

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE
CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA
UNIDADE ACADÊMICA DE SISTEMAS E COMPUTAÇÃO

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

WESLEY BRENNO RODRIGUES HERCULANO

GENERATED TESTS IN THE CONTEXT OF MAINTENANCE
TASKS: A SERIES OF EMPIRICAL STUDIES

CAMPINA GRANDE PB
2022

Universidade Federal de Campina Grande

Centro de Engenharia Elétrica e Informática

Coordenação de Pós-Graduação em Ciência da Computação

Generated Tests in the Context of Maintenance

Tasks: a Series of Empirical Studies

Wesley Brenno Rodrigues Herculano

Dissertação submetida à Coordenação do Curso de Pós-Graduação em

Ciência da Computação da Universidade Federal de Campina Grande -

Campus I como parte dos requisitos necessários para obtenção do grau

de Mestre em Ciência da Computação.

Área de Concentração: Ciência da Computação

Linha de Pesquisa: Engenharia de Software

Nome dos Orientadores

Everton L. G. Alves

Melina Mongiovi

Campina Grande, Paraíba, Brasil

©Wesley Brenno Rodrigues Herculano, 04/10/2022

H539g

Herculano, Wesley Brenno Rodrigues.

 Generated tests in the context of maintenance tasks: a series of
empirical studies / Wesley Brenno Rodrigues Herculano. Campina
Grande, 2022.
 87 f. : il. color.

 Dissertação (Mestrado em Ciência da Computação) Universidade

Federal de Campina Grande, Centro de Engenharia Elétrica e
Informática, 2022.

 "Orientação: Prof. Dr. Everton L. G. Alves, Profa. Dra. Melina
Mongiovi .

 Referências.

 1. Software Engineering. 2. Generated Tests. 3. Maintenance.

4. Randoop. 5. Evosuite. 6. Test Smells. 7. Refactoring. I. Alves, Everton
L. G. II. Mongiovi, Melina. III. Título.

 CDU 004.41(043)

 FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECÁRIA SEVERINA SUELI DA SILVA OLIVEIRA CRB-15/225

Resumo
As atividades de manutenção geralmente consomem tempo e são difíceis de gerenciar. Para

lidar com isso, os desenvolvedores geralmente usam casos de teste que falham para orien-

tar seus esforços de manutenção. Portanto, possuir bons casos de teste é essencial para o

sucesso da manutenção. Testes gerados automaticamente podem economizar tempo e obter

uma maior cobertura de código. No entanto, muitas vezes não refletem cenários realistas e

incluem test smells. Além disso, não é clara a eficácia destes testes ao orientar as atividades

de manutenção, nem se os desenvolvedores os aceitam totalmente. Neste trabalho, apresenta-

mos uma série de estudos empíricos que avaliam se testes gerados automaticamente podem

dar suporte aos desenvolvedores na manutenção do código. Primeiro, realizamos um es-

tudo com 20 desenvolvedores para comparar como eles executam atividades de manutenção

com testes gerados automaticamente (Evosuite ou Randoop) e testes escritos manualmente,

obtendo resultados que mostram que testes gerados automaticamente podem ser de grande

ajuda para identificar falhas durante a manutenção, com os desenvolvedores sendo mais pre-

cisos na identificação de atividades de manutenção ao usar os testes gerados pelo Evosuite

e igualmente eficazes nas correções de bugs usando testes manuais e testes gerados pelo

Evosuite e Randoop. Em seguida, aplicamos um questionário com 82 desenvolvedores para

avaliar a percepção sobre o uso de testes do Randoop (ferramenta que, de maneira geral,

apresentou o pior desempenho no primeiro estudo) refatorados removendo 3 tipos de testes

smells, onde os resultados demonstram que os desenvolvedores preferiram testes do Ran-

doop refatorados aos originais. Por fim, realizamos um terceiro estudo empírico com 24

desenvolvedores focado em avaliar o impacto dos Randoop refatorados em atividades de

manutenção, com resultados evidenciando que as refatorações aplicadas não melhoraram o

desempenho dos desenvolvedores na detecção de falhas. Por outro lado, os desenvolvedores

foram mais eficazes na correção das faltas usando testes Randoop refatorados.

Palavras-chave: testes gerados, manutenção, randoop, evosuite, test smells, refa-

toração.

iv

Abstract
Maintenance tasks are often time-consuming and hard to manage. To cope with that, de-

velopers often use failing test cases to guide their maintenance efforts. Therefore, working

with good test cases is essential to the success of maintenance. Automatically generated

tests can save time and lead to higher code coverage. However, they often do not reflect

realistic scenarios and include test smells. Moreover, it is not clear whether generated tests

can be effective when guiding maintenance tasks, nor if developers fully accept them. In this

work, we present a series of empirical studies that evaluate if automatically generated tests

can support developers when maintaining code. First, we ran an empirical study with 20 real

developers to compare how they perform maintenance tasks with automatically generated

(Evosuite or Randoop) and manually-written tests. Our results showed that automatically

generated tests can be a great help for identifying faults during maintenance. Developers

were more accurate at identifying maintenance tasks when using Evosuite tests and equally

effective to create bug fixes when using manually written, Evosuite, and Randoop. Then, we

applied a survey with 82 developers to assess developers’ perceptions of the use of Randoop

tests (that presented the worst performance in the first study) refactored by removing 3 kinds

of test smells. Results of this investigation showed that developers preferred refactored Ran-

doop tests to the original ones. Finally, a third empirical study with 24 developers focused

on evaluating the impact of these refactored Randoop tests on maintenance performance. We

found that the refactorings applied did not improve their performance in detecting the faults.

On the other hand, developers were more effective in fixing the faults using refactored Ran-

doop tests.

Keywords: generated tests, maintenance, randoop, evosuite, test smells, refactoring.

v

Agradecimentos
A Deus, toda honra e toda a glória, é d'Ele esta vitória alcançada em minha vida.

À minha família, meus pais Herculano e Rosa, a minha base de tudo, que não medi-

ram esforços para me proporcionar a melhor educação possível, e criar todas as condições

necessárias para que eu pudesse alcançar meus objetivos. Aos meus irmãos, Douglas e Hér-

cules, por todo o apoio e incentivo nos estudos durante toda minha caminhada.

À minha esposa, Eloísa, por todo companheirismo e incentivo, por aguentar meus es-

tresses diários, e em todos os momentos de ansiedade, cansaço e preocupações, ser a minha

calmaria.

Aos professores Everton e Melina, por serem os melhores orientadores possíveis, sem-

pre com muita dedicação e responsabilidade com suas atividades, por todo conhecimento

repassado, todo o apoio e paciência, e por me fazerem desistir de desistir algumas vezes.

Aos amigos do Ap. 15, que me acompanharam durante toda a graduação e no início do

mestrado, dividindo além da moradia, as alegrias e perrengues cotidianos.

