
Universidade Federal de Campina Grande

Centro de Engenharia Elétrica e Informática

Coordenação de Pós-Graduação em Ciência da Computação

Applying Control Theory to the Orchestration of

Data Stream Processing Systems

Lília Rodrigues Sampaio

Campina Grande, Paraíba, Brasil

09/2022

Universidade Federal de Campina Grande

Centro de Engenharia Elétrica e Informática

Coordenação de Pós-Graduação em Ciência da Computação

Applying Control Theory to the Orchestration of

Data Stream Processing Systems

Lília Rodrigues Sampaio

Doctoral Dissertation submitted to the Postgraduate Course Coordina-

tion of Computer Science at Universidade Federal de Campina Grande

- Campus I as part of the requirements to acquire the Doctor degree in

Computer Science.

Main Topic: Computer Science

Research Line: Control Theory and Resource Provisioning

Andrey Elísio Monteiro Brito

(Advisor)

Campina Grande, Paraíba, Brasil

©Lília Rodrigues Sampaio, 22/09/2022

S192a

Sampaio, Lília Rodrigues.

 Applying control theory to the orchestration of data stream processing

systems / Lília Rodrigues Sampaio. - Campina Grande, 2022.

 180 f. : il. color.

 Tese (Doutorado em Ciência da Computação) - Universidade Federal

de Campina Grande, Centro de Engenharia Elétrica e Informática, 2022.

 "Orientação: Prof. Dr. Andrey Elísio Monteiro Brito."

 Referências.

 1.

 1. Processamento de Dados. 2. Escalonamento de Recursos. 3. Teoria

do Controle. I. Brito, Andrey Elísio Monteiro. II. Título.

2.

 CDU 004.451.7.031.43(043)
 FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECÁRIA ITAPUANA SOARES DIAS GONÇALVES CRB-15/93

MINISTÉRIO DA EDUCAÇÃO
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE

POS-GRADUACAO CIENCIAS DA COMPUTACAO
Rua Aprigio Veloso, 882, - Bairro Universitario, Campina Grande/PB, CEP 58429-

900

FOLHA DE ASSINATURA PARA TESES E DISSERTAÇÕES

LÍLIA RODRIGUES SAMPAIO

APPLYING CONTROL THEORY TO THE ORCHESTRATION OF DATA STREAM
PROCESSING SYSTEMS

Tese apresentada ao Programa
de Pós-Graduação em Ciência da
Computação como pré-requisito
para obtenção do título de
Doutor em Ciência da
Computação.

Aprovada em: 22/09/2022

Prof. Dr. ANDREY ELÍSIO MONTEIRO BRITO, Orientador, UFCG

Prof. Dr. FÁBIO JORGE ALMEIDA MORAIS, Examinador Interno, UFCG

Prof. Dra. RAQUEL VIGOLVINO LOPES, Examinadora Interna, UFPB

Prof. Dra. PRISCILA AMÉRICA SOLÍS MENDEZ BARRETO, Examinadora Externa,
UnB

Dr. ANDRÉ MARTIN, Examinador Externo, TU-Dresden

Documento assinado eletronicamente por ANDREY ELISIO MONTEIRO
BRITO, PROFESSOR 3 GRAU, em 22/09/2022, às 15:41, conforme
horário oficial de Brasília, com fundamento no art. 8º, caput, da Portaria SEI

PRPG-Folha de Assinatura para Teses e Dissertações COPIN-PRPG 2743817 SEI 23096.064474/2022-87 / pg. 1

nº 002, de 25 de outubro de 2018.

Documento assinado eletronicamente por FABIO JORGE ALMEIDA
MORAIS, PROFESSOR(A) DO MAGISTERIO SUPERIOR, em
22/09/2022, às 19:20, conforme horário oficial de Brasília, com fundamento
no art. 8º, caput, da Portaria SEI nº 002, de 25 de outubro de 2018.

Documento assinado eletronicamente por RAQUEL VIGOLVINO LOPES,
Usuário Externo, em 23/09/2022, às 09:13, conforme horário oficial de
Brasília, com fundamento no art. 8º, caput, da Portaria SEI nº 002, de 25 de
outubro de 2018.

Documento assinado eletronicamente por André Martin, Usuário Externo,
em 27/09/2022, às 08:01, conforme horário oficial de Brasília, com
fundamento no art. 8º, caput, da Portaria SEI nº 002, de 25 de outubro de
2018.

A autenticidade deste documento pode ser conferida no site
https://sei.ufcg.edu.br/autenticidade, informando o código verificador
2743817 e o código CRC 0D5355F3.

Referência: Processo nº 23096.064474/2022-87 SEI nº 2743817

PRPG-Folha de Assinatura para Teses e Dissertações COPIN-PRPG 2743817 SEI 23096.064474/2022-87 / pg. 2

Resumo
A capacidade de processar eficientemente grandes quantidades de dados, como os advindos

de sensores IoT, é um objetivo desejado por variados sistemas, especialmente porque o valor

desses dados pode cair rapidamente após o momento de sua coleta. Demandas de processa-

mento desse tipo levaram ao desenvolvimento do paradigma Data Stream Processing, onde

dados chegam continuamente e precisam ser processados em tempo real. Tais aplicações es-

tão sujeitas a variadas condições de operação, sendo importante se adaptar bem a diferentes

cenários enquanto mantém metas de Qualidade de Serviço. Abordagens tradicionais sug-

erem soluções voltadas ao escalonamento automático dos recursos, que apresentam desafios

como definir boas métricas de interesse para os objetivos de QoS, determinar o intervalo de

coleta desses dados e estimar a quantidade de recursos que devem ser provisionados.

Apesar de novas técnicas para o monitoramento e adaptação de sistemas de processa-

mento de dados em fluxo estarem continuamente evoluindo, muitas das soluções propostas

não possuem a base teórica necessária para garantir níveis altos de acurácia em suas exe-

cuções. Dada sua abordagem analítica, a teoria do controle pode ser uma boa alternativa

para este fim. Entretanto, aplicar técnicas de controle em sistemas de computação ainda se

apresenta como um desafio, principalmente pela dificuldade em abstrair o comportamento

complexo de software em uma forma matemática adequada para o design de um controlador,

de forma a diminuir o atraso do sistema, gerar ações corretivas adequadas e minimizar o erro

de estado estável.

Considerando isso, este trabalho propõe aplicar e avaliar metodologias da teoria do con-

trole em sistemas de processamento de micro-lotes de dados em fluxo. Métodos de iden-

tificação de sistemas são utilizados para modelagem do Asperathos, um framework para

automação de diferentes aplicações de processamento de dados mantendo metas de QoS

customizáveis. Com base nisso, é proposto um controlador Proporcional-Integral que ras-

treia métricas de desempenho, além de uma demonstração de sintonização de seus ganhos.

Ainda é proposto um controlador de múltiplos objetivos do tipo SIMO, baseado em métricas

de desempenho e custo. Para validação da solução, tarefas de desagregação de dados de

energia são executadas em um cluster Kubernetes orquestrado pelo Asperathos.

iv

Abstract
The ability to efficiently process large amounts of data, such as that from IoT sensors, is a

desired goal for many systems, especially since the value of this data can quickly drop after

the moment it is collected. Processing demands of this kind led to the development of the

Data Stream Processing (DSP) paradigm, where data arrives continuously and needs to be

processed in real time. Such applications are subject to varying operating conditions, and it

is important to adapt well to different scenarios while maintaining Quality of Service (QoS)

goals. Traditional approaches suggest solutions aimed at the automatic scaling of resources,

which presents challenges such as defining good metrics of interest for QoS objectives, de-

termining the interval for collecting this data and estimating the amount of resources that

must be provisioned.

Although new techniques for monitoring and adapting DSP systems are continuously

evolving, many of the proposed solutions do not have the necessary theoretical basis to guar-

antee high levels of accuracy in their execution. On the other hand, given its analytical

approach, Control Theory can be a good alternative for this purpose. However, applying

control techniques in computer systems still presents itself as a challenge, mainly due to the

difficulty in abstracting the complex behavior of software in a mathematical form suitable for

the design of a controller, in order to reduce the system delay, generate appropriate corrective

actions, and minimize steady-state error.

Considering this, this work proposes to apply and evaluate control theory methodologies

in micro-batch DSP systems. System identification methods are used to generate a model

representation of Asperathos, a framework for automating different data processing appli-

cations while maintaining customizable QoS goals. Based on this, a Proportional-Integral

controller that tracks performance metrics is proposed, as well as a demonstration of its tun-

ing. A SIMO-type multi-objective controller is also proposed, based on performance and

cost metrics. For the validation of the solution, energy data disaggregation tasks are per-

formed in a Kubernetes cluster orchestrated by Asperathos.

v

Acknowledgements
À Deus, por me mostrar os caminhos que sempre me fizeram perseverar.

Ao meu pai (in memoriam) e à minha mãe, palavras não conseguem expressar. Sei que

se estivesse aqui, a rua inteira estaria sabendo que todos os seus filhos são doutores, pai.

Mas sei também que daí você me guiou e celebrou comigo essa conquista. Mãe, obrigada

por desde pequena me ensinar o poder e o valor da educação. Ter uma mãe professora, que

sempre lutou para que amássemos a educação como a senhora ama, fez toda a diferença em

quem eu sou hoje. Sem meus pais eu não seria nada, e por eles sempre fiz e farei tudo.

Aos meus irmãos, por me ensinarem no companheirismo de sempre o poder da deter-

minação e da dedicação. Por mais sonhos nossos realizados, juntos, sempre. Agora posso

entrar para o clubinho dos doutores :)

À toda minha família, que me enche de amor todos os dias.

Ao meu namorado e meus amigos, por serem comigo, companheiros e verdadeiros. Grata

por ter vocês sempre por perto, ao meu lado.

Ao meu orientador, Andrey, por sempre acreditar no meu melhor e me inspirar todos

os dias a ser segura, motivada e ambiciosa. Obrigada por todos os trinta segundinhos de

conversas cheias de sabedoria, por me compreender e ajudar quando precisei.

À Maxwell, membro do meu grupo de pesquisa, por contribuir diretamente com este

trabalho na geração dos modelos aqui propostos, e nas muitas (longas!) discussões que

partilhamos durante esse tempo. Sem dúvida sou grata por toda experiência e aprendizado

trocado entre nós. Também à Diego, Ignacio e Armstrong, pela participação no artigo que é

fruto desse trabalho, contribuindo junto ao Asperathos e na execução de experimentos. Em

especial durante a pandemia, vocês me ajudaram a manter o foco e me aprofundar cada vez

mais na temática dessa tese.

Aos meus amigos nos vários projetos em que pude participar ao longo do doutorado,

em especial Fabinho, Rodolfo, Marcus, Vinha, Clenimar, Fellype e Igor, por me enrique-

cerem todos os dias com conhecimento e discussões proveitosas que fizeram de mim uma

profissional melhor. Além disso, pelo ombro amigo para chorar os medos e angústias, e

comemorar as (muitas!) alegrias e sucessos.

vi

Ao Laboratório de Sistemas Distribuídos, por todo amparo profissional e tecnológico de

qualidade, mas em especial por sempre me fazer sentir em casa. Quando graduanda, ainda

no terceiro período, ser LSD foi sem dúvidas a melhor escolha que eu poderia ter feito.

Por fim, agradeço à Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

(CAPES), e aos projetos ATMOSPHERE e LiteCampus pelo financiamento desta pesquisa.

vii

Contents

1 Introduction 1

1.1 Context and motivation . 1

1.2 Objectives . 5

1.2.1 Methodology . 6

1.3 Contributions . 7

1.4 Summary . 8

2 Background 9

2.1 Quality of Service . 9

2.2 Container orchestration . 10

2.3 Asperathos . 12

2.3.1 Architecture . 12

2.3.2 Custom plugins . 14

2.4 Use case: Energy data processing in real time 15

2.4.1 The workload . 17

3 Related work 20

3.1 Quality of service . 20

3.1.1 Web applications . 20

3.1.2 Data stream processing . 22

3.2 Provisioning and scaling of resources . 25

3.2.1 Overview . 25

3.2.2 Control theory . 27

3.2.3 Other approaches . 32

viii

CONTENTS ix

4 Control systems 34

4.1 Feedback control . 34

4.1.1 Choosing control variables . 37

4.2 Controller types . 38

4.2.1 Proportional control . 39

4.2.2 Integral control . 40

4.2.3 Derivative control . 40

4.2.4 PID control: proportional, integral, derivative 41

4.3 Considerations when implementing a controller 42

4.4 Challenges for computer systems . 44

5 Applying First-Order Plus Dead Time models to DSP systems 46

5.1 System identification methods . 46

5.2 Application use case: Asperathos . 50

5.3 Using filters . 55

5.3.1 Inserting a low-pass filter on Asperathos 57

6 Adaptive control of DSP systems 59

6.1 Context and motivation . 59

6.2 Selecting control variables . 61

6.3 Control approaches . 64

6.3.1 Fixed Action control . 64

6.3.2 Proportional-Integral control . 65

6.4 Evaluation . 69

6.4.1 Experimental design . 69

6.4.2 Scenarios I and II: Analytic PI x Fixed Action 76

6.4.3 Scenario III: Analytic PI x Manual PI 82

6.4.4 Scenario IV: PI - Runtime x PI - Estimated 86

7 A multiple-objective control approach 91

7.1 Context and motivation . 91

7.2 Definition of a controller for a cost variable 92

CONTENTS x

7.2.1 Business model . 93

7.2.2 Gain scheduling control . 93

7.3 Definition of a multiple objective controller 95

7.4 Evaluation . 97

7.4.1 Experimental design . 98

7.4.2 Scenario V: SIMO PI x Independent control 101

8 Conclusions 109

A Descriptive analysis of experimentation data 135

A.1 Scenarios I and II: Proportional-Integral x Fixed Action 135

A.1.1 Tracked error . 135

A.1.2 Replica allocation . 139

A.1.3 Response time . 143

A.1.4 Data variability . 143

A.2 Scenario III: Analytic PI x Manual PI . 144

A.2.1 Tracked error . 144

A.2.2 Replica allocation . 147

A.2.3 Response time . 150

A.2.4 Data variability . 151

A.3 Scenario IV: PI - Runtime x PI - Estimated 151

A.3.1 Tracked error . 152

A.3.2 Replica allocation . 154

A.3.3 Response time . 156

A.3.4 Data variability . 157

A.4 Scenario V: SIMO x Independent control 158

A.4.1 Tracked error . 158

A.4.2 Replica allocation . 161

A.4.3 Response time . 163

A.4.4 Data variability . 164

CONTENTS xi

B Statistical analysis of experimentation data 165

B.1 Scenarios I and II: Proportional-Integral x Fixed Action 165

B.1.1 Replica allocation . 165

B.1.2 Tracking of the reference value . 167

B.2 Scenario III: Analytic PI x Manual PI . 168

B.2.1 Tracking of the reference value . 168

B.2.2 System response time . 169

B.3 Scenario IV: PI - Runtime x PI - Estimated 170

B.3.1 Replica allocation . 170

B.3.2 System response time . 171

B.4 Scenario V: SIMO x Independent control 172

B.4.1 Replica allocation . 172

B.4.2 Tracking of the reference value . 174

B.4.3 System response time . 177

List of Symbols

IoT - Internet of Things

DSP - Data Stream Processing

QoS - Quality of Service

SLA - Service Level Agreements

MAPE - Monitoring, Analysis, Planning and Execution

PID - Proportional-Integrative-Derivative

PI - Proportional-Integrative

MIMO - Multiple-Input, Multiple-Output

SIMO - Single-Input, Multiple-Output

FOPDT - First-Order Plus Dead Time

NRMSE - Normalized Root Mean Square Error

xii

List of Figures

2.1 Asperathos architecture. 13

4.1 Generic architecture of a feedback control loop. 35

5.1 Model 7 analysis compared with real executions on Asperathos. 53

5.2 Model 8 analysis compared with real executions on Asperathos. 53

5.3 Model 7 highlight: analysis compared with the execution number 7 on As-

perathos. 54

5.4 Model 7 analysis compared with filtered executions on Asperathos. 58

5.5 Chosen model highlighted: Model 7 analysis compared with its original and

filtered execution on Asperathos. 58

6.1 Tracking of reference value with given PI tuning configurations. 69

6.2 Analytic PI x Fixed Action - 3. 80

6.3 PI Control x Fixed Action - 1. 80

6.4 Analytic PI x Fixed Action: SLA violation ratio. 81

6.5 Analytic PI x Manual PI. 84

6.6 Analytic PI x Manual PI: SLA violation ratio. 85

6.7 PI - Estimated x PI - Runtime - Tracking of reference value. 88

6.8 PI - Estimated x PI - Runtime. 89

6.9 PI - Runtime x PI - Estimated: SLA violation ratio. 90

7.1 Architectural model of the proposed SIMO PI controller. 96

7.2 Tracking of reference value for the SIMO and independent controllers ap-

proach. 105

xiii

LIST OF FIGURES xiv

7.3 Tracked error, number of replicas and queue size metrics for the SIMO and

independent controllers approach. 105

7.4 Execution time of tasks processed using the SIMO control approach and

independent controllers. 106

7.5 Financial impact for the SIMO PI and Independent configuration. 107

7.6 SLA impact for the SIMO PI and Independent configuration. 108

A.1 Analytic PI: Distribution of the tracked error data for 4 random replications. 136

A.2 Fixed Action 3: Distribution of the tracked error data for 4 random replications.136

A.3 Fixed Action 1: Distribution of the tracked error data for 4 random replications.137

A.4 Analytic PI X Fixed Action 1 x Fixed Action 3: Histogram distribution of

the averaged tracked error data for each treatment. 138

A.5 Analytic PI X Fixed Action 1 x Fixed Action 3: Boxplot distribution of the

averaged tracked error data for each treatment. 139

A.6 Analytic PI: Distribution of the replica allocation data for 4 random replica-

tions. 140

A.7 Fixed Action 3: Distribution of the replica allocation data for 4 random repli-

cations. 140

A.8 Fixed Action 1: Distribution of the replica allocation data for 4 random repli-

cations. 141

A.9 Analytic PI X Fixed Action 1 x Fixed Action 3: Histogram distribution of

the averaged replica allocation data for each treatment. 142

A.10 Analytic PI X Fixed Action 1 x Fixed Action 3: Boxplot distribution of the

averaged replica allocation data for each treatment. 142

A.11 Analytic PI X Fixed Action 1 x Fixed Action 3: Distribution of the system

response time data for 4 random replications.. 143

A.12 Analytic PI - Constant: Distribution of the tracked error data for 4 random

replications. 145

A.13 Manual PI - Constant: Distribution of the tracked error data for 4 random

replications. 145

LIST OF FIGURES xv

A.14 Analytic PI - Constant X Manual PI - Constant: Histogram distribution of

the averaged tracked error data for each treatment. 146

A.15 Analytic PI - Constant X Manual PI - Constant: Boxplot distribution of the

averaged tracked error data for each treatment. 147

A.16 Analytic PI - Constant: Distribution of the replica allocation data for 4 ran-

dom replications. 148

A.17 Manual PI - Constant: Distribution of the replica allocation data for 4 random

replications. 148

A.18 Analytic PI - Constant X Manual PI - Constant: Histogram distribution of

the averaged replica allocation data for each treatment. 149

A.19 Analytic PI - Constant X Manual PI - Constant: Boxplot distribution of the

averaged replica allocation data for each treatment. 149

A.20 Analytic PI - Constant X Manual PI - Constant: Distribution of the system

response time data for 4 random replications.. 150

A.21 Analytic PI - Estimated: Distribution of the tracked error data for 4 random

replications. 152

A.22 Analytic PI - Runtime X Analytic PI - Estimated: Histogram distribution of

the averaged tracked error data for each treatment. 153

A.23 Analytic PI - Runtime X Analytic PI - Estimated: Boxplot distribution of the

averaged tracked error data for each treatment. 153

A.24 Analytic PI - Estimated: Distribution of the replica allocation data for 4

random replications. 154

A.25 Analytic PI - Runtime X Analytic PI - Estimated: Histogram distribution of

the averaged replica allocation data for each treatment. 155

A.26 Analytic PI - Runtime X Analytic PI - Estimated: Boxplot distribution of the

averaged replica allocation data for each treatment. 156

A.27 Analytic PI - Runtime X Analytic PI - Estimated: Distribution of the system

response time data for 4 random replications.. 157

A.28 SIMO PI x Independent: Distribution of the performance tracked error data

for 1 random replication. 159

LIST OF FIGURES xvi

A.29 SIMO PI x Independent: Histogram distribution of the averaged perfor-

mance tracked error data for each control preference. 160

A.30 SIMO PI x Independent: Boxplot distribution of the averaged performance

tracked error data for each control preference. 160

A.31 SIMO PI x Independent: Distribution of the replica allocation data for 1

random replication. 161

A.32 SIMO PI x Independent: Histogram distribution of the averaged replica al-

location data for each control preference. 162

A.33 SIMO PI x Independent: Boxplot distribution of the averaged replica alloca-

tion data for each control preference. 162

A.34 SIMO PI x Independent: Distribution of average system response time data

for 5 random replications. 163

List of Tables

5.1 Model NRMSE. 52

6.1 PI Tuning Configuration . 68

6.2 Factors for the experiments with PI and Fixed Action controllers. 74

6.3 Treatments for the experiments with PI and Fixed Action controllers. 75

6.4 Configuration for the PI-Fixed set of experiments. 76

6.5 Rate of items processed on time statistical observations for the PI x Fixed

Action - 3 scenario. 77

6.6 SLA violation rate statistical observations for the PI x Fixed Action - 3 scenario. 77

6.7 Rate of items processed on time statistical observations for the PI x Fixed

Action - 1 scenario. 78

6.8 SLA violation rate statistical observations for the PI x Fixed Action - 1 scenario. 78

6.9 Configuration for the Analytic-Manual PI set of experiments. 82

6.10 Replica allocation statistical observations for the Analytic PI x Manual PI

scenario. 83

6.11 Configuration for the Runtime-Estimated PI set of experiments. 86

6.12 Tracked error statistical observations for the PI - Runtime x PI - Estimated

scenario. 87

7.1 Business model for the cost controller. 94

7.2 Factors for the experiments with SIMO and independent controllers. 99

7.3 Treatments for the experiments with SIMO and Independent controllers. . . 101

7.4 Total execution cost statistical observations for the SIMO PI (0.2) x Indepen-

dent scenario. 102

xvii

LIST OF TABLES xviii

7.5 Total execution cost statistical observations for the SIMO PI (0.5) x Indepen-

dent scenario. 102

7.6 Total execution cost statistical observations for the SIMO PI (0.8) x Indepen-

dent scenario. 103

7.7 Averages of the metrics analyzed for each control preference for the SIMO

PI x Independent scenario. 103

7.8 P-values of each control preference for the SIMO PI x Independent scenario. 104

A.1 Data variability considering replica allocation, tracked error and system re-

sponse time for the PI x Fixed Action scenario. 144

A.2 Data variability considering replica allocation, tracked error and system re-

sponse time for the Analytic PI x Manual PI scenario. 151

A.3 Data variability considering replica allocation, tracked error and system re-

sponse time for the PI - Runtime x PI - Estimated scenario. 158

A.4 Data variability considering replica allocation, tracked error, total cost and

system response time for the SIMO PI x Independent scenario. 164

B.1 Replica allocation statistical observations for the PI x Fixed Action - 3 scenario.165

B.2 Replica allocation statistical observations for the PI x Fixed Action - 1 scenario.166

B.3 Tracked error statistical observations for the PI x Fixed Action - 3 scenario. 167

B.4 Tracked error statistical observations for the PI x Fixed Action - 1 scenario. 168

B.5 Tracked error statistical observations for the Analytic PI x Manual PI scenario.169

B.6 Rate of items processed on time statistical observations for the Analytic PI x

Manual PI scenario. 169

B.7 SLA violation rate statistical observations for the Analytic PI x Manual PI

scenario. 170

B.8 Replica allocation statistical observations for the PI - Runtime x PI - Esti-

mated scenario. 171

B.9 Rate of items processed on time statistical observations for the PI - Runtime

x PI - Estimated scenario. 171

B.10 SLA violation rate statistical observations for the PI - Runtime x PI - Esti-

mated scenario. 172

LIST OF TABLES xix

B.11 Replica allocation statistical observations for the SIMO PI (0.2) x Indepen-

dent scenario. 173

B.12 Replica allocation statistical observations for the SIMO PI (0.5) x Indepen-

dent scenario. 173

B.13 Replica allocation statistical observations for the SIMO PI (0.8) x Indepen-

dent scenario. 173

B.14 Performance controller: tracked error statistical observations for the SIMO

PI (0.2) x Independent scenario. 174

B.15 Performance controller: tracked error statistical observations for the SIMO

PI (0.5) x Independent scenario. 175

B.16 Performance controller: tracked error statistical observations for the SIMO

PI (0.8) x Independent scenario. 175

B.17 Cost controller: tracked error statistical observations for the SIMO PI (0.2)

x Independent scenario. 176

B.18 Cost controller: tracked error statistical observations for the SIMO PI (0.5)

x Independent scenario. 176

B.19 Cost controller: tracked error statistical observations for the SIMO PI (0.8)

x Independent scenario. 177

B.20 Rate of items processed on time statistical observations for the SIMO PI (0.2)

x Independent scenario. 178

B.21 SLA violation rate statistical observations for the SIMO PI (0.2) x Indepen-

dent scenario. 178

B.22 Rate of items processed on time statistical observations for the SIMO PI (0.5)

x Independent scenario. 179

B.23 SLA violation rate statistical observations for the SIMO PI (0.5) x Indepen-

dent scenario. 179

B.24 Rate of items processed on time statistical observations for the SIMO PI (0.8)

x Independent scenario. 180

B.25 SLA violation rate statistical observations for the SIMO PI (0.8) x Indepen-

dent scenario. 180

Chapter 1

Introduction

1.1 Context and motivation

The ability to efficiently process large amounts of data, such as financial transactions, re-

quests to a web server or data coming from Internet of Things (IoT) sensors, is a persis-

tent and highly desired goal for many distributed systems. One of the reasons for this

is that, in some cases, the value associated with the data quickly drops after it was col-

lected. For example, a log analysis software can automatically detect security attacks

to a system, helping to contain or even prevent possible damage, but for that, such data

needs to be analyzed as quickly as possible or any reaction could be delayed. Another

example are social networks that want to quickly find what are the trending topics at the

moment, and then deliver this content to their users before the information becomes ob-

solete. The processing demands of these workloads led to the development of the Data

Stream Processing (DSP) paradigm, where data arrives continuously and needs to be pro-

cessed in real time, according to a given arrival rate of new requests [171; 136; 127;

162].

Because data arrives in a continuous stream, DSP applications are commonly of long

duration and subject to a variety of conditions in their execution environment, often in an

unpredictable way. In this case, it is important to have the ability to adapt well to these

scenarios. Furthermore, it is essential that during this process, Quality of Service (QoS)

goals are maintained in accordance with the user’s definitions. The solutions documented in

the literature present a broad view of mechanisms, architectures and methodologies aimed at

1

1.1 Context and motivation 2

adapting DSP systems [10; 19; 85; 149; 143].

In this context, at the infrastructure level, adaptation consists mostly of the process known

as resource automatic scaling [143; 161; 142; 115]. The rise of cloud elasticity solutions has

increasingly attracted web application providers to move their workloads to the cloud [96;

165; 11]. By definition, the resource auto scaling problem for this type of application consists

of provisioning or removing a set of resources autonomously and dynamically, lowering

execution costs, and satisfying Service Level Agreements (SLA). If we consider an scenario

where there is an increase in requests continually arriving at a web server, the available

resources will become congested, forcing the automatic scheduler to add more resources to

the infrastructure. The opposite also applies when the number of requests drops drastically, in

which case the scheduler removes resources according to this new demand. This is a classic

problem in the context of automatic scaling and system adaptation, commonly abstracted as

a MAPE (Monitoring, Analysis, Planning and Execution) control loop [97].

Each of these phases presents its challenges, but for the understanding of this work, we

highlight Monitoring and Planning. To determine whether any action should be taken on the

system, it is initially necessary to monitor its behavior. In this case, the first challenge is to

define good metrics with regards to the relevant QoS goals, whether they are performance

or cost related, or even customized at the application level. Determining the monitoring

interval is also important, as it can result in a costly process, for example, when the time

grain between collections is very small, which can generate a high load on the system, or

when the metrics of interest are highly customized, derived from other data that has yet to be

collected and processed as well. The Planning phase estimates the amount of resources that

must be provisioned. This is a difficult task because the scheduler needs to quickly determine

the number of resources needed, without actually observing the behavior of the system under

these conditions, based only on the model of the real application [138].

Although new paradigms and techniques for monitoring, planning and adapting DSP

systems are continually evolving, many of the proposed solutions do not have the theo-

retical basis necessary to guarantee high levels of performance, accuracy and validity in

their execution. Considering this, control theory can be a powerful tool to help systems

that seek to maintain QoS goals in the context presented so far. Given their analytical ap-

proach and the variety of techniques used in their design, formal controllers can provide

1.1 Context and motivation 3

guarantees in terms of effectiveness when tracking the variables of interest. Control theory

tries to solve the challenges in the field of computing systems in different scopes [12; 43;

56], having expanded its contributions to software adaptation in recent years [60; 61; 62;

134].

However, even with the observed advances, applying control techniques in computer

systems still presents itself as a challenge [107; 79; 81]. In summary, we can highlight

two main concerns: (i) the difficulty in abstracting the complex behavior of software into

a suitable mathematical form for controller design, and (ii) the lack of methodologies and

research in Software Engineering and Distributed Systems addressing solutions and control

modeling in a robust and more generalized way [64]. Specifically, software applications can

have complex, often non-linear, interactions with the hardware that support their execution,

in addition to dynamic changes resulting from fluctuations in workload, for example, that

can invalidate a model previously effective.

Considering this, in order to obtain mathematical models for computing systems, sev-

eral methods of system identification can be used [109]. Generally speaking, these methods

attempt to obtain an accurate model generated from input and output data collected from a

running system. In this context, there are the First-Order Plus Dead Time systems, which

are the object of study of the solution proposed by this work. First-order systems are those

in which the relationship between input and output can be translated into a first-order differ-

ential equation. Thus, it can be said that such models are an approximation of the dynamic

response of a process variable of a system to a given influence factor. FOPDT modeling has

been widely used to capture process dynamics for the purpose of designing controllers for

various systems, and has also been widely studied in the context of several works [27; 152;

40; 17; 168; 114].

Thus, among the benefits acquired when using analytical models to generate equations

capable of describing a system, is the ability to extend the applicability of the controller

design methodology to any system that can be formalized through its intermediate model.

This means that, for example, defining and evaluating a control approach for systems aimed

at DSP applications would allow the construction of controllers for a variety of systems,

respecting their specificities, that closely resemble this model.

In this process, to better understand how to model such systems and build controllers,

1.1 Context and motivation 4

it is important to understand the concept of Feedback Control, commonly used in efforts to

integrate control theory into computer systems [92]. Such an approach consists of using the

system’s output to determine adjustments to its input. This output is then compared to a

given user-defined reference value, resulting in an error signal that is used by the controller

to generate a corrective action on the system. By definition, the main purpose of a feedback

system is to track a reference value while optimizing three aspects: (i) minimize the delay

until the system reaches its expected state; (ii) minimize exaggerated corrective actions that

can lead to over-provisioning of resources; and (iii) minimize the steady-state error, that is,

the difference between the system output and a given reference value.

Considering this, any function that computes an output based on an input can be used

as a controller in a feedback loop. Still, Proportional-Integral-Derivative (PID) is consid-

ered to be the most studied and used in practice given its level of robustness, clarity and

simplicity [150; 92; 69; 154; 100; 70]. In general terms, this controller makes use of three

components called proportional, integral and derivative. The first acts proportionally on

the absolute error, while the second considers an accumulation of tracked errors, being es-

pecially useful to reduce steady-state errors. The derivative controller, on the other hand,

makes use of the tendency to increase or reduce the error, being known as the control that

tries to predict the future. It is important to note that tuning such gains is not an easy task,

especially for less experienced users. Poor tuning can, for example, destabilize the system,

increasing overshoot, delay, and consequently, the overall performance of the application

being processed.

These controllers, however, are widely associated with systems that seek to control only

one output acting on a single input, while several systems may be interested in controlling

multiple outputs simultaneously. Control theory has evolved to define different approaches

to deal with this use case. For example, MIMO (Multiple-Input, Multiple-Output) con-

trollers act on multiple inputs controlling multiple outputs. Similarly, SIMO (Single-Input,

Multiple-Output) controllers generate a single action to be applied over a given input, while

looking at multiple outputs [135]. Another possible approach, for example, suggests the use

of independent controllers acting on the system. However, the application of these types of

controllers to DSP systems faces the same problems regarding their modeling, as mentioned

above, adding the need to deal with multiple variables of interest simultaneously, which can

1.2 Objectives 5

also be conflicting in some manners.

Considering this, the objectives of this work are defined below.

1.2 Objectives

This work aims to apply and evaluate the use of control theory methodologies in micro-batch

DSP systems. The scope here includes mainly the use of control strategies to model and

orchestrate DSP systems with multiple objectives in order to provide solutions that maintain

QoS goals based on performance and cost metrics. We also want to evaluate the applicability

of system identification methods, such as the use of First-Order Plus Dead Time (FOPDT)

models, regarding their effectiveness and accuracy in describing the behavior of micro-batch

DSP systems.

In order to achieve the main objectives described above, specific goals of this work are

as follows:

• Apply system identification methods to formalize the considered system;

• Evaluate how well FOPDT models describe the behavior of the considered system;

• Propose PID controllers aiming to track performance and cost metrics, both indepen-

dently and simultaneously (SIMO approach);

• Tune the proposed PID controllers analytically, following strategies described in the

literature;

• Integrate the proposed controllers to Asperathos by customizing control and monitor-

ing plugins for the system;

• Compare the proposed controllers to different control approaches such as fixed action,

manual tuning of PID gains, and independent controllers acting simultaneously on the

system;

• Evaluate the proposed controllers regarding system throughput, resource allocation,

execution cost and SLA violation when running an application that disaggregates en-

ergy data;

1.2 Objectives 6

• Provide insights into the challenges related to the applicability of control theory con-

cepts to micro-batch DSP systems;

1.2.1 Methodology

In terms of the methodology followed to achieve the desired goals, for the construction of

the proposed FOPDT model, we collected data that reflected the behavior of the Asperathos

system, in terms of its input and output metrics, when executing an application that disag-

gregates energy data using Non-Intrusive Load Monitoring (NILM) techniques.

Note that neural networks are popularly used to classify data, therefore, the application

used to generate such model could consist of a variety of other classification algorithms. We

also consider continuous monitoring environments, where the number of sensors does not

change abruptly, and the tasks are considered to be homogeneous, which means they take

approximately the same amount of time to finish.

Moreover, the model was generated using Matlab’s System Identification Toolbox [120].

To evaluate that, we used the Normalized Root Mean Square Error (NRMSE) metric to

determine how close the model is to represent the real system.

In order to analytically tune the performance PID controller, we used the generated

FOPDT model together with Matlab’s Control System Toolbox [118] and PID Tuner [119]

component. For the SIMO approach, the methodology observed on the literature was used

to implement the combination of the outputs for the considered intermediate controllers. Be-

sides that, a utility function was defined to determine the level of user preference for each

type of control, either focused on performance or on cost metrics.

To evaluate that, the defined experimental design presented a comparative analysis of

scenarios composed of the different control approaches considered in the scope of this work.

To have a general understanding of the experiment results, a descriptive analysis of the col-

lected data was presented. Besides that, to analyze the significance of such results, a t-test

analysis was performed. The control solutions were evaluated in terms of system throughput,

resource allocation, execution cost and SLA violation.

1.3 Contributions 7

1.3 Contributions

Contributions of this work include the use of system identification methods for modeling the

system used as a use case, based on FOPDT models, followed by an evaluation of this mod-

eling, showing its strengths and weaknesses, its effectiveness and accuracy in describing the

behavior of the system and how we can benefit from using filters. The model was generated

using a disaggreation algorithm based on NILM techniques. Since neural networks are com-

monly used to classify data, we could generalize the approach in terms of other classification

algorithms with the same structure as the disaggregation one.

Furthermore, a PID controller is proposed to show how to apply this solution when trying

to maintain QoS metrics and, from that, we present an analytical approach to tune the con-

troller based on the initially proposed FOPDT model. It is important to highlight that, after

the tuning techniques were applied, the derivative term did not pose as a significant factor

to influence the given PID controller towards stability. In fact, the derivative term ended up

making the system noisy, which negatively affected the output we were trying to obtain. This

way, the final proposal is a Proportional-Integral (PI) controller, that was later evaluated.

In order to further evaluate the control methods applied here, we also propose a SIMO

controller responsible for combining actions based on performance and cost metrics. For

this, two different controllers were implemented, one for each type of metric of interest,

being the SIMO controller responsible for combining the outputs of both, and applying a

single corrective action on the system. The solution uses a utility function that allows users

to prioritize the considered metrics according to their needs, and consequently, determine the

weight of each control action to be combined. From the experiments, we saw that this helps

to deal with conflicting interests and generate improvements in resource allocation.

To orchestrate the application we used Asperathos [6], a framework that automates the

execution of data processing applications while maintaining custom QoS objectives. This

framework uses Kubernetes [8] clusters to deploy containerized applications and process a

set of tasks organized as jobs. In addition to that, its architecture allows the customization

of plugins, which enabled the integration of the controllers and monitors proposed here, as

well as the configuration necessary for its operation.

To validate the solution, we created a Kubernetes job that disaggregates a stream of

1.4 Summary 8

micro-batches of energy data, collected from sensors and meters distributed in houses, build-

ings and industries [3]. From this, the controllers were evaluated in different scenarios. Re-

sults show that the PI controller performed better when compared to controllers that act on

a fixed step, while the SIMO controller behaved better than scenarios in which the cost and

performance controllers acted simultaneously. Besides that, we learned that the weight de-

fined by users for each metric directly impacts how well each controller is able to follow its

reference signal, and consequently, in breaking SLA agreements.

1.4 Summary

This work is organized as follows. In Chapter 2 important concepts for the understanding

of this work are presented, such as Quality of Service, container orchestration and the As-

perathos framework. Then, Chapter 3 presents an overview of the literature in which this

research is inserted. In Chapter 4, we deepen the knowledge about control theory, and a

formal definition of PID controllers, which is one of the objects of study of this work.

In Chapter 5 we present how the system was modeled using FOPDT-type models, in

addition to an evaluation of their ability to describe the system addressed. Then, Chapter 6

presents the proposed PI controller with a focus on performance metrics, how its gains were

tuned, as well as an evaluation that used Asperathos and an energy data processing applica-

tion. In Chapter 7 we present a different controller with a focus on cost metrics, as well as the

SIMO controller resulting from the combination of the control actions of this controller and

the first one focused on performance metrics. We also present an statistical analysis of the

data collected for the evaluation of the proposed approaches, better detailed on Appendix B,

and a descriptive analysis on Appendix A.

Finally, Chapter 8 presents the conclusions of this work as well as some future activities

that can be performed to extend this thesis.

Chapter 2

Background

2.1 Quality of Service

Quality of Service (QoS) can be defined as a characteristic related to the behavior of a given

service, which determines the degree of satisfaction of a user when using it. For example, the

study of QoS in networks, in its various subfields, comprises a set of service requirements

to be met by the network while transporting a data stream [54]. In this context, possible

metrics to consider are throughput, packet loss rate, delay and jitter, as well as reliability and

availability measures and models that generally define the performance of a network.

