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Professor Fágner Araruna que nas mais variadas condições sempre convida os alunos a ficarem

atentos para com suas atividades.

Aos Professores que aceitaram participar da banca examinadora, pelas sugestões e cŕıticas.
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Abstract

In this thesis we study the existence of solutions for a class of semilinear Schrödinger equations

of the form

−∆u+ V (x)u = f̄(x, u), x ∈ R
N ,

where N ≥ 2, the potential V is a 1-periodic continuous function. In dimension N ≥ 3, we

assume that 0 lies in a spectral gap of the Schrödinger operator S = −∆+V and the nonlinearity

is from concave and convex type. In dimension N = 2, we assume that 0 lies in a spectral gap

or on the boundary of a spectral gap of S and we deal with nonlinearities having exponential

growth in the Trudinger-Moser sense. We treat the case where f̄(x, t) is periodic as well as the

nonperiodic one. The proofs relies on variational setting, by using linking-type theorems, some

Trudinger-Moser inequalities and concentration-compactness principles.

Keywords: Schrödinger Operator, Periodic Potential, Spectral Theory, Linking Theorem, Sub-

linear Growth, Critical Growth, Trudinger-Moser Inequality.
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Resumo

Nesta tese estudamos existência de soluções para uma classe de equações de Schrödinger semi-

lineares da forma

−∆u+ V (x)u = f̄(x, u), x ∈ R
N ,

onde N ≥ 2, o potencial V é cont́ınuo e 1-periódico. Em dimensão N ≥ 3, assumimos que 0

localiza-se em algum gap espectral do operador de Schrödinger S = −∆ + V e lidamos com

não linearidades do tipo côncavo-convexo. Em dimensão N = 2, supomos que 0 localiza-se em

algum gap espectral ou fronteira de algum gap do operador S e as não linearidades possuem

crescimento exponencial no sentido de Trudinger-Moser. Abordamos os casos em que f̄(x, t)

é periódica e não periódica. Nossa abordagem é variacional, utilizamos teoremas de linking,

desigualdades do tipo Trudinger-Moser e prinćıpios de concentração de compacidade.

Palavras-chave: Operador de Schrödinger, Potencial Peŕıodico, Teoria Espectral, Teorema de

Linking, Crescimento Sublinear, Crescimento Cŕıtico, Desigualdade Trudinger-Moser.
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Notation

We select here some notations used throughout the work.

Spaces

• Lp(Ω) = {ϕ : Ω → R, ϕ is Lebesgue mensurable with
∫
Ω
|ϕ(x)|pdx <∞}, 1 ≤ p <∞;

• L∞(Ω) = {ϕ : Ω → R, ϕ is bounded and Lebesgue mensurable};

• Lp
loc(Ω) = {ϕ : Ω → R, ϕχK ∈ Lp(Ω) for every compact setK contained inΩ}, where χK

denotes the characteristic function of K;

• Hp(RN) denotes the usual Sobolev space of p-weak derivatives;

• C(Ω) denotes the space of continuous real functions in Ω ⊂ R
N ;

• For an integer k ≥ 1, Ck(Ω) denotes the space of k-times continuously differentiable real

functions in Ω ⊂ R
N ;

• C∞(Ω) = ∩kC
k(Ω);

• C∞
0 (Ω) denotes the space of infinitely differentiable real functions whose support is compact

in Ω ⊂ R
N ;

• C(X, Y ) denotes the continuous functions space between X and Y ;

• E ′ denotes the topological dual of the Banach space E.

Norms

• For 1 ≤ p ≤ ∞, the standard norm in Lp(RN) is denoted by ‖ · ‖p.

Other Notation

• |A| denotes the Lebesgue measure of a set A ⊂ R
N ;
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• supp(ϕ) denotes the support of function ϕ;

• C, C1, C2, C3, . . . denote positive constants possibly different;

• C(s) denotes constant which depends of s;

• on(1) denotes a sequence which converges to 0 as n→ ∞;

• f(t) = O(g(t)) as t→ 0, if and only if, lim
t→0

f(t)

g(t)
≤ C for some constant C > 0;

• ⇀ denotes weak convergence in a normed space;

• → denotes strong convergence in a normed space;

• →֒ denotes continuous embedding;

• 〈·, ·〉 denotes the duality pairing between E and E ′.
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Introduction

In this thesis we study the existence and multiplicity of weak solutions for a class of nonlinear

Schrödinger equations of the form

−∆u+ V (x)u = f̄(x, u), x ∈ R
N ,

where N ≥ 2 and V ∈ C(RN ,R) is a 1-periodic continuous function. We assume that zero lies

in a spectral gap or zero is an end point of the continuous spectrum of the Schrödinger operator

S = −∆ + V in L2(RN). We treat nonlinearities having polynomial growth in R
N , N ≥ 3, or

exponential growth in R
2 in the Trudinger-Moser sense.

In the last decades, Schrödinger’s equation has been subject of intense study, see for instance

[13, 33, 54–56] and references therein. There are two closely related variants, precisely, the time

dependent and time independent one. We quote that the time dependent semilinear Schrödinger

equation is given by

iℏ
∂ψ

∂t
= −

ℏ
2

2m
∆xψ + V (x)ψ − f̃(x, ψ), x ∈ R

N , (1)

where m and ℏ are positive constants, ψ : R+×R
N → C, V ∈ C(RN ,R), and f̃ ∈ C(RN ×C,C).

If we assume that f̃(x, tz) = f(x, t)z, t ∈ R, z ∈ C, with |z| = 1 for some function f ∈

C(RN ×R,R) and we look for standing wave solutions to equation (1), i.e., solutions of the form

ψ(t, x) = e−
iEt
ℏ v(x), (2)

where E is some real constant and v : RN → R, then applying (2) into (1) we obtain

−
ℏ
2

2m
∆v + (V (x)− E)v(x) = f(x, v), x ∈ R

N ,

which is a real elliptic equation for v, the so-called time independent Schrödinger equation. In

mathematics, it is not uncommon to normalize ℏ = 1 and m = 1/2, therefore we can written

the time independent semilinear Schrödinger equation as follows

−∆u+ V (x)u = f̄(x, u), x ∈ R
N , (3)

where u : RN → R, V ∈ C(RN ,R) and f̄ : RN × R → R. Equation (3) has been extensively

studied by means of many methods, among others, topological, numerical and variational. Par-
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ticularly when it comes to variational method, critical point theory has been applied to various

problems in differential equations. Here we apply variational tools in some classes of (3) where

the potential V : RN → R is a continuous and 1-periodic function and the nonlinearity f̄(x, t)

satisfies weaker growth conditions than those previously treated by others authors. We ap-

ply linking theorems to obtain nontrivial critical points for the energy functional associated to

equation (3), denoted by Φ and defined in an appropriated Banach space E.

The location of 0 with respect to the spectrum of the Schrödinger operator S = −∆+V is an

indispensable point to observe which type of geometry has the energy functional Φ associated to

equation (3). If the spectrum of the operator S = −∆+ V lies in positive axis, then mountain-

pass type theorems has been applied (see [22]) to study equation (3) under different conditions

on f̄(x, t). Here, we suppose the presence of negative spectrum. In our class of potentials, the

spectrum is purely continuous, bounded from below and is the union of disjoint closed intervals

[56, Theorem XIII.100]. Intervals free of spectrum are called spectral gaps, these gaps appear due

to the periodicity of the potential, as is well known in solid states physics [7]. In the present work

we obtain some existence results for equation (3) when 0 lies in a spectral gap (see Chapters II

and III) or on the boundary of a spectral gap (see Chapter IV). In both cases the null function

u ≡ 0 is a saddle point. Thus, Φ is strongly indefinite and linking theorems are applied. We

mention the papers [34, 58, 71] where the authors assumed 0 in a spectral gap of the operator

S = −∆+ V . Our results extend these previous. As far as we know, few papers deal with the

case where 0 lies on the boundary of the spectrum. We mention [9, 59, 75, 76]. The polynomial

growth in the Sobolev sense is a common factor in all these papers. In this case we establish

existence results for nonlinearities having exponential growth.

Relative to the negative and positive parts of the spectrum, the spectral theory provide us

a decomposition E = E− ⊕ E+ where the quadratic part of Φ is negative definite in E− and

positive definite in E+. Each one infinite dimensional due to the nature of the spectrum, see

Remark 1.2.13. V. Benci and P. Rabinowitz [12] firstly proved the linking theorems with both

spaces infinite dimensional. An abstract result that extends the linking theorem of [12] is due

to W. Kryszewski and A. Szulkin [36] where a new degree of Leray-Schauder type is defined by

using a suitable topology. This topology has been applied for new generalized linking theorems

[37, 46, 60, 68, 75, 76]. We apply the linking theorems obtained in [37] and [60] for our main

existence results involving (3).

Since we deal with equations involving functions defined in the whole space, there is a possible

loss of compactness. In general, the cause is the invariance of RN by the non-compact groups

of translations. To overcome this issue, some convergence results are established as well as

concentration-compactness principles are applied.

Let us now describe the content of this thesis, divided into four chapters.

In Chapter I we present a short history about the Schrödinger equation and some facts about

the periodic case. We briefly discuss the spectral theory applied, necessary for our development.

Two main features run through this spectral section: 0 lies in a spectral gap of the Schrödinger

operator S = −∆ + V or on the boundary of a spectral gap. Furthermore, we establish basic

2



properties of Banach spaces which are domains of energy functional associated with (3). In the

last section of Chapter I we present the results of the linking-type used.

In Chapter II we study the existence of solutions for a class of semilinear Schrödinger equa-

tions (3) where 0 lies in a spectral gap of the operator S = −∆+ V and the nonlinearity f̄(x, t)

is a sum of a sublinear and a superlinear term. The combined effect of concave and convex

nonlinearities was initially studied by A. Ambrosetti, H. Brezis and G. Cerami [5] on bounded

domains. We refer [10, 11, 73] for related results. In this case we assume that the superlinear

term satisfies a near condition to (AR) (see below) and a first solution is obtained by means

of Ekeland’s variational principle. We get a second solution applying a linking-theorem that

provides a Cerami sequence for Φ. Its boundedness will be obtained with a restriction in the

sublinear power.

The equation studied in this chapter has the form

−∆u+ V (x)u = h(x)g(u) + k(x)f(u), x ∈ R
N , (C)

whereN ≥ 3, the nonlinearities g(t) and f(t) have sublinear and superlinear growth, respectively,

and h(x), k(x) are weight functions. If we denote the spectrum of S = −∆ + V by σ(S), the

following condition on V is assumed

(V0) V ∈ C(RN ,R) is 1-periodic in xj, j = 1, 2, ..., N , and

λ := sup[σ(S) ∩ (−∞, 0)] < 0 < Λ := inf[σ(S) ∩ (0,∞)].

We suppose the following assumptions on g(t) and h(x):

(g0) g(t) is continuous and there are 1 < q < 2 and C1, C2 > 0 such that

|g(t)| ≤ C1|t|
q−1 and G(t) ≥ C2|t|

q, ∀ t ∈ R;

(h0) h(x) is nonnegative and h ∈ Lσ(RN) for some 2N
(2−q)N+2q

< σ ≤ 2
2−q

.

We impose the following assumptions on f(t) and k(x):

(f0) there are C0 > 0 and 2 < p ≤ 2∗ such that |f(t)| ≤ C0(|t|+ |t|p−1) for all t ∈ R;

(f1) 2F (t) ≤ f(t)t for all t ∈ R, where F (t) =
∫ t

0
f(s)ds;

(k0) k(x) is nonnegative and k ∈ L∞(RN).

Our first result for equation (C) can be summarized as follows:

Theorem 0.0.1. Suppose that (V0), (g0), (h0), (f0) − (f1) and (k0) hold. If h(x) is nontrivial

then equation (C) admits a nontrivial weak solution u0 with negative energy.

To obtain another nontrivial solution for (C), we suppose the following additional hypotheses

on f(t) and k(x):
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(f2) f(t) = o(t) as t→ 0;

(f3) there exists µ ≥ p such that 0 < µF (t) ≤ tf(t) for all t 6= 0;

(f4) there exists 0 < θ ≤ p such that lim inf
t→0

F (t)|t|−θ > 0;

(k̂0) k(x) > 0 in R
N and k ∈ L∞(RN) ∩ Lκ(RN) for some κ ≥ 2N

(2−p)N+2p
and 2 < p < 2∗.

In this case, our multiplicity result is summarized as follows.

Theorem 0.0.2 (Subcritical Case). Assume (V0), (g0), (h0), (f0), (f2) − (f4) and (k̂0). If

1 < q < p/(p− 1) < 2 < p < 2∗ and 0 < ‖h‖σ is sufficiently small then equation (C) admits two

nontrivial weak solutions, u0 with negative energy and another u1 with positive energy.

Next, we deal with (C) in the critical case. More precisely, we consider the problem

−∆u+ V (x)u = h(x)g(u) + k(x)|u|2
∗−2u, x ∈ R

N . (Cc)

In this situation, we replace condition (k̂0) by the assumption

(k1) k ∈ C(RN ,R), k(x) > 0 in R
N and there exists ν > 0 such that

lim sup
|x|→∞

|x|νk(x) <∞.

We also establish the existence of two nontrivial solutions, as follows:

Theorem 0.0.3 (Critical Case). Assume (V0), (g0), (h0) and (k1). If 1 < q < 2∗/(2∗−1), N ≥ 4

and 0 < ‖h‖σ is sufficiently small then equation (Cc) admits two nontrivial weak solutions.

In Chapter III we establish two existence results for the equation

−∆u+ V (x)u = f(x, u), x ∈ R
2, (Pf )

where f(x, t) has subcritical exponential growth in the Trudinger-Moser sense, i.e., for any β > 0

lim
|t|→∞

|f(x, t)|

eβt2
= 0, uniformly in x ∈ R

2. (4)

We assume that 0 lies in a spectral gap of the operator S = −∆ + V defined in L2(R2). The

Theorems presented in this chapter refer to nonlinearities f(x, t) periodic and nonperiodic.

It is well known that the classical Ambrosetti and Rabinowitz [6] superlinear condition,

namely, there exists Θ > 2 such that

0 < ΘF̄ (x, t) ≤ tf̄(x, t), ∀ x ∈ R
2, t 6= 0, (AR)

is quite natural to ensure that (PS) sequences are bounded. Furthermore, it can contribute to

show that the energy functional Φ has geometric properties required in critical point theorems.
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Many efforts has been made to avoid this assumption [39, 41, 47, 60]. In this direction, in the

papers [65, 76] the authors supposed the following super-quadratic condition

t 7→
f̄(x, t)

|t|
is stricly increasing on (−∞, 0) ∪ (0,∞), uniformly in x ∈ R

N . (5)

The condition (5) was refined in [39] and weaker in [58]. In our results involving nonlinearities

with exponential growth, the linking theorem applied produces a (PS) sequence for each func-

tional considered. We assume a consequence of growth condition (5), see condition (f3) below,

as expected, important for boundedness of (PS) sequences obtained.

Precisely, we assume that

(V0) V ∈ C(R2,R) is 1-periodic in xj, j = 1, 2, and

λ := sup[σ(S) ∩ (−∞, 0)] < 0 < Λ := inf[σ(S) ∩ (0,∞)].

Setting F (x, t) =
∫ t

0
f(x, s)ds, we suppose that f is continuous, satisfies (4) and the following

conditions:

(f0) there are δ > 0 and 0 < γ < Λ such that |f(x, t)| ≤ γ|t| for any |t| < δ and x ∈ R
2;

(f1) 2F (x, t) ≥ λt2 for any x ∈ R
2, t ∈ R and

F (x, t)

t2
→ +∞ as t2 → ∞, uniformly in x ∈ R

2;

(f2) f(x, t) is locally bounded in the variable t, that is, for any bounded interval J ⊂ R, there

exists C > 0 such that |f(x, t)| ≤ C for every (x, t) ∈ R
2 × J ;

(f3) there exists W ∈ L1(R2) such that for all r ∈ [0, 1] it holds

2(F (x, t+ s)− F (x, t)) ≥ (2rs− (r − 1)2t)f(x, t)−W (x), ∀ x ∈ R
2, s, t ∈ R.

Now, our first existence result for equation (Pf ) can be summarized as follows.

Theorem 0.0.4. Assume (V0) and (f0) − (f3). If f(x, t) is 1-periodic and satisfies (4) then

equation (Pf ) admits a nontrivial weak solution.

In the case where the nonlinearity f(x, t) is nonperiodic, in addition we will assume that

(f4) there exist α0 > 0, R0 > 0 and h ∈ L1(Bc
R0
) such that

|F (x, t)| ≤ h(x)eα0t2 , ∀ x ∈ Bc
R0
, t ∈ R.

In this case, our second existence result is the following:

5



Theorem 0.0.5. Assume (V0) and (f0)− (f4). If f(x, t) satisfies (4) then equation (Pf ) admits

a nontrivial weak solution.

Finally, Chapter IV is devoted to study a class of semilinear Schrödinger equations

−∆u+ V (x)u = g(x, u), x ∈ R
2, (Pg)

where 0 is a right boundary point of the spectrum of the Schrödinger operator S = −∆ + V .

We define the domain of our energy functional as completeness of E with respect to an adequate

norm. In fact, a Banach space denoted by (Eq, ‖ · ‖q) and such that H1 ⊂ Eq ⊂ E. In order

to the energy functional be well-defined we obtain a Trudinger-Moser inequality in the space Eq

by using Schwartz symmetrization, among other results. This case is more delicate because Eq

is not a Hilbert space and we lost some embeddings.

We assume that the potential V (x) satisfies:

(V0) V ∈ C(R2,R) is 1-periodic in xj, j = 1, 2;

(V1) 0 ∈ σ(S) and there exists b > 0 such that σ(S) ∩ (0, b) = ∅.

We assume that the nonlinearity g(x, t) has exponential subcritical growth at infinity,

lim
|t|→∞

g(x, t)

eβt2
= 0 for all β > 0, (6)

and satisfies:

(g0) There are a > 0 and q > 2 such that

2G(x, t) ≥ a|t|q for all x ∈ R
2, t ∈ R, where G(x, t) :=

∫ s

0

g(x, s)ds;

(g1) g ∈ C(R2 × R,R) is 1-periodic in xj for j = 1, 2;

(g2) g(x, t) = O(|t|q−1) as t→ 0 uniformly in x ∈ R
2, where q > 2 is given in (g0);

(g3) g(x, t) is continuous and locally bounded in the variable t, that is, for any bounded interval

J ⊂ R, there exists C > 0 such that |g(x, t)| ≤ C for every (x, t) ∈ R
2 × J ;

(g4) There exists W ∈ L1(R2) such that for all x ∈ R
2, s, t ∈ R and r ∈ [0, 1] it holds

2(G(x, t+ s)−G(x, t)) ≥ (2rs− (r − 1)2t)g(x, t)−W (x).

Our main result of existence of solution for problem (Pg) under the above hypotheses can be

summarized as follows.

Theorem 0.0.6. Assume (V0) − (V1) and (g0) − (g4). If g(x, t) satisfies (6) then the problem

(Pg) has a nontrivial weak solution. Moreover, if M denotes the collection of the solutions of

(Pg), then there is a ground state solution, i.e., a solution of (Pg) that minimizes the energy

functional over M. Furthermore, u ∈ C1(R2) and u(x) → 0 as |x| → ∞.
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Chapter 1

Preliminary Results

Our basic preliminaries, concepts and some results for subsequent chapters are presented.

For more details, we refer [26, 27, 50,56, 64].

1.1 On the Schrödinger Equation

In 1926, the Austrian theoretical physicist Erwin Schrödinger (1887-1961) published four

works in the Annalen der Physik journal in which he laid the foundations of Wave Quantum

Mechanics. The Schrödinger equation, formulated to describe the quantum state of a system,

is celebrated as one of the most important achievements in 20th Century physics. An original

interpretation of the physical meaning of the wave function. A consistent theory of microscopic

phenomena is the quantum mechanics developed by E. Schrödinger, W. Heisenberg, M. Born,

P. Jordan, N. Bohr, W. Pauli, P. Dirac and other scientists.

1.2 The Spectrum of the Periodic Schrödinger Operator

In pure mathematics, the Schrödinger equation is one of the basic equations studied in the

field of partial differential equations, and has applications in spectral theory, geometry, integrable

systems, among others. There are actually many generalizations and variants of the Schrödinger

equation. The Schrödinger equation with periodic potential appears in a natural way, e.g., in

the quantum theory of solids [56]. This equation has been studied extensively in recent years

and substantial advances have been made both in the theory and in applications.

In this section we present the Schrödinger operator which will be used in the next chapters.

The potential V : RN → R is assumed to be continuous and 1-periodic, i.e., V (x+T ) = V (x), for

all T ∈ Z
N . Hereafter we denote by S = −∆+V the self-adjoint operator defined in L2(RN) with

domain H2(RN) and V (x) under the above conditions. Precisely, defined via Fourier transform.

By the Plancherel Theorem (see for instance [31]), the Fourier transform ψ̂, of ψ, is a unitary

isomorphism on L2(RN). Considering the Sobolev space H2(RN) = {ψ ∈ L2(RN), (1 + |p|2) ψ̂ ∈

L2(RN)}, we can define the operator D = −∆ in L2(RN) acting in H2(RN) by the identity

(−∆ψ)̂(p) = |p|2ψ̂(p).
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Let f : RN → R be a measurable function and let D(Mf ) := {ψ ∈ L2(RN), fψ ∈ L2(RN)}.

Then, the multiplication operator,

Mf : D(Mf ) → L2(RN), Mf (ψ)(p) = f(p)ψ(p),

is a self-adjoint operator. As the Fourier transform is a unitary operator, we conclude that(
−∆, H2(RN)

)
is a self-adjoint operator. Furthermore, since the potential V (x) is a bounded

real function, the multiplication operator MV is also self-adjoint. Having disposed of this, we

can see that S = −∆ + V defined in L2(RN) with domain H2(RN) is a self-adjoint operator.

