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Abbreviation

We show here, abbreviations and constant values that we used to perform our numerical cal-
culations.

Cvq q-deformed specific heat (J mol−1K−1)

Cveq q-deformed electronic specific heat (J mol−1K−1)

εF Fermi energy (J)

γq Sommerfeld parameter (mJ mol−1K−2)

h Planck constant : 6.63 · 10−34Js

! Reduced Planck constant : h
2π

= 1.05 · 10−34Js

kB Boltzmann constant : 1.38 · 10−23JK−1

me Mass of the electron : 9.10 · 10−31kg

NA Avogadro constant : 6.02 · 10−23mol−1

ΘDq
The q-deformed Debye temperature (K)

TF Fermi temperature (K)

Tf Melting temperature (K)

Tq Critical temperature (K)

T0q Separation temperature electron/phonon (K)
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Introduction

Used for the first time by the mathematician Vladimir Drinfeld in the reference to deformed
Hopf algebras [1], the study of quantum groups has attracted great interest in recent years,
stimulating intense research in different fields of physics, taking into account a wide range of
applications, ranging from the study of the fractional quantum Hall effect, black holes and
high-Tc superconductors, to the non-commutative geometry, quantum theory of super-algebra
and so on.

All current proposals for quantum groups suggest the idea of classical deformation of an
object, which can be, for example, an algebraic group or a Lie group, knowing that the deformed
objects lose their group properties. The concept of quantum groups was motivated by problems
from a large number of physical situations, and with this understanding, led to ideas that
motivated the theory.

In a study conducted in 1904, Frank Hilton Jackson introduces an element called the q-
deformed algebra [2]. He used a q-analog theorem or expression, which is a generalization
involving a new parameter, denoted q, having the property to return the original theorem or
expression when selected its limiting case when q tends to 1 [3]. The q-deformed oscillators
are derived from Jackson derivate q-operators, which are considered to define a q-deformed
generalized dynamics in the q-commutative phase space. To do this one, we use the creation
and annihilation operators of the q-deformed quantum mechanics.

The motivation of our study lies in the fact that a full understanding of the physical origin
of the q-deformation of classical physics is still lacking. It is not clear that there is a standard
answer to the q-deformation mechanics inspired by the study of quantum groups. But appeared
recently great interest investigating the q-deformed thermodynamic systems at classical level.
Deformed theory manages the statistical behavior of complex systems whose underlying dy-
namics is calibrated on an area of multi-fractal phase governed by the long-range interaction
and the effects of long-term memory [4].

A mechanism capable of generating a deformed version of the classical statistical mechanics
is to replace the Boltzmann-Gibbs distribution by its deformed version. In this sense, it is
postulated a form of entropy that involves a deformed theory of generalized thermodynamics.
Thus, some generalizations of statistical mechanics have been proposed [5]. In this context, it
was shown that a natural realization of q-deformed thermodynamics bosons and fermions can
be built on the "q-calculus" formalism.

In the recent past, some developing in q-deformed quantum group were studied [6]. In a
specific case, we focus our attention on the study of the thermal and electrical problem in a
solid.

A solid consists of a large number of atoms linked by cohesive forces of various kinds. Atomic
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motion in a solid is very slight, causing every atom to move only within a small neighborhood,
and vibrate around its equilibrium point. In a crystalline solid, the equilibrium points of atomic
vibrations form a regular spatial structure, such as a cubic or hexagonal structure. Interaction
between atoms allows the propagation of elastic waves in solid media, which can be both
horizontal and longitudinal. Although this phenomenon is predominant at room temperature,
it is very different at low temperature, where the electronic part take a more important role.
Previous studies have analyzed the behavior of the q-deformed phonon contribution [7].

In this report, we are going to add the q-deformed electronic contribution and discuss new
properties and obtained parameters.

In the first part, we present a brief introduction of the q-deformed quantum algebra, with
the creation and annihilation operators. Then in a second part, we set up our fermionic system
by calculating the q-deformed Fermi-Dirac statistics. In the third part, we use this statistics to
get some q-deformed thermodynamic parameters (the q-deformed total energy, specific heat,
Sommerfeld parameter,etc.), where we note that the q-deformation can be a phenomena due
to impurities in the material. Finally, we present our conclusions and ongoing research.