Aos meus amigos e colegas do Virtus, que de forma direta ou indireta contribuíram com

este trabalho.

A todos os colaboradores do Computação@UFCG e professores que fizeram parte da

minha formação, desde a infância até hoje, contribuíndo no "assentamento de tijolos" na

edificação do meu conhecimento.

A todos voluntários, pela solicitude e tempo despendido para a participação nos experi-

mentos descritos neste trabalho.

E ao meu filho, José Benício, que chegou na reta final deste curso, mas que desde então,

tem resignificado tudo em minha vida.

vi

Contents

1 Introduction 1

1.1 Context . 1

1.1.1 Motivational Example . 2

1.2 The Problem . 3

1.3 Objectives . 5

1.4 Results and Implications . 6

1.5 Relevance . 8

1.6 Work organization . 8

2 Background 10

2.1 Test Generation Tools . 10

2.1.1 Randoop . 10

2.1.2 EvoSuite . 11

2.2 Test smells . 11

2.3 Refactoring Test Cases . 12

2.4 Software Maintenance . 13

2.5 Final Considerations . 14

3 A Study On The Use Of Generated Tests To Guide Maintenance Tasks 15

3.1 Motivation . 15

3.2 Design and Research Questions . 16

3.2.1 Participants Selection and Demographics 17

3.2.2 Study Objects . 17

3.2.3 Study Procedure . 20

vii

CONTENTS viii

3.3 Results and Discussion . 24

3.3.1 RQ1: Do generated tests influence the effectiveness of developers on

determining the source of a problem? 25

3.3.2 RQ2: Are generated tests effective to help to find proper fixes? . . . 26

3.3.3 RQ3: Does it take longer to execute maintenance tasks when using

generated tests instead of manually written ones? 29

3.3.4 RQ4: What is the developers’ perception of using generated tests

when performing maintenance tasks? 31

3.3.5 Analysis by Roles . 33

3.3.6 Diverging Results . 34

3.4 Final Considerations . 34

4 A Survey to Evaluate Developers Perspectives on Refactored Tests 36

4.1 Motivation . 36

4.2 Design and Research Questions . 36

4.2.1 Methodology . 37

4.2.2 Study Objects . 38

4.3 Results and Discussion . 42

4.3.1 Participants Demographics . 42

4.3.2 RQ5: What is the developers’ perception concerning the names of

Randoop test cases? . 42

4.3.3 RQ6: Do developers prefer the original Randoop tests or the refac-

tored ones? . 46

4.3.4 Analysis by Roles . 47

4.4 Final Considerations . 48

5 An Study on the Use of Refactored Generated Tests to Guide Maintenance Tasks 49

5.1 Motivation . 49

5.2 Design and Research Questions . 50

5.2.1 Participants Selection and Demographics 50

5.2.2 Study Objects . 51

5.2.3 Study Procedure . 52

CONTENTS ix

5.2.4 Follow-up Interviews . 53

5.3 Results and Discussion . 53

5.3.1 RQ7: Do refactored Randoop tests improve developers’ effective-

ness in determining the source of an issue? 54

5.3.2 RQ8: Do refactored Randoop tests improve developers’ effective-

ness in performing proper fixes? 56

5.3.3 RQ9: Do refactored Randoop tests improve the developers’ perfor-

mance to execute maintenance tasks? 56

5.3.4 RQ10: What is the developers’ perception about using refactored

Randoop tests in maintenance tasks? 58

5.3.5 Analysis by Roles . 61

5.3.6 Follow-up Interviews . 63

5.4 Final Considerations . 64

6 Threats to validity 65

7 Related work 67

7.1 Methodology . 67

7.2 Comparing Manual and Generated Test Cases 68

7.3 Test Smells on Generated Tests . 69

7.4 Test Code Improvements . 69

7.5 Final Considerations . 71

8 Conclusions and Future Works 72

A Experiment procedure 82

B Extra analysis 83

List of Symbols

API - Application Programming Interface

AST - Abstract Syntax Tree

CUT - Class Under Test

IDE - Integrated Development Environment

QA - Quality Assurance

x

List of Figures

1.1 Test cases for the ComparatorChain class. 4

1.2 Example of a codefix for the ComparatorChain class. The for loop in

the compare method iterates over all elements except the last one due to a

wrong stop condition. 5

3.1 Study participantsâ background information. 18

3.2 Faulty version and possible fix for the ListPopulation class. 20

3.3 Example of manually written faulty test case for the

FixedOrderComparator class. 21

3.4 Example of Randoop generated faulty test case for the

FixedOrderComparator class. 22

3.5 Overview of our study procedure for each participant. 24

3.6 Protocol for defining correct code and test fixes. 25

3.7 The time developers spent to identify their maintenance tasks grouped by

task type and class. 30

3.8 The time developers spent to fix their maintenance tasks grouped by task

type and class. 30

3.9 Overview of the survey responses relating to (a) codefix and (b) testfix main-

tenance tasks. 32

4.1 Examples of questions from the second section 38

4.2 Examples of questions from the third section. 39

4.3 Renamed Randoop tests for ListPopulation class. 40

4.4 Original and split Randoop tests for FixedOrderComparator class. . . 41

4.5 Participants’ background information. 43

xi

LIST OF FIGURES xii

4.6 Overview of answers about the agreement with automatically generated test

names. 44

4.7 Overview of answers about more appropriate test names. 45

4.8 Answers about the test that should exercise a CUT. 45

4.9 Answers about the most readable test code. 47

4.10 Answers about the most appropriate test to include into a test suite. 48

5.1 Study participants’ background information. 51

5.2 The time developers spent to identify their maintenance tasks grouped by

task type and class. 60

5.3 The time developers spent to fix their maintenance tasks grouped by task

type and class. 61

5.4 Overview of the questionnaire responses relating to (a) codefix and (b) testfix

maintenance tasks. 62

A.1 Detailed procedure overview of the studies from chapters 3 and 5, consider-

ing a single participant . 82

B.1 Overview of survey answers about the agreement with automatically gen-

erated test names, considering only software engineers and quality analysts

participants. 83

B.2 Overview of survey answers about more appropriate test names, considering

only software engineers and quality analysts participants. 84

B.3 Survey answers about the test that should exercise a CUT, considering only

software engineers and quality analysts participants. 84

B.4 Survey answers about the most readable test code, considering only software

engineers and quality analysts participants 85

B.5 Survey answers about the most appropriate test to include in a test suite,

considering only software engineers and quality analysts participants 85

B.6 The time developers spent to identify their maintenance tasks grouped by

task type and class, considering only software engineers and quality analysts

participants. 86

LIST OF FIGURES xiii

B.7 The time developers spent to fix their maintenance tasks grouped by task

type and class, considering only software engineers and quality analysts par-

ticipants. 87

List of Tables

3.1 Information about the selected classes. Branch coverage values refer to the

test suite used to evaluate the codefixes performed by the participants. . . . 19