On the other hand, as a concept, QoS can also be extended beyond its original network-

related aspects to systems and operations. In this case, other QoS attributes are widely used

in the evaluation of various systems, such as response time, throughput, failure probability,

availability, among others [172]. Often, such objectives are closely related to requirements

for the proper functioning of a given system. Therefore, when deploying applications, it is

important that customers and service providers define QoS goals, in order to formally es-

tablish expectations and obligations, allowing actions that guarantee customer satisfaction.

Furthermore, ensuring that QoS goals are met in distributed systems is fundamentally de-

pendent on characteristics that vary from application to application. That is, each customer

or service provider probably has their own interests in specific metrics to be used, as well as

what is the acceptable level of satisfaction for each of them [23].

Considering this, this work proposes a control solution for data processing applications

while maintaining QoS goals. For such applications, different metrics may be important,

9

2.2 Container orchestration 10

given, for example, the nature of its workflow. Here, we consider batch and stream process-

ing. A batch can be defined as a predefined amount of data to be processed without any

end-user interaction, within a specific time frame. On the other hand, stream processing is

characterized by a workload of unknown total size, processed in real time [26].

Thus, it is clear that controlling such applications in order to maintain QoS goals can be

a very difficult task and specific to the type of workflow considered, such as those described

above. For batch processing, metrics such as execution progress can be interesting, while for

stream processing, relevant metrics can be the rate of new work items entering the system or

the size of the queue of tasks to be processed. Thus, it is important to understand how to deal

with each of these approaches and their combination with QoS goals, in order to incorporate

control algorithms in computing systems of this type, as we will see in the applications of

interest presented in the rest of this work.

2.2 Container orchestration

By definition, container orchestrators are systems that manage clusters of machines, which

in turn, serve applications deployed in a set of containers spread across the cluster [155].

When we think of orchestration services, one of their most attractive features is the automa-

tion provided for tasks such as initialization, provisioning and deployment of resources and

applications, as well as monitoring the behavior of clusters, scheduling strategies and tol-

erance to failures. In general terms, the orchestration tool selects an appropriate host for

the container being initialized based on specific rules defined by the user, and thus, operates

them through the aforementioned functionalities.

In this context, containers offer a logical packaging mechanism that favors micro-

services, smaller units of a complete application which will run entirely within clusters of

containers, with all their requirements and dependencies. This model allows applications to

be abstracted from the environment in which they are running, ensuring that developers are

only concerned with the logic and dependencies of their systems, while operators are con-

cerned with the management and deployment of the resources themselves. Considering this,

users can create images of environments configured to run their applications, and such im-

ages can then be deployed in a container without much effort, in addition to being replicated

2.2 Container orchestration 11

as often as needed.

The commercial success of containers began with the arise of Docker, a popular con-

tainerization method supported by large platforms like Google Cloud Platform and container

orchestrators like Kubernetes. Docker makes use of Linux isolation frameworks such as ker-

nel namespaces to provide isolation from networks, filesystems, and similar resources, and

cgroups to limit the use of resources such as memory, CPU, and bandwidth. Docker even

provides access to a repository from which images can be retrieved and stored.

Considering this, the use of containers to orchestrate applications in production is contin-

uously growing. Two recent surveys produced by OpenStack [1] and Kubernetes [44], one

of the biggest container orchestrators on the market, confirm this information. OpenStack

research states that in the year 2020, 66% of their users who need containers for orchestra-

tion use Kubernetes alongside OpenStack. The Kubernetes survey, in turn, shows that in that

same year, 92% of participating users used the orchestrator for production systems, a signif-

icant increase of 300% from the 23% reported in the first survey conducted in 2016 [44]. For

example, OpenStack and Kubernetes have been used in production processing large amounts

of data by the European Organization for Nuclear Research (CERN), amounting to about 25

petabytes of analyzed data [121].

In more detail, Kubernetes, which today has one of the most active repositories on

GitHub [68], has among its most relevant features the ability to run applications in cloud

environments, given its integration with several providers. Kubernetes also allows users

to customize the deployment of their services based on the resources available from the

provider, such as SSD, network, etc. Many other functionalities are available such as restart

automation, scaling and replication, including monitoring, load balancing and fault tolerance

for federated distributed clouds.

Another example of an orchestration service known on the market is Docker Swarm [7].

It uses its cluster management capabilities to handle a set of Docker containers as a single

service, through its containerization platform, the Docker Engine. One of the great advan-

tages of this orchestrator is its compatibility with Docker, a widely used container provision-

ing service. This way, any tool that already uses Docker can use Docker Swarm to scale

seamlessly across multiple hosts.

In this work, we use a configurable framework for automation and service orchestration

2.3 Asperathos 12

called Asperathos, which supports the management of Kubernetes clusters, widely used in

the evaluation of the proposed solution. More details on how Asperathos orchestrates appli-

cations on a Kubernetes cluster can be found in Section 2.3 below.

2.3 Asperathos

Desired goals when using an orchestration service may vary depending on the application

being considered. For example, some applications aim to process their workloads in a prede-

fined time, such as batch processing, while others seek to keep the flow of tasks performed

at a certain level, such as stream processing. Regardless of the chosen metric, a smart al-

location of resources is essential to avoid a potential waste of resources, which can cause

considerable financial impacts for application managers [104].

To deal with this type of problem, we present Asperathos [6; 69; 145; 22], a framework

that provides automation in the execution of Big Data applications in the cloud, while meet-

ing predefined requirements for a certain quality of service. It also allows varied levels of

configuration particular to the application of interest being executed. In general terms, As-

perathos is composed of a set of components that communicate through REST APIs, and can

be configured to act on Kubernetes, Spark and OpenStack clusters, for example, controlling

their resources in order to maximize performance metrics of a given application.

2.3.1 Architecture

A diagram of the Asperathos architecture and how its components communicate is shown in

Figure 2.1. The system consists of three main modules and an optional one: (i) the Manager,

entry point for the user and responsible for initiating new submissions; (ii) the Monitor, in

charge of grouping and publishing metrics collected from the application; (iii) the Controller,

responsible for adjusting the amount of resources allocated to an application according to a

certain control algorithm; and (iv) the Visualizer, an optional component that makes use of

visualization tools to provide graphs about the progress of applications being executed by

Asperathos.

For a better understanding of how the solution proposed in this work makes use of As-

perathos, it is necessary to know some details about the components mentioned above:

2.3 Asperathos 13

Figure 2.1: Asperathos architecture.

Manager. Responsible for initiating new submissions and providing the necessary environ-

ment for an application to run. For example, in a Kubernetes cluster, a submission comprises

the application itself, packaged in a Docker image, and its respective parameters. The sub-

mission also contains details on the chosen control approach, e.g. controller settings, and

additional scaling options such as the desired maximum number of replicas. In addition, the

Manager is responsible for starting the other components of the system.

Monitor. Responsible for monitoring the infrastructure, platform or containers executing

a submission and collecting metrics related to both the application, for example its progress

over time, and the resources used, such as CPU and memory usage. As the metrics of interest

can vary based on user needs, Asperathos allows such specifics to be implemented through

the customization of plugins, which will be detailed later.

Controller. Responsible for triggering actions on the resources used, based on the metrics

collected by the Monitor and the QoS goals defined by the users. In this context, metrics

are retrieved from some application responsible for storing them, and for example, used to

decide whether it is necessary to increase the amount of resources to be able to finish a task

on time, while maintaining an acceptable level of QoS or, alternatively, decrease the amount

of resources and minimize costs. Such decisions are made according to the results of a given

control algorithm, which can also be customized by the user.

2.3 Asperathos 14

Visualizer. Provides a visualization platform where the user can follow the progress of

a given application through graphics and images. In general terms, the service consumes

the metrics collected by the Monitor, and from there, generates graphs that are incorporated

into a Dashboard, later accessible to the appropriate users. Currently, Asperathos provides

this Dashboard through Grafana, a well-known tool for monitoring and visualizing at the

infrastructure and application level.

2.3.2 Custom plugins

Asperathos can be tailored to the specific needs of a given application by customizing plu-

gins. As mentioned before, the plugable architecture of the components detailed in Sec-

tion 2.3.1, allows various implementations of plugins to be integrated into the system, which

is a feature used in this work for the addition of controllers and monitors that implement the

control algorithms specific to the problem we seek to solve.

As a basis for the customization developed here, we use the set of plugins named Kube-

Jobs already offered by Asperathos, which runs data processing applications in containers

inside a Kubernetes cluster. As such, the KubeJobs package implements plugins to deploy,

monitor and scale Jobs in a Kubernetes cluster.

A common workflow of an execution that used KubeJobs is detailed below:

• A given client sends a POST request to the Asperathos Manager containing a submis-

sion, and all the necessary configurations for the execution;

• The Manager creates a Redis service in the cluster, responsible for queuing the tasks

to be processed;

• The containers responsible for running the application are initialized in the cluster;

• Tasks from the Redis queue start to be consumed by the application in the containers;

• The Monitor is triggered by the Manager and periodically retrieves the number of

tasks processed from the Redis queue, or any other metrics of interest for the given

application;

2.4 Use case: Energy data processing in real time 15

• Once the metrics are published, the Manager starts the Controller, which consumes the

metrics and makes decisions about resource scaling based on some predefined control

logic;

• The process repeats until all the tasks in the queue are completed, and if all goes well,

the user-defined QoS parameters are respected.

As the workflow above suggests, Asperathos previously only supported batch processing

applications by default. Thus, especially for the Monitor, its implementation was entirely

based on the needs and demands of this type of application. For example, the performance

metrics collected by the Monitor are focused on the progress of the submission and how far

the remaining tasks are from being completed, at the same time that the QoS goals defined

for that execution are respected.

However, in order for Asperathos to be compatible with different types of applications,

especially those of stream processing, a new plugin for the Monitor was developed. Its focus

is on collecting metrics related to a stream of data, such as the arrival and output rates of

items in the system. From the point of view of QoS metrics, new reference values become

of interest, which means that, in the new plugin, the way we calculate how far the system is

from meeting the expectations for these metrics has also been modified. Details about this

implementation will be presented later in this work, in Chapter 6.

2.4 Use case: Energy data processing in real time

Studies show that the energy consumption of commercial and residential buildings around

the world is estimated at 30 − 40% of what is currently generated [2] and, due to the in-

crease in the use of new electronic devices, between other things, this number is expected

to grow even further, increasing total energy consumption costs. Thus, it is clear that there

is a growing demand for methods that help to reduce energy expenditure, especially from

observations on how this energy is spent in practice. Based on information collected in real

time on the consumption of various appliances in a building, for example, it is possible to

generate recommendations to users in order to eliminate bad habits, such as leaving several

lights on or appliances unnecessarily turned on at night, and reduce from 5 to 15% your

2.4 Use case: Energy data processing in real time 16

current energy consumption [159; 74].

Considering this, recent energy monitoring techniques have used various algorithms

with the purpose of transforming aggregate consumption measurements into information

about the individual use of appliances. An example of such techniques is the Non-

Intrusive Load Monitoring (NILM), also known as Non-Intrusive Appliance Load Moni-

toring (NIALM) [55], which has been increasing in popularity since companies responsible

for distributing electricity began to collect more information about their customers’ energy

consumption.

Such collection takes place through the use of devices, such as sensors or energy meters,

responsible for informing in real time about the consumption of equipment connected in

a particular residence or building where they were installed. In this way, from the use of

NIALM algorithms and consequent processing of disaggregation tasks, it is possible to know

which devices have been on, for how long and even identify possible failures in the electrical

installation. It is important to note that, if not managed properly, disaggregation tasks can

accumulate, compromising the performance of the systems involved [76; 14; 55].

Thus, the application used as a use case in this work uses a NIALM technique to provide

disaggregation of consumption measurements for a system called LiteMe [3], currently in its

Beta version. LiteMe is based on Deep Neural Networks (DNNs), which, in general, receive

energy measurements from sensors installed in a given building of interest, for example, and

return the disaggregated consumption of each of the appliances in that building. Thus, real-

time recommendations are generated for both suppliers and their users, making it possible to

optimize the early detection of contracted energy usage patterns, in addition to reducing the

cost of electricity bills. In this case, customers are interested in receiving real-time informa-

tion about their consumption, such as peaks in demand that can lead to penalties. At the same

time, the company providing such recommendations wants to satisfy these requirements as

quickly as possible while minimizing computational costs.

Finally, in its Beta version, LiteMe’s NIALM application runs on a single machine, sup-

porting only a few users. However, for the version used in its release, the current workload

is expected to increase at least a hundredfold, making the management and processing of

such data much more cost-relevant, for example. Thus, a low-cost, distributed approach that

still respects the user-defined QoS goals becomes quite useful. By using Asperathos together

2.4 Use case: Energy data processing in real time 17

with the proposed control solution, it is possible to orchestrate a cluster of machines serv-

ing multiple containers running NIALM, making it possible to process a higher number of

measurements through a Job that performs a stream of disaggregation tasks.

2.4.1 The workload

Considering this use case, in order to be able to run LiteMe NIALM instances on Asperathos,

the framework used for container orchestration in this work, some adaptations were made.

To provide such an orchestration, Asperathos requires that the executed application can be

replicated, and that the work items to be processed are different from one another. However,

for each disaggregator, LiteMe’s NIALM application originally consumes data coming from

a specific sensor, repeatedly checking for new measurements, which makes it difficult to

replicate it in a distributed way by defining different work items.

Thus, our approach implements an adapted disaggregation model that processes mea-

surements from various sensors in a predefined time interval. Such configuration becomes

a work item of a Job in Asperathos, including the identifier of a sensor, a given time inter-

val and, as required by the neural network used by LiteMe, a matrix containing the history

of measurements previously disaggregated, which will help in the predictions made by the

model. This approach was properly validated, comparing the results obtained in a standard

run of NIALM with the results of the Job in Asperathos, which proved to be 100% compati-

ble.

For the experiments and models generated here, we use a sample of 3600 real disaggre-

gation tasks, regarding sensors used by LiteMe’s solution. A snippet of this data containing

the items sent to Asperathos can be seen below:

1 5 c 4 9 b c 2 8 4 f 0 c c c f e c 7 6 f e b b a ; 1 2 / 0 2 / 2 0 2 0 1 4 : 1 7 : 0 0 ; 1 2 / 0 2 / 2 0 2 0 1 4 : 1 8 : 0 0 ; 0 . 0 0 . 0

0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 42622.85572600632 8843.726676422843

43390.676841217086 8664.516311959386292349306

2 5 c 4 9 b c 2 8 4 f 0 c c c f e c 7 6 f e b b a ; 1 2 / 0 2 / 2 0 2 0 1 4 : 1 9 : 0 0 ; 1 2 / 0 2 / 2 0 2 0 1 4 : 2 0 : 0 0 ; 0 . 0 0 . 0

0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

2.4 Use case: Energy data processing in real time 18

0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

0 . 0 0 . 0 0 . 0 42622.85572600632 8843.726676422843 43390.676841217086

8664.516311959396 42368.8547588586 8445.171428938385 41956.72369581707

8025.183906859244132366733315

3 5 c 4 9 b c 2 8 4 f 0 c c c f e c 7 6 f e b b a ; 1 2 / 0 2 / 2 0 2 0 1 4 : 1 9 : 0 0 ; 1 2 / 0 2 / 2 0 2 0 1 4 : 2 0 : 0 0 ; 0 . 0 0 . 0

0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

0 . 0 0 . 0 0 . 0 42622.85572600632 8843.726676422843 43390.676841217086

8664.516311959396 42368.8547588586 8445.171428938385 41956.72369581707

8025.183906859292941397560815

4 5 c 4 9 b c 2 8 4 f 0 c c c f e c 7 6 f e b b a ; 1 2 / 0 2 / 2 0 2 0 1 4 : 1 7 : 0 0 ; 1 2 / 0 2 / 2 0 2 0 1 4 : 1 8 : 0 0 ; 0 . 0 0 . 0

0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 42622.85572600632 8843.726676422843

43390.676841217086 8664.51631195932866083678566

5 5 c 4 9 b c 2 8 4 f 0 c c c f e c 7 6 f e b b a ; 1 2 / 0 2 / 2 0 2 0 1 4 : 1 6 : 0 0 ; 1 2 / 0 2 / 2 0 2 0 1 4 : 1 7 : 0 0 ; 0 . 0 0 . 0

0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 42622.85572600632

8843.726676422843616271886733

Every line in the snippet corresponds to an item to be processed by Asperathos. The

values are separated by a semicolon, being the first value the identifier of a sensor, the second

a given time interval and the final value is the matrix containing the history of measurements

previously disaggregated. For each replica running a Nialm instance, an item like this is

processed. Such process consists of communicating with a given database that contains the

aggregated data regarding the given sensor, for the given timestamp, and that later uses the

given matrix to perform the disaggregation.

One consideration about this workload is that, from the perspective of the neural network

used to process the data, if the values in the disaggregation matrix change, it does not make

a difference in the processing itself. Such data are the power values that enter the network,

and the magnitude of the data, in that sense, does not interfere in the processing.

2.4 Use case: Energy data processing in real time 19

If, by any means, you wish to change the number of layers or the model of the neural

network in question, it also does not affect significantly the profile of the task. For instance,

changing the number of the layers in the network can change a little the duration of the task,

but such task would still be only CPU intensive, reading and returning the same amount of

data.

Regarding the arrival rate of new work items, it does not vary in short time scales for

an environment like the one considered here, nor in seconds or even in minutes. In the

experiments later presented in Chapters 6 and 7, we consider variations that lasted a few

minutes, considering, for example, load variations that were imposed not by the increase in

the amount of data and sensors, but by data accumulation issues (e.g., a sensor that lost its

connectivity starts to slowly send the data delayed as the individual bandwidth is low).

It is also important to highlight that, for this workload we consider tasks that are homo-

geneous in size, and therefore take the same amount of time to finish its processing, which

is a characteristic of the tasks we focus on, like the disaggregation ones presented here.

Chapter 3

Related work

This chapter surveys the literature regarding the topics addressed in this work. Initially,

studies on Quality of Service, focusing on web applications and DSP systems are presented,

considering important aspects such as metrics and approaches most used in the literature for

the use cases that fit the study proposed by this work. Then, we bridge the gap between

modeling DSP systems and using control theory approaches applied to resource scaling sce-

narios. Control techniques that consider multiple variables of interest are also presented,

along with how this can be applied in the context of computing and data processing systems

discussed in this work, in addition to more specific approaches in this area such as fuzzy

logic and machine learning.

3.1 Quality of service

3.1.1 Web applications

Web applications are each day more present in the daily lives of millions of people, being

indispensable for both large companies and individual users. This translates into strict re-

quirements regarding the performance, availability and reliability of such applications. Thus,

non-functional aspects of web services started to need specific methods and tools for their

management, the best known called Quality of Service (QoS) [122].

There is a certain consensus in determining the relevant QoS dimensions in a system

as being: (i) those related to execution time, such as availability, transfer rate, reliability,

20

3.1 Quality of service 21

among others; (ii) those related to configuration and cost management, which concerns the

cost of a service and its ability to meet industry standards; and (iii) those related to security,

such as authentication, authorization, confidentiality, tracking and data encryption, among

others [45].

Within these dimensions, several works explore the challenge of maintaining QoS met-

rics in web services. Pioneers like Ranjan et al. [140] present QuID, a QoS-oriented

framework for server migration in data centers. Results showed that the proposed al-

gorithm generated up to 68% savings in resource allocation for certain workloads when

compared to static allocation techniques. In general, such techniques would have to

over-provision servers to be able to meet demand, as also noted by other works [21;

39]. Urgaonkar et al. [157], in turn, presents a solution for modeling multi-layer web ap-

plications that is based on the use of a network of queues to represent how these layers

work together to process requests. The evaluation of the model demonstrated its usefulness

in managing resources for web applications when executed under different workloads and

different operating bottlenecks.

In this context, some works [38; 20; 37] show the benefits of dynamically reallocating

resources based on workload variations rather than statically over-provisioning them. The

objective is to maintain the QoS goals of on-demand applications, that is, to adapt to their

needs as they arise. In this case, better resource utilization can be achieved, and the system

may be able to react to an unexpected increase in the considered workload. Lopes et al. [111]

addresses the problem of how a web application provider should plan long-term reservation

contracts with an IaaS provider, so that its profitability is increased. For this, a model is

proposed that can be used to guide this capacity planning activity.

In turn, Urgaonkar et al. [158] presents techniques for provisioning CPU and network

resources on shared resource platforms, running potentially antagonistic applications. The

nodes that make up the cluster are monitored at the kernel level, and this data is used to guide

the allocation of applications to run on them. Then, techniques are proposed to over-reserve

the resources of the cluster in a controlled manner, so that the platform can maximize its

revenue, while providing QoS guarantees for the given web applications. However, the pro-

posed system does not describe any approach to continuous monitoring of the environment,

which is a limitation. In addition, provisioning decisions are based on the steady state of the

3.1 Quality of service 22

application, rather than considering rapidly changing demands.

Yu and Lin et al. [170], in turn, propose a broker for web services with QoS restrictions.

Each request arrives with a specific QoS goal associated with it. The broker then accepts

requests only if the service’s current workload allows QoS goals to continue to be main-

tained. Algorithms for resource allocation and reconfiguration of the already provisioned

architecture are also proposed. However, the reference scenario only considers situations in

which many customers are requesting the same type of service, limiting the evaluation of the

approach.

Finally, Rahman et al. [139] presents challenges when describing QoS requirements for

web applications. Based on a review of the state of the art in the area, the main QoS concerns

and characteristics to be inserted in the proposed model are selected, whose objective is

to predict QoS metrics during the development and implementation of web applications.

Accordingly, Guitart et al. [72] presents a systematic review on the performance management

of web services. It describes approaches to request scheduling, policy determination, and

resource provisioning based on QoS objectives.

These studies are related to this work given that web requests are a continuous flow of

small tasks to be processed, fitting the type of application of interest proposed here, which are

micro-batch DSP systems. The basis for the provisioning and scaling of web applications,

in addition to their monitoring, can be used together with control theory solutions to control

QoS metrics, objective of this work. In this case, this area of study can also be considered

the basis for the development of several approaches that make use of these metrics as part

of their systems, as is the case of the DSP paradigm that we will address in the next section,

and which is also part of the context of the solution proposed here.

3.1.2 Data stream processing

Data Stream Processing has emerged over the years as the reference paradigm for analyz-

ing fast, continuous information streams, which often need to be processed with low latency

to extract valuable information from raw data. When dealing with unlimited data streams,

DSP applications are typically long-lived and therefore likely to experience varying work-

loads or working conditions over time. In order to maintain a good level of service given

this variability, a lot of effort was spent on studying strategies for adapting DSP systems at

3.1 Quality of service 23

runtime.

Dayarathna and Perera [49] review DSP systems in the broader field of event processing,

discussing the architectural choices behind the most popular platforms and recent advances

in applications, e.g. online learning, graph analysis, and more. In general lines, a systematic

literature review of works dealing with the runtime adaptation of DSP systems is presented

by Qin et al. [137]. Martin et al. [116; 117] present the applicability of a distributed tool for

processing streams of events called StreamMine3G together with the analysis of data from

social networks in real time. The parallelization and scaling of operators are extensively re-

viewed by Röger and Mayer [143], discussing issues associated with the implementation and

control of application elasticity. Assunção et al. [53] also analyzes solutions for elasticity of

DSP systems, with emphasis on systems deployed in highly distributed computing environ-

ments. As elasticity is considered a fundamental characteristic for modern DSP systems, a

large number of works have investigated solutions for operator scheduling. It can be seen

that the vast majority of them focus on the horizontal scaling of resources [33; 34; 66; 67;

73; 110].

In this context, Vijayakumar et al. [162] considered the problem of provisioning re-

sources for DSP applications in virtualized or cloud environments. An algorithm capable of

dealing with dynamic patterns in the arrival of data was developed. The algorithm promises

to avoid any slowdowns in the processing of applications, while also conserving previously

configured budgets to be spent on resources. The results show that the resource provisioning

algorithm correctly converges to the optimal CPU allocation based on the data arrival rate

and the respective computational needs. Furthermore, the algorithm proves to be effective

even when significant changes occur in data arrival rates.

Ishii et al. [89], in turn, propose a system called ElasticStream that dynamically allo-

cates cloud computating resources to a streaming data processing application. To minimize

the amount spent when using a cloud environment, and at the same time meet the SLA, a

linear programming problem was formulated to optimize costs as a trade-off between ap-

plication latency and amount spent. A system was also implemented to dynamically add or

remove computing resources on top of the middleware of the DSP system, named System S.

It was then confirmed that the proposed approach could save 80% of costs while maintaining

application latency compared to a less intelligent approach.

3.1 Quality of service 24

On another front, Das et al. [47] explores the effects of the batch size of data to be

processed on the performance of streaming workloads. He points out that a larger batch size

can increase the end-to-end latency between receiving data and getting the corresponding

result and that, ideally, the system should operate using a batch size that minimizes latency,

ensuring that data is processed as fast as it is received. Thus, a simple but robust control

algorithm is proposed, which automatically adapts the batch size according to the application

needs. Experiments have shown that it is possible to guarantee system stability and low

latency for a wide range of workloads despite wide variations in data rates and operating

conditions.

The definition of the metrics of interest to adapt DSP applications at runtime is an impor-

tant step in the monitoring process of system elasticity. Application-oriented metrics capture

aspects of the operation that can be directly perceived by users, for example, latency and pro-

cessing accuracy. On the other hand, system-oriented metrics capture aspects of the system

that can impact the application, such as resource utilization. Among application-oriented

metrics, the most popular are latency and throughput. Latency plays an important role as

DSP applications are often required to process events with near real-time requirements, and

many adaptation solutions rely on latency as their primary performance metric [66; 94; 164;

163; 106]. In addition to latency, another popular performance metric is throughput [167;

93; 87; 36], which measures the number of work items processed per unit of time. This is

the metric also chosen in the context of this work to be evaluated during the processing of

the considered micro-batches of data.

In contrast, among the system-oriented metrics, the most used is resource utilization in

general [33; 67; 73; 77; 28], which captures the utilization level of a computing resource,

usually CPU. As in different application domains, usage is often used in conjunction with

threshold-based adaptation policies, where actions are triggered whenever the usage level

violates a predefined threshold value [67; 33; 82]. Such approaches tend to be more heuristic,

and depend on a prior knowledge of the application’s operation to accurately determine good

limits that favor the system, and consequently, the data processing.

Some works explore control theory methods to design adaptation policies. In this

case, three main entities are identified: perturbation, decision variables and system con-

figuration. Disturbances represent dynamics that cannot be controlled, although their

3.2 Provisioning and scaling of resources 25

future value can be predicted (at least in the short term), while decision variables are

mapped to adaptation actions. Control theory approaches are used in conjunction with a

variety of adaptation mechanisms: operator scaling [28; 84; 50], load distribution [123;

124], backpressure [42], load shedding [95], among others. For example, Mencagli et

al. [123] uses PID controllers and fuzzy logic in their solution for adapting DSP systems.

PID controllers regulate load distribution between parallel operator instances, while fuzzy

logic controls scheduling actions on longer timescales. Kalyvianaki et al. [95], instead, de-

signs a discrete-time control algorithm for load shedding, which at each time step selects the

number of tuples to be processed in order to maintain processing latency within a predefined

value.

In the context of this work, the adaptation of DSP systems through the use of control

theory methods was widely discussed. For example, the studies listed helped in choosing

the QoS metrics of interest, considering the characteristics of this type of system. However,

for cases of multi-objective control, rarely addressed in this context, there is a limitation

in terms of defining the relationship between conflicting metrics, such as those evaluated

here, performance and cost. In this case, the higher the performance, there is a tendency for

higher costs with more resource utilization, when what is normally desired by users is high

performance and low cost. Thus, determining a relationship between these variables, within

the scope of regulatory control, is one of the challenges of this work.

3.2 Provisioning and scaling of resources

3.2.1 Overview

In the context of cloud computing, to efficiently use its elasticity capabilities, it is vi-

tal to automatically and intelligently provision resources, since over-provisioning leads

to waste and unnecessary cost to users, while under-provisioning causes degradation of

the performance and violation of SLA agreements. This mechanism of dynamically ac-

quiring or releasing resources to meet varying QoS requirements is called auto scal-

ing. This is extremely important in the context of real-time adaptation of DSP systems

given the variations that may occur in the environment, in the workload, or possible dis-

3.2 Provisioning and scaling of resources 26

turbances, and which require quick actions to be able to maintain QoS metrics. Sev-

eral works are dedicated to observing the state of the art in this area of research, defin-

ing sub-areas of interest, and pointing out the advances achieved so far [148; 85; 138;

112].

Among these areas, estimating the resources to be used is one of the most important

points in the auto scaling process, as it determines the efficiency of provisioning. Its purpose

is to identify the minimum amount of resources needed to process a workload, in order to

determine if they are needed and how to perform scaling operations. An accurate estimate

allows the autoscaler to quickly converge to optimal resource provisioning. On the other

hand, estimation errors result in under-provisioning, which leads to a lengthy process and

increased SLA violations, or over-provisioning, which incurs unnecessary costs, as already

mentioned. There are several approaches to help estimate these resources, from more ba-

sic methods such as rule-based ones, to more sophisticated ones such as fuzzy inference,

mathematical modeling, others that use machine learning, and combinations between them.

Rule-based approaches are widely adopted by industry-provided autoscalers such as

Amazon’s Auto Scaling Service [4]. Its kernel is a set of predefined rules consisting of

trigger conditions and corresponding actions, e.g. "If CPU utilization reaches 70%, add 2

instances" and "If CPU utilization drops below 40%, remove 1 instance". Users can use

any metric, high or low level, to define trigger conditions, with the autoscaler’s aim being

to keep the parameters in question within the predefined upper and lower limits. Theoreti-

cally, simple rule-based approaches do not involve a precise resource estimate, which is just

determined as a fixed action, such as adding or removing a certain amount or percentage of

instances. This is considered to be the simplest version of auto scaling, typically being used

as a benchmark for comparison in works that focus on other aspects of auto scaling, such as

the work by Dawoud et al. [48], which aims to to compare vertical and horizontal scaling,

or prototyping works, as done by Iqbal et al. [88]. In the same context, Morais et al. [125]

presents an in-depth analysis of automatic and reactive provisioning services, identifying

efficiencies and limitations of the approach.

While a simple rule-based autoscaler is easy to implement, it has two significant draw-

backs. The first is that it requires detailed knowledge of application characteristics to de-

termine limits and appropriate actions. Al-Haidari et al. [15] conducted a study to show

3.2 Provisioning and scaling of resources 27

that these parameters significantly affect the performance of the autoscaler. The second is

that this approach is not able to adapt when dynamic changes occur in the workload or ap-

plication. This means that fixed values for control actions, whether scaling horizontally or

vertically, would become inappropriate when the workload changes dramatically. For ex-

ample, if the application is provisioned on 4 instances at the start, adding 1 instance will

increase the capacity by 25%. After a while, the cluster will have increased to 10 instances

due to the increased workload and adding 1 instance in this case only adds 10% to the capac-

ity. This can cause a delay in responding to sudden changes in workload, which we want to

avoid with this work.

Considering this, RightScale et al. [9] proposed an interesting variation on the simple

rule-based approach. Its central idea is to allow each instance to decide whether to shrink

or expand the cluster according to predefined rules and then use a voting approach to make

the final decision. Calcavecchia et al. [32] also proposed an approach based on decentralized

rules. In its proposal, the instances are connected as a P2P network. Each instance contacts

its neighbors to get its status, and from that, decides whether to remove itself or start a new

instance, in a probability derived from the observed status.

The solution proposed here uses basic methods of provisioning and automatic scaling

of resources, such as those based on rules and fixed actions, to evaluate the performance of

the proposed controllers in relation to these simpler approaches. In this way, we seek to fill

gaps in terms of dynamics in determining the size of the control action, and in defining the

moments when actions must be taken according to the tracking error calculation described

in detail in Chapters 4 and 6.

3.2.2 Control theory

Considering more robust approaches for resource estimation, in the context of provision-

ing and automatic scheduling are the mathematical models, abstracted in known concepts

such as, for example, queuing theory and control theory, which is the object of study of

great focus of this work. The interest in applying control theory concepts in the devel-

opment of computer systems is not recent. Some works widely reference approaches al-

ready proposed in the literature that use control techniques to try to solve problems in the

context of web applications, databases, traffic and data transfer, among others [98; 83; 18;

3.2 Provisioning and scaling of resources 28

105]. Lui Sha et al. [146] proposed the use of control theory together with queue manage-

ment to regulate resources of an Apache HTTP server. Parekh et al. [132], in turn, applied

control theory concepts to propose a solution that sought to meet QoS objectives based on

IBM Lotus Domino Server performance metrics, while Yixin et al. [51] presented a solution

to simultaneously adjust memory and CPU resources of an Apache HTTP server, based on

control techniques with multiple objectives.

In this context, Hellerstein et al. [78; 79; 81] presents a series of works that seek to expose

the challenges related to the application of control theory in the development of computing

systems, which are still relevant. Considering the provisioning of resources on demand, the

delay observed when instantiating or deleting a virtual machine is a characteristic that can

complicate the design of a given controller, depending, for example, on the frequency these

operations happen. In addition, the modeling used to describe computing systems, as a data

processing application, is a recurring challenge, including in this work. Hellerstein cites four

possible approaches, among them the use of system identification techniques and stochastic

processes such as queuing theory. Another factor observed is that control theory has been

applied in the scope of computer systems in simpler controllers, such as PI control and even

just Integral control, as presented by [132]. Furthermore, there is a dominance of solutions

that use SISO-type (Single-Input, Single-Output) controllers, as opposed to controllers with

multiple inputs and outputs such as MIMO and SIMO. Finally, Hellerstein points out that the

scientific community tends to pay little attention to the use of filters, to the choice of observed

outputs and the possible delays related to a system, which can lead to poor performance of

the developed controllers, especially resulting in a long accommodation time or significant

fluctuations.

Abdelzaher et al. [12] presents a sequence of use cases where control theory can be ap-

plied to different types of computer systems. Some examples include memory management

of database systems, control of CPU utilization in embedded, distributed and real-time sys-

tems, automation of workload management in virtualized data centers, and in performance

control and energy use in data centers. Furthermore, Maggio et al. [113] proposes a new

approach to apply methods and tools based on feedback control during the actual design

of computing systems components. This is done initially by obtaining an open-loop model

of the system to be controlled, different from the closed-loop, or feedback systems, com-

3.2 Provisioning and scaling of resources 29

monly discussed in the literature. After that, a controller model was designed and, according

to the authors, the solution is considered simpler and less computationally bulky than the

more classical approach. To support the proposed approach, a preemptive scheduler for a

multi-tasking system was developed.

Papadopoulos et al. [131] suggests in their work that the use of feedback control applied

to computing systems is still low given the complexity of defining good dynamic models of

the considered systems. Thus, an approach is proposed to model computing systems trying to

avoid the mentioned complexity, capturing only the dynamics that are really relevant to them.

In the scope considered, the author seeks to base the modeling on what he calls the physical

phenomena of a system. One of the exposed use cases is a framework to define resource

allocation, such as memory and number of servers, in order to keep the application progress

consistent with the desired throughput rate, for example. In this case, the author points out

that the phenomenon to be considered is how the progress dynamically reacts to the variation

of resources. A model is then built based on this metric alone, and is subsequently validated

to show its effectiveness in terms of the proposed reference values. With this, the author

concludes that there is validity in isolating the main physical phenomenon of the system to

build models from them.

In turn, Kihl et al. [99] discusses in their work challenges for optimizing the use of re-

sources in data centers in the cloud. For example, elasticity controllers must allocate enough

resources to a running application to provide acceptable QoS and avoid unnecessary over-

provisioning expenses. Possible solutions listed are based on machine learning algorithms,

control theory and statistical analysis of workloads. This way, a new research area named

Cloud Control is proposed, which addresses cloud management problems using control the-

ory. The promise is that such an approach will transform current data centers into dynamic

and self-managing infrastructures, guaranteeing quality of service.

Barna et al. [25] presents a control theory-based approach to automating the scaling of

web applications instantiated in a cloud environment. For this, a PID controller was designed

for a specific web application, and it was instantiated in two clouds, one public (Amazon

EC2) and another private (SAVI). The experiments showed that the controller was able to

effectively maintain given performance goals (CPU utilization) in the two clouds, which

indicated a potential portability of such controller between different cloud environments,

3.2 Provisioning and scaling of resources 30

limited by the number of experiments conducted and metrics observed. It is important to

highlight that the work considered the control of only one layer of the web application, and

the tuning of the PID controller gains was done manually, although based on a coherent line

of thought, valuing a faster response to possible values of error (high proportional), and a

slower response to accumulated errors, only when they are considered large (low integral).

The desired CPU utilization was between 70% and 40%, which is usually not the goal of

regulatory control, which aims to track a single reference value rather than a range of values.

This feature was based on the fact that the system input is the number of servers in a cluster,

which limits the controller’s action to integers, requiring these values to be rounded which

makes it difficult to keep the output exactly at a reference value. Interesting future works

include evaluating the use of PID controllers in cascade, trying to include the other layers

of the web application, with each controller responsible for acting considering a different

metric. This approach involves problems relevant to this thesis such as the combination and

orchestration of such controllers, maintaining QoS goals when provisioning resources.

In the same topic as Barna et al. [25], Cerqueira and Solis [35] proposes the use of a

PID controller to promote automatic scaling in a cloud environment, based on an efficient

allocation of the amount of containers that serve requests in a web environment. Baresi et

al. [24], in turn, presents an automatic scaling technique that allows containerized applica-

tions to scale their resources at the virtual machine and container level. This is possible

thanks to a system component that behaves like a feedback controller, based on monitoring,

analysis, planning and execution, commonly called MAPE. The presented solution extends

a self-adapting framework previously developed by the authors called ECoWare. The new

approach is decentralized, so that each layer of the considered application is provided with

a local controller, responsible for maintaining a given variable of interest, such as response

time, at acceptable levels even in the presence of disturbances. Based on control theory, this

is done by calculating the resources needed to satisfy this condition, and applying equiva-

lent actions on the system, considering its current state. The experiments showed that the

developed controller performs better than Amazon’s auto scaling functionality, also in con-

tainerized environments.

3.2 Provisioning and scaling of resources 31

Multi-objective control

In addition to using a single auto-adaptive controller, some autoscalers employ more than

one adaptive framework. In these schedulers, several non-adaptive or self-adaptive con-

trollers are connected simultaneously, which start to actively switch the control of the sys-

tem based on its performance. Self-adaptive controllers continuously adjust themselves in

parallel, however, at any given time, only the highest performing controller selected can pro-

vision resources. Patikirikorala et al. [133] employed this approach, and Ali-Eldin et al. [16]

proposed a self-adaptive switching approach based on classification of application workload

characteristics. Chen et al. [41] proposed an approach that trains multiple resource estima-

tion models and dynamically selects the one that performs best.

In this same context, Yixin et al. [52] proposes a framework to describe how we could

scale control problems in computer systems. Such framework considers two aspects, one that

scales based on the number of inputs and outputs of the system to be controlled, and another

that scales based on different control objectives. In this study, it was observed that there is a

tendency towards the development of multiple-input and multiple-output systems, motivated

by scenarios that considered various control objectives. However, such systems can end up

being complicated by potential conflicts between the objectives considered. It is also dis-

cussed how the framework can help in the decisions of decomposing a large-scale system

into smaller and, consequently, more easily manageable systems. The proposed strategies

range from centralized schemes that work well when the latency between the controller and

the system is small, to distributed approaches that are effective when the considered objec-

tives can be decomposed into independent objectives. That said, in practice there are still

cases where the latency in the communication between the controller and the system is long,

and cases where it is difficult to decompose big goals.