All calculations and graphs were performed thanks to the software MAPLE 16.
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Chapter 1

The q-deformed quantum algebra

It is necessary to first perform a general construction of the algebra of q-deformed operators.
The q-deformed algebra of the quantum oscillator is defined by q-deformed Heisenberg

algebra in terms of creation operator â†, annihilation operator â and the quantum number N̂ ,
by [8]

[

N̂ , â†
]

= â†,
[

N̂ , â
]

= −â, (1.1)

and

â†â =
[

N̂
]

, ââ† =
[

1− N̂
]

. (1.2)

The q-Fock space spanned by orthornormalized eigenstates |n〉 is constructed according to

|n〉 =
(

â†
)n

√

[n]!
|0〉 , a |0〉 = 0. (1.3)

The action of â, â† and N̂ on the states |n〉 in the q-Fock space are known to be

â |n〉 =
√

[n] |n− 1〉 , (1.4)

â† |n〉 =
√

[1− n] |n+ 1〉 , (1.5)

N̂ |n〉 = n |n〉 . (1.6)

We have the basic q-deformed quantum number [x] is defined as [9]

[x] ≡ qx − q−x

q − q−1
, (1.7)

where q is an arbitrary real number, 0 < q < ∞, but the formulation is symmetric and can be
limited to cases 0 < q < 1 or 1 < q < ∞, defined by a symmetry q → q−1 and the observed
value of q has to satisfy the non-additivity [10]

[x+ y] &= [x] + [y] . (1.8)
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At limit q → 1, the basic q-deformed quantum number [x] is reduced to the number x
and we find the classical physical properties of materials. The Pauli exclusion principle is also
applicable for the q-deformed fermions, the eigenvalues of the number operator N̂ can only be
taken the values of n = 0 and 1.

The case study of fermionic is mainly due to expression (1.2), by using the Poisson brackets

ââ† =
[

1− N̂
]

, (1.9)

and the Pauli exclusion principle. If we were to study the bosonic case, it is necessary to replace
the previous equation by

ââ† =
[

1 + N̂
]

. (1.10)

Having laid the foundation for our q-deformed quantum development, we seek to express
the q-deformed Fermi-Dirac statistics used in statistical physics.
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Chapter 2

The q-deformed Fermi-Dirac statistics

To calculate the mean occupation numbers (q-deformed Fermi-Dirac statistics) of each energy
level, we choose the Hamiltonian of non-interacting q-deformed fermions [11]

Ĥ =
∑

θ

(εθ − µ) N̂θ, (2.1)

where N̂θ and εθ, are respectively the number operator and energy associated with the state
label θ, and µ is the chemical potential of the system.

The main value of the q-deformed occupation number fθ,q is defined by :

[fθ,q] =
1

Ξ
tr(exp(−βĤ) [Nθ]), (2.2)

where Ξ = tr(exp(−βĤ)) is the partition function, where β = 1/(kBT ), kB is the Boltzmann
constant. So we find

[fθ,q] =
1

tr(exp(−βĤ))
tr(exp(−βĤ)a†θaθ). (2.3)

Thanks to the cyclic properties of the trace [12], and using the above equations (1.2),(1.6)
and (2.1), we can get

[fθ,q] =
exp(−βĤ)

tr(exp(−βĤ))
tr(exp(−βĤ)aθa

†
θ), (2.4)

[fθ,q] = exp(−βĤ)
tr(exp(−βĤ) [1−Nθ])

tr(exp(−βĤ))
, (2.5)

[fθ,q] = exp(−βĤ) [1− fθ,q] , (2.6)

[fθ,q]

[1− fθ,q]
= exp(−β(εθ − µ)). (2.7)

Using the definition of q-deformed number [x],
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[fθ,q]

[1− fθ,q]
=

qfθ,q − q−fθ,q

q1−fθ,q − qfθ,q−1
= exp (−β (εθ − µ)) . (2.8)

the final solution is defined by

fθ,q =
1

2 ln (q)
ln

(

q + exp (β (εθ − µ))

q−1 + exp (β (εθ − µ))

)

. (2.9)

Figure 2.1: We plot the function of q-deformed occupation number (2.9), left figure, for different
temperatures (T = 0K, 100K and 300K) and a value of q = 0.5 and right figure, for different
q-deformed (q = 0.1 and 1) and T = 300K.

At limit q → 1, the q-deformed occupation number [fθ,q] is reduced to the Fermi-Dirac
distribution, fθ = 1/(exp(β(εθ − µ)) + 1). We get the same properties as a function of the
Fermi-Dirac distribution, i.e., at absolute zero kelvin, the probability is equal one for energies
less than the Fermi energy and zero for energies greater than the Fermi energy. Moreover,
whatever the value of the temperature, fθ = 0.5 when εθ = µ.