3.2 Comparison of correct decisions given Manual, Evosuite or Randoop tests. . 27

3.3 Statistical analysis and ranking considering correct decisions for mainte-

nance tasks. 27

3.4 Comparison of correct fixes using Manual, Evosuite or Randoop tests. . . . 28

3.5 Statistical analysis and ranking considering correct fixes for maintenance tasks. 28

5.1 Comparison of correct decisions given Randoop, Randoop split or Randoop

split-renamed tests. 55

5.2 Statistical analysis and ranking considering correct decisions for mainte-

nance tasks. 55

5.3 Comparison of correct fixes using Randoop (original), Split or Split-renamed

Randoop tests. 57

5.4 Statistical analysis and ranking considering correct fixes for maintenance tasks. 57

5.5 Statistical analysis and ranking considering identification time for mainte-

nance tasks. 59

5.6 Statistical analysis and ranking considering correction time for maintenance

tasks. 59

B.1 Comparison of correct decisions given Randoop, Randoop split or Randoop

split-renamed tests, considering only software engineers and quality analysts

participants. 86

xiv

LIST OF TABLES xv

B.2 Comparison of correct fixes using Randoop (original), Split or Split-renamed

Randoop tests, considering only software engineers and quality analysts par-

ticipants. 86

Chapter 1

Introduction

In this chapter, we present an overview of our work. In section 1.1, we present the context

in which this work is inserted. In section 1.2, we define and detail the problem addressed.

The specific objectives of our work are listed in section 1.3. In section 1.4, we summa-

rize the results obtained and their implications. In section 1.5, we present and describe the

main contributions of our work. In section 1.6, we describe the structure of the document

remainder.

1.1 Context

A software must be predictable and consistent, offering no surprise to the user. In this con-

text, testing activities are important to ensure the quality of the software under development,

to assess whether the program works according to its specification, and to reveal in advance

as many faults as possible with the least effort [44].

Software tests can be found in four general levels: unit testing, integration testing, system

testing, and acceptance testing [68]. Unit testing is the test of individual code units, or

groups of related units [13]. However, building a good unit test suite is both difficult and

time-consuming [17].

To cope with this issue, test generation tools have been proposed to create tests from

scratch. These tools use generation strategies based on genetic algorithms, search-based

algorithms, mutation-based assertion generation, or feedback-directed random generation

(e.g., [39; 49; 24; 22]). From this wide range, we can highlight two of the most well-known

1

1.1 Context 2

test generation tools: Evosuite [22] and Randoop [47]. Both of them have been used as a

baseline, and/or won awards, in the SBST Java Unit Testing Tool Contest [7; 34; 59; 14].

Unit testing plays an important role during maintenance tasks [8]. It often works as a

safety net to avoid fault introduction when updating a code, and as a great help for bug

identification and fixing, [45]. In addition to detecting and helping fix faults, good unit tests

should be easily updated after source code changes [30], therefore, avoiding possible false

alarms (aka false positives), i.e., when a test fails but production code is correct; and silent

horror (aka false negatives), i.e., when no warning is issued, even though there are bugs in

the production code [15]. These characteristics are not commonly found in automatically

generated tests, which may prevent their use in practice.

1.1.1 Motivational Example

Here, we present code snippets from the ComparatorChain1 class that was extracted

from the Apache Commons project2, and three test cases (manually written, generated by

Evosuite, and generated by Randoop). The ComparatorChain class includes a fault. The

for loop in the compare method iterates over all elements except the last one due to a

wrong stop condition. Figure 1.2 illustrates a possible codefix for this fault. The test cases

presented in Figures 1.1(a), 1.1(b), and 1.1(c) (manually written, Randoop, and Evosuite

test) fail when we run them to test the faulty code of the ComparatorChain class.

The manually written test adds a new comparator in the chain object, from the

ComparatorChain class, and tests it using some asserts. The Randoop test creates empty

comparators and checks their sizes. The Evosuite test creates an empty comparator and ex-

pects a NullPointerException. Although the test cases exercise the same method,

they have different testing purposes. All of them fail due to faulty code.

As discussed before, developers can save time by automatically generating test cases

using a tool. However, a question that remains is whether automatically generated tests

make maintenance tasks (codefixes and testfixes) harder. We asked seven developers to find

the fault in the code of Figure 1.2. Four of them used the manually-written test case (Figure

1https://github.com/WesleyBrenno/generated-tests-in-the-context-of-maintenance-tasks-a-series-of-

empirical-studies/blob/main/study-with-generated-tests/golden/golden_code/ComparatorChain.java
2https://commons.apache.org/

https://github.com/WesleyBrenno/generated-tests-in-the-context-of-maintenance-tasks-a-series-of-empirical-studies/blob/main/study-with-generated-tests/golden/golden_code/ComparatorChain.java
https://github.com/WesleyBrenno/generated-tests-in-the-context-of-maintenance-tasks-a-series-of-empirical-studies/blob/main/study-with-generated-tests/golden/golden_code/ComparatorChain.java
https://commons.apache.org/

1.2 The Problem 3

1.1(a)) but one did not find the fault. Three developers used the generated test (Figure 1.1(c))

and all of them found the fault. This example may suggest the need for further evaluation of

this matter. In this work, we perform a series of empirical studies to evaluate how developers

deal with maintenance tasks using variations of automatically generated tests.

1.2 The Problem

Software maintenance represents up to 60% of a project’s budget [11; 28]. Previous work

have evaluated automatically generated tests concerning code coverage, faults identification,

and time-consumption [24; 22; 47]. However, to the best of our knowledge, there are only a

few studies designed for evaluating whether automatically generated tests are maintainable

and can properly support developers in software maintenance tasks.

Shamshiri et al. [61] ran an empirical study where participants faced maintenance tasks

with the help of a failing test case. The failing test could be manually written or generated

by Evosuite. The participants were asked to identify and fix the cause of the failure, which

could be related to implementation or a specific unit test. They were more efficient (took

less time) at maintenance tasks when using manually written failing tests but equally ef-

fective (produced correct fixes equally) with manually written and Evosuite generated tests.

However, this study was conducted only in an academic scenario with undergraduate and

graduate students and evaluated a single test generating tool.