For more details we refer the reader to [55].

1.2.1 Elements of Spectral Theory

The literature on spectral theory is very extensive. Listed below are only the basic concepts,

properties, as well as some references containing the most fundamental results related to the

problems studied in the present work.

Let E be a Hilbert space and let S : D(S) ⊂ E → E be a linear operator, where D(S)

denotes the domain of S. We denote by R(S) the range of the operator S.

Definition 1.2.1. We say that z ∈ C belongs to the resolvent set of S if there exists the operator

Rz = (S − zId)−1 which is bounded and D(Rz) = E. The complement of the resolvent set is

called the spectrum, σ(S), of S.

The spectrum of an operator is in fact the disjoint union of sets, which are defined below.

Definition 1.2.2. The point (or discrete) spectrum of S, σp(S), consists of all z ∈ C such that

Rz = (S − zId)−1 does not exist.

Definition 1.2.3. If R(S − zId) is dense in E and if S − zId has an unbounded inverse, then

z is said to belong to the continuous (or essential) spectrum of S, σc(S).

Definition 1.2.4. If R(S − zId) is not dense in E but S − zId has an inverse, bounded or

unbounded, then z is said to belong to the residual spectrum of S, σr(S).

Thus we have the following decomposition σ(S) = σp(S) ∪ σc(S) ∪ σr(S).

Definition 1.2.5. The complex number z is called an approximate eigenvalue of S if, for any

ε > 0, there exists u ∈ D(S) such that ‖u‖ = 1 and ‖(S − zId)u‖ < ε. We denote by σa(S) the

set of all approximate eigenvalues of S and call this set the approximate spectrum of S.

Below, we have a characterization of this set.

Proposition 1.2.6. z ∈ σa(S) if only if S − zId does not have a bounded inverse.

As consequence of the above proposition and definitions of σp(S) and σc(S) we obtain

[σp(S) ∪ σc(S)] ⊂ σa(S) ⊂ σ(S). (1.1)

Now we collect some properties of the spectrum of a self-adjoint operator.
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Proposition 1.2.7. Let S : E → E be a self-adjoint operator. Then σ(T ) ⊂ R and σr(T ) = ∅.

The set Θ(S) = {(Su, u) : u ∈ D(S), ‖u‖ = 1} of complex numbers is called the numerical

range of the operator S. Thus, this is a subset of real numbers in the case when S is self-adjoint.

Moreover, an interval indeed due to its convexity (see [27]). Another interesting fact is the

following result.

Proposition 1.2.8 ([27]). Let S be a self-adjoint operator defined in E. Then Θ(S) is bounded

from below if and only if σ(S) is bounded from below. Moreover, the lower bounds are equal, i.e.,

inf{λ : λ ∈ Θ(S)} = inf{λ : λ ∈ σ(S)}.

With this we can see that the spectrum of the operator S = −∆+V defined in L2(RN) with

domain H2(RN) is bounded from below. Let λ0 > 0 such that V (x) + λ0 > 0, ∀ x ∈ R
N . For

any u ∈ H2(RN) \ {0}, we have

(Su, u)2 =

∫

RN

(
|∇u|2 + V (x)u2

)
dx > −λ0‖u‖

2
2.

Thus we obtain

Θ(S) = {(Su, u)2 : u ∈ H2(RN), ‖u‖2 = 1} ⊂ (−λ0,∞) and so σ(S) ⊂ (−λ0,∞).

Furthermore, one can shows that the periodic Schrödinger operator S has no eigenvalues, in

other words, that σp(S) = ∅. A more complete answer about the spectrum of S is given by the

following theorem (see [26], [56]).

Theorem 1.2.9. Let S = −∆+V the periodic Schrödinger operator defined in Section 1.2. Then

σ(S) is purely continuous, bounded from below and is the union of disjoint closed intervals.

We recall that open intervals free of spectrum are called spectral gaps.

Let P : E → E be an orthogonal projector, that is, P is self-adjoint and P 2 = P .

Definition 1.2.10. A family of orthogonal projectors {E(λ) : E → E}λ∈R, in a Hilbert space E,

is called a resolution of the identity if it satisfies the following conditions:

(i) E(λ)E(µ) = E(min{λ, µ});

(ii) E(−∞) = 0 and E(+∞) = Id, where E(±∞)u := lim
λ→±∞

E(λ)u, ∀ u ∈ E;

(iii) E(λ+ 0) = E(λ), where E(λ+ 0)u := lim
µ→λ , µ>λ

E(µ)u, ∀ u ∈ E.

The next result can be found for instance in [50].

Lemma 1.2.11. Let {E(λ) : E → E}λ∈R be a resolution of the identity. Then, for all λ ∈ R,

the operators

E(λ+ 0) = lim
µ→λ , µ>λ

E(µ) and E(λ− 0) = lim
µ→λ , µ<λ

E(µ),

are well defined when considering the limit for the strong convergence topology.
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We can see that the condition (i) it holds if and only if λ 7→ (E(λ)u, u) is non decreasing

for each u ∈ E. Moreover, for all u, v ∈ E, the function λ 7→ (E(λ)u, v) is a function of

bounded variation. The family {E(λ)}λ∈R is also called decomposition of identity, spectral family

or spectral resolution. Associate to a spectral family of projectors in a Hilbert space E we have

a self-adjoint operator defined in E. The converse is true. For more details, see e.g. [50].

Theorem 1.2.12. Any self-adjoint operator S : E → E in a Hilbert space E admits a spectral

resolution such that

(Su, v) =

∫

R

λd(E(λ)u, v), Su =

∫

R

λd(E(λ)u),

where in the right hand we have integrals in the Riemann-Stieltjes sense.

Let I = (λ1, λ2) an interval. By using condition (i) in Definition 1.2.10, we will denote by

E(I) the spectral projector E(I) = E(λ2)− E(λ1).

Remark 1.2.13. We observe that the continuous spectrum consists of all non-isolated points of

σ(S) and eigenvalues of infinite multiplicity. Let E(I) be the spectral projector associated with

an interval I ⊂ R, an equivalent definition for continuous spectrum is given by:

λ ∈ σc(S) ⇔ dim E(λ− ε, λ+ ε)E = ∞, ∀ ε > 0.

1.2.2 Zero in a Spectral Gap

Assuming that 0 lies in a spectral gap of the Schrödinger operator S = −∆ + V defined in

L2(RN), more precisely, under the hypothesis

(V0) V ∈ C(R2,R) is 1-periodic in xj, j = 1, 2, and

λ := sup[σ(S) ∩ (−∞, 0)] < 0 < Λ := inf[σ(S) ∩ (0,∞)],

we will find a Banach space (E, ‖ · ‖) on which the energy functional associated to equation (3),

Φ : E → R given by

Φ(u) :=

∫

R2

(
|∇u|2 + V (x)u2

)
dx− 2

∫

R2

F̄ (x, u)dx,

is well defined. In order to define the space E we consider the self-adjoint operator S = −∆+V

defined in L2(RN) acting in D(S) = H2(RN). Let {E(λ) : L2(RN) → L2(RN)}λ∈R be the spectral

family of S, and |S|1/2 be the square root of |S|. Setting U = Id−E(0)−E(−0) we can see that U

is unitary and commutes with S, |S| and |S|1/2. Moreover S = U |S| is the polar decomposition

of the operator S (see [35], p. 358).

Let us denote by E := D(|S|1/2) the domain of |S|1/2. It is well known that E(λ)E ⊂ E for

all λ ∈ R. Furthermore, defining

E− := E(0)E, E+ := (Id− E(0))E,

10



(u, v) := (|S|1/2u, |S|1/2v)2, ∀ u, v ∈ E, and ‖u‖ :=
√

(u, u),

where (·, ·)2 is the usual inner product in L
2(RN), we have the following results (see e.g. [9,68]).

Lemma 1.2.14. Assume (V0). For any u− ∈ E−, u+ ∈ E+, it holds (u−, u+)2 = (u−, u+) = 0.

Moreover,

(Su, u)2 = −‖u‖2 ≤ λ‖u‖22, ∀ u ∈ E− (1.2)

and

(Su, u)2 = ‖u‖2 ≥ Λ‖u‖22, ∀ u ∈ E+. (1.3)

Proof. Let us first observe that if u ∈ E, then u ∈ E+ if only if E(0)u = 0. For u− ∈ E− and

u+ ∈ E+, there are ũ−, ũ+ ∈ E such that u− = E(0)ũ− and u+ = [Id− E(0)]ũ+. Therefore,

(u−, u+)2 = (E(0)ũ−, [Id− E(0)]ũ+)2

= (ũ−, E(0)[Id− E(0)]ũ+)2

= 0

and
(u−, u+) = (|S|1/2u−, |S|1/2u+)2

= (|S|1/2E(0)ũ−, |S|1/2[Id− E(0)]ũ+)2

= (|S|1/2ũ−, E(0)[Id− E(0)]|S|1/2ũ+)2

= 0.

Now, we have

−‖u−‖2 = (Su−, u−)2 =

∫

R

µd(E(µ)u−, u−)2

=

∫ λ

−∞

µd(E(µ)u−, u−)2

≤ λ
(
[E(0)− E(−∞)]u−, u−

)
2

= λ‖u−‖22, ∀ u− ∈ E−.

Similarly, we see that for all u+ ∈ E+, one has

‖u+‖2 = (Su+, u+)2 =

∫

R

µd(E(µ)u+, u+)2

=

∫ ∞

Λ

µd([E(µ)− E(0)]u+, u+)2

≥ Λ([E(+∞)− E(0)]u+, u+)2

= Λ‖u+‖22.

Lemma 1.2.15. Assume (V0). Then E = E− ⊕ E+ and ‖ · ‖ is equivalent to ‖ · ‖H1 on E.

Proof. Since E(+∞) = Id, it follows that for u ∈ E,

u = E(0)u+ [E(+∞)− E(0)]u.
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This together with the previous lemma shows that E = E− ⊕ E+.

Let u ∈ C∞
0 (RN) and λ0 > 0 such that V (x) + λ0 > 0 for all x ∈ R

N . Setting V∞ =

sup
x∈RN

|V (x)|, we have

‖u‖2 = (|S|u, u)2

= ((S + λ0)Uu, u)2 − λ0 (Uu, u)2

≤ ‖U(S + λ0)
1/2‖2‖(S + λ0)

1/2u‖2 + λ0‖Uu‖2‖u‖2

≤ ‖(S + λ0)
1/2u‖22 + λ0‖u‖

2
2

≤ (2λ0 + V∞)‖u‖2H1 .

The proof is completed by showing that ‖u‖H1 ≤ C‖u‖, for some constant C > 0. For

u− ∈ E− we apply the inequality (1.2) as follows

‖u−‖2H1 ≤
(
(S + λ0 + 1)u−, u−

)
2

≤
(
U|S|1/2u−, |S|1/2u−

)
2
+ (λ0 + 1)‖u−‖22

≤ ‖|S|1/2u−‖22 − (λ0 + 1)/λ‖u−‖2

≤

(
1−

1

λ
(λ0 + 1)

)
‖u−‖2.

If u+ ∈ E+, using (1.3) we get

‖u+‖2H1 ≤
(
(S + λ0 + 1)u+, u+

)
2

≤
(
U|S|1/2u+, |S|1/2u+

)
2
+ (λ0 + 1)‖u+‖22

≤ ‖|S|1/2u+‖22 + (λ0 + 1)/Λ‖u+‖2

=

(
Λ + λ0 + 1

Λ

)
‖u+‖2.

This finishes the proof.

We have E = E− ⊕ E+ where the bilinear form B : E × E → R,

B(u, v) =

∫

RN

(∇u∇v + V (x)uv) dx,

is negative definite and positive definite respectively. This decomposition corresponding to

negative part and positive part of the spectrum in real axis. The spaces E− and E+ are S-

invariants. Moreover, by the previous results, if u ∈ E− and v ∈ E+, then u and v are both

orthogonal with respect to (·, ·)2 and (·, ·). Now, by definition, |S|u = Su if u ∈ E+ and

|S|u = −Su if u ∈ E−. Thus, |S| : E → E is a positive self-adjoint operator. Therefore, we can

define the square root of |S|, which is also a self-adjoint operator. The equality of operators can

be verified
(
|S|

1

2

)2

u = |S|u, ∀ u ∈ D(S).

12



With this, we obtain

B(u, v) =

∫

RN

(∇u∇v + V (x)uv) dx

= (Su, v)2

= (Su− + Su+, v)2

= (Su+, v)2 + (Su−, v)2

= (|S|u+, v+)2 − (|S|u−, v−)2

= (|S|
1

2u+, |S|
1

2v+)2 − (|S|
1

2u−, |S|
1

2v−)2

= (u+, v+)− (u−, v−)

= (u+, v)− (u−, v).

In particular,

B(u, u) = ‖u+‖2 − ‖u−‖2. (1.4)

Thus, if u ∈ E, we have

Φ(u) =
1

2

(
‖u+‖2 − ‖u−‖2

)
−

∫

RN

F̄ (x, u)dx.

1.2.3 Zero on the Boundary of a Spectral Gap

In the Chapter IV we treat the case where 0 is a right endpoint of the spectrum of the

Schrödinger operator S. This location causes a loss of completeness in the space E−. We can

see this statement proceeds by virtue the following result.

Proposition 1.2.16. Suppose that 0 ∈ σ(S) and there exists b > 0 such that σ(S) ∩ (0, b) = ∅.

Then norm ‖ · ‖ is not equivalent to H1-norm on E−.

Proof. Since 0 ∈ σ(S) and σ(S) = σc(S) = σa(S), taking ε = 1/n in Definition 1.2.5, we

obtain a sequence (un) ⊂ L2(RN) ∩ E− such that ‖un‖2 = 1 and ‖Sun‖2 → 0. Therefore,

since H1(RN) →֒ L2(RN) with continuous embedding, there does not exists C > 0 satisfying

‖u−‖H1 ≤ C‖u−‖ for all u− ∈ E−. This completes the proof.

1.3 The Weak-Strong Topology

In this section we use the same terminology from [9]. Let E be a separable Hilbert space

endowed with inner product (·, ·) and the associated norm ‖ · ‖. Let E− be a closed subspace of

E and let E+ := (E−)⊥. On E we define a new norm

‖u‖τ := max

{
∞∑

k=1

1

2k
|(ek, u

−)|, ‖u+‖

}
, u = u− + u+ ∈ E = E− ⊕ E+,

where B = {e1, e2, e3, . . .} is a complete orthonormal system in E−.
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For reasons that will become clear later, the topology induced by ‖ · ‖τ will be called the

weak-strong topology. A first indication is the following.

Proposition 1.3.1. If (un) ⊂ E− is bounded, then

‖un − u‖τ → 0 ⇔ un ⇀ u in E−.

Proof. Suppose that there exists C > 0 such that ‖un‖ ≤ C for all n ∈ N and ‖un − u‖τ → 0.

Let v =
∑∞

k=1 αkek ∈ E− and let ε > 0 be given. We define vK =
∑∞

k=K+1 αkek and we take

K > 0 sufficiently large such that ‖vK‖ < ε/4C. Then,

|(vK , un − u)| ≤ 2C‖vK‖ < ε/2.

Now, by taking n0 ∈ N large enough that ‖un − u‖τ < ε/(2 max
1≤k≤K

2k|αk|) for n > n0, we obtain

|(v − vK , un − u)| =

∣∣∣∣∣

K∑

k=1

αk(ek, un − u)

∣∣∣∣∣

≤ max
1≤k≤K

2k|αk|
K∑

k=1

1

2k
|(ek, un − u)|

< ε/2,

for n > n0. Therefore we conclude that |(v, un − u)| < ε for all n > n0, i.e., un ⇀ u in E−.

Conversely, if un ⇀ u in E− then there is a constant C > 0 such that ‖u‖ ≤ C and ‖un‖ ≤ C, for

all n ∈ N. For any ε > 0, we take K > 0, n0 ∈ N such that 1/2K < ε/4C and |(ek, un−u)| < ε/2

for 1 ≤ k ≤ K, n > n0. Thus we obtain

‖un − u‖τ =
∞∑

k=1

1

2k
|(ek, un − u)|

=
K∑

k=1

1

2k
|(ek, un − u)|+

∞∑

k=K+1

1

2k
|(ek, un − u)|

≤
ε

2

K∑

k=1

1

2k
+

∞∑

k=K+1

2C

2k

≤
ε

2
+
ε

2
.

This finishes the proof.

In other words, the above proposition says that on bounded subsets of E− the topology

induced by ‖ · ‖τ is equivalent to the weak topology of E−. In the next chapters we will make

use of this topology. In each case, specifying the context in which it is being applied, i.e., the

domain of the energy functional.
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1.4 Kryszewski-Szulkin’s Linking Theorem

In this section we present the linking-theorem proved by W. Kryszewski and A. Szulkin [36]

which makes use of the weak-strong topology.

Theorem 1.4.1. Let E be a Hilbert space and suppose that Φ ∈ C1(E,R) satisfies the following

hypotheses:

(i) ∇Φ is weakly sequentially continuous and there exists a closed separable subspace Y such that

Φ is τ -upper semicontinuous, where τ is the weak-strong topology on E = Y ⊕ Y ⊥;

(ii) there are constants η > 0, ρ > 0 such that Φ|Sρ ∩ Y
⊥ ≥ η;

(iii) there are z0 ∈ S1 ∩ Y
⊥ and R > ρ such that Φ|∂QR ≤ 0, where QR := {u = y + sz0 : y ∈

Y, ‖u‖ < R, s > 0}.

Then there exists a sequence (un) such that ∇Φ → 0 and Φ(un) → c for some c ∈ [η, supQR
Φ].

Remark 1.4.2. In Chapter II we will apply a generalization of this theorem obtained by G. Li

and A. Szulkin [37]. In chapters III and IV we use a variant obtained by M. Schechter and W.

Zou [60].
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Chapter 2

On a Schrödinger Equation with

Periodic Potential Involving Concave

and Convex Nonlinearities

2.1 Introduction and Main Results

This Chapter is concerned to the existence and multiplicity of nontrivial solutions for the

following nonlinear stationary Schrödinger equation

−∆u+ V (x)u = h(x)g(u) + k(x)f(u), x ∈ R
N , (C)

where N ≥ 3, the potential V (x) ∈ C(RN ,R) is 1-periodic, 0 lies in a spectral gap from the

spectrum of the Schrödinger operator S = −∆+V , the nonlinearities g(t) and f(t) are sublinear

and superlinear, respectively, and h(x), k(x) are weight functions satisfying suitable hypotheses.

The results obtained in this chapter are the subjects of the paper [45].

The equation (C) with V (x) periodic has been extensively studied in the past years, see

for instance [9, 11, 19, 22, 36, 37, 49, 60, 68, 75] and references therein. Problems with combined

nonlinearities in bounded domains were first investigated by A. Ambrosetti, H. Brezis an G.

Cerami [5] (see also G. Tarantello [69]). Afterwards, many authors have derive a wide number

of existence and multiplicity results for elliptic problems involving concave and convex terms

in bounded domains, see [5, 11, 30] and references therein. In unbounded domains we refer the

works [4, 8, 15, 18, 41, 70] where the authors have studied the existence of solutions in R
N for

some semilinear elliptic equations related to problem (C). Our main aim in this chapter is to

consider nonlinearities concave and convex with critical growth. Finally, we refer the reader to

the works [19, 20, 60] where the authors have studied problem (C) with periodic potential and

periodic nonlinearities with critical growth. Note that, in our hypotheses we are not assuming

periodicity conditions on the nonlinearities.

In order to introduce our hypotheses on the potential V (x), let us denote by σ(S) the

spectrum of the Schrödinger operator S = −∆+V defined in L2(RN). When V (x) is continuous
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and periodic, it is well known that σ(S) is purely continuous, bounded from below and the union

of disjoint closed intervals (see [56], Theorem XIII.100). Here, we focus our study in the case

where 0 lies in a spectral gap of S. Precisely, we assume the following condition on V (x):

(V0) V ∈ C(RN ,R) is 1-periodic in xj, j = 1, 2, ..., N , and

λ := sup[σ(S) ∩ (−∞, 0)] < 0 < Λ := inf[σ(S) ∩ (0,∞)].

Setting G(t) =
∫ t

0
g(s)ds, we suppose the following assumptions on g(t) and h(x):

(g0) g(t) is continuous and there are 1 < q < 2 and C1, C2 > 0 such that

|g(t)| ≤ C1|t|
q−1 and G(t) ≥ C2|t|

q, ∀ t ∈ R;

(h0) h(x) is nonnegative and h ∈ Lσ(RN) for some 2N
(2−q)N+2q

< σ ≤ 2
2−q

.

We impose the following assumptions on f(t) and k(x):

(f0) there are C0 > 0 and 2 < p ≤ 2∗ such that |f(t)| ≤ C0(|t|+ |t|p−1) for all t ∈ R;

(f1) 2F (t) ≤ f(t)t for all t ∈ R, where F (t) =
∫ t

0
f(s)ds;

(k0) k(x) is nonnegative and k ∈ L∞(RN).

Our first result for equation (C) can be summarized as follows:

Theorem 2.1.1. Suppose that (V0), (g0), (h0), (f0) − (f1) and (k0) hold. If h(x) is nontrivial

then equation (C) admits a nontrivial weak solution u0 with negative energy.