Thus, considering the works studied here, some challenges persist regarding the use of

control theory techniques for the scheduling of micro-batch DSP systems. Few works have

used the formal process of identifying systems to model their solutions, especially in the

context of computing systems. The same applies for tuning the gains of PID controllers,

which mostly used manual techniques to achieve the results obtained, in contrast to a more

analytical approach such as the one used in this work. In addition, the adaptation of the

approached systems has a greater focus on resources such as CPU and memory, and the hor-

3.2 Provisioning and scaling of resources 32

izontal scaling of virtual machines is still challenging given the characteristics of the control

action for this type of resource, which must be an integer. Consequently, the orchestration of

containers in the context of control theory was also little addressed in the studies considered,

which is one of the objectives of this work. Finally, works that use SIMO-type controllers

to control multiple-objective systems were more applied in the context of Engineering, as

opposed to the results proposed in the following chapters.

3.2.3 Other approaches

The auto scaling of resources based on fuzzy logic is considered an advance over the rule-

based approach, as they rely on the use of fuzzy inference, whose core is a set of predefined

if -else rules, used to make provisioning decisions. The main advantage of fuzzy inference

compared to simple rule-based reasoning is that it allows users to use linguistic terms like

"high, medium, low", rather than precise numbers to define the conditions and actions to be

taken, which makes it easier for humans to effectively represent their knowledge about the

system of interest.

Fuzzy inference works as follows: inputs are first diffused using defined membership

functions; then, such inputs are used to trigger actions related to all rules in parallel; the

results of the rules are then combined and finally used as an output for control decisions.

Representative approaches of this type include the one proposed by Frey et al. [65] and the

work done by Lama et al. [101]. Since manually designing the set of rules is a heavy task,

and these sets cannot timely handle changes in the environment and application, fuzzy logic-

based schedulers are commonly coupled with machine learning techniques to automatically

and dynamically learn such set of rules [102; 166; 91].

Tian et al. [154] presents a work that proposes an adaptive PI control system based on

fuzzy logic. Through a basic PI controller, the system is able to dynamically adjust the

proportion between incoming requests and their acceptance time, in order to reduce the

acceptance of requests when the server is overloaded. Considering that in a real Internet

environment the network and the server load continuously vary in an uncertain interval, a

fuzzy control approach was used to adaptively adjust the PI controller parameters. The re-

sults demonstrate that in a stable load environment, the proposed system works as well as

a basic PI controller, but acts much more stably and faster dealing with fluctuating loads.

3.2 Provisioning and scaling of resources 33

Another solution that applies fuzzy logic is proposed by Wei et al. in [165]. They present

an eQoS framework that monitors and controls the quality of service provided to clients on

web servers. Two control approaches to manage server resources are proposed: one based on

queuing theory and feedback control, and another based on fuzzy control within the frame-

work itself. The authors argue that the former is desirable when web servers can be charac-

terized as an M/G/1 queuing system, and if not, the fuzzy approach is more appropriate.

On another front are machine learning techniques, which are applied in resource estima-

tion to dynamically build the resource consumption model under a specific workload, also

called online learning. This way, different applications can use the schedulers without cus-

tom configurations. They are also more robust to runtime changes, as the learning algorithm

can self-adaptively adjust the model in real time to any reasonable event. Machine learn-

ing algorithms are often implemented as feedback controllers. Despite their ease of use and

flexibility, machine learning approaches have one major drawback. It takes time for them to

converge to a stable model and therefore this can lead to the autoscaler performing poorly

during the active learning period. Of course, the performance of the application is also af-

fected in this process. Furthermore, it is difficult to predict the time it takes to converge, as it

varies from case to case and from algorithm to algorithm. Online learning used by existing

autoscalers can be divided into two types: reinforcement and regression learning [138].

To exemplify, here we cite examples of works that use reinforcement learning, which

aims to allow the system to learn how to adaptively react in a specific environment to

maximize its gain or reward. This approach is suitable for dealing with automated con-

trol problems, such as the auto scaling one that we are discussing here [173; 169; 153;

103]. For the auto scaling problem, the goal of the learning algorithm is to generate a ta-

ble specifying the best provisioning action in each state. The learning process is similar

to a trial and error approach. The learning algorithm chooses an individual operation and

then observes the result. If the result is positive, the scheduler is more likely to take the

same action the next time it faces a similar situation. The most used reinforcement learning

algorithm in the literature is Q-learning.

For the context of this work, this type of approach combined with control theory tech-

niques has not been addressed so far given the specificities involved in machine learning

models.

Chapter 4

Control systems

4.1 Feedback control

Considering a given system, in general lines, the problem to be solved when using control

techniques is to find the best input configuration that will produce an output compatible with

a given reference value. When using feedback control, this problem is solved by continu-

ously comparing the current output of the system with the reference to be followed, applying

actions on its input in order to correct any differences that may exist between the observed

output and the previously defined reference. [92].

For example, considering a system that has: (i) as input, a set of virtual machines re-

sponsible for processing requests; (ii) as an output, the number of requests processed per

second; and (iii) as a reference to be maintained, the value of 1000 requests per second; a

feedback control system would work as follows. If the output observed at a given moment is

equal to 2000 requests per second, it means that the system is accelerated, as this value is far

above the reference. The controller then triggers an action on the input seeking to reduce the

number of requests processed, that is, it is necessary to shut down a certain number of virtual

machines. Similarly, if the output is much below the reference, for example, 500 requests per

second, the input would be adjusted upwards, i.e., more virtual machines would be turned on

to increase the computational power, and consequently, increase the output value.

It is important to note that the process of approximating the output value to the defined

reference value happens gradually, continuously comparing the two values and applying the

necessary actions on the input at each iteration. Thus, because of the use of the output value

34

4.1 Feedback control 35

Figure 4.1: Generic architecture of a feedback control loop.

to determine which control action to take, the feedback control is said to close the loop, as

we can see in Figure 4.1.

Considering this, the above definition of feedback control introduces important concepts

for the understanding of this work:

System input. Also known as control input, it is the directly manipulated variable capable

of influencing the behavior of the system being controlled.

System output. Also known as process output, it is the variable that the system must be

able to influence. As this cannot happen directly, the controller influences the output through

the input.

Reference value. Value that must be replicated as the system’s output. There is no feed-

back control without defining a reference value. It is also important to note that the system

will try to reproduce exactly this value, that is, it is not possible to use feedback control to

maintain a metric between one value and another, or in the best possible value.

Tracked error. Distance between the current observed system output value and the desired

reference value. In a simple formula, the tracked error can be defined as in (4.1):

e = reference− output(t) (4.1)

Corrective action. Also called a control action, this variable defines an action to be taken

over the input, calculated based on the tracked error. The controller can calculate this action

without having detailed knowledge about the behavior of the system, but it has to know

4.1 Feedback control 36

which direction stimulates the output up or down, that is, if the input needs to be increased

or decreased to influence the output upwards, for example. The magnitude of the action will

depend on which control strategy is being used for the calculation.

With these well-defined concepts, the understanding of feedback control is facilitated, but

it is still necessary to know if each iteration converges to a certain expected value and how

fast such convergence happens. However, this process should not result in a destabilization

of the system, which can happen, for example, when applying corrective actions of very

high magnitude. Such actions can generate oscillations, which are a result of the variation

between different configurations in a fast and aggressive way. As opposed to that, if the

corrective action is of very low magnitude, the system will respond slowly to disturbances,

and the tracked error will persist for several iterations, also compromising the system’s ability

to maintain the previously defined QoS goals. Thus, it is said that in order to achieve a

satisfactory system response, the corrective action must have a sufficiently high magnitude

so as not to make the system unstable.

In addition, achieving good performance is essential when controlling systems, that is, it

is necessary to ensure that the response time to changes is fast enough to eliminate the tracked

error in an agile way. The quality of the system is measured by the accuracy with which it

is able to follow the reference value. Considering this, we can say that the behavior of a

feedback control system is usually evaluated in terms of stability, performance and accuracy

levels.

It turns out that, often, not all of these goals can be achieved simultaneously. In par-

ticular, the design of a feedback system usually involves a trade-off between stability and

performance, because a system that responds too quickly, that is, that in theory performs

well, also tends to oscillate more, given sudden changes in corrective actions. In this case,

generally speaking, it may be better to make several small adjustments quickly, rather than

a few major adjustments occasionally. In the first case, the corrective action will be taken

quickly, before the tracked error increases substantially. In the second case, the magnitude

of the error will probably be greater, which means a greater chance of exaggerated compen-

sations, with an associated risk of instability.

Nevertheless, it is important to analyze the peculiarities of each system before deciding

how often and how intensely the controller should act. For instance, using the same example

4.1 Feedback control 37

of the system input being virtual machines, turning this infrastructure on and off too often

can be costly. Or even when we have more than one controller acting on the same system,

it is common for one to act more frequently than the other, and one to apply more intense

corrective actions than the other. Therefore, trade-offs should always be carefully analyzed

on a case-by-case basis.

4.1.1 Choosing control variables

There will often be more than one variable candidate for input and output of controller sys-

tems. However, it is important to carefully choose which metrics would be best used to

achieve a given control objective, especially given their nature and, consequently, from the

point of view of a solution implementation, how such variables fit into the system.

In this section we present criteria that can be used to evaluate different possible control

variables [92]. First, for system input variables, it is important to consider:

Availability. Only values that can be influenced directly and immediately are indicated to

be input variables.

Responsiveness. The system must respond quickly to a change in its input to achieve good

performance and high accuracy when following a given reference value. Therefore, it is

important to avoid inputs that may suffer from latency or delays.

Granularity. It is desirable to be able to adjust the system input in small increments to

achieve high accuracy in tracking a reference value.

Directionality. It is necessary to know whether increasing the input results in a increased

or decreased output. If an increase in the input results in a decrease in the output, then it is

necessary to use an inverted loop when building the controller.

In contrast, for system output variables, one must consider:

Availability. The variable must be quickly and accurately observable, in a reliable way,

preferably without delay.

4.2 Controller types 38

Relevance. The chosen output should be a good measure of the behavior you want to

control. In cases where the interest is in measuring the quality of service of the system

in general, then a variety of metrics can be used to represent this idea, and the process

of choosing which variable is the most informative for the considered goal should be very

careful.

Responsiveness. The output metric should quickly integrate changes in the system state or

behavior. Once again, this means avoiding variables that suffer from delays, such as when

the output metric is the result of calculating an average of values, or when the value needs to

propagate through the system in order to be properly observed.

Smoothness. Disturbances in the output variable will result in abrupt control actions,

which should normally be avoided. Therefore, it is desirable that the output does not need to

be filtered, for example, or suffer from noise.

4.2 Controller types

Controllers can be designed based on a variety of objectives, the most common being dis-

turbance rejection, optimization and regulatory control [12]. The first aims to ensure that

disturbances acting on the system do not significantly affect the observed output. Optimiza-

tion seeks to obtain the best possible value for the output, such as configuring the maximum

number of clients on an Apache Server in order to minimize the system’s response time. In

turn, regulatory control seeks to ensure that the observed output is equal to a user-defined

reference value, which is the case of the feedback systems that we used for the solution of

this work.

Considering regulatory control, any function that computes an output based on an input

can be used as a controller in a feedback loop. A standard approach to this type of computa-

tion in orchestrators is for controllers to act with a predefined response each time the tracked

error indicates the need for a control action. In other words, this controller horizontally scales

the system by a certain fixed number of replicas.

Opposite to this solution, PID controllers, widely studied in the universe of control the-

ory, offer a more sophisticated approach. To compose the corrective action to be applied on

4.2 Controller types 39

the system, such controllers add three modules called proportional, integral and derivative

control. Thus, as in any feedback system, the controller output is computed based on the

input, but modulated by three different gains, defined here as: proportional kp, integral ki,

and derivative kd [92; 86].

4.2.1 Proportional control

Letting the magnitude of the corrective action depend on the magnitude of the tracked error

causes a low magnitude error to generate small adjustments, while a high magnitude error re-

sults in a larger corrective action. The simplest way to achieve this goal is to let the controller

output be proportional to the tracked error, as we see in (4.2):

uproportional(t) = kpe(t) (4.2)

Where uproportional represents the proportional control action, the gain kp is a positive

constant, and e is the tracked error value.

However, in general, this approach is insufficient to eliminate tracked errors when the

system is in what we call a steady-state, that is, when all transient responses disappear. In

proportional control, the system output will always be less than the desired setpoint. This

is because, by definition, such controllers produce a non-zero output only if it receives a

non-zero input. So, if the tracked error disappears, then the proportional controller will not

be able to produce an output. The consequence is that some residual error will continue to

persist when the only type of control used is proportional.

One way to try to reduce the impact of this situation is to increase the gain kp, but if

it is too large, other problems can be introduced as a result of an exaggerated corrective

action, generating system instability. Less elegant than this option is to intentionally set the

reference value to be greater than what is actually desired, so that even when the system

output is less than this value, the result will still be satisfactory. Looking for a better solution

for such cases, there is a controller that can automatically eliminate steady-state errors, as

we will see next in the definition of integral control.

4.2 Controller types 40

4.2.2 Integral control

In general terms, integral control is based on using the tracked error accumulated over time.

While proportional control, which is based on momentary error, and therefore has its effect

reduced by generating a low magnitude corrective action for very small errors, integral con-

trol amplifies these small errors by accumulating them and, over time, this will result in more

significant corrective actions. Thus, this feature is what makes the integral control a good

approach for reducing steady-state errors.

The output of an integral controller is proportional to the integral of the tracked error

over time, as seen in (4.3):

uintegral(t) = ki

∫ t

0

e(τ)dτ (4.3)

Where uintegral represents the integral control action, the gain ki is a positive constant,

and the described integral is simply a generalization of the sum of the tracked errors over

time.

This dependence on past values implies that an integral controller has non-trivial dynam-

ics reflected in the behavior of the system. For example, if a positive tracked error persists

for a long time, then the sum of errors calculated by the integral controller will increase.

The result of this is a positive corrective action over the system input even when the tracked

error has been eliminated at a given point in time. In this situation, the system output will be

greater than the reference value, generating a negative error that will decrease the value of

the sum of accumulated errors until eventual stabilization of the system.

Considering this, depending on the chosen values for the gain ki, these oscillations can

decrease more or less quickly. Therefore, it is important to find the best parameters for the

gains of an integral controller, as well as for the other PID components, in order to obtain

the most acceptable behavior of the system, which we call here controller tuning.

4.2.3 Derivative control

While the integral controller monitors values in the past, the derivative control proposes to

anticipate the future. By definition, a derivative is characterized as the rate of change over

a certain value, so considering the tracked error in a system, if its derivative is positive, it

4.2 Controller types 41

can be said that such an error is currently growing, and vice-versa for when the derivative

is negative. Thus, a corrective action can be immediately applied, even if the tracked error

value is still small, in order to act on the system before the observed error becomes too large.

Thus, the output of the derivative controller is proportional to the derivative of the tracked

error, as we see in (4.4):

uderivative(t) = kd
de(t)

dt
(4.4)

Where uderivative represents the derivative control action, the controller gain kd is a posi-

tive constant, and the derivative of e can be approximated as the amount of change in e since

its last observation.

One problem with derivative control is the potential presence of high frequency noise in

the system. While, by nature, an integral controller smoothes the effect of possible noise,

considering the calculation of the derivative of a polluted signal, the derivative controller will

potentialize the effect of such noise. For this reason, there is a need to smooth these signals

apart from the controller’s natural process. However, in addition to adding complexity, this

also creates a risk of compromising the motivation of the derivative control itself, because

if the signal is excessively smoothed, the variations important for the control would also be

eliminated.

Thus, while proportional control is central to feedback systems, and integral control is

necessary to eliminate steady-state errors, derivative control is less used in practice. In fact,

the controllers known as PI are the most frequently used variant in applications [92; 12].

4.2.4 PID control: proportional, integral, derivative

A controller that unites the three previously mentioned terms (proportional, integral and

derivative) is called a PID controller. We have (i) the proportional control that simply mul-

tiplies the tracked error by a gain kp, reacting to the absolute value of the error; (ii) the

integral control that multiplies the accumulated of previous errors by a gain ki, which makes

this controller especially useful for reducing steady-state errors; and finally, (iii) the deriva-

tive control that tries to anticipate the future considering the rate of change in the error value,

multiplying its derivative by a gain kd. Thus, in the time domain, the output of a PID con-

4.3 Considerations when implementing a controller 42

troller is defined by (4.5):

upid(t) = kpe(t) + ki

∫ t

0

e(τ)dτ + kd
de(t)

dt
(4.5)

Where upid(t) is the output of the PID controller and e is the given tracked error. This

expression can be transformed to the frequency domain, resulting in the transfer function

at (4.6) below:

Kpid(s) = kp +
ki
s
+ kds (4.6)

Note that the process of tuning such gains for each term in a PID controller is an ex-

tremely important task, but it may not be simple. There are several known techniques to im-

prove the effectiveness of these controllers in a system, increasing the speed of convergence

and eliminating exaggerated control actions as well as steady-state errors. Some examples of

these techniques are those of Ziegler-Nichols (ZN), Frequency Domain Method (FDM), and

Damped Oscillation Method (DOM) [150]. In Chapter 7 of this document, we will further

discuss these techniques and the importance of an analytically based tuning to obtain a stable

and efficient control of the system.

4.3 Considerations when implementing a controller

Implementing a feedback loop in a PID controller involves some decisions in addition to the

general stability and performance concerns already presented in this work. Among them are

the following:

Actuator saturation. In principle, there is no limit to the magnitude of the control action.

When the considered gain is sufficiently large, the result of the action can also be arbitrarily

large. The problem can arise if the system plant cannot faithfully follow this signal, for

example, due to lack of power to respond to a very large action. In the case of a set of

servers, their maximum number is limited, so once they are all connected, demands beyond

that number from the controller cannot be met. At the other extreme, the number of servers,

fundamentally, can never be less than zero, and so on.

4.3 Considerations when implementing a controller 43

The component that translates the value of the control action into an action itself is called

an actuator. Thus, the problem of the controlled system not being able to follow a certain

control action is called actuator saturation. This situation can greatly limit the performance

of the system as a whole. It is also important to note that such limitations will not be detected

by the transfer function of the system. Instead, the highest magnitude of the control action

of a given system must be estimated separately, and then the ability of that system to follow

that signal must be evaluated.

Windup of the integral term. Actuator saturation can have a peculiar effect when it occurs

in a controller with an integral term. When this happens, as the actuator is not able to pass

proper values to the plant, tracked errors will not be corrected, and therefore will persist.

The integral term, then, will add them indefinitely, reaching very high values. This can be

a problem in the future when the system is no longer saturated and the error changes sign,

taking a long time for the integrator to decrease what was accumulated, and go back to being

efficient regarding the current tracked error. To prevent this kind of situation, one can simply

stop adding values to the integral term when saturation is identified.

Previous definition of integral term. The opposite problem occurs when the system is

initialized for the first time or when large changes are made to the reference value. Such

sudden changes can easily saturate actuators. In such cases, it is possible to pre-set a value

for the controller integral term to an appropriate value, in order to make the system respond

more smoothly to changes in the reference value.

Choosing an actuation interval. The frequency in the application of control actions can

follow two principles. In general, it is better to take many small corrective actions quickly

than a few actions of greater magnitude. In particular, it is beneficial to respond to any

deviation from the desired behavior before it has a chance to become too big. Doing so

not only makes it easier to keep the process under control, it also prevents the effect of large

deviations on the system. However, there is not much benefit in manipulating a process much

faster than it can respond. Generally speaking, for example, if the dynamics of the controlled

system changes on a time scale of minutes, then control actions should be applied every few

seconds. If the process only changes once or twice a day, then applying actions every few

4.4 Challenges for computer systems 44

minutes should suffice.

4.4 Challenges for computer systems

The growing interest in the use of control theory for solutions aimed at computing systems

such as managing web applications, scheduling cloud resources, and various network oper-

ations, raises a discussion on how to better incorporate such concepts and strategies in the

computational universe. While techniques involving control theory are already widely used

in the design of industrial processes and equipment, for example, their use in the design of

computer systems is relatively new [81].

Such systems typically operate by sharing resources between applications, for example,

a Kubernetes cluster with multiple nodes running different containers. Therefore, in a real

scenario, it is desirable that the allocation of these resources is carefully defined, in order

to dynamically distribute them so that the applications in question can maintain their goals

in terms of quality of service [149]. Considering this, QoS metrics are constantly used

to monitor services and evaluate their efficiency according to the preferences of a given

customer. However, as mentioned earlier, providing such services without violating SLAs

(Service Level Agreements) is a major computing challenge [148].

Control strategies can be used to achieve these goals, allied to the scheduling of services

and provisioning of resources in the context of computing systems. In general, we can list 5

steps needed to apply control techniques in such systems: (i) define the control objective; (ii)

describe the variables of interest to the system in formal terms; (iii) model the relationship

between the input of the system and the respective observed output; (iv) define the controller

design; and (v) evaluate the resulting control system.

However, these steps present certain challenges specific to the nature of computing sys-

tems. For example, increasing the complexity of the controller typically increases the com-

plexity of its implementation, which can result in the development of a less robust solution,

sensitive to unpredictable disturbances, such as an abrupt variation in the input rate of a given

workload. Furthermore, depending on the type of input and output calculated by the system,

the more components there are in its design, such as actuators and sensors, there may be

some impact on the system’s performance that must be considered.

4.4 Challenges for computer systems 45

Another challenge is to incorporate the principles and techniques of control engineering

into a kind of framework that can be applied to different applications in computer systems,

as is the case of widely used design patterns, such as MVC (Model-View-Controller), and

Publish-Subscriber, for example. In this context, several problems could benefit from a con-

trol framework, such as regulating the provisioning of resources in order to achieve certain

QoS objectives, or managing the number of processes triggered to maximize data throughput

of a system.

Computing systems may still have other characteristics that present themselves as chal-

lenges for integration with control theory. It is common for such systems to seek to maintain

different QoS metrics at a certain reference value, for example, low CPU and memory usage

and, consequently, low execution cost in terms of used resources. In a scenario like this,

it would be necessary to observe different metrics, and to use more than one controller to

maintain different reference values. Managing independent controllers can be a problem,

even if their actions are executed at different points in time, as we will see in more detail in

Chapter 7, as they can compete with each other, destabilizing the system. Such a situation

happens especially in cases where the metrics observed have a conflicting nature, as is the

case of low cost and high performance, for example. Solutions in control theory propose to

solve similar cases through the use of controllers with multiple objectives, as we will also see

in Chapter 7, however, as they are more advanced approaches, the integration with computer

systems is also made difficult.

Chapter 5

Applying First-Order Plus Dead Time

models to DSP systems

5.1 System identification methods

System identification is an area of mathematical modeling that uses input and output data,

often experimentally collected, to identify the dynamic characteristics of a system. Often, the

models obtained from this process are then used to build controllers of different types, such

as the Proportional-Integral-Derivative. According to the literature, different approaches can

be adopted to generate such models [30]:

Analytical Method (Phenomenological). Equations and parameters are determined based

on the principles of Physics, Chemistry and Biology, using mass and energy balance equa-

tions.

Empirical or Heuristic Method (Experimental). The system is considered a “black box”

with certain inputs and outputs. In this case, a set of experiments are carried out to obtain

such parameters during the evolution of the system to its steady-state, from which a model of

the system would be determined. In general, such models are less complex than analytically

obtained models.

In practice, it is common to combine the two approaches, acting in two stages. The

first takes into account the physical laws and the particular working conditions to establish

46

5.1 System identification methods 47

hypotheses about the structure and properties of the model to be identified. In the second,

more experimental stage, the hypotheses previously established are adopted, and experimen-

tal measurements are made to build the model. Thus, in general, the identification process

can be divided into the following steps [30; 92]:

• Dynamic tests and data collection. The collected data has the same role as con-

stitutive equations in theoretical modeling, as they provide the specific basis for the

development of a given model. As the model obtained by the identification method

is entirely based on experimental data, it is important to note that information that is

not contained in the data cannot freely appear in the model, just as it is unreasonable

to expect an unspecified constitutive equation to contribute to the quality of the final

theoretical model;

• Correct choice of the structure of the models. Consists of determining the terms that

should compose the models by recognizing the importance of these different terms, us-

ing the so-called identification data and avoiding the over-parametrization that occurs

when more terms than necessary are used;

• Estimation of parameters using suitable numerical methods.

• Verification of the models’ ability to represent the studied process.

Thus, we can define that a system identification method is an experimental approach used

to derive mathematical models of dynamic systems, using data collected from their behavior.

Here, we consider that the main objective of this method is to generate models that are later

used to design controllers for regulatory processes. It is important to note that the modeling

process invariably involves approximations since many real systems are, to some extent, non-

linear, time-varying, and distributed. Thus, it is unlikely that any set of models will contain

the structure of the system in all its details. In this case, a more realistic objective is to

identify a model that provides an acceptable approximation in the context of the application

in which it is used.

Considering this, in the design of a controller, the first step often involves determin-

ing the model using step response data, where the objective is to determine a transfer

function for a First-Order Plus Dead Time (FOPDT) system or Second-Order Plus Dead

5.1 System identification methods 48

Time (SOPDT) [46]. When the controller is of the Proportional-Integrative or Proportional-

Integral-Derivative type, we assume that the model will often have a continuous-time trans-

fer function, based on the FOPDT or SOPDT structure. This is because the result obtained

through these types of models is a good approximation for the monotonic step response, and

without the overshoot of many processes found in the industrial control area, and in our case,

also computational. Methods for estimating the parameters of these transfer functions using

the step response are popular, as for instance, Ziegler-Nichols and Oldenbourg-Satorious.

In this context, a transfer function is used to encapsulate, in the frequency domain, the

effect that a system has on its input. For example, if the input is given by u(s), then the

output y(s) is simply given by (5.1):

y(s) = G(s)u(s) (5.1)

Where G(s) is the system transfer function in the frequency domain. In general terms,

the output y(s) can then be transformed to the time domain and, from that, the behavior of

the system is obtained.

This way, if we have a good theoretical model to represent a system, it is possible to

derive its transfer function from the given model by calculating a Laplace transformation of

the differential equation that describes the dynamics of the system. However, it is often not

possible to obtain a good theoretical model that represents a system, as we saw in Section 4.4.

In this case, it is necessary to calculate the transfer function from the system identification

process described above, considering two aspects in particular:

Static relationship of input and output. If a change of a certain magnitude is applied to

the input, what is the size and direction of the change reflected in the output?

Process dynamic response. If an input change is applied suddenly, how long does it take

for the system to respond?

Such questions are answered through observations. All measurements are made in an

open-loop run, and without a controller calculating the next control action. Thus, it is pos-

sible to adjust the system input arbitrarily, in order to observe only the actual response of

the system to a given step size, for a pre-defined period of time, independent of any control

5.1 System identification methods 49

action.

Briefly, to obtain the static characteristics of the process it is necessary to apply a change

in the input, wait for the system to stabilize, and then save the output result. It is impor-

tant to note that there is a minimum change to be applied to the input to be able to see any

reflection in the system output. For large magnitude changes, the system may begin to satu-

rate and no longer reflect the expected changes in the output. In this context, the magnitude

of the process gain provides information about the size of the control action needed to ob-

serve significant changes in the system output. In addition, the process gain signal provides

information about the direction of the input-output relationship.

To measure dynamic responses, it is necessary to observe the behavior of the system

during its execution. For this, the system must be initially at rest, that is, without any change

in the input. Then, a sudden change is applied to the input, and we save all the operations

that occurred until the output of the system is obtained. It is important to repeat the process

a few times to accommodate different amplitudes in the input values. It is also important

to note, that some things might influence the system behavior and can be reflected in the

measurements. For instance, if we run the same experiment multiple times, and detect a

considerable difference in the observed outputs, this is possibly an indication of the amount

of noise in the system.

To set up the transfer function itself, three main parameters are considered:

Process gain K. Ratio of the applied input value and the final system output value after all

transient effects disappear.

Time constant T . The time required for the system to settle into a new steady-state after

experiencing some disturbance. The time constant is normally defined as the time required

for the process to reach 2/3 of its final value.

Delay τ . Delay time until a change in input starts to affect the output of the system.

Some models and tuning methods use these same parameters to identify systems. Here,

we consider self-regulating processes, those that in response to a given input reach a steady-

state, possibly after some delay, but without overshoot or oscillations. The frequency domain

5.2 Application use case: Asperathos 50

model in (5.2) is often used to describe the one-step response for this type of process, where

K is the process gain, T is time constant and τ is the delay.

H(s) =
K

1 + sT
e−sτ (5.2)

In this context, there are the First-Order Plus Dead Time systems, which are the object

of study of the solution proposed by this work. FOPDT modeling has been widely used

to capture process dynamics for the purpose of designing controllers for various systems,

and has also been widely studied in the context of several works [27; 152; 40; 17; 168;

114].

For example, in the design of a feedback control loop it is important to consider its perfor-

mance when there is a change in the tracked reference value, or a disturbance in the workload

in question. In addition, it is also important to be aware of the system’s level of robustness

to changes in process characteristics, and its fragility to the variation of its own parameters.

Therefore, approximations such as FOPDT are useful to allow such considerations to be

modeled, which justifies their increasing use for this type of solution [126].

5.2 Application use case: Asperathos

Considering self-regulatory processes, we apply FOPDT modeling to model Asperathos, a

system previously described in Section 2.3. In line with the concepts presented in the previ-

ous section, we have seen that FOPDT systems are commonly used to empirically describe

various dynamic processes, and therefore, it is a good starting approach. Thus, we first seek

to observe how well the model to be generated is able to represent Asperathos, evaluating the

results using known metrics detailed later. Next, we discuss possible alternative approaches

to consider when generating the model, which will then be used to tune a PI controller de-

veloped for Asperathos (more details in Chapter 6).

Thus, for the construction of the model, we collected data that reflected the behavior

of the Asperathos system when executing an application that disaggregates energy data, as

described in Section 2.4. A few considerations were followed, as described bellow:

• The workload is a sample of real energy disaggregation data, provided by the LiteMe

5.2 Application use case: Asperathos 51

solution. This is representative of the environment where the controller will actuate.

A snippet of the items sent to Asperathos for processing can be found in Section 2.4;

• The control input for this system is the number of Kubernetes replicas ready to process

new items. For this modeling, we used 7 replicas. This number was chosen because,

considering the computational power available, it is an input of a size enough to see a

reflection in the system output, and not too large so the system may begin to saturate;

• The observed control output for this system is the throughput of items processed by

Asperathos. This is what we call step response, which is the observed behavior of the

system when there is a step change in the input;

• The arrival rate of new items was 8 items per second. Considering the control input,

this number of items is enough to keep the replicas busy, since each replica can process

1 item at a time;

• The system should be initially at rest, i.e., no other operations should be executing

prior to the experiment initialization;

• No control action is taken. In this case, we implemented a customized plugin on As-

perathos that determines the number of replicas according to a list of values previously

passed to the system. This changes only happen when a pre-defined amount of time

has passed, in our case, 5 minutes, which is enough to see the system stable for the

application we are processing;

• At this point, since there is no controller in action, we also do not defined any reference

value to be followed.

It is important to highlight that, for the curve fitting algorithm to be successful in identi-

fying the system, it is necessary that the observations are made for a sufficient time for the

observed output to reach the steady-state, when there are no more relevant variations in the

variable of interest. The system response under these conditions was then observed, and the

respective models and transfer functions were generated using linear regression techniques

and Matlab’s System Identification Toolbox [120].

5.2 Application use case: Asperathos 52

Table 5.1: Model NRMSE.

Model Average NRMSE Model Average NRMSE

Model 1 0.637 Model 6 0.613

Model 2 0.639 Model 7 0.605

Model 3 0.613 Model 8 0.606

Model 4 0.609 Model 9 0.613

Model 5 0.611 Model 10 0.654

In total, 10 repetitions were performed following these considerations, each one gen-

erating a model from the collected data. This is necessary since we need to be sure no

disturbances or other noise is affecting the system when collecting the measurements, and

therefore, affecting the generated models. Next, we compare such models with a real execu-

tion in the system by computing the average square error (NRMSE), which is the average of

the squares of the differences between observed and predicted values. This is a commonly

used measure to define how close a linear regression model is to the real system it wants to

represent.

Thus, in order to calculate the average NRMSE for each model, we compared the data

collected for each real execution with a given model, and then averaged the results. This

means that, for Model 1 in Table 5.1, 0.637 is the mean NRMSE obtained from the squared

errors calculated in comparing that model with the data collected from repetition number 1

to repetition number 10, and so on for each one of the others. All the results are listed in

Table 5.1.

Note that, for a linear regression model, there is an error that is introduced when the

model does not actually fit the data. Therefore, the goal of a good model is to minimize

this error. Considering this, from the results in Table 5.1, we see that the best performance

indicators, that is, the lowest mean NRMSE values, are those of the 7, 8 and 4 models,

respectively. In Figure 5.1, we see the representation of the Model 7, compared with the

data sets obtained in the execution of number 7, the one that generated the model itself, and

of numbers 8 and 4, which generated the next best models in terms of NRMSE. From the

results, we see that the behavior of the real executions does not vary substantially from one

5.2 Application use case: Asperathos 53

0 50 100 150 200 250

Time(s)

0

1

2

3

4

5

6

7

8

O
ut

pu
t F

lu
x(

ite
m

s/
s)

Model 7 comparison

Model
Execution 4
Execution 7
Execution 8

Figure 5.1: Model 7 analysis compared with real executions on Asperathos.

0 50 100 150 200 250

Time(s)

0

1

2

3

4

5

6

7

8

O
ut

pu
t F

lu
x(

ite
m

s/
s)

Model 8 comparison

Model
Execution 4
Execution 7
Execution 8

Figure 5.2: Model 8 analysis compared with real executions on Asperathos.

to another, and that they all follow the curve of the model in question similarly.

Next, we can say that there is not so much difference between the models generated by

observing the behavior of Model 8, for example, the second smallest NRMSE. Figure 5.2

shows the generated model, comparing it with datasets from the same executions as in Fig-

ure 5.1. As expected due to the very close NRMSE values, little difference is observed

between the models considered, which are similar both in system delay and in rise time.

This reaffirms that step response measurements are faithful to the behavior of the system at

different iterations. An important observation is that the figures do not seek to differentiate

in detail each of the lines representing the executions, but to show the similarity of behavior

between the three. The colors and lines used try to differentiate them minimally, but without

any special emphasis so far.

Thus, we can say that, although all models have managed, in a steady-state, to reach the

expected output for the given input, they do not accurately reflect the behavior of the real

5.2 Application use case: Asperathos 54

0 50 100 150 200 250

Time(s)

0

1

2

3

4

5

6

7

8

O
ut

pu
t F

lu
x(

ite
m

s/
s)

Model 7 comparison

Model
Execution 7

Figure 5.3: Model 7 highlight: analysis compared with the execution number 7 on As-

perathos.

system, neither in amplitude nor in waveform. What the wave format of the executions show

us, deviates from what is expected in FOPDT systems, where the result must be achieved

exponentially. In the case of Asperathos, it is noticed that changes in the step generate

almost immediate responses in the system, generating this up and down effect in the curve,

even though it is already close to the behavior expected by the model.

Figure 5.3 highlights the Model 7, the lowest NRMSE, when compared to the real ex-

ecution used for its generation. In this image, the nature of the waveform and the constant

variations around the curve of the model becomes even clearer.

After these considerations, although we understand that the model does not have a high

accuracy when compared to real executions, we realize that it is still possible to describe

the system’s behavior at some level through this representation. Therefore, we go ahead

with Model 7, mostly because it has the lowest NRMSE, and from it, we analyze how the

obtained transfer function reflects what was graphically observed. We generate the transfer

function in (5.3), where 0.8523 is the process gain K, 5.901 is the time constant T , and 5.5

is the delay τ :

G(s) =
0.8523

5.901s+ 1
e−5.5s (5.3)

With this transfer function, we can, for example, tune a PID controller in a more informed

way, starting from a known reference point of the system, which will help us to provide

guarantees that the real system response to a controller with certain gains will be acceptable

5.3 Using filters 55

according to the response observed in the model. More details on this analysis are described

in Chapter 6.

Another important consideration is that, since Asperathos is designed to execute a variety

of data processing workloads, we need to define the scope of the solution proposed here. For

the Asperathos modeling just presented, we used an application that classifies and disaggre-

gates energy data, which in our case was an implementation of the NIALM algorithm. Thus,

we can say that other classification algorithms using neural networks, a popular approach to

categorize data from such workloads, could also be used as the application use case to model

Asperathos following the process described in this chapter. This is possible because such

algorithms follow a similar processing approach even considering different workloads.

In this topic, the workload used here consisted of an homogeneous pool of tasks as de-

scribed in Section 2.4. This means that, for a workload with different processing tasks, as

long as such tasks are also homogeneous, which means that each of them takes about the

same time to process, the modeling could be equally performed as described in this chapter.

In this case, only if the time to process such tasks is different than the one for the workload

used here, a change would be observed mainly in the system process gain.

Moreover, the process and considerations presented here to generate an FOPDT model,

can be followed for an extensive assortment of systems that fit the criteria for this type of

solution.

5.3 Using filters

Finally, considering the results obtained from the model presented here, a persistent oscilla-

tion in the output variable observed in each of the real executions of the system is noteworthy.

Considering the use case application, these fluctuations can be the result of several factors,

such as the processing time of an item, the time required to place and remove items from a

queue, the time it takes to load the disaggregation libraries, among others. If we think that

these factors can still be affected by disturbances, and that the observed oscillations are the

result of noise, we can attenuate them by applying filters commonly used in control theory

for this purpose.

In this context, a filter is a kind of algorithm used mainly to reduce noise in a given sig-

5.3 Using filters 56

nal, such as the output variable of the control process. A more general way of defining a

filter is as a compensator that corrects or deals in some way with some element related to the

behavior of the system while seeking to avoid distortions in the signal. Another definition is

given by Hellerstein et. al [80], where filters are described as system elements that precon-

dition a signal before it is used, without significantly affecting its nature in the context of the

controlled system.

The most common type of filter is the first-order, where the output tries to achieve the

reference value exponentially over time. In this context, there are low-pass filters, which

attenuate high frequencies (sudden changes), and pass on low frequencies (slow changes).

This makes this type of filter ideal for reducing noise in a signal because such noise tends

to be of higher frequency than expected changes in a process. Traditional variables used to

measure the performance of a filter are, for example, the amount of distortion introduced

and how quickly the filter transitions between passing a signal or blocking it. In this case, in

the face of poor performance, the main shortcoming of low-pass filters is the instability they

induce, especially motivated by possible delays that may occur in the system’s response to

variations in its input [57].

It is for this reason that, in general, metrics that respond more slowly to changes in the

system are not normally indicated to represent output variables, for example. Therefore, it is

desired that such a variable is already reasonably smoothed, and does not need to be filtered.

Some authors [92] even say that it is often better to use a noisy signal than to smooth it with

filters, as the benefits obtained from reducing noise do not compensate for a possible delay

introduced.

For example, considering a PID controller, while the integral term has a tendency to

smooth out noise, the derivative term amplifies it considerably by responding sharply to

changes in the input. However, we do not want to base control actions on random noise, but

on the general trend observed in the tracked error. So, if we want to use the term derivative

in a noisy system, we need to smooth it out in some way. A widely used option is the use

of filters. However, once again, it is important to note that a more aggressive smoothing

will allow a higher derivative gain, and therefore a more aggressive control action, but will

also introduce a longer delay in the system response, which can go against the whole initial

purpose of using the derivative term.