Although automated test generation tools have gained notoriety recently as they are able

to assist in discovering real faults in code [62] [55], can be a great alternative to reducing

the costs of creating test suites and lead to higher coverage levels [22], the fact of those tests

are often not close to realistic scenarios, are less readable [53], and have a high incidence

of test smells [69] make it hard for developers to understand them. Figure 1.1 (b) and (c)

illustrates tests generated by Randoop and EvoSuite, respectively. In those tests, we can

find some issues, such as verbose code (Figure 1.1(b) lines 2 and 4), assertions that are not

easy to read (Figure 1.1(b) lines 6 and 7), the lack of documentation, and non descriptive

names for variables and test methods (Figure 1.1(b) lines 1 to 5, and Figure 1.1(c) lines 1

and 2). These issues may prevent developers from using the tests to locate/fix faults and/or to

maintain them, which can lead to an increase in time and difficulties in software maintenance

1.2 The Problem 4

1 public void test() {

2 final ComparatorChain <Integer> chain = new ComparatorChain<>();

3 chain.addComparator(new Comparator <Integer>() {

4 @Override

5 public int compare(final Integer a,final Integer b){

6 ...

7 }

8 assertTrue(chain.size() == 1);

9 assertTrue(chain.compare(Integer.valueOf(4),Integer.valueOf(5)) > 0);

10 ...

11 }

(a) Test manually written for the ComparatorChain class.

1 public void test() throws Throwable {

2 collections.comparators.ComparatorChain<java.lang.Comparable<java.lang.String>>

strComparableComparatorChain0 = new collections.comparators.ComparatorChain<java.

lang.Comparable<java.lang.String>>();

3 int int1 = strComparableComparatorChain0.size();

4 collections.comparators.ComparatorChain<java.lang.Comparable<java.lang.String>>

strComparableComparatorChain3 = new collections.comparators.ComparatorChain<java.

lang.Comparable<java.lang.String>>();

5 int int4 = strComparableComparatorChain3.size();

6 org.junit.Assert.assertTrue("’" + int1 + "’ != ’" + 0 + "’", int1 == 0);

7 org.junit.Assert.assertTrue("’" + int4 + "’ != ’" + 0 + "’", int4 == 0);

8 }

(b) Test generated by Randoop tool for the ComparatorChain class.

1 public void test() {

2 ComparatorChain<String> comparatorChain0 = new ComparatorChain<String>((Comparator<

String>)null,true);

3 // Undeclared exception!

4 try{

5 comparatorChain0.compare("S6jQ9HA[==\"e","T <]IB");

6 fail("Expecting exception: NullPointerException");

7 }catch(NullPointerException e){

8 // no message in exception (getMessage() returned null)

9 }

10 }

(c) Test generated by Evosuite tool for the ComparatorChain class.

Figure 1.1: Test cases for the ComparatorChain class.

1.3 Objectives 5

1

2 /**

3 * A ComparatorChain is a Comparator that wraps one or more Comparators in sequence.

4 ... **/

5 public class ComparatorChain<E> implements Comparator<E>, Serializable {

6 ...

7

8 /**

9 * Perform comparisons on the Objects as per Comparator.compare(o1,o2).

10 ...**/

11 public int compare (final E o1,final E o2) {

12 - for (int comparatorIndex=0; comparatorIndex < comparatorChain.size()-1; ++

comparatorIndex) {

13 + for (int comparatorIndex=0; comparatorIndex < comparatorChain.size(); ++

comparatorIndex) {

14 ...

15 }

16 ...

17 }

Figure 1.2: Example of a codefix for the ComparatorChain class. The for loop in

the compare method iterates over all elements except the last one due to a wrong stop

condition.

activities. Some approaches have been proposed to improve the test readability [26; 2; 50],

as well as to detect and/or remove some types of test smells [72; 36]. However, as far as we

know, there are only a few studies designed to assess whether automatically generated tests

are maintainable and if they can support developers in software maintenance tasks, and how

to improve them.

1.3 Objectives

The main goal of this work is to evaluate and improve the way developers deal with corrective

maintenance tasks using automatically generated tests. We can break this goal into four

specifics ones:

• Conduct an empirical study to analyze how developers perform maintenance tasks with

automatically generated (Evosuite or Randoop) and manually-written tests;

• Adapt well-known refactoring strategies to reduce test smells in Randoop test cases,

1.4 Results and Implications 6

with the objective of improving them;

• Evaluate how developers perceive and perform maintenance tasks with improved gen-

erated tests.

1.4 Results and Implications

In this work, we report a series of empirical studies ran to evaluate how developers deal

with maintenance tasks using automatically generated tests. First, we ran a study with 20

developers from different companies and ask them to identify and fix the cause of a test

failure. The fault could be either in the production code or the test code. We used real

test failures produced by developers whilst performing implementation tasks, and compared

manually written tests to tests generated automatically by EvoSuite and Randoop. For this

study, we reused most of the design and artifacts from Shamshiri et al.’s work [61], but we

applied a more realistic scenario (real developers) and introduced an extra test generation

tool (Randoop).

From this study we yielded the following main results:

• Developers were more effective (i.e., had a better hit rate) at identifying maintenance

tasks when using Evosuite tests, while they were equally effective when using manu-

ally written and Randoop tests;

• Developers were similarly effective at producing bug fixes using the three strategies

(manually written, Evosuite, and Randoop);

• Developers were similarly efficient (i.e., spent the same time) at executing mainte-

nance tasks using the three strategies (manually written, Evosuite, and Randoop);

• Developers found generated tests hard to read, specially Randoop’s. The Evosuite

test case structure was more appreciated but also requires improvements to increase

readability and comprehension aspects.

These results reflect that, although easier to read, a manual test may not necessarily

be better than generated tests to help locate and/or understand code faults. In this sense,

1.4 Results and Implications 7

generated tests might be a good option. Moreover, there is a need for improvements in

automatically generated tests when used for maintenance purposes, especially Randoop tests,

which performed worse in our first study.

Test smells may compromise test code comprehension, readability, and maintenance [27;

29]. Generated test cases can include a number of test smells, such as non-descriptive names,

assertion roulette, duplicate assert, eager test, lazy test, and magic number test [69]. All of

those can often be found in Randoop tests (Figure 4.4). This observation motivated us to per-

form a whole new study to evaluate the impact of well-known refactorings (Extract Method

and Rename Method) on the quality of Randoop tests when applied in an automatic way. For

that, we first conducted a survey with 82 software professionals, and ask their perceptions

when comparing original Randoop tests to their automatically refactored versions.

From this survey we found that:

• Although we cannot say that developers preferred automatically generated test names

over manually written ones, the automatic renaming of Randoop tests was well-

received;

• Developers preferred refactored Randoop tests over original ones. However, in order

to fully accepted them, they indicated the need for extra refactorings, such as variables

renaming, and extract method.

The results from this survey motivated us to access the practical impact of the use of

refactored tests on the performance of maintenance tasks. For this, we performed a third

study where we replicated the first one but focused on different versions of Randoop tests

(original and refactored ones). We can summarize the results of this investigation as follows:

• The refactorings did not improve, nor worsen, the performance of developers deter-

mining the root cause of the faults;

• Developers were more effective in performing proper fixes when guided by refactored

Randoop tests;

• When guided by refactored Randoop tests, developers took less time fixing the faults,

but the same was not observed for fault identification;

1.5 Relevance 8

• Refactored Randoop tests contributed to a better understanding of the class under test-

ing (CUT) and facilitated the identification of maintenance activities and code fixes.