In order to obtain another nontrivial solution for (C), we suppose the following additional

hypotheses on f(t) and k(x):

(f2) f(t) = o(t) as t→ 0;

(f3) there exists µ ≥ p such that 0 < µF (t) ≤ tf(t) for all t 6= 0;

(f4) there exists 0 < θ ≤ p such that lim inf
t→0

F (t)|t|−θ > 0;

(k̂0) k(x) > 0 in R
N and k ∈ L∞(RN) ∩ Lκ(RN) for some κ ≥ 2N

(2−p)N+2p
and 2 < p < 2∗.

In this case, our multiplicity result is summarized as follows.

Theorem 2.1.2 (Subcritical Case). Assume (V0), (g0), (h0), (f0), (f2) − (f4) and (k̂0). If

1 < q < p/(p− 1) < 2 < p < 2∗ and 0 < ‖h‖σ is sufficiently small then equation (C) admits two

nontrivial weak solutions, u0 with negative energy and another u1 with positive energy.
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Next, we deal with (C) in the critical case. More precisely, we consider the problem

−∆u+ V (x)u = h(x)g(u) + k(x)|u|2
∗−2u, x ∈ R

N . (Cc)

In this situation, we replace condition (k̂0) by the assumption

(k1) k ∈ C(RN ,R), k(x) > 0 in R
N and there exists ν > 0 such that

lim sup
|x|→∞

|x|νk(x) <∞.

We also establish the existence of two nontrivial solutions, as follows:

Theorem 2.1.3 (Critical Case). Assume (V0), (g0), (h0) and (k1). If 1 < q < 2∗/(2∗−1), N ≥ 4

and 0 < ‖h‖σ is sufficiently small then equation (Cc) admits two nontrivial weak solutions.

Remark 2.1.4. An example of nonlinearity g(t) satisfying hypothesis (g0) is given by G(t) =

(arctg(t) + π)|t|q. Indeed, note that G(t) ≥ π|t|q/2 and

g(t) = G′(t) =
1

1 + t2
|t|q + q(arctg(t) + π)|t|q−2t.

Thus |g(t)| ≤ |t|q−1 [|t|/(1 + t2) + 3πq/2] ≤ C|t|q−1. A standard example is g(t) = |t|q−2t.

Remark 2.1.5. In Theorem 2.1.3 we assume that f(t) = |t|2
∗−2t for the sake of simplicity. How-

ever, our proof of Theorem 2.1.3 holds if we suppose a more general nonlinearity f(t) satisfying

(f0), (f2), (f3) and

(f̂4) F (t) ≥
1

2∗
|t|2

∗

, for all t ∈ R.

In particular, under the hypotheses of Theorem 2.1.3, problem (C) admits two nontrivial weak

solutions if f(t) = |t|2
∗−2t+ C|t|p−2t with C > 0 and 2 < p < 2∗.

Usually, there are at least two ways to get critical points of the energy functional Φ associated

to (C), namely, the Ekeland Variational Principle and the minimax approach. Since we are

supposing that the potential V (x) is periodic and satisfies (V0), the quadratic form B(u, u) :=∫
RN [|∇u|

2+V (x)u2]dx is no longer a norm. In fact, this quadratic form is strongly indefinite (see

[9, 68] and references therein) in a subspace of infinite dimension and hence the usual Linking

Theorem can not be applied directly. Moreover, roughly speaking, since the Sobolev embedding

H1(RN) →֒ Lp(RN), for 2 ≤ p ≤ 2∗, is not compact, Palais-Smale condition is not valid in

general. To overcome these difficulties, we use a version of the Linking Theorem due to G. Li

and A. Szulkin [37] to obtain a Cerami sequence at the minimax level. Next, by using some

convergence results in combination with the Concentration-Compactness Principle of Lions, we

prove that the weak limit of the Cerami sequence is a nontrivial solution of (C). We quote here

that the invariance of the energy functional Φ with respect to the Z
N -action on H1(RN), given

by (T ∗ u)(x) = u(T + x) with T ∈ Z
N and u ∈ H1(RN), plays an important role in order to
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obtain nontrivial weak solutions in many papers, see for instance [19,60]. This fact is true if h(x)

and k(x) are both periodic. To the authors knowledge, there seems to have very little progress

on the existence and multiplicity of solutions for equation (C) with V (x) periodic and h(x), k(x)

nonperiodic.

The present Chapter is organized as follows: In Section 2, in order to apply the varia-

tional framework, we use spectral theory to obtain a suitable domain for the energy functional

associated to the problem. In Section 3, we present the proof of Theorems 2.1.1 by using mini-

mization arguments. In Section 4, we establish the geometry for the energy functional required

by the Linking Theorem and we prove Theorem 2.1.2. Finally, in Section 5, by applying the

Concentration-Compactness Principle, we prove Theorem 2.1.3.

Throughout this Chapter H1(RN) denotes the Sobolev space endowed with the inner product

〈u, v〉 =

∫

RN

(∇u∇v + uv)dx, u, v ∈ H1(RN),

and the associated norm is represented by ‖ · ‖H1 . As before, we use ‖ · ‖p to denote the norm

of the Lebesgue space Lp(RN), 1 ≤ p ≤ ∞, and (·, ·)2 to represent the inner product in L2(RN).

The symbols C,Ci, i = 0, 1, 2, . . . will denote various constants.

2.2 Variational Setting

In this section, in order to develop a variational approach to study the existence of nontrivial

solutions for equation (C), a key step is to identify a suitable function space setting. First, we

observe that from (f0), there are C1, C2 > 0 such that

|F (t)| ≤ C1|t|
2 + C2|t|

p, ∀ t ∈ R. (2.1)

Under the hypothesis (V0) we will find a Hilbert space E on which the energy functional associ-

ated to (C), Φ : E → R given by

Φ(u) :=
1

2

∫

RN

(
|∇u|2 + V (x)u2

)
dx−

∫

RN

h(x)G(u)dx−

∫

RN

k(x)F (u)dx,

is well defined. In order to define the space E, we recall that the domain of the self-adjoint

operator S = −∆+ V defined in L2(RN) is D(S) = H2(RN). Let {E(λ) : L2(R2) → L2(R2)}λ∈R

be the spectral family of S, and |S|1/2 be the square root of |S|. Setting U = Id−E(0)−E(−0)

we can see that U is unitary and commutes with S, |S| and |S|1/2. Moreover S = U |S| is the

polar decomposition of the operator S (see [35], p. 358).

Next, let us denote by E := D(|S|1/2) the domain of the operator |S|1/2. It is well known

that E(λ)E ⊂ E for all λ ∈ R. Furthermore, defining

E− := E(0)E, E+ := (Id− E(0))E,
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(u, v) := (|S|1/2u, |S|1/2v)2, ∀ u, v ∈ E and ‖u‖ :=
√

(u, u),

we have the following result (see Chapter I).

Lemma 2.2.1. Assume (V0). Then E = E− ⊕ E+, the norm ‖ · ‖ is equivalent to ‖ · ‖H1 on E

and (u+, u−) = (u+, u−)2 = 0 for any u = u− + u+ ∈ E. Moreover,

(Su, u)2 = −‖u‖2 ≤ λ‖u‖22, ∀ u ∈ E− (2.2)

and

(Su, u)2 = ‖u‖2 ≥ Λ‖u‖22, ∀ u ∈ E+, (2.3)

where λ < 0 < Λ are defined in hypothesis (V0).

Remark 2.2.2. It follows from Lemma 2.2.1 that ‖u‖2 = ‖u−‖2 + ‖u+‖2 and the embedding

E →֒ Lr(RN) is continuous for any 2 ≤ r ≤ 2∗.

In view of Lemma 2.2.1, (g0), (h0), (k0) and (2.1) we see that the functional Φ is well defined

on E and (see (1.4)) can be rewritten as

Φ(u) =
1

2

(
‖u+‖2 − ‖u−‖2

)
−

∫

RN

h(x)G(u)dx−

∫

RN

k(x)F (u)dx, ∀ u ∈ E.

Furthermore, combining Remark 2.2.2, (g0), (h0), (f0), (k0) and standard arguments we have

that Φ ∈ C1(E,R) and

〈Φ′(u), v〉 = (u+, v)− (u−, v)−

∫

RN

h(x)g(u)vdx−

∫

RN

k(x)f(u)vdx, ∀ u, v ∈ E.

Thus, critical points of Φ correspond to weak solutions of (C).

2.3 Solution Via Minimization

In this section we will prove the existence of a solution via local minimization arguments.

Before proceeding with the proof of Theorem 2.1.1, we need some auxiliary results.

Lemma 2.3.1. Assume (g0), (h0), (k0) and (f0). Then, for any ρ > 0 it holds

−∞ < cρ := inf
u∈Bρ

Φ(u) < 0,

where Bρ := {u ∈ E : ‖u‖ < ρ}.

Proof. Using assumptions (g0), (h0) and (k0) together with (2.1) and Remark 2.2.2, for u ∈ Bρ

we get

∫

RN

h(x)G(u)dx+

∫

RN

k(x)F (u)dx ≤ C1‖h‖σ‖u‖
q + C2‖k‖∞‖u‖2 + C3‖k‖∞‖u‖p.
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Hence,

Φ(u) ≥ −
1

2
‖u−‖2 − C4‖u‖

q − C5‖u‖
2 − C6‖u‖

p

≥ −
1

2
ρ2 − C4ρ

q − C5ρ
2 − C6ρ

p

and therefore cρ = infu∈Bρ
Φ(u) > −∞. On the other hand, using the fact that G(t) ≥ C1|t|

q

together with (2.1), for any u0 ∈ E\{0} fixed and t > 0 we see that

Φ(tu0) ≤
t2

2
‖u+0 ‖

2 −

∫

RN

h(x)G(tu0)dx−

∫

RN

k(x)F (tu0)dx

≤ t2C2 − C3t
q + C4t

2 + C5t
p

= tq
[
t2−q(C2 + C4) + tp−qC5 − C3

]
.

Consequently, Φ(tu0) < 0 for t > 0 sufficiently small and this completes the proof.

To carry forward, we establish the following convergence results.

Lemma 2.3.2. Suppose that (h0), (g0), (k0) and (f0) hold. Then the functionals defined by

J1(u) =

∫

RN

h(x)G(u)dx and J2(u) =

∫

RN

h(x)g(u)udx

are weakly continuous on E. Moreover, if un ⇀ u weakly in E then

∫

RN

k(x)f(un)vdx→

∫

RN

k(x)f(u)vdx, ∀ v ∈ E and (2.4)

and ∫

RN

h(x)g(un)vdx→

∫

RN

h(x)g(u)vdx, ∀ v ∈ E. (2.5)

Proof. Consider a sequence (un) ⊂ E such that uu ⇀ u in E. For any R > 0 fixed, we have

|J1(un)− J1(u)| ≤

∫

BR

h(x)|G(un)−G(u)|dx+

∫

|x|≥R

h(x)|G(un)−G(u)|dx

=: I1(n) + I2(n).

By the Lebesgue Dominate Convergence Theorem and the compact embedding E →֒ Lr(BR),

1 ≤ r < 2∗, we have I1(n) = on(1). Since (un) ⊂ E is bounded and h ∈ Lσ(RN), it follows by

the Hölder inequality and the continuous embedding E →֒ Lr(RN), 2 ≤ r ≤ 2∗, that

I2(n) ≤ C1

(∫

|x|≥R

|h(x)|σdx

)1/σ
[(∫

|x|≥R

|un|
qσ′

dx

)1/σ′

+

(∫

|x|≥R

|u|qσ
′

dx

)1/σ′
]

≤ C2

(∫

|x|≥R

|h(x)|σdx

)1/σ

.

Choosing R > 0 sufficiently large we see that I2(n) = on(1). Therefore J1 is weakly continuous.

A similar argument proves that J2 is weakly continuous. Now, we will prove (2.4). By density
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we can assume that v ∈ C∞
0 (RN). If we denote Ω = supp(v) then f(un)v → f(u)v almost every-

where in Ω. Moreover, from (f0) and since, up to a subsequence, |un| ≤ χr almost everywhere

in Ω, with χr ∈ Lr(Ω) for 1 ≤ r < 2∗, it follows that

|f(un)v| ≤ C1|un||v|+ C2|un|
p−1|v| ≤ φv almost everywhere inΩ ⊂ R

N ,

where φv ∈ L1(Ω). Hence, by applying the Lebesgue Dominate Convergence Theorem we obtain

the desired result. Similarly, we can prove (2.5).

Proof of Theorem 2.1.1: Invoking the Ekeland Variational Principle, we obtain a minimizing

sequence (un) in Bρ such that

Φ(un) → cρ and Φ′(un) → 0.

Since ‖un‖ ≤ ρ, going to a subsequence if necessary, we can assume that un ⇀ u0 weakly in

E and un(x) → u0(x) for almost every in x ∈ R
N , for some u0 ∈ E. By Lemma 2.3.2, u0 is a

critical point of Φ, i.e., Φ′(u0) = 0. Furthermore, we claim that cρ = Φ(u0). In fact, observe

that

Φ(un)−
1

2
〈Φ′(un), un〉+

∫

RN

h(x)

[
G(un)−

g(un)un
2

]
dx =

∫

RN

k(x)

[
f(un)un

2
− F (un)

]
dx.

This, together with Lemma 2.3.2, (f1) and the Fatou Lemma imply

cρ +

∫

RN

h(x)

[
G(u0)−

g(u0)u0
2

]
dx ≥

∫

RN

k(x)

[
f(u0)u0

2
− F (u0)

]
dx.

Consequently,

Φ(u0) ≥ cρ ≥ −

∫

RN

h(x)

[
G(u0)−

g(u0)u0
2

]
dx+

∫

RN

k(x)

[
F (u0)−

f(u0)u0
2

]
dx

= Φ(u0)−
1

2
〈Φ′(u0), u0〉,

which shows that cρ = Φ(u0) and this completes the proof of Theorem 2.1.1.

2.4 Linking Geometry

In this section, in order to find a second nontrivial critical point for the functional Φ, we use

a Linking Theorem due to G. Li and A. Szulkin [37] (see also [36,75] for related results). Let E

be a real Hilbert space and Φ ∈ C1(E,R). Recall that a sequence (un) ⊂ E is called a Cerami

sequence for Φ at the level c ((C)c-sequence for short) if

Φ(un) → c and (1 + ‖un‖)Φ
′(un) → 0. (2.6)
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Suppose that E = E− ⊕ E+ and E− is separable. For each u = u− + u+, we can write

u− =
∞∑

k=1

ck(u
−)ek,

where B = {e1, e2, . . .} is dense in E−. Thus, we can define a new norm in E by setting

‖u‖τ = max

{
‖u+‖,

∞∑

k=1

|ck(u
−)|

2k

}
,

where ‖ ·‖ is the norm in E. One can see that ‖ ·‖τ defines a norm in E and satisfies ‖u‖τ ≤ ‖u‖

for any u ∈ E (see [36]). For R > ρ > 0 and u+0 ∈ E+ \ {0}, we define

Sρ = {u+ ∈ E+ : ‖u+‖ = ρ} and QR = {u = u− + su+0 : s ≥ 0, u− ∈ E− and ‖u‖ < R}.

Next, we consider the following class of applications:

Γ :=





h : [0, 1]×QR → E, h is τ -continuous.For any (s0, u0) ∈ [0, 1]×QR,

there is a τ -neighborhood U(s0,u0) such that

{u− h(s, u) : (s, u) ∈ U(s0,u0) ∩ ([0, 1]×QR)} ⊂ Efin,

h(0, u) = u, Φ(h(s, u)) ≤ max{Φ(u),−1}, ∀ s ∈ [0, 1] and ∀ u ∈ QR.





where Efin denotes various finite-dimensional subspaces of E whose exact dimensions are irrel-

evant and depend on (s0, u0). Notice that Γ 6= ∅ since I ∈ Γ, where I(s, u) = u for all s ∈ [0, 1].

The Linking Theorem proved in [37] makes use of the class Γ and it is stated as follows:

Theorem 2.4.1. Let E = E− ⊕E+ be a separable Hilbert space with E− orthogonal to E+ and

Φ : E → R given by

Φ(u) =
1

2

(
‖u+‖2 − ‖u−‖2

)
− ψ(u).

Suppose that

(i) ψ ∈ C1(E,R) is bounded from below, weakly sequentially lower semicontinuous and ψ′ is

weakly sequentially continuous;

(ii) there exist u0 ∈ E+ \ {0}, η > 0 and R > ρ > 0 such that Φ|Sρ
≥ η and Φ|∂QR

≤ 0.

Then there exists a (C)c1-sequence for Φ at the level

c1 := inf
h∈Γ

sup
u∈QR

Φ(h(1, u)). (2.7)

Moreover, c1 ≥ η.

In what follows, the linking structure for the functional Φ associated to (C), required in

Theorem 2.4.1, will be proved by deriving some lemmas. Precisely, we will apply Theorem 2.4.1

23



for the functional ψ : E → R given by

ψ(u) =

∫

RN

h(x)G(u)dx+

∫

RN

k(x)F (u)dx.

Lemma 2.4.2. Assume (h0), (k0), (g0), (f0) and (f3). Then the functional ψ is bounded below,

weakly sequentially lower semicontinuous and ψ′ is weakly sequentially continuous on E.

Proof. Clearly we have ψ(u) ≥ 0 for all u ∈ E and hence it is bounded below. Furthermore,

ψ is weakly sequentially lower semicontinuous by the Fatou Lemma. Now we prove the last

statement. Let (un) ⊂ E be such that un ⇀ u weakly in E. Invoking Lemma 2.3.2, we get

〈ψ′(un), v〉 → 〈ψ′(u), v〉 for all v ∈ E. Therefore, ψ′ is weakly sequentially continuous on E.

Lemma 2.4.3. Suppose (V0), (h0), (g0), (k0), (f0) and (f2). If ‖h‖σ is small enough, then there

exist positive constants η0 and ρ0 such that

Φ(u+) ≥ η0 for all u+ ∈ E+ with ‖u+‖ = ρ0.

Proof. By conditions (g0) and (h0), the Hölder inequality and the continuous embedding E →֒

Lσ′q(RN) we have

∫

RN

h(x)G(u+)dx ≤ C0

∫

RN

h(x)|u+|qdx ≤ C0‖h‖σ‖u
+‖q, ∀ u+ ∈ E+.

Moreover, by (k0), (f0) and (f2) we get

∫

RN

k(x)F (u+)dx ≤
1

4
‖u+‖2 + C1‖u

+‖p, ∀ u+ ∈ E+

for some constant C1 > 0. Thus, for any u+ ∈ E+ with ‖u+‖ = ρ, we have

Φ(u+) =
1

2
‖u+‖2 −

∫

RN

h(x)G(u+)dx−

∫

RN

k(x)F (u+)dx

≥
1

4
ρ2 − C0‖h‖σρ

q − C1ρ
p

= ρ2
[
1

4
− C1ρ

p−2

]
− C0‖h‖σρ

q.

Therefore we can fix ρ = ρ0 so that β0 := 1/4− C1ρ
p−2
0 > 0 to conclude that

Φ(u+) ≥ η0 if ‖h‖σ ≤M,

where M = β0ρ
2−q
0 /(2C0) and η0 = β0ρ

2
0/2.

Lemma 2.4.4. Assume (V0), (h0), (g0), (k̂0) and (f3). Fixed u+0 ∈ E+ with ‖u+0 ‖ = 1, there

exists R > 0 such that

Φ(u) ≤ 0, ∀ u ∈ ∂QR, (2.8)
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where

QR := {u = u− + su+0 : s ≥ 0, u− ∈ E− and ‖u−‖2 + s2 < R2}.

Proof. If s = 0 then from (h0), (g0), (k̂0) and (f3) we get

Φ(u) = −
1

2
‖u−‖2 −

∫

RN

h(x)G(u−)dx−

∫

RN

k(x)F (u−)dx ≤ 0.

Thus, in what follows we assume that s > 0. Observe that u = u−+su+0 ∈ ∂QR with s > 0 if and

only if ‖u−‖2 + s2 = R2. Arguing by contradiction, suppose that there are sequences Rn → ∞

and un = u−n + snu
+
0 ∈ ∂QRn

such that Φ(un) > 0, for all n ∈ N. If vn := un/Rn = v−n + s̃nu
+
0 ,

we have ‖v−n ‖
2 + s̃2n = 1. Thus, there are renamed subsequences such that s̃n → s̃ in R and

vn ⇀ v = v− + s̃u+0 in E. Since

0 <
1

R2
n

Φ(un) =
1

2
[s̃2n − ‖v−n ‖

2]−

∫

RN

h(x)
G(un)

R2
n

dx−

∫

RN

k(x)
F (un)

R2
n

dx,

we infer that

0 ≤

∫

RN

k(x)
F (un)

R2
n

dx <
1

2
[s̃2n − (1− s̃2n)] = s̃2n −

1

2
≤ C, (2.9)

which implies that s̃2 ≥ 1/2 and consequently v 6≡ 0. Thus, there exists A ⊂ R
N with positive

measure such that v 6= 0 in A. Since F (t)/t2 → ∞ as t2 → ∞ and k(x) > 0 we have

∫

RN

k(x)
F (un)

R2
n

dx ≥

∫

A

k(x)
F (un)

u2n
v2ndx→ ∞ as n→ ∞,

and this contradicts (2.9).

2.5 (Ce) Sequence

The aim of this section is to show that Cerami sequences for Φ are bounded.

Lemma 2.5.1. Assume 1 < q < p/(p− 1). Every (C)c-sequence (un) ⊂ E is bounded in E.

Proof. Indeed, from (2.6) we get

Φ(un) =
1

2
[‖u+n ‖

2 − ‖u−n ‖
2]−

∫

RN

h(x)G(un)dx−

∫

RN

k(x)F (un)dx = c+ on(1)

and

1

2
〈Φ′(un), un〉 =

1

2
[‖u+n ‖

2 − ‖u−n ‖
2]−

1

2

∫

RN

h(x)g(un)undx−
1

2

∫

RN

k(x)f(un)undx = on(1).