5.3 Using filters 57

Generally speaking, the consensus is that filters should be carefully evaluated before

being properly inserted as part of the system, but if used responsibly, they bring real benefits

when dealing with noise. Some examples of practical application are given by Janert et

al. [92], one of the use cases presented being the waiting queue. To control this system, two

controllers are used in cascade: Controller 1, which acts on a set of servers based on the rate

of change in the size of the queue, and Controller 2, which outputs the desired rate of change,

later used as a reference value by Controller 1. At a given moment of the experiment, when

adding the derivative term to Controller 1, it was observed that the number of active servers

was varying with a frequency considered high, introducing noise to the system. To reduce the

number of control actions on the servers, the author suggests the insertion of a filter between

the two proposed controllers, which would have the objective of smoothing the output of

Controller 1 to try to reduce the oscillations caused in Controller 2, which in turn uses this

output as its reference value. After the modifications, it was observed that such a filter was

actually able to stabilize the output of Controller 1, causing the number of active servers to

fluctuate less, without affecting the queue size. In this way, a good result was obtained for

the objectives in question.

Considering the concepts presented so far, we will present below a sample of what the

expected behavior of Asperathos would be like when we insert a filter to reduce possible

noise in the system’s output variable.

5.3.1 Inserting a low-pass filter on Asperathos

When inserting a low-pass filter in Asperathos, in general, what we expect is that the resulting

curve is possibly smoothed, being more similar to the generated model both in shape and in

wave amplitude. In a simplistic way, this would indicate that such a model would better

describe the system’s behavior, and consequently, a controller tuning obtained from it would

probably present more accurate results. Initially, to visualize the impact of this on the system,

we use the lowpass function from Matlab itself to filter the output signal from Asperathos.

Returning to the modeling described by (5.3), we will use Model 7 to compare it to the result

of the executions after using the low-pass filter. Figure 5.4 shows such a model compared to

the same runs of subsequent smaller NRMSEs detailed in Figure 5.1, but now with the signal

filtered.

5.3 Using filters 58

0 50 100 150 200 250

Time(s)

0

1

2

3

4

5

6

7

O
ut

pu
t F

lu
x(

ite
m

s/
s)

Model 7 comparison with filtered executions

Model
Filtered execution 4
Filtered execution 7
Filtered execution 8

Figure 5.4: Model 7 analysis compared with filtered executions on Asperathos.

0 50 100 150 200 250

Time(s)

0

1

2

3

4

5

6

7

8

O
ut

pu
t F

lu
x(

ite
m

s/
s)

Model 7 comparison: filtered and original executions

Model
Original execution
Filtered execution

Figure 5.5: Chosen model highlighted: Model 7 analysis compared with its original and

filtered execution on Asperathos.

In this case, we clearly see that the curves of the executions more significantly resemble

the model represented by the circled black line. From the definition of low-pass filters, since

the high frequencies are attenuated, and the low frequencies are passed on, we can infer that

the Asperathos output values that were out of tune were disregarded, reducing the oscillations

that were frequent before and with very accentuated characteristics.

Complementarily, in Figure 5.5, we isolate the execution number 7, both in its original

form, represented by the blue line, and with the filtered signal, represented by the yellow line.

While the original execution exhibits more oscillatory characteristics, the filtered execution

is well-behaved, presenting itself close to the curve that describes the generated model. With

this result, we have clear indications that this type of filter can be a good option to reduce

noise in a signal like this, given that they tend to have a higher frequency than the expected

changes according to the model.

Chapter 6

Adaptive control of DSP systems

6.1 Context and motivation

Software applications are subject to different operating conditions, such as variation in the

availability rate of a service, changes in system objectives, among others. Consequently, new

techniques to handle possible runtime changes, that do not result in downtime, are being de-

veloped. One of the most common approaches in the literature is software adaptation, which

consists of adapting the software application itself at runtime and also throughout its de-

velopment cycle, from requirements definition to design, construction, testing, deployment,

maintenance and evolution.

Shevtsov et al. [147] presents a systematic review of studies that apply control theory in

software adaptation, excluding physical resources or other infrastructure-level components.

Among the main characteristics of the state of the art identified by the given work are: (i)

the main motivation for the use of control theory in this context is the formal guarantees that

can be obtained with its use; (ii) the main types of applications that use this type of solution

are e-commerce and data processing; (iii) the most used models are linear, non-time-variant;

(iv) PID and MPC (Model Predictive Control) are the most commonly used controller types

in software adaptation; (v) PID is more used for regulatory control purposes and disturbance

rejection in SISO-type systems, while MPC is more used to achieve optimal results in mul-

tipurpose systems; finally, (vi) robustness and cost are the most analyzed system properties,

together with control characteristics such as stability and settling time.

In this context, control theory is one of the approaches considered to meet the demands

59

6.1 Context and motivation 60

in the design of software adaptation mechanisms [29; 80; 63; 174]. Some works that use

control theory in adapting computing systems focus on controlling resources such as CPU

and memory, among others at the infrastructure level [13; 51]. However, as already discussed

in the motivation of this work, applying control theory in systems that seek to maintain QoS

metrics through the allocation of resources such as servers, virtual machines and containers,

can present particularities in the monitoring phase, in addition to the difficulty in modeling

the system and apply control actions accurately.

Considering this, unlike software adaptation, we want to use control theory to adapt

resources at the infrastructure level. When we add a cloud environment to this scenario, for

example, we have the concept of elasticity, which allows the adjustment of computational

resources at runtime to meet the demands of a given application. This helps prevent system

performance from degrading, while reducing operating costs by reducing potential waste of

resources.

However, providing efficient policies for resource allocation is a challenging task.

Among the various techniques proposed in the literature, we range from simple rules that

define a given action upon an event (if-then), to the use of complex machine learning algo-

rithms. Here, we apply control theory when building feedback controllers, to implement a

level of elasticity. Such controllers are designed to be stable, avoiding oscillations, quickly

accommodating and responding appropriately to disturbances, while maintaining QoS met-

rics such as response time or throughput.

Ullah et al. [156] presents a detailed systematic review of works that apply control theory

to provide elasticity in cloud environments. Among the topics covered, some conclusions

regarding the types of metrics used as a reference to maintain QoS, the input and output

variables considered, and the types of controllers most frequently used are interesting for

our scope. For example, the most frequent control objectives were regulatory or optimal,

both focused on improving the utilization of computing resources, maintaining an acceptable

level of system performance, while reducing operational costs. From the point of view of

the controllers developed for this purpose, the modeling approaches ranged from black box,

queuing theory, among others, while the controllers used ranged from PID to MPC.

In this same context, the scope of the controllers developed here mainly includes stream

processing applications. Roger et al. [143] lists relevant works in the area, approaching the

6.2 Selecting control variables 61

union of elasticity, control theory, and DSP systems. One of the most important features

to consider is how to parallelize the processing of a large stream of data. In this context,

the use case presented here considers Asperathos as a container orchestrator, responsible

for coordinating the parallelization of executions through replicas in a Kubernetes cluster,

which, in turn, are responsible for processing the proposed tasks. In our case, such a task is

the energy data disaggregation described in Section 2.4. More details about Asperathos can

be found in Section 2.3.

Thus, in general lines, we initially propose a controller that acts on the resources or-

chestrated by Asperathos, seeking to maintain a certain quality of service directly related to

performance metrics of an application that disaggregates a stream of energy data. The re-

mainder of the chapter presents how the variables of interest for the proposed controller were

selected, which control approaches were considered within the defined scope, some details

on how such controller was implemented in Asperathos, in addition to an assessment of how

the considered control approaches performed in relation to actual executions in the system.

6.2 Selecting control variables

In Section 4.1, important characteristics for the selection of metrics and variables of in-

terest when implementing a controller are described. Complementary to this, Ullah et

al. [156] lists the most used metrics and variables in the context of control theory applied

to elasticity solutions and data processing. In the controller proposed here, we priori-

tize performance metrics. In this case, for the reference value to be tracked by this con-

troller type, common metrics are response time and throughput [129; 59; 58; 108; 91; 141;

130]. As for the selection of the system input variable, given that the type of scaling consid-

ered here is horizontal, the most common input is the size of the cluster.

Based on this, we want to select the control variables to be used in the definition of the

proposed performance controller. Here we consider the system as the Asperathos framework

described in Section 2.3, processing a stream of energy disaggregation data, as described in

Section 2.4. Thus, regarding the components of a feedback control loop: (i) the reference

value to be maintained is the input or arrival rate of tasks continuously submitted to a Job in

Asperathos; (ii) the system output is the throughput (number of completed tasks per unit of

6.2 Selecting control variables 62

time); and (iii) the system input is the number of replicas in the Kubernetes cluster running

the application.

Note that, for the reference value, we use the arrival rate of new tasks, which can change

during a given execution. This means that, every time the arrival rate changes, the reference

value also changes based on that. For this reason, considering the self-regulating type of

control we try to achieve, our scope is limited to applications that do not constantly vary its

arrival rate, since this would impose a high variation in the reference value, and therefore,

increase the chances of overshoot every time it changes.

Moreover, to better understand the choice of the output variable in the definition of this

controller, it is first necessary to understand the four main metrics related to the behavior of

the type of system we want to control, represented here by Asperathos, which has a behavior

similar to other DSP systems. They are: (i) queue size, (ii) duration of a task, (iii) number

of Kubernetes replicas and (iv) system throughput.

Initially, it is important to think about what you want to control, that is, the possible

metrics to be observed as the output of the system. Considering this, the queue size and

duration of a task share a negative point: the case of the empty queue. A populated queue

means that items added to it are accumulating, and the system is likely under-provisioned,

meaning less computing power than necessary is being used to process such items. However,

an empty queue indicates one of two possibilites: either the system is stable and no action

is currently required, or it is over-provisioned, i.e. more computing power than necessary is

being used. Consequently, in this over-provisioning situation, the tracked error would not be

able to register a change in the workload when the input rate decreases, for example, leading

to unnecessary increase in the processing cost. Similarly, the duration of a task is also not

affected in this case, as even if the workload decreases, there will still be enough computing

power to keep such tasks processing in the expected time.

On the other hand, using the number of Kubernetes replicas solves the problem of over-

provisioning cases, since it would be directly observing the provisioned resources, and,

knowing the average processing time of a task, it is possible to determine if it is neces-

sary to add or remove resources from the system by calculating the tracked error. However,

deriving the system throughput from the number of Kubernetes replicas being used creates

a fixed variance of that rate depending basically just on the current number of replicas in the

6.2 Selecting control variables 63

system. This would represent an impact on a possible analytic approach to the proposed con-

troller design, more specifically on the system identification process described in Chapter 5,

where we seek to determine its dynamics, that is, how the output behaves given a certain

input, until its stabilization. In this case, the identification would be compromised as the

output would present an instantaneous reaction to changes in the input. A consequence of

this is that the dynamics of the process are not realistic enough, and the system would lose

the benefits of using a controller. A possible solution to the problem of this instant response

would be to introduce delays in the developed monitoring plugin. Even so, instead of having

a system identification approach that results in a robust model, we would have to add a new

parameter to the implementation, which would depend on specific infrastructures, platforms

and applications.

This way, prioritizing the ideal conditions for system identification, its input rate and

throughput must be observed at runtime. However, since the throughput calculation is limited

by the input rate, in some situations, our controller cannot use only the real-time throughput

to identify and act in over-provisioning situations, as exemplified above. Thus, it is necessary

to combine two metrics: first, we use the input rate and throughput calculated at runtime

to enable an accurate identification of the system dynamics; then we determine the cases

where compensatory actions are needed to resolve observability issues that can lead to over-

provisioning of the system, and then the throughput is calculated as an estimate based on the

number of Kubernetes replicas being used.

Considering this, the tracked error of the proposed performance controller is calculated

as in (6.1):

eperf = throughput(t)− inputrate(t) (6.1)

The system throughput, represented in the equation by throughput, is calculated based

on (i) how many work items were completed in a time interval t, which we call the runtime

throughput, or (ii) as an estimate based on the number of replicas in the system in a time

interval t and the average processing time of a work item, which we call estimated through-

put. For this, we assume the user is familiar with the mean service time of the considered

application, and that this value is representative of the service times distribution. This calcu-

lation will be useful to mitigate over-provisioning situations. Finally, the system input rate,

6.3 Control approaches 64

represented in the equation by inputrate, is based on the number of items added to the to-be

processed queue in a time interval t.

6.3 Control approaches

In general, we can classify control approaches used in the literature as:

Classic. This family of controllers is the most common and relatively simple to implement.

Fixed gain controllers are an example of a classic control. As the name suggests, these are

characterized by gain parameters estimated offline, which remain fixed at runtime. This

estimation can be done using trial and error methods, or through some kind of modeling like

Ziegler-Nichols. An example of such a controller is the PID [25] one, widely used in this

solution. Another example of classic control is the one that allows such gain parameters to

be adapted at runtime, adjusting to changes in the environment. This is also the case for a

special class of PID controllers, called self-tuning [71].

Advanced. Controllers of this type usually include solutions that combine different control

methods into one. In this case, multiple controllers can be active at the same time, or they

can be activated under predefined conditions. The first case comprises a range of cascaded

controllers, usually with objectives that align in the same direction, while an example of the

second type are the gain scheduling controllers.

Considering this, in the context of the solution proposed here, we initially want to eval-

uate the behavior of two types of classical controllers when applied to DSP systems: Fixed

Action and PID controllers. Considering the control variables described above, we will now

define how the proposed performance controllers were implemented.

6.3.1 Fixed Action control

This type of controller, often used in orchestrators, acts with a predefined response whenever

the tracked error indicates the need for a control action. So, in our context, a Fixed Action

controller scales the system up or down only in fixed steps of n replicas. Note that, in this

case, we are not talking about gain parameters, but about the size of the corrective action

6.3 Control approaches 65

itself. An application of this type of control can be commonly found in cloud resource auto

scaling techniques, where some conditions are predefined, and a fixed action is applied. For

example, a scaling rule for a service like Amazon EC2 Auto Scaling [4] might consist of

monitoring the average CPU utilization of a cluster of virtual machines. If this average

exceeds 50%, the service adds a new machine to the cluster. Note that, in this case, the

corrective action is fixed at 1 extra virtual machine.

In contrast, PID controllers use a more sophisticated approach, applying proportional,

integral, and derivative gains along with current, past, and estimated future tracked errors. To

illustrate an example of how a Fixed Action controller may not be suitable in some scenarios,

consider the case where the system has a sudden but temporary increase in its input rate. The

controller would react for a while, but as the input rate normalizes again, the tracked error

would no longer be able to identify that the queue has grown. A possible solution would be to

monitor the queue, which again would introduce a customization that would make the system

more complex, and dependent on specific information of the application and infrastructure

considered. As for the PID controller, these momentary spikes would generate errors that

would be accumulated by its integral term and, thus, naturally mitigated.

Furthermore, one of the clearest disadvantages of using a Fixed Action controller is that

a fixed step that is too low can result in slow reactions to situations where a greater and faster

corrective action is needed, or similarly, a step that is too high may imply a sudden reaction

when a minor control action would suffice. Such sudden variations could also be responsible

for unwanted oscillations in the system, as discussed earlier. In the case of the PID controller,

the gains, when well tuned, offer an adequate reaction to the size of the tracked error.

Considering this, a Fixed Action controller was implemented and added to Asperathos as

a plugin. Such implementation follows the definition described here, the size of the control

action being previously configured by the user, and applied to the system each time the

reference value is not being followed, that is, whenever any tracked error different than zero

is registered.

6.3.2 Proportional-Integral control

For the Proportional-Integral control, finding appropriate values for its gains, what we call

tuning here, can be a frustrating task: with two (for a PI controller) or even three (for a

6.3 Control approaches 66

PID controller) parameters, the number of possible combinations to be tested is quite large.

Furthermore, it is often difficult to intuitively predict what effect the performance of a feed-

back loop will have after an increase or decrease in any of the parameters of that controller.

Therefore, some sort of guide in this direction is highly desirable [92].

The tuning of a PID controller can be based on a good analytic model of the sys-

tem, or from measurements of its dynamics obtained through experimental observations,

as mentioned in Chapter 5. Among the tuning methods available in the literature, the

Ziegler–Nichols rules are a classic set of heuristics that require little information about the

system process. Going further, one can adjust a transfer function of a known model, such as

the FOPDT, basing this model on the experimental results obtained from the dynamics of the

system. From there, suitable values for controller gains can be set more precisely, consuming

less time.

Considering this, one of the main goals of a successful tuning is to arrive at a stable

system. Furthermore, it is important to note that control systems can be optimized consider-

ing different behaviors depending on specific situations. For example, systems that require

faster responses are more susceptible to noise and oscillations, while systems that are slower

can provide better accuracy and robustness when in steady-state. In this case, we can define

important aspects to be considered regarding the performance of feedback control systems:

1. Is a persistent steady-state error acceptable? For systems in general, a persistent

steady-state error is usually not acceptable, suggesting the need to use integral control. How-

ever, sometimes the system may require faster responses which are more important than

eliminating such errors, as the use of integral control tends to slow down the system re-

sponse.

2. How acceptable is the occurrence of oscillations? How quickly does the system return

to normality? Again, oscillatory behavior is usually not acceptable, especially because of

the overshoots that tend to happen and can, for example, violate QoS goals previously defined

by users. However, for faster response, systems with oscillations can be useful to a certain

extent.

6.3 Control approaches 67

3. How fast does the system have to respond to changes in input? The response time is

generally determined by the time it takes for the system to reach two-thirds of its new steady

state, assuming non-oscillating systems.

4. Should the system be robust to noise? Noise is a high-frequency disturbance. To

lessen its influence, the system needs to be relatively slower. This normally precludes the

use of derivative control.

All the standard tuning rules, like Ziegler–Nichols and other methods, work based on the

choice of certain settings based on these questions, especially the accuracy and response time

desired for the system. These choices tend to lead the system to acceptable performance for

most applications, but it is important to note that some may require specific settings defined

on a case-by-case basis.

That said, there are some general statements about the effect of changes in the gains of a

PID controller that can be made. This can be useful for small manual adjustments of these

parameters after results are systematically obtained through the formal methods outlined

here. In general, increasing controller gains leads to faster response but also tends to make

the system less stable. For the derivative term, however, the system tends to remain stable,

given that the input signal is sufficiently noise-free, which is less common than it seems.

We can summarize the general rules for adjusting the gains of a PID controller as follows:

Increase in proportional gain kp:

• Faster response;

• Lower system stability;

• Risk of overshoot;

• Noise increase;

Increase in integral gain ki:

• Slower response;

• Lower system stability;

• Reduces noise;

• Eliminates steady-state errors faster

6.3 Control approaches 68

Table 6.1: PI Tuning Configuration

ID rt st overshoot kp(perf) ki(perf)

1 6.10 93.10 0.00 1.1776 0.0682

2 4.57 50.10 16.60 1.2833 0.1171

3 4.73 43.00 27.00 1.0922 0.1589

4 7.09 36.60 2.46 0.8355 0.1142

5 7.42 60.00 0.00 0.9817 0.0871

Increase in derivative gain kd:

• Faster response;

• Improved system stability;

• Excessive noise increase;

Considering this, we used the FOPDT model generated earlier, even with its limitations,

to perform a more grounded tuning of the gains of the proposed PID controller. Using

Matlab’s own tuning methods, Control System Toolbox [118] and PID Tuner [119], we eval-

uated how each dynamic parameter of the system influenced different executions. Table 6.1

presents the achieved tuning settings, where rt is the system rise time, st is the settling time,

and kp(perf) and ki(perf) are the respective proportional and integral gains of the proposed

performance controller. Our executions did not generate significant values for the derivative

gain, so we simplified the approach, effectively designing a PI controller.

Finally, these gains were applied to real executions on our system. The combination

of the overshoot, rise and settling time parameters is used to generate the respective gains

kp(perf) and ki(perf). Considering this, Figure 6.1 shows the configurations of numbers 5

(6.1a) and 4 (6.1b) in Table 6.1, the first being the one that presented the best results with

respect to overshoot, rise time and system accommodation.

We can see that, for the configuration 4, in Figure 6.1b, a higher value of integral gain

(ki(perf) = 0.1142) probably influenced the system to react more aggressively to accumu-

lated errors, possibly caused by overshoots, not behaving as expected when tracking the

reference value. Thus, according to Figure 6.1a, when using the configuration of number 5,

with kp(perf) = 0.9817 and ki(perf) = 0.0871, the controller tracks the reference value with

6.4 Evaluation 69

(a) Tuning 5 on Table 6.1.

.

(b) Tuning 4 on Table 6.1.

Figure 6.1: Tracking of reference value with given PI tuning configurations.

reasonable rise and settling time, and virtually no overshoot. For this reason, this was the

configuration chosen for the gains of the proposed PI controller.

Note that, despite the limitations of the model, we still got a reasonably adequate tuning

as a reference. Thus, in the evaluation made below, we will use the gains described here as

parameters of the proposed PI performance controller.

6.4 Evaluation

In this section we present the experiments performed to evaluate how a DSP system behaves

when using different types of control strategies, including Proportional-Integral and Fixed

Action control. In addition, we apply the proposed PI controller gain tuning described in

Section 6.3.2 above, and compare this approach with a purely manual tuning. Finally, system

throughput estimates were used to deal with possible over-provisioning conditions. In the use

cases explored here, the effectiveness of the performance controller is evaluated in terms of

user-defined QoS metrics, such as replica allocation, system response time and throughput.

6.4.1 Experimental design

In Chapters 5 and 6, several control approaches were presented that can be combined to

form different compositions. Each of these approaches is associated with a set of factors,

6.4 Evaluation 70

which are independent variables of the configuration of the component in question. This

section initially presents basic concepts of an experimental design and the consequent results

obtained by applying it to the evaluation of the solutions presented here.

An experimental design aims to define experiments in such a way that the most informa-

tion is obtained with the least amount of experiments possible. Experiments, in this context,

can be simulations or measurements in real (or close to real) environments. Besides that,

experiments can be designed for different purposes, including: deciding between alterna-

tives (comparative experiments), identifying which factors influence more than one response

variable (selective experiments), adjusting/optimizing the experimental process, etc. In the

context of this work the experimental design was carried out to mainly decide between alter-

natives.

To understand the experimental design carried out, it is necessary to introduce some

important terms. The following are generally used in the design and analysis of experi-

ments [90]:

Response variable. The response variable (or dependent variable) is the result of the ex-

periment, that is, what you want to measure.

Factors. A factor is an independent variable (that can be controlled) that can take on dif-

ferent values and that affects the response variable. Through an analysis of experiments it is

possible to quantify the effect of different factors on the response variable.

Replication. It is possible to repeat the same experiment n times. This repetition is called

replication.

Interaction. Two factors interact if the effect verified for one factor on the response vari-

able depends on the level of the other factor.

An adequate analysis of experiments makes it possible to quantify the effect of factors

on the response variable, and when associated with a significance study, it makes it possible

to identify which factors are statistically significant for the response variable.

Considering this, the three most commonly used types of experiment designs are [90]:

6.4 Evaluation 71

Simple design. It starts with a certain configuration for the parameters and varies one factor

at a time to identify the effect that the factors have on the response variable. This method

does not take into account the interactions between factors, which can lead to erroneous

results when there are interactions.

Complete factorial design. Conduct experiments for each of the levels of all factors. This

type of design of experiments is the most complete, however, when the number of factors

and/or levels is very large, it becomes too expensive.

Fractional factorial design. This type of design is indicated when the number of experi-

ments to be carried out with a complete factorial design is very large. Only a fraction of all

possibilities are used here. The number of experiments is smaller, but it is not possible to

study all possible interactions between the factors.

Considering the number of factors described later is this chapter, and the goals for the

proposed experiments, we opted for a simple design. Besides that, there are some consid-

erations that helped in deciding the technique to be used to evaluate the system. The key

consideration is the life-cycle stage in which the system is. Measurements are only indicated

if something similar to the proposed system already exists. Simulation and analytic model-

ing are mostly used for situations where measurement is not possible, but in general it is a

better practice when the analytic modeling or simulation is based on previous measurement.

Sometimes it is also helpful to use two or more techniques simultaneously or sequentially.

For our case, measurements of a real system were used to generate an analytic model, which

in turn, was used to suggest the appropriate configuration parameters for the proposed control

system.

Besides that, to analyze the significance of the experiment results, a t-test analysis was

performed. This analysis is a statistical test used to formally compare the means of two

groups. This approach is often performed in hypothesis testing to determine whether a treat-

ment actually has an effect on the population of interest, or whether two groups are different

from one another. Note that a t-test can only be used when comparing the means of two

groups. If you want to compare more than two groups, or if you want to do multiple pairwise

comparisons, use an ANOVA test.

6.4 Evaluation 72

The t-test is a parametric test of difference, meaning that it makes the same assumptions

about your data as other parametric tests. We checked the t-test assumptions to be true for

our data, as follows:

• Are independent;

• Are approximately normally distributed;

• Have a similar amount of variance within each group being compared (homogeneity

of variance).

It is important to note that, throughout the statistical analysis later presented in this chap-

ter, we need to consider the effects of practical and statistical significance, since the presence

of the latter does not necessarily mean that the results are practically significant in a real-

world sense of importance.

The hypothesis testing procedure determines whether the considered sample results are

likely to be representative if you assume the null hypothesis is correct for the population. If

such results are sufficiently improbable under that assumption, then you can reject the null

hypothesis and conclude that an effect exists, meaning your results are statistically signifi-

cant. On the other hand, practical significance relates to the magnitude of the effect. That

said, no statistical test can tell you whether the effect is large enough to have an importance

in the context of the given study. To achieve that, you need to apply concepts and state of

the art research on the subject of interest to determine whether the effect is big enough to be

meaningful in the real world.

Now for the experiments described in this section, in summary, four main comparative

scenarios were proposed:

I. Analytic PI - Runtime x Fixed Action - 3. For this use case, the Analytic PI - Runtime

strategy considers the use of the PI controller, with its gain parameters tuned according to

the analytic model generated in Chapter 5. The Fixed Action - 3 treatment considers the use

of what we call a Fixed Action controller, that increases or decreases the control action in 3

steps each time. For both cases, the throughput response variable is calculated at runtime.

6.4 Evaluation 73

II. Analytic PI - Runtime x Fixed Action - 1. In this scenario we use the same PI control

described above. For the Fixed Action - 1 treatment, we consider the use of the Fixed Action

controller, this time increasing or decreasing the control action in 1 step each time. For both

cases, the throughput response variable is calculated at runtime.

III. Analytic PI - Constant x Manual PI - Constant. In this case, the same PI controller

is used as before, compared with a Manual PI - Constant treatment, in which the gain pa-

rameters of the given controller are manually tuned. For this configuration we consider the

workload input rate to be a constant of 3 items per second. For both cases, the throughput

response variable is calculated at runtime.

IV. Analytic PI - Runtime x Analytic PI - Estimated. Finally, for the last scenario we

compare the Analytic PI controller with an instance of the same controller now calculating

the throughput response variable as an estimate based on the average time to process an work

item and the amount of resources used.

Considering these comparative scenarios, we define the response variables as: (i) the

system throughput; (ii) resource utilization; and (iii) response time. For (i), the throughput

is the rate at which requests can be serviced by the system, which in our case is the rate

of processed items per second. The second metric, (ii), refers to the number of replicas

instantiated in a Kubernetes cluster to process such work items. And (iii) is the interval

between the start of a request submission and the end of the corresponding response from

the system, which in our case is the time it takes for an item to be processed once it enters

the system.

Next, we need to define the factors that may affect such variables. Table 6.2 showcase

the factors that varied between different treatments. Some considerations about the input rate

and the tracked error are as follows:

Input rate. This refers to the arrival rate of new work items. The input rate follows two

type of workloads, one that sends 3 items per second over the entire duration of the stream,

and other that varies between 2 and 4 work items, in a controlled uniformed manner. This

means that, if we consider the duration of a stream in an experiment to be 20 minutes, every

6.4 Evaluation 74

Table 6.2: Factors for the experiments with PI and Fixed Action controllers.

Factor Description Levels

Control Strategy Type of controller used Proportional-Integral Fixed Action

Control tuning Approach to configure control gains Manual Analytic

Control

configuration

Specified control gains

and configuration

P: 1.0; I: 1.0
P: 0.9817;

I: 0.0871

Actuation

size: 3

Actuation

size: 1

Input rate Arrival rate of new processing items 3 items/s 2-4 items/s

Tracked error Calculation of the tracked error Runtime Estimated

5 minutes the input rate is going to change from 2 to 4 or vice-versa. This is a limitation with

regards to the types of workloads our control system can handle.

Tracked error. Refers to the difference between the input rate and the system throughput at

a given moment. Two types of tracked errors are considered here. The first, called runtime,

uses the throughput calculated based on how many work items were completed in a time

interval t, measured at runtime. The other type is what we call estimated, which uses the

throughput calculated as an estimate based on the number of replicas in the system in a time

interval t and the average processing time of a work item. More details on the assumptions

about this variable can be found on Section 6.2.

Other factors remained the same throughout the experiments, such as:

• Maximum of concurrent replicas: 8. This limitation is due to the size of the Ku-

bernetes cluster used to perform the experiments, and the resources required by each

execution of the application begin processed.

• Estimated system response time: 1.5 seconds. All work items sent to the system are of

the same type, and considered to take the same time to process. This means our scope

is limited to an homogeneous workload.

• Stream duration: 20 minutes. Long enough so we can variate the input rate every 5

minutes.

6.4 Evaluation 75

Table 6.3: Treatments for the experiments with PI and Fixed Action controllers.

Control Strategy Control tuning Control configuration Input rate Tracked error

Proportional-Integral

Manual
Proportional: 1;

Integral: 1
3 items/s Runtime

Analytic
Proportional: 0.9817;

Integral: 0.0871

3 items/s Runtime

2-4 items/s
Runtime

Estimated

Fixed Action Fixed
Actuation size: 3 2-4 items/s Runtime

Actuation size: 1 2-4 items/s Runtime

• Workload size: 3600 items, considering the duration of the stream and the time to

process an item.

• Data collection: Intervals of 2 seconds. Since each item takes approximately 1.5

seconds to process, collecting data every 2 seconds allows the system to react soon

enough if any changes are necessary.

Instances of each proposed scenario were created and evaluated. Table 6.3 showcases

each treatment and its given configuration values. Also, each treatment was replicated 15

times over the course of the experiments.

Finally, the execution environment to perform the experiments consisted of a Kubernetes

cluster managed by the Asperathos framework. The workload used is a sample of real en-

ergy disaggregation data, provided by the LiteMe solution (a snippet of these items can be

found in Section 2.4). Custom control and monitoring plugins were implemented to encap-

sulate the proposed controllers and monitors, allowing the execution of DSP applications,

with a focus on performance metrics. Among the plugins used is KubeJobs for integration

with Kubernetes, StreamKubejobs for monitoring stream processing applications, in addition

to the FixedAction and PI controllers for a Fixed Action and Proportional-Integral control

strategies, respectively. All were implemented in python and are available in the official

Asperathos [6] repository.

6.4 Evaluation 76

Table 6.4: Configuration for the PI-Fixed set of experiments.

Control strategy Control tuning Control configuration Input rate Tracked error

Proportional-Integral Analytic
Proportional: 0.9817

Integral: 0.0871
2-4 items/s Runtime

Fixed Action Fixed
Actuation size: 3

Actuation size: 1

6.4.2 Scenarios I and II: Analytic PI x Fixed Action

The objective of this experiment is to evaluate if there is any difference when using a PI

control over a more simplistic approach such as the Fixed Action one. Such evaluation takes

into consideration the system throughput, resource utilization and response time. Table 6.4

highlights the combination of factors used for the experiments in these scenarios.

We can see that the Proportional-Integral controller was configured with the gains previ-

ously defined, ki(perf) = 0.0871 and kp(perf) = 0.9817. As for the Fixed Action controller,

we first run a set of experiments with actuation size of 3, which represents a more incisive

approach to the presence of a tracking error. This means that whenever there is any deviation

detected by the tracked error, an action of size 3 is applied to the system, adding or removing

3 replicas from the Kubernetes cluster, depending on the error sign.

Next, we configure the Fixed Action controller with a less aggressive actuation size of

1. This is a default value, often used in controllers of this type precisely because of its more

moderate nature. In this case, whenever there is any deviation detected by the tracked error,

1 replica is added or removed from the Kubernetes cluster.

In the next sections, we firstly present a descriptive analysis of the collected data and

then an statistical analysis to support the discussion of the results.

A. Descriptive analysis

A descriptive analysis of the data for this scenario can be found on Appendix A, Section A.1.

6.4 Evaluation 77

B. Statistical analysis

In this section, we highlight the statistical analysis for the system response time variable.

The complementary statistical analysis of the data for this scenario, including the tracked

error and replica allocation, can be found on Appendix B, Section B.1.

Previously on this chapter, we defined that the response time is given by the time it takes

for an item to be processed once it enters the system, which is considered to be approximately

1.5 seconds for each item. Here, we look at this metric from two perspectives, first we

calculate the rate of items processed on time, i.e. items that took a maximum of 1.5 seconds

to finish, and considering this same prerogative, the rate of requests that violate a given SLA

of 1.5 seconds response time per item.

Table 6.5 showcases the observations and hypothesis about the rate of items processed

on time for the PI x Fixed Action - 3 scenario. Complementary to that, Table 6.6 presents

what was observed from the data regarding the SLA violation rate for this same use case.

Table 6.5: Rate of items processed on time statistical observations for the PI x Fixed Action

- 3 scenario.

Observation from the data:
The average rate of items processed on time for the PI controller

is greater than that for the Fixed Action controller of size 3.

Research question:
Is this difference due to chance or is it a statistically

significant difference?

Null hypothesis:
The average rate of items processed on time in each group

is the same.

Alternative hypothesis:
The true difference in means between group Analytic PI

and group Fixed Action - 3 is not equal to 0.

Table 6.6: SLA violation rate statistical observations for the PI x Fixed Action - 3 scenario.

Observation from the data:
The average SLA violation rate for the PI controller is lesser than

that for the Fixed Action controller of size 3.

Null hypothesis: The average SLA violation rate in each group is the same.

A Student’s t-test was performed to analyze if the difference observed from data is sta-

6.4 Evaluation 78

tistically significant for both cases. In general lines, considering a confidence interval of

95%, if the p-value is less than 0.05 then you can reject the null hypothesis and conclude that

the difference between means in the two categories is statistically significant. Note that this

same principle will be used for all the tests performed using the Student’s distribution.

Considering the hypothesis in Table 6.5, the results show a p-value of 2.168e− 05, with

a 95% confidence interval of [10.75499, 22.67834]. The sample estimate for the mean in

group Analytic PI is 94.22222, while the mean for the Fixed Action - 3 group is 77.50556.

Complementary to that, for the SLA violation rate, the same p-value is obtained, with a 95%

confidence interval of [−22.67834,−10.75499]. The sample estimate for the mean in group

Analytic PI is 5.777778, while the mean for the Fixed Action - 3 group is 22.494444.

From these results, we can then reject the null hypothesis for both cases, and say that the

differences in means between the two groups are in fact statistically significant.

Now considering the configuration of an actuation size of 1 for the Fixed Action con-

troller, Table 6.7 showcases the observations and hypothesis about the rate of items processed

on time for the PI x Fixed Action - 1 scenario. Complementary to that, Table 6.8 presents

what was observed from the data regarding the SLA violation rate for this same use case.

Table 6.7: Rate of items processed on time statistical observations for the PI x Fixed Action

- 1 scenario.

Observation from the data:
The average rate of items processed on time for the PI controller

is greater than that for the Fixed Action controller of size 1.

Null hypothesis:
The average rate of items processed on time in each group

is the same.

Table 6.8: SLA violation rate statistical observations for the PI x Fixed Action - 1 scenario.

Observation from the data:
The average SLA violation rate for the PI controller is lesser than

that for the Fixed Action controller of size 1.

Null hypothesis: The average SLA violation rate in each group is the same.

A Student’s t-test was then performed to analyze if the differences observed from data are

statistically significant for both of these cases. Considering the observations in Table 6.7, the

6.4 Evaluation 79

results show a p-value of 0.6211, with a 95% confidence interval of [−5.671753, 3.745827].

The sample estimate for the mean in group Analytic PI is 94.22222, while the mean for the

Fixed Action - 1 group is 95.18519. Complementary to that, for the SLA violation rate, the

same p-value is obtained, with a 95% confidence interval of [−3.745827, 5.671753]. The

sample estimate for the mean in group Analytic PI is 5.777778, while the mean for the Fixed

Action - 1 group is 4.814815.

Considering these results, we can not reject the null hypothesis that the average rate of

items processed on time and the average SLA violation rate in each group are the same. We

conclude that because the p-value is high considering the expected standards of < 0.05, and

the confidence interval includes a 0 difference, which means that there is still a possibility

that the average means in the two observed groups are actually the same.

C. Discussion

Figure 6.2 shows the results of the Analytic PI x Fixed Action - 3 configuration. We can

see that the tracking of the reference value in Figure 6.2a is apparently less favorable for

the configuration that uses the Fixed Action controller with a step size of 3. However, the

results of the analysis of the tracked error for this use case in B.1.2 are not statistically

significant. This might be because the error values collected are so close together that the

difference in means is very short and the amount of data was not big enough to provide

statistically significant results. Another option is that the use of the mean is misleading when

incorporating the values that standout. On the other hand, using the median to summarize

the data from different replications would also not solve the possible issue since we are not

interested in the value lying at the midpoint of this distribution, but on the values that are

somewhat different than the expected and that might not be represented by the median value.

We can then look at the replica allocation to explain this difficulty in following the ref-

erence value showcased in Figure 6.2a. The large variation in the number of replicas being

added and removed from the cluster, as expected by the size of the chosen step, is clearly

demonstrated in Figure 6.2b. The statistical analysis in B.1.1 confirms that the differences

for the replica allocation are in fact statistically significant, although not that significant from

a practical perspective, with means of 5.41 for the Analytic PI, while the mean for the Fixed

Action - 3 group is 5.68. However, in that case, we understand that low variation in the

6.4 Evaluation 80

A
nalytic P

I, R
untim

e
F

ixed A
ction −

 S
tep 3

0 200 400 600

0

1

2

3

4

0

1

2

3

4

Time (s)

F
lu

x
va

lu
e

(it
em

s/
s)

Input flux
Output flux

(a) Tracking of reference value.

2.5

5.0

7.5

10.0

12.5

0 200 400 600
Time (s)

R
ep

lic
as

Analytic PI, Runtime
Fixed Action − Step 3

(b) Allocated replicas.

Figure 6.2: Analytic PI x Fixed Action - 3.
A

nalytic P
I, R

untim
e

F
ixed A

ction −
 S

tep 1

0 200 400 600

0

1

2

3

4

0

1

2

3

4

Time (s)

F
lu

x
va

lu
e

(it
em

s/
s)

Input flux
Output flux

(a) Tracking of reference value.

2.5

5.0

7.5

0 200 400 600
Time (s)

R
ep

lic
as

Analytic PI, Runtime
Fixed Action − Step 1

(b) Allocated replicas.

Figure 6.3: PI Control x Fixed Action - 1.

allocation is also of importance here, since availability can be compromised in the case of

acquiring and removing replicas in such high frequency, as we see in Figure 6.2b for the

Fixed Action - 3 approach. Besides that, the price of these operations can also escalate

quickly 1.

Figure 6.3 shows the results of the Analytic PI x Fixed Action - 1 configuration. We can

see in Figure 6.3a that the tracking of the reference value is closer to what is expected, given

that the control action of size 1 is not as aggressive as the size 3. However, the above-desired

1For example, a sudden spike in the number of pods could trigger the scaling of node pools in managed

clusters in cloud providers, such as AWS and Azure. Then, even if this would be quickly scaled down, there

would still be cost and API availability impacts.

6.4 Evaluation 81

0

5

10

15

20

Analytic PI − Runtime Fixed Step − 1 Fixed Step − 3
Controller type

S
LA

 v
io

la
tio

n
ra

tio
 (

%
)

(a) Mean SLA violation ratio.

0

10

20

30

Analytic PI − Runtime Fixed Step − 1 Fixed Step − 3
Controller type

S
LA

 v
io

la
tio

n
ra

tio
 (

%
)

(b) Distribution of the SLA violation ratio.

