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Abstract

In this work we prove the existence and regularity of the global attractors and the pullback at-
tractors for a class of autonomous and non-autonomous thermoelastic systems, respectively,
with vanishing mean value for temperature in a bounded domain with sufficiently smooth
boundary in R" with n > 2. Moreover, we prove the upper semicontinuity of the attractors

with respect to the diffusion coefficients.

Palavras-chave: thermoelasticity, global attractor, pullback attractor, upper semicontinuity,

regularity.



Resumo

Neste trabalho, provamos a existéncia e a regularidade dos atratores globais e dos atratores
de pullback para uma classe de sistemas termoeldsticos autbnomos e nao autdénomos, res-
pectivamente, com um valor médio da temperatura se anulando em um dominio limitado
com fronteira suficientemente suave em R" com n > 2. Além disso, provamos a semicon-

tinuidade superior dos atratores em relacdo aos coeficientes de difusdo.

Palavras-chave: termoelasticidade, atratores globais, atratores pullback, semicontinuidade

superior, regularidade.
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Notations

e (2 is a domain of R when the body is in the reference state;

e 1 is the displacement of the body’s particle over time;

e 0 is temperature variation of studies body;

e f is the specific external body force;

e & is the internal energy;

e k diffusion coefficient;

e (3 is the thermal moduli;

e L(A, B) is space of bounded linear transformation of A to B;
o H=(H})" x (L*(Q))" x L*(Q) = (Y)"x Y" x Y;

o Y, = L3(Q) = {€e L*(Q); |, &dx = 0};

o H,=H)=(YH)" x Y x Y,and H! = (Y2)" x (Y1) x Y};

e Y% is the fractional power space associated with the negative Laplacian operator sub-

ject to homogeneous Dirichlet boundary condition;
o YX=Y*NnY,
o "= [HLHI = (V170) o (Vo) Yo

o & : L} — (HY(Q))™ is the Bogowskii operator given by div®(v) = v for all
ve Li(Q);
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e 1.1: deformation ¢ of the body B (page 8);
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3.5: scale of the fractional power space of Y (page 57);

3.5: scale of the fractional power space of H (page 57);



Introduction

We will work with non-linear dynamical system from problems of partial differential
equations with initial and boundary data associated to models related to the movement of an
elastic, isotropic, limited and sufficiently smooth boundary solid which occupies the region
2 < R™ with n < 1 and we will be taken into account also the influence of its temperature
in its displacement. More precisely, we will be interested in obtaining information about the

asymptotic behavior of two thermoelastic systems; an autonomous system
PPu—Au—Vdivu+ V0 = f(u), t>0, ze,
0 — div (k(2)VO) + divdu =0, t>0, xel),
subject to boundary conditions
u(z,t) =0, 0(x,t) =0,t >0, z €
on initial conditions
u(z,0) = ug(x), du(x,0) = ui(z), xel,
0(x,0) = Oy(x) x e,
and a non-autonomous system
Pu—Au—Vdivu+ (t)VO = f(u), t>s, z€Q,
010 — div (k(2)VO) + B(t)divou =0, t>s, x €l
subject to boundary conditions
u(z,t) =0, 0(x,t) =0,t > s, x €
on initial conditions

u(z, s) = uo(z), du(z,s) =u(x), zeQ,

O(x,s) = Oy(x) x € Q.



In the problems above mentioned, the map f is external force, the functional parameters
is the diffusion coefficient and [ is the thermal moduli with some suitable growth conditions
which will be presented below.

We recall that for a smooth vector field in some sense u = (uq,...,u,) the gradient

and Laplacian of the vector field u are denoted, respectively, by
Vu = (Vuy,...,Vu,)

and

Au = (Auy, ..., Auy,),

and the divergent operator of a vector field d;u will be denoted by
div dyu = Y 0y, 00us.
i=1
The hypotheses on the non-linearity f = (fi,..., f,), where f; : R® — R. We
consider f a conservative vector field (i.e., there is a scalar field « such that f = Va)
with the functions f; twice continuously differentiable and f;(0) = 0,7 = 1,2,3,4,...,n.

Moreover, we also assume that for each v > 0 there exists C,, > 0 such that

f(f)'€<V‘€‘2+CV7

with - denoting the standard dot product on R". We can assume that there exist C,, > 0 and
n € (0, min{1, A\;}) such that if .
PO | fin

then

F(€) < 21 + Gy,
where A\; > 0 is the first eigenvalue of the negative Laplacian operator with zero Dirichlet
boundary condition, and Sg fd~ represents the line integral of f along a piecewise smooth
curve 7 : [s,t] — R"™ wich y(s) = 0 and y(t) = &, for any £ € R™ (that is, VF(§) = f(&),
where V F' stands for the gradient of £ in the variables £ € R"™).

In addition, we shall assume throughout this text that there exists a constant C' > 0

such that forevery i = 1,...,nand { = (&,...,&,) € R™,

IVl <C (1 +> wl) ,
=1

|02, fi(©)] < C,



forsome 1 <p < Lo ifn>2;1 <p < +wifn =2,
The coefficients x in (3.1), are real-valued continuously differentiable function defined

on 2 such that there exist constants ~( and x; with the property
0 < ko < k() < Ky, €

Furthermore, we assume that there are positive constants 5, and ; such that
0<Bo<pB(t)<pr, teR.

When we talk asymptotic behavior we are asking ourselves about the existence and
properties that the global attractor (in the autonomous case) and the pullback attractor (the
non-autonomous case). In the forward dynamic (in the autonomous case) is the behaviour
of solutions as ¢ — co. Let S(-) be the semigroup that come from the global solution of
the autonomous problem which we are studying. The global attractor is a set A such that
is compact, invariant by S(-) and attracts bounded sets under S(-). Now consider a non-
autonomous problem with the initial data taken in the time s and the processes U (-, -) defined
by the global solution of the problem non-autonomous. The pullback dynamic is the study
of the solution of the non-autonomous problem when it fix the current time and go back to
history, i.e., is the behavior of solutions as s — —oo. This is translated in the definition of
the pullback attractor which will be a family of sets .A(-) such that A(¢) are compact for all

t > s, invariant for ¢ > s by the process U|(+, -), in the sense that
U, 7)A(T) = A(t), t =27 >s

and A(-) is the minimal (in the sense that if there is another family C'(-) such that pullback
attract bounded, C'(t) < A(t) for all t > s) family such that pullback attracting all bounded
sets by A(-) under U(-,-), i.e., for all t > s, A(t) is such that any bounded set has the
Hausdorff semidistance between itself and .A(t) tends to 0 as s — —oo. By the hypotheses
which we assumed in both cases, there is only one attractor. In both cases, the space

(1) Laﬂ>={veL%Q%J

vd:z:=0}.
0

will play a crucial role in our analysis.
Another result that we find as a consequence of the propositions used to demonstrate

the existence of the attractors is the exponential decay of the solutions if we consider f = 0.
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As far as we know the hypotheses that we consider in this thesis were not considered in other
works that seek such decay as it is commented in Section 1.2. In general the exponential
decay for the thermoelasticity system is not guarantee in R" with n > 1, such decay depends
of the geometry of domain and hypotheses about u, and u; for example. In our cases, we
will ask 6, € Y.

This work is organized in four chapters:

In the first one was made a summary of general knowledge that sets the problem. We
do a brief justification of the emergence of the thermoelastic system equations using the con-
servations laws, a synthesis of the known results about decay of the thermoelastic problem
to better understand what we do and the main general results of mathematical analysis which
we will use throughout the text.

The second chapter is dedicated to a summary on the theory of semigroups, processes,
global attractors and pullback attractors that we will use constantly. In this chapter, we will
establish the relationship between semigruop and processes with problems autonomous and
non-autonomous.

In chapters 3 and 4 we will reach our goal of studying the asymptotic behavior of the

problems previously announced by the use of the functional
E(u, z, 9) = Mg(u, z, 0) + & (u, Z)(Lz(Q))n + 52(@, Z)(Lz(Q))n
given by a modification in the natural energy of the system

1
&(u.28) = 5 (o + Fliay + 1013m) ~ | Pl

where || - | = () ma (s Fu) = §; fdy with § fdy represents the line integral of

(y(@)y
f along a piecewise smooth curve with initial point 0 and final point u with u = u(x, t), and,
01,02 and M are positive constants to be chosen appropriately. Such a change is given by
using the Bogoviskii operator ® that naturally induces an invariant subspace of L?({2) that
we can take 6. The results obtained in Chapter 3 produced an article which was accepted

for publication in the Journal Colloquium Mathematicum.



Chapter 1

Preliminary

In this first chapter we wish to contextualize the problem studied by summarizing the
physical origin of the problem, some results obtained and also some important results of gen-
eral knowledge that will be required throughout the text. In the first section we will establish
the concept of stress and strain to induce the main equations of the thermoelastic system in
its most general way using law well known in the mechanics of fluids. In the second section
we mentioned some articles that previously studied cases similar to the problem that we want
to analyze in this text. Finally, in the last section of the chapter we have a compilation of
Sobolev spaces results, PDE’s, and other similarities that we will use constantly in Chapter

3 and Chapter 4, with the purpose of helping to read the text.

1.1 Deduction of the thermoelastic system

In general word we present in this section the deduction of the thermoelastic system
following the references Ciarlet [16], Dafermos [17] and, Racke and Jiang [38].

Let B be a body occupying a region {2 < R™ when it is not under the effect of forces of
any nature and at environment temperature in any point. We will assume that €2 is a bounded
domain with a smooth boundary. Thus, associate each material point of B with = € {2 your
position.

Considering ¢(x,t) € R" the position and 7'(z,t) the temperature in time ¢ > ¢, of
the particle in x € {2 when the body is in the reference condition, for some ¢, fixed. We
will denote by u(x,t) = ¢(x,t) — z the displacement and by 0(x,t) = T'(x,t) — Ty the
temperature variation, where 7y is a conveniently chosen reference temperature. In order to

establish the equations object of our study, we will formally assume that ¢ and 7" are enough

7



differentiable. By the nature of the problem, we assume that ¢ is injective on (2. We will

denote Dy (-, t) as the differential of (-, ).

m

Figure 1.1: Deformation ¢ of the body B

Now we will discuss the concept of stress on a point x in the position ¢(z,t) of the
body B in the direction of the n unit vector after a deformation in time ¢ fixed. Consider

regular surface I' with the follow proprieties:
(1.) ¢(x,t) e T, for all x € €
(2) neS" ! = {veR"|v| =1} is normal to T in ¢(z, t);
(3.) There are €2, and €2, subdomain of ¢(€2,t) such that ¢(Q2,t) = Q; U 2, and

o) N T = N Q.

Figure 1.2: Cauchy’s stress vector field



We define as the Cauchy’s stress vector field by v, : p(2,¢) x S*~! — R" such that
v,(p(x,t),n) is the force which €2; exert over ¢(z, t), where —n is normal outside of 2; in
¢(z,t). It can be verified that v,(¢(x, t), n) does not depend on the choices of I' only n and

x. Moreover, as describe the next theorem v, (¢(x, t), n) behaves linearly on n.

Theorem 1.1. (Cauchy’s Theorem) Assume that for each n € S"~! vector field v,(-,n) is
continuously differentiable and v, (p(x,t),-) is continuous for each ¢(x,t) € p(Q,t) with t
fixed. Then exists a continuously differentiable symmetric tensor field called Cauchy’s stress
tensor define by

o, (1) = M,

—1
such that for anyn € S* ™,

Ve(p(x,1),n) = 0, (p(z,t)) n
where M, is the set of matrices n x n of real numbers.

Proof. See Ciarlet [16, Page 62].

Recalling that the Euler variable is the way to describe the problem by taking as ob-
servation point in the object while it deforms, in other hand the Lagrange variable induces
the behavior of the object by take the information in the referenced state of the object. The
Cauchy’s stress tensor o,(¢(z,t)) is defined at the Euler variable p(x,t), we will use the so-
called Piola-Kirchhoff stress tensor or first Piola-Kirchhoff stress tensor o (z,t) defined

at Lagrange variable x by:
o(x,t) = (det Do(, 1))o, (plx, 1) Dol 1) 7.

Since in some cases it is interesting to have a symmetrical tensor and the tensor
o(x,t) is not symmetrical in general, we have defined to meet these needs the second Piola-
Kirchhoff stress tensor () by letting

S(x) = Dy(r)'o(x) = (det Dp())Dp(x) " 0,0z, 1)) D) .

The next concept we want to introduce is the strain which measures the deformation
rate with respect to the variation of x that the body has undergone after a displacement. For

any t fixed, (-, t) is differentiable in any point x € €, then for all points x + h € :
p(x + ht) = p(z,t) = Do(z,t)h + O(|hl)

where O‘%L') —0ash — 0.

The deformation is given by

lp(x + h,t) — o(x,t)]* = KD’ (z,t)Dp(x,t)h + KD (2, 1) O(|h|)
+ O(|h))De(x, t)h + O(|R))T O(|)).

9



Figure 1.3: Deformation rate

The symmetric strain tensor in Euler variable is
E(p) := D' Dyp.
We also can obtain that
&(p) = D' Dy = I + Du’ + Du + Du'Du = I + 2E(u).
The strain tensor of a given body B after a displacement u is define by
E(u) := %('DUT + Du + Du’ Du)

also called The Green-St Venant strain tensor. By assume the hypotheses of small deforma-
tions, we will be able work with the form linear of £ which is

e(u) := %('DUT + Du).

The Duhamel-Neumann’s Law witch is a generalization to the Hook’s Law (which
admit 2 null), tell us that
E = Ro + 20

where £ is called compliance tensor and %l is coefficients of linear thermal expansion, and
also,
o=CE -850

where € is called stiffness tensor (also know as elastic moduli) and ‘B is know as thermal

moduli. By assume the hypotheses of small deformations, we will be able to consider

(1.1) e = Ko + A6
and
(1.2) o= Ce— Bb.

10



When tensor € depends of position x we say that the material is anisotropic and when there
is no dependency the material is call isotropic (for more details see Kupradze [29, Chapter
5]). In the chapters 3 and 4, we will consider the isotropic case.

The balance of linear momentum, in our notation, is expressed by

(1.3) 8tf p@tudeja-ndA—FprdV
1% A 1%

where A = 0V, p is the material density (which depends of x) and f is the specific external
body force (which depends of x and ¢), in any V' < €). By using (1.2) in (1.3), we have

ﬁtJ p&tudV=f(€e—‘39)~ndA+f pf dV
v A v

thus,
1
atf poyu dV = f (—@(DUT + Du) %9) -ndA+f pf dV.
v A\2 v

Using Divergence Theorem and since previous identity is true for any V', we obtain the

following equation
1
(1.4) poPu = 5 div (€(Du” + Du)) — div(Bb) + pf.

which is also presented as follows
pé?uz = Z axj (Qtijklaa:luk Z %1]9 + pfz

where %@(DUT + Du) = [€;1i0z,ux| and BO = [B,;0].

We denote &), by the Helmholtz free energy and 7 by the entropy (which is the quotient
of the amount of heat absorbed from the body B by its temperature.). We can assume that':
En = 1(’} 3610 Ui O U — B i 0 160 — chDHQ
g WETmITER RN 2T,

where cp () is specific heat at the point z when 0, u; + 0y, u; = 0.
Using the notation U = Vu. Thanks to Racke and Jiang [38, Chapter 1]

o0&,
0) = — 0).
n(U.0) = = (U.0)
The Fourier’s Law set
qi = Kzgaa:Je

where g is the heat flux and [K;;(z)] is the heat conduction tensor.

The conservation law of energy,

pTy 0y = div(q) + pcpr

Ifor more details see [17].

11



where r is the heat source. So

(1.5) Ty Y Bij0n, Opt; + pepdst = div(Kyjla, 0, . .., Ko;da 0) + pepr,

i=1

or in other notation,
pcpod — div(KVe) + Ty BD(0u;) = pepr.

The equations (1.4) and (1.5) characterizes the thermoelastic problem. When (2 is

bounded, the boundary condition
u =0, 8 =0o0n 0,

is called of condition of rigidly clamped and constant temperature, and the boundary
condition

ov =0, vq = 0 on 0€,

is called of condition of tracion free insulated where v is the outward unit normal to 0.

1.2 Previous results about the thermoelasticity system

Dafermos [17] studies the well-posedness of the anisotropic thermoelastic problem

n

pOu; = Y 0, (Cijadayur) + Y 0, (B160) = pb;
(1.6) j=1 =1

pcpod — div(KVe) + Ty BD(0wu;) = pepr.

and commented that the homogeneous version of the problem (1.6) has a decay, but not
necessarily exponential when we consider n > 2.

In the period from 1991 to 1993, several papers on the case one-dimensional obtain
exponential decay rate (e.g., Henry, Perissinotto and Lopes in [26], Liu and Zheng in [33],
Slemrod [40] and references therein), and the question about exponential decay rate in the
case n-dimension for n > 2 attracted more and more attention from researchers.