This, together with the fact that |G(u)− g(u)u/2| ≤ C|u|q imply that

∫

RN

k(x)

[
f(un)un

2
− F (un)

]
dx =

∫

RN

h(x)

[
G(un)−

1

2
g(un)un

]
dx+ c+ on(1)

≤ C‖h‖σ‖un‖
q + c+ on(1).

(2.10)

25



By (f3) there exists C1 > 0 such that F (t) ≥ C1|t|
µ for |t| ≥ 1. Since µ ≥ p, for |t| ≥ 1 it follows

that F (t) ≥ C1|t|
p. On the other hand, by using (f4) there exists C2 > 0 such that if |t| ≤ 1 then

F (t) ≥ C2|t|
θ ≥ C2|t|

p. Therefore, F (t) ≥ C|t|p for all t ∈ R where C = min{C1, C2}. Thus,

f(t)t

2
− F (t) ≥

(p
2
− 1

)
F (t) ≥ C̃1|t|

p, ∀ t ∈ R.

Since k(x) ≥ 0, the above inequality in combination with (2.10) give us

∫

RN

k(x)|un|
pdx ≤ C1‖un‖

q + C2. (2.11)

On the other hand, since 〈Φ′(un), (u
+
n − u−n )〉 = on(1) we infer that

‖un‖
2 =

∫

RN

h(x)g(un)(u
+
n − u−n )dx+

∫

RN

k(x)f(un)(u
+
n − u−n )dx+ on(1)

=

∫

RN

h(x)g(un)(2u
+
n − un)dx+

∫

RN

k(x)f(un)(2u
+
n − un)dx+ on(1).

Using that f(t)t ≥ 0, we obtain

‖un‖
2 ≤

∫

RN

h(x)g(un)(2u
+
n − un)dx+ 2

∫

RN

k(x)f(un)u
+
n dx+ on(1). (2.12)

Now, we observe that ∫

RN

h(x)g(un)(2u
+
n − un)dx ≤ C‖un‖

q,

and by (f0), (f2), for any ε > 0 there exists C > 0 such that |f(t)| ≤ ε|t| + C|t|p−1. From this,

by (2.11) and since k ∈ L∞(RN), we obtain

2

∫

RN

k(x)f(un)u
+
n dx ≤ C

∫

RN

[k(x)](p−1)/p|un|
p−1[k(x)]1/p|u+n |dx+ ε

∫

RN

k(x)|un||u
+
n |dx

≤ C

(∫

RN

k(x)|un|
pdx

)(p−1)/p (∫

RN

k(x)|u+n |
pdx

)1/p

+ ε‖k‖∞‖un‖2‖u
+
n ‖2

≤ C (C1‖un‖
q + C2)

(p−1)/p ‖k‖∞‖un‖+ ε‖k‖∞‖un‖
2.

This together with (2.12) imply that

‖un‖
2 ≤ C3(ε) (C1‖un‖

q + C2)
(p−1)/p ‖un‖+ C4(ε)‖un‖

q,

for ε > 0 sufficiently small. Since 1 < q < p/(p − 1) the last inequality implies that (un) is

bounded in E and the proof is complete.

2.6 Nontrivial Solution (Subcritical Case)

In the sequel, we establish some convergence results and we prove Theorem 2.1.2.

26



Lemma 2.6.1. Assume (h0), (g0), (k̂0), (f0), (f2) and 2 < p < 2∗. Let (un) ⊂ E be such that

un ⇀ 0 in E. Then, the following limits hold:

(i) lim
n→∞

∫

RN

h(x)g(un)u
+
n dx = 0;

(ii) lim
n→∞

∫

RN

k(x)f(un)u
+
n dx = 0.

Proof. To prove item (i), we use the compact embedding E →֒ Lr
loc(R

N), with r ∈ [1, 2∗), to

infer that for any R > 0 fixed

∫

RN

h(x)g(un)u
+
n dx =

∫

BR

h(x)g(un)u
+
n dx+

∫

|x|≥R

h(x)g(un)u
+
n dx

= on(1) +

∫

|x|≥R

h(x)g(un)u
+
n dx.

Since (un) is bounded in E, by using the Hölder inequality we get

∫

|x|≥R

h(x)|g(un)u
+
n |dx ≤

∫

|x|≥R

h(x)|un|
q−1|u+n |dx

=

∫

|x|≥R

[h(x)]
q−1

q |un|
q−1[h(x)]

1

q |u+n |dx

≤ C
(
‖h‖Lσ(|x|≥R)‖un‖

q
)(q−1)/q (

‖h‖Lσ(|x|≥R)‖u
+
n ‖

q
)1/q

≤ C‖h‖Lσ(|x|≥R) → 0 as R → ∞

and item (i) is proved. With respect item (ii), since |f(t)| ≤ ε|t|+ C|t|p−1 and (un) is bounded

in E, one has

∫

RN

k(x)|f(un)u
+
n |dx ≤ ε

∫

RN

k(x)|un||u
+
n |dx+ C

∫

RN

k(x)|un|
p−1|u+n |dx

≤ εC1 + on(1) +

∫

|x|≥R

k(x)|un|
p−1|u+n |dx

≤ εC1 + on(1) +
(
‖k‖Lκ(|x|≥R)‖un‖

p
)(p−1)/p (

‖k‖Lκ(|x|≥R)‖u
+
n ‖

p
)1/p

≤ εC1 + on(1) + C‖k‖Lκ(|x|≥R).

Hence, choosing R > 0 large enough we obtain the desired result and the proof is complete.

We also will need the following convergence results.

Lemma 2.6.2. Assume (k̂0), (f0) and 2 < p < 2∗. Then, the functionals

L1(u) =

∫

RN

k(x)F (u)dx and L2(u) =

∫

RN

k(x)f(u)udx

are weakly continuous on E.
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Proof. Consider a sequence (un) ⊂ E such that uu ⇀ u in E. For any R > 0 fixed, we have

|L1(un)− L1(u)| ≤

∫

BR

|k(x)||F (un)− F (u)|dx+

∫

|x|≥R

|k(x)||F (un)− F (u)|dx

=: I1(n) + I2(n).

By the compact embedding E →֒ Lr
loc(R

N), with r ∈ [2, 2∗) and Lebesgue Dominate Convergence

Theorem, we have I1(n) = on(1). Since (un) ⊂ E is bounded in E and k ∈ Lκ(RN), it follows

by the Hölder inequality that

I2(n) ≤ C1

(∫

|x|≥R

|k(x)|κdx

)1/κ
[(∫

|x|≥R

|un|
pκ′

dx

)1/κ′

+

(∫

|x|≥R

|u|pκ
′

dx

)1/κ′
]

≤ C2

(∫

|x|≥R

|k(x)|κdx

)1/κ

.

ChoosingR > 0 sufficiently large we get that I2(n) = on(1) and therefore L1 is weakly continuous.

Similar arguments prove that L2 is also weakly continuous on E and the proof is complete.

Finalizing the proof of Theorem 2.1.2: Combining Lemmas 3.3.3, 3.3.6, 3.3.7 and Theorem 2.4.1,

we obtain a sequence (un) ⊂ E such that

Φ(un) → c1 and (1 + ‖un‖)Φ
′(un) → 0, (2.13)

where c1 is defined in (2.7). By Lemma 2.5.1, it follows that (un) is bounded in E and passing

to a subsequence we may assume that un ⇀ u1 weakly in E. By Lemma 2.3.2 we have that

Φ′(u1) = 0. Furthermore, invoking again Lemmas 2.3.2 and 2.6.2 we conclude that

0 < c1 = lim
n→∞

[
Φ(un)−

1

2
〈Φ′(un), un〉

]

= lim
n→∞

∫

RN

h(x)

[
g(un)un

2
−G(un)

]
dx+ lim

n→∞

∫

RN

k(x)

[
f(un)un

2
− F (un)

]
dx

=

∫

RN

h(x)

[
g(u1)u1

2
−G(u1)

]
dx+

∫

RN

k(x)

[
f(u1)u1

2
− F (u1)

]
dx

= Φ(u1)−
1

2
〈Φ′(u1), u1〉 = Φ(u1),

i.e., the proof of Theorem 2.1.2 is finished.

2.7 Nontrivial Solution (Critical Case)

In this section, we present the proof of Theorem 2.1.3. We will apply a basic estimate and a

convergence result. For ε > 0 and x ∈ R
N , let us consider the modified Talenti function [67]

ϕε(x) =
CNψr(x)ε

(N−2)/2

(ε2 + |x|2)(N−2)/2
,
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where CN = [N(N − 2)](N−2)/4 and ψr ∈ C∞
0 (RN , [0, 1]) with ψ ≡ 1 if |x| ≤ r/2, ψr ≡ 0 if

|x| ≥ r, for some r > 0. For ε > 0, we also consider Zε := E− ⊕ Rϕ+
ε and

S = inf
E\{0}

‖∇u‖22
‖u‖22∗

.

The energy functional associated to problem (Cc) is given by

Φ(u) =
1

2
(‖u+‖2 − ‖u−‖2)−

∫

RN

h(x)G(u)dx−
1

2∗

∫

RN

k(x)|u|2
∗

dx.

Since h(x)G(t) ≥ 0, it follows that

Φ(u) ≤ I1(u) :=
1

2
[‖u+‖2 − ‖u−‖2]−

1

2∗

∫

RN

k(x)|u|2
∗

dx.

Arguing as in the proof of Proposition 4.2 in [19], we have the following estimate:

Lemma 2.7.1 (Minimax Estimate). If N ≥ 4 then there exists ε0 > 0 such that

sup
u∈Zε0

I1(u) < c∗ :=
SN/2

N‖k‖
(N−2)/2
∞

.

From this estimate, we obtain the following lemma:

Lemma 2.7.2. Let (un) ⊂ E be a (C)c-sequence for Φ such that un ⇀ u in E, with 0 < c < c∗.

Then, ∫

RN

k(x)|un|
2∗dx→

∫

RN

k(x)|u|2
∗

dx. (2.14)

Proof. Since (un) is bounded in E, we can assume that

|∇un|
2 → µ and |un|

2∗ → ν weakly in M+(RN),

where M+(RN) denotes the positive Radon measures over R
N . Invoking the Concentration-

Compactness Principle due to Lions [38][Lemma I.1], we obtain a countable set J , (xj)j∈J ⊂ R
N

and (µj)j∈J , (νj)j∈J ⊂ [0,∞) such that

ν = |u|2
∗

+
∑

j∈J

νjδxj
and µ ≥ |∇u|2 +

∑

j∈J

µjδxj
with µj ≥ Sν

2

2∗

j , (2.15)

where δxj
denotes the Dirac measure concentrated at xj. We claim that νj = 0 for all j ∈ J . In
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fact, combining (2.15) and Lemma 2.3.2 we get

c = lim
n→∞

[
Φ(un)−

1

2
〈Φ′(un), un〉

]

≥
1

N

∑

j∈J

k(xj)νj +
1

N

∫

RN

k(x)|u|2
∗

dx+

∫

RN

h(x)

[
g(u)u

2
−G(u)

]
dx

≥
1

N

∑

j∈J

k(xj)νj +
1

N

∫

RN

k(x)|u|2
∗

dx− C‖h‖σ‖u‖
q
2∗ ,

(2.16)

where in the last inequality we have used that |g(t)t/2−G(t)| ≤ C|t|q and the Hölder inequality.

On the other hand, for ε > 0 and j ∈ J we set ψε,j(x) := ψ((x − xj)/ε), x ∈ R
N , where

ψ ∈ C∞
0 (RN) is such that ψ ≡ 1 in B1(0), ψ ≡ 0 in R

N \ B2(0) and |∇ψ| ≤ 2, with 0 ≤ ψ ≤ 1.

We observe that ψε,jun ∈ E and (ψε,jun) is bounded in E. Thus, we obtain

∫

RN

[∇(un)∇(ψε,jun) + V (x)u2nψε,j]dx−

∫

RN

h(x)g(un)unψε,jdx−

∫

RN

k(x)|un|
2∗ψε,jdx = on(1).

This together with the definitions of µ and ν imply that

∫

RN

[∇u∇ψε,j + V (x)u2ψε,j]dx−

∫

RN

h(x)G(u)ψε,jdx−

∫

RN

k(x)ψε,jdν +

∫

RN

ψε,jdµ = 0.

Now, taking the limit as ε→ 0 we see that µ(xj) ≤ k(xj)νj. Since µj ≤ µ(xj) we have

Sν
2

2∗

j ≤ µj ≤ µ(xj) ≤ k(xj)νj, ∀ j ∈ J.

If νj 6= 0 for some j ∈ J , the last inequality yields

νj ≥
SN/2

[k(xj)]N/2
.

Since the function k(x) is continuous and bounded, from (2.16) we get

c ≥
SN/2

N‖k‖
(N−2)/2
∞

+
1

N

∫

RN

k(x)|u|2
∗

dx− C‖h‖σ‖u‖
q
2∗

which is a contradiction if ‖h‖σ is sufficiently small. Therefore, νj = 0 for all j ∈ J which implies

that ν = 0. Thus, by (2.15) we obtain |un|
2∗ → |u|2

∗

in M+(RN). Consequently,

un → u in L2∗

loc(R
N). (2.17)

Now, we observe that

∣∣∣∣
∫

RN

k(x)(|un|
2∗ − |u|2

∗

)dx

∣∣∣∣ ≤ ‖k‖∞

∫

BR

∣∣|un|2
∗

− |u|2
∗
∣∣ dx+ C

Rν

∫

|x|≥R

(|un|
2∗ + |u|2

∗

)dx.

Since (un) is bounded, choosing R > 0 sufficiently large and using the convergence in (2.17), we
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obtain (2.14) and this completes the proof.

Proof of Theorem 2.1.3: Considering QR with u+0 = ϕε0 , we see that ϕε0 ∈ QR ⊂ Zε0 . Thus,

by Lemma 2.7.1

c1 ≤ Φ(ϕε0) ≤ sup
u∈Zε0

I1(u) < c∗ :=
SN/2

N‖k‖
(N−2)/2
∞

. (2.18)

By Theorem 2.4.1, there exists a Cerami sequence (un) ⊂ E for Φ at the level c1 > 0. By

Lemma 2.5.1, (un) is bounded in E. Thus, passing to a subsequence, we can assume that

un ⇀ u1 in E. Invoking Lemma 2.3.2, we see that Φ′(u1) = 0. On the other hand, combining

estimate (2.18) with Lemma 2.7.2 and Lemma 2.3.2 we conclude that

0 < c1 = lim
n→∞

[
Φ(un)−

1

2
〈Φ′(un), un〉

]

= lim
n→∞

∫

RN

h(x)

[
g(un)un

2
−G(un)

]
dx+ lim

n→∞

1

N

∫

RN

k(x)|un|
2∗dx

=

∫

RN

h(x)

[
g(u1)u1

2
−G(u1)

]
dx+

1

N

∫

RN

k(x)|u1|
2∗dx

= Φ(u1)−
1

2
〈Φ′(u1), u1〉 = Φ(u1),

and the proof of Theorem 2.1.3 is complete.
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Chapter 3

On a Periodic Schrödinger Equation

Involving Periodic and Nonperiodic

Nonlinearities in R
2

3.1 Introduction and Main Results

In this Chapter we study the equation

−∆u+ V (x)u = f(x, u), x ∈ R
2, (Pf )

where f(x, t) has exponential growth in the sense of Trudinger-Moser inequality and zero lies in

a spectral gap of the Schrödinger operator S. This is the content of the paper [43].

In order to introduce our hypotheses, let us denote by σ(S) be the spectrum of the operator

S = −∆+ V defined in L2(R2). Precisely, we assume that

(V0) V ∈ C(R2,R) is 1−periodic in xj, j = 1, 2, and

λ := sup[σ(S) ∩ (−∞, 0)] < 0 < Λ := inf[σ(S) ∩ (0,∞)].

As we will see in the next section, under the assumption (V0) the quadratic form B(u, v) =∫
R2(∇u∇v + V (x)uv)dx is strongly indefinite, i.e., H1(R2) can be split as a direct sum into

two infinite dimensional subspaces H1(R2) = E− ⊕ E+ corresponding to the decomposition of

σ(S) ∩ (−∞, λ) and σ(S) ∩ (Λ,∞). After the Linking Theorem proved by Kryzewski-Szulking

in [36], many authors have improved and used this result to obtain critical points of strongly

indefinite functionals, see for instance [23, 60,65,78] and references therein.

The main purpose in this work is to prove the existence of nontrivial weak solutions to (Pf )

considering zero in a spectral gap of the spectrum of S = −∆ + V and f(x, t) with subcritical

exponential growth in R
2. Precisely, for any β > 0

lim
|t|→∞

|f(x, t)|

eβt2
= 0, uniformly in x ∈ R

2. (3.1)

32



Setting F (x, t) =
∫ t

0
f(x, s)ds, we suppose that f is continuous and satisfies the following

assumptions:

(f0) there are δ > 0 and 0 < γ < Λ such that |f(x, t)| ≤ γ|t| for any |t| < δ and x ∈ R
2;

(f1) 2F (x, t) ≥ λt2 for any x ∈ R
2, t ∈ R and

F (x, t)

t2
→ +∞ as t2 → ∞, uniformly in x ∈ R

2.

(f2) f(x, t) is locally bounded in the variable t, that is, for any bounded interval J ⊂ R, there

exists C > 0 such that |f(x, t)| ≤ C for every (x, t) ∈ R
2 × J ;

(f3) there exists W ∈ L1(R2) such that for all r ∈ [0, 1] it holds

2(F (x, t+ s)− F (x, t)) ≥ (2rs− (r − 1)2t)f(x, t)−W (x), ∀ x ∈ R
2, s, t ∈ R.

Before stating the main results, we make some remarks on hypothesis (f3).

Remark 3.1.1. Hypothesis (f3) appears in a series of paper (see [59,65] and references therein).

Taking r = 0 and s = −t ( respectively, s = rw − t ) in (f3) we obtain H(x, t) := tf(x, t) −

2F (x, t) ≥ −W (x) for all x ∈ R
2, t ∈ R; and for any r ∈ [0, 1]

2[F (x, t)− F (x, rw)]− ((r2 + 1)t− 2r2w)f(x, t) ≤ W (x), ∀ x ∈ R
2, t, w ∈ R. (3.2)

Furthermore, choosing t = r = 0 in (f3) we get 2F (x, s) ≥ −W (x) for any x ∈ R
2, s ∈ R.

Now, our first existence result for equation (Pf ) can be summarized as follows.

Theorem 3.1.2. Assume (V0) and (f0)− (f3). If f(x, t) is 1−periodic and satisfies (3.1) then

equation (Pf ) admits a nontrivial weak solution.

A typical example of a nonlinearity f(x, t) satisfying the hypotheses of Theorem 3.1.2 is

f(x, t) := a(x)t+ b(x)|t|p−2t(et − 1), x ∈ R
2, t ∈ R,

where a, b are continuous and periodic functions satisfying λ ≤ a ≤ |a| ≤ γ, b ≥ 0 in R
2.

We quote that there are few existence results for the Schrödinger equation (Pf ) in the two

dimensional case when the potential V is periodic. In [24] do Ó-Ruf have studied equation (Pf )

when V is periodic and f(x, t) satisfies the Ambrosetti-Rabinowitz condition by using an ap-

proach developed by Pankov-Pflüger [51] and Pankov [49] based on an approximation technique

of periodic functions and applying the generalized linking theorem due to P. Rabinowitz [53]. As

we will see, under the above hypotheses, every Palais-Smale sequence associated with the energy

functional is bounded. Furthermore, by the periodicity of V and f(x, t) the energy functional is

invariant with respect to the Z
2-action on H1(R2) given by (T ∗ u)(x) = u(T + x) with T ∈ Z

2
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and u ∈ H1(R2). Consequently, we conclude that the weak limit of this sequence is a nontrivial

weak solution of (Pf ) up to translations.

In the case where the nonlinearity f(x, t) is nonperiodic, in addition we will assume that:

(f4) there exist α0 > 0, R0 > 0 and h ∈ L1(Bc
R0
) such that

|F (x, t)| ≤ h(x)eα0t2 , ∀ x ∈ Bc
R0
, t ∈ R.

In this case, our second existence result is the following:

Theorem 3.1.3. Assume (V0) and (f0)−(f4). If f(x, t) satisfies (3.1) then equation (Pf ) admits

a nontrivial weak solution.

Remark 3.1.4. A typical example of a nonlinearity satisfying the hypotheses of Theorem 3.1.3

is

f(x, t) := a(x)t+ b(x)|t|p−2t(et − 1), x ∈ R
2, t ∈ R,

where λ ≤ a ≤ |a| ≤ γ, 0 ≤ b ∈ L∞(R2) with a, b ∈ L1(Bc
1).

We mention that Theorem 3.1.3 extends some recent results obtained by M. Schechter [58]

where the author studied equation (Pf ) with the nonlinearity f(x, t) having subcritical polyno-

mial growth.

This chapter is organized as follows. In Section 2, we use spectral theory to obtain a suitable

domain for the energy functional in order to use the variational framework. In Section 3, we

establish the geometry for the energy functional required in the linking-theorem to obtain a

(PS) sequence. In Section 4 we demonstrate the Theorem 3.1.2. We conclude the chapter in

section 5, where we present the proof of Theorem 3.1.3.