On the right Fig.2.1, the decrease in the value q reduces the inclination of the slope of the
q-deformed Fermi-Dirac function (q ∝ 1/T ). We can compare this phenomenon in the classical
case when the tempertaure is increased. Moreover, whatever the value of q-parameter, the
interval ∆ is proportional to the temperature.

We note that the q-deformed Fermi-Dirac statistics differs significantly from the q-deformed
Bose-Einstein distribution [13], which is given by equation

nθ,q =
1

ln (q)
ln

(

exp (β (εθ − µ))− 1

exp (β (εθ − µ))− q

)

. (2.10)
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Chapter 3

Implementation of the q-deformation

We consider an ideal gas of q-fermions confined in a three-dimensional box. The electrons move
in a constant effective potential, which results from the interaction of the electron mean made
out off all other electrons and ions.

The q-deformed total number of particules and the q-deformed total energy of the system
can be, respectively, expressed as

Nq (T ) =

∫

∞

0

dE g(E)fθ,q(E, T ), (3.1)

Uq (T ) =

∫

∞

0

dE g(E)fθ,q(E, T )E, (3.2)

where, in three dimensions, the function of density states1 g(E) is proportional to
√
E.

These integrals are of the type,
∫

∞

0
dE h(E)fθ,q(E, T ). They can be evaluated by noting

that fθ,q(E, T ) is evolving rapidly around E = µ, when T ) TF . Using the integration by parts

∫

∞

0

dE h(E)fθ,q(E, T ) = [H(E)fθ,q(E, T )]∞0 −
∫

∞

0

dEH(E)
∂fθ,q(E, T )

∂E
, (3.3)

where

H(E) =

∫ E

0

h(E)dE. (3.4)

At limit E → ∞, H(E)fθ,q(E, T ) tends to 0 : fθ,q(E, T ) tends to 0 more rapidly than
H(E) tends to infinity, because H(E) is of the form g(E) and g(E)E, these functions do not

grow exponentially. Then H(E = 0) = 0, and taking into account the fact that
∂fθ,q(E,T )

∂E
is

practically zero for E < 0, so we can write (3.3) equal to

∫

∞

0

dE h(E)fθ,q(E, T ) = −
∫

∞

0

dEH(E)
∂fθ,q(E, T )

∂E
. (3.5)

If H(E) does not vary too rapidly in the neighborhood of E = µ, it can be developed in
Taylor series H(E) and keep the first three terms of the development

1The density of states depends on a constant C =
1

2π2

(

2me

!2

)3/2
related to the mass of the electron me.
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H(E) = H(µ) + (E − µ)

(

∂H(E)

∂E

)

E=µ

+
1

2
(E − µ)2

(

∂2H(E)

∂E2

)

E=µ

, (3.6)

By substituting the equation (3.6) in the expression (3.5), we get

∫

∞

0

dE h(E)fθ,q(E, T ) = −H (µ)

∫

∞

0

dE
∂fθ,q(E, T )

∂E

−
(

∂H(E)

∂E

)

E=µ

∫

∞

0

dE (E − µ)
∂fθ,q(E, T )

∂E
−1

2

(

∂2H(E)

∂E2

)

E=µ

∫

∞

0

dE (E − µ)2
∂fθ,q(E, T )

∂E
.

(3.7)

Realizing a change of variables for the function fθ,q, with x = β (E − µ) and dx = dE β.
The lower bound of the integrals can be replaced by −∞ at low temperatures, and using the
equation (3.4) we obtain

∫

∞

0

dE h(E)fθ,q(E, T ) = −
∫ µ

0

dE h(E)

∫

∞

−∞

dx
∂fx,q
∂x

− h(E = µ)
1

β

∫

∞

−∞

dxx
∂fx,q
∂x

−
(

∂h(E)

∂E

)

E=µ

1

2β2

∫

∞

−∞

dxx2∂fx,q
∂x

, (3.8)

where

∂fx,q
∂x

=
1

2 ln (q)

(

1

1 + q exp (x)
− 1

1 + q−1 exp (x)

)

. (3.9)

Equation (3.8) is composed of three terms. Whatever the value of q, in the first term, the
integral equals −1; in the second term, the integral equals 0, because the function is odd; only
the third term depends on the q-deformation, where the integral is negative (see Appendix
graphs 5).

We put for the continuation of our calculations the integral

∫

∞

−∞

dxx2∂fx,q
∂x

= I (q) . (3.10)

Table 3.1 shows some solutions of the integral (3.10) for different values of q. We use this
information a little later in our calculations.

Now, we can use equation (3.8) to obtain the q-deformed thermodynamic quantities.