About this problem, we can note that in particular the system thermoelastic

O2u — pAu— A+ p)Vdivu + VO =0, zeQ, t>0,
ﬁte—AQ—i—dlvé’tu:O, ZE'EQ, t>0,

1.7

subject to initial-boundary conditions

u(0,2) = ug(x), Gu(0,x) = ui(x), 6(0,2) = Oy(x), xe€,
u(t,z) =0, 0(t,x) =0, x e, t>0,

12



can be obtain from (1.6) (where ;# > 0 and A > 0 are the Lamé coefficients) by the correct
choice of tensors. In the last years the famous question of thermoelasticity theory about ob-
taining the necessary and sufficient conditions to ensure the exponential uniform decay of the
energy of the linear thermoelastic system n-dimensional, under some geometric conditions
of the domain and regularity of the vector field u this problem was solved in Amann [1],
Racke, Rivera and Jiang [27], Koch [28], Kupradze [29], Lebeau and Zuazua [30], Lebeau
and Zuazua [31], Liu and Zheng [33], Rivera and Shibata [35], Rivera [39], Slemrod [40] and
references therein. More precisely, Lebeau and Zuazua in [30], have shown that in a smooth
boundary domain in R™ which possesses an arbitrarily large ray of geometrical optics which
is always perpendicularly reflected at the boundary, the problem not have exponential decay
(see too Lebeau and Zuazua [31]). Later, Koch in his work [28] extends this result show-
ing that the exponential decay is not possible if the domain is convex. But Rivera in 1997
study a the case when considerer the displacement divergent free for all point of the general
smooth domain in the paper Rivera [39]. He got the exponetial decay rate and shows that if
Py(ug) # 0 or Py(uy) # 0, then

E(t) = L | Py(ur)|* + |V Py(uo)|* do

where Py(u) is a projection of w in V; = {w € H}(Q);div(w) # 0} and & is the natural
energy of the system (1.7). Also the work of Jiang, Riveira and Racke (1998) in [27] has
verified exponential decay in the case where the initial data and domain are radially sym-
metric (under such hypotheses the solutions are radially symmetric and the displacement has

vanishing rotation).

1.3 Embeddings and inequalities

Here, we want to enunciate some well-known theorems of sobolev immersions and
differential equations, as well as useful inequalities, with the aim of easy reading and com-

prehension of the text.

Theorem 1.2. (Sobolev embedding) Let ) < R"™ be a bounded domain with boundary of
class C™.

(1.) If mp < n, then the following embedding is continuous

1 1

W™P(Q) — LI (Q), where — = = —

- p

Moreover, the embedding is compact for any q, with 1 < q

m
-
< q*.
(2.) If mp = n, then the following embedding is continuous and compact

W™P(Q) — LI(Q), foralll <q < .

Moreover, if p = 1 and m = n, then is possible assume q = 0.

13



Proof. See Evans [21, Section 5.6].
The next theorem is a well-know result for the weak solution of the parabolic problem

which we will use in the sections about regularity of attractors.

Theorem 1.3. (See [8, Page 340]) Let H be a Hilbert space with scalar product (-, )y and
norm | - |g. The dual space H* is identified with H. Let V' be another Hilbert space with

norm || - |y. We assume that V- H with dense and continuous injection, so that
VcHcV™

For each T' > 0 fixed. We are considering a bilinear form a(t;-,-) : V. x V. — R for a.e
t € [0, T, satisfying the following properties:

(1.) Forevery u,v €V the function t — a(t; u,v) is meansurable;
(2.) |a(t;u,v)|g < M|ulv|v|yv forae. t e [0,T], Vu,veV;
(3.) a(t;v,v) = a|v||} — C|v|% fora.e t€[0,T], Ve V;

where o, M and C are positive constants. Given f € L*(0,T;V*) and uy € H, there exists
a unique function u satisfying u € L*(0,T;V) n C([0,T]; H),

du
— e L*0.T.V
o € L0.TY)

(G0.0) +attsutt).o) = (0.0)
fora.e. te (0,T),Yv eV, and u(0) = uy.

Proof. See Lions and Magenes [32].

In the next theorem is consequence of the Divergence Theorem.

Theorem 1.4. Let 2 = R" be a domain with smooth boundary with n > 1. If u € H*(Q)
and v € H' (), then

—J(Au)vdxzj Vu-Vode — | ——vdS,
Q Q
and if u € (H*(Q))" and v € HY(Q), then

—J(divu)vdxzf u-Vvdx—f w - v dS,
0 0 o0

where v is the outward unit normal to 05).
Proof. See Boyer and Fabrie [7, Page 133] and Evans [21, Page 711].
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Theorem 1.5. (Poincaré inequality) If u € H}(Q), then there is a positive constant C' de-
pending only on ) and n such that

lull 2y < MilVullr2), ¥V ue Hy(Q)

where )\ is a minimal eigenvalue of the operator associate to the Dirichlet problem of neg-

ative Laplace’s equation.
Proof. See Evans [21, Page 290].

Lemma 1.6. (Grénwall’s inequality) Let J : [0,T] — [0, +0) be a differential function,
which satisfy the following property:

J'(t) < —a(t)J(t) + B(t), forte|0,T],

where «, 5 : [0, T] — R are integrable functions in [0,T']. Then, for any t € [0,T]
. t
J(t) < e Joal)ds {J(O) + f B(T)dT] :
0

Proof. See Evans [21, Page 708].

Lemma 1.7. (Young’s inequality) Let 1 < p,q < o0 with ]lo + é = land e > 0. Then,

(ep)
q

ab < ea®? +

b?, Ya,b>= 0.

Proof. See Evans [21, Page 706].
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Chapter 2

Semigroups, evolution processes and
attractors

In the follows we recall some concepts and definitions from theory of nonlinear semi-
group and nonlinear evolution process, for more details see Babin and Vishik [3], Brezis [8],
Carvalho, Langa and Robinson [13], Hale [24], Pazy [36], Vrabie [41] and reference therein.

Throughout the text of this chapter, let (9, d) be a complete metric space and let
(X, | - |x) be a Banach space. We will denote C(91) the set of all continuous maps from 9t
into itself and (L(X), | - [l¢(x)) the space of all bounded linear operators from X into itself
with the norm

[Ty =" sup[Ta|x.

e Xz x <1

2.1 Nonlinear semigroups

We begin the section giving the most simple and comprehensive definition of semi-
group that is found in Babin and Vishik [3].

Definition 2.1. A nonlinear semigroup is a family of maps {S(t);t = 0} in C(9N) with the

properties
(1.) S(0) = I,
(2.) S(t+s) =S(t)S(s), forallt,s = 0;
(3.) [0,00) x X 3 (t,x) — S(t)x € C(9M) is continuous.

Definition 2.2. A semigroup S(-) in M is called semigroup of class Cy (or for simplicity
Co-semigroup) if for all x € M, a function S(-)z : [0,00) — M is continuous and S(t) is
a map continuous for all t = 0. A Cy-semigroup is called strongly continuous semigroup,

too.
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The compacity asymptotic is one of the conditions required in the theorem which we
will use to prove the existence of global attrator for a semigroup, see Theorem 2.38.

Definition 2.3. A semigroup S(-) in MM is called asymptotically compact if, for each se-
quence (t,,) such that t, — c© as n — o0 and for each bounded sequence (x.,,) of points of

9N, the sequence (S(t,)x,) has a subsequece which is convergent in .

The definition above is equivalent in a Banach space to say that for every bounder
closed and not empty B < X, there is a compact set K < X such that there exists t5 > 0
such that S(t)B < K for t > t.

Definition 2.4. A semigroup S(-) eventually bounded in X if there is a t, € [0, ) such that

| s@B

t=to

is bounded in X for every bounded B, where S(t)B = {S(t)r € X;x € B}. Case ty = 0,
we say that S(-) is bounded.

The next result gives a sufficient condition for a semigroup to be asymptotically com-

pact.

Theorem 2.5. Let S(-) be a bounded semigroup defined in X such that for each t = 0, we

can write

S(t) = S1(t) + Sa(t)
where

(1.) For every bounded set B and each t > 0 there exists t(p;) = 0 and compact set
K (B, t) such that Sy(s)B < K(B,t) always thatt > s > t(p;

(2.) There exists a function g : [0,0) x [0,00) — R with g(-,r) non-increasing for each
r >0, lims_,o g(s,7) = 0 and for all x € X with |z| <,

[S1(t)z]x < g(t, 7).

Then the semigroup S(-) is asymptotically compact.

Proof. See Carvalho, Langa and Robinson [13, Page 42].

2.2 Linear semigroups

Now we deal with the case of S(t) is a linear operator for all ¢ > 0, when this hap-
pens we call S(-) of a linear semigroup. We will initially define a class within the linear

semigroups that is more comprehensive than Cj-semigroups.

18



Definition 2.6. We say that S(-) < L£(X) is a uniformly continuous linear semigroup
lim [S(2) — ()] ccx) = 0.

Definition 2.7. The operator A is called infinitesimal generator of a linear semigroup S|(-)

when

t—0+ ¢

1
D(A) = {a: € X; lim —(S(t)z — x) exist}
and for each x € D(A) we have

Az = lim 1(S(t)x — ).

t—0+ t

If A is an infinitesimal generator of the linear semigroup S(-), we can say S(-) is
generated by A.

Definition 2.8. A semigroup S(-) is of type (M, &) if there are constants a € R and M > 1
such that
|S(H)x]x < Me®|z|x, Yt = 0.

We say that S(-) is exponential stable if it is a semigroup type (M, ) with a < 0.
Theorem 2.9. If S(-) is a Cy-semigroup, then S(-) is of type (M, o).
Proof. See Vrabie [41, Page 41] .

Definition 2.10. Let A : D(X) ¢ X — X be a closed densely defined linear operator (not

necessarily bounded). The resolvent set of A is
p(A) = {\ € C; X\ — Ais injective and surjective}.
The o(A) = C\p(A) is called spectrum of A.
From closed graph theorem, if A— A is injective and surjective, then (A\—A)~! € £(X).

Theorem 2.11. (Hille-Yosida) Let A : D(X) ¢ X — X be a linear operator, then following

statement are equivalent:

(1.) A is the infinitesimal generator of a Cy-semigroup of linear operators S(-) of type
(M, v);

(2.) Aisclosed, D(A) = X, p(A) contains (c,0) and

(A —A)™| < —, for \>aandn=1,2,....

M
(A —a)
Proof. See Pazy [36, Page 8].
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Remark 2.12. Note that the liner operator A is not required to be bounded, however condi-
tions are required for the A resolvent.

From now on, we will denote X™* as the dual of X and we remind the reader that
{x,x%) = {w*,x) = x*(x) is the value of z* € X* atz € X.

Definition 2.13. Let A : D(A) € X — X be a linear operator. We say that A is a dissipative
operator when for each x € D(A) there is an z* € §(x)

Re(Ax,x+) <0, Yx e D(A)

where §(z) = {y € X*; (y,x) = |=[* = |ly[*}.

One of the reasons we are interested in dissipative operators in the semigroup theory
is the Lumer-Phillipis’s Theorem.

Theorem 2.14. (Lumer-Phillips) Let A be a linear operator with dense domain D(A) in X.

The following affirmations are equivalents:

(1.) If A is dissipative and there is a Ao > 0 such that R(\oI — A), the range of \oI — A,

is X, then A is the infinitesimal generator of a Cy-semigroup of contractions on X.

(2.) If Ais the infinitesimal generator of a Cy-semigroup of contractions on X then R(\ —
A) = X forall N > 0 and A is dissipative. Moreover, Re(Ax,z*) < 0, for every
x € D(A) and every x* € §(z).

Proof. See Vrabie [41, Page 60].
We now want to discuss how the semigroup theory is made application of the semi-
group theory to solve problems involving partial differential equations. Consider an initial

value problem which we can write as follows

d—u—i—Au:F, t>0
2.1 dt

u(0) = ug
where — A is a linear operator with domain D(A) < X is also the set in which the other con-

ditions of the problem are satisfied (for example boundary condition) and F' € L'([0, T']; X).

Definition 2.15. We will call u : [0,T] — X a classical solution of the problem (2.1)
ifue CY[0,T]; D(A)) and it satisfies C;—?(t) + Au(t) = F(t) for each t € [0,T] and
u(0) = uy.

Definition 2.16. We will call u : [0,T]| — X a strong solution of the problem (2.1) if u is
absolutely continuous on [0,T], u' € L'((0,T]; X), u(t) € D(A) and it satisfies d;u(t) +
Au(t) = F(t) for each t € [0, T] and u(0) = u,.
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The classical solution can be call C'-solution. The classical solution can be call ab-
solutely continuous solution. A classical solution of (2.1) is a strong solution, but not con-

versely. Assume that —A is the infinitesimal generator of a Cp-semigroup S(-).

Definition 2.17. We will call u : [0, T] — X a mild solution if u is defined by
t

(2.2) u(t) = S(t)uo + J S(t—s)F(s,u(s))ds.
0

As say the next theorem, if u is a strong solution (or a classical solution), then u is a

mild solution.
Theorem 2.18. (Duhamel Principle) Each strong solution of (2.1) is given by (2.2).
Proof. See Vrabie [41, Page 184].

Theorem 2.19. If —A : D(A) ¢ X — X is the infinitesimal generator of a Cy-semigroup
S(), and F is of class C* on [0,T], then, for each uy € D(A), the problem (2.1) has a

unique classical solution.
Proof. See Vrabie [41, Page 186].

Theorem 2.20. If —A : D(A) ¢ X — X is the infinitesimal generator of a Cy-semigroup
S(-), and F is of class C° on [0, T| and locally Lipschitz continuous in u in bounded intervals
of [0, T, then, for each uy € X, the problem (2.1) has a unique mild solution. Moreover, if
T < o0 then

lim [lu(#)]| = .

Proof. See Pazy [36, Page 186].

Definition 2.21. Let R = {z := re € C;0 € [0,,0,] and 0, < 0 < 6,}. A family of
bounded linear operator {S(z); z € R} is called analytic semigroup on R if

(1.) z— S(z) is analytic on R;
(2.) S(0) = I and lim, o S(2)x = x, forall v € R;
(3.) S(z1 4+ 2z2) = S(21)S(22), forall z1, 25 € R.

A Cy-semigroup S(-) is called analytic if there is an analytic semigroup S;(:) on R =
{z :=re? € C;0 € [01,0,] and §; < 0 < 6} such that [0, +o0) = R and S;(t) = S(t).
Note that this tells us that the restriction of an analytic semigroup to the nonnegative real

axis is a Cy semigroup. But the reciprocal is not true in general.

Definition 2.22. A closed densely defined linear operator A : D(A) < X — X is sectorial
if there exist a € (0,7/2), a € R and M = 1 such that
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(1.) ¥o0 = {z€C;a < |arg(z — a)| <7, A # a} contain the resolvent set of A;

(2.) |(M = A) o) < , YAe X, ..

M
A —al
Theorem 2.23. If A is a sectorial operator, then —A is the infinitesimal generator of an

analytic semigroup S|(-).
Proof. See Henry [25, Page 21].

Definition 2.24. A linear operator A : D(A) ¢ X — X is positive with constant M > 1 if
A is closed, densely defined in X, [0, +0) < p(—A) and

(1+9)|(s —l—A)*lHL(X) <M, seR”.

For more details see Carbone, Nascimento, Schiabel-Silva and Silva [10], Pazy [36],
Vraibe [41] and reference therein.

If A is a positive linear operator with constant M, notice that

Yor ={z =21 + 20 € C; |arg 21| < arcsin(1/2M) and |zp| < 1/2M} < p(—A).
Definition 2.25. We define the fractional power of the positive operator A with exponent
« € C when Re(a) > 0, by the operator A=* : D(A™%) ¢ X — X given by

1
A= — [ (=)0 + A)dn,

21 T

where T' = Y3/ \R* is a simple curve which there is a parameterization given by |r(t)|e”*®
with limg 4o, 7(t) = 00 and limy ., B(t) = —lim;_, o, 3(t). We assume D(A°) = X and
A® = I as definition.

Remark 2.26. The fractional power is well defined because it does not depend on the param-
eterization for I'. Moreover, A=* : D(A™%) < X — X is bounded. If S(-) is Cy-semigroup
exponentially stable, then we have D(A™?) = X.

It is well-know that for o € C and Re(«) > 0, A~ is injective. Therefore, we define
A® = (A7*)~1. Now, we will give the basic relations between the operators of positive and

negative fractional power.

Theorem 2.27. Let — A be an infinitesimal generator of a Cy-semigroup exponentially stable
S(-). Then:

(1.) A% is a closed operator with domain be the range of A=, for a > Q.
(2.) Ifw = z > 0, then D(A") — D(A?) — X are dense.
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(3.) If z, wand z + win R and x € D(A") where u = max{z,w, z + w}, we get
APAYy = A%y,
Proof. See Pazy [36, Page 72].

The next two result, helps to verifies when the inclusion between spaces defined by
fractional power operators are continuous, see Vrabie [41, Section 7.6].

Theorem 2.28. LetA be an infinitesimal generator of a Cy-semigroup exponentially stable
S(-). If a € (0,1), there is C > 0 such that, for each x € D(A) and for each p > 0, we have

|A%z| < C(p*|a]| + p*~ | Ax])

and
|A%z| < 2C ]!~ Az ||

Theorem 2.29. LetA be an infinitesimal generator of a Cy-semigroup exponentially stable
S(+). Let B : D(B) < X — X be a closed operator with D(A*) < D(B). If « € (0,1],
there is C' > 0 such that, for each x € D(A®) and for each p > 0, we have that
| B < CA%x].
and if v € D(A), we have that
| Bz|| < C(px] + p* | Ax]).

Theorem 2.30. Let H be a Hilbert space and let A be a positive definite self-adjoint linear

operator in H. Then A has bounded imaginary power.
Proof. See Amann [1, Pages 164 and 157].

Proposition 2.31. Let A : D(A) — X be a sectorial operator in a Banach X and consider a
closed linear operator B : D(B) — X suchthat D(A) ¢ D(B) < X and B is subordinated

to A according to the condition
(2.3) |Bv|x < c|Av|x + d|v[|lx, ve X

If the condition 2.3 holds with ¢ < M, = m and 4c' M < |\|, then the perturbed

operator A + B with D(A + B) = D(A) is sectorial in X.