3.2 Variational Setting

In this section, in order to develop a variational approach to study the existence of solutions

for equation (Pf ), a key step is to identify a suitable function space setting. First we observe

that from (3.1), (f0) and (f2), for any β > 0 and q > 2 there exists C1 > 0 such that

2|F (x, t)| ≤ γ|t|2 + C1|t|
q(eβt

2

− 1), ∀ x ∈ R
2, t ∈ R. (3.3)

Under the hypothesis (V0) we will find a function space E on which the energy functional

associated to (Pf ), Φ : E → R given by

Φ(u) :=

∫

R2

(|∇u|2 + V (x)u2)dx− 2

∫

R2

F (x, u)dx,

is well defined. In order to define the space E we consider the self-adjoint operator S = −∆+V

defined in L2(R2) acting in D(S) = H2(R2). Let {E(λ) : L2(R2) → L2(R2)}λ∈R be the spectral

family of S, and |S|1/2 be the square root of |S|. Setting U = Id−E(0)−E(−0) we can see that U
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is unitary and commutes with S, |S| and |S|1/2. Moreover S = U |S| is the polar decomposition

of the operator S (see [35], p. 358).

Let us denote by E := D(|S|1/2) the domain of |S|1/2. It is well known that E(λ)E ⊂ E for

all λ ∈ R. Furthermore, defining

E− := E(0)E, E+ := (Id− E(0))E,

(u, v) := (|S|1/2u, |S|1/2v)2, ∀ u, v ∈ E, and ‖u‖ :=
√

(u, u),

where (·, ·)2 is the usual inner product in L2(R2), we have the following result (see for instance

[9, 68]).

Lemma 3.2.1. Assume (V0). Then E = E− ⊕ E+, ‖ · ‖ is equivalent to ‖ · ‖H1 on E and for

any u = u− + u+ ∈ E, it holds (u−, u+) = (u−, u+)2 = 0. Moreover,

(Su, u)2 = −‖u‖2 ≤ λ‖u‖22, ∀ u ∈ E− (3.4)

and

(Su, u)2 = ‖u‖2 ≥ Λ‖u‖22, ∀ u ∈ E+. (3.5)

Remark 3.2.2. It follows from Lemma 3.2.1 that ‖u‖2 = ‖u−‖2+‖u+‖2 and for any p ∈ [2,∞)

the embedding E →֒ Lp(R2) is continuous.

The classical Trudinger-Moser inequality asserts that for any u ∈ H1(R2) and β > 0 it holds

(eβu
2

− 1) ∈ L1(R2). Afterward, a uniform inequality has been established by Cao [17] (see also

[57]). Namely, if u ∈ H1(R2) with ‖u‖H1(R2) ≤ M and βM2 < 4π, then there exists a constant

C = C(β,M) > 0 such that ∫

R2

(eβu
2

− 1)dx ≤ C(β,M). (3.6)

Since the norms ‖ · ‖H1 and ‖ · ‖ are equivalent on E, as a byproduct of (3.6) and the elementary

inequality

(eβt
2

− 1)r ≤ (eβrt
2

− 1), ∀ t ∈ R, β > 0, r ≥ 1, (3.7)

we have the following result.

Lemma 3.2.3. If u ∈ E with ‖u‖ ≤ M and θ > 0. Then there exists C = C(β, θ,M) > 0 such

that ∫

R2

|u|θ(eβu
2

− 1)dx ≤ C‖u‖θ,

for any β(νM)2 < 4π, where ν := sup
u∈E

‖u‖H1

‖u‖
.

Combining Lemmas 3.2.1 and 3.2.3 we see that the functional Φ is well defined and can be

written as

Φ(u) = ‖u+‖2 − ‖u−‖2 − 2

∫

R2

F (x, u)dx, ∀ u ∈ E.
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Furthermore, using Remark 3.2.2 together with Lemma 3.2.3 and standard arguments we have

that Φ ∈ C1(E,R) and

1

2
〈Φ′(u), v〉 = (u+, v)− (u−, v)−

∫

R2

f(x, u)vdx, ∀ u, v ∈ E.

Thus, critical points of Φ correspond to weak solutions of (Pf ).

3.3 Linking Geometry

In this section, in order to find critical points of the functional Φ we use a variant weak

linking theorem due to Schechter-Zou [60]. Since E = E− ⊕ E+ and E− is separable, for each

u = u− + u+ we have

u− =
∞∑

k=1

ck(u
−)ek

where B = {e1, e2, . . .} is a complete orthonormal system in E−. Thus, we can define a new

norm in E by setting

‖u‖τ = max

{
‖u+‖,

∞∑

k=1

|ck(u
−)|

2k

}
, ∀ u ∈ E.

We can see that ‖u‖τ ≤ ‖u‖ for any u ∈ E (see [36]). For R > ρ > 0 and u+0 ∈ E+ \ {0} we

define

QR := {u = u− + su+0 : s ≥ 0, u− ∈ E−, ‖u‖ < R}, Sρ := {u+ ∈ E+ : ‖u+‖ = ρ}.

For a functional Φ ∈ C1(E,R) defined in a Banach space (E, ‖ · ‖) we consider

Γ :=





h : [0, 1]× Q̄R → E, h is τ -continuous.For any (s0, u0) ∈ [0, 1]× Q̄R,

there is a τ -neighborhood U(s0,u0) such that

{u− h(s, u) : (s, u) ∈ U(s0,u0) ∩ ([0, 1]× Q̄R)} ⊂ Efin,

h(0, u) = u,Φ(h(s, u)) ≤ Φ(u), ∀ u ∈ Q̄R





,

where we use Efin to denote various finite-dimensional subspace of E whose exact dimension are

irrelevant and depend on (s0, u0). We observe that Γ 6= ∅ since Id ∈ Γ.

Theorem 3.3.1. (See [60]) Let E be a Hilbert space with norm ‖ · ‖ and Φµ : E → R a family

of C1-functionals of the form:

Φµ(u) := µI(u)− J(u), µ ∈ [1, 2].

Assume that

(a) I(u) ≥ 0, ∀ u ∈ E and Φ1 := Φ;
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(b) I(u) + |J(u)| → +∞ as ‖u‖ → ∞;

(c) Φµ is τ -upper semicontinuous, maps bounded sets into bounded sets and Φ′
µ is weakly se-

quentially continuous on E;

(d) sup
∂QR

Φµ ≤ 0 < inf
Sρ

Φµ, ∀µ ∈ [1, 2].

Then for almost all µ ∈ [1, 2], there exists a sequence (un) ⊂ E such that

sup
n

‖un‖ <∞, Φ′
µ(un) → 0 and Φµ(un) → cµ,

where

cµ := inf
h∈Γ

sup
u∈Q̄R

Φµ(h(1, u)).

Furthermore, cµ ∈ [inf
Sρ

Φµ, sup
Q̄R

Φµ] and is nondecreasing in µ.

In what follows, we derive in some lemmas the linking structure of Φµ required in Theo-

rem 3.3.1. Precisely, we apply Theorem 3.3.1 with

I(u) = ‖u+‖2 and J(u) = ‖u−‖2 + 2

∫

R2

F (x, u)dx,

which clearly satisfies (a) in Theorem 3.3.1.

Lemma 3.3.2. Assume (f1) and (f3). Let (un) ⊂ E be such that ‖un‖ → ∞ and vn(x) :=

un(x)/‖un‖ → v(x) almost everywhere in R
2. The following hold:

(i) If v 6≡ 0 then

∫

R2

F (x, un)

‖un‖2
dx→ ∞ as n→ ∞.

(ii) If v ≡ 0 then lim inf
n

∫

R2

F (x, un)

‖un‖2
dx ≥ 0.

Proof. If v 6≡ 0 then there exists A ⊂ R
2 with positive measure such that v 6= 0 in A. Since

2F (x, t) ≥ −W (x), F (x, t)/t2 → ∞ as t2 → ∞ and W ∈ L1(R2) we have

∫

R2

F (x, un)

‖un‖2
dx ≥

∫

A

F (x, un)

u2n
v2ndx−

1

2

∫

R2\A

W (x)

‖un‖2
dx→ ∞ as n→ ∞.

In case that v ≡ 0, using that 2F (x, t) ≥ −W (x) we infer that

∫

R2

F (x, un)

‖un‖2
dx ≥ −

1

2

∫

R2

W (x)

‖un‖2
dx→ 0 as n→ ∞,

completing the proof.

Lemma 3.3.3. Assume (f1) and (f3). Then the functional Φµ satisfies the hypothesis (b) in

Theorem 3.3.1.
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Proof. Since 2F (x, t) ≥ −W (x) for all x ∈ R
2 and t ∈ R, for any u ∈ E we have

I(u) + J(u) ≥ ‖u+‖2 + ‖u−‖2 −

∫

R2

W (x)dx = ‖u‖2 − C → +∞ as ‖u‖ → +∞.

To carry forward, we establish an auxiliary convergence result.

Lemma 3.3.4. Assume (f0), (f2) and (3.1). Then for any sequence (un) ⊂ E such that un ⇀ u

in E we have ∫

R2

f(x, un)ϕdx→

∫

R2

f(x, u)ϕdx for any ϕ ∈ E.

Proof. Initially we consider ϕ ∈ C∞
0 (R2) and let Ω be the support of ϕ. Since the embedding

E →֒ Lr(Ω) is compact for any r ≥ 1 it follows that un → u strongly in Lr(Ω) and un(x) → u(x)

a.e. in Ω. In particular, f(x, un)ϕ→ f(x, u)ϕ a.e. in Ω. From (f0), (f2) and (3.1) for any β > 0

and θ ≥ 2 we have

|f(x, t)| ≤ γ|t|+ C1|t|
θ(eβt

2

− 1), ∀ x ∈ R
2, t ∈ R. (3.8)

Thus, using the Hölder inequality together with inequality (3.7) we get

∫

Ω

|f(x, un)ϕ|dx ≤ γ‖un‖Lθ(Ω)‖ϕ‖Lθ′ (Ω) + C1‖un‖Lθ(Ω)

(∫

R2

|un|
θ(eβ

θ
θ−1

u2
n − 1)dx

)(θ−1)/θ

.

Since (un) is bounded in E, we can choose β > 0 sufficiently small and apply Lemma 3.2.3 to

obtain ∫

Ω

|f(x, un)ϕ|dx ≤ C

(∫

Ω

|un|
θdx

)1/θ

.

On the other hand, there exists ψ ∈ L1(Ω) such that |un| ≤ |ψ| in Ω. Thus, for each ε > 0, we

find a mensurable set A ⊂ Ω with |A| > 0 sufficiently small such that

∫

A

|f(x, un)ϕ|dx ≤ C

(∫

A

|ψ|θdx

)1/θ

< ε.

Therefore, (f(x, un)ϕ)n is uniformly integrable and by applying the Vitali Theorem we have

∫

R2

f(x, un)ϕdx→

∫

R2

f(x, u)ϕdx for any ϕ ∈ C∞
0 (R2). (3.9)

On the other hand, using that C∞
0 (R2) is dense in E, for any ε > 0 and v ∈ E there exists ϕ ∈

C∞
0 (R2) such that ‖v−ϕ‖ ≤ ε. Using (3.8), (3.9) together with Lemma 3.2.3 and Remark 3.2.2
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we obtain

∫

R2

|(f(x, un)− f(x, u))v|dx ≤

∫

R2

|f(x, un)(v − ϕ)|dx+

∫

R2

|(f(x, un)− f(x, u))ϕ|dx

+

∫

R2

|f(x, u)(ϕ− v)|dx

≤ I1(n) + on(1) + C‖ϕ− v‖.

To estimate I1(n), we use (3.8) with θ = 2 to obtain

I1(n) ≤ γ‖un‖2‖v − ϕ‖2 + C1‖v − ϕ‖2

(∫

R2

|un|
4(e2βu

2
n − 1)dx

)1/2

.

Since (un) is bounded in E, in view of (3.1), we can choose β > 0 sufficiently small and apply

Lemma 3.2.3 together with the Sobolev embedding E →֒ L2(R2) to obtain I1(n) ≤ C2ε, from

where we obtain the desired result.

Lemma 3.3.5. Assume (f0), (f2) and (3.1). Then for any µ ∈ [1, 2] the functional Φµ is τ -upper

semicontinuous and maps bounded sets into bounded sets. Furthermore, Φ′
µ is weakly sequentially

continuous.

Proof. Let (un) ⊂ E be such that ‖un−u‖τ → 0. Since ‖u−n −u
−‖τ ≤ ‖un−u‖τ and ‖u+n −u

+‖ ≤

‖un − u‖τ we have that ‖u−n − u−‖τ → 0 and ‖u+n − u+‖ → 0. In particular, (u−n ) is τ -bounded.

Hence up to a subsequence, u−n ⇀ u− in E− (see Proposition 1.3.1 ). Thus, ‖u−‖ ≤ lim inf
n

‖u−n ‖

and ‖u+‖ = lim
n

‖u+n ‖ . Since 2F (x, t) ≥ −W (x) by the Fatou’s Lemma

∫

R2

F (x, u)dx ≤ lim inf
n

∫

R2

F (x, un)dx

and consequently

Φµ(u) = µ‖u+‖2 − ‖u−‖2 − 2

∫

R2

F (x, u)dx

≥ lim sup
n

(
µ‖u+n ‖

2 − ‖u−n ‖
2 − 2

∫

R2

F (x, un)dx

)

= lim sup
n

Φµ(un),

proving that Φµ is τ -upper semicontinuous. Now consider a bounded sequence (un) ⊂ E. In-

voking (3.3) together with the embedding E →֒ L2(R2) and Lemma 3.2.3 we obtain

2

∫

R2

|F (x, un)|dx ≤ γ

∫

R2

|un|
2dx+ C1

∫

R2

|un|
θ(eβu

2
n − 1)dx ≤ C.

Therefore, |Φµ(un)| ≤ 3‖un‖
2 + 2

∫
R2 |F (x, un)|dx ≤ C. Finally, suppose that un ⇀ u in E.

Then for any ϕ ∈ E, (u+n , ϕ) → (u+, ϕ) and (u−n , ϕ) → (u−, ϕ). Now, by Lemma 3.3.4 we obtain

〈Φ′
µ(un), ϕ〉 → 〈Φ′

µ(u), ϕ〉 for any ϕ ∈ E and this completes the proof.
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Lemma 3.3.6. Assume (V0), (f0) and (f2). There are positive constants η and ρ such that, for

any µ ∈ [1, 2],

Φµ(u
+) ≥ η for all u+ ∈ E+ with ‖u+‖ = ρ.

Proof. Let ρ > 0 and β > 0 such that β(νρ2) < 4π. If q > 2 and ‖u+‖ = ρ, by Lemma 3.2.3 we

have ∫

R2

|u+|q(eβ(u
+)2 − 1)dx ≤ Cρq.

This together with inequalities (3.3) and (3.5) imply that

2

∫

R2

F (x, u+)dx ≤ γ‖u+‖22 + C1

∫

R2

|u+|q(eβ(u
+)2 − 1)dx ≤

γ

Λ
ρ2 + C2ρ

q.

Thus, for any µ ≥ 1 we conclude that

Φµ(u
+) = µ‖u+‖2 − 2

∫

R2

F (x, u+)dx ≥
(
1−

γ

Λ

)
ρ2 − C2ρ

q.

Since q > 2 and 0 < γ < Λ, choosing ‖u+‖ = ρ sufficiently small we obtain the desired result.

The following result is necessary to conclude the Linking geometry.

Lemma 3.3.7. Assume (V0), (f1) and (f3). Fixed u+0 ∈ E+ with ‖u+0 ‖ = 1, there exists

R > ρ > 0 such that for all µ ∈ [1, 2],

Φµ(u) ≤ 0, ∀ u ∈ ∂QR,

where

QR :=
{
u = u− + su+0 : ‖u−‖2 + s2 ≤ R2, u− ∈ E−, s ≥ 0

}
.

Proof. We first observe that if s = 0 then from (f1) and (3.4) we get

Φµ(u) = −‖u−‖2 − 2

∫

R2

F (x, u−)dx ≤ −‖u−‖2 − λ‖u−‖22 ≤ 0.

Thus, in what follows we assume that s > 0. Observe that u = u−+su+0 ∈ ∂QR with s > 0 if and

only if ‖u−‖2 + s2 = R2. Arguing by contradiction, suppose that there are sequences Rn → ∞,

µn ∈ [1, 2], un = u−n +snu
+
0 ∈ ∂QRn

such that Φµn
(un) > 0, ∀n ∈ N. If vn := un/Rn = v−n + s̃nu

+
0 ,

we have ‖v−n ‖
2 + s̃2n = 1. Thus, there are renamed subsequences such that µn → µ, s̃n → s̃ and

vn ⇀ v = v− + s̃u+0 in E. Since

0 <
1

R2
n

Φµn
(un) = µns̃

2
n − ‖v−n ‖

2 − 2

∫

R2

F (x, un)

R2
n

dx,

it follows that

2

∫

R2

F (x, un)

R2
n

dx < µns̃
2
n − (1− s̃2n) ≤ C.

Then by, (i) of Lemma 3.3.2 v ≡ 0. Using again Lemma 3.3.2 we obtain that 0 ≤ µs̃2− (1− s̃2),

which implies that s̃ > 0 and consequently v 6≡ 0 and this is a contradiction.
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3.4 Nontrivial Solution (Periodic Case)

Before proceeding with the proof of Theorem 3.1.2, we establish some preliminary results.

Since the norms ‖·‖H1 and ‖·‖ are equivalent on E, as a direct consequence of the concentration

compactness principle of Lions [38] (see also [74, 75]) we have the following result.

Lemma 3.4.1. Let r > 0 and (un) ⊂ E a bounded sequence such that

sup
y∈R2

∫

B(y,r)

|un|
2dx→ 0 as n→ ∞,

where B(y, r) ⊂ R
2 denotes the open ball with center y and radius r > 0. Then un → 0 in

Lp(R2) for any p > 2.

The lemma below will be used to prove the boundedness of a special sequence that will be

crucial in the proof of Theorem 3.1.2, see Lemma 3.4.4 below.

Lemma 3.4.2. Assume (f3). If u = u− + u+ ∈ E and r ∈ [0, 1] then

∫

R2

[
2F (x, u)− 2F (x, ru+)−

(
(r2 + 1)u− 2r2u+

)
f(x, u)

]
dx ≤ C1,

where the constant C1 independent of u and r.

Proof. Taking w = u+ and t = u in (3.2) we get

2F (x, u)− 2F (x, ru+)−
(
(r2 + 1)u− 2r2u+

)
f(x, u) ≤ W (x).

Now, the result follows by integrating the last inequality and using that W ∈ L1(R2).

Lemma 3.4.3. Assume (f3). Let (µn) ⊂ [1, 2] and un = u−n + u+n ∈ E such that

Φ′
µn
(un) → 0 and 〈Φ′

µn
(un), un〉 = on(1).

Then for all r ∈ [0, 1], there is a constant C independent of n, µn and r such that

Φµn
(ru+n ) + r2‖u−n ‖

2 − Φµn
(un) ≤ C + on(1)r

2‖u+n ‖.

Proof. Note that

Φµn
(ru+n ) + r2‖u−n ‖

2 − Φµn
(un) =µn(r

2 − 1)‖u+n ‖
2 + (r2 + 1)‖u−n ‖

2

+ 2

∫

R2

[
F (x, un)− F (x, ru+n )

]
dx.

(3.10)

Taking ϕ = (r2 + 1)u−n − (r2 − 1)u+n = (r2 + 1)un − 2r2u+n as a test function we obtain

µn(r
2 − 1)‖u+n ‖

2 + (r2 + 1)‖u−n ‖
2 = −

∫

R2

(
(r2 + 1)un − 2r2u+n

)
f(x, un)dx

− 〈Φ′
µn
(un), (r

2 + 1)un − 2r2u+n 〉.

(3.11)
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Combining (3.10), (3.11) and using the previous lemma we get

Φµn
(ru+) + r2‖u−n ‖

2 − Φµn
(un) =

∫

R2

[
2F (x, un)− 2F (x, ru+n )−

(
(r2 + 1)un − 2r2u+n

)
f(x, un)

]
dx

− 〈Φ′
µn
(un), (r

2 + 1)un − 2r2u+n 〉

≤ C + on(1)r
2‖u+n ‖,

which completes the proof.

Lemma 3.4.4. Suppose that f(·, t) is 1-periodic, (V0), (f0)−(f3) and (3.1) hold. Let (µn) ⊂ [1, 2]

and (un) ⊂ E such that

|Φµn
(un)| ≤ C, Φ′

µn
(un) → 0 and 〈Φ′

µn
(un), un〉 = on(1).

Then, (un) has a bounded subsequence in E.

Proof. Suppose by contradiction that Rn = ‖un‖ → ∞ and define vn = un/Rn. Then v+n =

u+n /Rn and ‖v+n ‖ ≤ 1. Passing to a subsequence we may assume that vn ⇀ v and v+n ⇀ v+

weakly in E. Moreover, v+n → v+ in L2
loc(R

2), v+n (x) → v+(x) a.e. in R
2. We have two cases to

consider:

Case 1: (v+n ) is vanishing, i.e., there exists r > 0 such that

lim
n→+∞

sup
y∈R2

∫

B(y,r)

|v+n |
2dx = 0.

According to Lemma 3.4.1 we have that ‖v+n ‖q → 0 for any q > 2 because (v+n ) is bounded in

E. Since |Φµn
(un)| ≤ C, by Lemma 3.4.3 we see that

Φµn
(rnu

+
n ) + r2n‖u

−
n ‖

2 ≤ C + on(1)r
2
n‖u

+
n ‖.