However, developers felt more confident about their test fixes, when using original

Randoop tests.

1.5 Relevance

Our work is based on a series of empirical studies. We believe that those studies may

provide valuable insights for developers and future research.

In our work, we compared different generated tests (Evosuite, Randoop, and Randoop

refactored) regarding their impact on software maintenance. Our results showed that

they can be a great help to support developers in this activity. This information can

help developers decide which and how to adopt the use of generated tests in their

projects. Moreover, this study may inspire other studies about the impact of the use of

tests generated in software development.

Our work also demonstrates that well-known refactoring techniques can be applied to

reduce test smells occurrences in generated tests, and how they can be used to improve

the quality and acceptance of such tests during software maintenance. Moreover, we

capture the developers’ perceptions about generated tests. Researchers can use this

information for developing new approaches to improve the quality of generated tests,

and new test generation tools and tools to remove test smells in existing suites.

1.6 Work organization

The structure of this document is organized as follows. In the Chapter 2, we present the the-

oretical foundation necessary to understand the content of the work. Chapter 3, is presented

the first empirical study on how developers deal with maintenance tasks using automatically

generated and manually written tests.

Chapter 4 presents a survey with software professionals, asking their perceptions when

comparing original Randoop tests to their refactored versions generated by applying the

1.6 Work organization 9

automatic refactoring techniques presented in Chapter 2. In Chapter 5, we discuss the third

study where we replicate the first one, but focus on versions of Randoop tests: original and

refactored ones. In Chapter 6, the threats to the validity of this work are presented. In the

Chapter 7, we discuss works related to this research . Finally, in Chapter 8, we present

conclusions and perspectives for future works.

Chapter 2

Background

In this chapter, we discuss important topics related to our work. In Section 2.1, two auto-

matic unit test generation tools are presented: EvoSuite and Randoop. In Section 2.2, we

introduce the concept of Test Smells and some kinds of them. In Section 2.3, the concepts

of refactoring and some associated techniques are presented. In section 2.4, we present

software maintenance concepts and list their categories of activities. In Section 2.5, the final

considerations of the chapter are presented.

2.1 Test Generation Tools

Automatic test generation tools have gained notoriety due to the fact they may be a great

alternative to reduce the costs of creating sound test cases. Two of the most well-known test

generation tools are Randoop1 [47] and Evosuite2 [23].

2.1.1 Randoop

Randoop [47] is a tool that implements feedback-directed random test generation for object-

oriented Java programs. Randoop’s generation process builds sequences of method calls to

exercise the system under testing. It focuses on generating tests that check code elements that

could lead to basic contract violations. For instance, a test case that verifies whether a tran-

sitive property (e.g., o1.equals(o2) && o2.equals(o3) → o1.equals(o3))

1https://randoop.github.io/randoop/
2http://www.evosuite.org/

10

https://randoop.github.io/randoop/
http://www.evosuite.org/

2.2 Test smells 11

remains valid after a sequence of method calls. Following construction, it executes the test-

ing sequences to produce results that are used for generating other tests. Figure 3.4 shows an

example of Randoop test cases.

Randoop can be used (i) to find bugs, and (ii) to create regression tests to reflect the cur-

rent behavior of a given program. The Randoop project is still very active. New versions

of the tool have addressed complex issues such as the generation of invalid calls to static

members, and flaky tests. Several works have used Randoop and its suites in different sce-

narios (e.g., [64; 41; 42; 48; 63; 65]). In the empirical studies reported in this work, we used

Randoop version 4.1.2.

2.1.2 EvoSuite

EvoSuite is a search-based automatic tool for generating JUnit test suites. It generates tests

by adding assertions that summarize the current behavior of the system and enables the detec-

tion of possible behavior changes. It applies evolutionary algorithms and searches operators

such as selection, mutation, and crossover to evolve the test suite. This evolution is guided by

a fitness function based on coverage criteria. Figure 1.1 (c) shows an example of an Evosuite

test case.

EvoSuite can be used by the command line, or as a plug-in of popular IDEs (e.g., Eclipse).

Moreover, EvoSuite has been used on several industrial projects, finding potential bugs (e.g.,

[24; 22]). Several new and improved versions of this tool have also been released in the past

years. In the empirical studies reported in this work, we used EvoSuite version 1.0.6.

2.2 Test smells

Similar to source code, unit tests can also be affected by poor design and programming

practices (i.e., smells). The importance to have a well-designed test code was first discussed

by Beck [10]. The term test smell was later defined and cataloged by Van Deursen et al.

[19]. Test smells resemble code smells. They are anti-patterns from well-established testing

practices and guidelines on how test cases should be implemented, organized, and interact

with each other. The presence of tests smells may negatively impact the quality of the system

[66], hampering the quality and maintenance of a test suite [40], in addition to impairing its

2.3 Refactoring Test Cases 12

performance (e.g., flaky tests [51; 52]). Van Deursen et al. [19] cataloged 11 types of test

smells. In addition, other works have defined more than 80 smells [27].

Grano et al. [29] investigated the diffuseness of test smells in automatically generated

test suites. They found that Randoop and Evosuite tend to generate a high quantity of two

specific test smells (Assertion Roulette and Eager Test). Moreover, Anonymous Test is a test

smells type present in all tests generated by Randoop, caused by the use of stub test names

(e.g., test1, test2).

In the context of our work, we focus on the three test smells described below:

• Anonymous Test: when a test has a meaningless and unclear method name, not ex-

pressing the purpose of the test [57] (e.g., Figure 1.1);

• Assertion Roulette: when a test has multiple assertions without explanation mes-

sages, making it difficult to read, understand, and maintenance the test and to identify

the cause of a failing [19] (e.g., Figure 1.1 (b), lines 6 and 7);

• Eager Test: when a test checks several methods of the class to be tested, making it

difficult to understand the test target [19] (e.g., Figure 1.1 (a), lines 8 and 9).

2.3 Refactoring Test Cases

Refactoring is the controlled process of modifying a program to improve its code structure

without changing its external behavior [21]. The refactoring activity is known to remove

code smells and improve code quality aspects such as readability, confine source code com-

plexity, decrease coupling, and increase cohesion [43]. Fowler proposes a catalog of different

refactoring types [21]. Among the most popular refactorings, we list Rename Method and

Extract Method. The first is used when the name of a method does not explain what it does,

therefore it should be properly renamed. The Extract Method can be used to reduce com-

plexity and improve the readability of code. For that, one you move a fragment of code from

an existing method into a new method with a representative name.