3.1 The q-deformed total number of particles and chemical

potential

The q-deformed number of particules is defined by
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q I (q) q I (q) q I (q)
0.05 −6.2813 0.40 −3.5697 0.75 −3.3174
0.10 −5.0571 0.45 −3.5024 0.80 −3.3064
0.15 −4.4895 0.50 −3.4500 0.85 −3.2986
0.20 −4.1532 0.55 −3.4090 0.90 −3.2935
0.25 −3.9304 0.60 −3.3768 0.95 −3.2907
0.30 −3.7730 0.65 −3.3517 → 1 −3.2898
0.35 −3.6572 0.70 −3.3322

Table 3.1: This table shows different values of the integral (3.10) calculated with some values
of q. The graph of this function is represented in the Appendix Figure 6.

Nq (T ) =

∫

∞

0

dE g(E)fθ,q(E, T ). (3.11)

Using the equations (3.8), (3.10) and (3.11) with h(E) = C
√
E, we get the q-deformed total

number of particules equation Nq (T ), depending of the chemical potential µq (T )

Nq (T ) = C

(

2

3
µq (T )

3/2 − 1

4β2
µq (T )

−1/2 I (q)

)

. (3.12)

The variation of the chemical potential µq (T ) is obtained by noting that the electron density
Nq (T ) is constant when the temperature varies

Nq (T = 0) = Nq (T &= 0) . (3.13)

We noted previously, when the temperature is zero, the q-deformed Fermi-Dirac statistics
fx,q = 1, so the q-deformed total number of particles Nq (T ) is defined by

Nq (T = 0) =

∫ εF

0

g(E)dE, (3.14)

so,

∫ εF

0

dE
√
E =

∫ µ

0

dE
√
E − 1

2β2

(

∂
√
E

∂E

)

E=µ

I(q), (3.15)

∫ εF

µ

dE
√
E = − 1

2β2

(

∂
√
E

∂E

)

E=µ

I(q). (3.16)

The term
∫ εF

µ
dE

√
E, takes important values for energies close to the Fermi level εF . Noting

that the Fermi temperature TF = εF/kB, in the case of free electron gas in three dimensions,
the expression of the q-deformed chemical potential is given by

µq (T ) = εF

(

1 +

(

T

2TF

)2

I (q)

)

. (3.17)
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Let us note that µq (T ) differs from εF by low terms (T 2). One replaces µ in Eq.(3.8) using
Eq.(3.17). Notice that µ appears as a limit of integration (expand to first order in µ − εF .
Then, we rewrite the expression (3.8)

∫

∞

0

dE h(E)fθ,q(E, T ) =

∫ εF

0

dE h(E)− (εF − µ)h (εF )−
1

2β2

(

∂h(E)

∂E

)

E=εF

I (q) . (3.18)

3.2 The q-deformed total energy of the system and specific

heat of the electron gas

The q-deformed total energy of the system is defined by

Uq (T ) =

∫

∞

0

dE g(E)fθ,q(E, T )E. (3.19)

Using the equations (3.18) and (3.19) with h(E) = CE
√
E and the expression of the q-

deformed chemical potential (3.17), we get the q-deformed total energy of the system

Uq (T ) = Cε
5/2
F

(

2

5
− 1

2

(

T

TF

)2

I (q)

)

. (3.20)

We note that the q-deformed total energy of the system depends only on Fermi temperature
and q-deformed parameter inclued in the integral I (q).

The q-deformed electronic specific heat CV eq (T ) is defined by

CV eq (T ) =

(

∂Uq (T )

∂T

)

V

. (3.21)

Differentiating equation (3.20), relative to T , we obtain

CV eq (T ) = −Cε
5/2
F

T

T 2
F

I (q) . (3.22)

But we can simplify this last equation, using the following expressions, C = (2me/!
2)3/2/(2π2),

εF = !
2k2

F/(2me) and TF = εF/kB. Where kF is the Fermi wave vector. Inserting these equa-
tions in the expression (3.22), using NA, Avogadro constant and noting n = N/V = k3

F/(3π
2)

the electronic density, we obtain our final equation of the q-deformed electronic specific heat

CV eq (T ) = −3

2
nkBNA

T

TF

I (q) . (3.23)

At limit q → 1, the q-deformed electronic specific heat CV eq (T ) is reduced to the classic
electronic specific heat [14]

CV e (T ) =
π2

2
nkBNA

T

TF

. (3.24)
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We note, that by comparing this result with the specific heat of an ideal gas [15] 3
2
nkBNA,

the effect of q-deformed occupation number (whatever the value of q) is to reduce the q-
deformed electronic specific heat by a factor of −TI(q)/TF . At room temperature (300K)
and whatever the value of q ∈ [0.1; 1], it is of the order of [10−1; 10−2]. This explains why
we do not detect a significant contribution of the q-deformed electronic specific heat at room
temperature. However, it is interesting to study some metals (eg. alloys) at low temperatures,
because they provide electrical and thermal properties (eg. superconductivity) different from
the room temperature.