Proof. See Cholewa and Dlotko [15, Page 37].

Corollary 2.32. Under the assumptions of Proposition 2.31 and additional requirements
that both A and A + B are positive operators with its fractional powers of purely imaginary
exponent being bounded operators, the following equality holds:

2.4) D((A+ B)*) = D(A%), a € (0,1).
Proof. See Cholewa and Dlotko [15, Page 52].
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2.3 Global attractors

In order to understand the definition of global attractor, we need to introduce some ter-
minologies, for more details we refer to Carvalho, Langa and Robinson [13] and references

therein.
Definition 2.33. The Hausdorff semidistance between A and B is defined as

disty (A, B) = sup inf d(a, b).

acA beB

Definition 2.34. Let A and B be subsets of M. We say that A attracts B under semigroup
SC)if
%ir% disty (S(t)B, A) = 0.

When there is a bounded set B — )N which attracts each bounded set of 9N by the semigroup
S(-), we call S(-) of a bounded dissipative semigroup.

Definition 2.35. Let A and B be subsets of . We say that A absorbs B under semigroup
S(-) if there is to > O such that

S(t)B < A, Vit = t.

Definition 2.36. The set B is an absorbing set of S(-) if each bounded set By < M, B
absorb By under S(-).

Definition 2.37. The global attractor of the semigroup S(-) is a set A = X such that
o Ais compact;
o A is invariant under semigroup S(-);
o A attracts any bounded subsets of X under the semigroup.

The global attractor, if it exists, is easily seen to be unique. The next result will be

useful to show the existence of the global attractor.

Theorem 2.38. If S(-) is bounded dissipative and asymptotically compact, then S(-) has a

global attractor.
Proof. See Carvalho, Langa and Robinson [13, Page 34].

Definition 2.39. We say that the family {A\} en of subsets of X is upper semicontinuitinu-
ous at \g if

lim diStH<A)\,A)\O) = (.
A— Ao
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2.4 Nonlinear evolution processes

We wish to deal with the non-autonomous case of the thermoelastic problem. To do so,
we need to adapt the concept of semigroup for the non-autonomous case, for more details we
refer to Babin and Vishik [3], Carvalho, Langa and Robinson [13], Cholewa and Dlotko [15],
Hale [24] and references therein.

Definition 2.40. A family of maps {U(t, s);t = s} in C(9M) is a nonlinear evolution process
if
(1.) U(t,t) =1, forallt e R,
(2.) U(t,s) =U(t,7)S(r,s), forallt =T > s,
(3.) {(t,s,7) e R? x X;t = s} 3 (t,s,x) — U(t, s)x € M is continuous.
Consider the problem

du
(2.5) dt
u(s) =upeY

+Alt)u=F, t>s

where Y < X is dense, F' € L'([0,T]; X) and {—A(t);t € R} is a family of operator with
domain D(A(t)) = X for any ¢ € R under conditions sufficient to ensures the existence of a

process U (-, -) such that if u is a classical or strong solution for (2.5), then

t
(2.6) u=U(t,s)up + f Ult,7)F(r,u)dr, t > s

S

where the process U(+, -) is given by

t
U(t, 3) — o (t=5)A(s) +J U(t,T)[A(T) _ A(S)]e—(T—S)A(S)dT.

s

Definition 2.41. We will call u : [s,T] — X a mild solution for (2.5) if u is defined by (2.6)

for eachuy € X.

Theorem 2.42. Let F' : s, T| x X — X be continuous in t on s, T'| and uniformly Lipschitz
continuous on X. If —A(s) is the infinitesimal generator of a linear Cy-semigroup U (-, s) on
X foreach s € (—o0, T, then every ug € X the initial value problem (2.5) has a unique mild
solution u € C([s,T], X). Moreover, the mapping X 3 ug — u € C([s, 7]; X) is Lipschitz
continuous from X into C([s,T], X).

Proof. For a given uy € X, we define a mapping
Gy, : C(R, X) - C(R, X)
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by

(2.7) (Gyou)(t) = U(t, s)ug + ft U(t,7)F(r,u(r))dr, s<t<T.

S

Denoting by |ul|s the norm of u as an element of C'((—o0, T'], X) it follows from the
choice of F' that

(2.8) [(Gupu)(t) = (Gupv) () x < M(s)L(E = 5)[u = v]e

where M (s) is a bound of ||U(t, s)| on [s,T]. Using (2.7), (2.8) and finite induction on 7 it

follows easily that

(Gt - @ )ox < MO,

whence

(M(s)LT)"

2 = ol

(2.9) |Gau = Ggyvl <

For n large enough (M (s)LT")"/n! < 1 for all s € R and by a well known extension of the
contraction principle Gy, has a unique fixed point u in C([s,T'], X). This fixed point is the
desired solution of the integral equation (2.6).

The uniqueness of u and the Lipschitz continuity of the map uy — u are consequences
of the following argument. Let v be a mild solution of (2.5) on [s, 7| with the initial value

vo. Then,
Ju(t) = v(®)| < |UE, s)uo = U, s)vol + f [UE, s)[[[ F(s,uls)) = F(s,v(s))]
< M|uo — vol + ML f [u(s) — v(s)|ds,
which implies, by Gronwall’s inequality, that
[u(t) = v(t)] < MM ug — v

and therefore
Ju—v| < Me™ Ty — v

which yields both the uniqueness of u and the Lipschitz continuity of the map uy — u.

(]

Theorem 2.43. Let F' : Rx X — X be continuous in t on R and locally Lipschitz continuous
on X. If —A(s) is the infinitesimal generator of a Cy-semigroup U (-, s) on X for each
s € R, then every uy € X the initial value problem (2.5) has a unique mild solution u €
C([s, tmax), X ). Moreover, if tyax < o0 then

lim |u(t)| = oo.

t—tmax
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Proof. We start by showing that for every ¢, > s, ug € X, the initial value problem
(2.5) has, under the assumptions of our theorem, a unique mild solution « on an interval

[to, t1] whose length is bounded below by

o ol
(2.10) d(to, |[uol)) = min {1’ K(to, s)L(K(tg,s),to + 1) + M(to, 3)}

where L(c, t) is the local Lipschitz constant of F', M (tg, s) = sup{|U(¢,s)|;s <t < to+1},
K(to,s) = 2|uol|M(to,s) and N(tg,s) = max{|F(t,0)[;s < ¢t < ty + 1}. Indeed, let
ty = to + d(to, |uol), the mapping G, defined by (2.7) maps the ball of radius K (¢, s)
centred at 0 of C([to, t1]; X) into itself. This follows from the estimates

[(Guou)(@)] < M(to, s)]uo +£ U n)| (1F (7, a(r)) = F(7,0)| + [ F(7,0)]) ds

< M(to, s) {|uo] + K (to, $)L(EK (to, 5), to + 1)(t — to) + N(to, $)(t — to)}
< 2M (to, 8)|uo| = K (to, 5)

In this ball, G satisfies a uniform Lipschitz condition with constant L = L (K (to, s),to + 1)
and thus as in the proof of Theorem 2.42 it has a unique fixed point u in the ball. This fixed
point is the desired solution of (2.5) on the interval [tg, ¢1].

From what we have just proved it follows that if u is a mild solution of (2.5) on the
interval [s, 7] it can be extended to the interval [s, 75 + ] with § > 0 by defining on |79, 7o +
], u(t) = w(t) where u(t) is the solution of the integral equation

t
@I ult) = Ut mutm) + | U6n)F(rw(r)dn, m<t<m s

Moreover, 0 depends only on ||u(7p)|, K (70, s) and N (79, s).

Let [s, tmax) be the maximal interval of existence of the mild solution u of (2.5). If
tmax < 00 then lim;,, . [u(t)| = oo since otherwise there is a sequence ¢, — ¢} such
that |u(¢,)| < C for all n. This would imply by what we have just proved that for each
t,, near enough to t,,.,, u defined on [s, t,,] can be extended to [s,t, + d] where § > 0 is
independent of ¢,, and hence u can be extended beyond ¢,,,, contradicting the definition of
F o

To prove the uniqueness of the local mild solution u of (2.5) we note that if v is
a mild solution of (2.5) then on every closed interval [s,to] on which both u and v exist
they coincide by the uniqueness argument given at the end of the proof of Theorem 2.42.
Therefore, both u and v have the same t,,,, and on [s, t;ax), U = V.

2.5 Pullback attractors

In order to understand the definition of pullback attractor, we need to introduce some

terminologies, for more details on the concept of pullback attractor we refer to Carvalho,
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Langa and Robinson [13] and references therein.

Definition 2.44. Let U(-,-) be a nonlinear evolution process. Givent € R, a set K < X
pullback attracts a set D at time t under U (-, -) if

(2.12) lim disty(U(t,s)D, K) = 0.

§—>—00

K pullback attracts bounded sets at time t if (2.12) holds for each bounded subset D of X.

A time dependent family of subset of X, K (-) pullback attracts bounded subsets of X
under U (-, -) if K (t) pullback attracts bounded sets at time ¢ under U (-, -), for each t € R.

Definition 2.45. A family {A(t);t € R} is the pullback attractor for a nonlinear evolution
process U(-,-) if

(1.) A(t) is compact for each t € R,
(2.) A() is invariant with respect to U (-, -),
(3.) A(-) pullback attracts bounded subsets of X, and

(4.) if there is another family C(-) of closed sets that pullback attracts bounded subsets of
X, then A(t) < C(t) forallt € R.

Definition 2.46. A nonlinear evolution process U (-,-) in MM is said to be pullback asymp-
totically compact if, for each t € R, each sequence {s;} <t with s, — —0 as k — o, and

each bounded sequence {x;} € X, the sequence {U (t, si)xy} has a convergent subsequence.

Definition 2.47. A nonlinear evolution process U (-, -) in 9N is said to be strongly pullback
bounded dissipative if for each t € R there is a bounded subset B(t) of 9 that pullback
attracts bounded subsets of YN at time T for each T < t; that is, given a bounded subset D of
Mand T < t, limy_,_o, disty (U(1,s)D, B(t)) = 0.

The following is a result that gives sufficient conditions for the existence of attractor.

Theorem 2.48. If a nonlinear process U (-, ) is strongly pullback bounded dissipative and
pullback asymptotically compact and B(-) is a family of bounded subsets of X such that,
foreach t € R, B(t) pullback attracts bounded subsets of X at time T for each T < t, then
U(-, ) has a compact pullback attractor A(-) such that | J,_, A(s) is bounded for eacht € R.

Proof. See Carvalho, Langa and Robinson [13, Page 35].

Definition 2.49. We say that { A(-)}cc[o,1] is upper semicontinuous as ¢ — 0 if, for each

t € R, the family { Ac(t)}ce[o,1] is upper semicontinuous as ¢ — 0.
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We suppose that we have a sequence of nonlinear processes U,(+, -) that converges to a
limiting process Uy (-, ) in the following sense: for each ¢ € R for each compact subset K of
X andeachT > 0,

(2.13) sup supdisty (Uc(t,t — 1), Up(t,t — 7)x) - 0ase — 0.
T7€[0,T] ze K

It is therefore natural to make the standing assumption that for each ¢ € R

(2.14) U A.(t) is compact

e€[0,1]

if we want prove continuity of attractors.
We have already seen that pathologies are possible when the pullback attractor is not

bounded in the past. We therefore impose the additional condition that for each ¢ € R,

(2.15) U UA is bounded.

e€[0,1] s<t

Theorem 2.50. Let U (-, -) be a sequence of nonlinear evolution processes with correspond-
ing pullback attractors A.(-) for € € |0, 1]. Assume that

(1.) for eacht € R and for each compact subset K of X and eachT' > 0,

sup supdisty (Uc(t,t — 1)z, Uy(t,t — 7)x) — 0 as e — 0;
T7€[0,T] zeK

(2.) U A.(t) is compact;

e€[0,1]

(3.) U UA is bounded.

e€[0,1] s<t

Then, A.(-) is upper semicontinuous as € — 0.

Proof. See Carvalho, Langa and Robinson [13, Page 57].
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Chapter 3

Autonomous n-dimensional
thermoelasticity system

In this is one of the main chapter, we aim to make a study of the asymptotic behavior,
in the sense of global attractors, of the solutions of a class of n-dimensional thermoelastic
systems with n > 2. The results presented here make up an article entitled "Attractors for
a class of thermoelastic systems with vanishing mean value for temperature”, which was

accepted for publication in the Journal Colloquium Mathematicum.

3.1 Preliminary

We are interested in the study of asymptotic behavior of mild solutions for a multidi-
mensional semilinear thermoelastic systems; namely, initial-boundary value problems with
space dependent diffusion coefficients

Pu—Au—Vdivu+Vl = f(u), zeQ, t>0,
0,0 — div (k(2)VO) + divou =0, xe€, t>0,

(3.1)

subject to boundary conditions

(3.2) u(z,t) =0, O(x,t) =0,x € 0, t >0,
and
(3.3) k(x)VO(z,t) — du(z,t) = 0,2 € 09, t > 0,

on initial conditions

3.4)
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In this problem, the map f is external force and the functional parameters « is the
diffusion coefficient with some suitable growth conditions which will be presented below.

We recall that for a smooth vector field in some sense v = (uy,...,u,) the gradient
and Laplacian of the vector field v are denoted, respectively, by

Vu = (Vuy,...,Vu,)

and
Au = (Auy,. .., Auy,),
and the divergent operator of a vector field d;u will be denoted by
div dpu = > 0,,0u;.
i=1

The hypotheses on the nonlinearity f = (f1,..., f.), where f; : R” — R. We consider
f a conservative vector field (i.e., there is a scalar field « such that f = V) with the
functions f; twice continuously differentiable and f;(0) = 0, i = 2,3, 4. Moreover, we also

assume that for each v > 0 there exists C, > 0 such that

(3.5) f(&)-E<v|EP+ O,

with - denoting the standard dot product on R". Because of (3.5), we can assume that there
exist C;, > 0 and 7 € (0, min{1, A\;}) such that if

¢
F&) = d,
() Lf Y
then
(3.6) F(€) < 216l + C,

where A\; > 0 is the first eigenvalue of the negative Laplacian operator with zero Dirichlet
boundary condition, and Sg fd~ represents the line integral of f along a piecewise smooth
curve v : [s,t] — R™ wich y(s) = 0 and v(t) = &, for any £ € R” (that is, VF(§) = f(£),
where V F' stands for the gradient of I’ in the variables £ € R").

In addition, we shall assume throughout this text that there exists a constant C' > 0
such that forevery i = 1,...,nand { = (&,...,&,) € R™,

Vh©)<C (1 ) |@|P—1> ,
=1

|02, fi(©)] < C,

(3.7

forsomel<p<%,ifn>2;l<p<+ooifn=2.
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The coefficients ~ in (3.1), is a real-valued continuously differentiable function defined
on 2 such that there exist constants ~( and x; with the property

(3.8) 0 < ko < k() < Ky, T e

In order of better present our results, we introduce some terminology. Motivated by
Lebeau and Zuazua [31] we will consider the Hilbert space (H}(Q))" equipped with the

inner product
(39) (ul, UQ)(Hé(Q))n = J (VUlVUQ + div Uy div UQ)dJZ
Q

and consequently the product space
H = (Hy())" x (L*())" x L*()

equipped with the inner product

(ul, le) J VU1VUQde + J
Q

div U1 div U9 dx + f
Q

legdl’ + J 0192dx
Q

Q

for all u; = (uq, 21,01),us = (ug, 29,0s) € H.

3.2 Well-possessedness of the problem

Let u = (u, z,0) be the state vector with z = d,u, we rewrite (3.1)-(3.5) as an initial-
value problem associated to an ordinary differential equation in the product space H as fol-

lows

d—u+Au—F(u), t>0,
(3.10) dt

u(0) = uy,
where uy = (uo, 2z0,6), A : D(A) < ‘H — H is the linear unbounded operator defined by
D(A) = ((Hy(Q) n HA(Q)" x (H)(Q))" x (Hy(Q) 0 H2(Q))) [ X,
and for any (u, z,0) € D(A)
A(u,z,0) = (—z,—Au — Vdivu + V6, —div(kV0) + div z)

where
X = {(u, z,0) € H; k(2)VO(z,-) — du(x, ) = 0in L*(0Q)}.

The nonlinear term in (3.10) is defined by
F(u) = (0, f*(u),0),
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where f¢ denotes the Nemytskii operator associated with f, i.e.

fou) = flult, z)) = (f(u(t,z)), ..., fo(ult, ©)))

for any ¢ > 0, x € {2 and by simplicity of notation we also denote f¢ by f.
We choose as a base space for (3.10) the product space H, see [31] and references
therein. This choice allows us may exhibit a Lyapunov functional to (3.10); namely

1
G Eu,2,0) = 5 ([ulfyqyn + 10y + 1010 ) - LF<u>daz

where | - H?H(%(Q))" = () (mi(y~ defined in (3.9) and F(u) = { fdvy and {; fdy represents

the line integral of f along a piecewise smooth curve with initial point 0 and final point u
with u = wu(x,t), decreases along trajectories. More precisely, multiplies by J;u the first
equation of (3.1) and second by 6, we obtain

(0?u — Au — Vdivu + VO)ou = f(u)du
(040 — div (k(2)VE) + div diu)d = 0
by adding the two equations we obtain

& _
dt
where E(t) = E(u(t), z(t),0(t)) for any t = 0.