Figure 6.4: Analytic PI x Fixed Action: SLA violation ratio.

variation in replica allocation is still visible in Figure 6.3b. One of the objectives that we seek

to achieve is a small variation in the allocation of replicas according to the considered load,

which for this experiment did not justify the results for the Fixed Action - 1 configuration.

Statistical analysis confirm that the differences in means between the Analytic PI x Fixed

Action - 1 replica allocation are statistically significant, although not from a practical per-

spective, being observed from the data an average of 5.41 replicas for the Analytic PI ap-

proach, and 6.09 for the Fixed Action - 1. In this case, the moderately high variance in Ta-

ble A.1 for the Fixed Action - 1 configuration also contributes to the conclusion that replica

allocation is varying more than what is usually desired from an availability point of view, as

for the Fixed Action - 3 scenario as well.

Finally, analyzing the response time, we take a look at the SLA violation ratio, that is

derived from the response time values that are higher than 1.5 seconds. Figure 6.4 showcases

the distribution of the violation ratio for the treatments considered here.

From Figure 6.4a we can see that the Fixed Action - 3 configuration is the one that has the

highest average SLA violation ratio, while the Fixed Step - 1, is the lowest very close together

with the Analytic PI one. Complementary to that, Figure 6.4b showcases the distribution of

this data. The statistical analysis in 6.4.2 confirms that the differences between the Fixed

Step - 3 and Analytic PI SLA violation ratios are in fact statistically significant. However,

6.4 Evaluation 82

Table 6.9: Configuration for the Analytic-Manual PI set of experiments.

Control strategy Control tuning Control configuration Input rate Tracked error

Proportional-Integral
Analytic

Proportional: 0.9817

Integral: 0.0871 3 items/s Runtime

Manual
Proportional: 1.0

Integral: 1.0

for the Fixed Step - 1 treatment, we can not determine the same, possibly because the means

are too similar and/or the data is not sufficient to validate that.

Considering all the discussion about system response time, throughput and replica allo-

cation, we can say that the user will likely be paying more than necessary when using the

Fixed Action - 3 approach, exceeding possible cost limits, for example. For the Fixed Action

- 1 approach, replica allocation varies above the desired for the given input rate, although

we can not confirm nor deny that the consequent violation ratio reflects that on the final

performance of this controller. Also, in terms of total cost, when adding up the cost for the

replicas and the violation fees that might occur, this analysis could be further extended to

better indicate which approach performs better in that sense.

Thus, considering the comparative scenario described here, we conclude that the ap-

proach that uses the proposed Analytic PI controller showcases better results overall, as

described by the analysis above, than the Fixed Action controller that acts on the system in

fixed steps.

6.4.3 Scenario III: Analytic PI x Manual PI

The goal of this experiment is evaluate if there is any difference when using a PI control

manually tuned over control gains obtained from an analytic model. Here, we named the

first approach Manual PI, and the latter Analytic PI. Such evaluation takes into considera-

tion the system throughput, resource utilization and response time. Table 6.9 showcases the

combination of factors used for the experiments proposed for this scenario.

According to that, for both executions we used the proposed Proportional-Integral perfor-

mance controller, using two tuning configurations, one generated based on the FOPDT model

6.4 Evaluation 83

of the system and the other manually defined. Thus, for the Analytic PI, we consider the val-

ues for the proportional and integral gains to be ki(perf) = 0.0871 and kp(perf) = 0.9817.

Then, for the Manual PI, considering the system dynamics to perform a disaggregation task,

we choose the default values of ki(perf) = 1.0 and kp(perf) = 1.0.

This experiment is expected to show how a precise tuning of a PI controller can benefit

system performance, as well as decrease the number of iterations needed to achieve good

manual tuning, especially for less experienced users. In the next sections, we firstly present

a descriptive analysis of the collected data and then an statistical analysis to support the

discussion of the results.

A. Descriptive analysis

A descriptive analysis of the data for this scenario can be found on Appendix A, Section A.2.

B. Statistical analysis

In this section, we highlight the statistical analysis for the replica allocation variable. The

complementary statistical analysis of the data for this scenario, including the tracked error

and system response time, can be found on Appendix B, Section B.2.

Table B.1 showcases the observations and hypothesis about the allocation of replicas for

the Analytic PI x Manual PI scenario.

Table 6.10: Replica allocation statistical observations for the Analytic PI x Manual PI sce-

nario.

Observation from the data:
The average replica allocation for the Analytic PI

tuning is lesser than that for the Manual PI.

Null hypothesis: The average replica allocation in each group is the same.

A Student’s t-test was performed to analyze if the difference observed from data is sta-

tistically significant. The results show a p-value < 2.2e − 16, with a 95% confidence in-

terval of [−1.829002,−1.644918]. The sample estimate for the mean in group Analytic PI

is 5.520328, while the mean for the Manual PI group is 7.257288, which is higher. Con-

sidering this, we can then reject the null hypothesis and say that the differences in means

6.4 Evaluation 84

0

2

4

6

0 300 600 900
Time (s)

F
lu

x
va

lu
e

Analytic PI
Input flux
Manual PI

(a) Tracking of reference value.

2

4

6

8

0 300 600 900
Time (s)

R
ep

lic
as

Analytic PI
Manual PI

(b) Allocated replicas.

Figure 6.5: Analytic PI x Manual PI.

between the two groups are statistically significant. As for practical significance, we can say

that the effect of this difference, especially when extrapolated for a higher workload, and

consequentially a higher replica allocation, can be of importance when calculating the cost

of the resources for the Manual PI approach, which has the higher mean.

C. Discussion

Figure 6.5 shows the results of the Analytic PI x Manual PI tuning configuration. As we

can see in Figure 6.5a, the Manual PI approach, represented by the purple line, apparently

had more difficulty when tracking the system reference value. This can happen because,

due to the high variation in the observed replica allocation, more items are accumulating at

the end of the queue, and when there is a sudden change and more replicas are instantiated,

consequently more items are able to leave the queue and be processed. However, we do not

want items to accumulate that much in the queue, possibly causing SLA issues if an item

takes too long to finish. Even so, the results of the analysis of the tracked error for this use

case in B.2.1 are not statistically significant. This can be possibly explained by the nature of

the variable, as presented in Section B.1.2.

Moreover, this situation is reflected in Figure 6.5b, where we see that the number of

allocated replicas varied more for the Manual PI than for the Analytic PI approach, causing

some unwanted level of destabilization in the system. Statistical analysis confirm that the

differences in means between the Analytic PI x Manual PI replica allocation are statistically

6.4 Evaluation 85

0

2

4

6

8

Analytic PI − Constant Manual PI − Constant
Controller type

S
LA

 v
io

la
tio

n
ra

tio
 (

%
)

(a) Mean SLA violation ratio.

2.5

5.0

7.5

10.0

12.5

Analytic PI − Constant Manual PI − Constant
Controller type

S
LA

 v
io

la
tio

n
ra

tio
 (

%
)

(b) Distribution of the SLA violation ratio.

Figure 6.6: Analytic PI x Manual PI: SLA violation ratio.

significant, being observed from the data an average of 5.52 for the Analytic PI approach,

and 7.25 for the Manual PI. In this case, the moderately high variance in Table A.2 for the

Manual - PI configuration also contributes to the conclusion that replica allocation is varying

more than what is usually desired, specially from an availability and cost perspective.

Finally, analyzing the response time, we take a look at the SLA violation ratio, that is

derived from the response time values that are higher than 1.5 seconds. Figure 6.6 showcases

the distribution of the violation ratio for the treatments considered here.

From Figure 6.6a we can see that the Manual PI configuration has an average SLA vio-

lation ratio higher than the Analytic PI one. Complementary to that, Figure 6.6b showcases

the distribution of this data. Although the boxes overlap, the median line of the Manual PI

approach lies outside of the Analytic PI box. This means that there is likely to be a statis-

tically significant difference between these two values. This is confirmed by the statistical

analysis in B.2.2.

Considering all the discussion about the response variables in this scenario, we can say

that the user will likely be paying more than necessary when using the Manual PI approach,

exceeding possible cost limits. Thus, we conclude that the approach that uses the proposed

Analytic PI controller performs better, as described by the analysis above, than the Manual

PI approach.

6.4 Evaluation 86

Table 6.11: Configuration for the Runtime-Estimated PI set of experiments.

Control strategy Control tuning Control configuration Input rate Tracked error

Proportional-Integral Analytic
Proportional: 0.9817

Integral: 0.0871
2-4 items/s

Runtime

Estimated

Nevertheless, it is important to emphasize that, although a gradual manual tuning can

eventually achieve results as good as those obtained through analytic tuning, this task can be

exhausting, and require several iterations. Also, less experienced users, who are likely to try

more extreme values early on, may experience other problems caused by a faulty tuning. This

is a problem because the overshoot observed in Figure 6.5, and caused by a more aggressive

proportional gain, can completely destabilize the system. In this case, by overshoot we mean

the spikes in replica allocation and the system throughput.

6.4.4 Scenario IV: PI - Runtime x PI - Estimated

The goal of this experiment is to evaluate if there is any difference when calculating the

tracked error using the throughput measured at runtime, or as an estimate based on the num-

ber of replicas in use and the time it takes to process a given item. As previously described,

the use of an estimated throughput tries to mitigate over-provisioning conditions that might

happen otherwise. Here, we named one approach PI - Runtime and the other PI - Estimated.

Their evaluation considers the system throughput, resource utilization and response time.

Table 6.11 highlights the combination of factors used for the experiments proposed for this

scenario.

To that end, we used the Proportional-Integral performance controller, using the tuning

configuration provided by the FOPDT model of the system described in Chapter 5. We run

a workload ranging from 2 to 4 items per second, this rate being the reference value that

the system should track. As for the tracked error, two approaches are considered, one that

uses the effective number of completed items in a given time interval, named Runtime in

Table 6.11, and another that uses an estimate of completed items, called Estimated.

In the next sections, we firstly present a descriptive analusis of the collected data and

then an statistical analysis to support the discussion of the results.

6.4 Evaluation 87

A. Descriptive analysis

A descriptive analysis of the data for this scenario can be found on Appendix A, Section A.3.

B. Statistical analysis

In this section, we highlight the statistical analysis for the tracked error variable. The com-

plementary statistical analysis of the data for this scenario, including the replica allocation

and system response time, can be found on Appendix B, Section B.3.

Table 6.12 showcases the observations and hypothesis about the tracking of the reference

value for the PI - Runtime x PI - Estimated scenario. Remember that, for this system, the

reference value is determined by the input rate of new work items, which for the treatments

defined in Table 6.11 varies from 2 to 4 items per second. Thus, in order to quantify how

well the system is following the reference value, we take into consideration the tracked error

based on this input rate, which is equal to 0 when the system processes the same amount of

incoming items, i.e. follows the reference value, and different than 0 otherwise.

Table 6.12: Tracked error statistical observations for the PI - Runtime x PI - Estimated

scenario.

Observation from the data:
The average tracked error for the PI - Runtime approach is

lesser than that for the PI - Estimated.

Null hypothesis: The average tracked error in each group is the same.

A Student’s t-test was performed to analyze if the difference observed from data is statis-

tically significant for this case. The results show a p-value of 0.5112, with a 95% confidence

interval of [−0.03014138, 0.06050473]. The sample estimate for the mean in group PI -

Estimated is 0.016959064, while the mean for the PI - Runtime group is 0.001777389.

Considering these results, we can not reject the null hypothesis that the average tracked

error in each group is the same. We mostly conclude that because the p-value is high consid-

ering the expected standards of < 0.05, and the confidence interval implies that there is still

a possibility that the average means in the two observed groups are actually the same.

6.4 Evaluation 88

A
nalytic P

I, estim
ated

A
nalytic P

I, runtim
e

0 300 600 900

0

2

4

0

2

4

Time (s)

F
lu

x
va

lu
e

Input flux
Output flux

Figure 6.7: PI - Estimated x PI - Runtime - Tracking of reference value.

C. Discussion

Figure 6.7 shows the results of the Runtime x Estimated configuration. As we can see, the

performance controller is able to track the reference values without any further difficulties,

both for the Runtime and the Estimated approaches, that calculate throughput at runtime and

as an estimate, respectively. However, we can see that for the Estimated configuration, small

disturbances are detected when the input rate changes from 2 to 4 items per second.

Additionally, Figure 6.8 depicts the behavior of the system in terms of resource usage

of the considered Kubernetes cluster and the calculated tracked error for this scenario. In

Figure 6.8a, we can see possible over-provisioning situations happening by looking at the

yellow line on this graph, which represents the system configuration using the Runtime ap-

proach. When the input rate drops to 2 tasks per second, this approach keeps the number of

replicas at 6, when the ideal value would be approximately 3, considering each item takes

1.5 seconds to finish. Therefore, we can define this as over-provisioning, since the system is

operating at more than necessary utilization to maintain its QoS goals.

Statistical analysis confirm that the differences in means between the Runtime x Esti-

mated approaches regarding the replica allocation are statistically significant, being observed

from the data an average of 5.41 for the Runtime, and 4.76 for the Estimated configuration.

In this case, replica allocation for the Estimated approach is, in average, lower than that of

the Runtime approach.

Next, Figure 6.8b shows the calculated tracked error for both configurations. We see that

6.4 Evaluation 89

2

4

6

0 300 600 900
Time (s)

R
ep

lic
as

Analytic PI, estimated
Analytic PI, runtime

(a) Allocated replicas.

−2

−1

0

1

2

3

0 300 600 900
Time (s)

E
rr

or

Analytic PI, estimated
Analytic PI, runtime

(b) Tracked error.

Figure 6.8: PI - Estimated x PI - Runtime.

the error for the Runtime approach, represented by the yellow line, does not register the need

for a reduction in the number of replicas when the input rate decreases, that is, the error does

not grow sufficiently to indicate a control action that would prevent over-provisioning of the

resources. This happens because, as the system seeks to guarantee that as many tasks are

executed as those arriving in a given time interval, there is a limitation on the number of

tasks completed at runtime. In this case, even if the input rate decreases, for the system, the

throughput remains in accordance with the tracked reference value, which, in theory, means

that no control action should be performed even if the computational power used is larger

than necessary.

In contrast, as shown by the blue lines in Figures 6.8a and 6.8b, the tracked error for the

estimated approach is able to detect the over-provisioning, allowing the controller to generate

actions to reduce the number of allocated replicas. This happens because knowing how long

on average a task takes to complete, it is possible to estimate the processing capacity of the

system given the number of replicas being used. In an over-provisioning situation, this means

that the estimated throughput will be greater than the tracked reference value, indicating the

need for a control action that decreases the number of Kubernetes replicas. Consequently,

such behavior prevents the resource utilization costs from growing unnecessarily, and is

therefore more suitable in these cases.

Finally, analyzing the response time, we take a look at the SLA violation ratio, that is

derived from the response time values that are higher than 1.5 seconds. Figure 6.9 showcases

6.4 Evaluation 90

0

5

10

Analytic PI − Estimated Analytic PI − Runtime
Controller type

S
LA

 v
io

la
tio

n
ra

tio
 (

%
)

(a) Mean SLA violation ratio.

5

10

Analytic PI − Estimated Analytic PI − Runtime
Controller type

S
LA

 v
io

la
tio

n
ra

tio
 (

%
)

(b) Distribution of the SLA violation ratio.

Figure 6.9: PI - Runtime x PI - Estimated: SLA violation ratio.

the distribution of the violation ratio for the treatments considered here.

From Figure 6.9a we can see that the PI - Estimated configuration has an average SLA

violation ratio higher than the PI - Runtime one. Complementary to that, Figure 6.9b show-

cases the distribution of this data. The statistical analysis in B.3.2 confirms that the differ-

ences between the PI - Estimated and the PI - Runtime SLA violation ratios are in fact sta-

tistically significant. However, since we identified that there is a possible over-provisioning

of resources for the PI - Runtime approach, this can explain why the violation ratio ends up

smaller than the one that tries to mitigate this condition.

A further analysis on the impact on the total cost of using substantially more replicas

but violating less SLA goals are needed to in fact determine which one performs better with

regards to this metric.

Chapter 7

A multiple-objective control approach

7.1 Context and motivation

There is a demand for solutions suitable for computing systems that aim to meet a variety of

requirements simultaneously, usually related to QoS objectives. Usually, developers resort

to implementing custom control algorithms to ensure that the constraints imposed by the

considered metrics are met. Such algorithms use user-defined heuristics and rules, and are

often organized into multiple loops, that is, an inner loop that optimizes one metric, an outer

loop that optimizes another metric, and so on.

However, this heuristic-based approach is generally not robust enough. First, defin-

ing the order in which each variable of interest is modified in a cycle, and the degree

of change required, are essential tasks, but not necessarily easy to configure in an al-

gorithm. Consequently, this approach requires the development of complex algorithms,

which can end up introducing bugs in the system. Furthermore, while an execution takes

place, there is a risk that situations not anticipated by the algorithm may occur, which can

cause considerable deviations from the reference values that are sought to be reached [135;

160].

Alternatively, the use of control theory has proven successful in these situations [151].

In this case, it is possible to systematically quantify how important each of the multiple ob-

jectives considered is, and what is the effect of acting on each of the metrics related to them.

However, most standard control techniques consider systems with only one input and one

output, leaving out cases in which one wants to control multiple outputs in a coordinated

91

7.2 Definition of a controller for a cost variable 92

manner. Simplifying this process with the use of several individual controllers, each respon-

sible for a single output, can lead to situations where these controllers end up competing

against each other, especially in the case of conflicting metrics of interest.

Nevertheless, control theory has evolved to define types of controllers that can handle

multiple inputs and outputs. For example, MIMO controllers (Multiple-Input, Multiple-

Output) are capable of acting on multiple inputs controlling multiple outputs, while SIMO

controllers (Single-Input, Multiple-Output) act on a single input, with an effect observed on

multiple outputs. The literature also describes solutions that use MISO controllers (Multiple-

Input, Single-Output), capable of acting on more than one input, controlling a single output.

In this chapter we describe how to move forward with the application of control theory

techniques in micro-batch DSP systems by considering multiple objectives of interest. Ini-

tially, we present a controller with a different objective from the performance PI controller

already well defined in the context of this work, but which also works on top of a Kubernetes

cluster. Next, we describe what kind of control approach was used to support the regulation

of the set of relevant metrics established by the user. Finally, we perform an evaluation of

how these controllers act in a coordinated manner on the system, extending the same use

case of energy data disaggregation detailed in Section 2.4.

7.2 Definition of a controller for a cost variable

In the context of the systems of interest in this work, a latent concern is the cost associated

with running the related applications. Processing large data sets requires greater computa-

tional power, which tends to be more expensive. The intelligent control and provisioning of

these resources is, therefore, one of the most significant factors to avoid the natural negative

impact that unwanted high expenses can bring to the users. It is important to ensure that

sufficient resources are provisioned to meet the demand of running applications, but also

to be aware of situations where over-provisioning may occur, unnecessarily increasing the

execution cost.

Considering this demand, the cost controller proposed here was designed to keep the

running cost per minute of a micro-batch DSP system at a certain user-defined level. The

following sections describe the business model followed to determine the value of a Kuber-

7.2 Definition of a controller for a cost variable 93

netes replica being used, as well as the definition of the controller itself in its variables of

interest and implementation details.

7.2.1 Business model

The on-demand instance business model is well known for its pay-per-use approach. Many

cloud providers offer this instance type, which is commonly used to host various types of

applications such as short-lived or irregular workloads. Considering this scaling model, the

cost controller proposed here implements an adapted version of it. Each Kubernetes replica

is charged per minute of usage, and its price varies according to the total usage of the cluster

resources. We also assume that each replica is the same size, that is, it has the same maxi-

mum amount of allocated resources. Thus, the total usage of the cluster is calculated as the

maximum number of replicas that can be instantiated in it.

Regarding the pricing chosen, there is a difference in value from certain usage limits,

here defined by 30% and 90% of the maximum number of replicas allocated. The values

are described in Table 7.1. To exemplify a feasible scenario, we consider that the maximum

number of replicas of a cluster is 12. Thus, the limits are reached on 4 replicas (30%) and 11

replicas (90%).

The prices in Table 7.1 are based on the Amazon AWS [5] instance billing model, which

charges a fixed price for one minute of usage. For reference, we have selected the price

for a c5.large instance (2 vCPUs and 4GB RAM), described by AWS as ideal for compute-

intensive applications, with a value equivalent to $0.13 per hour. Assuming that each of the

replicas allocates 1 vCPU and 2GB of memory, the base price of a replica is $0.13/2 =

$0.065 per hour, and $0.00108 per minute. From this, alternative replica price values were

defined, used when cluster utilization exceeded the limits defined in Table 7.1.

7.2.2 Gain scheduling control

In certain systems, it may happen that a control cycle needs to be operated under a variety of

conditions. Meeting different conditions may require that the behavior of the system vary at

different points in time. This can be achieved by setting different values for the gains of the

controller in question, and at runtime, selecting the most appropriate value according to the

7.2 Definition of a controller for a cost variable 94

Table 7.1: Business model for the cost controller.

Price of one replica per minute∗

Number of replicas Cluster utilization Price per replica (kp(cost))

0-3 Base 0.00108

4-10 30% 0.001404

11-12 90% 0.002052

∗Each replica has 1 vCPU and 2GB of memory.

current system conditions. Such a process is known as gain scheduling.

There are several possible signs that indicate the set of values to be used as gains. Com-

monly, the system’s own input or output is used, but the signal can also be something com-

pletely external. Some possibilities include using the system input to select different execu-

tion modes when the workload is high or low, using the current time of day to prepare the

system for the famous "rush hour", or even using the magnitude of the tracked error to make

the controller actions more aggressive when the error grows exaggerated, for example, when

controlling a queue of tasks to be executed. For all these cases, instead of a single set of

gains, there are different sets triggered by certain conditions. It is important to note that, at

any given time, exactly one of these sets is active providing gains to the controller.

Considering this, the cost controller implementation makes use of a gain scheduling ap-

proach to provide a control based on different gains depending on the state of the system. In

this case, considering the business model described here, the definition of the gains is based

on the usage limits established for the cluster. This knowledge is incorporated in the tuning

of the proportional term of this controller, the gains being equal to the prices in Table 7.1,

varying as each usage limit is reached by the system. Thus, the proportional gain kp(cost)

is initially equal to 0.00108, then when the cluster reaches 30% of utilization, the gain is

equal to 0.001404, and at 90% it is equal to 0.002052. It is important to note that the gain

scheduling algorithm implemented here is a method already used for this type of solution [75;

175].

In this way, the corrective action for that controller can be defined as in (7.1):

7.3 Definition of a multiple objective controller 95

ucost = kp(cost) × ecost (7.1)

In the above equation, kp(cost) is the proportional gain according to the cluster utilization

values defined in Table 7.1, and ecost is the tracked error for the cost controller.

To calculate ecost, it is first necessary to calculate the processing cost at a given point

in time. In our deployment, a third-party application is responsible for monitoring cluster

usage, and then assigning a certain price to each replica based on that usage, according to

Table 7.1. This value is then sent to the plugin specific to that controller added to the As-

perathos Monitor module, which encapsulates the remaining cost calculation logic, defined

by (7.2):

cost = costreplica(t)× replicasup(t) (7.2)

The price of each replica at minute t is represented by costreplica(t), and replicasup(t)

represents the number of replicas being used in the same minute t.

Finally, the proposed controller was designed to keep the execution cost per minute of

a micro-batch DSP system at a certain user-defined level. Considering this, the rest of the

system variables involved are: (i) the system input, which is the number of Kubernetes

replicas managed by Asperathos; (ii) the system output, which is the current cost of the

replicas processing the application; and (iii) the reference value to be followed, which is

the user-defined cost per minute. Thus, the previously calculated cost in (7.2) is used to

calculate the tracked error, which, in turn, defines how far the system is from the reference.

Equation (7.3) describes this variable:

ecost = cost(t)− costref (7.3)

Where cost(t) represents the compute cost at minute t and costref is the user-defined

reference value that the controller seeks to maintain.

7.3 Definition of a multiple objective controller

After understanding how the cost controller was implemented, in order to simultaneously

regulate cost and QoS metrics in a micro-batch DSP system, we propose the use of a SIMO PI

7.3 Definition of a multiple objective controller 96

Figure 7.1: Architectural model of the proposed SIMO PI controller.

controller that acts on a single input and influences multiple outputs. Such controller makes

use of specific control theory approaches for the cases where there are multiple objectives of

interest, and, inserted in the context of orchestration of containerized applications, they help

to define actions related to the automated provisioning of these resources.

Considering the problem described, initially it is necessary to define two independent

controllers, one focused on tracking performance metrics, and the other focused on con-

trolling the cost metrics of the resources used. For experimentation purposes, the first is

represented by the performance controller described earlier, while the second is the cost

controller just presented. Then, the modeling associated with regular SIMO controllers is

applied on the considered system in order to combine the resulting actions of each one of

them in a single corrective action on the input [128; 31].

To better illustrate the solution, Figure 7.1 highlights the main components of this ap-

proach, which are the Cost Controller, the Performance Controller, and the System itself.

This architectural model aims to make the System able to track two reference values, the

cost rcost, and the performance rperf . These two values are used to calculate, respectively,

the tracked error for the cost metric ecost and the tracked error for the performance metric

eperf , which by definition are calculated as the difference between the considered references

and the observed outputs.

Furthermore, we can see that a single control action u is applied to the System, which

is composed of the combination of the corrective actions ucost, resulting from the Cost Con-

troller, and uperf , resulting from the Performance Controller, as defined by (7.4):

u = ucost + uperf (7.4)

7.4 Evaluation 97

Where the control actions ucost and uperf are defined by the control strategies considered

for each of them, in this case, a PID approach, as we see next in (7.5):

ucost = kp(cost)e(cost) + kd(cost) ˙e(cost) + ki(cost)
∫
e(cost)dt

uperf = kp(perf)e(perf) + kd(perf) ˙e(perf) + ki(perf)
∫
e(perf)dt

(7.5)

It is important to notice that both the considered control actions, ucost and uperf , have their

own proportional, integral and derivative gains. As discussed earlier, after the tuning based

on the model generated for the system, our controllers use only proportional and integral

gains, characterizing a PI controller. Besides that, compensation operations are introduced to

smooth out possible side effects arising from the combination of the control actions, defined

here as ucost for the cost controller, and uperf for the performance controller. Next, a utility

function is defined aiming to prioritize the impact of such corrective actions, as described

in (7.6):

usimo = αuperf + (1− α)ucost (7.6)

Here, α represents the user’s preference for cost and performance. For example, α = 0.8

represents a high preference for performance and quality of service metrics, α = 0.5 does not

have a specific preference for any of the options, and α = 0.2 represents a high preference

for cost metrics.

Finally, considering the same energy data disaggregation use case described in Sec-

tion 2.4, the logic defined in (7.6) has been encapsulated in a new SIMO controller which

was implemented as a plugin in Asperathos. Internally, what actually happens is that, in this

case, the Asperathos controller is based on both controllers defined here as Cost Controller

and Performance Controller, and acts on the system according to the preferences defined by

the user.

7.4 Evaluation

In this section we present the experiments performed to evaluate how a DSP system behaves

when using different types of control strategies to handle scenarios where multiple-objectives

7.4 Evaluation 98

are defined. Considering this, a SIMO controller is evaluated with a series of configurations

that seek to show how different cost and QoS priorities can influence the behavior of the

system. We also evaluated alternative approaches such as the use of independent controllers

acting on the same system. Finally, details regarding the financial impacts of these control

techniques are represented in terms of SLA violation. In the use cases explored here, the

effectiveness of the controllers is evaluated in terms of user-defined QoS metrics, such as

replica allocation, system response time and throughput.

7.4.1 Experimental design

In this chapter, two control approaches were presented that can be combined to form differ-

ent compositions. Each of these approaches is associated with a set of factors, which are

independent variables of the configuration of the component in question. Considering this,

this section defines the experimental design proposed for this set of experiments and the

consequent results obtained by applying it to the evaluation of the solutions presented here.

Considering the number of factors described later is this chapter, and the goals for the

proposed experiments, we opted for a simple design. For our case, measurements of a real

system were used to evaluate the control approaches. Besides that, to analyze the significance

of the experiment results, a t-test analysis was performed. More details on the concepts for

the experimental design used here can be found on Section 6.4.1.

Now for the experiments described in this section, as a continuation of the comparative

scenarios previously described and evaluated in this work, one main scenario is proposed:

V. SIMO PI x Independent controllers. For this use case, the SIMO PI controller con-

siders the use of the PI performance controller defined in Chapter 6, combined with the Cost

controller defined in this chapter. This happens by implementing a Single-Input Multiple-

Output (SIMO) control approach that encapsulates the logic of combining control actions

and applying a single one over a given system. In our case, we also define different levels

of preference for each controller in the combination of actions. On the other hand, the Inde-

pendent approach considers the performance and cost controllers, but they act independently

over the same system, with the performance one being the most frequent.

Considering this scenario, we define the response variables as: (i) the system throughput;

7.4 Evaluation 99

Table 7.2: Factors for the experiments with SIMO and independent controllers.

Factor Description Levels

Control Strategy Type of controller used SIMO Independent

Control tuning Approach to configure control gains Analytic Gain scheduling

Control

configuration

Specified control gains

and configuration

P: 0.9817;

I: 0.0871
Price per replica

Controller preference
Preference for each controller when

acting over the system
0.2 0.5 0.8

(ii) resource utilization; (iii) response time and (iv) the cost of an execution. For (i), the

throughput is the rate of processed items per second. The second metric, (ii), refers to the

number of replicas instantiated in a Kubernetes cluster to process such work items. Besides

that (iii) is the time it takes for an item to be processed once it enters the system. And (iv)

refers to the cost of an execution considering how much a Kubernetes replica would cost on

an Amazon AWS infrastructure.

Next, we need to define the factors that may affect such variables. Table 7.2 showcase

the factors that varied between different treatments. Some considerations about the control

configuration and the controller preference are as follows:

Control configuration. This refers to the configuration gains of each controller. For the

PI performance controller, the same gains defined in Section 6.3.2 and shown on Table 7.2

are used. For the Cost controller, the gains are defined by the price per replica defined on

Table 7.1.

Controller preference. Our evaluation consider user preferences regarding control ac-

tions, which are defined as α = 0.2 when there is a preference for cost metrics, α = 0.5

for no preference in particular, and α = 0.8 favoring performance metrics.

Other factors remained the same throughout the experiments, such as:

• Maximum of concurrent replicas: 12. This limitation is due to the size of the Ku-

bernetes cluster used to perform the experiments, and the resources required by each

execution of the application begin processed.

7.4 Evaluation 100

• Estimated system response time: 1.5 seconds. All work items sent to the system are of

the same type, and considered to take the same time to process. This means our scope

is limited to an homogeneous workload.

• Workload size: 3600 items.

• Stream duration: 20 minutes.

• Data collection: Intervals of 2 seconds.

• Input rate: Ranging from 2 to 9 tasks per second.

• Reference value: For the Performance PI controller, the reference value is the consid-

ered input rate of new items; for the Cost controller, it is a given desired cost defined

by the user.

Instances of each proposed scenario were created and evaluated. Table 7.3 showcases

each treatment and its given configuration values. The table was reduced with focus on the

controller preferences for each control strategy. Also, each treatment was replicated 15 times

over the course of the experiments.

For the experiments with the SIMO control approach and combined actions, we assume

that the application in question is runtime sensitive and respects cost constraints. We also

assume that the execution environment starts with the optimal number of replicas to satisfy

both performance and cost constraints, and that replicas processing tasks always use the

same amount of resources. To show how controllers react to various changes in workload,

different input rate levels are modeled at runtime. Considering this, the peak in the input rate

must be large enough to force scaling in, i.e. more replicas to be added, but not so large that

it exceeds the cluster limits in such a way as to cause actuator saturation. Furthermore, we

want to test executions using all price limits defined in Table 7.1.

Finally, the execution environment to perform the experiments consisted of a Kubernetes

cluster managed by the Asperathos framework. The workload used is a sample of real energy

disaggregation data, provided by the LiteMe solution (a snippet of these items can be found

in Section 2.4). Custom control and monitoring plugins were implemented to encapsulate

the proposed controllers and monitors, allowing the execution of DSP applications, with a

7.4 Evaluation 101

Table 7.3: Treatments for the experiments with SIMO and Independent controllers.

Control Strategy Controller preference

SIMO

0.2

0.5

0.8

Independent No preference

focus on performance metrics. Among the plugins used is KubeJobs for integration with

Kubernetes, StreamKubejobs for monitoring stream processing applications, in addition to

the PI, Cost and SIMO controllers for the proposed control strategies. All were implemented

in python and are available in the official Asperathos [6] repository. Also, the same appli-

cation used in the evaluation described in Section 6.4 is used here.

7.4.2 Scenario V: SIMO PI x Independent control

The objective of this set of experiments is to evaluate if there is any difference when using a

SIMO PI control over a more simplistic approach such as the Independent one. The first one

combines the individual actions of the cost and performance controllers into a general control

action, while the second one presents independent controllers acting in different moments,

with the performance one being the most frequent. Such evaluation takes into consideration

the system throughput, resource utilization, response time and total execution cost.

In the next sections, we firstly present a descriptive analysis of the collected data and

then an statistical analysis to support the discussion of the results.

A. Descriptive analysis

A descriptive analysis of the data for this scenario can be found on Appendix A, Section A.4.

B. Statistical analysis

In this section, we highlight the statistical analysis for the total execution cost variable. The

complementary statistical analysis of the data for this scenario, including the tracked error,

replica allocation and system response time, can be found on Appendix B, Section B.4.

7.4 Evaluation 102

Considering this, the total execution cost is given by a calculation of the amount of time a

given replica was used, and how much it costs per minute. Replica prices follow the defined

on Table 7.1. Table 7.4 showcases the observations and hypothesis about the total execution

cost for the SIMO PI with α = 0.2 X Independent scenario.

Table 7.4: Total execution cost statistical observations for the SIMO PI (0.2) x Independent

scenario.

Observation from the data:
The average total execution cost for the SIMO PI controller with

α = 0.2 is lesser than that for the Independent configuration.

Research question:
Is this difference due to chance or is it a statistically

significant difference?

Null hypothesis:
The average total execution cost in each group

is the same.

Alternative hypothesis:
The true difference in means between group SIMO PI (0.2)

and group Independent is not equal to 0.

A Student’s t-test was performed to analyze if the difference observed from data is sta-

tistically significant for these cases. For the SIMO PI (0.2) configuration, the results show

a p-value of 6.79e − 07, with a 95% confidence interval of [−2.090660,−1.304838]. The

sample estimate for the mean in group SIMO PI (0.2) is 14.22201, while the mean for the

Independent group is 15.91976. Considering these results, we can then reject the null hypoth-

esis and say that the differences in means between the two groups are statistically significant.

Similarly to the previous analysis, Tables 7.5 and 7.6 showcase the observations and

hypothesis about the tracked error for the SIMO PI with α = 0.5 and α = 0.8.

Table 7.5: Total execution cost statistical observations for the SIMO PI (0.5) x Independent

scenario.

Observation from the data:
The average total execution cost for the SIMO PI controller with

α = 0.5 is lesser than that for the Independent configuration.

Null hypothesis: The average total execution cost in each group is the same.

7.4 Evaluation 103

Table 7.6: Total execution cost statistical observations for the SIMO PI (0.8) x Independent

scenario.

Observation from the data:
The average total execution cost for the SIMO PI controller with

α = 0.8 is lesser than that for the Independent configuration.

Null hypothesis: The average total execution cost in each group is the same.

A Student’s t-test was performed to analyze if the difference observed from data is sta-

tistically significant for these cases. For the SIMO PI (0.5) configuration, the results show a

p-value of 0.00403, with a 95% confidence interval of [−1.0146574,−0.2594618]. The sam-

ple estimate for the mean in group SIMO PI (0.5) is 15.28270, while the mean for the Inde-

pendent group is 15.91976. Considering these results, we can then reject the null hypothesis

and say that the differences in means between the two groups are statistically significant.

For the SIMO PI (0.8) configuration, the results show a p-value of 0.06767, with a 95%

confidence interval of [−0.75022767, 0.03071007]. The sample estimate for the mean in

group SIMO PI (0.8) is 15.56000, while the mean for the Independent group is 15.91976.

Considering these results, we can not reject the null hypothesis that the average total execu-

tion cost in each group is the same.

Finally, in summary, Table 7.7 showcases the averages of the metrics observed for each

treatment of the SIMO PI x Independent configuration.

Table 7.7: Averages of the metrics analyzed for each control preference for the SIMO PI x

Independent scenario.

α = 0.2 α = 0.5 α = 0.8 Independent

Replica allocation 7.244643 7.436266 7.460573 7.397482

Tracked error (Performance) -0.04404762 -0.008976661 0.03957587 0.05590528

Tracked error (Cost) 0.003079901 0.003951514 0.004196507 0.004281179

Response time 40.33860 71.88246 82.92333 50.86568

SLA violation 59.66140 28.11754 17.07667 49.13432

Total execution cost 14.22201 15.28270 15.56000 15.91976

Complementary to that, Table 7.8 showcases the p-values resulting from the statistical

7.4 Evaluation 104

tests performed on the data of each treatment for the SIMO PI x Independent configuration.

Table 7.8: P-values of each control preference for the SIMO PI x Independent scenario.

α = 0.2 α = 0.5 α = 0.8

Replica allocation 0.3613 0.8363 0.7454

Tracked error (Performance) 0.2885 0.3471 0.8002

Tracked error (Cost) 0.001019 0.4452 0.8484

Response time 7.303e-08 1.006e-12 1.39e-14

SLA violation 7.303e-08 1.006e-12 1.39e-14

Total execution cost 6.79e-07 0.00403 0.06767

C. Discussion

The initial results of the experiments regarding the tracking of the reference value can be

seen in Figure 7.2, and complemented by Figure 7.3 that showcases the tracked error, replica

allocation and queue size for this scenario.

Figure 7.2a shows that for α = 0.8, which favors performance constraints, the reference

value is apparently followed without major problems despite small disturbances when there

is a spike in the input rate. On the other hand, for α = 0.2, which favors cost constraints,

we can see that the system takes longer to be able to track the reference, especially when the

workload changes. It is possible that this happens because the cost controller is delaying the

scale up operations, as the utilization price of cluster resources increases in proportion to the

increase in the number of replicas, as well as the total processing cost.

If we look at α = 0.5, a certain balance is achieved. As for the case of independent

controllers, we observed a less satisfactory behavior. The system does not appear to be able to

track the reference value for almost half of the execution, causing an apparent destabilization

of the system. This possibly happens because the controllers end up competing against

each other, as the cost controller triggers actions to reduce the number of replicas, while the

performance controller seeks to increase available resources to maintain its QoS goals. In

general, such conditions are not desired because they can, for example, affect application

availability when considering computing systems.

For the performance controller, as previously stated in Section B.4.2, the statistical anal-

7.4 Evaluation 105

(a) Performance controller. (b) Cost controller.

Figure 7.2: Tracking of reference value for the SIMO and independent controllers approach.

Alpha 0.2 Alpha 0.5 Alpha 0.8 Independent

E
rr

or
R

ep
lic

as
Q

ue
ue

 s
iz

e

0 300 600 900 0 300 600 900 0 300 600 900 0 300 600 900

−4
−2

0
2
4

2
4
6
8

10
12

0
50

100
150
200

Time (s)

Figure 7.3: Tracked error, number of replicas and queue size metrics for the SIMO and

independent controllers approach.

ysis for the tracking of the reference value uses the tracked error as a metric to evaluate the

former. However, when comparing each control preference to the Independent approach,

we can not reject the null hypothesis that there is no difference between the average error

for each case. This might be because the error values collected are so close together that

the difference in means is very short and the amount of data was not big enough to provide

statistically significant results. Another option is that averaging this particular variable gives

a general vision of the errors that occurred in a time range, whilst we are interested in the

differences between the reference value and the actual throughput in each point of the exe-

cution. Therefore, although we visually see differences in Figure 7.2, the error metric does

not reflect them well enough for an statistical analysis.