Refactorings can also be used in test code. Van Deursen et al. [19] define test refactorings

as transformations of test code that: i) do not add or remove test cases, and (2) make test

code more understandable/readable, and/or maintainable. Therefore, refactoring can be used

2.4 Software Maintenance 13

to remove test smells. For instance, by renaming a test case with a more representative name

(See Figure 4.3), a tester may better understand its purpose (removing the Anonymous Test

smell). By performing a series of Extract Methods based on test assertions one may reduce,

or remove, the Assertion Roulette and Eager Test smells, and have less trouble locating/fixing

a bug [40] (See Figure 4.4).

2.4 Software Maintenance

IEEE Standard 1219 [1] defines software maintenance as "The modification of a software

product after delivery to correct faults, to improve performance or other attributes, or to

adapt the product to a modified environment". ISO/IEC 12207-95 [46] provides a similar

definition: "The software product undergoes modification to code and associated documen-

tation due to a problem or the need for improvement. The objective is to modify the existing

software product while preserving its integrity.". Thus, when performing maintenance activ-

ities, developers aim to improve the quality of a given code.

Software maintenance is an important topic in software development because (i) it con-

sumes a large part of the overall life-cycle costs and (ii) the inability to change software

quickly and reliably means that business opportunities are lost [11].

Maintenance activities can be categorized into four classes [37]:

• Adaptive: needed activities to adapt the software to environment changes (e.g.,

changes in the operating system, hardware, software dependencies), or changes re-

lated to organizational policies or rules or legislation (e.g., Brazilian General Law for

the Protection of Personal Data);

• Perfective: activities that aim to evolve or add functionality to the system, based on

needs identified by users when interacting with it (e.g., a feature to improve user expe-

rience), or remove unused, ineffective, or nonfunctional features that do not contribute

to the expected users’ goals;

• Corrective: activities that aim to fix software bugs, which can affect its various parts

(e.g, design, logic, and code). The need for these corrections can be requested/identi-

2.5 Final Considerations 14

fied by the software users, as well as by the development team itself, which seeks to

resolve them before reaching the users;

• Preventive: activities related to reducing the risks associated with the long-term op-

eration of the software, making it more stable, understandable, sustainable, and pre-

venting its deterioration. Code optimization and documentation update are examples

of these activities.

In our work, we focus on corrective activities, responsible for around 21% of the main-

tenance effort [11].

2.5 Final Considerations

In this chapter, two of the most well-known test generation tools were presented. Both of

them were used in this work. We discussed the test smells concept and presented three test

smells types. We presented the software maintenance concept and its importance to software

development. Finally, we explained refactoring, and how two refactoring techniques can be

used to reduce test smells.

In the next chapter, we will present the first empirical study of this work, which was de-

signed to compare how developers perform maintenance tasks with automatically generated

(Evosuite vs Randoop) and manually-written tests.

Chapter 3

A Study On The Use Of Generated Tests

To Guide Maintenance Tasks

In this chapter, we present a study to compare how the developers perform maintenance tasks

with automatically generated (Evosuite vs Randoop) and manually-written tests. In section

3.1 we present the motivation to perform this experiment. The research questions, study

objects, and study procedure are described in section 3.2. In section 3.3, we present and

discuss the found results and their implications. Finally, in section 3.4, we discuss the final

considerations of this chapter.

3.1 Motivation

Software maintenance involves a series of tasks (e.g., inspecting, modifying, and updating

code artifacts) and it is known as complex and costly [11; 28]. To reduce the risks involved

in those tasks, developers often use test cases to guide them to identify and correct undesired

modifications. However, it is unclear whether generated tests can be as effective and useful

as manually written ones in these tasks.

To evaluate how developers deal with maintenance tasks using automatically generated

and manually written tests, we ran this study [31].

15

3.2 Design and Research Questions 16

3.2 Design and Research Questions

Shamshiri et al. [61] performed a study with students to investigate how they deal with

maintenance tasks using Evosuite and manually written tests. In our study, we extended

Shamshiri et al.’s work [61] by performing a similar investigation. However, instead of

students, we ran our study with 20 developers and we deal with a more comprehensive

set of testing generation strategies: manual, Evosuite tool, and Randoop tool. Although

Shamshiri et al. did not consider Randoop in their investigation, we decided to include it in

our study because other works have attested its practical benefits (e.g., [48; 63]) and have

been used as a baseline in the SBST Java Unit Testing Tool Contest [7; 34; 59]. Thus, our

study may complement Shamshiri et al.’s work by introducing a more practical scenario

(real developers) and by comparing manually written testing with two types of generated

tests (Randoop and Evosuite).

This study aims at investigating the performance and perception of developers on per-

forming maintenance tasks (codefix or testfix) guided by failing unit test cases created using

different strategies (manually written or automatically generated). Our goal is to understand

the outcomes and difficulties that developers have when facing a test failure and need to

identify the fault and fix it, which can be related to either code or test malfunction. Our goal

is to understand the outcomes and difficulties that developers have when they have failing

test cases to help to identify and solve a given fault that could be related to either code or

test malfunction. Moreover, we would like to understand whether generated test cases, using

different strategies, are a good fit in this scenario.

To guide our investigation, we defined the following research questions1:

• RQ1: Do generated tests influence the effectiveness of developers in determining

the source of a problem? This research question aims to understand whether gener-

ated tests help developers to determine the source of a problem and which kind of test

is the best option;

• RQ2: Are generated tests effective to help developers find proper fixes? This

research question aims to investigate whether developers produce correct fixes when

using a specific kind of test (manually written, Evosuite, Randoop);
1We adapted Shamshiri et al.’s research questions [61]

3.2 Design and Research Questions 17

• RQ3: Does it take longer to execute maintenance tasks when using generated

tests instead of manually written ones? This research question aims to investigate if

generated tests, and which kind, reduce the time needed for identifying and performing

maintenance tasks;

• RQ4: What is the developers’ perception of using generated tests when perform-

ing maintenance tasks? This research question aims to collect developers’ opinions

on the use of generated tests when compared to manual ones.

3.2.1 Participants Selection and Demographics

To participate in our study, we recruited active developers that satisfied the following cri-

teria: i) have Computer Science (or related areas) degrees; ii) have previous experience in

Java development; iii) have previous experience with unit testing (JUnit); and iv) have the

availability of 1h 30min (minimum) to participate of the study.

We selected 20 developers from two companies (small and medium-size), three from

one company and 17 from the other. They work on eight different projects. The nature of

these projects varies from mobile and web applications to IoT and embedded systems2. The

companies have no relationship with each other and do not have projects in common. All

participants were volunteers in our study and they did not receive any incentive for partici-

pation.

The participants perform the following roles: developer (11), software engineering (5),

tester (3), and software analyst (1). Prior to the study, they responded to a questionnaire.

Figure 3.1 summarizes the participants’ background information. Most participants have

experience with Java programming for at least three years. Although most find unit testing

important for software development, they rarely write or run unit tests.