Taking rn = s/Rn with s > 0 fixed we get

Φµn
(sv+n ) + s2‖v−n ‖

2 ≤ C + on(1)s
2. (3.12)

On the other hand,

Φµn
(sv+n ) + s2‖v−n ‖

2 = µns
2‖v+n ‖

2 + s2‖v−n ‖
2 − 2

∫

R2

F (x, sv+n )dx

≥ s2 − 2

∫

R2

F (x, sv+n )dx.
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Now using (3.5) and applying the Hölder inequality together with Lemma 3.2.3 we obtain

2

∫

R2

F (x, sv+n )dx ≤
γ

Λ
s2‖v+n ‖

2 + C1s
q‖v+n ‖q

(∫

R2

|v+n |
q(eβ

q
q−1

s2(v+n )2 − 1)dx

)(q−1)/q

≤
γ

Λ
s2 + C2s

qon(1),

for β > 0 sufficiently small. Consequently,

Φµn
(sv+n ) + s2‖v−n ‖

2 ≥
(
1−

γ

Λ

)
s2 − C2s

qon(1),

which contradicts inequality (3.12) if s and n are sufficiently large.

Case 2: (v+n ) is non-vanishing, i.e.,there is a sequence (yn) ⊂ Z
2 such that

∫

B(yn,r)

|v+n |
2dx ≥ α > 0. (3.13)

Defining u′n(x) := un(x−yn) and wn(x) := u′n(x)/‖u
′
n‖ we see that ‖u

′
n‖ = ‖un‖,‖wn‖ = ‖vn‖ = 1

and wn(x) = vn(x−yn). Thus, passing to a subsequence we can assume that wn ⇀ w, w+
n ⇀ w+

in E, strongly in L2
loc(R

2) and a.e. in R
2. From (3.13) we have

∫

B(0,r)

|w+
n |

2dx ≥
α

2
> 0,

which implies that w+ 6= 0 and so w 6= 0. According to Lemma 3.3.2

∫

R2

F (x, u′n)

‖u′n‖
2
dx→ ∞ as n→ ∞.

Since V and f(·, t) are 1−periodic we have Φµn
(un) = Φµn

(u′n). Thus,

2

∫

R2

F (x, u′n)

‖u′n‖
2
dx = µn‖v

+
n ‖

2 − ‖v−n ‖
2 −

Φ(u′n)

‖u′n‖
2
≤ C.

Now, taking n→ ∞ we obtain a contradiction and this complete the proof.

Proof of Theorem 3.1.2: By applying Theorem 3.3.1, there exists a sequence (µn) ⊂ (1, 2],

with µn → 1, such that it is possible to find a sequence (unm) ⊂ E verifying

sup
m

‖unm‖ <∞, Φ′
µn
(unm) → 0 and Φµn

(unm) → cµn
, as m→ +∞

where

cµn
:= inf

h∈Γ
sup
u∈Q̄R

Φµn
(h(1, u)).

From this, for each n ∈ N, there exists mn ∈ N such that

|Φµn
(unmn

)− cµn
| ≤

1

n
,

∣∣〈Φ′
µn
(unmn

), unmn
〉
∣∣ ≤ 1

n
and ‖Φ′

µn
(unmn

)‖ ≤
1

n
, ∀n ∈ N.
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In what follows, we denote unmn
by un, hence we can rewritten the above limits of the following

way

|Φµn
(un)− cµn

| ≤
1

n
,

∣∣〈Φ′
µn
(un), un〉

∣∣ ≤ 1

n
and ‖Φ′

µn
(un)‖ ≤

1

n
, ∀n ∈ N.

Since 0 < c1 ≤ cµn
≤ c2 for all n ∈ N, without loss of generality we can assume that

0 <
cµ1

2
≤ Φµn

(un) ≤ c2 +
1

n
∀n ∈ N.

According to Lemma 3.4.4, after a renamed subsequence un ⇀ u weakly in E, un → u strongly

in Lq
loc(R

2) for q > 2 and a.e. in R
2. Since for any ϕ ∈ E

on(1) =
1

2
〈Φ′

µn
(un), ϕ〉 = µn(u

+
n , ϕ)− (u−n , ϕ)−

∫

R2

f(x, un)ϕdx, (3.14)

taking the limit and using Lemma 3.3.4 we get Φ′(u) = 0. We claim that u 6≡ 0. Indeed, from

(3.1), (f0), (f2),(3.5), the Hölder inequality and Lemma 3.2.3 we get

∫

R2

f(x, un)u
+
n dx ≤

γ

Λ
‖u+n ‖

2 + C1‖u
+
n ‖q

(∫

R2

|un|
q(eβ

q
q−1

u2
n − 1)dx

)(q−1)/q

≤
γ

Λ
‖u+n ‖

2 + C2‖u
+
n ‖q.

(3.15)

Then, choosing ϕ = u+n in (3.14) and using (3.15), we obtain

µn‖u
+
n ‖

2 =

∫

R2

f(x, un)u
+
n dx+ on(1) ≤

γ

Λ
‖u+n ‖

2 + C1‖u
+
n ‖q + on(1),

which implies that (
1−

γ

Λ

)
‖u+n ‖

2 ≤ C1‖u
+
n ‖q + on(1). (3.16)

On the other hand, by (3.4), (f1), Lemma 3.2.1 and (3.5) we have

0 <
c1
2

≤ Φµn
(un) ≤ µn‖u

+
n ‖

2 + λ‖u−n ‖
2
2 − λ‖un‖

2
2 ≤

(
2−

λ

Λ

)
‖u+n ‖

2. (3.17)

If, for r > 0 fixed,

sup
y∈R2

∫

B(y,r)

|u+n |
2dx→ 0 as n→ ∞,

then by Lemma 3.4.1 we get that u+n → 0 in Lq(R2). From (3.16)-(3.17) we get a contradiction.

Consequently, there exists a sequence (yn) ⊂ Z
2 such that

∫

B(yn,r)

|u+n |
2dx ≥ α > 0.

Thus, using that V, f(·, t) are periodic and defining wn(x) := un(x+ yn) we have

sup
n

‖wn‖ <∞, 0 <
c1
2

≤ Φµn
(wn) ≤ c2 +

1

n
, ‖Φ′

µn
(wn)‖ ≤

1

n
, ∀n ∈ N
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and ∫

B(yn,r)

|w+
n |

2dx ≥ α > 0, ∀n ∈ N. (3.18)

By the continuity of the projection map, we may assume that w+
n ⇀ w+ in E+. Furthermore,

using the compact embedding E+ →֒ L2
loc(R

2) together with (3.18) we have that w+ 6= 0.

Consequently w is a nontrivial critical point of Φ. ✷

3.5 Nontrivial Solution (Nonperiodic Case)

This section is devoted to the proof of Theorem 3.1.3. We quote that in this section the

nonlinearity f(x, t) is not assumed to be periodic and therefore we cannot use the Lions Lemma.

Before to present the proof of Theorem 3.1.3, we establish some auxiliary results. We start with

the following convergence lemma (see [78] for related results).

Lemma 3.5.1. Assume hypotheses (3.1) and (f4). Then the functional L(u) =
∫
R2 F (x, u)dx is

weakly continuous on E for β > 0 small.

Proof. By condition (3.1), given ε > 0 there exists r > 0 such that for all β > 0

|F (x, t)| ≤ ε(eβt
2

− 1), ∀x ∈ R
2, |t| ≥ r.

Now considering the continuous function wr : R → R defined by

wr(t) =





r, t ≥ r

t, |t| ≤ r

− r, t ≤ −r,

we see that

|F (x, t)− F (x, wr(t))| ≤ 2ε(eβt
2

− 1), ∀ x ∈ R
2, |t| ≥ r. (3.19)

Let un ⇀ u in E. According to definition of wr we have

|L(un)− L(u)| ≤

∫

|un|>r

|F (x, un)− F (x, wr(un))|dx

+

∫

R2

|F (x, wr(un))− F (x, wr(u))|dx

+

∫

|u|>r

|F (x, wr(u))− F (x, u)|dx

=: I1 + I2 + I3.

Since (un) ⊂ E is bounded, using estimate (3.19) together with Lemma 3.2.3, for β > 0 small

we obtain

I1 ≤ 2ε

∫

R2

(eβu
2
n − 1)dx ≤ εC,

45



for some C > 0. An analogous estimate holds to I3. To estimate I2 we observe that F (x, wr(un))−

F (x, wr(u)) → 0 a.e. in R
2 and

I2 =

∫

R2

|F (x, wr(un))− F (x, wr(u))|dx

≤

∫

|x|≤R0

|F (x, wr(un))− F (x, wr(u))|dx+

∫

|x|>R0

|F (x, wr(un))− F (x, wr(u))|dx.
(3.20)

Now, observe that the first integral in the right-hand side of (3.20) converges to zero in view

of the compact embedding E →֒ L1
loc(R

2). To estimate the second integral in (3.20), since

|wr(t)| ≤ r by (f4) we see that

|F (x, wr(un)− F (x, wr(u)| ≤ 2h(x)eα0r2 = C(r)h(x), ∀t ∈ R, x ∈ Bc
R0
.

Since h ∈ L1(Bc
R0
) the result follows by applying the Lebesgue Dominate Convergence Theorem.

Remark 3.5.2. An analogous argument can be used to show that the functional L̃ : E → R

given by L̃(u) =
∫
R2 f(x, u)udx is weakly continuous.

Proposition 3.5.3. Suppose (V0) and (f0) − (f4) are satisfied. For any µ ∈ [1, 2], there are

sequences (µn) ⊂ [1, 2], µn → µ and (un) ⊂ E \ {0} such that

0 < c1 ≤ Φµn
(un) = cµn

≤ c2 and Φ′
µn
(un) = 0,

where c1, c2 are the minimax levels defined in Theorem 3.3.1 with µ = 1 and µ = 2, respectively.

Proof. For almost everywhere µ ∈ [1, 2], in view of Lemmas 3.3.3, 3.3.6, 3.3.7, 3.3.5 we can apply

Theorem 3.3.1 to obtain a sequence (un) ⊂ E such that

sup
n

‖un‖ <∞, Φ′
µ(un) → 0 and Φµ(un) → cµ > 0.

For any v ∈ E we have

1

2
〈Φ′

µ(un), v〉 = µ(u+n , v)− (u−n , v)−

∫

R2

f(x, un)vdx→ 0 as n→ ∞.

Passing to a subsequence we may assume that un ⇀ uµ weakly in E, un → uµ strongly in

Lq
loc(R

2) and a.e. in R
2. Therefore,

1

2
〈Φ′

µ(uµ), v〉 = µ(u+µ , v)− (u−µ , v)−

∫

R2

f(x, uµ)vdx = 0, ∀ v ∈ E,

i.e., Φ′
µ(uµ) = 0. Let H(x, t) = tf(x, t)− 2F (x, t). Since

∫
H(x, un)dx = Φµ(un)−

1
2
〈Φ′

µ(un), un〉

and (un) is bounded, it follows that
∫
H(x, un)dx −→ cµ. On the other hand, according to
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Lemma 3.5.1 and Remark 3.5.2,
∫
H(x, un)dx→

∫
H(x, uµ)dx. Therefore,

Φµ(uµ) =

∫

R2

H(x, uµ)dx = lim
n

∫

R2

H(x, un) = cµ ≥ c1 > 0,

which implies that uµ 6≡ 0. From the first step, for any µ ∈ [1, 2] there are sequences µn → µ

and (uµn
) ⊂ E \ {0} such that Φµn

(uµn
) = cµn

and Φ′
µn
(uµn

) = 0. Thus the result follows by

taking un = uµn
and n ∈ N sufficiently large such that Φµn

(uµn
) ≥ η > 0.

Lemma 3.5.4. Assume (V0), (f1) − (f4) and (3.1). Let 1 ≤ µn ≤ 2 and (un) ⊂ E such that

|Φµn
(un)| ≤ C and Φ′

µn
(un) = 0. Then (un) has a bounded subsequence in E.

Proof. Suppose by contradiction that Rn = ‖un‖ → ∞ and define vn = un/Rn. Then v+n =

u+n /Rn and ‖v+n ‖ ≤ 1. Passing to a subsequence we may assume that vn ⇀ v and v+n ⇀ v+

weakly in E. Moreover, vn → v and v+n → v+ in L2
loc(R

2), v+n (x) → v+(x) a.e in R
2. Now we

consider two cases.

Case 1: Assume that v+ 6= 0. In this case, v 6= 0 and invoking Lema 3.2.3 we see that

∫

R2

F (x, un)

‖un‖2
dx→ +∞ as n→ +∞.

On the other hand, we have

2

∫

R2

F (x, un)

‖un‖2
dx ≤ µn‖v

+
n ‖

2 −
Φµn

(un)

‖un‖2
≤ C,

which is a contradiction.

Case 2: Assume that v+ = 0. For s > 0 fixed define rn := s/Rn → 0. Since |Φµn
(un)| ≤ C, by

Lemma 3.4.3 we conclude that

Φµn
(rnu

+
n ) + r2n‖u

−
n ‖

2 ≤ C ′.

Now, using Lemma 3.5.1 together with the fact that µn ≥ 1 we infer that

C ′ ≥ Φµn
(rnu

+
n ) + r2n‖u

−
n ‖

2 = µns
2‖v+n ‖

2 + s2‖v−n ‖
2 − 2

∫

R2

F (x, sv+n )dx

≥ s2 − 2

∫

R2

F (x, sv+n )dx

→ s2.

Thus, we have a contradiction if s > 0 is sufficiently large and this concludes the proof.

Proof of Theorem 3.1.3: Consider a sequence (µn) ⊂ (1, 2] such that µn → 1. According to
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Proposition 3.5.3, there exists a sequence (un) ⊂ E such that

0 < η ≤ Φµn
(un) = cµn

and Φ′
µn
(un) = 0.

By Lemma 3.5.4, after a renamed subsequence un ⇀ u, u±n ⇀ u± weakly in E, strongly in

Lq
loc(R

2) and a.e. in R
2. Since for any ϕ ∈ C∞

0 (R2)

0 =
1

2
〈Φ′

µn
(un), ϕ〉 = µn(u

+
n , ϕ)− (u−n , ϕ)−

∫

R2

f(x, un)ϕdx,

taking the limit and using Lemma 3.3.4 we obtain Φ′(u) = 0. Proceeding as in the proof of

Proposition 3.5.3 we see that u 6≡ 0 and this completes the proof. ✷
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Chapter 4

A Semilinear Schrödinger Equation

with Zero on the Boundary of the

Spectrum and Exponential Growth

4.1 Introduction and Main Result

Chapter IV is devoted to existence of weak solution for the following semilinear Schrödinger

equation

−∆u+ V (x)u = g(x, u), x ∈ R
2, (Pg)

where 0 is a right boundary point of the spectrum of Schrödinger operator S = −∆ + V and

g(x, t) has exponential growth. We emphasize that this work is the content of the paper [44].

Further investigations and developments for equation (Pg) have been carried out depending on

the location of 0 with respect to σ(S). Let us remember them:

Case 1 : If 0 < inf σ(S). In this case, Coti-Zelati and Rabinowitz [22] proved that (Pg) has

infinitely many solutions provided that the nonlinear term g(x, t) satisfies some suitable growth

condition as the well known Ambrosetti-Rabinowitz condition.

Case 2 : If 0 lies in a gap of the spectrum σ(S). When the primitive of g(x, t) is strictly

convex Alama and Li [1], [2], Buffoni et al. [16] and Jeanjean [34] found solutions using a

reduction method to solve the problem by applying the mountain-pass theorem. Troestler and

Willem [71] proved that (Pg) has a nontrivial solution without the convexity hypothesis on G,

they require assumptions on g(x, t) which implies that the associated functional Φ is of class

C2. Under conditions weaker than those, W. Kryszewski and A. Szulkin [36] proved and applied

a generalized linking theorem which requires the construction of a new degree theory in order

to handle the lack of compactness in this problem. This approach has been simplified by A.

Pankov and K. Pflüger in [51] by using the approximation technique with periodic functions. In

the papers [58] and [60] the authors established a variant and generalized weak linking theorem

and obtained solution for the Schrödinger equation (Pg) when the nonlinearity has subcritical

and critical growth with respect to Sobolev’s embeddings. See also [40, 43] for related results.
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Case 3 : If 0 lies in the interior of σ(S). There exist only some bifurcation results [29, 63].

Case 4 : If 0 is a boundary point of a gap of σ(S). Bartsch and Ding [9] obtained a nontrivial

solution to (Pg) assuming that 0 is a right endpoint of σ(S), among others, the (AR) condition

and the lower bound estimate:

(g0) There are a > 0 and q > 2 such that

2G(x, t) ≥ a|t|q for all x ∈ R
2, t ∈ R.

In [75] Willem and Zou relaxed condition (AR), developed the so-called monotonicity trick

for strongly indefinite problems and established weak linking results. Recently M. Yang et al.

[76] obtain a nontrivial weak solution for problem (Pg) replacing condition (AR) by a general

super-quadratic condition, to namely (see [65])

t 7→
g(x, t)

|t|
is strictly increasing on (−∞, 0) ∪ (0,∞). (4.1)

We observe that assumption (4.1) implies the statement

2G(x, t+ s)− 2G(x, t)− (2rs− (r − 1)2t)g(x, t) ≥ 0, ∀ x ∈ R
2, s, t ∈ R, r ∈ [0, 1]. (4.2)

We point out that M. Schechter [59] assumed the conditions (g0) and (4.2) and proved the

existence of ground state solution. In all those papers with zero on the boundary of σ(S) dealt

only with polynomial subcritical case. To the authors’ knowledge, there are few papers treating

problem (Pg) with V periodic, 0 6∈ σ(S) and g(x, t) has exponential growth (see for instance

[3, 24]). Thus, our result generalize many works in the line of the papers [46, 59, 60, 68] for

nonlinearity involving exponential growth and 0 ∈ σ(S).

In the sequel, throughout this Chapter, we assume that the potential V satisfies:

(V0) V : R2 → R is a continuous and 1-periodic function;

(V1) 0 ∈ σ(S) and there exists b > 0 such that σ(S) ∩ (0, b) = ∅, where σ(S) denotes the

spectrum of the operator S = −∆+ V in L2(R2).

In addition to condition (g0) we assume that g(x, t) has exponential subcritical growth at

infinity,

lim
|t|→∞

g(x, t)

eβt2
= 0 for all β > 0, (4.3)

and satisfies:

(g1) g ∈ C(R2 × R,R) and is 1-periodic in xj for j = 1, 2.

(g2) g(x, t) = O(|t|q−1) as t→ 0 uniformly in x ∈ R
2, where q > 2 is given in (g0).

(g3) g(x, t) is locally bounded in the variable t, that is, for any bounded interval J ⊂ R, there

exists C > 0 such that |g(x, t)| ≤ C for every (x, t) ∈ R
2 × J .
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(g4) There exists W ∈ L1(R2) such that for all x ∈ R
2, s, t ∈ R and r ∈ [0, 1] it holds

2(G(x, t+ s)−G(x, t))− (2rs− (r − 1)2t)g(x, t) ≥ −W (x).

Remark 4.1.1. Taking r = 0 and s = −t ( respectively, s = rw − t ) in (g4) we obtain:

H(x, t) := tg(x, t)− 2G(x, t) ≥ −W (x), ∀ x ∈ R
2, t ∈ R, (4.4)

and

2G(x, t)− 2G(x, rw)− ((r2 + 1)t− 2r2w)g(x, t) ≤ W (x), ∀ x ∈ R
2, t, w ∈ R, r ∈ [0, 1]. (4.5)

Furthermore, taking t = s = 0 in (g4) we get W ≥ 0 in R
2 and so (g4) implies (4.2).

Remark 4.1.2. We observe that if the potential V satisfies assumption (V0), replacing case

necessary V (x) by V (x) + const, it was shown in Stuart [63] that V satisfies assumption (V1).

We also quote that a typical example of a nonlinearity satisfying our assumptions is

g(x, t) = a(x)|t|q−2t+ b(x)|t|p−2t(et − 1), x ∈ R
2, t ∈ R,

where 2 < q ≤ p and a(x) ≥ a0 > 0, b(x) ≥ 0 are periodic.

Our main result of existence of solution for problem (Pg) under the above hypotheses can be

summarized as follows.

Theorem 4.1.3. Assume (V0)− (V1) and (g0)− (g4). If g(x, t) satisfies (4.3) then the problem

(Pg) has a nontrivial weak solution. Moreover, if M denotes the collection of the solutions of

(Pg), then there is a ground state solution, i.e., a solution of (Pg) that minimizes the functional

energy over M. Furthermore, u ∈ C1(R2) and u(x) → 0 as |x| → ∞.

The present Chapter is organized as follows. In the next section we formulate our problem in

a variational setting and we also prove a Trudinger-Moser inequality for our variational frame-

work. In Section 3, we establish some geometric properties of the energy functional, which are

required for the application of the linking-type theorem used and in Section 4 we prove that

(PS) sequences are bounded. Finally, in Section 5, we conclude the chapter with the proof of

Theorem 4.1.3.

4.2 Variational Setting

In this section we will construct the domain for our energy functional, a reflexive Banach

space (Eq, ‖ · ‖q), where we can apply the same linking theorem used in the previous chapter.

For this application, we need to establish a Trudinger-Moser inequality in the space Eq, what

will be done by using Schwarz symmetrization.
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First we observe that from (4.3) and (g2)− (g3), for any β > 0, there exists C1, C2 > 0 such

that

G(x, t) ≤ C1|t|
q + C2|t|

q(eβt
2

− 1), ∀ x ∈ R
2, t ∈ R. (4.6)

Under the hypotheses (V0)−(V1), we will find a function space Eq on which the energy functional

associated to (Pg), Φ : Eq → R, given by

Φ(u) =

∫

R2

(|∇u|2 + V (x)u2)dx− 2

∫

R2

G(x, u)dx

is well defined. Moreover Φ ∈ C1(Eq,R) and for any u, v ∈ Eq

1

2
〈Φ′(u), v〉 =

∫

R2

(∇u∇v + V (x)uv)dx−

∫

R2

g(x, u)vdx.