(3.12) —J k(z)|VO|*dr <0,
Q

Differentiability of the Nonlinearity

To prove the differentiability of F' we first see that it is enough to prove the differen-
tiable of f¢. Since the map F' is defined from # into H, its derivative D F' is defined by for
each u = (u, z,0) € H as follows

Hoh=(h',h* h*)— DF(u) heH,

where
DF(u)h = (07Dfe(u) ’ h170)7
and

Df(u) = Df(u) = (Dfi(u), ..., Dfa(u)),

according to next result.

Lemma 3.1. If the functions f; satisfy (3.7), then there exists C' > 0 such that for i =

L...on,andu = (uy, ..., u,),y = (Y1, .., Yn) € R", we have that

|fi(w) = fi(y)| < 27" 'nClu —y| <1 + Z Jus [P+ Z |yi‘p1> :

i=1 =1
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Consequently, there exists C > 0 for any u; = (uq, z1, 01),uy = (ua, 29,02) € H with

w; = (W1, ..., Wy ) we deduce that

(3.13) |F(u1) = F(us)|a < Clluy — a1y (1 + Z 2 il )

i=17=1

Proof. Give u = (uy,...,un),y = (Y1,...,yn) € R, it follows from mean value
theorem the existence of ¥ € (0, 1) such that

|[fi(w) = fiw)] < Ju = y[[V (1 = D)u + dy)]

and by (3.7) we have that

| fi(w) = fi(y)| < Clu—y| (1 + Z (1 —P)u; + 19%|p_1>

i=1
< 2'nClu — y| (1 + 2 |(1 — )P~ + Z |19yz~|p_1)
i=1 i=1
< 2" 'nClu — y| (1 + Z Ju; [P+ Z yi|p_1> :
i=1 i=1

Due to Holder inequality and the Sobolev embedding H'(2) — L%(Q) we obtain
that

1F(uy) — F(ag)|# = [ f(u1) = f(u2)l 22,

where u; = (U1721,¢91>,UQ = (UQ, 22,02) € H and

| fiCur) = filus) 2@

1
2
<2 'nC J Uy — ugl? <1+ E E g |P~ 1) dx

i=1j=1

_ n—2 %
2n
<2 InC J |U1—U2|T?_2dx:| [J (1+ZZ|UU|p 1) ] :
| JQ i=1j=1

in other words,

| fiwn) = filus)lz2@pyr

2 n
< Clur —ual| , 2, ( ZZ 7] s )
=1 =1
< Cllur — 2| (11 0y (1 + Z Z Juis 5 >

i=17=1

The bound in (3.13) now follows in a straightforward way from the definition of F'.
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Lemma 3.2. If the functions f; satisfy (3.7), then the Nemytskii operators associated to
fio [£: (Hy (D))" — L*(Q) are continuously differentiable and the derivative operators
D¢ (H3 ()" — L((HJ ()™, L*(Q)) are Lipschitz continuous (in bounded subsets of
(H§(2))™). Consequently, DF is also Lipschitz continuous (in bounded subsets of H), for
n = 3,4. Forn > 4, there exists a constant n) € (0, 1) such that

IDF (u) = DFF () leqmyym @) < elu— vl gy uv € (Hy ()"
Proof. For each u € (H}(Q))™ define the map D ff(u) € L((H(Q))™, L*(2)) by
(3.14) (Dfi(u) - h)(x) = D(fi)(u(z, 1)) - h(z).

First we check that this is well defined. In fact, let u = (u1,...,u,),h = (hy,..., hy) €
(HH(Q))", then u, h € (L7 ()", and using (3.7) we get

memwmmmm<cj0+2m P) h(o)|d,

and by Holder inequality

2
L [Dfi(u(z,t)*|h(z)Pdr < ¢ (1 + !uilp_1> 1A 2z
=1 n

LZ(Q)
<< 1+2Humwm )W P

Since u, h € (L% (€2))" and p < 25, it follows that

JQ|Dfi(U(fv,t))|2\h(fv)!2dx (HZH s >Hh (B ()

Hence D ff(u)h € L*(Q2) and D f¢(u) € L((HE(2))", L*(2)). Now let us check that
D f£(u) is indeed the Fréchet derivative of ff at u. If u = (uy,...,u,),h = (hy,..., hy,) €
(H}(Q))" then

£ Cu+ ) — Fo(u) — DE(w) - by
=Lﬂﬂﬂ%ﬂ+h@»—ﬁ@@i»—Dﬁwwinwmﬂmx

< L |D*(fi)(u(=, t) + o()h(x))]*|h(x)| dz,

where o(z) € (0,1), for all z € Q. Thus, using (3.7) we obtain that
615 Ut 1) = J1 () = DS ) bl < ¢ | Ihia) .
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Casel: n = 3. It follows from (3.15) and Holder inequality that

£+ h) — o) — DFE) - bl f h(@)|'da
< C!Q\E\Hh\!\‘ie(m
and consequently
ff(w+ h) = f{(u) = Dff(u) - hlr20) < C”hH?Hé(Q))
This proves the differentiability of f¢ in u for each v € (H}(Q))".

Case2: n = 4. Using (3.15) we have that
|/ (u+ h) = ff(u) = Dff(u) - hlj2q) < CL |h(x)|"dz = c[[|h]| g
Remember that H} (2) < L*(2) for n = 4, and then

1 £ (u+ h) = fi(u) = Dff(u) - hllrz@) < clhliz o)
This proves the differentiability in this case.

We have that

. _n_ 2n
Case3: n > 4. Observe that -5 <2 < T

n

UGt 1) = f2G0) = DI BT R, = [ D ule ) + o)) () 2o,

where o(x) € (0, 1), for all 2 € Q. It follows from (3.7) that

IfeGunt ) = fr(0) = DI () RITE, = | [h@)|F5de

<clnll4,

and then

(3.16) £+ ) = fe(w) = DFE) bl g ) < By

By other hand, we have

Ife(uct B) = f2() = Dfz) BT
= L |filu(z,t) + h(x)) — fi(u(x,t)) — Dfi(u(z,t)) - h(x)|(”2*77;)*’d:1:
< L ID(f)(u(z, t) + 6(x)h(x)) - h(z) — D fi(ulz,t)) - h(z)| =2 dz,
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where 0(x) € (0,1), for all z € . Using Holder inequality with exponents - and p we
have
2n

I (u 1) = £ () = Dfu) - 0] ™

(n— 2)p(Q)
G17) < ID(fi)(u(w,t) + 0(2)h(x)) = Dfilulz, 1)[05 52

< [[D(f)(u(z, 1) + 0(z)h(z)) — D fi(ulz, ))IH(" & B thlll(" s

2
|12 &= £y

1) (O n=2(Q)
Note that
I[D(fi)(u(z,t) + 6(x)h(x)) — D fi(u(z, t))!HL%(Q)
< ID(fi)(ulz, t) + O(@) ()] g - D filule, O —zn 5
Using (3.7) we get
I1D(f:) (ula, 1) + 0w ()] |57
L(=2)(p=1) ()
n D
<cf <1+Zui(x)+9(m)hi(x)|"_l> dx
Q i=1
c (1 +;|ui(w) +0(x)hi(z )||’L“(j . (m)
and then
(3.18)
D) e 1) + ORI 2D (1 +Zuuz n@)g ) .

In a similar way, we obtain that

(3.19) D) D) 5= (1 + HU|H1<Q)

Do ()

Using (3.15) and (3.18) in (3.17) we have that

| (u+h) = f7(u) = Dfi(u) - b

2n
L(n=2)p (Q)

(3.20) n
k<1+§[|ui<x>||§{gtm+|e<x>hi<x>||*;;5 Tl o )|h|<H01(m)n.

It follows from Interpolation Theorem [22, Proposition 6.10 pg. 185], (3.16) and (3.17) that
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there exists A € (0, 1) such that
15 (u+h) = fi(u) = Dfi(u) - hl 2@
1-X "
< el | [#(1+ D@t + 10@R(@) [t
=1

o

]
p—1 A
+ ll e ) ol oy |
n A
c<1+§mmwmg@ﬁwwmm@m;@ﬂ+wwg )mfmﬂ
i=1
and consequently

| ff(w+h) — ff(u) — Dff(u) - b2
Hh”(Hg(Q))n

— 0

as | Al ()= — 0. This conclude the proof that D is the Frechét derivative of f7.

Now, we show that u — D f¢(u) is Lipschitz continuous as a map from (H}(Q))" into
L(HY@Q)", (@), for n = 3,4
Suppose that n = 3, and let u, h € (H}(2))", then

IDfE() - h = DfE(e) - Wl

< | 1D (et = D). ) )P

< | 1D+ da)ela, )P lu(e, ) = v(a O Ih(o) s,
for some () € (0, 1). It follows from (3.7) that

IDff(u) - h = Dff(v) - Aoy < CJ [u(z, ) — v(z, )% |h(z)|*dz

< Clllu=vPl 3 o 110220

L3(Q)
< Cflu =l Zsoll1Al]17
= LS() LS(Q)

< Clu— UH?H&(Q))iS||hH%H5(Q))3'

Let n = 4. In a similar way, we obtain that

|Dff(u) - h = Dff(v) - A2y < CL u(z, ) — v(z, t)]?||h(z)*da
< COlllu = vl a1l 240y
< Clu— U||?H3(Q))4||hH?H5(Q))4,

in the last inequality we used that H] (2) — L*(Q).

Let n > 4. Observe that -5 < 2 < and then

(n 2)p

(3:21) Lm“’—*’%w(m — L*(Q) — L2 (Q).
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For all u,v, h € (H}(Q))", we have

|Dfif(w)-h=Df;(v) hH” : J [D?(fi) (u(x) +o()v(@))](u(e) —v(@))h(z)| *=d,
where o(z) € (0, 1), for all z € Q. It follows from (3.7) that
IDff(w) - h = Dff(v) - bl 5, f| (2))h(z)| =2 da
< Cffu(z) - @N”?hzmwﬂn2h2
< C n— 2 h n—n
(@) =o@) 2, o I,
< Cffu(z) = v(z) Egig\Hh ’LQ )"
Then,
(3.22) IDf{(u)-h—Dff(v) - hHLrﬁg(Q) < Clu(@) — v(@)] a2 @m0 a2 ))n-
Now, using Holder inequality with exponents ;= 7 and p we have
IDFE(w) - h— D) - b
L(n=2)p (Q)
2n
<§J;[D(ﬂ)@dx,ﬂ)h(t)—-D(ﬁ)ﬁwxaﬂ)h@ﬁ]m—””dx
2n 2n
< [[D(fi)(ul, 8)) = D(fi) (W, )W) Loy o MR o)
2n
< [1D(fi)(ulz, 1)) = D)o@ I %, WhH(”2”
=1 (Q 2(0)

and then

ID fi(u)-h—D fi(v)-

2y < Pl ) =D @ DI gnsy o I 222 -

It follows from (3.19) that

€ N — e . 2n pil pil 1
(323) |Df(u)-h=Dff(w)-hl z < e(1+ ulliyia) + [0 ) F]i0)

It follows from Interpolation Theorem [22, Proposition 6.10, pg. 185], (3.22) and
(3.23) that there exists 1 € (0, 1) such that

n _
IDfE(w)-h=Dfe(w)-hlraey < o1+ Tl oy + 1012 ) Tu= 0l Pl rgcaye

From this, for u, v in bounded subsets of (H; (£2))" we obtain that there exists 7 € (0, 1) such
that

| Dfi(u) = Dff ()| capn.2) < Cllu— “Hgfg(m)n'
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As we previously notice, in Dafermos [17] we can to ensure that the linear part of the
problem generates a linear Cy-semigroup of contractions in . Since the Lemma 3.1 and the
Lemma 3.2 are ensure for f, we can guarantee the local well-possessedness of the problem
(3.10) thanks to the Theorem 2.21. More precisely, the next result is hold.

Theorem 3.3. Given ug = (ug,us,vg) € H = (Hg(Q))" x (L*(Q))" x L*(Q), the initial
value problem (3.10) has a unique mild solution with

we C([0, 7ug): (HEQ)™) A CH[0, 7 )3 (LA™, and 6 € C([0, 7,), LA()).
Moreover, if
uy = (ug, ur, ) € D(A) = (Hy () n H*(Q))" x (Hy ()" x (Hy(Q) n H*(Q))
then the following regularity property
we C([0,7,): (HA(Q) A HHUQ)™) A CH[0, 7ug); (HHQ)™) 0 C2([0,7,); (LA(Q))"),

and
0 € C([0,74,); H*(Q) N Hy(Q)) 0 CH([0, 7uy); L*(2))

is verified. In this case that u = (u, 0yu, 0) is a strong solution of (3.10).

From this and standard ordinary differential theory via linear semigroups theory, see
Pazy [36, Theorem 1.4], the problem (3.10) has a unique local solution u(¢; ug) in # satis-
fying the initial condition u(0;uy) = uy € H and defined on maximal interval of existence
[0, Ty )-

Now we wish to prove that solutions of (3.10) are globally defined, i.e., for each uy =
(uo, u1,6p) € H, Ty, = 0. Thanks to Pazy [36, Theorema 1.4] and [36, Theorema 1.5], we
can consider the continuously differentiable functional £ : H — R defined by (3.11) and
using the estimate (3.6) it follows that

£u,2,0) 2 5 (el + 12l oaae + 1003a(0)) — Llelfzaiape — Col€,
and applying Poincaré inequality we obtain that
£ 20) > 3 (Iulmgiape + 1P + 19300 ) ol = Col)
= 5 (1= D) by + el + 581y — Gl
For 0 < n < min{1, \;} we get
(3.24) I(u, 2,0) |13, < c1€(u, 2,0) + ca,
for some ¢; = ¢1(n) > 0 and ¢y = co(n) > 0.
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Then it is clear from (3.12) that [0, 7,) 2 ¢t — E(u(t), du(t),6(t)) € R is a non-
increasing function. It follows from the fact that £ is continuous and bounded in bounded
subsets of H and from (3.12) that, given r > 0, there is a constant C' = C(r) > 0 such that

sup{[| (u(t), du(t), 0(t))|w; [(uo,ur,00) |3 <7, and te[0,7y,)} < C

This implies that for each uy € H, the solution of (3.10) with uy = (ug,u1,6p) is
defined for all ¢ > 0. We will write the mild solution of (3.10)

(325) S(t)llo = 51 (t)llg + SQ(t)UQ,

where S;(t)uy is defined as the solution of (3.10) with F = 0 and

Sy (t)ug = Lt S1(t —EF(S(§)ug)d, ¥t =0

here F(u) = (0, f¢(u),0), with f¢ the Nemytskii operator to f.

3.3 Existence of global attractor

In order to study the asymptotic behavior of the system (3.1), we assume the vanishing

mean value for 6, on {2; that is,
(3.26) 0 € L3(Q) = {9 e L*(Q); J 0(x)dx = 0} :
0

where (2 is a bounded domain with sufficiently smooth boundary in R", n > 2.

For our better knowledge, large time behavior of solution, in the sense of existence and
sensitivity of global attractors, for the system (3.1) has not yet been treated in the literature
if we assume (3.26) on initial data.

Since the physical interpretation of the function u as the displacement and 6 as the
temperature variation of a body occupying the domain {2 < R" is considered, we can see
that the hypothesis (3.26) is natural for the problem. Let us recall that the problem (3.1) is
formulated by considering a certain value 7} € R, which will be the reference temperature of
the environment where the body is inserted and from this define 0y(z) = Ty(z) — T; where
To(x) is the body temperature in x € 2. As we are considering not an external heat source
other than the environment, this hypothesis is compatible since the functions in L?*({2) can
be written as a direct sum of the functions that satisfy (3.26) and constants functions. The
condition (3.26) is necessary in our analysis to use the Bogowskii’s operator, which is a right
inverse for the divergent operator. Duran in [19] and, Duran and Muschietti in [20], we find
the properties of the Bogowskii operator that we will use in this work.

We will denote by

(3.27) Ve = L3(9Q)
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and we will consider the problem (3.10) in the space
He = (YD) x Y™ x Y,

equipped with usual inner product of H.

Now we want to construct a Lyapunov functional and combine the arguments from
Andrade, Silva and Ma [2], Barbosa and Ma [4], Cavalcanti, Domingos Cavalcanti and Fer-
reira [14], Aradjo, Ma and Qin [18], Giorgi, Rivera and Pata [23] and Pokojovy [37] to
prove that the nonlinear semigroup {S(¢);t > 0} has a bounded attracting set. We will ap-
ply [13, Theorem 2.23] and deduce the existence of a global attractor, to do this we need to
show that the nonlinear semigroup is also asymptotically compact according to the [13, Def-
inition 2.8].

We define the wanted functional conveniently changing the functional energy using
the existence of a continuous right inverse of the divergence, which is called the Bogovskii
operator. Because this, we assume that € is star-shape domain with diameter R; > 0 with
respect to a ball B; and the vanishing mean value for ¢, on €2; that is, (3.26).

Under the hypoteses about 2, it is well know that the divergence as an operator from
the Sobolev space (Hj(€2))" into the space L2(€), it has continuous right inverse called
Bogowskii’s operator, see e.g. [6], [9], [19], [20], [34] and [37]. Given a function v € L%(Q),
we will denote @ (v) € (HJ(£2))™ a solution of the problem

Since the physical interpretation of the function u as the displacement and 6 as the
temperature variation of a body occupying the region 2 < R" is considered, we can see
that the hypothesis (3.26) is natural for the problem. Let us recall that the problem (3.1) is
formulated by considering a certain value 7 € R which will be the reference temperature
of the environment where the body is inserted and from this define 6y(z) = Ty(z) — T
where Ty(x) is the body temperature in z € ). As we are considering not an external
heat source other than the environment, this hypothesis is compatible since the functions
in L?(Q) can be written as a direct sum of the functions that satisfy (3.26) and constants
functions. The condition (3.26) is necessary in our analysis to use the Bogowskil operator,
which is a right inverse for the divergent operator. More precisely, Bogowskii operator is
O : L2(2) — (HL(2))™ such that

div(®(v)) = v in €,
(3.28) ®(v) =0 on 0

[2() |z @yn < Clvlrae
where C' > 0 depends only on €2, for more details see Duran [19] and, Duran and Muschietti
[20]. Note that L2(€2) is a Hilbert space equiped with the inner product induced by usual

inner product of L?(2).