From Eq.(3.23), we can write the q-deformed electronic specific heat as the product of a
variable, Sommerfeld parameter γq (depending on the q-deformed parameter) and temperature

CV eq (T ) = γqT, (3.25)

where the Sommerfeld parameter is

γq = −3

2

nkBNA

TF

I (q) . (3.26)

The Table 3.2 below compares the calculated values of γq→1 (free-electrons) with experi-
mental values. This comparison requires some foresight. The specific heat of a metal contains
two major parts. At room temperature, a solid absorbs heat mainly through the vibrations
of ions about their equilibrium positions. However, these contributions vanish as T 3 at low
temperatures. There is a linear contribution (if the value of the q-deformed parameter is fixed)
of the specific heat from the electrons. Experimental data support this claim. The authors of
these references have multiplied the Eq.(3.26) (q tends to 1), by the volume and by the number
of conduction electrons Z. In addition, this Table 3.2 allows you to verify our calculations,
γq→1, listed in the Table 3.3. Indeed, when the value of the q-parameter tends to 1, we find the
same theoretical values and that for many metals.

Table 3.2: Table left [16] and right [17], comparison of experimental [18] and calculated (free-
electron) values of the Sommerfeld parameter γ for selected metals. Although this left table is
used in many articles in physics, it is important to note here, there is an error on the theoretical
value of iron γ. It is for this reason that I compare my γq→1 values using two different references.
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To understand the effects of q-deformation on the Sommerfeld parameter, it is necessary
and interesting to plot, for some metals, γq function of q. Data is plotted to provide a better
view of our results. For illustration purposes, we chose aluminum (Al), copper (Cu), iron (Fe),
three materials that can be employed in many areas of interest and bismuth (Bi), gold (Au)
and silver (Ag).

The Fig.3.1 shows how q-deformation acts on these materials Sommerfeld parameter. We
plot in ‘dotted’ our theoretical data (where the shape of the function is |q|−1) obtained from
Eq.(3.26)2, then full line, experimental data.

Figure 3.1: The q-deformed Sommerfeld parameter theory (dashed curves) and experimental
(line) as a function of parameter 0 < q < 1 for several metals, aluminum, gold, bismuth, silver
and copper.

The plots, Fig.3.2, show that Cu reaches Ag experimental value for q ≈ 0.17, while Ag
approaches Au experimental value for q ≈ 0.53. For copper (Cu), at limit q → 1, the theo-
retical value is equal to the experimental value when q ≈ 0.15. Thus, by varying the value of
q of a chemical element, one modifies the Sommerfeld parameter until the physical properties
of another chemical element. This one, amounts to modifying the Fermi energy (depends of
the Fermi temperature) and therefore to vary the number of electrons per unit volume n. For
example, Fig.3.2, when we vary Cu(q → 1) until Cu(q ≈ 0.17) = Ag exp., we decreases the
number of electrons per unit volume in the copper. But if we vary Ag(q → 1) until Ag(q ≈ 0.53)
= Au exp., we increases the number of electrons per unit of volume in the silver3.

2Multiplied by the volume and by the number of conduction electrons to match the data from Table 3.2.
3The number of electrons per unit of volume or conduction electron density for gold nAu = 5.90 · 1022cm−3,

silver nAg = 5.86 · 1022cm−3 and copper nCu = 8.49 · 1022cm−3 are given in Table.6.1 in reference[19].
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Figure 3.2: The q-deformed Sommerfeld parameter theory (dashed curve) and experimental
(line) as a function of parameter 0 < q < 1. On the left figure, the experimental value of gold
and theoretical values of silver. On the right figure, the experimental value of silver and the
theoretical values of copper.

Copper is one of the best electrical conductors for which the method of free electrons is ap-
propriate. Indeed, from Fig.3.3, where q ≈ 0.15, the theoretical value of copper is in agreement
with the experimental value. But there are metals in the periodic table to which the estimate
of the free electrons of the specific heat is seriously in error, such as iron. According to our
results, when q ≈ 2.6 · 10−4, the theoretical value of iron equals the experimental value.