Thus, critical points of Φ correspond to weak solutions to (Pg). In order to find the function space

Eq, let S = −∆+V be the self-adjoint operator defined in L2(R2) with domain D(S) = H2(R2).

Let {E(λ)}, −∞ ≤ λ ≤ +∞ be the spectral family of S, and |S|1/2 be the square root of |S|. Set

U = I −E(0)−E(−0). Then U is unitary, commutes with S, |S| and |S|1/2, moreover S = U |S|

is the polar decomposition of the operator S (see [35], p. 358).

As in the previous chapter, denote by E = D(|S|1/2), the domain of |S|1/2, then E(λ)E ⊂ E

for all λ ∈ R. Under the hypothesis (V0) one can see that E = D(|S|1/2) = H1(R2). Furthermore,

if we define

E− := E(0)E, E+ := [E(∞)− E(0)]E,

(u, v) = (|S|1/2u, |S|1/2v)2, ∀ u, v ∈ E, and ‖u‖ =
√

(u, u),

we have the following result (see Chapter I).

Lemma 4.2.1. Assume that (V0) holds. Then ‖ · ‖ is equivalent to ‖ · ‖H1 on E+. Moreover,

E = E− ⊕ E+ and for any u = u− + u+ ∈ E it holds

(u−, u+) = (u−, u+)2 = 0.

However, as proved in Lemma 1.2.16, ‖·‖ is not equivalent to ‖·‖H1 on E− because 0 ∈ σ(S).

Thus, we need introduce another norm in E− by setting

‖u‖− = (‖u‖2 + ‖u‖2q)
1/2, u ∈ E−,

where q > 2. Let E−
q be the completion of E− with respect to ‖ · ‖−. Then E

−
q is separable and

reflexive. Moreover, the following embedding holds (see [9], Lemma 2.1)

E−
q →֒ H1

loc(R
2). (4.7)
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Since E+ is a closed subspace of H1(R2) we can define

Eq := E−
q + E+.

Furthermore, it is easy to see that Eq is a reflexive Banach space as endowed with the norm (see

[9])

‖u‖q = (‖u−‖2− + ‖u+‖2)1/2.

To the proof of the next lemma we refer to [9, 68].

Lemma 4.2.2. The norm ‖ · ‖q in Eq is invariant after translations in Z
2 and the embeddings

Eq →֒ H1
loc
(R2) and Eq →֒ Lp(R2), ∀ p ≥ q > 2,

are continuous.

We recall that the Trudinger-Moser inequality for unbounded domains established by Cao

in [17], asserts that for any u ∈ H1(R2) and α > 0 it holds (eαu
2

− 1) ∈ L1(R2). Moreover, if

‖u‖H1 ≤M and α < 4π, then there exists a constant C = C(α,M) > 0 such that

∫

R2

(eαu
2

− 1)dx ≤ C(α,M). (4.8)

Since Eq is not immersed in L2(R2) is natural to consider the Young function Ψβ(t) = |t|θ(eβt
2

−

1), θ > q − 2, for the Trudinger-Moser inequality. In view of Lemma 4.2.2, let S be the best

constant of the embedding Eq →֒ H1(B1), i.e.,

1

S
= inf

u∈Eq\{0}

‖u‖q
‖u‖H1(B1)

.

For our variational framework we will establish the following version of the Trudinger-Moser

inequality in the space Eq.

Theorem 4.2.3 (Trudinger-Moser). For any u ∈ Eq, β > 0 and θ > q − 2,

|u|θ(eβu
2

− 1) ∈ L1(R2).

Moreover, if ‖u‖q ≤M then there exists a constant C = C(β, θ,M) > 0 such that

∫

R2

|u|θ(eβu
2

− 1)dx ≤ C, (4.9)

for any β > 0 such that β(SM)2 < 4π.

Proof. Let u∗ be the symmetrization of u, then it is well known that u∗ depends on |x| only and
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is nonnegative decreasing function of |x|. Furthermore,

∫

R2

|u|θ(eβu
2

− 1)dx =

∫

R2

|u∗|θ(eβ|u
∗|2 − 1)dx

=

∫

B1

|u∗|θ(eβ|u
∗|2 − 1)dx+

∫

Bc
1

|u∗|θ(eβ|u
∗|2 − 1)dx

:= I1 + I2.

To estimate I1, since Eq →֒ Lp(R2) for any p ≥ q > 2 and

∫

R2

|u|pdx =

∫

R2

|u∗|pdx,

invoking the Radial Lemma (see [14], Lemma A.IV), for u∗ ∈ Lp(R2) radially decreasing we have

|u∗(x)| ≤ C1‖u
∗‖p|x|

−2/p, |x| 6= 0. (4.10)

Now we set

v(r) =

{
u∗(r)− u∗(1), 0 ≤ r ≤ 1

0, r ≥ 1.

For each ε > 0 by the Young inequality, Lemma 4.2.2 and (4.10) we obtain

|u∗(r)|2 ≤ (1 + ε)v2(r) + (1 + C(ε))|u∗(1)|2 ≤ (1 + ε)v2(r) + C(ε,M).

Thus, for any γ > 1 we get

∫

B1

eγβ|u
∗|2dx ≤ eγβC(ε,M)

∫

B1

eγβ(1+ε)v2dx. (4.11)

Since Eq →֒ H1(B1) and ‖u‖q ≤M , by the Pólya-Szegö inequality we get

∫

B1

|∇v|2dx =

∫

B1

|∇u∗|2dx ≤

∫

B1

|∇u|2dx ≤ (SM)2.

Using that β(SM)2 < 4π we can choose ε > 0 sufficiently small and γ > 1 near to 1 such that

γβ(1 + ε)(SM)2 ≤ 4π. Since v ∈ H1
0 (B1), we can invoke the Trudinger-Moser inequality in the

ball B1 to obtain C2 > 0 such that

∫

B1

eγβ(1+ε)v2dx =

∫

B1

eγβ(1+ε)(SM)2( v
SM

)2dx ≤ C2.

This, together with the Hölder inequality and (4.11) imply

I1 ≤

(∫

B1

|u∗|θγ
′

dx

)1/γ′ (∫

B1

eγβ|u
∗|2dx

)1/γ

≤ ‖u∗‖θθγ′eβC(ε,M)(C2)
1/γ ≤ C3, (4.12)

provided that ‖u‖q ≤ M , 1
γ
+ 1

γ′ = 1 and θγ′ ≥ q (which is possible since γ → 1+ if and only
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if γ′ → ∞). Now we will estimate I2. To this end, we fix 2 < q ≤ p < 2 + θ. Using (4.10) it

follows from the Monotone Convergence Theorem that

I2 =

∫

|x|≥1

|u∗|θ
∞∑

k=1

(βu2)k

k!
dx ≤ Cθ

1‖u
∗‖θp

∞∑

k=1

(βC2
1‖u

∗‖2p)
k

k!

∫

|x|≥1

|x|−
4k+2θ

p dx

≤
pπCθ

1‖u
∗‖θp

2 + θ − p

∞∑

k=1

(βC2
1‖u

∗‖2p)
k

k!
.

Since ‖u∗‖p = ‖u‖p ≤ C2‖u‖q ≤ C2M we get

I2 ≤
pπ

2 + θ − p
(C1C2M)θ

∞∑

k=1

(β(C1C2M)2)k

k!
=

pπ

2 + θ − p
(C1C2M)θ[eβ(C1C2M)2 − 1]. (4.13)

From estimates (4.12) and (4.13) we conclude the proof.

As a byproduct of the proof of Theorem 4.2.3 we can prove the next corollary. It will be

useful throughout the paper.

Corollary 4.2.4. If u ∈ Eq, β > 0, θ > q − 2 and ‖u‖q ≤ M with β(SM)2 < 4π, then there

exists C = C(β, θ,M) > 0 such that

∫

R2

|u|θ(eβu
2

− 1)dx ≤ C‖u‖θ
q
.

Invoking Corollary 4.2.4 and inequality (4.6) we conclude that the energy functional Φ asso-

ciated to (Pg) is well defined. Furthermore,

Φ(u) = ‖u+‖2 − ‖u−‖2 − 2

∫

R2

G(x, u)dx, ∀ u = u− + u+ ∈ Eq = E−
q + E+

and
1

2
〈Φ′(u), v〉 = (u+, v)− (u−, v)−

∫

R2

g(x, u)vdx, ∀ u, v ∈ Eq.

4.3 Linking Geometry

In this section, in order to find critical points of the functional Φ we will use one more time

the linking theorem due to Schechter-Zou [60] (see also [66, 75] for related results). With the

conditions of the theorem satisfied, we obtain a (PS) sequence for our energy functional. For

the convenience of the reader we will define the τ -topology in Eq and we will present the linking

theorem in this context. Since Eq = E−
q + E+ and E−

q is separable, for each u = u− + u+ we

have

u− =
∞∑

k=1

ck(u
−)ek
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where B = {e1, e2, . . .} is dense in E−
q . Thus we can introduce a new norm in Eq by setting

‖u‖τ = max

{
‖u+‖q,

∞∑

k=1

|ck(u
−)|

2k

}
. (4.14)

One can see that ‖ · ‖τ satisfies ‖u‖τ ≤ ‖u‖q for any u ∈ Eq (see [36]). For R > ρ > 0 and

u+0 ∈ E+ \ {0} we define

QR := {u = u− + su+0 : s ≥ 0, u− ∈ E−, ‖u‖q < R}, Sρ := {u+ ∈ E+ : ‖u+‖q = ρ}.

For a functional Φ ∈ C1(Eq,R) defined in a Banach space Eq we consider

Γ :=





h : [0, 1]× Q̄→ Eq, h is τ -continuous.For any (s0, u0) ∈ [0, 1]× Q̄,

there is a τ -neighborhood U(s0,u0) such that

{u− h(s, u) : (s, u) ∈ U(s0,u0) ∩ ([0, 1]× Q̄)} ⊂ Efin,

h(0, u) = u,Φ(h(s, u)) ≤ Φ(u), ∀ u ∈ Q̄.





where we use Efin to denote various finite-dimensional subspace of Eq whose exact dimension

are irrelevant and depend on (s0, u0). Note that Γ 6= ∅ since id ∈ Γ.

Theorem 4.3.1. [60] Suppose that a family of C1-functionals (Φµ : Eq → R)µ has the form

Φµ(u) := µI(u)− J(u), µ ∈ [1, 2].

Assume that

a) I(u) ≥ 0, ∀ u ∈ Eq and Φ1 := Φ;

b) I(u) + |J(u)| → ∞ as ‖u‖q → ∞;

c) Φµ is τ -upper semicontinuous, maps bounded sets to bounded sets and Φ′
µ is weakly sequentially

continuous on Eq;

d) sup
∂Q

Φµ ≤ 0 < inf
Sρ

Φµ, ∀µ ∈ [1, 2].

Then for almost all µ ∈ [1, 2], there exists a sequence (un) ⊂ Eq such that

sup
n

‖un‖q <∞, Φ′
µ(un) → 0, Φµ(un) → cµ,

where

cµ := inf
h∈Γ

sup
u∈Q̄

Φµ(h(1, u)).

Furthermore, cµ ∈ [inf
Sρ

Φµ, sup
Q̄

Φµ] and is nondecreasing in µ.
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In what follows, we obtain the linking structure of Φµ required in Theorem 4.3.1. Precisely,

we apply Theorem 4.3.1 with

I(u) = ‖u+‖2 = ‖u+‖2
q

and J(u) = ‖u−‖2 + 2

∫

R2

G(x, u)dx,

that is, Φµ : Eq → R,

Φµ(u) = µ‖u+‖2 − ‖u−‖2 − 2

∫

R2

G(x, u)dx, µ ∈ [1, 2],

which clearly satisfies a) in Theorem 4.3.1.

Lemma 4.3.2. Assume (g0). Then the functional Φµ satisfies condition b) in Theorem 4.3.1.

In fact, we have I(u) + J(u) → ∞ as ‖u‖q → ∞.

Proof. For any u ∈ Eq, we write u = u− + u+, with u− ∈ E−
q and u+ ∈ E+. Since ‖u‖2

q
=

‖u−‖2− + ‖u+‖2, if ‖u‖q → ∞ then ‖u−‖q = ‖u−‖− → ∞ or ‖u+‖q = ‖u+‖ → ∞. From (g0) we

get

J(u) = ‖u−‖2 + 2

∫

R2

G(x, u)dx ≥ ‖u−‖2 + a‖u‖qq ≥ 0.

Thus, I(u) + J(u) ≥ I(u) = ‖u+‖2 → ∞ if ‖u+‖q → ∞. Now suppose that there exists a

sequence (un) ⊂ Eq such that ‖un‖q → ∞, ‖u+n ‖q ≤ C and I(un) + J(un) ≤ C. Thus,

C ≥ I(un) + J(un) = ‖u+n ‖
2 + ‖u−n ‖

2 + 2

∫

R2

G(x, un)dx

≥ ‖un‖
2
q
− ‖u−n ‖

2
q + a‖un‖

q
q (4.15)

≥ a‖un‖
q
q,

which implies that ‖un‖q ≤ C. Since ‖u+n ‖q ≤ C‖u+n ‖q we have

‖u−n ‖q ≤ ‖un‖q + ‖u+n ‖q ≤ C.

This together with (4.15) imply that (‖un‖q)n is bounded and this is a contradiction.

To carry forward, we establish an auxiliary convergence result.

Lemma 4.3.3. Assume (4.3) and (g2). Then for any sequence (un) ⊂ Eq such that un ⇀ u in

Eq we have ∫

R2

g(x, un)ϕdx→

∫

R2

g(x, u)ϕdx, for any ϕ ∈ C∞
0 (R2).

Proof. Let Ω = supp(ϕ). Since the embedding Eq →֒ Lr(Ω) is compact for any r ≥ 1 it follows

that un → u strongly in Lr(Ω) and un(x) → u(x) a.e. in Ω. In particular, g(x, un)ϕ→ g(x, u)ϕ

a.e. in Ω. From (4.3) and (g2)− (g3) we can find C1, C2 > 0 such that

|g(x, t)| ≤ C1|t|
q−1 + C2|t|

q(eβt
2

− 1), ∀ (x, t) ∈ R
2 × R. (4.16)
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Thus ∫

Ω

|g(x, un)ϕ|dx ≤ C1

∫

Ω

|un|
q−1|ϕ|dx+ C2

∫

Ω

|un|
q−1|un|(e

βu2
n − 1)|ϕ|dx.

Using the Hölder inequality and invoking the elementary inequality

(eβt
2

− 1)r ≤ (eβrt
2

− 1), ∀ t ∈ R, β > 0, r ≥ 1, (4.17)

we get

∫

Ω

|g(x, un)ϕ|dx ≤ C‖ϕ‖∞

(∫

Ω

|un|
qdx

) q−1

q

[
1 +

(∫

R2

|un|
q(eβqu

2
n − 1)dx

) 1

q

]
.

Since (un) is bounded, choosing β > 0 sufficiently small, by Theorem 4.2.3 we get

∫

Ω

|g(x, un)ϕ|dx ≤ C

(∫

Ω

|un|
qdx

) q−1

q

.

On the other hand, there exists ψ ∈ L1(Ω) such that |un| ≤ |ψ| in Ω. Thus, for each ε > 0, we

can choose a mensurable set A ⊂ Ω with |A| sufficiently small such that

∫

A

|g(x, un)ϕ|dx ≤ C

(∫

A

|ψ|qdx

) q−1

q

< ε.

Therefore, (g(x, un)ϕ)n is uniformly integrable and the result follows by applying the Vitali’s

Theorem.

In the proof of next result we will use that the topology induced by the norm ‖ · ‖τ defined

in (4.14) is equivalent to the weak topology of E− on bounded subsets (see Chapter 1). More

precisely, if (un) ⊂ E− is bounded then

‖un − u‖τ → 0 ⇐⇒ un ⇀ u ∈ E−. (4.18)

Lemma 4.3.4. Assume hypotheses (4.3), (g0), (g2) and (g3). Then for each µ ∈ [1, 2] the

functional Φµ is τ -upper semicontinuous and maps bounded sets into bounded sets. Furthermore,

Φ′
µ is weakly sequentially continuous on Eq.

Proof. Let (un) ⊂ Eq be such that ‖un − u‖τ → 0. From (4.18) we have ‖u−n − u−‖τ → 0 and

‖u+n −u+‖ → 0. Consequently (‖u−n ‖)n is bounded, hence up to a subsequence, u−n ⇀ u− in E−.

Thus,

‖u−‖ ≤ lim inf
n

‖u−n ‖ and ‖u+‖ = lim
n

‖u+n ‖.

Since G(x, t) ≥ 0, by the Fatou’s lemma

∫

R2

G(x, u)dx ≤ lim inf
n

∫

R2

G(x, un)dx.
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Therefore,

Φµ(u) = µ‖u+‖2 − ‖u−‖2 − 2

∫

R2

G(x, u)dx

≥ lim sup
n

(
µ‖u+n ‖

2 − ‖u−n ‖
2 − 2

∫

R2

G(x, un)dx

)

= lim sup
n

Φµ(un),

that is, Φµ is τ -upper semicontinuous. Now, let (un) ⊂ Eq such that ‖un‖q ≤ C1. In particular,

‖u−n ‖ ≤ C1 e ‖u+n ‖ ≤ C1. Hence,

Φµ(un) = µ‖u+n ‖
2 − ‖u−n ‖

2 − 2

∫

R2

G(x, un)dx ≤ µ‖u+n ‖
2 ≤ C2. (4.19)

On the other hand, invoking inequality (4.6), the embedding Eq →֒ Lq(R2) and Corollary 4.2.4

we have

2

∫

R2

G(x, un)dx ≤ C3

∫

R2

|un|
qdx+ C4

∫

R2

|un|
q(eβu

2
n − 1)dx ≤ C5‖un‖

q
q
≤ C6.

Thus, we get

Φµ(un) ≥ −‖u−n ‖
2 − 2

∫

R2

G(x, un)dx ≥ −C7.

This, together with (4.19) implies that (|Φµ(un)|)n is bounded. Finally, suppose that un ⇀ u =

u− + u+ in Eq. Then for any ϕ ∈ C∞
0 (R2), (u+n , ϕ) → (u+, ϕ) and (u−n , ϕ) → (u−, ϕ). Invoking

Lemma 4.3.3 we obtain

〈Φ′
µ(un), ϕ〉 → 〈Φ′

µ(u), ϕ〉, ∀ϕ ∈ C∞
0 (R2),

and this conclude the proof.

Lemma 4.3.5. Assume (4.3) and (g2) − (g3). Then there are positive constants η and ρ such

that, for any 1 ≤ µ ≤ 2,

Φµ(u
+) ≥ η for all u+ ∈ E+ with ‖u+‖q = ρ.

Proof. Let ρ > 0 and β > 0 such that βρ2S2 < 4π. If ‖u+‖q = ρ by Corollary 4.2.4 we get

∫

R2

|u+|q(eβ(u
+)2 − 1)dx ≤ Cρq.

This together with inequality (4.6) and the embedding Eq →֒ Lq(R2) imply

∫

R2

G(x, u+)dx ≤ C1‖u
+‖qq + C2

∫

R2

|u+|q(eβ(u
+)2 − 1)dx ≤ C3ρ

q.
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Thus, we conclude that

Φµ(u
+) = µI(u+)− 2

∫

R2

G(x, u+)dx ≥ ρ2 − Cρq.

Since q > 2, choosing ‖u+‖q = ρ sufficiently small we obtain the desired result.

Lemma 4.3.6. Assume (g0). Fixed u
+
0 ∈ E+\{0}, there exists R > 0 such that for all 1 ≤ µ ≤ 2

Φµ(u) ≤ 0, ∀ u ∈ ∂QR, (4.20)

where

QR := {u = u− + su+0 : s2‖u+0 ‖
2 + ‖u−‖2− ≤ R2, u− ∈ E−

q , s ≥ 0}.

Proof. First we observe that if s = 0 then Φµ(u) = −‖u−‖2 − 2
∫
G(x, u−)dx ≤ 0 by (g0). Thus,

in what follows we assume that s > 0. Note that u = u− + su+0 ∈ ∂QR with s > 0 if and only if

s2‖u+0 ‖
2 + ‖u−‖2 + ‖u−‖2q = R2. (4.21)

If

(µ+ 1)s2‖u+0 ‖
2 + ‖u−‖2q ≤ R2,

using that G(x, u) ≥ 0 together with (4.21) we obtain

Φµ(u) = µs2‖u+0 ‖
2 − ‖u−‖2 − 2

∫

R2

G(x, u)dx

≤ µs2‖u+0 ‖
2 + s2‖u+0 ‖

2 + ‖u−‖2q −R2

= (µ+ 1)s2‖u+0 ‖
2 + ‖u−‖2q −R2 ≤ 0.

On the other hand, if

(µ+ 1)s2‖u+0 ‖
2 + ‖u−‖2q ≥ R2, (4.22)

and (4.20) does not holds, that is, there exists a sequence Rn → +∞, un = u−n + snu
+
0 ∈ ∂QRn

such that Φµ(un) > 0. We consider two cases, to namely:

Case 1: Suppose that sn/Rn → 0. From (4.22) we get

(µ+ 1)

(
sn
Rn

)2

‖u+0 ‖
2 +

∥∥∥∥
u−n
Rn

∥∥∥∥
2

q

≥ 1,

which implies that
∥∥∥u−

n

Rn

∥∥∥
2

q
≥ 1/2 for n large. Since sn

Rn
→ 0 we obtain

∥∥∥∥
u−n
Rn

+
sn
Rn

u+0

∥∥∥∥
q

≥

∥∥∥∥
u−n
Rn

∥∥∥∥
q

−

∥∥∥∥
sn
Rn

u+0

∥∥∥∥
q

≥
1

4
.
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This together with (g0) imply for n sufficiently large that

0 <
1

Rq
n
Φµ(un) ≤

(µ+ 1)

Rq−2
n

(
sn
Rn

)2

‖u+0 ‖
2 − a

∥∥∥∥
u−n
Rn

+
sn
Rn

u+0

∥∥∥∥
q

q

≤
a

8q
−

a

4q
,

which is a contradiction.