Duran and Muschietti in [20], we find the next results of the Bogowskii operator that
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we will use in this paper. They define

| ]
Gla) = | il = (3 + ) s
for aw e C° () such that §, wdx = 1 and proof the Lemma 3.4 and the Theorem 3.5

Lemma 3.4. For any w, € C§°(Q) we define &y = §, w(x)w;(x)dz. Then, for y € Q we have

(@1 = @) = = | Gla)Verla)d.

Theorem 3.5. Let Q) be a bounded and star-shaped with respect to a ball B < ). Given
ve LP(Q), 1 <p < o, suchthat §,vdx = 0 define

B(v) = JQG@,y) o(y)dy.

Then
®(v) e (WyP ()",

div(®(v)) = v

and

[2()| e e < Clvlcee)

where C' > 0 depends only on ().
Notice that, if (u, #) satisfy (3.1), then we have immediately that
0 = div(kVO — Ou).
for t > 0 and = € Q. Besides that {, 6,0dxz = 0, and
0 = 0, div(®(0)) = div(0,(0)).

Therefore,

div(kVO — dyu) = div(0,P(0)).

This leads us to think that
(3.29) o(@(0))(x,t) = [kVO — du](x, ).

The identity (3.29) is true in L*(£2), because for any w; € C$°(€2) from Lemma 3.4 and
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Theorem 3.5, we can do the following

Jﬂ[&tq)(O) — (kVO — )] - Vw (z)dx

:J ( J 0.0(y )G(x,y)dy) Ve, (x)dz + L (80w, (
—J 2:0( U G(x,y) Ve, (x >dy+ (8:0w1) (
00(y)

Q

| aower — @y + | (@0w) @o
J (0,0w01) (y)dy + f 0:0(y)ndy + f (0,0w1) (z)da

Q
J@t y—O

where we omit ¢ for simplicity.

Let us consider the functional
(3.30) E(u, Z, 9) = Mg(u, Z, 9) + 0, (u, Z)(L2(Q))n + (52((13, Z)(L2(Q))n

where 01,0, and M are positive constants to be chosen appropriately and ¢ is define in
(3.28), we obtain the following result:

Theorem 3.6. For M > 0 sufficiently large, there exist constants My > 0 and My > 0 such
that for all t = 0

(3.31) % < —MiE(E) + Mo,
where L(t) = L(u, z,0), E(t) = E(u, 2,0), and (u, z,0) = (u(t), z(t),0(t)) is the global

solution of (3.1)-(3.26).

Proof. Note that

drc d& d d
(3.32) = = Mo+ 0= (u, 2) @@ + 022 (8, 2) 2
Thanks to (3.8), (3.12) and Poincaré inequality we have
d&

) = —f () VO
f\vey dx —Wlf 10[2dz,

where ), is the first eigenvalue of negative Laplacian operator with zero Dirichlet boundary

(3.33)

condition in {).
We also have

d

E(u, Z)(L2(Q))n = (6’tu, Z)(LQ(Q))" + (u, 6tz)(L2(Q))n = (6tu, 5tu)(L2(Q))n + (u, 6’fu)(L2(Q))n

= J |Oyu|*dx — J |Vul*dz — J | div u|*dx — J VoOudx + J f(u)udz.
Q Q Q Q Q
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To deal with the integral term, just notice that from (3.5) we have

—d Uy 2)(L2())n < oulPde—| |Vul?dz— divul?de— | VOudz+v | |u?dz+C,|Q
7 2@
Q Q Q Q Q

and again by Poincaré inequality

i Uy 2) (12 < Opul*dr — Vul?dx — divul?dz — | VOudz + z Vul?dzx
(L2())
dt Q Q Q Q A1 Ja

+ C,|Q|

in other words

Cy :
i(u, 2) (L2 @) < J |Opu|*dx — —J |Vul*dx — J | div u|*dz — J Voudz + C,|€],
dt Q 2 Jg Q Q

where v > 0 is chosen such that

1%
L =1 >0,
C )\1>0

that is,

0<V</\1.

Due to Young’s inequality we conclude that

d e 1 :
61— (u, 2) (L2 < (51J |Oyu|*dx — 1 J \VulPdz — (6, — = f | div u|*dx

(3.34) 3
+ —lf 102dz + 6,C, 9.
2 Jo

We also have

d

E(CI)’ Z)(LQ(Q))TL = (CI), 63u)(Lz(Q))n + (6t<I>, 8tu)(Lz(Q))n,

and from (3.29) we obtain that

d

—((P,Z) L2(Q))" —J
A wer = |

+ f kVOoudx — f |Oyu|*dx
Q Q

OAudz + J

OV div udz — f
Q

OVodx + f O f(u)dx
Q Q

In other words,

+ J k(x)VOoudr — J |Ovu|*da.
Q Q
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Using (3.8) and the Young’s inequality we get for any € > 0,

2
52d(<1> @) J VO2dz + © f Vul2ds + 2 +252f 0|2da:+J | div uf2de
2
J\f Pdo + 2 J\(I)\d %J\veymx
2 Jo
+ (2—6 - 1) J |Oyu|*da
2 1
< % 2252J 0)2dz + = f |Vu| dx—I—f | div u|*dz
Q
+ lf | f(u)|?dz + —QJ VO |dx + —2J IVO|*dx
52f€1 f |VO|*dx + (2i - 1) f |Oyu|*dx
Then,
d 1 C62
5%(@ 2) 2y < <3 (52 + 265 + C83 + —)f 0%dx + = J |Vul*dz
(3.35) + —f | div ul*dz + —f |f(u)*dx + darie J VO dx
2 Jo 2 Jo 2 Jo

+ (l - 1) 52J |Opu|*du.
2¢ Q

Thanks to (3.7) there exists C' > 0 such that

J () 2dz < cf uldz + CZJ s d
Q Q i=1Y8

Since 1 <p < L5ifn>2,and 1 < p < +o0if n = 2, we see that H*(Q2) — L*(Q), and

we obtain that
J | (w)2dz < (JJ 2z + C
Q Ja

(3.36) &
< _1J Vuldz + Cs,
A1 Ja
whenever |ul|(2(q))» < 7 (as in Carvalho, Cholewa, Dlotko et al. [12]).

Now comblmng (3.35) and (3.36) we get
d 1 052
1 . 2 52’%1 2 1 2
(3.37) + - | |divul*de + —— | |VO]°dz + — | |Vul“dx
2 Jo 2 Jo 2X1 Jo

1 ) Cy
+ <2—€ — 1> 52 J;) lﬁtul dx + 7
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Therefore, combining (3.32) with (3.33), (3.34) and (3.37) we see that

M Mroh ,
Ly < - "“OJ V02 — 2RO 1J |9|2dx+51f atu\de—Ef Vul2dz
dt > ), 2 ),

2 52
— (s - ! J | div ul?dz + = % J 10)2dx + 05 + 265 + CO5 + ¢ J 16> dz:
2/ Ja 2 A Q

1 1 5
+—f \Vu|?dz + —f | div u|?dz + MEJ IVO|*dx + —1f \Vu|?da

1 C.
+ (— - 1) 52f Oul?dz + =2 + 6,C,|9).
2€ Q 2

When we reorganize the previous inequality,

(3.38)

d 52%%6 :‘ioM 2 6101, C'l 1 2
dt£< ) < ( D) f |VO|“dz — > “an 2 L |Vul|*dx
052 62 K /\1M
65 + 20 +052+—) +—1—°—)f | dx
<2 ( ? A 2 2 Q’ |

1 )
(5, - 1)J | div uf2dz — ((1 _ %) 5y — 51) J Oul2dz + % 809,
Q Q

Now take € > ( large enough to be able choose 9; and 5 such that

61 + A\
Alcvu

51<(1——)(52

Choose M > 0 sufficiently large too such that
dak3e koM —0and t 1 ( 052) N 62 koMM

O<max{ ,1}<51,

and

2 2

2 —
5 5 65 + 265 + C65 +

0
" =5

with these choices for the constants d, 0o and M there exist oo > 0 and p; > 0 such that

ar 1
—(t) < —o l—f Vu2+divu2+22+92dx]+g.
0 <o | (Ve +ldive? + 2 + 0P )de | + o

Finally, we observe that if £ € Hj () — = (), then
£leP € Le 60 (Q) <> LY(Q), forall 1 < p < LQ
and our hypothesis on f (see (3.7)) implies that

[fi@l <@+l +-- + &), £ = (&, &) eR™,

Therefore, we can find a constant ¢ > 1 such that for all u = (uy, ..., u,) € (Hj(Q)),
- JQ F(u)dz < elulti e (1 + gy + - + lualing),
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and therefore
(3.39) —d L Fu)dz < [ulfg gy,

. . 7 1
whenever |[ul( o)) < r and considering d = =51y < L.

Thanks to (3.38) and (3.39) there exist constants o3 > 0, M; > 0 and My > 0 such

that
d i ) .
ZL(H) < —% I (|Vu|2 +|dival + |22 + |9|2>d:r - % ) (|Vu|2 + |d1vu|2>d:v +or
v d
< _@J (|vu|2 T [dival? + |2]? + |9\2>dx + 8 pwyde + o
2 QO Q
[1
<M, QJ (|W|2 +|dival® + |22 + ye|2)d;c —J F(u)d:z:] + Mo,
L Q Q

where F'(u) = Sg fd~ and Sg fd~ represents the line integral of f along a piecewise smooth
curve with initial point 0 and final point u.

Finally, from (3.11) we conclude there exist constants M; > 0 and M5 > 0 such that

ac
% < —Mlc‘:(t) + MQ,

where u(x,t),z = z(x,t),0 = 6(x,t). This concludes the proof of the theorem.

Theorem 3.7. For M > 0 sufficiently large, there exists positive constants C'y;, cpr, Cy and
Cs > 0 such that for any t = 0,

(3.40) emE(t) — C1 < L) < CrE(t) + O,

where L(t) = L(u, z,0), E(t) = E(u, 2,0), and (u, z,0) = (u(t), z(t),0(t)) is the solution
of (3.1)-(3.26).

Proof. In the follows we prove the two inequalities in (3.40) simultaneously, once the
arguments are similar. From definition of the functional £ and Cauchy-Schwarz inequality,

for any M > 0 we can see that
ME(t) — 0y L ul|z|dz — &5 L |®||z|de < L(1),
and
L(t) < ME() + 6, L ful|2|dz + 6, L 1]|2|de.
Then, it follows from Young’s inequality

o1

ME®) -5

1 9o
lullzz 0y — 501+ 02) 12 ¢2 ey — 3\\¢H?Lz<m)n < L(1),
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and
01 1 0o
£() < ME() + Sl + 561 + )2z + 2@ 1z
Now using the Poincaré inequality, we have that

) 1 2
ME(t) — 2; [elera yym — 50+ 82) |2 [ 2oy — 2_)\1H(D”?Hé(ﬂ))n < L(t),

and
L(t) < ME() + _51 HUH2H Q (5 +90 )HZ” L2( + o O H(I)HzH Q
= 2NN o ()" ! 2 2 2\ (H5 ()

From definition of the functionais £ and ®, we get

3L (0 = ) gy + OF =81 = 8y + (M = 2

5,0
5 =)
- MJ Flu)de < £(2),

16120y |

and

£t < 1KM+&)ww1» #4814 0 + (M o+ ) 6l

] e

for some C' > 0.
Using (3.6) we see that

n 2
| Puds < Ftuliuyy + Gl

and if we denote

s 007

A A
Co A
Cy = nd
Al—1
QMT] — C1/\1
C =
3 )\1 — )
R 1Ol
4 2M’I’] — Cl)\l
then we conclude that
1
L) = 5 |(M = en)|ulf gy + (M = Cl)HZH%H(Q))n + (M - Cl)HHH%Q(Q) - M| F(u)dx
2 (Hg () 0

1 1C2 nez
> 5[0 = (e + 52) Uws )by + J2 il — (M = o) | Plage
— ¢y f F(u)dz

Q
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and

1
£@<§Wﬁwnu@@wﬂM+mdb@wHM+®Wﬂ+MLFMM

1
< 5[(M +a+ acs)|(u 2, 0)]w, — C4C3HUH?HOI(Q))n] — (M +c3) L F(u)dz

+ (2M + c;;)f F(u)dz,

where M > 0 is chosen sufficiently large such that M — ¢, > 0, ¢5 > 0 and ¢4 > 0, we can
note that

Ui
Cy = C1 + —Cg;

A

cacs = (2M + cg))\i;
1

C3 = Cg + C4C3.
Therefore by (3.6) we get

1 7] 2 n ?7 2
§[M - (cl + A—lcQ)] (2, 0) 13, + (27102 - Q—Alc2> ey oy

— (M — CQ)J F(u)dz — C,c|Q| < L(2),
0
and

1 1
£(t) < 5IM + (e + coe)ll (w2, 0, + 5| = eaca + (M + ) | ulya e
2 2 A1 0

— (M + ¢c3) L F(u)dz + (2M + ¢3)C,|9].

Finally, if we define cpy = M — ¢, C1 = C,[Q], C2 = (2M + ¢3)C,|?| and
Cy = M + c3, then

w20, e | Plajds - €y < L)
Q

and o
£(t) < (w20, — Cur | Flu)da + o

Q
We have the following result as a consequence of Theorem 3.6.

Theorem 3.8. There exists R > 0 such that for each bounded subset B of H., there exists
tg > 0 with the property
S(t)B < By, (0; R),

foranyt > tp. Here, By, (0; R) denotes the open ball in H.. centered at origin of radius R.
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Proof. Let B be a subset of H.,, and let (u, z,0) = (u(t), z(t), 6(t)) be the solution of
(3.1)-(3.26) with (ug, u1,6y) € B. Using Theorem 3.6 and the second inequality of (3.40) in

Theorem 3.7 we have that there exits constants p; > 0 and g, > 0 such that

d
- < —
dtﬁ(t) 01L(t) + 0o,

where L(t) = L(u, z,0) for any ¢t > 0.
From (1.6), we can find that

t
E(t) < E(O)e_ SO o1ds + J 926_ ST QldeT < £(O)B_Qlt + @(1 _ e—glt)
0 01

where £(0) = L(ug, u1,6p), and combining with the inequalities (3.24) and (3.40) in Theo-

rem 3.7, we get

c Cic
|(w,2,0) %, < a1€(u,2,0) + ez < —L(t) + —— + ¢4
CMm CMm
¢ c Cic
< (L) - 2)erey L0 Ga
M 1 01CMm M

for some constants ¢, ¢o, ¢pr and C > 0.
Let Rp > 0 such that ||(ug, uq, 0p) H%* < Rp, then after some calculations we conclude
that there exists g > 0 with

c Cic
02C1 n 1C1
01CMm CM

I(u, ,0) |3, < 2( + 02> forany t > tp.

Proposition 3.9. There exists positive constants K and o such that
1S1() | ey < Ke ™ forall t=>0,

and S5(t) is a compact operator from H., into itself for all t > 0. In particular the nonlinear

semigroup S(-) is asymptotically compact.

Proof. To prove the decay of S (), one considers the functional

1

Lo(u,2,0) = 5 (lalZayay + 12y + 181320 ) + 81 (0, DDz + (@, D)z

Thanks to Theorem 3.6 and Theorem 3.7 we have

d
aﬁo (t) < —Ckﬁo (t)

for some o« > 0, where

£0(51<t> (Uo, Uy, 00)) < Eo(sl (t) (Uo, Uy, 60))6_at7
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and consequently,

151 (t) (uo, us, 00) 3, < Ke™|(uo, u, 00)f3, -

To show that Sy(t) is compact, we first show that f is bounded from (H;(€2))™ into

(WLr(Q))", with r = 2((77__21)) = - + 1€ (1,2); indeed, it follows from Lemma 3.1 that for

any u € R™ we have
[f()] < 2270 Clul (1 + Jua P~ 4 o JuaP ),

for p < %5 and from (3.7),
If @)l 9) = L(If(U)!’" V)" Vul")dx
S f (@2 Clul (1 + ™+ fuaP7)
Q

+Cn(1+ ) || V") d

i=1
r r/2
< © (Il + 1+ Pl + 11 IVl e
r r/2
C’(Hul P + [Vulz2o >n+||uu" mnuwu(zgm ok

Our ch01ce of r < 2% implies that pr < -2 and from the embedding of H(2) into
L(Q) for ¢ < 2 it follows that f€ is bounded from (H(2))™ into (W' (Q))™ and the
latter is compactly embedded in > 1. Thus, F' is bounded from ., into {0} x (W17 (Q))" x
{0} and the latter is compactly embedded in (H](2))" x (W1 (Q))" x HJ ().

Now fix ¢ > 0 and consider

t

Su(ty = [ SUOP(SE©u)de, 120

0
for uy € B, where B is a bounded subset of ... Since orbits of bounded subsets of .. under
the nonlinear semigroup {S(t);¢ > 0} are bounded in ., it follows that Sy (¢) is compact
for each ¢ > 0. Thus the fact of nonlinear semigroup {S(¢);t > 0} is asymptotically compact
is a consequence of [13, Theorem 2.37].