For the cost controller, as seen in Figure 7.2b, neither of the approaches manage to closely

7.4 Evaluation 106

Figure 7.4: Execution time of tasks processed using the SIMO control approach and inde-

pendent controllers.

follow the reference value. For α = 0.2, when there is a preference for cost, is when the

controller is the most able to do that. This is also stated by the statistical analysis in B.4.2, in

which only this case presents a statistically significant difference between the tracked errors

for the SIMO PI (0.2) and Independent configuration.

We then tried to evaluate the performance of each approach from a different perspective.

Figure 7.4 shows the direct effect of different control approaches on the system response

time, which is in practice the execution time of a task. For independent controllers, this

scales quickly, and some tasks may remain on the system unfinished for more than 100

seconds. These results are related to the increase in queue size that normally happens when

there is a spike in the input rate, as we can see in Figure 7.3.

In case of performance preference, as seen for α = 0.8, it mainly takes from 1.5 to 2

seconds for a task to complete. For the SIMO approach, as expected, since time to complete

a task is a performance metric in nature, the system tends to behave better when there is a

greater preference for performance. In this case, the statistical analysis for the response time

metric also states that there is in fact a statistically significant difference between each control

preference for the SIMO PI and the Independent configuration, as seen in Tables 7.7 and 7.8.

From a financial point of view, Figure 7.5 presents the total cost of execution considering

the previously defined prices for cluster resources. From Figure 7.5a we can see that the

differences in average are actually small from each approach, but even so, we can see that

7.4 Evaluation 107

0

5

10

15

Alpha = 0.2 Alpha = 0.5 Alpha = 0.8 Independent
Controller preference

To
ta

l e
xe

cu
tio

n
co

st
 (

$)

(a) Average execution cost.

14

15

16

17

Alpha = 0.2 Alpha = 0.5 Alpha = 0.8 Independent
Controller preference

To
ta

l e
xe

cu
tio

n
co

st
 (

$)

(b) Distribution of execution cost.

Figure 7.5: Financial impact for the SIMO PI and Independent configuration.

the higher the preference for cost metrics, the less is spent processing a workload, which

is an expected result in this case. Figure 7.5b shows the distribution of this data, which

showcases the differences a little more given the spacing between the boxes, although data

does not seem to vary a lot among different approaches. Statistical analysis on Section B.4.3

confirms a statistically significant difference between the total execution cost for each control

preference and the Independent approach.

On the other hand, Figure 7.6 shows the impact of performance on SLA violations, a

very important metric when considering QoS goals. Here we assume that the SLA is based

on the time to complete a task, with 1.5 seconds being considered acceptable. This is the

average time it takes for a standard disaggregation operation to run, so it is a good value to

define the SLA goals. Thus, from Figures 7.6a and 7.6b we see that for α = 0.8, which rep-

resents a higher preference for performance, SLA violations happen around 15% of tasks and

increase with higher preferences for cost metrics. Statistical analysis on Section B.4.3 and

Tables 7.7 and 7.8 confirms a statistically significant difference between the SLA violation

ratio for each control preference and the Independent approach.

Considering this, we can say that a user needs to carefully choose their preferences re-

garding performance and cost metrics. There are clear gains and losses involved in this

choice, because if performance-related aspects are to be favored, cost metrics will be af-

7.4 Evaluation 108

0

20

40

60

Alpha = 0.2 Alpha = 0.5 Alpha = 0.8 Independent
Controller preference

S
LA

 v
io

la
tio

n
ra

tio
 (

%
)

(a) Average SLA violation ratio.

20

30

40

50

60

Alpha = 0.2 Alpha = 0.5 Alpha = 0.8 Independent
Controller preference

S
LA

 v
io

la
tio

n
ra

tio
 (

%
)

(b) Distribution of SLA violation ratio.

Figure 7.6: SLA impact for the SIMO PI and Independent configuration.

fected, and vice versa. As we can see, these metrics tend to be conflicting, meaning that

high levels of performance typically require high resource utilization, consequently increas-

ing the computational cost, which can end up going against user-defined cost preferences.

In computer systems, for example, high availability is desired in most cases, which points to

a tendency of these systems to favor performance metrics. However, if a workload can be

processed at a slower pace without causing major losses in terms of quality of service, cost

metrics can be favored by keeping resource utilization at lower levels.

Thus, deciding which preference values for cost and performance metrics are best suited

for a given application is an important part of the process of choosing the control and orches-

tration strategies you want to adopt.

Chapter 8

Conclusions

This work proposed the application of control theory to orchestrate applications in micro-

batch data stream processing systems. Given the nature of this type of system, work items

must be processed in real time, thus, traditional adaptation approaches aimed at provisioning

and scaling resources are evaluated in this work. In this context, it is clear that a fundamental

part of this process is the monitoring of applications, which may not be an easy task as it

depends on various characteristics such as the collect interval of the data of interest, or the

level of customization and processing that may still be involved in this step.

Considering this difficulty, the use of control theory techniques to model these systems

can help provide more accurate information about their behavior when executing the ap-

plications of interest, which in its turn, can be very helpful when adapting and scaling the

resources needed to process a given stream of data. Thus, this work used system identi-

fication methods to provide a modeling of a DSP system based on the FOPDT approach.

The system considered here used a neural network to classify and disaggregate energy data,

which in our case was an implementation of the NIALM algorithm.

The evaluation of the generated models showed that, despite all of them having managed

to reach the expected output for the given input, the transients of the executions did not

accurately reflect the behavior of the real system. For FOPDT systems, the expectation is

that the result is reached exponentially, which was not observed according to the amplitude

and waveform of the results. There were indications that this was due to the system used as

a use case responding almost immediately to changes in the input, and not exponentially, as

expected, making it difficult to obtain more accurate results.

109

110

We also conclude that, from a generalization perspective, other classification algorithms

using neural networks, a popular approach to categorize data from such workloads, could

also be used as the application use case for this modeling. This is possible because such

algorithms follow a similar processing approach even considering different workloads. Note

that, the workload used here consisted of an homogeneous pool of tasks, which means that

each of them takes about the same time to process. In this case, for a workload with different

processing tasks, as long as such tasks are also homogeneous, the modeling could be equally

performed as described in Chapter 5. For instance, changing the number of the layers in the

network can change a little the duration of the task, but such task would still be only CPU

intensive, reading and returning the same amount of data.

Next, considering the generated models, we presented a compensatory approach widely

used in control theory, which makes use of filtering techniques to smooth out possible noise

present in a given execution. Thus, a low-pass filter was incorporated into the system through

modeling done in Matlab. We observed that, when removing the signals considered as dis-

turbances, the resulting curve resembled more closely the model generated both in terms of

waveform and amplitude. However, there are advantages and disadvantages in using filters,

because when smoothing the signal, information about the execution is inevitably lost, which

can generate a slower system response to unpredictable changes that may happen.

Then, a PI controller focusing on performance metrics was proposed, aiming to keep

the system’s throughput at the same level as its arrival rate, as expected for DSP systems.

This controller was tuned using the FOPDT model as a basis, considering that it was able to

represent the system up to a certain level and, therefore, it was used as a good starting point

for tuning the gains of the proposed controller. From this tuning, we initially evaluate the

controller comparing its performance against a classical control approach, which acts on the

system in fixed-step actions, regardless of the magnitude of the error. Then, the controller

was evaluated in relation to less grounded manual tuning approaches, considering the point

of view of less experienced users. And finally, we evaluate the effects on using two different

throughput calculation methods, one that computed the amount of processed items in real

time, and other that is an estimate based on some known information about the system.

The results of these experiments were evaluated using statistical tests to provide an ac-

ceptable level of significance for the experimentation. The considered treatments for each

111

comparative scenario were presented and evaluated regarding some metrics such as the sys-

tem throughput, its ability to track a given reference value, the allocation of resources and the

amount of SLA violations. We could see that most of the results were statistically significant,

and that the controller tuned using the previously generated FOPDT model performed better

overall. Besides that, a descriptive analysis of these results is presented in Appendix A.

A comment on the significance of the results is that, even when such results are statis-

tically significant, but the means between two groups being compared are very similar and,

in that sense, not that significant from a practical perspective, we can still see its importance

from a different point of view. For instance, for the replica allocation variable in the experi-

ments that compared the PI and the Fixed Action approach, the means are too close between

both treatments and results are still statistically significant. In this case, we understand that

low variation in the allocation is also of importance here, since availability can be compro-

mised in the case of acquiring and removing replicas in such high frequency, as observed

from the results for this scenario. For example, a sudden spike in the number of pods could

trigger the scaling of node pools in managed clusters in cloud providers, such as AWS and

Azure. Then, even if this would be quickly scaled down, there would still be cost and API

availability impacts.

Furthermore, in order to extend the applicability of the methods evaluated here, a SIMO

controller was also proposed, which aims to generate control actions based on performance

and cost metrics. For this, two different controllers were implemented, one for each type of

metric of interest, with the SIMO controller being responsible for combining the output of

them both, and applying a single corrective action over the system. The solution uses a utility

function that allows users to prioritize the metrics considered according to their needs. This

controller was evaluated considering scenarios with different preferences for each metric

of interest, in addition to a scenario where both the performance and cost controller acted

independently on the system.

The results showed that using a combined control instead of an independent one presents

an overall better performance than having independent controllers acting at the same time,

however, deciding the preference values for the metrics of interest is an important part in

the process of choosing the control strategy to be adopted. For this set of experiments,

results were also evaluated using statistical tests to provide an acceptable level of signifi-

112

cance. The metrics used for this evaluation included the system throughput, its ability to

track a given reference value (for both cost and performance-focused controllers), the allo-

cation of resources, the amount of SLA violations and the total execution cost for different

types of controller preferences. A descriptive analysis of these results is also presented in

Appendix A.

In terms of practical aspects of the solution, we used Asperathos to execute and orches-

trate containerized applications in Kubernetes clusters, whose plugin customization archi-

tecture allowed the integration of the controllers proposed here, as well as the monitoring

settings necessary for its functioning. For experimentation purposes, an application for pro-

cessing micro-batches of stream data was executed, consisting in tasks to disaggregate energy

data, part of the real use case proposed by LiteMe [3], that benefits from good results ob-

tained in this work. Note that this workload used for system modeling and experimentation

analysis is common for IoT sensor data. These facts contributes as an impact factor of this

solution, by using a real use case and usual tools like Kubernetes itself.

The results of this work were incorporated into the paper "Single-Input Multiple-Output

Control for Multi-Goal Orchestration" [144], published in the 2020 Utility and Cloud Com-

puting (UCC) conference. In addition, this study was part of the ATMOSPHERE project,

that aimed to architect and implement a platform for the orchestration of secure cloud ap-

plications. This was a Brazil-Europe partnership, with contributions from universities such

as the Universidade Federal de Campina Grande (UFCG), Technische Universität Dresden

(TUD), University of Brasília (UnB), among others. Currently, this work is inserted in the

context of the LiteCampus project, aimed at intelligent solutions for energy data processing,

in partnership with the Rede Nacional de Ensino e Pesquisa (RNP), the company Smartiks

Ltda., and the Agência Brasileira de Inovação Industrial (EMBRAPII).

Finally, considering the results observed so far, future work could focus on trying to

extend the solution for heterogeneous workloads, with tasks of different sizes, and a more

varied arrival rate. Our scope does not consider these cases, focusing only on behaved work-

loads with overall same sized tasks, having similar service times, and arriving at a somewhat

behaved rate. Since the arrival rate is used as the reference value of the control system, hav-

ing a workload with an arrival rate that varies a lot makes it difficult to adapt the system

without causing unwanted overshoot and system destabilization, as we saw on the exper-

113

iments presented in this work. Furthermore, some techniques using machine learning to

help adapt the control gains at runtime could be used to make the solution more robust to

workload changes.

Bibliography

[1] Openstack user survey 2020. https://www.openstack.org/analytics. [Online; Last ac-

cess: August 19th, 2022].

[2] Energy outlook 2019. Energy Information Administration.

http://www.eia.doe.gov/oiaf/ieo/index.htm, 2019. [Online; Last access: August

19th, 2022].

[3] LiteMe Inteligência Energética. https://liteme.com.br/, 2019. [Online; Last access:

August 19th, 2022].

[4] Amazon EC2 Auto Scaling. https://aws.amazon.com/pt/ec2/autoscaling/, 2021. [On-

line; Last access: August 19th, 2022].

[5] Amazon EC2 Instance types and billing. https://aws.amazon.com/ec2/instance-

types/?nc1=h_ls, 2021. [Online; Last access: August 19th, 2022].

[6] Asperathos. https://github.com/ufcg-lsd/asperathos, 2021. [Online; Last access: Au-

gust 19th, 2022].

[7] Docker Swarm. https://www.docker.com/products/docker-swarm/, 2021. [Online;

Last access: August 19th, 2022].

[8] Kubernetes. https://www.kubernetes.io/, 2021. [Online; Last access: August 19th,

2022].

[9] Rightscale - Understanding the Voting Process.

https://docs.rightscale.com/cm/rs101/understanding_the_voting_process.html#overview,

2021. [Online; Last access: August 19th, 2022].

114

BIBLIOGRAPHY 115

[10] Ahmed S. Abdelhamid, Ahmed R. Mahmood, Anas Daghistani, and Walid G. Aref.

Prompt: Dynamic data-partitioning for distributed micro-batch stream processing sys-

tems. In Proceedings of the 2020 ACM SIGMOD International Conference on Man-

agement of Data, SIGMOD ’20, page 2455–2469, New York, NY, USA, 2020. Asso-

ciation for Computing Machinery.

[11] T. Abdelzaher, K.G. Shin, and N. Bhatti. Performance guarantees for web server

end-systems: a control-theoretical approach. IEEE Transactions on Parallel and Dis-

tributed Systems, 13(1):80–96, 2002.

[12] Tarek Abdelzaher, Yixin Diao, Joseph L. Hellerstein, Chenyang Lu, and Xiaoyun Zhu.

Introduction to Control Theory And Its Application to Computing Systems, pages 185–

215. Springer US, Boston, MA, 2008.

[13] Tarek Abdelzaher, J.A. Stankovic, Chenyang Lu, Ronghua Zhang, and Ying Lu. Feed-

back performance control in software services. IEEE Control Systems Magazine,

23(3):74–90, 2003.

[14] S. N. Akshay Uttama Nambi, Thanasis G. Papaioannou, Dipanjan Chakraborty, and

Karl Aberer. Sustainable energy consumption monitoring in residential settings. In

2013 Proceedings IEEE INFOCOM, pages 3177–3182, 2013.

[15] F. Al-Haidari, M. Sqalli, and K. Salah. Impact of cpu utilization thresholds and scaling

size on autoscaling cloud resources. In Proceedings of the 2013 IEEE International

Conference on Cloud Computing Technology and Science - Volume 02, CLOUDCOM

’13, page 256–261, USA, 2013. IEEE Computer Society.

[16] Ahmed Ali-Eldin, Johan Tordsson, Erik Elmroth, and Maria Kihl. Workload classifi-

cation for efficient auto-scaling of cloud resources. 2013.

[17] Elham Almodaresi and Mohammad Bozorg. Computing stability domains in the space

of time delay and controller coefficients for fopdt and sopdt systems. Journal of

Process Control, 24(12):55–61, 2014.

[18] Eitan Altman, Tamer Başar, and R. Srikant. Congestion control as a stochastic control

problem with action delays. Automatica, 35(12):1937–1950, December 1999.

BIBLIOGRAPHY 116

[19] L. Amini, N. Jain, A. Sehgal, J. Silber, and O. Verscheure. Adaptive control of

extreme-scale stream processing systems. In 26th IEEE International Conference

on Distributed Computing Systems (ICDCS’06), pages 71–71, 2006.

[20] Artur Andrzejak, Martin Arlitt, and Jerry Rolia. Bounding the resource savings of

utility computing models. 01 2003.

[21] Karen Appleby, Sameh A. Fakhouri, Liana L. Fong, Germán S. Goldszmidt,

Michael H. Kalantar, Srirama M. Krishnakumar, Donald P. Pazel, John A. Pershing,

and Benny Rochwerger. Oceano-sla based management of a computing utility. 2001

IEEE/IFIP International Symposium on Integrated Network Management Proceed-

ings. Integrated Network Management VII. Integrated Management Strategies for the

New Millennium (Cat. No.01EX470), pages 855–868, 2001.

[22] Igor Ataide, Gabriel Vinha, Clenimar Souza, and Andrey Brito. Implementing quality

of service and confidentiality for batch processing applications. pages 258–265, 12

2018.

[23] C. Aurrecoechea, A. Campbell, and Linda Hauw. A survey of qos architectures. Mul-

timedia Systems, 6:138–151, 1998.

[24] Luciano Baresi, Sam Guinea, Alberto Leva, and Giovanni Quattrocchi. A discrete-

time feedback controller for containerized cloud applications. In Proceedings of the

2016 24th ACM SIGSOFT International Symposium on Foundations of Software En-

gineering, FSE 2016, page 217–228, New York, NY, USA, 2016. Association for

Computing Machinery.

[25] Cornel Barna, Marios Fokaefs, Marin Litoiu, Mark Shtern, and Joe Wigglesworth.

Cloud adaptation with control theory in industrial clouds. In 2016 IEEE International

Conference on Cloud Engineering Workshop (IC2EW), pages 231–238, 2016.

[26] M. Ben-Ari. Principles of Concurrent and Distributed Programming (2nd Edition)

(Prentice-Hall International Series in Computer Science). Addison-Wesley Longman

Publishing Co., Inc., USA, 2006.

BIBLIOGRAPHY 117

[27] Qiang Bi, Wen-Jian Cai, Eng-Lock Lee, Qing-Guo Wang, Chang-Chieh Hang, and

Yong Zhang. Robust identification of first-order plus dead-time model from step re-

sponse. Control Engineering Practice, 7(1):71–77, 1999.

[28] Michael Borkowski, Christoph Hochreiner, and Stefan Schulte. Minimizing cost by

reducing scaling operations in distributed stream processing. Proc. VLDB Endow.,

12(7):724–737, March 2019.

[29] Yuriy Brun, Giovanna Di Marzo Serugendo, Cristina Gacek, Holger Giese, Holger

Kienle, Marin Litoiu, Hausi Müller, Mauro Pezzè, and Mary Shaw. Engineering Self-

Adaptive Systems through Feedback Loops, pages 48–70. Springer Berlin Heidelberg,

Berlin, Heidelberg, 2009.

[30] Kevin Burn and Chris Cox. A hands-on approach to teaching system identification

using first-order plus dead time modelling of step response data. The International

Journal of Electrical Engineering & Education, 57(1):24–40, 2020.

[31] Yao Cai, Qiang Zhan, and Xi Xi. Neural network control for the linear motion of a

spherical mobile robot. International Journal of Advanced Robotic Systems, 8(4):32,

2011.

[32] Nicolo M. Calcavecchia, Bogdan Alexandru Caprarescu, Elisabetta Di Nitto, Daniel J.

Dubois, and Dana Petcu. Depas: A decentralized probabilistic algorithm for auto-

scaling, 2012.

[33] Valeria Cardellini, Matteo Nardelli, and Dario Luzi. Elastic stateful stream processing

in storm. In 2016 International Conference on High Performance Computing Simula-

tion (HPCS), pages 583–590, 2016.

[34] Raul Castro Fernandez, Matteo Migliavacca, Evangelia Kalyvianaki, and Peter Piet-

zuch. Integrating scale out and fault tolerance in stream processing using operator

state management. In Proceedings of the 2013 ACM SIGMOD International Confer-

ence on Management of Data, SIGMOD ’13, page 725–736, New York, NY, USA,

2013. Association for Computing Machinery.

BIBLIOGRAPHY 118

[35] Marcelo Cerqueira de Abranches and Priscila Solis. An algorithm based on response

time and traffic demands to scale containers on a cloud computing system. In 2016

IEEE 15th International Symposium on Network Computing and Applications (NCA),

pages 343–350, 2016.

[36] Javier Cerviño Arriba, Evangelia Kalyvianaki, Joaquin Salvachua, and Peter Pietzuch.

Adaptive provisioning of stream processing systems in the cloud. 05 2012.

[37] Abhishek Ch and Prashant Shenoy. Effectiveness of dynamic resource allocation for

handling internet flash crowds. 12 2003.

[38] Abhishek Chandra, Pawan Goyal, and Prashant Shenoy. Quantifying the benefits of

resource multiplexing in on-demand data centers. 01 2003.

[39] Jeffrey S. Chase, Darrell C. Anderson, Prachi N. Thakar, Amin Vahdat, and Ronald P.

Doyle. Managing energy and server resources in hosting centers. Proceedings of the

eighteenth ACM symposium on Operating systems principles, 2001.

[40] Mayank Chaturvedi, Prateeksha Chauhaan, and Pradeep Juneja. Design of Time-Delay

Compensator for a FOPDT Process Model, volume 396, pages 205–211. 01 2016.

[41] Tao Chen and Rami Bahsoon. Self-adaptive and online qos modeling for cloud-based

software services. IEEE Trans. Softw. Eng., 43(5):453–475, May 2017.

[42] Xin Chen, Ymir Vigfusson, Douglas Blough, Fang Zheng, Kun-Lung Wu, and Liting

Hu. Governor: Smoother stream processing through smarter backpressure. pages

145–154, 07 2017.

[43] Betty H. Cheng, Rogério Lemos, Holger Giese, Paola Inverardi, Jeff Magee, Jes-

per Andersson, Basil Becker, Nelly Bencomo, Yuriy Brun, Bojan Cukic, Giovanna

Marzo Serugendo, Schahram Dustdar, Anthony Finkelstein, Cristina Gacek, Kurt

Geihs, Vincenzo Grassi, Gabor Karsai, Holger M. Kienle, Jeff Kramer, Marin Litoiu,

Sam Malek, Raffaela Mirandola, Hausi A. Müller, Sooyong Park, Mary Shaw,

Matthias Tichy, Massimo Tivoli, Danny Weyns, and Jon Whittle. Software Engineer-

ing for Self-Adaptive Systems: A Research Roadmap, page 1–26. Springer-Verlag,

Berlin, Heidelberg, 2009.

BIBLIOGRAPHY 119

[44] Cloud Native Computing Foundation. Cncf survey 2020. https://www.cncf.io/wp-

content/uploads/2020/11/CNCFSurveyReport2020.pdf, 2020. [Online;Lastaccess :

August19th, 2022].

[45] Marco Comuzzi and Barbara Pernici. A framework for qos-based web service contracting.

ACM Trans. Web, 3(3), July 2009.

[46] Chris Cox, John Tindle, and Kevin Burn. A comparison of software-based approaches to

identifying fopdt and sopdt model parameters from process step response data. Applied

Mathematical Modelling, 40(1):100–114, 2016.

[47] Tathagata Das, Yuan Zhong, Ion Stoica, and Scott Shenker. Adaptive stream processing

using dynamic batch sizing. In Proceedings of the ACM Symposium on Cloud Computing,

SOCC ’14, page 1–13, New York, NY, USA, 2014. Association for Computing Machinery.

[48] Wesam Dawoud, Ibrahim Takouna, and Christoph Meinel. Elastic virtual machine for fine-

grained cloud resource provisioning. In P. Venkata Krishna, M. Rajasekhara Babu, and

Ezendu Ariwa, editors, Global Trends in Computing and Communication Systems, pages

11–25, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[49] Miyuru Dayarathna and Srinath Perera. Recent advancements in event processing. ACM

Comput. Surv., 51(2), February 2018.

[50] Tiziano De Matteis and Gabriele Mencagli. Proactive elasticity and energy awareness in data

stream processing. J. Syst. Softw., 127(C):302–319, May 2017.

[51] Yixin Diao, N. Gandhi, J.L. Hellerstein, S. Parekh, and D.M. Tilbury. Using mimo feedback

control to enforce policies for interrelated metrics with application to the apache web server.

In NOMS 2002. IEEE/IFIP Network Operations and Management Symposium. ’ Manage-

ment Solutions for the New Communications World’(Cat. No.02CH37327), pages 219–234,

2002.

[52] Yixin Diao, Joseph L. Hellerstein, and Sujay Parekh. Control of large scale computing

systems. SIGBED Rev., 3(2):17–22, April 2006.

BIBLIOGRAPHY 120

[53] Marcos Dias de Assunção, Alexandre da Silva Veith, and Rajkumar Buyya. Distributed data

stream processing and edge computing: A survey on resource elasticity and future directions.

Journal of Network and Computer Applications, 103:1–17, 2018.

[54] Yezid Donoso and Ramón Fabregat. Network optimization using evolutionary algorithms

in multicast transmission. In Mario Freire and Manuela Pereira, editors, Encyclopedia of

Internet Technologies and Applications, pages 339–345. Hershey, PA: IGI Global, 2008.

[55] Corentin Dupont, Mehdi Sheikhalishahi, Federico M. Facca, and Fabien Hermenier. An

energy aware application controller for optimizing renewable energy consumption in data

centres. In Proceedings of the 8th International Conference on Utility and Cloud Computing,

UCC ’15, page 195–204. IEEE Press, 2015.

[56] Xavier Dutreilh, Aurélien Moreau, Jacques Malenfant, Nicolas Rivierre, and Isis Truck.

From data center resource allocation to control theory and back. In Proceedings of the

2010 IEEE 3rd International Conference on Cloud Computing, CLOUD ’10, page 410–417,

USA, 2010. IEEE Computer Society.

[57] George Ellis. Chapter 9 - filters in control systems. In George Ellis, editor, Control System

Design Guide (Fourth Edition), pages 165–183. Butterworth-Heinemann, Boston, fourth edi-

tion edition, 2012.

[58] Soodeh Farokhi, Pooyan Jamshidi, Ewnetu Lakew, Ivona Brandic, and Erik Elmroth. A

hybrid cloud controller for vertical memory elasticity: A control-theoretic approach. Future

Generation Computer Systems, 65, 05 2016.

[59] Soodeh Farokhi, Ewnetu Bayuh Lakew, Cristian Klein, Ivona Brandic, and Erik Elmroth.

Coordinating cpu and memory elasticity controllers to meet service response time con-

straints. In 2015 International Conference on Cloud and Autonomic Computing, pages 69–

80, 2015.

[60] Antonio Filieri, Carlo Ghezzi, Alberto Leva, and Martina Maggio. Self-adaptive software

meets control theory: A preliminary approach supporting reliability requirements. In Pro-

ceedings of the 2011 26th IEEE/ACM International Conference on Automated Software En-

gineering, ASE ’11, page 283–292, USA, 2011. IEEE Computer Society.

BIBLIOGRAPHY 121

[61] Antonio Filieri, Carlo Ghezzi, and Giordano Tamburrelli. A formal approach to adap-

tive software: Continuous assurance of non-functional requirements. Form. Asp. Comput.,

24(2):163–186, March 2012.

[62] Antonio Filieri, Henry Hoffmann, and Martina Maggio. Automated design of self-adaptive

software with control-theoretical formal guarantees. In Proceedings of the 36th International

Conference on Software Engineering, ICSE 2014, page 299–310, New York, NY, USA,

2014. Association for Computing Machinery.

[63] Antonio Filieri, Martina Maggio, Konstantinos Angelopoulos, Nicolas D’Ippolito, Ilias

Gerostathopoulos, Andreas Berndt Hempel, Henry Hoffmann, Pooyan Jamshidi, Evangelia

Kalyvianaki, Cristian Klein, Filip Krikava, Sasa Misailovic, Alessandro Vittorio Papadopou-

los, Suprio Ray, Amir M. Sharifloo, Stepan Shevtsov, Mateusz Ujma, and Thomas Vogel.

Software engineering meets control theory. In 2015 IEEE/ACM 10th International Sympo-

sium on Software Engineering for Adaptive and Self-Managing Systems, pages 71–82, 2015.

[64] Antonio Filieri, Martina Maggio, Konstantinos Angelopoulos, Nicolás D’ippolito, Ilias

Gerostathopoulos, Andreas Berndt Hempel, Henry Hoffmann, Pooyan Jamshidi, Evangelia

Kalyvianaki, Cristian Klein, Filip Krikava, Sasa Misailovic, Alessandro V. Papadopoulos,

Suprio Ray, Amir M. Sharifloo, Stepan Shevtsov, Mateusz Ujma, and Thomas Vogel. Con-

trol strategies for self-adaptive software systems. ACM Trans. Auton. Adapt. Syst., 11(4),

February 2017.

[65] Stefan Frey, Claudia Lüthje, Christoph Reich, and Nathan Clarke. Cloud qos scaling by fuzzy

logic. In Proceedings of the 2014 IEEE International Conference on Cloud Engineering,

IC2E ’14, page 343–348, USA, 2014. IEEE Computer Society.

[66] Tom Z. J. Fu, Jianbing Ding, Richard T. B. Ma, Marianne Winslett, Yin Yang, and Zhenjie

Zhang. Drs: Auto-scaling for real-time stream analytics. 25(6):3338–3352, December 2017.

[67] Bugra Gedik, Scott Schneider, Martin Hirzel, and Kun-Lung Wu. Elastic scaling for data

stream processing. Parallel and Distributed Systems, IEEE Transactions on, 25:1447–1463,

06 2014.

BIBLIOGRAPHY 122

[68] GitHub Inc. The 2020 state of the octoverse. https://octoverse.github.com/. [Online; Last

access: August 19th, 2022].

[69] Armstrong Goes, Fabio Morais, Eduardo Falcão, and Andrey Brito. Assuring cloud qos

through loop feedback controller assisted vertical provisioning. 01 2019.

[70] Siqian Gong, Beibei Yin, and Kai-yuan Cai. An adaptive pid control for qos management

in cloud computing system. In 2018 IEEE International Symposium on Software Reliability

Engineering Workshops (ISSREW), pages 142–143, 2018.

[71] Siqian Gong, Beibei Yin, Wenlong Zhu, and Kaiyuan Cai. An adaptive control strategy for

resource allocation of service-based systems in cloud environment. In 2015 IEEE Interna-

tional Conference on Software Quality, Reliability and Security - Companion, pages 32–39,

2015.

[72] Jordi Guitart, Jordi Torres, and Eduard Ayguadé. A survey on performance management for

internet applications. Concurrency and Computation: Practice and Experience, 22:68–106,

01 2010.

[73] Vincenzo Gulisano, Ricardo Jiménez-Peris, Marta Patiño-Martínez, Claudio Soriente, and

Patrick Valduriez. Streamcloud: An elastic and scalable data streaming system. IEEE Trans-

actions on Parallel and Distributed Systems, 23:2351–2365, 2012.

[74] Yukang Guo, Matt Jones, Benjamin Cowan, and Russell Beale. Take it personally: Personal

accountability and energy consumption in domestic households. In CHI ’13 Extended Ab-

stracts on Human Factors in Computing Systems, CHI EA ’13, page 1467–1472, New York,

NY, USA, 2013. Association for Computing Machinery.

[75] C.C. Hang, K.J. Astrom, and Q.G. Wang. Relay feedback auto-tuning of process con-

trollers — a tutorial review. Journal of Process Control, 12(1):143–162, 2002.

[76] G.W. Hart. Nonintrusive appliance load monitoring. Proceedings of the IEEE, 80(12):1870–

1891, 1992.

[77] Thomas Heinze, Valerio Pappalardo, Zbigniew Jerzak, and Christof Fetzer. Auto-scaling

techniques for elastic data stream processing. In Proceedings of the 8th ACM International

BIBLIOGRAPHY 123

Conference on Distributed Event-Based Systems, DEBS ’14, page 318–321, New York, NY,

USA, 2014. Association for Computing Machinery.

[78] Joseph L. Hellerstein. Challenges in control engineering of computing systems. In Proceed-

ings of the 2004 American Control Conference, volume 3, pages 1970–1979 vol.3, 2004.

[79] Joseph L. Hellerstein, Yixin Diao, S. Parekh, and D.M. Tilbury. Control engineering for

computing systems - industry experience and research challenges. IEEE Control Systems

Magazine, 25(6):56–68, 2005.

[80] Joseph L. Hellerstein, Yixin Diao, Sujay Parekh, and Dawn M. Tilbury. Feedback Control of

Computing Systems. John Wiley Sons, Inc., Hoboken, NJ, USA, 2004.

[81] Joseph L. Hellerstein, Sharad Singhal, and Qian Wang. Research challenges in control en-

gineering of computing systems. IEEE Transactions on Network and Service Management,

6(4):206–211, 2009.

[82] Christoph Hochreiner, Michael Vögler, Stefan Schulte, and Schahram Dustdar. Elastic

stream processing for the internet of things. 06 2016.

[83] C.V. Hollot, V. Misra, D. Towsley, and Wei-Bo Gong. A control theoretic analysis of red.

In Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twen-

tieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat.

No.01CH37213), volume 3, pages 1510–1519 vol.3, 2001.

[84] Mohammadreza Hoseinyfarahabady, Albert Zomaya, and Zahir Tari. Qos- and contention-

aware resource provisioning in a stream processing engine. pages 137–146, 09 2017.

[85] Hameed Hussain, Saif Ur Rehman Malik, Abdul Hameed, Samee Ullah Khan, Gage Bick-

ler, Nasro Min-Allah, Muhammad Bilal Qureshi, Limin Zhang, Wang Yongji, Nasir Ghani,

Joanna Kolodziej, Albert Y. Zomaya, Cheng-Zhong Xu, Pavan Balaji, Abhinav Vishnu,

Fredric Pinel, Johnatan E. Pecero, Dzmitry Kliazovich, Pascal Bouvry, Hongxiang Li, Lizhe

Wang, Dan Chen, and Ammar Rayes. A survey on resource allocation in high performance

distributed computing systems. Parallel Computing, 39(11):709–736, 2013.

[86] Oladimeji Ibrahim, Zaihar Yahaya, and Nordin Saad. Pid controller response to set-point

change in dc-dc converter control. 7:294–302, 06 2016.

BIBLIOGRAPHY 124

[87] Shigeru Imai, Stacy Patterson, and Carlos A. Varela. Uncertainty-aware elastic virtual ma-

chine scheduling for stream processing systems. In 2018 18th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing (CCGRID), pages 62–71, 2018.

[88] Waheed Iqbal, Matthew Dailey, and David Carrera. Sla-driven adaptive resource manage-

ment for web applications on a heterogeneous compute cloud. In Proceedings of the 1st

International Conference on Cloud Computing, CloudCom ’09, page 243–253, Berlin, Hei-

delberg, 2009. Springer-Verlag.

[89] Atsushi Ishii and Toyotaro Suzumura. Elastic stream computing with clouds. In 2011 IEEE

4th International Conference on Cloud Computing, pages 195–202, 2011.

[90] R. Jain. The art of computer systems performance analysis: techniques for experimental

design, measurement, simulation, and modeling. Wiley New York, 1991.

[91] Pooyan Jamshidi, Amir Sharifloo, Claus Pahl, Hamid Arabnejad, Andreas Metzger, and

Giovani Estrada. Fuzzy self-learning controllers for elasticity management in dynamic cloud

architectures. In 2016 12th International ACM SIGSOFT Conference on Quality of Software

Architectures (QoSA), pages 70–79, 2016.

[92] Philipp K. Janert. Feedback Control for Computer Systems. O’Reilly Media, Inc., 2013.

[93] Vasiliki Kalavri, John Liagouris, Moritz Hoffmann, Desislava Dimitrova, Matthew Forshaw,

and Timothy Roscoe. Three steps is all you need: Fast, accurate, automatic scaling decisions

for distributed streaming dataflows. In Proceedings of the 13th USENIX Conference on Op-

erating Systems Design and Implementation, OSDI’18, page 783–798, USA, 2018. USENIX

Association.

[94] Faria Kalim, Le Xu, Sharanya Bathey, Richa Meherwal, and Indranil Gupta. Henge: Intent-

driven multi-tenant stream processing. In Proceedings of the ACM Symposium on Cloud

Computing, SoCC ’18, page 249–262, New York, NY, USA, 2018. Association for Comput-

ing Machinery.

[95] Evangelia Kalyvianaki, Themistoklis Charalambous, Marco Fiscato, and Peter Pietzuch.

Overload management in data stream processing systems with latency guarantees. In 7th

BIBLIOGRAPHY 125

IEEE International Workshop on Feedback Computing, United States, 2012. IEEE. IEEE

International Workshop on Feedback Computing ; Conference date: 01-01-2012.

[96] Pankaj Deep Kaur and Inderveer Chana. A resource elasticity framework for qos-aware exe-

cution of cloud applications. Future Generation Computer Systems, 37:14–25, 2014. Special

Section: Innovative Methods and Algorithms for Advanced Data-Intensive Computing Spe-

cial Section: Semantics, Intelligent processing and services for big data Special Section:

Advances in Data-Intensive Modelling and Simulation Special Section: Hybrid Intelligence

for Growing Internet and its Applications.

[97] J.O. Kephart and D.M. Chess. The vision of autonomic computing. Computer, 36(1):41–50,

2003.

[98] Srinivasan Keshav. A control-theoretic approach to flow control. SIGCOMM Comput. Com-

mun. Rev., 21(4):3–15, August 1991.

[99] Maria Kihl, Erik Elmroth, Johan Tordsson, Karl Erik Årzén, and Anders Robertsson. The

challenge of cloud control. In 8th International Workshop on Feedback Computing (Feed-

back Computing 13), San Jose, CA, June 2013. USENIX Association.

[100] Diwakar T. Korsane, Vivek Yadav, and Kiran H. Raut. Pid tuning rules for first order plus

time delay system. 2014.

[101] Palden Lama and X. Zhou. Efficient server provisioning with end-to-end delay guarantee on

multi-tier clusters. 17th Int. Workshop on Quality of Service, pages 1–9, 01 2009.

[102] Palden Lama and Xiaobo Zhou. Autonomic provisioning with self-adaptive neural fuzzy

control for end-to-end delay guarantee. In Proceedings of the 2010 IEEE International Sym-

posium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems,

MASCOTS ’10, page 151–160, USA, 2010. IEEE Computer Society.

[103] Han Li and Srikumar Venugopal. Using reinforcement learning for controlling an elastic web

application hosting platform. In Proceedings of the 8th ACM International Conference on

Autonomic Computing, ICAC ’11, page 205–208, New York, NY, USA, 2011. Association

for Computing Machinery.

BIBLIOGRAPHY 126

[104] Hao li, Jianhui Liu, and Guo Tang. A pricing algorithm for cloud computing resources.

volume 1, pages 69 – 73, 06 2011.

[105] Kang Li, M.H. Shor, J. Walpole, C. Pu, and D.C. Steere. Modeling the effect of short-

term rate variations on tcp-friendly congestion control behavior. In Proceedings of the 2001

American Control Conference. (Cat. No.01CH37148), volume 4, pages 3006–3012 vol.4,

2001.

[106] Teng Li, Zhiyuan Xu, Jian Tang, and Yanzhi Wang. Model-free control for distributed stream

data processing using deep reinforcement learning. Proc. VLDB Endow., 11(6):705–718,

February 2018.

[107] Harold C. Lim, Shivnath Babu, Jeffrey S. Chase, and Sujay S. Parekh. Automated control

in cloud computing: Challenges and opportunities. In Proceedings of the 1st Workshop on

Automated Control for Datacenters and Clouds, ACDC ’09, page 13–18, New York, NY,

USA, 2009. Association for Computing Machinery.

[108] X. Liu, X. Zhu, S. Singhal, and M. Arlitt. Adaptive entitlement control of resource containers

on shared servers. In 2005 9th IFIP/IEEE International Symposium on Integrated Network

Management, 2005. IM 2005., pages 163–176, 2005.