Case 2: Suppose that sn/Rn ≥ c1 > 0. From (4.21) we have

‖u+0 ‖
2 +

∥∥∥∥
u−n
sn

∥∥∥∥
2

−

=

(
Rn

sn

)2

≤
1

c21
.

Since E−
q is reflexive there exists w ∈ E−

q such that u−
n

sn
⇀ w in E−

q ,
u−
n

sn
→ w in Lq

loc(R
2) and

u−
n

sn
→ w almost everywhere in R

2. We claim that there exists c > 0 such that

‖ snu
+
0 ‖q≤ c ‖ u−n + snu

+
0 ‖q . (4.23)

Indeed, otherwise, after take a subsequence we have

‖snu
+
0 ‖q ≥ n‖u−n + snu

+
0 ‖q.

Thus,
1

n
≥

1

‖u+0 ‖q

∥∥∥∥
u−n
sn

+ u+0

∥∥∥∥
q

.

Consequently u−
n

sn
→ −u+0 in Lq(R2). Therefore w = −u+0 . Since

(
u−
n

sn
, u+0

)
= 0 for all n ∈ N and

the functional ζ(u) = (u, u+0 ) belongs to E
′ (the dual of E) we get

0 = lim
n→∞

(
u−n
sn
, u+0

)
= (−u+0 , u

+
0 ) = −‖u+0 ‖

2,

which is a contradiction. Therefore (4.23) holds and using (f0) together with (4.21) we obtain

0 < Φµ(un) ≤ (µ+ 1)s2n‖u
+
0 ‖

2 + ‖u−n ‖
2
q −R2

n − a‖u−n + snu
+
0 ‖

q
q

≤ (µ+ 1)s2n‖u
+
0 ‖

2 − Csqn‖u
+
0 ‖

q
q.

Since sn → ∞ and q > 2 we get another contradiction.

4.4 (PS) Sequence

We observe that for almost everywhere µ ∈ [1, 2], Theorem 4.3.1 provide a (PS) sequence,

(un)n ⊂ Eq, for Φµ, such that

sup
n

‖un‖q <∞, Φ′
µ(un) → 0 and Φµ(un) → cµ.
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Furthermore, cµ ∈ [inf
Sρ

Φµ, sup
QR

Φµ].

We will make use of the following version of the Lions Lemma whose proof can be found in

[75], Lemma 3.3.

Lemma 4.4.1. Let r > 0 and (un) ⊂ Eq be bounded. If

sup
y∈R2

∫

B(y,r)

|un|
2dx→ 0 as n→ ∞,

where B(y, r) ⊂ R
2 denotes the open ball with center y and radius r > 0, then un → 0 in Lt(R2)

for t > q. Particularly, if (un) ⊂ E+, then un → 0 in Lt(R2) for t > 2.

Proposition 4.4.2. Suppose (V0), (g0), (g2), (g3) and (g4) are satisfied. For almost everywhere

µ ∈ [1, 2], there is a sequence (un) ⊂ Eq \ {0} and a constant η > 0 such that

η ≤ Φµ(un) ≤ cµ and Φ′
µn
(un) = 0.

Proof. In view of Lemmas 4.3.2, 4.3.5, 4.3.6, 4.3.4 and Theorem 4.3.1, for almost everywhere

µ ∈ [1, 2], there exists a sequence (un) ⊂ Eq such that

sup
n

‖un‖q <∞, Φ′
µ(un) → 0 and Φµ(un) → cµ ≥ inf

Sρ

Φµ ≥ η > 0.

Hence, for any v ∈ Eq we have

1

2
〈Φ′

µ(un), v〉 = µ(u+n , v)− (u−n , v)−

∫

R2

g(x, un)vdx→ 0 as n→ ∞.

Since Eq is a reflexive Banach space, there is a renamed subsequence of (un) such that un ⇀ uµ

weakly in Eq, strongly in Lq
loc(R

2) and almost everywhere in R
2. Therefore, by Lemma 4.3.3 and

density arguments as used in Lemma 3.3.4 we conclude that

1

2
〈Φ′

µ(uµ), v〉 = µ(u+µ , v)− (u−µ , v)−

∫

R2

g(x, uµ)vdx = 0, ∀ v ∈ Eq,

i.e., Φ′
µ(uµ) = 0. Let H(x, t) := tg(x, t)− 2G(x, t) and observe that

∫
H(x, un)dx = Φµ(un)−

1

2
〈Φ′

µ(un), un〉 → cµ,

since (un) ⊂ Eq is bounded. Using that H(x, un) → H(x, uµ) a.e. in R
2 and H(x, un) ≥ −W (x)

for all x ∈ R
2, by the Fatou’s lemma

cµ = lim
n

∫

R2

H(x, un)dx ≥

∫

R2

H(x, uµ)dx = Φµ(uµ).

It remains to show that uµ 6= 0 (up to translations). If we prove that u+µ 6= 0, the assertion

62



follows. By Theorem 4.3.1 and Lemma 4.3.5, cµ > 0. Moreover, by (g0) we have

µ‖u+n ‖
2 − ‖u−n ‖

2 = Φµ(un) + 2

∫

R2

G(x, un)dx ≥ Φµ(un),

which implies that

lim inf
n→+∞

(µ‖u+n ‖
2 − ‖u−n ‖

2) ≥ cµ > 0. (4.24)

Fixed r > 0, if sup
y∈R2

∫

B(y,r)

|u+n |
2dx → 0 as n → ∞, then ‖u+n ‖q → 0 by Lemma 4.4.1. Now

note that

µ‖u+n ‖
2 − ‖u−n ‖

2 ≤ µ‖u+n ‖
2 =

1

2
〈Φ′

µ(un), u
+
n 〉+

∫

R2

g(x, un)u
+
n dx.

It follows from (4.6) that

∫

R2

g(x, un)u
+
n dx ≤ C1

∫

R2

|un|
q−1|u+n |dx+ C2

∫

R2

|un|
q−1(eβu

2
n − 1)|u+n |dx

≤ ‖u+n ‖q

[
C1

(∫

R2

|un|
qdx

) q−1

q

+ C2

(∫

R2

|un|
q(eβ

q
q−1

u2
n − 1)dx

) q−1

q

]
.

Since (un) is bounded in Eq, we can use the embedding Eq →֒ Lq(R2) and Corollary 4.2.4 with

β > 0 sufficiently small to obtain

C1

(∫

R2

|un|
qdx

) q−1

q

+ C2

(∫

R2

|un|
q(eβ

q
q−1

u2
n − 1)dx

) q−1

q

≤ C.

Hence

µ‖u+n ‖
2 − ‖u−n ‖

2 ≤
1

2
〈Φ′

µ(un), u
+
n 〉+ C‖u+n ‖q,

which implies that

lim sup
n→+∞

(µ‖u+n ‖
2 − ‖u−n ‖

2) ≤ 0,

which contradicts (4.24). Thus there is a sequence (yn) ⊂ Z
2 and a renamed subsequence

(u+n ) ⊂ E+ such that ∫

B(0,r)

|w+
n |

2dx =

∫

B(yn,r)

|u+n |
2dx ≥ α > 0 (4.25)

where wn(x) = un(x+ yn). Since V (x) and g(x, t) are 1-periodic we have that

sup
n

‖wn‖q <∞, Φµ(wn) → cµ and Φ′
µ(wn) → 0.

We may assume that wn ⇀ w and w+
n ⇀ w+ in Eq. Furthermore, using the compact embedding

E+ →֒ L2
loc(R

2) together with (4.25) we obtain that w+ 6= 0. Consequently w is a nontrivial

critical point of Φµ.

In what follows we will show that every approximated (PS) sequence is bounded. To this

end we make use of the following auxiliary results.
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Lemma 4.4.3. Suppose that (g4) is satisfied. If u = u− + u+ ∈ Eq = E−
q + E+ and r ∈ [0, 1],

then ∫

R2

[
2G(x, u)− 2G(x, ru+)−

(
(r2 + 1)u− 2r2u+

)
g(x, u)

]
dx ≤ C,

where the constant C does not depend on u, u+, r.

Proof. Taking w = u+ and t = u in (4.5) we get

2G(x, u)− 2G(x, ru+)−
(
(r2 + 1)u− 2r2u+

)
g(x, u) ≤ W (x).

The desired result follows by integrating the last inequality and using that W ∈ L1(R2).

Lemma 4.4.4. Suppose hypothesis (g4). Let (µn)n ⊂ [1, 2] and un = u−n + u+n ∈ Eq, where

u−n ∈ E−
q , u

+
n ∈ E+, such that Φ′

µn
(un) → 0 and 〈Φ′

µn
(un), un〉 = on(1). Then for all r ∈ [0, 1],

there is a constant C independent of n, µn and r such that

Φµn
(ru+n ) + r2‖u−n ‖

2 − Φµn
(un) ≤ C + on(1)r

2‖u+n ‖.

Proof. In fact,

Φµn
(ru+n ) + r2‖u−n ‖

2 − Φµn
(un) = µnr

2‖u+n ‖
2 − 2

∫

R2

G(x, ru+n )dx+ r2‖u−n ‖
2 − µn‖u

+
n ‖

2

+ ‖u−n ‖
2 + 2

∫

R2

G(x, un)dx

=

∫

R2

[2G(x, un)− 2G(x, ru+n )]dx+ µn(r
2 − 1)‖u+n ‖

2 + (r2 + 1)‖u−n ‖
2.

Taking ϕ = (r2 + 1)u−n − (r2 − 1)u+n = (r2 + 1)un − 2r2u+n as a test function we obtain

µn(r
2 − 1)‖u+n ‖

2 + (r2 + 1)‖u−n ‖
2 = −

∫

R2

(
(r2 + 1)un − 2r2u+n

)
g(x, un)dx

− 〈Φ′
µn
(un), (r

2 + 1)un − 2r2u+n 〉.

Thus,

Φµn
(ru+n ) + r2‖u−n ‖

2 − Φµn
(un) =

∫

R2

[
2G(x, un)− 2G(x, ru+n )−

(
(r2 + 1)un − 2r2u+n

)
g(x, un)

]
dx

− 〈Φ′
µn
(un), (r

2 + 1)un − 2r2u+n 〉

≤ C + on(1)r
2‖u+n ‖,

by the previous lemma.

Lemma 4.4.5. Assume (V0), (4.3) and (g0)-(g4). Let 1 ≤ µn ≤ 2 and (un) ⊂ Eq satisfying

|Φµn
(un)| ≤ C, Φ′

µn
(un) → 0 and 〈Φ′

µn
(un), un〉 = on(1).

Then (un) has a bounded subsequence in Eq.

Proof. Let un = u−n + u+n satisfying the hypotheses of lemma. Since 〈Φ′
µn
(un), un〉 = on(1), by
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assumptions (g0) and (g4) (see (4.4)) we get

‖u+n ‖
2 − ‖u−n ‖

2 =

∫

R2

g(x, un)undx+ on(1)

≥ 2

∫

R2

G(x, un)dx− C + on(1)

≥ a‖un‖
q
q − C + on(1).

In particular, a‖un‖
q
q ≤ ‖u+n ‖

2 + C. This together with the triangle inequality and continuous

embedding Eq →֒ Lq(R2) imply that

‖u−n ‖q ≤ ‖un‖q + ‖u+n ‖q ≤ ‖un‖q + C‖u+n ‖q = ‖un‖q + C‖u+n ‖ ≤ C1‖u
+
n ‖

2/q + C‖u+n ‖+ C2.

Thus, it suffices to prove that (‖un‖)n is bounded. Suppose that Rn = ‖un‖ → ∞ and let

vn = un/Rn = v−n + v+n . Since ‖v+n ‖ ≤ 1 there exists a subsequence still denoted by (v+n ) such

that v+n ⇀ v weakly in E+, v+n → v strongly in L2
loc(R

2) and almost everywhere in R
2. There

are two cases to consider:

Case 1:

sup
y∈R2

∫

B(y,r)

|v+n |
2dx→ 0 as n→ ∞.

In this case, by Lemma 4.4.1 v+n → 0 in Lq(R2). By Lemma 4.4.4

Φµn
(rnu

+
n ) + r2n‖u

−
n ‖

2 − Φµn
(un) ≤ C + on(1)r

2
n‖u

+
n ‖.

Taking rn = s/Rn, for s > 0 to be choose later we have

Φµn
(sv+n ) + s2‖v−n ‖

2 ≤ C + on(1)s
2. (4.26)

On the other hand,

Φµn
(sv+n ) + s2‖v−n ‖

2 = µns
2‖v+n ‖

2 + s2‖v−n ‖
2 − 2

∫

R2

G(x, sv+n )dx

≥ s2‖vn‖
2 − 2

∫

R2

G(x, sv+n )dx

= s2 − 2

∫

R2

G(x, sv+n )dx.

(4.27)

Now using inequalities (4.6) and (4.17) together with Corollary 4.2.4 we get

∫

R2

G(x, sv+n )dx ≤ C1s
q

∫

R2

|v+n |
qdx+ C2s

q

∫

R2

|v+n |
q−1(eβs

2(v+n )2 − 1)|v+n |dx

≤ C1s
q‖v+n ‖

q
q + C2s

q‖v+n ‖q

(∫

R2

|v+n |
q(eβ

q
q−1

s2(v+n )2 − 1)dx

) q−1

q

≤ C1s
qon(1) + C3s

qon(1),
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for β > 0 sufficiently small. Therefore we obtain

Φµn
(sv+n ) + s2‖v−n ‖

2 ≥ s2 − sqon(1),

which contradicts inequality (4.26) for n and s sufficiently large.

Case 2: There is a sequence (yn) ⊂ Z
2 and a renamed subsequence (v+n ) such that, for all

n ∈ N, ∫

B(yn,r)

|v+n |
2dx ≥ α > 0. (4.28)

Let u′n(x) := un(x− yn) and using that V (x), g(x, t) are 1-periodic we have Φµn
(un) = Φµn

(u′n).

Consequently

2

∫

R2

G(x, u′n)

R2
n

dx = µn‖v
+
n ‖

2 − ‖v−n ‖
2 −

1

R2
n

Φµn
(un) ≤ C. (4.29)

We claim that ∫

R2

G(x, u′n)

R2
n

dx→ ∞ as n→ ∞.

Indeed, defining wn(x) := vn(x−yn) we have ‖wn‖ = ‖vn‖ = 1. Thus there exists a subsequence

of (wn) ⊂ E such that wn ⇀ w, w+
n ⇀ w+ in E, strongly in L2

loc(R
2) and a.e. in R

2. It follows

from (4.28) that ∫

B(0,r)

|w+
n |

2dx ≥
α

2
> 0,

which implies that w+ 6= 0 and hence w 6= 0. Now consider a subset A ⊂ R
2 with |A| > 0 where

w 6= 0. Since |u′n(x)| = |wn(x)|‖un‖ → ∞ as n → ∞, invoking (g0) we have G(x, t)/t2 → ∞ as

t→ ∞. Thus, ∫

R2

G(x, u′n)

R2
n

dx ≥

∫

A

G(x, u′n)

|u′n|
2

|wn|
2dx→ ∞,

proving the claim. Now taking the limit in (4.29) as n→ ∞ we obtain a contradiction and this

concludes the proof.

4.5 Ground State Solution

Now we are ready to present the proof of Theorem 4.1.3. By applying Theorem 4.3.1,

there exists a sequence (µn)n ⊂ (1, 2], with µn → 1, for which is possible to find a sequence

(unm)m ⊂ Eq \ {0} verifying

sup
m

‖unm‖ <∞, Φ′
µn
(unm) → 0 and Φµn

(unm) → cµn
as m→ ∞,

where cµn
= inf

h∈Γ
sup
QR

Φµn
(h(1, u)). From this, for each n ∈ N, there exists mn ∈ N such that

|Φµn
(unmn

)− cµn
| ≤

1

n
, |〈Φ′

µn
(unmn

), unmn
〉| ≤

1

n
and ‖Φ′

µn
(unmn

)‖ ≤
1

n
, ∀n ∈ N.
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Hereafter, we denote unmn
by un, hence we can rewritten the above limits as follows

|Φµn
(un)− cµn

| ≤
1

n
, |〈Φ′

µn
(un), un〉| ≤

1

n
and ‖Φ′

µn
(un)‖ ≤

1

n
, ∀n ∈ N.

Since 0 < c1 ≤ cµn
≤ c2 for all n ∈ N, we can assume that 0 < c1

2
≤ Φµn

(un) ≤ c2 +
1
n
.

By Lemma 4.4.5, after a renamed subsequence un ⇀ u weakly in Eq, strongly in Lq
loc(R

2)

and a.e. in R
2. Since,

0 =
1

2
〈Φ′

µn
(un), ϕ〉 = µn(u

+
n , ϕ)− (u−n , ϕ)−

∫

R2

g(x, un)ϕdx, ∀ϕ ∈ C∞
0 (R2), (4.30)

taking the limit and using Lemma 4.3.3 together with density arguments as in Lemma 3.3.4

we get Φ′(u) = 0. We claim that u 6≡ 0. Indeed, taking ϕ = u+n in (4.30) and combining the

inequalities (4.16) and (4.17) we get

µn‖u
+
n ‖

2 =

∫

R2

g(x, un)u
+
n dx

≤ C1

∫

R2

|un|
q−1|u+n |dx+ C2

∫

R2

|un|
q−1(eβu

2
n − 1)|u+n |dx

≤

(∫

R2

|u+n |
qdx

) 1

q

[
C1

(∫

R2

|un|
qdx

) q−1

q

+ C2

(∫

R2

|un|
q(eβ

q
q−1

u2
n − 1)dx

) q−1

q

]

= ‖u+n ‖q

[
C1‖un‖

q−1
q + C2

(∫

R2

|un|
q(eβ

q
q−1

u2
n − 1)dx

) q−1

q

]
.

Since (un) is bounded, we can choose β > 0 sufficiently small and invoking Corollary 4.2.4 to

obtain

‖un‖
q−1
q + C2

(∫

R2

|un|
q(eβ

q
q−1

u2
n − 1)dx

) q−1

q

≤ C.

As a consequence we get

c1
2

≤ Φµn
(un) = µn‖u

+
n ‖

2 − ‖u−n ‖
2 −

∫

R2

G(x, un)dx ≤ µn‖u
+
n ‖

2 ≤ C‖u+n ‖q. (4.31)

If for r > 0 fixed,

sup
y∈R2

∫

B(y,r)

|u+n |
2dx→ 0, as n→ ∞,

then by Lemma 4.4.1 we get u+n → 0 in Lq(R2) and this contradicts (4.31). Consequently this

does not occur, that is, there exists a sequence (yn) ⊂ Z
2 and α > 0 such that

∫

B(yn,r)

|u+n |
2dx ≥ α > 0.

Now proceeding as in the end of the proof of Proposition 4.4.2, after to translation we have that

u+ 6≡ 0 and hence u 6≡ 0.

To finish the proof we recall that M denotes the set of solutions of (Pg). Observe that if
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u ∈ M then by (4.4)

Φ(u) = Φ(u)− 〈Φ′(u), u〉 =

∫

R2

H(x, u)dx ≥ −

∫

R2

W (x)dx.

Consequently, the number

β := inf
u∈M

Φ(u)

is well defined. Now consider a sequence (un) ⊂ M such that Φ(un) → β. By Lemma 4.4.5,

the sequence (un) is bounded in Eq. Thus, after a renamed subsequence we may assume that

un ⇀ u in Eq, un → u in Lq
loc(R

2) and a.e in R
2. Hence we have

0 =
1

2
〈Φ′(un), ϕ〉 = (u+n , ϕ)− (u−n , ϕ)−

∫

R2

f(x, un)ϕdx,

and passing the limit we get Φ′(u) = 0, i.e., u ∈ M. On the other hand,

Φ(un) = Φ(un)−
1

2
〈Φ′(un), ϕ〉 =

∫

R2

H(x, un)dx.

By the Fatou’s Lemma we have

Φ(u) +

∫

R2

W (x)dx =

∫

R2

[H(x, u) +W (x)]dx

≤ lim inf

∫

R2

[H(x, un) +W (x)]dx

= β +

∫

R2

W (x)dx

≤ Φ(u) +

∫

R2

W (x)dx.

Therefore, β = Φ(u). To complete the proof, we observe that by the first step we obtain a weak

solution u ∈ Eq of

−∆u = −V (x)u+ g(x, u), x ∈ R
2.

Invoking Lemma 4.2.2 we obtain that u ∈ H1
loc(R

2). Moreover, f(x) = −V (x)u+g(x, u) ∈ Lp(R2)

for any p ≥ q > 2. Using Lp-regularity theory we obtain u ∈ C1(R2). Using the Harnack

inequality (see [33], Theorem 8.17) for p > q we get

‖u‖L∞B(y,1) ≤ C‖u‖Lp(B(y,2)), ∀ y ∈ R
2, (4.32)

where C > 0 is a constant independent of y ∈ R
2. Now we fix ε > 0. Since u ∈ Lp(R2) we have

lim
R→+∞

∫

|x|≥R

|u|pdx = 0. Thus we can take R > 0 sufficiently large such that
∫
|x|≥R

|u|pdx < ε.

Then for y ∈ R
2 with |y| = R + 2 we have

‖u‖L∞(B(y,1)) ≤ C2ε,
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by (4.32). Since ε > 0 is arbitrary we conclude that |u(x)| → 0 as |x| → ∞ and this completes

the proof of Theorem 4.1.3.
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