]

Finally, as application of Theorem 2.38 now implies that problem (3.10) has a global
attractor A in H,.

3.4 Lamé operator of linear elastostatics system

Thanks to (3.8) the linear unbounded operator with homogeneous Dirichlet boundary
condition A, : D(A,) < L*(Q) — L?(Q) defined by

D(A,) = H*(Q) n Hy (),
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and
Ao = —div(kVo)

is a sectorial operator which generates exponentially decaying analytic semigroup.

LetY = L?(Q2) with usual inner product. Since the negative Laplacian operator subject
to zero Dirichlet bounded condition is a sectorial operator in Y (see Carracedo, Alix and
Sanz [11, Section 2.3] and Henry [25, Page 19]). The operator

Ay (Y2)n cY"—-Y"
defined by
A(v) = —Av = (—Auvy,...,—Av,)

is positive, self-adjoint, —/; infinitesimal generator of an analytic semigroup in Y.

The unbounded linear operator
Ay (V) ey —»y”
defined by
Ay(v) = =V divo

is closed in Y. Using the Proposition 2.29, we have there is C' > 0 such that
[ Agz]| < C(p%||]| + p* ] Asz]),

forall z € D(A), p > 0and « € (0, 1]. By the Theorem 2.30, A; and A; + A, has bounded
imaginary power for a € (0, 1).

Therefore, /A; and A, are in the conditions of the Proposition 2.31 and the Corollary
2.32. Hence, A = A; + A is sectorial, therefore by the Theorem 2.23 A is infinitesimal

generator of a Cy-semigroup, and

D((Ay + A)?) = D(A%), a e (0,1).

3.5 Regularity of attractors

We have that
(Y™)* = D((A1 + Ay)%),

a = 0, the fractional power spaces associated with the operator A2 with the graph norm
|+ [ymye = |AZ - |y» and by Y™ = D((—A)?) endowed with the graph norm | - [ya =
I(=A)?2 - |ly. We just verify in the previous section (Y™)* = (Y*)™ as sets, but this don’t

mean |-[|(ynyo is equivalent to |-||(y«yn. Through the similar argument D((—A)z) = D(/L?),

since is know | - ||y« is equivalent || - |y thanks to (3.8).
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With this notation, we have (Y =)’ = Y* for all « > 0. It is of special interest the

spaces
y? = HQ(Q) N H&(Q), Yyl = H&(Q),Yo =Y = LQ(Q) and Y ! = (Yl)’ = Hil(Q).
From now on, we consider Y = Y% nY,.

Remark 3.10. If u = (u, 2, ) is a mild solution of (3.10) and 0 € Y ~, then we can ensure
that @ € Y'=* for ¢ a.e. in [0, 00). Without lost of generality, we just need to show that if
0y € L*(Q), then § € H}(Q).

Being u = (u, dyu, #) a mild solution for (3.10),

b
u = (u, . 0) = S(t)yup + f S(t — s)F(u(s))ds = (Si(t), Sa(t), Sa(t))uo.

where S(?) is a semigroup which has A as your infinitesimal generator. Notice that F'(u, 0y, 6) =

(0, f(u), 0).
Since the operator A is closed and densely defined for there is a suit (ug,) < D(A)
such that up,, — ug in #. Since ug, € D(A) implies that u,,, be a classical solution, in

particular

dy, = (%S‘s(ﬂuom,v) — (kVSs(t)ug,, Vo) + (div é, (S (t)ug,) ,v) = 0, Vt = 0.

Since
div at (Sl (t)u(],n) — div at (Sl (t)uo) in L2(Q>

and we have ug,, — ug in H., then S3(t)ug,, — S3(t)ug in L*(Q) and d,, = dy = 0.
Notice hat div d,u € L?(2) = H~! with the proper identifications. Given §, € L*(Q2),
let 6 e L?((0,0); HE(Q)) n C((0,0); L*(Q)) = C((0,0); L*(2)) be such that (0, -) = 6,
and p
(EQ_’ v) — (kV0,Vv) + (div &, (S1(t)ug) ,v) = 0.
By the Theorem 1.3, y is unique in L2((0, 00); HL(2))nC((0, 20); L?(£2)). Therefore,
Q_ = S3(t>ll0,

because Ss(t)ug,, — S3(t)up in g. Use again the Theorem 1.3 ensure us, the following

Sy(tyug € L2((0,%); H(R)) n C((0,00); LA(Q) = C((0, 0); L*()).
We will also denote

H:?{OZ(YI)"XYHX}/’

H = (V)" x (Y x YT,
)



and
,Hi = (Y2)n x (Yl)n x Y*17
all equipped with usual inner product of (H?(Q2))" n (H}(Q))™ x Hi(Q)" x L*(Q).
Thanks to work as Dafermos [17] and Henry, Perissinotto and Lopes [26], the operator
A is the generator of a strongly continuous semigroup of contractions on H. Furthermore,
A has a compact inverse. A partial description of the fractional power spaces H* = D(A®)

endowed with the graph norm is given by
M = [Hy Hala = (V70" (Y70)" x Y72

for a € [0, 1], see Amann [1, Section 2 of Chapter 1].
Now we investigate the regularity of the global attractor. As a matter of fact, we prove
that A is a bounded subset of ..

Theorem 3.11. The global attractor A for the problem (3.10), obtained in Section 3.3, lies

in a more regular space than H.,, in fact, A is a bounded subset of H}.

Proof. The main idea that we will use in verifying this result is the argument of pro-
gressive increases of regularity, following Babin and Vishik in [3] (and also explored for
example in Carvalho, Langa and Robinson [13, Chapter 15]). With lost of generality we will
assume ~ = 1 to simplify the calculations.

Let ¢ : R — H, be a global bounded solution of (3.10). Then, the set {{(¢); t € R} isa
bounded subset of /... We already know that A is bounded in #,. Hence, if {(-) = R — H,
is such that £(¢) € A for all £ € R, then

t

€(t) = Sy(B)E(0) + f S1(s)F(£(s))ds,

0

where S (-) is defined in (3.25). Now using the decay of S;(t) in the Proposition 3.9 and
letting ¢ — 40 it follows that

+00

(3.41) §(t) = S1(s)F(&(s))ds.

0

Set (po, 11, 99) = £(0), and we consider

Ho

[ag“] (t) = 5:(t) [gﬂ = E Si(s)F(S(s) [g;])ds,
and note that (4(-), O u(-), 9(+)) € H. solves the system

O —Ap—Vdivp+ VI = f(u(t; po)), e, t>0,

(3.42)

@19—A19+dlvat,u=0, I’EQ,t>0,
with
(3.43) w(z,0) = Gip(z,0) = 0and J(x,0) =0, z € .
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We again consider the following functional

1
Colp(t), aua(1), 0)) = 5 (18) gy e + 108z + 108) ey )
+ 01 (p(t), Gep(t)) (z2(ym + 02(R(2), Oepa(t)) (2 ()

to estimate the solution of (3.42)-(3.43) for (1o, pt1,%) in a bounded subset B of #H,. The
same arguments of the proof of Theorem 3.6 to obtain (we omitted ¢ in order to simplify the
notation)

dL
(3.44) d—to(/ﬁ, Outt; 9) < —Col Vil trzayyn — Cullettfrz gy — Coll 972y + Cs,

where Cy, C', Cs and C'3 are positive constants.
From this it follows that

(3.45) U So(7)B is a bounded subset of H.,.

0<r<t

Therefore (w, () = (O, 0;10) solves the system

0w — Aw — Vdiva + V¢ = f'(u(t; po))w(t; po), =€Q, t>0,
8tC—A(+diV(9tw=O, JZEQ,t>0,

(3.46)

with @ (0) = 0, @;(0) = f(uo), and ¢(0) = 0.
In order to continue with verification, we will show that (1, 0, ¥) is bounded in H.,
by estimate (w, d;w, () in H,. But solutions are not regular enough to allow this directly,

that’s why we will work ‘towards’ H,. by progressive increases of regularity.

I},-'l ‘}’l—n ?.' ?f—f.r

Figure 3.1: scale of the fractional power spaces of Y.

ey 1 ey l—a by Y —rx

Figure 3.2: scale of the fractional power spaces of .

We will take (ww, 0y, () € H™* = (YI7)" x (Y~9)" x Y, for a € (0,1) and we
define
(3.47)

M
Lat) = S (2 yayn + [0y ayn + 13- ) + 81, D)= + 627 Dy
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where v such that div~y = (.
We want to find an inequality like 3.44. Therefore, we will obtain following estimates
for the terms involved in £, (); First, thanks to (3.42) we get

d
dat quH%Y*a)" = 2(Aw+Vdivw, ¢)(Y—a)n —2(V¢, ¢)(Y—a)n +2(f/(/l(t; to)) @ (t; o), ¢>(Y—a)n-

Because of (3.8) we have

d . .
Tl —e = 2(A¢ Oy = 2(div dym, Oy < =2[¢fly1-« = 2(div A, Oy

Again by (3.42) we obtain

d )
%(w, ®)(y-eyn = ngﬁ”%y_a)n + (w, Aw + Vdivw)y-ayn — (@, V() y-ajn
+ (@, [/ (1(t; o)) (t; p10) ) (v —eyn-
Also, we see that
d )
E(% P) vy = (0, @) (y—eyn + (7, Aw + Vdivw)y—ap — (7, V) (y oy

+ (7, £ (s o)) (L5 0)) (v —yn-
In this way,

dC, M :
dt < 7[2(8{@, 'W)(Ylfa)n + Z(Aw + V le w, ¢)(Y*&)n — 2<VC, ¢>(onc)n

+2(f"(ult; o)) (t; p10), ) (yr-ayn — 2/|¢[[F1-a — 2(div Oy, ()y—a]
+ 01 [HﬁbH%Y—a)n + (w, Aw + Vdivw) ey — (@, V() (y-oyn
+ (w7 fl(ﬂ<t7 MO))W(f, /,Lo))(y—a)n] + 62 [(6,57, (b)(y—a)n — (*‘}/7 VC)(Y—Q)"

+ (7, Aw + Vdivw) y-ay + (7, f'(1(t; o)) (t; ,LLO))(y_a)n].

What implies in

dl,,
dt

< M[(f'(u(t; o)) (t; 10), @) ov=aye — [CI31-a] + O[]y ey
+ (@, Aw + Vdivw) y-ayn — (@, V) y-ayn + (@, f'(1(t; o)) (t; 110)) (y—oyn ]
+ 52[(6{}/, ¢)(Y*a)n + (’Y, Aw + Vdiv w>(yfa)n + (C, C)(yfa)n
+ (7, (1t o)) (E; o)) (v -y ]-
by simplify and reorder right hand of inequality,
dl, , ,
o S MO (s o))t 10), @) r-eyn + 01 (f (1lt; o)) (8 o), ) (-

(3.48) + 52(f,(:u(t; NO))w(t§ NO)v 7)(Y—Q)” - MHC”%/PQ + 62”0@/*‘1
+ 010y -ayn — S| y1mayn + 02(Ory, @) y-ayn
+ 52(’}/7 Aw + Vdiv W)(Yfa)n — (51(@, VC)(yfa)n.
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Next, we deal with the three terms in which it appears explicitly the nonlinearity f’.
From now on, let

-V -2
> :

we obtain that a; < 1.

aq =

Note that since p < N 5

If o € (0, 1) then we can observe that

(f (el o)) @ (t; 110), 9) (v-ayn < [ gly—eyn | f (1(E; p10)) 2o (E p0) -

for g € {p, Oip, (} and using the embedding (Y*)" — (HM(Q))” — (LP(Q))™ (or

equivalently (L71(Q))" — (Y~°)") forany 1 < p < — and (3.7), we have that for

some ¢; > 0

I (W@l y—eyr < call F (W)l
p—1
< Ol 1+ 1P~ 2

< Cla(1+[uf)]

2N 2N
N+2a (Q) LN+2a (Q)

and so
/ 2 2 |12 p—12
|7 )@ lGr-ayn < Clala, 1+ 1P -
1 _
From (3.45) i remains in a bounded subset of H; — L& (Q) forany 1 < p <
NAtde and this implies that

B CE (DN =0
J (1+ [P e de < 10| + el o p1>N(9) <[Q+eslul )" <o,
0

*

for some c5 > 0.

Therefore, there exists a positive constant C'; such that
(3.49) |£ )@y -ay < Cy.
From (3.29), we have that 0,7 = V( — ¢;w, then for any € > 0, we have
Oyy = V( — oy,
then for any € > 0, we have

320y, @) y1-ayn < 02(VC = ¢, 0)(y-ayn < 02(VC, @) (y-ayn — 2]y -

and therefore

0
(3.50) 02(0ry, @)1y < fl\dl%n-a + 02 (e = 1) [y~

< o a.e. fort € [0, 00).

Now we will denote
J = 52(7,Aw + levw)(y — (51(V< ?IJ)(Y ayn.
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From « € Y,7® < Y, we obtain following inequality
02 2 2 o1 2 2
Ji < Zlgrmegn + el @lr—e) + ZlCGr—a) + edrfwliy-

52 1
< 2y + €61 + ) L1y + 2 amaye

when we observe that [v[?y1-ayn < C1[C[fy—a) < Co[[C[fy1-a)sthen
0Cy 0
EED B (B2 2 Kl + €0+ )Ry

Using (3.49), (3.50) and (3.51) in (3.48) we get

dl,,
dt

< €| 0lfy-eyn + el fy—ayn + el VG-ayn + C(M, 81, 82) — (M = 82) [ C[[F1-a

5202 01
+61||¢|%Y-a>n51\w|%y1_a>n+< %8 ke

+ 02 (€ = 1) @]y -ayn + €01 + 02)[@[fy1-ays
< (=01 + €(01 + 8) + e)HwH(w,a)n (€ + 01 + G2€ + 205¢C(2) — 62) |G| fy—ayn

902C3 0
+ ( 28 4 2+ eC - M+52) €510 + C (M, 81,05).

€ €

Let ¢ > 0 be small enough and, let 6; < d, and M > 0 be large enough such that it is
possible choose p;, po > 0 which,

dl,,
dt

< =1 ([ 1y + 19y —aye + [C31-a ) + 2

fort a.e. in [0, 00).
But ([t -ayn < & 2 ¢|? {y1-ayn and ¢ € C(0,00;Y~*). This lead us to

dl,
2 < —p1 (I ey + 6y —aye + ¢ ) + 9.Vt € [0,0)]

and from the fact that A = {£(¢) : &(-) is a global bounded solution of (3.10) in H,} we
obtain that

(3.52) Ais bounded in (Y?271)" x (Yl7ou)m i yl=o1,

Using (3.52) and restarting from with ay = (p + 1)ag — p < ay if follows that A is
bounded in (Y2722)n x (Yl-a2)n x yl-a2,

How can we apply this procedure when we get ay, < a1, we can now show that A is
bounded in (Y?)" x (Y1)" x Y,! and by the Remark 3.10 this implies in fact, that

Ais bounded in (Y?)" x (Y!)" x Y2.
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3.6 Upper semicontinuity of the attractors

In this section we prove the upper semicontinuity of the global attractors in H1 with
respect to functional parameter « in (3.1). Let {/@6}66[0,1) be a family of functions such that
for each k. the condition (3.8) is valid and suppose that

| e — Kol o) — 0, as e — 0.

We observe that all previous results are also valid to the problem (3.1) with k. instead
of k. If {Sc(t);t = 0} denotes the evolution process associate to the problem (3.10) with
global attractors A, for each € € [0, 1], then we have the following result.

Theorem 3.12. The family of global attractors A, is upper semicontinuous as € — 0.

Proof. Let u® = S.(¢)ug be the solution of (3.10) with u® = (u*, ¢, 6). Then we write
p=u—uand ¥ = 6 — 0°.
Hence, (11, 0y, 1) solves the following system

02— Ap—Vdivu + VI = f(u) — f(u), reQ, t>0,
019 — [div (ke () V) — div (ko(2) V)] + Bdivoyu =0, z€Q, t>0.
We be able to find
fﬂ 2o udr — fﬂ(A,ue + Vdiv ) opder + JQ VIO,udr = fg(f(ue) — f(u®))0pcda,
by multiplies J;4¢ in the first equation and,
fﬂ OV dr — JQ [div (ke(2) V) — div (ko(2z)VE°)|0dz + JQ div Oy p“°dx = 0

by multiplies ¥¢ in the second equation.
This lead us to

D, o, ), = 2 f (F(u) — F(u°))Bupad +2 J div (k. (2) V6" — ro(x)VE°) 9°d,
a =2 )

and in other words,

d
. € 0, 9¢ 2 =9
om0, ~2 [

(f(u) — f(u®))oudx — QJ (Ke(2) VO = Ko(2) V) VI da.

Now, note that
‘ fg (ke(z)VO° — Ko(z)VE°) Vﬂedx‘
< L [Ke(2) (VO — V%) + (ke(z) — Ko(2)) VO] VI dx

<[5 = Kollo@ 10y [9°Iyr + [ el o= o 16° — 6°y

< C1||ke = Kol ooy + Cof (1€, Geps, ) |f3,
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where C'; > 0 and C; > 0 are constants independents of ¢ thanks to Theorem 3.11.
From Lemma 3.1, we have

L<f<u€>—f< 0N oypdi < Cyl(u, s, 9|2,

where C3 > 0 is constant independent of .