3.2.2 Study Objects

To run our study, we needed faulty implementations and faulty tests (manually and au-

tomatically generated). For comparison purposes, we reused the implementations and

2Due to confidentiality reasons, we cannot disclose information about the products developed in these

projects

3.2 Design and Research Questions 18

Figure 3.1: Study participantsâ background information.

faults from [61]. In their work, they state these artifacts refer to minimally-faulty imple-

mentations, test suites manually-written by real developers, and subtle mistakes. More-

over, all collected faulty versions lead to a single failing test case. Therefore, we worked

with two versions (original and faulty) of three classes (FixedOrderComparator,

ListPopulation, and ComparatorChain), and their respective failing tests. The

FixedOrderComparator class is responsible for imposing a specific order on a specific

set of objects; ListPopulation constructs a genetic population of chromosomes, repre-

sented as a List. The ComparatorChain class was not used in [61]. However, since we

included a new generation tool to the experiment (Randoop), we needed a third class to deal

with all treatments. For selecting this class and its respective faults, we applied the guide-

lines from [58]. ComparatorChain runs a series of comparators in order to provide a

safer comparison for a given pair of objects. Table 3.1 summarizes the characteristics of the

used objects.

We injected faults to all three object classes. Those faults were also reused from [61],

except the ComparatorChain one. All faults emulate subtle real faults reported by other

works [61; 63; 64]. To illustrate the injected faults, Figure 3.2 presents the faulty method

from ListPopulation (Figure 3.2(a)) and a possible way to fix it (Figure 3.2(b)). This fault

refers to the access of a null variable (Figure 3.2(a) - line 4). To fix it, one should properly

3.2 Design and Research Questions 19

Class Name LOC Methods Branch Cov. Test suite LOC Manual Test LOC Evosuite Test LOC Randoop Test LOC

FixedOrderComparator 98 10 77.5% 137 42 17 26

ListPopulation 97 13 77.3% 149 34 22 28

ComparatorChain 131 18 64.3% 162 29 18 24

Table 3.1: Information about the selected classes. Branch coverage values refer to the test

suite used to evaluate the codefixes performed by the participants.

instantiate variable fitter (Figure 3.2(b) - line 3).

To complete our study objects we needed Randoop tests for all classes and, Manual

and Evosuite test for the ComparatorChain class. For that, we proceeded as follows:

we ran the Randoop tool for all original versions of the classes, and EvoSuite only for

ComparatorChain. The tests were generated considering the correct implementations,

i.e., prior to any fault injection. Next, we ran the generated suites against the faulty versions

and randomly selected a failing one as a representative for the study. Therefore, we selected

one Randoop test cases per subject program, and one EvoSuite test for ComparatorChain

class. For the manual test for the ComparatorChain class, we randomly selected a test

from the original suite that fails in the faulty version.

As for the faults related to the generated tests, we followed a similar procedure. Figure

3.3 presents an example of a manually written faulty test case (emptyArray should be null

to trigger the expected exception), and its possible fix. Finally, Figure 3.4 shows a faulty

Randoop test (two unknown objects were not properly compared) and its fix.

One may argue that the size of objects is small. However, since we want to compare

results to the ones reported by Shamshiri et al., we reused most of their artifacts (classes

and faults). They were selected from open-source projects and reflect real-world faults.

Shamshiri et al. argue that those artifacts were selected due to their manageable size, avail-

ability, and amenability for the research purposes. Those reasons are even more important in

our study, because our participants are real developers with limited time. Since we asked the

participants to carefully inspect all code (implementation and tests), a more complex config-

uration (extra classes and test suites with more than a single test) would be impractical.

We also believe the injected faults and scenario (single failing test case) emulate real

maintenance tasks. When identifying and fixing faults (source code or test code), developers

3.2 Design and Research Questions 20

1 public Chromosome getFittestChromosome() {

2 Chromosome fitter = null;

3 for (Chromosome c : this.chromosomes)

4 if (c.compareTo(fitter) > 0)

5 fitter = c;

6 return fitter;

7 }

(a) Faulty version of the Listpopulation class. An exception is thrown by compareTo since the fitter is null.

1 public Chromosome getFittestChromosome() {

2 - Chromosome fitter = null;

3 + Chromosome fitter = this.chromosomes.get(0);

4 for (Chromosome c : this.chromosomes)

5 if (c.compareTo(fitter) > 0)

6 fitter = c;

7 return fitter;

8 }

(b) Possible fix for the fault.

Figure 3.2: Faulty version and possible fix for the ListPopulation class.

often focus on a single class and/or small edits. For instance, 47% of the bug-fixes from

Defects4J require two or fewer lines of code [33].

3.2.3 Study Procedure

The procedure of our study goes as follows. Prior to the sections, each participant answered

a questionnaire about her background. Moreover, the first author ran a brief tutorial about the

study and tasks. Each participant was asked to perform three maintenance tasks. Each main-

tenance task refers to a single fault to be identified and fixed. The fault could be either related

to implementation or test code. Moreover, since each participant was asked to perform three

maintenance tasks, we vary the type of tests to be used (manually written, Evosuite, and

Randoop). Both the task type (codefix or testfix), the order, and the received test (manually

written, Evosuite, or Randoop) were randomly assigned for counterbalancing. To support

each task, we provided a pre-configured environment that included an Eclipse IDE and the

artifacts to perform the assigned tasks: a project with the class implementation (faulty or not)

and a failing test (faulty or not).

3.2 Design and Research Questions 21

1 public void test() {

2 try {

3 Object[] emptyArray = {};

4 FixedOrderComparator comparator = new FixedOrderComparator(emptyArray);

5 fail("Exception was supposed to be thrown!");

6 } catch (IllegalArgumentException e) {

7 assertTrue(true);

8 }

9 }

(a) Faulty test that were manually written for FixedOrderComparator. emptyArray should be null to trigger the exception.

1 public void test() {

2 try {

3 - Object[] emptyArray = {};

4 + Object[] emptyArray = null;

5 FixedOrderComparator comparator = new FixedOrderComparator(emptyArray);

6 fail("Exception was supposed to be thrown!");

7 } catch (IllegalArgumentException e) {

8 assertTrue(true);

9 }

10 }

(b) Possible fix for the fault.

Figure 3.3: Example of manually written faulty test case for the

FixedOrderComparator class.

3.2 Design and Research Questions 22

1 public void test () throws Throwable {

2 collections.comparators.FixedOrderComparator fixedOrderComparator0 = new collections

.comparators.FixedOrderComparator ();

3 fixedOrderComparator0.setUnknownObjectBehavior ((int) (byte) 1);

4 int int6 = fixedOrderComparator0.compare ((java.lang.Object) "hi!", (java.lang.