[109] Lennart Ljung. System Identification (2nd Ed.): Theory for the User. Prentice Hall PTR,

USA, 1999.

[110] Bjorn Lohrmann, Peter Janacik, and Odej Kao. Elastic stream processing with latency

guarantees. Proceedings - International Conference on Distributed Computing Systems,

2015:399–410, 07 2015.

[111] Raquel Lopes, Francisco Brasileiro, and Paulo Ditarso Maciel. Business-driven capacity

planning of a cloud-based it infrastructure for the execution of web applications. In 2010

IEEE International Symposium on Parallel Distributed Processing, Workshops and Phd Fo-

rum (IPDPSW), pages 1–8, 2010.

[112] Raquel V. Lopes and Daniel Menascé. A taxonomy of job scheduling on distributed com-

puting systems. IEEE Transactions on Parallel and Distributed Systems, 27(12):3412–3428,

2016.

BIBLIOGRAPHY 127

[113] Martina Maggio and Alberto Leva. Toward a deeper use of feedback control in the design of

critical computing system components. In 49th IEEE Conference on Decision and Control

(CDC), pages 5985–5990, 2010.

[114] S. Majhi and D.P. Atherton. Online tuning of controllers for an unstable fopdt process.

Control Theory and Applications, IEE Proceedings -, 147:421 – 427, 08 2000.

[115] Vania Marangozova-Martin, Noël de Palma, and Ahmed El Rheddane. Multi-level elas-

ticity for data stream processing. IEEE Transactions on Parallel and Distributed Systems,

30(10):2326–2337, 2019.

[116] André Martin, Andrey Brito, and Christof Fetzer. Real time data analysis of taxi rides using

streammine3g. In Proceedings of the 9th ACM International Conference on Distributed

Event-Based Systems, DEBS ’15, page 269–276, New York, NY, USA, 2015. Association

for Computing Machinery.

[117] André Martin, Andrey Brito, and Christof Fetzer. Real-time social network graph analysis

using streammine3g. In Proceedings of the 10th ACM International Conference on Dis-

tributed and Event-Based Systems, DEBS ’16, page 322–329, New York, NY, USA, 2016.

Association for Computing Machinery.

[118] Matlab. Matlab control system tootlbox. https://www.mathworks.com/products/control.html.

[Online; Last access: August 19th, 2022].

[119] Matlab. Matlab pid tuner. https://www.mathworks.com/help/control/ref/pidtuner-app.html.

[Online; Last access: August 19th, 2022].

[120] Matlab. Matlab system identification tootlbox. https://www.mathworks.com/products/sysid.html.

[Online; Last access: August 19th, 2022].

[121] Lucas Mearian. The state of the octoverse 2017. Computerworld -

https://www.computerworld.com/article/2960642/cloud-storage/cerns-data-stores-soar-

to-530m-gigabytes.html. [Online; Last access: August 19th, 2022].

[122] Daniel A. Menascé. Qos issues in web services. IEEE Internet Computing, 6(6):72–75,

November 2002.

BIBLIOGRAPHY 128

[123] Gabriele Mencagli, Massimo Torquati, and Marco Danelutto. Elastic-ppq: A two-level au-

tonomic system for spatial preference query processing over dynamic data streams. Future

Gener. Comput. Syst., 79:862–877, 2018.

[124] Gabriele Mencagli, Massimo Torquati, Marco Danelutto, and Tiziano De Matteis. Parallel

continuous preference queries over out-of-order and bursty data streams. IEEE Transactions

on Parallel and Distributed Systems, PP, 03 2017.

[125] Fábio Morais, Raquel Lopes, and Francisco Brasileiro. Provisionamento automático de re-

cursos em nuvem iaas: eficiência e limitações de abordagens reativas. In Anais do XXXV

Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, Porto Alegre, RS,

Brasil, 2017. SBC.

[126] Cristina I. Muresan and Clara M. Ionescu. Generalization of the fopdt model for identifica-

tion and control purposes. Processes, 8(6), 2020.

[127] Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham, and Martín

Abadi. Naiad: A timely dataflow system. In Proceedings of the Twenty-Fourth ACM Sym-

posium on Operating Systems Principles, SOSP ’13, page 439–455, New York, NY, USA,

2013. Association for Computing Machinery.

[128] Jin Seok Noh, Geun Hyeong Lee, Ho Jin Choi, and Seul Jung. Robust control of a mobile

inverted pendulum robot using a rbf neural network controller. In 2008 IEEE International

Conference on Robotics and Biomimetics, pages 1932–1937, 2009.

[129] Pradeep Padala, Kai-Yuan Hou, Kang G. Shin, Xiaoyun Zhu, Mustafa Uysal, Zhikui Wang,

Sharad Singhal, and Arif Merchant. Automated control of multiple virtualized resources. In

Proceedings of the 4th ACM European Conference on Computer Systems, EuroSys ’09, page

13–26, New York, NY, USA, 2009. Association for Computing Machinery.

[130] Pradeep Padala, Kang G. Shin, Xiaoyun Zhu, Mustafa Uysal, Zhikui Wang, Sharad Sing-

hal, Arif Merchant, and Kenneth Salem. Adaptive control of virtualized resources in utility

computing environments. In Proceedings of the 2nd ACM SIGOPS/EuroSys European Con-

ference on Computer Systems 2007, EuroSys ’07, page 289–302, New York, NY, USA, 2007.

Association for Computing Machinery.

BIBLIOGRAPHY 129

[131] Alessandro Vittorio Papadopoulos, Martina Maggio, and Alberto Leva. Control and design

of computing systems: What to model and how. IFAC Proceedings Volumes, 45(2):102–107,

2012. 7th Vienna International Conference on Mathematical Modelling.

[132] S. Parekh, N. Gandhi, J. Hellerstein, D. Tilbury, T. Jayram, and J. Bigus. Using control

theory to achieve service level objectives in performance management. In 2001 IEEE/I-

FIP International Symposium on Integrated Network Management Proceedings. Integrated

Network Management VII. Integrated Management Strategies for the New Millennium (Cat.

No.01EX470), pages 841–854, 2001.

[133] Tharindu Patikirikorala, Alan Colman, Jun Han, and Liuping Wang. A multi-model frame-

work to implement self-managing control systems for qos management. In Proceedings of

the 6th International Symposium on Software Engineering for Adaptive and Self-Managing

Systems, SEAMS ’11, page 218–227, New York, NY, USA, 2011. Association for Comput-

ing Machinery.

[134] Tharindu Patikirikorala, Alan Colman, Jun Han, and Liuping Wang. A systematic survey

on the design of self-adaptive software systems using control engineering approaches. In

Proceedings of the 7th International Symposium on Software Engineering for Adaptive and

Self-Managing Systems, SEAMS ’12, page 33–42. IEEE Press, 2012.

[135] Raghavendra Pradyumna Pothukuchi, Amin Ansari, Petros Voulgaris, and Josep Torrellas.

Using multiple input, multiple output formal control to maximize resource efficiency in ar-

chitectures. In 2016 ACM/IEEE 43rd Annual International Symposium on Computer Archi-

tecture (ISCA), pages 658–670, 2016.

[136] Zhengping Qian, Yong He, Chunzhi Su, Zhuojie Wu, Hongyu Zhu, Taizhi Zhang, Lidong

Zhou, Yuan Yu, and Zheng Zhang. Timestream: Reliable stream computation in the cloud.

In Proceedings of the 8th ACM European Conference on Computer Systems, EuroSys ’13,

page 1–14, New York, NY, USA, 2013. Association for Computing Machinery.

[137] Cui Qin, Holger Eichelberger, and Klaus Schmid. Enactment of adaptation in data stream

processing with latency implications—a systematic literature review. Information and

Software Technology, 03 2019.

BIBLIOGRAPHY 130

[138] Chenhao Qu, Rodrigo N. Calheiros, and Rajkumar Buyya. Auto-scaling web applications in

clouds: A taxonomy and survey. ACM Comput. Surv., 51(4), July 2018.

[139] Wan Nurhayati Wan Ab. Rahman and F. Meziane. Challenges to describe qos requirements

for web services quality prediction to support web services interoperability in electronic

commerce. 2008.

[140] S. Ranjan, Jerry Rolia, H. Fu, and E. Knightly. Qos-driven server migration for internet data

centers. pages 3 – 12, 02 2002.

[141] Jia Rao, Yudi Wei, Jiayu Gong, and Cheng-Zhong Xu. Qos guarantees and service dif-

ferentiation for dynamic cloud applications. IEEE Transactions on Network and Service

Management, 10(1):43–55, 2013.

[142] Sajith Ravindra, Miyuru Dayarathna, and Sanath Jayasena. Latency aware elastic switching-

based stream processing over compressed data streams. In Proceedings of the 8th

ACM/SPEC on International Conference on Performance Engineering, ICPE ’17, page

91–102, New York, NY, USA, 2017. Association for Computing Machinery.

[143] Henriette Röger and Ruben Mayer. A comprehensive survey on parallelization and elasticity

in stream processing. ACM Comput. Surv., 52(2), April 2019.

[144] Lilia Sampaio, Armstrong Goes, Maxwell Albuquerque, Diego Gama, Jose Schmid, and

Andrey Brito. Single-input multiple-output control for multi-goal orchestration. pages 206–

215, 12 2020.

[145] Lilia Sampaio, Clenimar Souza, Gabriel Vinha, and Andrey Brito. Asperathos: Running

qos-aware sensitive batch applications with intel sgx. pages 89–96, 09 2019.

[146] Lui Sha, Xue Liu, Ying Lu, and Tarek Abdelzaher. Queueing model based network server

performance control. In 23rd IEEE Real-Time Systems Symposium, 2002. RTSS 2002., pages

81–90, 2002.

[147] Stepan Shevtsov, Mihaly Berekmeri, Danny Weyns, and Martina Maggio. Control-

theoretical software adaptation: A systematic literature review. IEEE Transactions on

Software Engineering, 44(8):784–810, 2018.

BIBLIOGRAPHY 131

[148] Sukhpal Singh and Inderveer Chana. Qos-aware autonomic resource management in cloud

computing: A systematic review. ACM Comput. Surv., 48(3), December 2015.

[149] Sukhpal Singh and Inderveer Chana. A survey on resource scheduling in cloud computing:

Issues and challenges. J. Grid Comput., 14(2):217–264, June 2016.

[150] Sigurd Skogestad. Simple analytic rules for model reduction and pid controller tuning. Jour-

nal of Process Control, 13(4):291–309, 2003.

[151] Sigurd Skogestad and Ian Postlethwaite. Multivariable Feedback Control: Analysis and

Design. John Wiley Sons, Inc., Hoboken, NJ, USA, 2005.

[152] Zhen Sun and Zhenyu Yang. System identification for nonlinear fopdt model with input-

dependent dead-time. In 15th International Conference on System Theory, Control and

Computing, pages 1–6, 2011.

[153] Gerald Tesauro. Online resource allocation using decompositional reinforcement learning. In

Proceedings of the 20th National Conference on Artificial Intelligence - Volume 2, AAAI’05,

page 886–891. AAAI Press, 2005.

[154] Fuquan Tian, Wenbo Xu, and Liu Juan. Web qos control using fuzzy adaptive pi controller.

International Symposium on Distributed Computing and Applications to Business, Engineer-

ing and Science, 0:72–75, 08 2010.

[155] A. Tosatto, P. Ruiu, and A. Attanasio. Container-based orchestration in cloud: State of the

art and challenges. In 2015 Ninth International Conference on Complex, Intelligent, and

Software Intensive Systems, pages 70–75, July 2015.

[156] Amjad Ullah, Jingpeng Li, Yindong Shen, and A. Hussain. A control theoretical view of

cloud elasticity: taxonomy, survey and challenges. Cluster Computing, 21:1735–1764, 2018.

[157] Bhuvan Urgaonkar, Giovanni Pacifici, Prashant Shenoy, Mike Spreitzer, and Asser Tantawi.

An analytical model for multi-tier internet services and its applications. In Proceedings of the

2005 ACM SIGMETRICS International Conference on Measurement and Modeling of Com-

puter Systems, SIGMETRICS ’05, page 291–302, New York, NY, USA, 2005. Association

for Computing Machinery.

BIBLIOGRAPHY 132

[158] Bhuvan Urgaonkar, Prashant Shenoy, and Timothy Roscoe. Resource overbooking and ap-

plication profiling in shared hosting platforms. SIGOPS Oper. Syst. Rev., 36(SI):239–254,

December 2003.

[159] Akshay S.N. Uttama Nambi, Antonio Reyes Lua, and Venkatesha R. Prasad. Loced:

Location-aware energy disaggregation framework. In Proceedings of the 2nd ACM Interna-

tional Conference on Embedded Systems for Energy-Efficient Built Environments, BuildSys

’15, page 45–54, New York, NY, USA, 2015. Association for Computing Machinery.

[160] Augusto Vega, Alper Buyuktosunoglu, Heather Hanson, Pradip Bose, and Srinivasan Ra-

mani. Crank it up or dial it down: Coordinated multiprocessor frequency and folding control.

In Proceedings of the 46th Annual IEEE/ACM International Symposium on Microarchitec-

ture, MICRO-46, page 210–221, New York, NY, USA, 2013. Association for Computing

Machinery.

[161] Shivaram Venkataraman, Aurojit Panda, Kay Ousterhout, Michael Armbrust, Ali Ghodsi,

Michael Franklin, Benjamin Recht, and Ion Stoica. Drizzle: Fast and adaptable stream

processing at scale. pages 374–389, 10 2017.

[162] Smita Vijayakumar, Qian Zhu, and Gagan Agrawal. Dynamic resource provisioning for

data streaming applications in a cloud environment. In 2010 IEEE Second International

Conference on Cloud Computing Technology and Science, pages 441–448, 2010.

[163] Ke Wang, Avrilia Floratou, Ashvin Agrawal, and Daniel Musgrave. Spur: Mitigating slow

instances in large-scale streaming pipelines. In Proceedings of the 2020 ACM SIGMOD

International Conference on Management of Data, SIGMOD ’20, page 2271–2285, New

York, NY, USA, 2020. Association for Computing Machinery.

[164] Yidan Wang, Zahir Tari, Mohammadreza Hoseinyfarahabady, and Albert Zomaya. Model-

based scheduling for stream processing systems. pages 215–222, 12 2017.

[165] Jianbin Wei and Cheng-Zhong Xu. Feedback control approaches for quality of service guar-

antees in web servers. In NAFIPS 2005 - 2005 Annual Meeting of the North American Fuzzy

Information Processing Society, pages 700–705, 2005.

BIBLIOGRAPHY 133

[166] Jing Xu, Ming Zhao, Jose Fortes, Robert Carpenter, and Mazin Yousif. On the use of fuzzy

modeling in virtualized data center management. In Proceedings of the Fourth International

Conference on Autonomic Computing, ICAC ’07, page 25, USA, 2007. IEEE Computer

Society.

[167] Le Xu, Boyang Peng, and Indranil Gupta. Stela: Enabling stream processing systems to

scale-in and scale-out on-demand. pages 22–31, 04 2016.

[168] Zhenyu Yang and Glen T. Seested. Time-delay system identification using genetic algorithm

– part one: Precise fopdt model estimation. IFAC Proceedings Volumes, 46(20):561–567,

2013. 3rd IFAC Conference on Intelligent Control and Automation Science ICONS 2013.

[169] Lenar Yazdanov and Christof Fetzer. Vscaler: Autonomic virtual machine scaling. In Pro-

ceedings of the 2013 IEEE Sixth International Conference on Cloud Computing, CLOUD

’13, page 212–219, USA, 2013. IEEE Computer Society.

[170] Tao Yu and Kwei-Jay Lin. The design of qos broker algorithms for qos-capable web services.

International Journal of Web Services Research, 1(4), 2004.

[171] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and Ion Stoica.

Discretized streams: Fault-tolerant streaming computation at scale. In Proceedings of the

Twenty-Fourth ACM Symposium on Operating Systems Principles, SOSP ’13, page 423–438,

New York, NY, USA, 2013. Association for Computing Machinery.

[172] Liangzhao Zeng, Boualem Benatallah, Anne H.H. Ngu, Marlon Dumas, Jayant Kalagnanam,

and Henry Chang. Qos-aware middleware for web services composition. IEEE Trans. Softw.

Eng., 30(5):311–327, May 2004.

[173] Qian Zhu and Gagan Agrawal. Resource provisioning with budget constraints for adap-

tive applications in cloud environments. IEEE Trans. Serv. Comput., 5(4):497–511, January

2012.

[174] Xiaoyun Zhu, Mustafa Uysal, Zhikui Wang, Sharad Singhal, Arif Merchant, Pradeep Padala,

and Kang Shin. What does control theory bring to systems research? SIGOPS Oper. Syst.

Rev., 43(1):62–69, January 2009.

BIBLIOGRAPHY 134

[175] K.J. Åström and T. Hägglund. Automatic tuning of simple regulators with specifications on

phase and amplitude margins. Automatica, 20(5):645–651, 1984.

Appendix A

Descriptive analysis of experimentation

data

A.1 Scenarios I and II: Proportional-Integral x Fixed Ac-

tion

As described by Table 6.4, two control strategies are defined for this scenario, one called

Fixed Action and the other Proportional-Integral. For the the Fixed Action approach, we

consider two control configuration values, 1 and 3, which are named in the graphs as Fixed

Step - 1 and Fixed Step - 3, respectively. The Proportional-Integral scenario is named Ana-

lytic PI - Runtime, since the throughput is calculated at runtime. The remainder levels of the

described factors do not change between treatments.

Considering this, in this section we present a summary and distribution of the collected

data with regards to the system throughput, represented by the tracked error in this analysis,

replica allocation and response time.

A.1.1 Tracked error

First, we present the data for the tracked error variable for the three treatments in question:

Analytic PI, Fixed Action - 1 and Fixed Action - 3. Initially we are interested in 4 random

replications of the experiment, for each treatment, to showcase how the data spreads before

summarizing it by a single number.

135

A.1 Scenarios I and II: Proportional-Integral x Fixed Action 136

Figure A.1 showcases the distribution of the tracked error for the Analytic PI control

strategy.

3 4

1 2

−2.5 0.0 2.5 −2.5 0.0 2.5

0

50

100

150

200

0

50

100

150

200

Error

N
um

be
r

of
 o

cc
ur

re
nc

es

Figure A.1: Analytic PI: Distribution of the tracked error data for 4 random replications.

Then, Figure A.2 showcases the distribution of the tracked error for the Fixed Action - 3

control strategy.

3 4

1 2

−2.5 0.0 2.5 5.0 −2.5 0.0 2.5 5.0

0

100

200

300

0

100

200

300

Error

N
um

be
r

of
 o

cc
ur

re
nc

es

Figure A.2: Fixed Action 3: Distribution of the tracked error data for 4 random replications.

Finally, Figure A.3 showcases the distribution of the tracked error for the Fixed Action -

A.1 Scenarios I and II: Proportional-Integral x Fixed Action 137

1 control strategy.

3 4

1 2

−2 0 2 4 −2 0 2 4

0

100

200

300

400

0

100

200

300

400

Error

N
um

be
r

of
 o

cc
ur

re
nc

es

Figure A.3: Fixed Action 1: Distribution of the tracked error data for 4 random replications.

We can see that for the three distributions just presented, the values remain mainly in the

bins around 0.0. An initial analysis indicates that the errors are mainly small, and therefore

the changes in the system due to the tracked error are also possibly small, but still happening

quite frequently, specially for the Fixed Action - 3 approach.

Considering this, next, we want to summarize the data from different replications by a

single number, for each piece of data collected, in our case, every 2 seconds. This single

number is usually called an average of the data. Three popular alternatives to summarize a

sample are to specify its mean, median, or mode. These measures are what statisticians call

indices of central tendencies.

We are mostly interested here in the mean and median of the observations, since our

variables are numerical and they are usually the ones chosen to summarize this type of data.

In general lines, the sample mean is obtained by taking the sum of all observations and

dividing this sum by the number of observations in the sample. The median is obtained by

sorting the observations in an increasing order and taking the observation that is in the middle

of the series.

When choosing between this two indexes some things must be taken into consideration.

We should define whether the total of all observations is of any interest. If yes, then the mean

A.1 Scenarios I and II: Proportional-Integral x Fixed Action 138

is a proper index of central tendency. If the total is of no interest, and the histogram that

describes the raw data is skewed, the median is more representative of a typical observation

than the mean.

It is important to notice that both indexes present some downsides. For instance, the

mean is affected more by outliers than the median. A single outlier can make a considerable

change in the mean, this being particularly true for small samples. Meanwhile, the median

is resistant to several outlying observations. A good aspect of the mean is that it gives equal

weight to each observation and in this sense makes full use of the sample. On the other hand,

the median ignore a lot of the information presented by the data.

Considering this, we decided to summarize the data using the mean index for the initial

analysis. Figure A.4 showcases a histogram of the mean values for the tracked error data for

the Analytic PI, Fixed Action 1 and Fixed Action 3 configuration.

Analytic PI − Runtime Fixed Step − 1 Fixed Step − 3

−2 0 2 4 −2 0 2 4 −2 0 2 4

0

200

400

600

Error

N
um

be
r

of
 o

cc
ur

re
nc

es

Figure A.4: Analytic PI X Fixed Action 1 x Fixed Action 3: Histogram distribution of the

averaged tracked error data for each treatment.

Another way to observe the distribution of the summarized data is shown in Figure A.5,

which presents a boxplot graph to highlight the interquartile range of this data. Quartiles

divide the data into four parts at 25, 50, and 75%. Thus, 25% of the observations are less

than or equal to the first quartile Q1, 50% of the observations are less than or equal to the

second quartile Q2, and 75% are less than or equal to the third quartile Q3. Notice that the

A.1 Scenarios I and II: Proportional-Integral x Fixed Action 139

second quartile Q2 is also the median.

For the tracked error variable in this scenario we visually see almost no difference be-

tween the boxes, which tends to mean that the data has a small variability. On the other hand,

a lot of points are placed outside of the boxes, which possibly represent a few outliers and/or

some extent of significant differences between the data values.

−2

0

2

4

Analytic PI − Runtime Fixed Step − 1 Fixed Step − 3
Control approach

E
rr

or

Figure A.5: Analytic PI X Fixed Action 1 x Fixed Action 3: Boxplot distribution of the

averaged tracked error data for each treatment.

A.1.2 Replica allocation

For the replica allocation variable we followed the same premises defined for the tracked

error descriptive analysis for this scenario. First, we present the data of 4 random replications

of the experiment, for each treatment, to showcase how the data spreads before summarizing

it by a single number.

Figure A.6 showcases the distribution of the replica allocation for the Analytic PI control

strategy. We can see that the distribution for this scenario varies between replications, but

mainly stay in the 5 to 8 area.

A.1 Scenarios I and II: Proportional-Integral x Fixed Action 140

3 4

1 2

2 4 6 8 2 4 6 8

0

100

200

300

400

0

100

200

300

400

Replicas

N
um

be
r

of
 o

cc
ur

re
nc

es

Figure A.6: Analytic PI: Distribution of the replica allocation data for 4 random replications.

Then, Figure A.7 showcases the distribution of the replica allocation for the Fixed Action

- 3 control strategy. For this variable, the distribution is much more sparse, varying from 0

to 12, which possibly indicates a high variability of the data.

3 4

1 2

5 10 5 10

0

50

100

150

0

50

100

150

Replicas

N
um

be
r

of
 o

cc
ur

re
nc

es

Figure A.7: Fixed Action 3: Distribution of the replica allocation data for 4 random replica-

tions.

Finally, Figure A.7 showcases the distribution of the replica allocation for the Fixed

A.1 Scenarios I and II: Proportional-Integral x Fixed Action 141

Action - 1 control strategy. In this case, data is still more sparse than the Analytic PI one, but

less than the observed for the Fixed Action - 3 configuration.

3 4

1 2

5 10 5 10

0

100

200

300

0

100

200

300

Replicas

N
um

be
r

of
 o

cc
ur

re
nc

es

Figure A.8: Fixed Action 1: Distribution of the replica allocation data for 4 random replica-

tions.

Considering this, next, we want to summarize the data from different replications by a

single number, for each piece of data collected, in our case, every 2 seconds. We decided

to summarize the data using the mean index for the initial analysis. Figure A.9 showcases a

histogram of the mean values for the replica allocation data for the Analytic PI, Fixed Action

1 and Fixed Action 3 configuration.

Comparatively, the Analytic PI approach remains varying less among the three scenarios.

For the Fixed Action options, they both present a somewhat sparse histogram, being the

Fixed Action - 1 more centered around the 6− 7 bin.

Another way to observe the distribution of the summarized data is shown in Figure A.10,

which presents a boxplot graph to highlight the interquartile range of this data. For the

replica allocation variable in this scenario we visually see the Analytic PI box is shorter than

the other two, confirming a less variant data. For the Fixed Action - 3 configuration, which

appears to be the larger box, we see more points are placed outside of the boxes, which

possibly represent a few outliers. We also notice that the median lines for the Fixed Action

- 1 and 3 cross each others boxes, which could mean it would be difficult to determine a

A.1 Scenarios I and II: Proportional-Integral x Fixed Action 142

statistically significant difference between them.

Analytic PI − Runtime Fixed Step − 1 Fixed Step − 3

5 10 5 10 5 10

0

100

200

300

400

Replicas

N
um

be
r

of
 o

cc
ur

re
nc

es

Figure A.9: Analytic PI X Fixed Action 1 x Fixed Action 3: Histogram distribution of the

averaged replica allocation data for each treatment.

2.5

5.0

7.5

10.0

12.5

Analytic PI − Runtime Fixed Step − 1 Fixed Step − 3
Control approach

R
ep

lic
as

Figure A.10: Analytic PI X Fixed Action 1 x Fixed Action 3: Boxplot distribution of the

averaged replica allocation data for each treatment.

A.1 Scenarios I and II: Proportional-Integral x Fixed Action 143

A.1.3 Response time

For the response time variable we monitor the time an item stays in the system until it is

finally processed. The descriptive analysis for this scenario considers the average of what

we call item duration for 4 random replications of the experiments for each treatment, to

showcase how the data spreads.

Figure A.11 showcases the distribution of the response time in average for the Analytic

PI, Fixed Action - 1 and Fixed Action - 3 control strategies.

Analytic PI − Runtime Fixed Step − 1 Fixed Step − 3

1 2 3 4 1 2 3 4 1 2 3 4

0

1

2

3

Replications

Ite
m

 d
ur

at
io

n
(s

)

Figure A.11: Analytic PI X Fixed Action 1 x Fixed Action 3: Distribution of the system

response time data for 4 random replications..

We can see that the average time an item stays in the system is possibly less for the

Analytic PI scenario, and higher for the Fixed Step - 3 scenario. Further statistical analysis

of this data is presented on Section 6.4.2.

A.1.4 Data variability

For further knowledge of data variability, that also supports the observed from the visual

analysis on the sections above, Table A.1 presents the variability for the summarized data for

each scenario. The analysis considers the tracked error, replica allocation, and response time

which is the time an item stays in the system until it is fully processed.

A.2 Scenario III: Analytic PI x Manual PI 144

Table A.1: Data variability considering replica allocation, tracked error and system response

time for the PI x Fixed Action scenario.

Replica allocation Tracked error Response time

Variance S. deviation Variance S. deviation Variance S. deviation

Analytic PI 0.761 0.872 0.130 0.361 4.08 2.02

Fixed Step - 3 3.90 1.97 0.128 0.358 66.8 8.17

Fixed Step - 1 2.53 1.59 0.0709 0.266 25.7 5.07

A.2 Scenario III: Analytic PI x Manual PI

As described by Table 6.9, two tuning configuration methods are defined for this scenario,

one called Analytic PI and the other Manual PI. For both executions we used the proposed

Proportional-Integral performance controller, using two tuning configurations, one based on

the FOPDT model of the system and the other manually defined. Thus, for the Analytic

PI, we consider the values for the proportional and integral gains to be kip = 0.0871 and

kpp = 0.9817. Then, for the Manual PI, we chose the default values of kip = 1.0 and

kpp = 1.0. In the graphs, the two treatments are named Analytic PI - Constant and Manual

PI - Constant as a reference to its workload input rate which does not vary over time.

Considering this, in this section we present a summary and distribution of the collected

data with regards to the system throughput, represented by the tracked error in this analysis,

replica allocation and response time.

A.2.1 Tracked error

First, we present the data for the tracked error variable for the two treatments in question:

Analytic PI and Manual PI. Initially we are interested in 4 random replications of the ex-

periment, for each treatment, to showcase how the data spreads before summarizing it by a

single number.

Figure A.12 showcases the distribution of the tracked error for the Analytic PI tuning

configuration.

A.2 Scenario III: Analytic PI x Manual PI 145

3 4

1 2

−5.0 −2.5 0.0 2.5 5.0−5.0 −2.5 0.0 2.5 5.0

0

50

100

150

0

50

100

150

Error

N
um

be
r

of
 o

cc
ur

re
nc

es

Figure A.12: Analytic PI - Constant: Distribution of the tracked error data for 4 random

replications.

Then, Figure A.13 showcases the distribution of the tracked error for the Manual PI

tuning configuration.

3 4

1 2

−2.5 0.0 2.5 5.0 −2.5 0.0 2.5 5.0

0

50

100

150

200

250

0

50

100

150

200

250

Error

N
um

be
r

of
 o

cc
ur

re
nc

es

Figure A.13: Manual PI - Constant: Distribution of the tracked error data for 4 random

replications.

We can see that for the two distributions just presented, the values remain mainly in

the bins around 0.0. For the Analytic PI scenario, the distribution seems almost equally

centered at the three bins in the middle, while for the Manual PI one they differ in height,

and therefore, in frequency. An initial analysis indicates that, although the errors are mainly

small, changes in the system due to the tracked error are still happening quite frequently.

A.2 Scenario III: Analytic PI x Manual PI 146

Next, we want to summarize the data from different replications by a single number, for

each piece of data collected, in our case, every 2 seconds. This single number is usually

called an average of the data. We are mostly interested here in the mean and median of

the observations, since our variables are numerical and they are usually the ones chosen to

summarize this type of data.

Considering this, we decided to summarize the data using the mean index for the initial

analysis. Figure A.14 showcases a histogram of the mean values for the tracked error data

for the Analytic PI and Manual PI configuration.

Analytic PI − Constant Manual PI − Constant

−2.5 0.0 2.5 5.0 −2.5 0.0 2.5 5.0

0

200

400

Error

N
um

be
r

of
 o

cc
ur

re
nc

es

Figure A.14: Analytic PI - Constant X Manual PI - Constant: Histogram distribution of the

averaged tracked error data for each treatment.

Another way to observe the distribution of the summarized data is shown in Figure A.15,

which presents a boxplot graph to highlight the interquartile range of this data. Notice that

the second quartile Q2 in the plot is also the median value.

For the tracked error variable in this scenario we visually see almost no difference be-

tween the boxes, which tends to mean that the data has a small variability. On the other

hand, a lot of points are placed outside of the boxes, which possibly represent a few outliers

and/or some extent of significant differences between the data values. Although the box for

the Manual PI approach is larger than the one for the Analytic PI, which could indicate a

difference between the two scenarios, the median lines cross each other boxes, which, in its

A.2 Scenario III: Analytic PI x Manual PI 147

turn, could indicate it would be difficult to determine a statistically significant difference.

−2

0

2

4

Analytic PI − Constant Manual PI − Constant
Control approach

E
rr

or

Figure A.15: Analytic PI - Constant X Manual PI - Constant: Boxplot distribution of the

averaged tracked error data for each treatment.

A.2.2 Replica allocation

For the replica allocation variable we followed the same premises defined for the tracked

error descriptive analysis for this scenario. First, we present the data of 4 random replications

of the experiment, for each treatment, to showcase how the data spreads before summarizing

it by a single number.

Figure A.16 showcases the distribution of the replica allocation for the Analytic PI con-

figuration tuning. We can see that the distribution for this scenario varies between replica-

tions, with replication 3 and 4 centered around the bin of value 4 which is expected for an

input rate of 3 items per second.

Then, Figure A.17 showcases the distribution of the replica allocation for the Manual PI

configuration tuning. For this variable, the distribution is more centered on the bin of value

8, with some small variance on the other bins for replications 2 and 3.

A.2 Scenario III: Analytic PI x Manual PI 148

3 4

1 2

2 4 6 8 2 4 6 8

0

200

400

0

200

400

Replicas

N
um

be
r

of
 o

cc
ur

re
nc

es

Figure A.16: Analytic PI - Constant: Distribution of the replica allocation data for 4 random

replications.

3 4

1 2

2 4 6 8 2 4 6 8

0

200

400

0

200

400

Replicas

N
um

be
r

of
 o

cc
ur

re
nc

es

Figure A.17: Manual PI - Constant: Distribution of the replica allocation data for 4 random

replications.

Considering this, next, we want to summarize the data from different replications by a

single number, for each piece of data collected, in our case, every 2 seconds. We decided to

summarize the data using the mean index for the initial analysis. Figure A.18 showcases a

histogram of the mean values for the replica allocation data for the Analytic PI and Manual

PI configuration.

Comparatively, the Analytic PI approach remains varying less among the two scenarios,

centering its data around only two bins. For the Manual PI approach, it presents a somewhat

A.2 Scenario III: Analytic PI x Manual PI 149

sparse histogram, a little skewed to the right.

Analytic PI − Constant Manual PI − Constant

2 4 6 8 2 4 6 8

0

100

200

300

Replicas

N
um

be
r

of
 o

cc
ur

re
nc

es

Figure A.18: Analytic PI - Constant X Manual PI - Constant: Histogram distribution of the

averaged replica allocation data for each treatment.

2

4

6

8

Analytic PI − Constant Manual PI − Constant
Control approach

R
ep

lic
as

Figure A.19: Analytic PI - Constant X Manual PI - Constant: Boxplot distribution of the

averaged replica allocation data for each treatment.

A.2 Scenario III: Analytic PI x Manual PI 150

Another way to observe the distribution of the summarized data is shown in Figure A.19,

which presents a boxplot graph to highlight the interquartile range of this data. For the

replica allocation variable in this scenario we visually see the Analytic PI box is shorter than

the Manual PI, possibly confirming a less variant data. We also notice that neither the boxes

nor the median lines for the Manual PI and Analytic PI configuration cross each others boxes,

which indicates there is a possible statistically significant difference between them.

A.2.3 Response time

For the response time variable we monitor the time an item stays in the system until it is

finally processed. The descriptive analysis for this scenario considers the average of what

we call item duration for 4 random replications of the experiments for each treatment, to

showcase how the data spreads.

Figure A.20 showcases the distribution of the response time in average for the Analytic

PI and Manual PI tuning configuration options.

Analytic PI − Constant Manual PI − Constant

1 2 3 4 1 2 3 4

0.0

0.5

1.0

1.5

2.0

Replications

Ite
m

 d
ur

at
io

n
(s

)

Figure A.20: Analytic PI - Constant X Manual PI - Constant: Distribution of the system

response time data for 4 random replications..

We can see that the average time an item stays in the system is possibly less for the

Analytic PI scenario, and higher for the Manual PI scenario. Further statistical analysis of

A.3 Scenario IV: PI - Runtime x PI - Estimated 151

this data is presented on Section B.2.2.

A.2.4 Data variability

For further knowledge of data variability, that also supports the observed from the visual

analysis on the sections above, Table A.2 presents the variability for the summarized data for

each scenario. The analysis considers the tracked error, replica allocation, and response time

which is the time an item stays in the system until it is fully processed.

Table A.2: Data variability considering replica allocation, tracked error and system response

time for the Analytic PI x Manual PI scenario.

Replica allocation Tracked error Response time

Variance S. deviation Variance S. deviation Variance S. deviation

Analytic PI 0.267 0.517 0.218 0.467 5.87 2.42

Manual PI 0.965 0.982 0.354 0.595 19.4 4.41

A.3 Scenario IV: PI - Runtime x PI - Estimated

As described by Table 6.11, two throughput and, as a consequence, tracked error calculation

methods are defined for this scenario, one called PI - Runtime and the other PI - Estimated.

For both executions we used the proposed Proportional-Integral performance controller, us-

ing two different methods to calculate the throughput, one measured at runtime, and the other

as an estimate based on the number of replicas in use and the time it takes to process a given

item. In the graphs, the two treatments are named Analytic PI - Runtime and Analytic PI -

Estimated.

Considering this, in this section we present a summary and distribution of the collected

data with regards to the system throughput, represented by the tracked error in this analy-

sis, replica allocation and response time. Note that, for this scenario, we only present the

individual data regarding the PI - Estimated configuration. This is because the PI - Runtime

configuration is the same sample data as described in A.1 for all the variables of interest.

A.3 Scenario IV: PI - Runtime x PI - Estimated 152

A.3.1 Tracked error

First, we present the data for the tracked error variable for the PI - Estimated configuration.

Initially we are interested in 4 random replications of the experiment to showcase how the

data spreads before summarizing it by a single number.

Figure A.21 showcases the distribution of the tracked error for the PI - Estimated config-

uration.

3 4

1 2

−2.5 0.0 2.5 −2.5 0.0 2.5

0

100

200

300

0

100

200

300

Error

N
um

be
r

of
 o

cc
ur

re
nc

es

Figure A.21: Analytic PI - Estimated: Distribution of the tracked error data for 4 random

replications.

We can see that for the distribution just presented, the values remain mainly in the bins

around 0.0. An initial analysis indicates that, although the errors are mainly small, changes

in the system due to the tracked error are still happening quite frequently.

Next, we want to summarize the data from different replications by a single number, for

each piece of data collected, in our case, every 2 seconds. This single number is usually

called an average of the data. We are mostly interested here in the mean and median of the

observations.

Considering this, we decided to summarize the data using the mean index for the initial

analysis. Figure A.22 showcases a histogram of the mean values for the tracked error data

A.3 Scenario IV: PI - Runtime x PI - Estimated 153

for the PI - Runtime and PI - Estimated configuration.

Analytic PI − Estimated Analytic PI − Runtime

−2 0 2 −2 0 2

0

100

200

300

400

500

Error

N
um

be
r

of
 o

cc
ur

re
nc

es

Figure A.22: Analytic PI - Runtime X Analytic PI - Estimated: Histogram distribution of the

averaged tracked error data for each treatment.

Another way to observe the distribution of the summarized data is shown in Figure A.23.

−2

−1

0

1

2

3

Analytic PI − Estimated Analytic PI − Runtime
Control approach

E
rr

or

Figure A.23: Analytic PI - Runtime X Analytic PI - Estimated: Boxplot distribution of the

averaged tracked error data for each treatment.

A.3 Scenario IV: PI - Runtime x PI - Estimated 154

For the tracked error variable in this scenario we see that the PI - Estimated box is larger

than the PI - Runtime one, which could indicate the first one varies more over time. Besides

that, a lot of points are placed outside of the boxes, which possibly represent a few outliers

and/or some extent of significant differences between the data values. Although the box for

the PI - Estimated approach is larger than the one for the PI - Runtime, which could indicate

a difference between the two scenarios, the median lines cross each other boxes, which, in

its turn, could indicate it would be difficult to determine a statistically significant difference.

A.3.2 Replica allocation

For the replica allocation variable we followed the same premises defined for the tracked

error descriptive analysis for this scenario. First, we present the data of 4 random replica-

tions of the experiment to showcase how the data spreads before summarizing it by a single

number.

Figure A.24 showcases the distribution of the replica allocation for the PI - Estimated

configuration.

3 4

1 2

2 4 6 2 4 6

0

50

100

150

200

0

50

100

150

200

Replicas

N
um

be
r

of
 o

cc
ur

re
nc

es

Figure A.24: Analytic PI - Estimated: Distribution of the replica allocation data for 4 random

replications.

A.3 Scenario IV: PI - Runtime x PI - Estimated 155

We can see that the distribution for this scenario varies between replications, more con-

centrated in the bins around the 3 and 6 bins, which possibly reflects the workload arrival

rate of new items which varies between 2 and 4 items per second.