Hence, there exist constants C’ > 0 and C” > 0 such that

d € € € € € €
%H(u O, 0 3y, < C'lke = Rollpni) + C" [ (1, 0o, 9) |13y, -
and so
(353) H(:ui atueaf‘%)H’QH* < C/te_C”tHKG - KOHLOO(Q)a vt > 07

ie., u¢ - u’in H,, as ¢ — 0T, uniformly for ¢ in bounded subset of the interval [0, +00)
and ug in bounded subset of H,,.
From the existence of attractor we have proved, A,, is bounded in H,. Then for 6 > 0

given, there is a t > 0 large enough such that

disty (Sy, (1) As., Awy) < 6, Ve € (0,1].

Using (3.53), there exists ¢y > 0 such that

J
sup | Sk, (t)u — S, (t)u|x, < 2 Ve € (0, €].

ueA,,

Therefore,

djStH(AHwAF»o) dIStH( ( )AK/67 SF»O( )A ) + dIStH( ( )Aﬂe’ Sfio( )A )
< sup  inf S ()u” = S, ()ula, + distr (S () Ax, Aso)

u‘e A, U€

< sup ||Sk. (P)u — Sy, (t)u|3y, + disty (S, (1) A, , Ay,y) <O

uce A,

which proves the upper semicontinuity of the family of attractors with respect to the para-
meter e.
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Chapter 4

Nonautonomous 7-dimensional
thermoelasticity system

In this chapter we will be interested in checking the non-autonomous case of the ther-
moelastic problem. Similar to the previous chapter we will deal with the existence, regularity,

and superior semicontinuity of the pullback attractor. Here we will consider n > 2.

4.1 Well-possessedness of nonautonomous thermoelastic sys-

tem

We are interested in the study of asymptotic behavior of mild solutions for a multidi-
mensional semilinear thermoelastic systems; namely, initial-boundary value problems with

space dependent diffusion coefficients

Zu—Au—Vdivu + )V = f(u), z€Q, t>s,
0i0 — div (k(2)VO) + B(t)divou =0, x€Q, t>s,

4.1

subject to initial-boundary condition

-

u(, ) = wole), Gl s) = (), w9,
O(x,s) =0 Q,
4.2) < (x,8) = bp(x) T €
u(z,t) =0, O(x,t) =0, x e t>s.
| k(2)VO(2,t) — dpu(x,t) =0, redt=s

In this problem, the map f is external force and the functional parameters « is the
diffusion coefficient with the conditions (4.1)-(4.2). Furthermore, we assume that the thermal
moduli 5 : R — R is continuously differentiable and there are positive constants 3y and [3;
such that

(4.3) 0< B() < ﬁ(t) < 51, teR.
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Let u = (u, 2, 0) be the state vector with z = J,u, we rewrite (4.1)-(4.2) as ordinary
differential equations in the product space H

du
4.4) pr A(t)u=F(u), t > s,
u(s) = uy,

where uy = (uo, 20, 00), A(t) : D(A(t)) = H — H is a family of linear unbounded operator
defined by

D(A(t)) = (Hy(Q) n HX Q)" x (Hy()" x (Hy(Q) n H*(Q))[ ) X,
and for any (u, z,0) € D(A(t))
A(t)(u, 2,0) = (—z,—Au — Vdivu + B(t)V0, —div(kV6) + B(t) div 2)
where
X = {(u,2,0) € H; k(2)VO(,") — du(z, ) = 0, for z € Q).

The nonlinear term in (4.4) is defined by

F(u) = (0, f*(u),0),

where f¢ denotes the Nemytskii operator associated with f, i.e.

folu) = flult, ) = (filult,©)), ..., fo(u(t, )

for any t > s,x € () and we have the following results about f¢ which by simplicity of
notation we also denote by f. We observe that the Lemma 3.1 and the Lemma 3.2 proofs for
f in the previous chapter are ensure for f in here too.

Similar to the previous case, under such circumstances, we may exhibit a Lyapunov

functional £ to (4.4) which has the same definition given in (3.11), i.e.,

1

(. 28) = 5 (o + [l + 1013m) - | Pl

It has already been verified in (3.12) that

e _ —J k()| VOPdz < 0,
dt Q
where E(t) = E(u(t), z(t),0(t)) for any t > s.

As previously notice Dafermos [17] ensure that the linear part of the problem (4.4)
generates a strongly continuous semigroup of contraction in H for each s € R fixed. Since
the Lemma 3.1 and the Lemma 3.2 are ensure for f, we can guarantee the local well-
possessedness of the problem (4.4) thank to the Theorem 2.43. More precisely, the next

result is hold.
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Theorem 4.1. Given uy = (ug, ui,vy) € H = (H}H(Q))" x (L*(Q))" x L*(Q), the initial

value problem (4.4) has a unique mild solution with
ue C([s,7uo); (Hy (0))") 0 CH([5, 7, ); (LX(2))"), and 6 € C([s,Tuy), L*(Q2)).
Moreover, if
g = (ug, ur,b) € D(A) = (Hy () n H*(Q))" x (Hy ()" x (Hy () n H*(Q))
then the following regularity property
we O([s,7u)s (H*(Q) 0 Hg())") 0 CH([s,Tug)s (Ho ())") 0 C*([5,7uo); (L(Q))"),

and

0 O[5, an); HA(Q) 1 HY(Q) A C([5, 70, ); L())

is verified. In this case that u = (u, dyu, 0) is a strong solution of (4.4).

Now we wish to prove that solutions of (4.4) are globally defined, i.e., for each uy =
(UO, Uy, 00) € H, Tug = Q0.

Asin (3.24), for 0 < n < min{l, A\;} we get
(u, 2,0) |15, < c1€(u, 2,0) + ca,

for some ¢; = ¢;(n) > 0and ¢y = c3(n) > 0.

It is clear from (3.12) that [s, 7,) 3 t — E(u(t), dru(t),0(t)) € R is a non-increasing
function. It follows from the fact that £ is continuous and bounded in bounded subsets of
and from (3.12) that, given r > 0, there is a constant C' = C'(r) > 0 such that

sup{| (u(t), opu(t), 0(t))|2; | (wo,u1,60)|% <7, and t e [s,7y,)} < C.

This implies that for each uy € #, the solution of (4.4) with uy = (ug, uy, 6p) is defined
for all £ > s. We will write the mild solution of (4.4)

(45) S(t, S)llo = Sl(t, 8)110 + Sg(t, 8)110,

where S1(t, s)uy is defined as the solution of (4.4) with F = 0 and
t

&@QW=JSN£W@@@WM§W>S

S

here F(u) = (0, f¢(u),0), with f¢ the Nemytskii operator to f.
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4.2 Existence of pullback attractor

Let us consider once more the functional
E(u, Z, ‘9) = Mg(u, Z, 9) + 4 (u, Z)(L2(Q))n + 52((137 Z)(Lz(g))n

where 01,0, and M are positive constants to be chosen appropriately and ¢ is define in
(3.28).

Theorem 4.2. For M > 0 sufficiently large, there exist constants M, > 0 and My > 0 such

that forall t > s

% < —ME(t) + Mo,
where L(t) = L(u,z,0), E(t) = E(u, 2,0), and (u, z,0) = (u(t), z(t),0(t)) is the global

solution of (4.1)-(4.3).

Proof. Note that

ar d&€ d d
(4.6) E = ME + (51E<U, Z)(LZ(Q))n + 52d—t(q), Z)(L2(Q))n.
Thanks to (3.8), (3.12) and Poincaré inequality we have
d&

E(t) = — JQ k()| VO dx

4.7)
< —@J |VH|2dx—HO—)\1f 10]2dz,
2 Ja 2 Jo

where \; is the first eigenvalue of negative Laplacian operator with zero Dirichlet boundary
condition in 2.
We also have

d
—(u, Z)(LQ(Q))n = ((?tu, Z)(LQ(Q))n + (U, (7152>(L2(Q))n = ((Zgu, (}tu)([g(g))n + (u, (?fu)(Lz(Q))n

dt
= J |Oyu|*dx — f |Vul*dz — J | div u|?dr — J B(t)VOudx
0 0 0 0

+ L f(u)udz.

To deal with the integral term, just notice that from (3.5) we have

d

—(u, 2) (L2 < f |Oyul*dx — J |Vul*dz — f | div u|*dx — J B(t)VOudx
dt Q Q Q Q

; ”f uPdz + G0
Q

and again by Poincaré inequality

d

—(u, 2) (L2 < f |Oyul*dx — J |Vul*dr — J | div u|*dx — f B(t)VOudx
dt Q Q Q Q

+ if \Vul2de + C,|Q
M Jo
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in other words

jt(u Z)(12 J |Oyu|?dx — —J (Vu| d:v—f | div ul d:v—f B(t)VOudx

+ C, |9,

14 .
where v > 0 is chosen such that C, := 1 — — > 0, thatis, 0 < v < ).
1
Due to Young’s inequality we conclude that

01C,
(5lacllt(u’ @) J |Orul*dz — 1 f Vul*dz — <51 - —) f | div u|?dz
5260

(4.8)
J 10)%dz + 6,C,|9).

We also have that

d

dt (CI) Z)(L2(Q))n = ((I) 6 u) L2(Q (&tcb 8tu) L2(Q)"

and from (3.29) we obtain that

d b 2 = | ®PAudxr + @Vdivudw— (I)B(t)VGdaﬁL O f(u)de
a\ B wer = | .

J kVO0yudx — f |Ovu|*dx
Q

In other words, and from (3.29) we obtain that

d

E(@,Z)([Q(Q) f V@Vudx—f 9d1vudx+f 18(t)0)*dx

+ J O f(u)dx + J k(x)VOoudr — 5(t)J |Oyul*dz.
Q Q Q
Using (3.8) and the Young’s inequality we get for any € > 0,
d 52 1 62 + 28316
02— (P, 2) (2 ())n < —ZJ VO’ dx + —J |Vul*dz + (L&Q) f 10|?dx —i—f | div u|*dx
2 Jo 2 Jo 2 Q Q

dt
62 0kt
b3 [ 1P+ 2 [ ok + 255 [ vopas
1
+ (— — ﬁo) 52[ |Oul?da
2¢ Q
2
< (220 f \eﬁml [ !Vu!Qd:Hf divufds
2 0 2 Q Q
2

ax C @ ax C @ ax

2
+ Oafiye J VO 2dx + (— — 50) (52J \8tu\2da:.
2 Q 2€ Q
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Then,
4.9)

d
0o —

d (q) Z) ))n

2
(5 2815 + O + 202 )f 02z + & J|Vu|2d9c+ Jydwuy da

)
+ —J | f(u)|*dx + —2/{1 J |VO|*dx + (— — ﬁ0> 52J |Oul*dz.

Now combining (4.9) and (3.36) we get

l\DI»—

(4.10)
d
52@((1), 2) (2 @)

2
((52 + 2165 + C5 + C)\—é) J 0)2dx + = L J \Vul*dz + = = J | div u|*dzx
1

| Garre f VOPdr + —1f Vultds + (= — 6, 52f oufd + 22
2 QO 2/\1 Q 2€ Q

2

Therefore, combining (4.6) with (4.7), (4.8) and (4.10) we see that

%L’(t) < —M“OJ V6|2 — M"OMJ |9\2dx+5lf |atu|2dx—@f Vuldz

(51 - —)f | div u|?dz + = ((52 + 26109 + C <52 ))J 0| dx

62 2
n 1ﬁof ]6|2dx+—J |Vu|2da3+—J ]divu!Qd:U—i-%J [VO|*d
Q

1
2)\ J |Vul*dz + <— —50> §2J |Ou|*da
1

When we reorganize the previous inequality,
(4.11)

2 2
iﬁ(t) 52 + 25152 + C 52 5 + 61/80 - Ho)\lM J |8|2d$
dt M 2 N

(52/‘616 K,QM) f 9 ((510,/ C_’l 1) f 2
— Vol dx — - ——= Vul|“dz
( 2 2 Q| | 2 2\ 2 Q| | )
— (51 — 1)J ’le U’Qd.ﬁlf — ((BU — i) (52 — 51) J \étu\de + Q + 5101,|Q’
Q 26 Q 2

Now take € > ( large enough to be able choose 9; and 5 such that

0< max{c_ilzj\l,l} < 01,
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and .
(51 < (50 — —) 52.
€
Choose M > 0 sufficiently large too such that

dokie koM
2

2 2 6% 6]?60
<Oand52+25152+6’ 52+)\— +T—I{0)\1M<O,
1

with these choices for the constants ¢, 9, and M there exist gy > 0 and p; > 0 such that

e 1
— () < —oo —f (|Vu|2 + |divul® + |2]* + ]9\2>dw + 01.
dt 2 Jo
Thanks to (4.11) and (3.39) there exist constants o3 > 0, M; > 0 and My > 0 such
that
dﬁ o3 2 12 2 2 93 2 12
—L(t) < —— |Vul® + |divu|” + |z|* + 0] )dz — = |Vul|® + |divu|® )dz + o
dt 2 Jo 2 ],
< B [ 2 2 2 2 03d
< —= |Vul|® + |divu|® + |2|° + |0]° )de + —— | F(u)dz + o,
2 .JQ 2 Jo
[1
<M QJ (|W|2 +|dival + |22 + ]9|2>dx —J F(u)dm] + Mo,
L2 Ja Q

where F'(u) = Sg fd~ and Sg fdry represents the line integral of f along a piecewise smooth
curve with initial point 0 and final point u.

Finally, from (3.11) we conclude there exist constants M; > 0 and M, > 0 such that

d
d—f < —ME(t) + My,

where u(z,t), z = z(z,t),0 = 0(x,t). This concludes the proof of the theorem.

Theorem 4.3. For M > 0 sufficiently large, there exist positive constants C'y;, cpr, C1 and
Cs > 0 such that for any t > s,

4.12) enl(t) — C1 < L(t) < CuE(t) + O,

where L(t) = L(u, 2,0), E(t) = E(u, 2,0), and (u,z,0) = (u(t), z(t),0(t)) is the solution
of (4.1)-(4.2).

Proof. In the following, we prove the two inequalities in (4.12) simultaneously, once
the arguments are similar. From definition of the functional £ and Cauchy-Schwarz inequal-
ity, for any M > 0 we can see that

ME() —51f ]u|z|dm—52j ||2|de < £(2),
Q Q
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and
L(t) < ME(L) + (51J \ul|z|dx + 52J |D||z|dx.
0 0

Then, it follows from Young’s inequality

01 1 0o

ME(t) — —HU” L2(Q)n — 5(51 + 52)HZH%L2(Q))” - EHCI)H%LQ(Q))W < L(t),

and
01 2 1 2 02 2
L(t) < ME(T) + §‘|UH(L2(Q))n + 5(51 +02) 2]z + EH(I)”(LQ(Q))
Now using the Poincaré inequality, we have that
01 2 1 2 02 2
ME(t) — 2—)\1““”(1{3(9))71 = 500+ 8) 22y — 2—)\1“@”(;13(9))71 < L(t),

and

51 9 1 2 62 2
£(t) < MEW) + el + 501+ 822 ra + 531l

From definition of the functionais £ and ®, we get

1 ) 5,C?
ol (M = ) Ll e + (O =61 = 82) |z e + (M = 5 ) 10l
_ Mf Flu)de < £(2),
Q
and
1 o 5,02
£w<—KM+;)wmlw (M + 61+ 82) |2 oy + (M + 5 ) 19120 |

uf

for some C' > 0.
Using (3.6) we see that

n 2
| Pds < F-tuliuyy + Gl

and if we denote

01 5,C?
= — 4+, +6 :

1 N + 01 2 + N
., _ Gt

AL =1
o — 2M7]—C1/\1‘
3 )\1_77 3
. - Gi(A—n)
4 2M’I’}—Cl)\1



then we conclude that
1

E@>§Mﬁwmm@@wHM—mv%mw+wﬁwn%mﬂ—MLme

1 nc2 NC2 ) 1o
>5[V = (e + 50) JIws= O, + 5 gy — (= ) | Flupd
— ¢y J F(u)dx
Q

and
1
cm<§Mmmnu@@WuM+mA@QWHM+mwﬂ+MLme

1
< 5[(M +a+ acs)| (w2, 0)]w, — C4C3HUH?HOI(Q))n] — (M +c3) L F(u)dz

+ (2M + @,)J F(u)dz,

where M > 0 is chosen sufficiently large such that M — ¢, > 0, ¢3 > 0 and ¢4 > 0, we can
note that

Ui
Co = C1 + —Co;
2 1 )\12

CyC3 = (2M + 03)%;
1

C3 = Co + C4C3.
Therefore by (3.6) we get

1 U 2 n n 2
§[M - <(:1 + )\—102>]H(U;Z79)!H* + (2_/\162 - 2—>\102> lull e )y

— (M= o) JQ Flu)dz — Cyea|Q] < L(0),

and

1 1
L) < 5IM + (o1 + esen)ll (2, 0)[, + 5| = esea + 2M + )5 |l -
1

~ (M + ) L Flu)dz + (2M + c5)C, |9,

Finally, if we define cpy = M — o, C1 = C,|Q|, Cy = (2M + ¢3)C,|Q2| and
Cuy = M + c3, then
c
w2001, —ear | Flupds — s < £00),
Q

and

L) < CTM\(u,z,@u;* _ CMJ F(u)de + s,
Q
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We have the following result as a consequence of Theorem 4.2.

Theorem 4.4. There exists R > 0 such that for each bounded subset B of H. there exists
tp > s with the property
S(t,s)B < By, (0; R),

foranyt > tp. Here, By, (0; R) denotes the open ball in H.,. centered at origin and of radius
R.