We need to return in 1964 to understand why there is such a large gap between γq→1 and
γexp. iron. Indeed the physicist J. Kondo, assumes the presence of magnetic impurities screened
by clouds of electrons. These clouds of electrons have the effect of diffusing the conduction
electrons, thereby increasing the resistance [20]. This behavior turns out to be related to the
presence of magnetic impurities in a metal and involves the process where an electron leaves
the impurity to be replaced by another electron, which can be of opposite spin (turnaround
spin of impurity). This effect is emphasized through the q-deformation, since the significant
intervention of impurities lowers the value of the parameter q-deformed.
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Figure 3.3: The q-deformed Sommerfeld parameter theory (dashed curves) and experimental
(line) as a function of parameter 0 < q < 1 for the copper (left figure) and for the iron (right
figure).

3.3 The q-deformed total specific heat

As we saw above, the electronic contribution to the q-deformed specific heat is greater than
the contribution of phonons at low temperatures. It is well known [21], that the specific heat
of a metal CV (electronic and phonons contribution), contains two major parts, low and high
temperature4. The same goes for the q-deformed specific heat

CVq
(T ) = CV Dq

(T ) + CV eq (T ) . (3.27)

The first term in Eq.(3.27) represents the q-deformed Debye specific heat, obtained by A.A.
Marinho, F.A. Brito and C. Chesman [7], using the Debye’s model5. It treats the vibration of
the atomic lattice, i.e. phonons in the box

CV Dq
(T ) = 3kBNA






−

3
(

ΘDq

T

)

exp
(

ΘDq

T

)

− 1
+

12
(

ΘDq

T

)3

∫

ΘDq

T

0

dα
α3

exp (α)− 1






, (3.28)

where ΘDq
is the q-deformed Debye temperature. Table 3.3 shows some values of ΘDq

for
different values of q and different metals [7]. By adding the second term, q-deformed electronic
specific heat previously calculated, we obtain the expression of the q-deformed specific heat

4It is considered at low temperatures, the temperatures below the Debye temperature, T ) ΘD and high
temperatures, the temperatures above the Debye temperature, T , ΘD.

5All the oscillators do not vibrate at the same frequency ω.
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+ γqT. (3.29)

When the temperature is high in comparison with all the phonon frequencies (T , ΘDq
),

i.e., when all normal mode is in a highly excited state, then the arguments in the exponential

are low, the function CV Dq
(T ) can be expressed in a Taylor series in

ΘDq

T

CV Dq
(T ) = 3kBNA






1−

(

ΘDq

T

)2
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. (3.30)

In addition, we have seen previously, the term containing the Sommerfeld parameter is small
at high temperatures. Thus, when the temperature tends to infinity, we obtain the following
equation

CVq
(T ) = 3kBNA. (3.31)

So we get the Dulong-Petit law [22], which depends neither the temperature nor the param-
eter q-deformed. At very low temperatures (T ) ΘDq

), we can write the Eq.(3.29) as

CVq
(T ) =

12π4kBNa

5

(

T

ΘDq

)3

+ γqT. (3.32)

Thus, as in the usual Debye solid, low temperature q-deformed Debye and the electronic
specific heat is proportional respectively to T 3 and T . By studying the q-deformed case at low
and high temperatures, we find the same properties of the classical specific heat.

It is useful to have a measure of the temperature at which the specific heat of a metal
is no longer dominated by the electronic contribution rather than the contribution of lattice
vibrations. Dividing Eq.(3.25)6 by the expression at low temperatures of the contribution of
phonons, this temperature T0q is obtained

T0q =
1

2π2

√

−
5nI(q)Θ3

Dq
Z

2TF

. (3.33)

The Fermi temperature is very large relative to the q-deformed Debye temperature. T0q

is typically a few Kelvin. This explains why the linear term in the q-deformed specific heat
is observed only at low temperatures. The variation of the parameter q, for example copper,
T0q→1 = 3.22K, T0q=0.5 = 3.30K and T0q=0.1 = 4.00K, increases the temperature. This result
agrees with the observation made previously in chapter 3 (the right Fig.2.1). Thus, when the
q-parameter decrease the temperature T0q increases from a few percent.

6Multiplied by the number of conduction electrons Z.
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For the q-deformed case we can observe the changes that occur with Debye temperature,
Sommerfeld parameter γ and total specific heat. See Table 3.3 below for room temperature
T = 300K.

