||z||4 the norm associated with the inner product, that is,

[|z][a = V{2, 2)a.

Next, we will prove that the scalar product || ||4 is equivalent to norm of H.

First of all, note that for all z € H
(,2)a = (APx, Prx) — (AP-x, P-x) > || Pyx|]® + af|[P-z||?

= (B + a)(||Pral* + [[P-z]]*) = (B + a)|2]|*.

On the other hand, from (0.5),
(@, 2)a < (JAT|+ [JAT D[],

finishing the proof that ||.|| 4 is equivalent to norm of H.
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By the above analysis,

B(z,r) = (Ax,z) = (P, Az, Py2) — (P_Ax, P_x) = ||z||3, Vo€ ET
~—_— ——

=0

and

B(z,r) = (Az,z) = — (P, Az, Pyx) +(P_ Az, P_2) = —||z||}, Vr€ E".
—0

Corollary A.6 Moreover, if T : H — H is a linear isomorphism such that (T'x, Tu) g =
(x,y)g and B(Tx,Ty) = B(z,y) forallx,y € H, then T(ET) = ET and T(E~) = E~.

Proof. First of all, our goal is to prove that A and C' commute with 7. Note that for
all v,y e H

(Az,y) = B(x,y) = B(Tx,Ty) = (ATz, Ty) = (T~ ' ATz, y).
Therefore T-' o AoT = A, or equivalently, AoT =T o A. On the other hand,
(T™'CTz,z) = (CTz, Tx) >0, Vo€ H. (0.6)

Moreover

(T7'CTx,y) = (CTz,Ty) = (CTy,Tx) = (T~ CTy, x) (0.7)

for all z,y € H. Since
(T'CT? =T 'C*T =T 'A*T =T7'TA* = A®

then S := T~ 1o C oT is definite positive, symmetric and S? = A%. Consequently, by
uniqueness of C', we must have S = (', or equivalently T'o C' = C' o T. Now our goal
is to prove that T(E*T) = E*. Note that ET = kerA~ = {z € H ; Az = Cz}. Since

T! is bijective and commutes with A and C, we have
TEN=T{rcH; Av=Cz}y={rc H; AT '2 =CT 'z} =

={reH; T 'Az=T""Ca}y={zx€H; Az =Cx} =E".

The same argument works to show that T(E~) = E~. This proves the claim and

finishes the proof of the corollary. m
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A.1 Construction of the operator A: H — H.

Hereafter, we assume that V : RV — R is continuous and Z" periodic. Since

0 ¢ o(—A+ V), the operator
-A+V : H*)RY)cC L*RY) — L*RY)
u = —Au+Vu

is a continuous bijection and (—A + V)71 is continuous with relation to topology of

L*(RY). Note that —A + V is also continuous in the usual norm of H?(RY), because

/| — Au+ V(z)uPdr < /(4|Au|2 + 4V (2)?u*)dr <

N

<C [ e

=1

for all w € H*(RY). Hence,

2+ [ul)dz < Ollul[72 gy

(=& + V)ulgaam < Cllullpay, Vu € HARY),
Defining @ : H'(RY) — R by
QW =5 [(TuP + V@)uP)da.
we have that Q € C*'(H*(RY),R) and
Q' (u)v = /(VUVU + V(z)w)dz, Yu,v e HY(RY). (1.8)
Then, by Riesz’s Theorem, there exists A : H'(RY) — H'(RY) such that
Q' (w)v = (Au,v)ryy, Vu,v € H'(RY). (1.9)
From (1.8) and (1.9), A is linear, symmetric and continuous.

Proposition A.1 0 ¢ o(A), or equivalently, A is bijective with A~ : H}(RN) —

HY(RY) being continuous.
Proof. Our first goal is to prove that A is injective. Indeed, if Au = 0, then

(Au,v) =0, for all v € H'(RM).
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that is,
/(VUVU + V(z)w)dr =0, for all v € H(RY).

Thus u is a solution of

~Au+V(z)u=0, in RY,
u € HY(RY)

From [21, Theorem 9.9], u € H?(R") and
/(—Au + V(z)u)vde =0, Yo e H'RY).

Therefore —Au + V(x)u = 0 a.e. in RY. Since (—Au + V(z)u) = 0 and —A +V is
injective, we must have u = 0, by proving that A is injective. Let us to prove that A

is subjective. Consider w € H*(RY) and (w,),, be a sequence in C>(RY) verifying
w, = w in HYRY).
By regularity theory, there exists (uy), in H?>(RY) such that
(—A+V)u, = —Aw, +w,, VnéeN,

because (—A + V) is subjective and —Aw, + w, € L*(RY). Our goal is to prove that
(||un]|r2yy) is bounded. To see why, consider ¢ € L*(RY) such that ||¢||z2@y) < 1.
Setting L := —A + V, we have

/uncpdm = /unLL_l(go)da: = /LunL_l(go)dx = (1.10)

_ / (= Ay + V(@)un) (L 0)d / (= Aw, + w,) L (p)da

On the other hand,
LL Yo =, orequivalently, — AL (¢)+ L 'o=¢—V(z)L o+ L .
Therefore, by [21, Theorem 9.9], there exists C' > 0 independently of ¢ such that
1L ¢l 2y < Clo = V(@)L o + L] 2y < (1.11)

< Cllzaey + (VI + DIZ™ @lr2er) < C + (V| + DIZTI
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Thus, from (1.10) and (1.11),

/unSD = /anVLl(,D + wnLilgOdl' = <wnaL7190>H1(]RN) <
< wn| g @) 1L @l ey < M

where M > 0 is independently of n € N and ¢ € C°(R"Y) satisfying ||¢||r2@y) < 1.
Consequently
sup /ungoda: < M,¥Yn eN

o € L2RN),
llell 2Ny <1

implying that (u,) is bounded in L?*(RY). On the other hand,
/|Vun|2 [V wti2de < /|Vun|2 FV(@)ulde — /un(—Aun V(@) <

< /unLund:IJ < M| Lt 2y < M.||L||-tn] sy < M2||L]|.

Then (|Vu,|) is bounded in L?(R”), and so, (u,) is bounded in H'(R"). Consequently

there exists u € H'(RY) such that, after passing to subsequence,
u, —u in H'(RY).
Note that for all v € H*(RY),
(U, LV) p2ry) = /(Vuan + V(z)upv)de = (Luy, v) 2@y =
= (—Awy, + Wy, V) p2ry) = /(anVv + wpv)dr = (Wy, V) g1 ey

passing to the limit as n — +oo,

(u, Lv) r2mvy = (w,v) gy, forall v e H*(RY)
or equivalently

(Au,v) preyy = (W, v) @y,  forall v e H*(RY).

This implies that Au = w, showing that A is subjective. m
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