Proof. Let B be a subset of H.,, and let (u, z,0) = (u(t), z(t), 6(t)) be the solution of
(4.1)-(3.26) with (ug, u1,y) € B. Using Theorem 4.2 and the second inequality of (4.12) in
Theorem 4.3 we have there exit constant o; > 0 and g0, > 0 such that

d
Eﬁ(t) < —01L(t) + 09,
where L(t) = L(u, z,0) for any t > s.
From (1.6), we can find that
t
L(#) < £(0)eSoords J pae= V085 gr < £(0)e0t 4 221 — oty
0 01

where £(0) = £L(ug, u1,6p), and combining with the inequalities (3.24) and (4.12) in Theo-

rem 4.3, we get

c Cic
H(U, Z’H)H%l* < Clg(uazve) + co < —lﬁ(t) + 17 + Co
Cm Cyp
< (Lp) - B)eory 2 G0
CMm 01 01CM cr

for some constants ¢y, ¢o, ¢pr and C7 > 0.
Let Rp > 0 such that ||(ug, u1, 0p) H?_[* < Rp, then after some calculations we conclude
that there exists g > 0 with

forany t > tp.

Proposition 4.5. There exists positive constants K and « such that
1S1(t, 8) || c(2p) < Ke U9 forall t=s,

and Ss(t,s) is a compact operator from H, into itself for all t > s. In particular the

nonlinear process S+, ) is pullback asymptotically compact.
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Proof.
To prove the decay of S; (¢, s), one considers the functional

1
Lo(u,2,8) = 5 (Il gy + 12 ey + 181200 ) + 81 (0 DDz + 2@, )z

Thanks to Theorem 4.2 and Theorem 4.3 we have

d
%[,0( ) —Oé,Co(t)

for some o > 0, where
Lo(Sy(t,5) (g, ur,60)) < [Lo(Si(t, s)(uo, u1,60)) + Lo(Si(s, s)(ug, u, B))] e ),
and consequently,
[S1(t, 8) (w0, ur, 00) |3, < Ke™[[(uo, ur, 00) 3,
To show that Sa(t, s) is compact, we first show that f is bounded from (H}(Q2))" into

(WL (Q))™, with r = % = - 4+ 1 € (1,2); indeed, it follows from Lemma 3.1 that for

any u € R" we have
()] < 272 Clul(1+ Jua P71+ a7,

for p < —%5 and from (3.7),

If @)l 9) = L(If(U)!’" +[VIW)"|Val")dx

S f (@7 2Clul(1 + ™+ fuaP7)
Q

+Cn(1+ ) || Vul") d

i=1
r r/2
<c(uuu<m S AR A S |y

(Huu"m ooy + [Vl gaqayye + [l nuwuzﬁm D).

Our ch01ce of 7 < 2% implies that pr < -2 and from the embedding of H(2) into
L1(Q) for ¢ < 2% it follows that f¢ is bounded from (HL(Q))™ into (W7 (Q2))"™ and the
latter is compactly embedded in r > 1. Thus, F is bounded from H,, into {0} x (W7 (£2))" x
{0} and the latter is compactly embedded in (HJ(2))" x (W (Q))" x Hg ().

Now fix ¢t > s and consider

Sg(t, S)Ll() = J Sl(f, S)F(S(g, S)Ll())df, t>=s
0

for uy € B, where B is a bounded subset of H... Since orbits of bounded subsets of #{.. under
the nonlinear process {S(t, s);t = s} are bounded in H., it follows that Sy(¢, s) is compact
for each ¢ > s. Thus the fact of nonlinear process {S(t, s);t > s} is asymptotically compact

is a consequence of [13, Theorem 2.37].
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(]

Finally, as application of [13, Theorem 2.23], we conclude that (4.4) has a pullback
attractor {A(t);t € R} in H,.

4.3 Regularity of attractors

We will use the same notation here as that exposed in the Section 3.5 to investigate the
regularity of the pullback attractor. As a matter of fact, we prove like in the previous case
that | J,.., A(t) is a bounded subset of 7.

Theorem 4.6. The pullback attractor A(-) for the problem (4.4), obtained in Section 4.2,

lies in a more regular space than M., in fact, | J,- , A(t) is a bounded subset of H.,.

Proof. Without lost of generality, we will assume x = 1 to simplify the calculations
in this proof. Let £ : R — #H, be a pullback bounded solution of (4.4). Then, the set
{¢(t); t € R} is a bounded subset of H.,.

We already know that A(t) is bounded in #,. Hence, if £ : R — H, is such that
£(t) € A(t) for all t € R, then

t

£(t) = Su(t, s)E(s) + j S1(r, $)F(€(r, ))dr,

s

where S (-, ) and Sy (-, -) is defined in (4.5). Now using the decay of .S; (¢, s) in the Proposi-
tion 4.5 and letting ¢ — +o0 it follows that

(4.13) £(t) = f " S8 F(E(r, 5))dr

Set (10, t11,Y9) = &(s), and we consider

o

|| (1) = So0) | 1] - J: Si(s)F(S(s) [t | )ds,
and note that (1(-), oypu(+), 9()) € H. solves the system

Oin— Ap—Vdivp+ BE)VY = f(u(t; po)), e, t>5,

(4.14)

(3t19—A19+B(t)d1V§tu=0, l‘EQ, t> s,
with
(4.15) p(x,s) = oyu(z,s) = 0and ¥(x,s) =0, z €.

We again consider the following functional
1
Sou(t), aua(®), 0)) = 5 (110) gy + 1t ®) Rz + 1008) ey )
+ 61 (u(t), Oep(1)) (r2(oyyn + 02(R(1), Gep(t)) (220
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to estimate the solution of (4.14)-(4.15) for (puo, it1,79) in a bounded subset B of #,. The
same arguments of the proof of Theorem 4.2 to obtain (we omitted ¢ in order to simplify the

notation)

dL
(4.16) d—to(ﬁh O, V) < _COHVMH%LQ(Q))” - ClHat:u”%LQ(Q))" - 02”19”%2(9) + Cs,

where Cy, C7, Cs and Cj are positive constants.
From this it follows that

4.17) U Ss(7, $)B is a bounded subset of H..

ST

Therefore (w, () = (0, ;) solves the system

02— Ao — Vdives + SOVC = F/(ult: po))w(tiio), zeQ s,
¢ — AC + B(t) div dyw = 0, reQ), t>s,

(4.18)

with @w(s) = 0, wy(s) = f(o), and {(s) = 0.

In order to continue with verification, we will show that (u, du, ) is a bounded solu-
tion in H., by estimate (w, 0;w, ¢) in H.,. But thus solutions are not regular enough to allow
this directly, that’s why we will work ‘towards’ H., by progressive increases of regularity.

We will take (w, 0y, () € H~ and we define

(4.19)

M
Lalt) = 5 (21 Py1-ayn + [9lFy-ayn + IG5 -0 ) + 61(, @) y—ayn + 82 @)y

where v such that div~y = (.
We want to find an inequality like (4.3). Therefore, we will obtain followings estimates
for the terms involved in £, (); First, thanks to (4.14) we get

d . /
%Hd)n?yw)n = 2(Aw+V divaw, @) y-ayn—2(B(t)V(, @) v—ayn +2(f'(1(t; po) )@ (E 110), ) (- n-
Because of (3.8) we have that
d ) .
@IICH%—(X = 2(A¢, Q)y-o = 2(B(t) div 0y, Q)y-o < =2[(|y1-« — 28(¢)(div s, ()y-a.
Again by (4.14) we obtain that
d .
E(W’ )y = |9ty -ayn + (@, Aw + Vdivw) y-ayn — (@, B(t) V() (y-ayn
+ (@, ['(1u(t; po) )@ (t; p10) ) (v —yn-
Also, we see that
d .
E(% O)y-ayn = (01, @) v-ayn + (7, Aw + Vdivew) y-ayn — (7, B() V() (y-a)n
+ (v, f (s o)) (8 p10)) (v —ayn-
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In this way,

at, M :
i < 7[2(@7% @) (yi-ayn + 2(Aw + Vdivew, ¢)y-ayn — 2(B(t)V(, @) v~

+ 2 (1l 10)) @ (8 10), D)oy — 2B — 2(B(E) div 2, )y~

+ 01|91y -y + (@, A + T div )y — (7, BE)VC) r-ae
(2, 1t 1)) (8 1)) -eye | + 2] (7, )y = (7 BEYVC) e
+ (7, Aw + Vdive) ey + (7, [ (1(t; o) ) (t; Mo))(‘/—a)”]-

Thus

at, M
dt < ?[—2(@5@, W)(ylfa)n + 2(/1

+ 2(f"(ult; o)) (t; 10), ) -y — 2[¢[31-a] + Sl -
+ (@, Aw + Vdivew)y-ey — (@, BE)V) (y-ayn + (@, f'(1(t; o)) (E; 110)) (v-ar]
+02[(0y, ) (y—oyn + (v, Aw + Vdivew) y-ayn + B(8)(C, C)yr—oyn
+ (v, f'(plt; Mo))w(t; to)) (v -]

=

(w + le w')7 A%Qb)(yfa)n

in other words,

oo MU s o) ot o), D)oy — IC ] + LI
+ (@, Aw + Vdivew) y-ayn — (@, BE)V() (v-ayn + (@, [/ (1(t; o)) (t; 110)) (y-2)n]
+02[(0r, &) y-ayn (%AerleVW) o+ B Qo
+ (7, f (u(t; o)) (8 o)) (v—eyn |-
Therefore,

dc?ta < M(f'(ult; o) )@ (t; o), @) (v—eyn + 01 (f (1alt; o) ) (£ o), @) (v —ayn

(4.20) + 0o (' (1lt; 110)) (8 10), Y) v =oyn = M[C[r-a + 02B8() 5o
+ 018l fy-ayn — 1@l fyr-ayn + 52(@:% @) (y-ayn
+ 52(/}/7 Aw + v le W)(Yfa)n - 515(1:) (w, VC>(Y7<1)7L.

Next, we deal with the three terms in which it appears explicitly the nonlinearity f’.

From now on, let
(p— (N =2)
5 )

A =

Note that since p < we obtain that a; < 1.

=
If o € (0, 1) then we can observe that

(f (ult; o)) (t; 110), g) (v-ayn < gl y—eyn |f (1(t; p10)) o (E; p0) | v~
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for g € {p, O, ¢} and using the embedding (Y*)" — (Hza(Q))” — (LP(Q2))™ (or
— and (3.7), we have that for

equivalently (Lp%l(ﬂ))" — (Yo" ) forany 1 < p <

some ¢4 > 0

[ ()@l < call F ()|

p—1
< Clwla L+ 1P

o < Cl+ P,y

_2N _2N
LN+2a( L N+2a (Q)

and so
1 2 212 p—1)2
| () oy < CPleoliy, 1+ 1P Ry
1 _
From (4.15) i remains in a bounded subset of H; — L= (Q) forany 1 < p <
% and this implies that

p—1)N—«a (P—1)N—-a

f<*+mwl>dx<wu+m4x%@m> 91+ eslal T <
Q

for some c5 > 0.

Therefore, there exists a positive constant C'; such that

4.21) | £ (1)@ |y —ayn < Cp.

From (3.29),
atV = VC - 5(t)atw7

then Ve > 0, we have
82(0ry, @) y1-oyr < 02(VC = B(t)d, @) y—eyr < 02(VC, @)y -y — 828(8)[@]|Fy—ayn

and therefore

(4.22) 82(0ry, @) (yr-aye < -WNWa+%@— B) o7~

as previously discussed in Remark 3.10, |¢[2,_. < w0 a.e. fort € R.

Now we will denote
Ji = 02(7, Aw + Vdivew) (y ey — 618(t)(V(, @)y —ayn.

From y € Y!=® — Y we obtain following inequality

018
2 1
J1 < = ltyimay + €02l tyi-a) + =Gy 1-0yn + i@ty o)

1)
BB ey

02
< ?H’y”%ylfa)n + 6(5]_ + 52)”/@”%3/1—(1) Yl a n

when we observe that [v[ 7 1-ay. < C1[C]5-a < Co||¢]F1-a, then

6,Cy 6,37
@23) 5 (B2 BN [y + 1+ e

N
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Using (4.21), (4.22) and (3.51) in (4.20) we get
dL

< 6l o+ el ey + el lymaye + C(M,61.82) = (M = 5[l
5 c X
‘ 51“¢H§Y,a)n il + ( 1 B ol

+ 02 (€ = B(1) [ {y-apn + €(01 + 82) [ @ Fyr-ayn
< <—(51 + 6(51 + 52) + G)Hw‘|(Y1*O‘)" + (E + 51 + (526 + 25260(9) — (5250) H(bH%Y*
N (5203 0157

€ €

+eC — M + 52> I¢31-a + C(M, 61, 82).

Let ¢ > 0 be small enough and, let 6; < d, and M > 0 be large enough such that it is

possible choose p;, po > 0 which,

dl.,
—2 < =1 (Il + [0l + IS ) + o

fort a.e. in [0, 00).
But |2y -ayn < & HCszl ayn and ¢ € C'(0,00; Y~*). This lead us to

dl,
2 <y (| lyr-a + 191y o + IC3- ) + o, Ve € R

and from the fact that A(t) = {£{(7) : £(-) is a pullback bounded solution of (4.4) in H..} we
obtain that

(4.24) |JA(#) is bounded in (Y>74)" x (Y 7)" x Yoo
t=s
Using (4.24) and restarting from with ap = (p + 1)ag — p < «g if follows that A is
bounded in (Y2792)" x (Yl-a2)n x Y=oz,
Iterating this procedure a finite number of times, we can now show that A is bounded
in (Y?2)" x (YH)" x Y,! and by the Remark 3.10 this implies in fact, that

U A(t) is bounded in (Y?)" x (Y1) x Y.

t=s

4.4 Upper semicontinuity of the attractors

In this section we prove the upper semicontinuity of the pullback attractors in H. with
respect to functional parameter « in (4.1). Let {mﬁ}ee[o,l) be a family of functions such that

for each k. the condition (3.8) is valid and suppose that
|ke = Kooy — 0, as € — 0.

We observe that all previous results are also valid to the problem (4.1) with . instead
of k. If {S.(t,s);t = s} denotes the evolution process associate to the problem (4.4) with

pullback attractors A, for each € € [0, 1], then we have the following result.
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Theorem 4.7. The family of pullback attractors A.(t) is upper semicontinuous at ¢ = 0.

Proof. Let u® = S.(t, s)ug be the solution of (4.4) with u® = (u¢, z¢,60¢). Then we
write 1 = u¢ — u® and ¥ = ¢ — 0°, then (u, 01, 9) solves the following system

Zp— Ap—Vdivu+ Bt)VI = f(u) — f(u?), reQ, t>s,
079 — [div (ke (2)VO9) — div (ko(z)VO))] + B(t)div o =0, xe€Q, t > s.

We be able to find

B(t)VIOudr = J (f (u)—f(u®)) o pde,

f 63u€§tu€da§—f (Ap+V div ,ue)(')tuedx+f
Q Q Q

Q

by multiplies J; € in the first equation and,
J OV dr — f [div (ke(2) V) — div (ko (z)VE°)[0°dz + B(t) J div g p“°dx = 0
Q Q Q

by multiplies ¥¢ in the second equation.
This lead us to

d
i ot )2, = 2[

dt Q(f(ug)—f(uo))ﬁtuedﬂﬁ%ﬂf div (ke(z) VO — Ko(x)VE°) Vd,

Q

and in other words,

%H(M, O, 196)\@{* = QJ (f(u®) — f(u®))o,udr — 2[ (ﬁg(x)VHE — I{O(ZL‘)VQO) Vi<dz.
Q Q

Now, note that
’ f (ke(2)VO° — ko(2)VE°) Vz?edx‘
Q

< JQ [e(2)(VO = V0°) + (ke(z) — Ko(2)) VO] VI da

< ke = woll =@ [0°va [9°v1 + Ikelle@) 105 = 6°13,

< ClHHG - HOHLC’O(Q) + CQH(:U’67 (}tMG,Q?G)"%*,

where C; > 0 and C5 > 0 are constants independents of ¢ thanks to Theorem (4.6).

From Lemma 3.1, we have

L(fw) F))acde < Col(, a9 By,

where C5 > 0 is constant independent of e.

Hence, there exist constants C’ > 0 and C” > 0 such that

d € € € € € €
(ks Qe 0 e, < C'le = Bollney + C (1 Qupt, 0) [
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and so
(4.25) [ (1€, Qe 0|3y, < C'te™"!|ke — o Lo (), Yt > s,

i.e., u¢ — u’in H,, as e — 07, uniformly for ¢ in bounded subset of the interval [s, c0) and
ug in bounded subset of H...
From [13, Theorem 2.20], | J,, A« (s) is bounded in Y. Then for § > 0 given, there

is 7 € (—o0, t] such that
st (1, 7) A, (7), vy (0) < ist(Si (1, 7) | Avc (5), Aeo(8)) < 5. e e [0,1].
s<t

Using (4.25), there exists ¢y > 0 such that

1)
sup ||, (t, T)ue — Sko (L, Tue|| < =
ucEAr, (1) 2

for any € < €. Therefore,
dist( Ay, (1), Aw, (1))

< dist(Sk, (, 7) Ak (7), Sko (8, T) Ak (7)) + dist (S, (¢, 7) A (T), Sho (8, 7) Ak (7))
< sup  ||Sk (t, T)ue — Sk (t, T)ue| + dist(Sy, (8, 7) Ak (T), Awo () < O

Ue€EA (t)

which proves the upper semicontinuity of the family of attractors at € = 0.
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