Considering this, next, we want to summarize the data from different replications by a

single number, for each piece of data collected, in our case, every 2 seconds. We decided to

summarize the data using the mean index for the initial analysis.

Figure A.25 showcases a histogram of the mean values for the replica allocation data

for the PI - Runtime and PI - Estimated configuration. Comparatively, the PI - Runtime

approach remains varying less among the two scenarios, centering its data around only two

bins, mainly the number 6. For the PI - Estimated approach, data is more sparse meaning

the replica allocation varied more. Since the use of this approach intended to mitigate or at

least decrease resource over-provisioning, this could be an indication that replica allocation

is better adapting to the varied workload in this scenario.

Analytic PI − Estimated Analytic PI − Runtime

2 4 6 2 4 6

0

100

200

300

400

Replicas

N
um

be
r

of
 o

cc
ur

re
nc

es

Figure A.25: Analytic PI - Runtime X Analytic PI - Estimated: Histogram distribution of the

averaged replica allocation data for each treatment.

Another way to observe the distribution of the summarized data is shown in Figure A.26,

which presents a boxplot graph to highlight the interquartile range of this data. For the

replica allocation variable in this scenario we visually see the PI - Runtime box is shorter

than the Manual PI, possibly confirming a less variant data. We also notice that the median

A.3 Scenario IV: PI - Runtime x PI - Estimated 156

line of the PI - Runtime configuration cross the PI - Estimated box, which could indicate a

possible difficulty in defining if the two are statistically significant different.

2

4

6

Analytic PI − Estimated Analytic PI − Runtime
Control approach

R
ep

lic
as

Figure A.26: Analytic PI - Runtime X Analytic PI - Estimated: Boxplot distribution of the

averaged replica allocation data for each treatment.

A.3.3 Response time

For the response time variable we monitor the time an item stays in the system until it is

finally processed. The descriptive analysis for this scenario considers the average of what

we call item duration for 4 random replications of the experiments for each treatment, to

showcase how the data spreads.

Figure A.27 showcases the distribution of the response time in average for the PI - Run-

time and PI - Estimated configuration options. We can see that the average time an item stays

in the system is possibly less for the PI - Runtime scenario, and higher for the PI - Estimated

scenario.

Although we see that initial data indicates the PI - Estimated approach performs better

when allocating a rightful amount of replicas according to the workload, instantiating new

resources more frequently, especially when the workload arrival rate increases, could cause

A.3 Scenario IV: PI - Runtime x PI - Estimated 157

a little delay on the processing of new requests. This could explain why this configuration

apparently performs worse when it comes to response time. On the other hand, the PI -

Runtime configuration could be biased by a larger amount of replicas than the necessary,

which could also explain why it performs better in this case.

Analytic PI − Estimated Analytic PI − Runtime

1 2 3 4 1 2 3 4

0.0

0.5

1.0

1.5

2.0

Replications

Ite
m

 d
ur

at
io

n
(s

)

Figure A.27: Analytic PI - Runtime X Analytic PI - Estimated: Distribution of the system

response time data for 4 random replications..

Further statistical analysis of this data is presented on Section B.3.2.

A.3.4 Data variability

For further knowledge of data variability, that also supports the observed from the visual

analysis on the sections above, Table A.3 presents the variability for the summarized data for

each scenario. The analysis considers the tracked error, replica allocation, and response time

which is the time an item stays in the system until it is fully processed.

A.4 Scenario V: SIMO x Independent control 158

Table A.3: Data variability considering replica allocation, tracked error and system response

time for the PI - Runtime x PI - Estimated scenario.

Replica allocation Tracked error Response time

Variance S. deviation Variance S. deviation Variance S. deviation

PI - Runtime 0.761 0.872 0.130 0.361 4.08 2.02

PI - Estimated 2.85 1.69 0.175 0.418 7.84 2.80

A.4 Scenario V: SIMO x Independent control

This set of experiments collects data regarding two different controllers, one called SIMO PI

that combines the individual actions of the cost and performance controllers into a general

control action, and the other a more simplistic approach called Independent, that uses inde-

pendent controllers acting in different moments, with the performance one being the most

frequent. Such evaluation takes into consideration the system throughput, resource utiliza-

tion, response time and total execution cost. For the SIMO PI approach, different preferences

for each controller are evaluated, which are defined as α = 0.2 when there is a preference

for cost metrics, α = 0.5 for no preference in particular, and α = 0.8 favoring performance

metrics.

Considering this, in this section we present a summary and distribution of the collected

data with regards to the system throughput, represented by the tracked error in this analysis,

replica allocation, response time and execution cost.

A.4.1 Tracked error

First, we present the data for the tracked error variable for the performance controller that

acts within the both approaches considered here. We selected 1 random replication of the ex-

periment, for each control preference, to showcase how the data spreads before summarizing

it by a single number.

Figure A.28 showcases the distribution of the performance tracked error for the SIMO PI

and Independent tuning configuration.

A.4 Scenario V: SIMO x Independent control 159

Alpha 0.8 Independent

Alpha 0.2 Alpha 0.5

−5.0 −2.5 0.0 2.5 5.0 −5.0 −2.5 0.0 2.5 5.0

0

100

200

300

0

100

200

300

Performance error

N
um

be
r

of
 o

cc
ur

re
nc

es

Figure A.28: SIMO PI x Independent: Distribution of the performance tracked error data for

1 random replication.

We can see that for the four distributions just presented, the values are pretty spread

around the bins, specially for the Alpha 0.2 configuration. For the Alpha 0.5 scenario, the

distribution seems almost equally distributed around the bins, while for the Alpha 0.8 prefer-

ence, the values are more concentrated around the 0.0 bin. An initial analysis indicates that,

although the errors are mainly small, changes in the system due to the performance tracked

error are still happening quite frequently.

Next, we want to summarize the data from different replications by a single number, for

each piece of data collected, in our case, every 2 seconds. This single number is usually

called an average of the data. We are mostly interested here in the mean and median of

the observations, since our variables are numerical and they are usually the ones chosen to

summarize this type of data.

Considering this, we decided to summarize the data using the mean index for the ini-

tial analysis. Figure A.29 showcases a histogram of the mean values for the performance

tracked error data for the proposed scenarios. Another way to observe the distribution of

the summarized data is shown in Figure A.30, which presents a boxplot graph to highlight

the interquartile range of this data. Notice that the second quartile Q2 in the plot is also the

median value.

A.4 Scenario V: SIMO x Independent control 160

Alpha 0.8 Independent

Alpha 0.2 Alpha 0.5

−5.0 −2.5 0.0 2.5 5.0 −5.0 −2.5 0.0 2.5 5.0

0

100

200

300

0

100

200

300

Performance error

N
um

be
r

of
 o

cc
ur

re
nc

es

Figure A.29: SIMO PI x Independent: Histogram distribution of the averaged performance

tracked error data for each control preference.

−2.5

0.0

2.5

5.0

Alpha = 0.2 Alpha = 0.5 Alpha = 0.8 Independent
Control preference

P
er

fo
rm

an
ce

 e
rr

or

Figure A.30: SIMO PI x Independent: Boxplot distribution of the averaged performance

tracked error data for each control preference.

For the performance tracked error variable in this scenario we visually see some differ-

A.4 Scenario V: SIMO x Independent control 161

ences between the boxes, which tends to mean that the data has a considerate variability. On

the other hand, a lot of points are placed outside of the Alpha 0.8 and Independent boxes,

which possibly represent a few outliers and/or some extent of significant differences be-

tween the data values. Although the box for the Alpha 0.2 approach is larger than the other

ones, which could indicate a difference between the scenarios, the median lines cross the

other boxes, which, in its turn, could indicate it would be difficult to determine a statistically

significant difference.

A.4.2 Replica allocation

For the replica allocation variable we followed the same premises defined for the tracked

error descriptive analysis for this scenario. First, we present the data of 1 random replication

of the experiment, for each control preference, to showcase how the data spreads before

summarizing it by a single number.

Figure A.31 showcases the distribution of the performance tracked error for the SIMO PI

and Independent tuning configuration.

Alpha 0.8 Independent

Alpha 0.2 Alpha 0.5

0 5 10 0 5 10

0

50

100

150

0

50

100

150

Replicas

N
um

be
r

of
 o

cc
ur

re
nc

es

Figure A.31: SIMO PI x Independent: Distribution of the replica allocation data for 1 random

replication.

Next, we want to summarize the data from different replications by a single number, for

A.4 Scenario V: SIMO x Independent control 162

each piece of data collected, in our case, every 2 seconds. We decided to summarize the data

using the mean index for the initial analysis.

Figure A.32 showcases a histogram of the mean values for the replica allocation data for

the proposed scenarios.

Alpha 0.8 Independent

Alpha 0.2 Alpha 0.5

5 10 5 10

0

100

200

0

100

200

Replicas

N
um

be
r

of
 o

cc
ur

re
nc

es

Figure A.32: SIMO PI x Independent: Histogram distribution of the averaged replica allo-

cation data for each control preference.

2.5

5.0

7.5

10.0

12.5

Alpha = 0.2 Alpha = 0.5 Alpha = 0.8 Independent
Control preference

R
ep

lic
as

Figure A.33: SIMO PI x Independent: Boxplot distribution of the averaged replica allocation

data for each control preference.

A.4 Scenario V: SIMO x Independent control 163

Another way to observe the distribution of the summarized data is shown in Figure A.33,

which presents a boxplot graph to highlight the interquartile range of this data. We can see

that the boxes are large for all the scenarios, which possibly indicates a high data variability.

From the intersection of the boxes, we also anticipate that it might be difficult to determine

a statistically significant differences between the scenarios.

A.4.3 Response time

For the response time variable we monitor the time an item stays in the system until it is

finally processed. The descriptive analysis for this scenario considers the average of what we

call item duration for 5 random replications of the experiments for each control preference,

to showcase how the data spreads.

Figure A.34 showcases the distribution of the response time in average for the SIMO PI

and Independent configuration.

Alpha 0.2 Alpha 0.5 Alpha 0.8 Independent

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

0.0

2.5

5.0

7.5

Replications

Ite
m

 d
ur

at
io

n
(s

)

Figure A.34: SIMO PI x Independent: Distribution of average system response time data for

5 random replications.

We can see that the average time an item stays in the system is possibly less for the Alpha

0.8 scenario, and higher for the Alpha 0.2 and Independent scenarios. Further statistical

A.4 Scenario V: SIMO x Independent control 164

analysis of this data is presented on Section B.4.3.

A.4.4 Data variability

For further knowledge of data variability, that also supports the observed from the visual

analysis on the sections above, Table A.2 presents the variability for the summarized data for

each scenario. The analysis considers the tracked error, replica allocation, and response time

which is the time an item stays in the system until it is fully processed.

Table A.4: Data variability considering replica allocation, tracked error, total cost and system

response time for the SIMO PI x Independent scenario.

Replicas Error (Perf.) Error (Cost) Total cost Resp. time

Var Sd Var Sd Var Sd Var Sd Var Sd

α = 0.2 4.89 2.21 3.70 1.92 0.0000207 0.00455 0.0478 0.219 40.2 6.34

α = 0.5 8.87 2.98 1.40 1.18 0.0000514 0.00717 0.00296 0.0544 20.7 4.55

α = 0.8 10.3 3.21 10.7 10.3 0.0000570 0.00755 0.0415 0.204 13.0 3.61

Indep. 10.7 3.27 1.25 1.12 0.0000557 0.00747 0.277 0.527 125 11.2

Appendix B

Statistical analysis of experimentation

data

B.1 Scenarios I and II: Proportional-Integral x Fixed Ac-

tion

Considering the same scenario presented in Appendix A, Section A.1, the statistical analysis

of the experimentation data showcases the following results.

B.1.1 Replica allocation

Table B.1 showcases the observations and hypothesis about the allocation of replicas for the

PI x Fixed Action - 3 scenario.

Table B.1: Replica allocation statistical observations for the PI x Fixed Action - 3 scenario.

Observation from the data:
The average replica allocation for the PI controller is

lesser than that for the Fixed Action controller of size 3.

Research question:
Is this difference due to chance or is it a statistically

significant difference?

Null hypothesis: The average replica allocation in each group is the same.

Alternative hypothesis:
The true difference in means between group Analytic PI

and group Fixed Action - 3 is not equal to 0.

165

B.1 Scenarios I and II: Proportional-Integral x Fixed Action 166

A Student’s t-test was performed to analyze if the difference observed from data is statis-

tically significant. In general lines, considering a confidence interval of 95%, if the p-value

is less than 0.05 then you can reject the null hypothesis and conclude that the difference

between means in the two categories is statistically significant. Note that this same principle

will be used for all the tests performed using the Student’s distribution.

The results show a p-value of 0.002128, with a 95% confidence interval of

[−0.43220276,−0.09581768]. The sample estimate for the mean in group Analytic PI is

5.41690, while the mean for the Fixed Action - 3 group is 5.68091, which is higher. Con-

sidering these results, we can then reject the null hypothesis and say that the differences in

means between the two groups are statistically significant.

Now considering the configuration of an actuation size of 1 for the Fixed Action con-

troller, Table B.2 showcases the observations and hypothesis about the allocation of replicas

for the PI x Fixed Action - 1 scenario.

Table B.2: Replica allocation statistical observations for the PI x Fixed Action - 1 scenario.

Observation from the data:
The average replica allocation for the PI controller is

lesser than that for the Fixed Action controller of size 1.

Research question:
Is this difference due to chance or is it a statistically

significant difference?

Null hypothesis: The average replica allocation in each group is the same.

Alternative hypothesis:
The true difference in means between group Analytic PI

and group Fixed Action - 1 is not equal to 0.

A Student’s t-test was performed to analyze if the difference observed from data is statis-

tically significant for this case as well as for the Fixed Step - 3 treatment. The results show

a p-value < 2.2e − 16, with a 95% confidence interval of [−0.8160899,−0.5303130]. The

sample estimate for the mean in group Analytic PI is 5.41690, while the mean for the Fixed

Action - 1 group is 6.090101, which is higher. Considering these results, we can then reject

the null hypothesis and say that the differences in means between the two groups are also

statistically significant.

B.1 Scenarios I and II: Proportional-Integral x Fixed Action 167

B.1.2 Tracking of the reference value

Table B.3 showcases the observations and hypothesis about the tracking of the reference

value for the PI x Fixed Action - 3 scenario. Note that, for this system, the reference value

is determined by the input rate of new work items, which vary between 2 and 4 items per

second. Thus, in order to quantify how well the system is following the reference value,

we take into consideration the tracked error, which is equal to 0 when the system processes

the same amount of incoming items, i.e. follows the reference value, and different than 0

otherwise.

Table B.3: Tracked error statistical observations for the PI x Fixed Action - 3 scenario.

Observation from the data:
The average tracked error for the PI controller is

greater than that for the Fixed Action controller of size 3.

Research question:
Is this difference due to chance or is it a statistically

significant difference?

Null hypothesis: The average tracked error in each group is the same.

Alternative hypothesis:
The true difference in means between group Analytic PI

and group Fixed Action - 3 is not equal to 0.

A Student’s t-test was performed to analyze if the difference observed from data is statis-

tically significant for this case. The results show a p-value of 0.9557, with a 95% confidence

interval of [−0.03930561, 0.04159426]. The sample estimate for the mean in group Analytic

PI is 0.0017773893, while the mean for the Fixed Action - 3 group is 0.0006330656.

Considering these results, we can not reject the null hypothesis that the average tracked

error in each group is the same. We mostly conclude that because the p-value is very high

considering the expected standards of < 0.05, and the confidence interval includes a 0 differ-

ence, which means that there is still a possibility that the average means in the two observed

groups are actually the same.

Now considering the configuration of an actuation size of 1 for the Fixed Action con-

troller, Table B.4 showcases the observations and hypothesis about the tracking of the refer-

ence value for the PI x Fixed Action - 1 scenario.

Moreover, a Student’s t-test was also performed to analyze if the difference observed

from data is statistically significant. The results show a p-value of 0.9743, with a 95% con-

B.2 Scenario III: Analytic PI x Manual PI 168

Table B.4: Tracked error statistical observations for the PI x Fixed Action - 1 scenario.

Observation from the data:
The average tracked error for the PI controller is

greater than that for the Fixed Action controller of size 1.

Research question:
Is this difference due to chance or is it a statistically

significant difference?

Null hypothesis: The average tracked error in each group is the same.

Alternative hypothesis:
The true difference in means between group Analytic PI

and group Fixed Action - 1 is not equal to 0.

fidence interval of [−0.03551775, 0.03670456]. The sample estimate for the mean in group

Analytic PI is 0.001777389, while the mean for the Fixed Action - 1 group is 0.001183984.

Considering these results, for the same reasons as described for the Fixed Action - 3 treat-

ment, we also can not reject the null hypothesis, which means the differences in means

between the two groups are not statistically significant considering this sample.

B.2 Scenario III: Analytic PI x Manual PI

Considering the same scenario presented in Appendix A, Section A.2, the statistical analysis

of the experimentation data showcases the following results.

B.2.1 Tracking of the reference value

Table B.5 showcases the observations and hypothesis about the tracking of the reference

value for the Analytic PI x Manual PI scenario. Remember that, for this system, the reference

value is determined by the input rate of new work items, which for this case is a constant of

3 items per second. Thus, in order to quantify how well the system is following the reference

value, we take into consideration the tracked error based on this input rate.

A Student’s t-test was performed to analyze if the difference observed from data is statis-

tically significant for this case. The results show a p-value of 0.9865, with a 95% confidence

interval of [−0.06312582, 0.06204362]. The sample estimate for the mean in group Analytic

PI is 0.0001757469, while the mean for the Manual PI group is 0.0007168459.

Considering these results, we can not reject the null hypothesis the average tracked error

B.2 Scenario III: Analytic PI x Manual PI 169

Table B.5: Tracked error statistical observations for the Analytic PI x Manual PI scenario.

Observation from the data:
The average tracked error for the Analytic PI

tuning is lesser than that for the Manual PI.

Research question:
Is this difference due to chance or is it a statistically

significant difference?

Null hypothesis: The average tracked error in each group is the same.

Alternative hypothesis:
The true difference in means between group Analytic PI

and group Manual PI is not equal to 0.

in each group is the same. We mostly conclude that because the p-value is very high consid-

ering the expected standards of < 0.05, and the confidence interval includes a 0 difference,

which means that there is still a possibility that the average means in the two observed groups

are actually the same.

B.2.2 System response time

Table B.6 showcases the observations and hypothesis about the rate of items processed on

time for the Analytic PI x Manual PI scenario. Complementary to that, Table B.7 presents

what was observed from the data regarding the SLA violation rate for this same use case.

Table B.6: Rate of items processed on time statistical observations for the Analytic PI x

Manual PI scenario.

Observation from the data:
The average rate of items processed on time for the Analytic PI

tuning is greater than that for the Manual PI.

Research question:
Is this difference due to chance or is it a statistically

significant difference?

Null hypothesis:
The average rate of items processed on time in each group

is the same.

Alternative hypothesis:
The true difference in means between group Analytic PI

and group Manual PI is not equal to 0.

A Student’s t-test was performed to analyze if the difference observed from data is statis-

tically significant for both cases. Considering the hypothesis in Table B.6, the results show

B.3 Scenario IV: PI - Runtime x PI - Estimated 170

Table B.7: SLA violation rate statistical observations for the Analytic PI x Manual PI sce-

nario.

Observation from the data:
The average SLA violation rate for the Analytic PI

tuning is lesser than that for the Manual PI.

Null hypothesis: The average SLA violation rate in each group is the same.

a p-value of 0.0106, with a 95% confidence interval of [1.030918, 6.680193]. The sample

estimate for the mean in group Analytic PI is 96.02778, while the mean for the Manual PI

group is 92.17222. Complementary to that, for the SLA violation rate, the same p-value is

obtained, with a 95% confidence interval of [−6.680193,−1.030918]. The sample estimate

for the mean in group Analytic PI is 3.972222, while the mean for the Manual PI group is

7.827778.

Considering these results, we can then reject the null hypothesis and say that the differ-

ences in means between the two groups are statistically significant.

B.3 Scenario IV: PI - Runtime x PI - Estimated

Considering the same scenario presented in Appendix A, Section A.3, the statistical analysis

of the experimentation data showcases the following results.

B.3.1 Replica allocation

Table B.8 showcases the observations and hypothesis about the allocation of replicas for the

PI - Runtime x PI - Estimated scenario.

A Student’s t-test was performed to analyze if the difference observed from data is statis-

tically significant. The results show a p-value of 6.83e− 16, with a 95% confidence interval

of [−0.8106836 − 0.4985545]. The sample estimate for the mean in group PI - Runtime is

5.416900, while the mean for the PI - Estimated group is 4.762281, which is in fact less.

Considering this, we can then reject the null hypothesis and say that the differences in means

between the two groups are statistically significant.

B.3 Scenario IV: PI - Runtime x PI - Estimated 171

Table B.8: Replica allocation statistical observations for the PI - Runtime x PI - Estimated

scenario.

Observation from the data:
The average replica allocation for the PI - Runtime approach is

greater than that for the PI - Estimated.

Research question:
Is this difference due to chance or is it a statistically

significant difference?

Null hypothesis: The average replica allocation in each group is the same.

Alternative hypothesis:
The true difference in means between group PI - Runtime

and group PI - Estimated is not equal to 0.

B.3.2 System response time

Table B.9 showcases the observations and hypothesis about the rate of items processed on

time for the PI - Runtime x PI - Estimated scenario. Complementary to that, Table B.10

presents what was observed from the data regarding the SLA violation rate for this same use

case.

Table B.9: Rate of items processed on time statistical observations for the PI - Runtime x PI

- Estimated scenario.

Observation from the data:
The average rate of items processed on time for the PI - Runtime

approach is greater than that for the PI - Estimated.

Research question:
Is this difference due to chance or is it a statistically

significant difference?

Null hypothesis:
The average rate of items processed on time in each group

is the same.

Alternative hypothesis:
The true difference in means between group PI - Runtime

and group PI - Estimated is not equal to 0.

A Student’s t-test was performed to analyze if the difference observed from data is statis-

tically significant for both cases. Considering the hypothesis in Table B.9, the results show a

p-value of 0.01393, with a 95% confidence interval of [−11.905847,−2.349708]. The sam-

ple estimate for the mean in group PI - Runtime is 94.22222, while the mean for the PI -

Estimated group is 87.09444. Complementary to that, for the SLA violation rate, the same

B.4 Scenario V: SIMO x Independent control 172

Table B.10: SLA violation rate statistical observations for the PI - Runtime x PI - Estimated

scenario.

Observation from the data:
The average SLA violation rate for the PI - Runtime approach

is lesser than that for the PI - Estimated.

Null hypothesis: The average SLA violation rate in each group is the same.

p-value is obtained, with a 95% confidence interval of [2.349708, 11.905847]. The sample es-

timate for the mean in group PI - Runtime is 5.777778, while the mean for the PI - Estimated

group is 12.905556.

Considering these results, we can then reject the null hypothesis and say that the dif-

ferences in means between the two groups are statistically significant, for both of the cases

presented.

B.4 Scenario V: SIMO x Independent control

Considering the same scenario presented in Appendix A, Section A.4, the statistical analysis

of the experimentation data showcases the following results.

B.4.1 Replica allocation

Table B.11 showcases the observations and hypothesis about the allocation of replicas for

the SIMO PI with α = 0.2 X Independent scenario.

A Student’s t-test was performed to analyze if the difference observed from data is statis-

tically significant. In general lines, considering a confidence interval of 95%, if the p-value

is less than 0.05 then you can reject the null hypothesis and conclude that the difference

between means in the two categories is statistically significant. Note that this same principle

will be used for all the tests performed using the Student’s distribution in this section.

The results show a p-value of 0.3613, with a 95% confidence interval of

[−0.4812391, 0.1755608]. The sample estimate for the mean in group SIMO PI (0.2) is

7.244643, while the mean for the Independent group is 7.397482. Considering these results,

we can not reject the null hypothesis that the average replica allocation in each group is

B.4 Scenario V: SIMO x Independent control 173

Table B.11: Replica allocation statistical observations for the SIMO PI (0.2) x Independent

scenario.

Observation from the data:
The average replica allocation for the SIMO PI controller with

α = 0.2 is lesser than that for the Independent configuration.

Research question:
Is this difference due to chance or is it a statistically

significant difference?

Null hypothesis: The average replica allocation in each group is the same.

Alternative hypothesis:
The true difference in means between group SIMO PI (0.2)

and group Independent is not equal to 0.

the same. We mostly conclude that because the p-value is above the expected standards of

< 0.05, and the confidence interval includes a 0 difference, which means that there is still a

possibility that the average means in the two observed groups are actually the same.

Note that we want to compare each controller preference configuration from the SIMO

control strategy against the Independent strategy. Thus, similarly to the previous analysis,

Tables B.12 and B.13 showcase the observations and hypothesis about the allocation of repli-

cas for the SIMO PI with α = 0.5 and α = 0.8.

Table B.12: Replica allocation statistical observations for the SIMO PI (0.5) x Independent

scenario.

Observation from the data:
The average replica allocation for the SIMO PI controller with

α = 0.5 is greater than that for the Independent configuration.

Null hypothesis: The average replica allocation in each group is the same.

Table B.13: Replica allocation statistical observations for the SIMO PI (0.8) x Independent

scenario.

Observation from the data:
The average replica allocation for the SIMO PI controller with

α = 0.8 is greater than that for the Independent configuration.

Null hypothesis: The average replica allocation in each group is the same.

A Student’s t-test was performed to analyze if the difference observed from data is sta-

B.4 Scenario V: SIMO x Independent control 174

tistically significant for these cases. For the SIMO PI (0.5) configuration, the results show a

p-value of 0.8363, with a 95% confidence interval of [−0.3293160, 0.4068834]. The sample

estimate for the mean in group SIMO PI (0.5) is 7.436266, while the mean for the Indepen-

dent group is 7.397482. Considering these results, we can not reject the null hypothesis that

the average replica allocation in each group is the same.

Likewise, for the SIMO PI (0.8) configuration, the results show a p-value of 0.7454,

with a 95% confidence interval of [−0.3180956, 0.4442785]. The sample estimate for the

mean in group SIMO PI (0.8) is 7.460573, while the mean for the Independent group is

7.397482. Considering these results, we can not reject the null hypothesis that the average

replica allocation in each group is the same.

B.4.2 Tracking of the reference value

For this metric, the reference value changes according to the internal controller being used

for both the SIMO and the Independent approach. This is because for the performance

controller, the reference value is the input rate of new work items, and for the cost controller,

it is a user-defined desired cost. Thus, in order to quantify how well the system is following

the reference value, we take into consideration the tracked error, which is equal to 0 when

the system follows the reference value, and different than 0 otherwise.

Considering this, we will first evaluate the tracked error for the internal performance

controller. Table B.14 showcases the observations and hypothesis about the tracking of the

reference value for the SIMO PI with α = 0.2 X Independent scenario.

Table B.14: Performance controller: tracked error statistical observations for the SIMO PI

(0.2) x Independent scenario.

Observation from the data:
The average tracked error for the SIMO PI controller with

α = 0.2 is lesser than that for the Independent configuration.

Research question:
Is this difference due to chance or is it a statistically

significant difference?

Null hypothesis: The average tracked error in each group is the same.

Alternative hypothesis:
The true difference in means between group SIMO PI (0.2)

and group Independent is not equal to 0.

B.4 Scenario V: SIMO x Independent control 175

A Student’s t-test was performed to analyze if the difference observed from data is sta-

tistically significant for these cases. The results show a p-value of 0.2885, with a 95% con-

fidence interval of [−0.2846588, 0.0847530]. The sample estimate for the mean in group

SIMO PI (0.2) is −0.04404762, while the mean for the Independent group is 0.05590528.

Considering these results, we can not reject the null hypothesis that the average tracked error

in each group is the same.

Similarly to the previous analysis, Tables B.15 and B.16 showcase the observations and

hypothesis about the tracked error for the SIMO PI with α = 0.5 and α = 0.8.

Table B.15: Performance controller: tracked error statistical observations for the SIMO PI

(0.5) x Independent scenario.

Observation from the data:
The average tracked error for the SIMO PI controller with

α = 0.5 is lesser than that for the Independent configuration.

Null hypothesis: The average tracked error in each group is the same.

Table B.16: Performance controller: tracked error statistical observations for the SIMO PI

(0.8) x Independent scenario.

Observation from the data:
The average tracked error for the SIMO PI controller with

α = 0.8 is lesser than that for the Independent configuration.

Null hypothesis: The average tracked error in each group is the same.

A Student’s t-test was performed to analyze if the difference observed from data is sta-

tistically significant for these cases. For the SIMO PI (0.5) configuration, the results show

a p-value of 0.3471, with a 95% confidence interval of [−0.20021370, 0.07044982]. The

sample estimate for the mean in group SIMO PI (0.5) is −0.008976661, while the mean for

the Independent group is 0.055905276. Considering these results, we can not reject the null

hypothesis that the average tracked error in each group is the same.

Likewise, for the SIMO PI (0.8) configuration, the results show a p-value of 0.8002,

with a 95% confidence interval of [0.1428702, 0.1102114]. The sample estimate for the

mean in group SIMO PI (0.8) is 0.03957587, while the mean for the Independent group

is 0.055905276. Considering these results, we also can not reject the null hypothesis that the

B.4 Scenario V: SIMO x Independent control 176

average tracked error in each group is the same.

Next, we then evaluate the tracked error for the internal cost controller. Table B.17

showcases the observations and hypothesis about the tracking of the reference value for the

SIMO PI with α = 0.2 X Independent scenario.

Table B.17: Cost controller: tracked error statistical observations for the SIMO PI (0.2) x

Independent scenario.

Observation from the data:
The average tracked error for the SIMO PI controller with

α = 0.2 is lesser than that for the Independent configuration.

Research question:
Is this difference due to chance or is it a statistically

significant difference?

Null hypothesis: The average tracked error in each group is the same.

Alternative hypothesis:
The true difference in means between group SIMO PI (0.2)

and group Independent is not equal to 0.

A Student’s t-test was performed to analyze if the difference observed from data is

statistically significant for these cases. The results show a p-value of 0.001019, with a

95% confidence interval of [−0.0019166155,−0.0004859401]. The sample estimate for the

mean in group SIMO PI (0.2) is 0.003079901, while the mean for the Independent group is

0.004281179. Considering these results, for this particular case so far, we can then reject the

null hypothesis and say that the differences in means between the two groups are statistically

significant.

Similarly to the previous analysis, Tables B.18 and B.19 showcase the observations and

hypothesis about the tracked error for the SIMO PI with α = 0.5 and α = 0.8.

Table B.18: Cost controller: tracked error statistical observations for the SIMO PI (0.5) x

Independent scenario.

Observation from the data:
The average tracked error for the SIMO PI controller with

α = 0.5 is lesser than that for the Independent configuration.

Null hypothesis: The average tracked error in each group is the same.

A Student’s t-test was performed to analyze if the difference observed from data is sta-

tistically significant for these cases. For the SIMO PI (0.5) configuration, the results show a

B.4 Scenario V: SIMO x Independent control 177

Table B.19: Cost controller: tracked error statistical observations for the SIMO PI (0.8) x

Independent scenario.

Observation from the data:
The average tracked error for the SIMO PI controller with

α = 0.8 is lesser than that for the Independent configuration.

Null hypothesis: The average tracked error in each group is the same.

p-value of 0.4452, with a 95% confidence interval of [−0.0011766546, 0.0005173237]. The

sample estimate for the mean in group SIMO PI (0.5) is 0.003951514, while the mean for

the Independent group is 0.004281179. Considering these results, we can not reject the null

hypothesis that the average tracked error in each group is the same.

Likewise, for the SIMO PI (0.8) configuration, the results show a p-value of 0.8484, with

a 95% confidence interval of [−0.0009534998, 0.0007841557]. The sample estimate for the

mean in group SIMO PI (0.8) is 0.004196507, while the mean for the Independent group is

0.004281179. Considering these results, we also can not reject the null hypothesis that the

average tracked error in each group is the same.

B.4.3 System response time

The response time is given by the time it takes for an item to be processed once it enters the

system, which is considered to be approximately 1.5 seconds for each item. Here, we look at

this metric from two perspectives, first we calculate the rate of items processed on time, i.e.

items that took a maximum of 1.5 seconds to finish, and considering this same prerogative,

the rate of requests that violate a given SLA of 1.5 seconds response time per item.

Table B.20 showcases the observations and hypothesis about the rate of items processed

on time for the SIMO PI with α = 0.2 X Independent scenario. Complementary to that,

Table B.21 presents what was observed from the data regarding the SLA violation rate for

this same use case.

A Student’s t-test was performed to analyze if the difference observed from data is sta-

tistically significant for both cases. Considering the hypothesis in Table B.20, the results

show a p-value of 7.303e−08, with a 95% confidence interval of [−13.069785,−7.984383].

The sample estimate for the mean in group SIMO PI (0.2) is 40.33860, while the mean for

B.4 Scenario V: SIMO x Independent control 178

Table B.20: Rate of items processed on time statistical observations for the SIMO PI (0.2) x

Independent scenario.

Observation from the data:

The average rate of items processed on time for the SIMO PI

controller with α = 0.2 is lesser than that for the Independent

configuration.

Research question:
Is this difference due to chance or is it a statistically

significant difference?

Null hypothesis:
The average rate of items processed on time in each group

is the same.

Alternative hypothesis:
The true difference in means between group SIMO PI (0.2)

and group Independent is not equal to 0.

Table B.21: SLA violation rate statistical observations for the SIMO PI (0.2) x Independent

scenario.

Observation from the data:
The average SLA violation rate for the SIMO PI controller with

α = 0.2 is greater than that for the Independent configuration.

Null hypothesis: The average SLA violation rate in each group is the same.

the Independent group is 50.86568. Complementary to that, for the SLA violation rate, the

same p-value is obtained, with a 95% confidence interval of [7.984383, 13.069785]. The

sample estimate for the mean in group SIMO PI (0.2) is 59.66140, while the mean for the

Independent group is 49.13432.

Considering these results, we can then reject the null hypothesis for both cases, and say

that the differences in means between the two groups are in fact statistically significant.

Now for the 0.5 control preference, Table B.22 showcases the observations and hypoth-

esis about the rate of items processed on time for the SIMO PI with α = 0.5 X Independent

scenario. Complementary to that, Table B.23 presents what was observed from the data

regarding the SLA violation rate for this same use case.

A Student’s t-test was performed to analyze if the difference observed from data is sta-

tistically significant for both cases. Considering the hypothesis in Table B.22, the results

show a p-value of 1.006e − 12, with a 95% confidence interval of [18.48668, 23.54687].

B.4 Scenario V: SIMO x Independent control 179

Table B.22: Rate of items processed on time statistical observations for the SIMO PI (0.5) x

Independent scenario.

Observation from the data:

The average rate of items processed on time for the SIMO PI

controller with α = 0.5 is greater than that for the Independent

configuration.

Null hypothesis:
The average rate of items processed on time in each group

is the same.

Table B.23: SLA violation rate statistical observations for the SIMO PI (0.5) x Independent

scenario.

Observation from the data:
The average SLA violation rate for the SIMO PI controller with

α = 0.5 is lesser than that for the Independent configuration.

Null hypothesis: The average SLA violation rate in each group is the same.

The sample estimate for the mean in group SIMO PI (0.5) is 71.88246, while the mean for

the Independent group is 50.86568. Complementary to that, for the SLA violation rate, the

same p-value is obtained, with a 95% confidence interval of [−23.54687,−18.48668]. The

sample estimate for the mean in group SIMO PI (0.5) is 28.11754, while the mean for the

Independent group is 49.13432.

Considering these results, we can then reject the null hypothesis for both cases, and say

that the differences in means between the two groups are in fact statistically significant.

Finally, for the 0.8 control preference, Table B.24 showcases the observations and hy-

pothesis about the rate of items processed on time for the SIMO PI with α = 0.8 X Indepen-

dent scenario. Complementary to that, Table B.25 presents what was observed from the data

regarding the SLA violation rate for this same use case.

A Student’s t-test was performed to analyze if the difference observed from data is statis-

tically significant for both cases. Considering the hypothesis in Table B.24, the results show

a p-value of 1.39e−14, with a 95% confidence interval of [29.95371, 34.16158]. The sample

estimate for the mean in group SIMO PI (0.8) is 82.92333, while the mean for the Indepen-

dent group is 50.86568. Complementary to that, for the SLA violation rate, the same p-value

is obtained, with a 95% confidence interval of [−34.16158,−29.95371]. The sample esti-

B.4 Scenario V: SIMO x Independent control 180

Table B.24: Rate of items processed on time statistical observations for the SIMO PI (0.8) x

Independent scenario.

Observation from the data:

The average rate of items processed on time for the SIMO PI

controller with α = 0.8 is greater than that for the Independent

configuration.

Null hypothesis:
The average rate of items processed on time in each group

is the same.

Table B.25: SLA violation rate statistical observations for the SIMO PI (0.8) x Independent

scenario.

Observation from the data:
The average SLA violation rate for the SIMO PI controller with

α = 0.8 is lesser than that for the Independent configuration.

Null hypothesis: The average SLA violation rate in each group is the same.

mate for the mean in group SIMO PI (0.8) is 17.07667, while the mean for the Independent

group is 49.13432.

Considering these results, we can then reject the null hypothesis for both cases, and say

that the differences in means between the two groups are in fact statistically significant.

	Introduction
	Context and motivation
	Objectives
	Methodology

	Contributions
	Summary

	Background
	Quality of Service
	Container orchestration
	Asperathos
	Architecture
	Custom plugins

	Use case: Energy data processing in real time
	The workload

	Related work
	Quality of service
	Web applications
	Data stream processing

	Provisioning and scaling of resources
	Overview
	Control theory
	Other approaches

	Control systems
	Feedback control
	Choosing control variables

	Controller types
	Proportional control
	Integral control
	Derivative control
	PID control: proportional, integral, derivative

	Considerations when implementing a controller
	Challenges for computer systems

	Applying First-Order Plus Dead Time models to DSP systems
	System identification methods
	Application use case: Asperathos
	Using filters
	Inserting a low-pass filter on Asperathos

	Adaptive control of DSP systems
	Context and motivation
	Selecting control variables
	Control approaches
	Fixed Action control
	Proportional-Integral control

	Evaluation
	Experimental design
	Scenarios I and II: Analytic PI x Fixed Action
	Scenario III: Analytic PI x Manual PI
	Scenario IV: PI - Runtime x PI - Estimated

	A multiple-objective control approach
	Context and motivation
	Definition of a controller for a cost variable
	Business model
	Gain scheduling control

	Definition of a multiple objective controller
	Evaluation
	Experimental design
	Scenario V: SIMO PI x Independent control

	Conclusions
	Descriptive analysis of experimentation data
	Scenarios I and II: Proportional-Integral x Fixed Action
	Tracked error
	Replica allocation
	Response time
	Data variability

	Scenario III: Analytic PI x Manual PI
	Tracked error
	Replica allocation
	Response time
	Data variability

	Scenario IV: PI - Runtime x PI - Estimated
	Tracked error
	Replica allocation
	Response time
	Data variability

	Scenario V: SIMO x Independent control
	Tracked error
	Replica allocation
	Response time
	Data variability

	Statistical analysis of experimentation data
	Scenarios I and II: Proportional-Integral x Fixed Action
	Replica allocation
	Tracking of the reference value

	Scenario III: Analytic PI x Manual PI
	Tracking of the reference value
	System response time

	Scenario IV: PI - Runtime x PI - Estimated
	Replica allocation
	System response time

	Scenario V: SIMO x Independent control
	Replica allocation
	Tracking of the reference value
	System response time