Element
T

(a)
F

Θ
(b)
Dq

γ
(c)
q C

(d)
Vq

(104) q=0.1 q=0.5 q→1 q=0.1 q=0.5 q→1 q=0.1 q=0.5 q→1

Cs 1.76 44.5 38.6 38 3.58 2.44 2.33 25.99 25.66 25.62

Rb 2.06 65.5 56.8 56 3.06 2.08 1.99 25.80 25.53 25.50

K 2.37 106.5 92.4 91 2.66 1.81 1.73 25.59 25.37 25.35

Pb 10.97 122.9 106.6 105 2.30 1.56 1.49 25.43 25.26 25.24

Ba 4.22 128.7 111.6 110 2.98 2.03 1.94 25.61 25.38 25.36

Bi 11.43 139.3 120.8 119 2.75 1.88 1.79 25.51 25.31 25.29

Na 3.66 184.9 160.4 158 1.72 1.17 1.12 24.99 24.95 24.94

Au 6.42 193.1 167.4 165 0.98 0.67 0.64 24.73 24.76 24.76

Sn 11.86 234.1 203 200 2.12 1.45 1.38 24.84 24.82 24.81

Cd 8.66 244.6 212.1 209 1.45 0.99 0.95 24.57 24.63 24.63

Ag 6.38 263.3 228.4 225 0.98 0.67 0.64 24.31 24.44 24.45

Ca 5.48 269.2 233.5 230 2.30 1.57 1.49 24.66 24.68 24.68

Ga 12.11 374.5 324.8 320 1.56 1.06 1.01 23.57 23.86 23.89

Zn 10.93 382.7 332 327 1.15 0.78 0.75 23.37 23.72 23.75

Cu 8.17 401.4 348.2 343 0.77 0.52 0.50 23.08 23.50 23.54

Li 5.43 402.6 349.2 344 1.16 0.79 0.75 23.18 23.57 23.60

Al 13.53 500.1 434.4 428 1.39 0.95 0.91 22.21 22.80 22.85

Fe 12.94 550 477 470 0.97 0.66 0.63 21.50 22.25 22.32

Be 16.67 1685.2 1461.7 1440 0.75 0.51 0.49 7.74 9.73 9.95

Table 3.3: Chemical elements and their respective Fermi temperature a (K) [14], Debye
temperatures b (K) [7], Sommerfeld parameter γq

c ( mJ
mol·K2 ), Total specific heat d ( J

mol·K
), for

T = 300K and their deformations for q = 0.1 and q = 0.5.

Thereafter, we plot (Fig.3.4) the q-deformed specific heat (taking into account the term of
the Debye and Sommerfeld) depending on the temperature, for three values of q ∈ {0.1; 0.5; 1},
and for two different materials, copper (Cu) and cesium (Cs). First, we note that the curves
when the temperature is very low, varies T 3. Then when the temperature increases, we note
that the values of CVq

for q ∈ {0.1; 0.5}, are lower than the values of CVq→1 , up to a certain
value of temperature, noted Tq and we call critical temperature. Beyond this temperature, the
CVq

values for q &= 1 diverge and do not respect the Dulong-Petit law.
To understand this phenomenon, we must analyse the q-deformed specific heat curves for

copper and cesium at high temperatures, i.e., above the critical temperature of copper and
cesium which are respectively, TqCu

≈ 576.9K and TqCs
≈ 83.3K. Our physical study, in

the case of solid, stops from the melting temperature of Cu and Cs which are respectively
TfCu

= 1357.77K and TfCs
= 301.65K [23].
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Figure 3.4: The q-deformed specific heat as a function of temperature for q = 0.1, q = 0.5 and
q → 1, for copper (left figure) and cesium (right figure).

Indeed, above the critical temperature, CVq "=1
(T ) values continue to grow. There is a major

reason for this phenomenon. According to the Kopp-Neumann law, the specific heat of solid
chemical combinations is equal to the sum of the specific heats of pure elements. For example,
at 800K, the specific heat of the CuO is 54 J/(mol.K) [24]. This explains why CVq "=1

(T ) values
do not stabilize around a constant as predicted by the Dulong-Petit law.

If we follow this reasoning, when the value of q decreases, it means we added a new compound
in the pure element (here copper) and then added some impurities. This joined the conclusion
of previous work (Sommerfeld parameter), to show that the q-deformed algebra acts as a factor
of disorder or impurity.

Thereafter, it would be useful to analyze experimentally the physical effect which is at
the critical temperature Tq (which matches neither the Fermi temperature nor the q-deformed
temperature Debye), where the curves cross at a single point. Nevertheless, we observe, for Cu
and Cs that the critical temperature occurs at around 24.85 J/(mol.K), the value close to that
predicted by Dulong-Petit law (25 J/(mol.K)).
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Conclusion and Perspective

In this report, we studied the electronic contribution together with the contribution of phonons
[7] in the limit of low and high temperatures by applying a q-deformation. The application of
the q-deformed in these well-known problems have resulted in a better understanding of the
q-deformation.

We obtain theoretically results of q-deformed to the number of particules, the total energy
of the system, the chemical potential and the specific heat. The latter is the more interesting
because it allows us to obtain, with simple parameters (Sommerfeld parameter, temperature),
some information about the properties of the q-deformed solid. At limit q → 1, we find that
the results are identical to the classical case referenced in the literature.

Until now, obtaining the specific heat (phonons) the thermal and electrical conductivity have
shown some q-deformed solid Einsten or Debye properties. The electronic contribution, allowed
us to obtain the q-deformed Sommerfeld parameter. Preliminary results on this parameter
shows that some metals have the same characteristics q-deformed than others. For example,
copper Cu, has the same characteristics as silver Ag when q ≈ 0.17. In addition, we find that
this parameter γq is linked to the number of electrons per unit volume. This changes when q
varies.

Although some metals do not follow the method of free electrons, for example iron, q-
deformation can still get good results. Indeed, it highlights the involvement of impurities, re-
ducing the parameter q-deformed. We support this result through the Kondo theory, which pre-
dicts the magnetic impurities intervention in some metals, such as iron. So, the q-deformation
(here formulated with the free electrons) helps to explain physical phenomenons which are
traditionally decried by more sophisticated methods such as the Kondo’s method.

By adding the electrons contribution to the phonons contribution, we obtain the q-deformed
total specific heat. At low temperature, the temperature T0q separating the main contribution
of electrons and phonons is shifted to higher temperatures gradually when the q-deformed factor
decreases. For example, for copper Cu, the temperature increase of 20% if q = 0.1. At high
temperature, while the classic case follows the Dulong-Petit law, the values q-deformed, eg.
q = 0.1, diverge from a certain critical temperature Tq. This phenomenon can be explained
by the Kopp-Neumann law. According to this law, our metal is not pure and consists of new
elements that we can associate with impurities.

In future work, it would be interesting to analyze more precisely the physical effect that
occurs when we reach the critical temperature Tq, which matches neither the Fermi temperature
nor the q-deformed temperature Debye.

Thus, we see the possibility of applying the q-deformed on different models, acting as a
factor of disorder or impurity. We believe that these defects are mainly due to the factor of
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doping, i.e., the addition of imputities or defects (donors or acceptors of elecrons), which greatly
affects the electronic properties of metals. But we still need to analyze other characteristics of
metals to establish more precisely the results through the q-deformation.

Thanks to this new study, this report comes support and enrich the previous assumptions
found in the literature, and shows that the q-deformation also acts on the electrons. Nowadays,
researchers try to link this theory with experiments, for example the growth of thin films, to
better understand the q-deformation.

Brazil is a country primarily known for the cheerfulness of its people, football and samba.
But in recent years, shows have acquired a great potential in the field of sciences and technolo-
gies, especially in that of modern physics (condensed matter, string theory).

My stay in Brazil, especially in the north, in the city of Campina Grande has therefore not
restricted to my research laboratory.

At first, I focused my attention on learning Portuguese.
Then I had the opportunity to deepen my knowledge by working at the Museu Vivo de

Ciência e Tecnologia e Inovação Lynaldo Cavalcanti from Campina Grande, to rehabilitate the
experiments in classical and modern physics and teaching in Portuguese, electrical energy to
high school students.

Later, I had the chance to get for one semester, a federal teaching position at the Fed-
eral University of Campina Grande. Where I have a responsibility to teach in Portuguese,
electromagnetism (courses and practical work) to undergraduate students.

My research had led by the submission of a scientific paper and a seminar I conducted in
English. In this report, I presented one part of my research, the second part concerns the
q-deformed superconductivity which is in progress. My internship in Brazil will conclude in
August by the validation of my master in Brazil (dissertation and presentation of my research
in Portuguese).
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.1 Appendix

In this appendix we show graphs to better visualize the functions and check for some values of
q if the main shape of these functions are preserved.

Figure 5: Representation of the different functions of Eq.(3.8), from left to right for ∂f(x,q)
∂x

,

x∂f(x,q)
∂x

and x2 ∂f(x,q)
∂x

, where ∂f(x,q)
∂x

is developed in the Eq.(3.9), for q = 0.1, q = 0.5 and q → 1.
Show that there are solutions to the converging values. Note, the functions of the left and
right figures are evens and those of the central figure are odd (i.e. the integral is zero), which
facilitates the calculations.

Figure 6: We represent some of the values of the function I (q), Eq.(3.10). We note that it
evolves in −q−1, which will have a substantial and significant effect in our equations.
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