Object) "");

5 org.junit.Assert.assertTrue ("’" + int6 + "’!=’" + 0 + "’", int6 == 1);

6 }

(a) Faulty version of a Randoop test. Since two unknown objects are compared in line 5, int6 should be 0.

1 public void test () throws Throwable {

2 collections.comparators.FixedOrderComparator fixedOrderComparator0 = new collections

.comparators.FixedOrderComparator ();

3 fixedOrderComparator0.setUnknownObjectBehavior ((int) (byte) 1);

4 int int6 = fixedOrderComparator0.compare ((java.lang.Object) "hi!", (java.lang.

Object) "");

5 - org.junit.Assert.assertTrue ("’" + int6 + "’!=’" + 0 + "’", int6 == 1);

6 + org.junit.Assert.assertTrue ("’" + int6 + "’!=’" + 0 + "’", int6 == 0);

7 }

(b) Possible fix for this fault.

Figure 3.4: Example of Randoop generated faulty test case for the

FixedOrderComparator class.

3.2 Design and Research Questions 23

Our study worked with the following maintenance tasks:

• < codefix,manual >: Faulty implementation and a correct manually written failing

test;

• < codefix, evosuite >: Faulty implementation and a correct Evosuite failing test;

• < codefix, randoop >: Faulty implementation and a correct Randoop failing test;

• < testfix,manual >: Correct implementation and a faulty manually written failing

test;

• < testfix, evosuite >: Correct implementation and a faulty Evosuite failing test;

• < testfix, randoop >: Correct implementation and a faulty Randoop failing test.

To minimize learning effects, no participant was assigned to the same pair <fix type,

test type> or class across sessions. For instance, a participant that first was assigned to a

< codefix,manual > on FixedOrderComparator class, then should be assigned to

different tasks and classes in the second and third assignments (e.g., < codefix, evosuite >

on ListPopulation class, and < testfix, randoop > on ComparatorChain class).

The participants were asked to perform each maintenance task with a time limit of 60

minutes and to verbalize and answer a form when identifying the problem. Although in

practice one might identify and fix a fault in an intertwined manner, we decide to analyze

these tasks separately. Thus, when participants made wrong decisions (e.g., identifying a

testfix task when in fact should be a codefix one), we revealed the correct answer in order

to prevent that faults wrongly identified would impact/invalidate the fault fixing task. Only

after that, the participants proceed to fix the faults. All sections were performed in person,

conducted by the first author, and video-recorded for later analysis. Finally, at the end of

the section, the participants were asked to answer a survey questionnaire in which we asked

questions related to the maintenance tasks and possible challenges. Figure 3.5 depicts the

procedure of our study for a single participant (a more detailed version could be found in

Appendix A).

It is important to highlight that we did not impose any protocol for detecting/fixing the

faults. When performing the maintenance, a participant could either inspect the implemen-

tation code, the test code, or both. Moreover, as either the implementation or test code was

3.3 Results and Discussion 24

Figure 3.5: Overview of our study procedure for each participant.

faulty, each method included a Javadoc specification. We provided this information to help

participants figure the expected behavior of the methods and, therefore, to avoid misleading

conclusions based on the code alone.

After the sessions, we evaluated the output artifacts of each participant. To decide

weather a codefix or testfix solution was correct, we ran the process in Figure 3.6. A codefix

was classified as correct if it did not break any additional test from the original test suite

and satisfied a manual inspection. In this manual inspection, we compared the participant’s

output class with our golden solution and javadoc documentation. For test-fixing tasks, we

created reference solutions based on the original test purpose. Then, the first author ran the

tests and inspected the code to classify the fix. All artifacts, including the original tests and

reference solutions are available on our website3.

3.3 Results and Discussion

Here, we discuss the collected data and its implications for each research question.

3https://github.com/WesleyBrenno/generated-tests-in-the-context-of-maintenance-tasks-a-series-of-

empirical-studies/tree/main/study-with-generated-tests

3.3 Results and Discussion 25

Participant
solution

codefix
or

testfix?

Golden test
suite execution

succeeded?

Manual
inspection

Correct
solution

Incorrect
solution

OK?

codefix

testfix

Golden
solution

Test fixed
execution

yes

no

Figure 3.6: Protocol for defining correct code and test fixes.

3.3.1 RQ1: Do generated tests influence the effectiveness of developers

on determining the source of a problem?

To answer this question, we observed the participants’ effectiveness at identifying whether

the faults were in the implementation or test code. Table 3.2 summarizes the results of this

investigation. The first three lines refer to results considering all classes, while the remaining

present the results per class. As we can see, the tasks helped by Evosuite tests presented very

high rates considering all (95%), codefix (100%), and testfix tasks (90%). Those values were

greater than the manual (65%, 50%, and 80%) and Randoop ones (50%, 30%, and 70%).

To our surprise, Evosuite tests performed better than the other two strategies in 11 of the

12 analyzed scenarios. This fact may evidence that this type of generated tests could be a

good fit for identifying maintenance tasks, even better than manual tests. Developers found

those tests easy to follow and helpful when identifying bugs. On the other hand, Randoop

tests performed quite poorly. Since Randoop tests focus on contract checking, they tend to

be less readable. Therefore, we believe that participants had a hard time understanding the

tests and consequently ended up wrongly blaming them (effectiveness for codefix was only

30%).

3.3 Results and Discussion 26

To measure statistical significance when comparing treatments, we first ran the Shapiro-

Wilk [56] normality test that did not confirm a normal distribution. Therefore, we used

the non-parametric Fisher’s exact test [20] for comparisons of correctness. Thus, with a

confidence of 95%, we were able to rank the strategies considering the results for all, and

codefix and testfix tasks, individually. Table 3.3 summarizes this analyses. A > B indicates

that strategy A performed better than B, while A = B says they are statistically equivalent.

Then, Evosuite strategy performed better considering all tasks together and only codefixes,

but it was similar to the others when considering testfixes. On the other hand, Manual tasks

performed similarly to Randoop ones in all three analyses.

Thus, we can answer RQ1 by saying that, in general, developers were more accurate at

identifying maintenance tasks when using Evosuite tests, while they were equally accurate

when using manually written and Randoop tests. Those results go against Shamshiri et al.’s

findings [61], in which they state there is no difference to using manual or generated tests.

Our results show that not only there is a difference between those tasks, but also the type of

generation tool used seems to play an important role.

RQ1: Developers were more accurate at identifying maintenance tasks using Evosuite tests

and equally accurate using manually written and Randoop tests.

3.3.2 RQ2: Are generated tests effective to help to find proper fixes?

To answer this question, we followed the protocol defined in the end of Section 3.2.3 and

presented in Figure 3.6). Table 3.4 presents the collected results.

In general, we observed that participants were similarly effective at producing correct

fixes using the three strategies (manual, Evosuite, and Randoop). Our statistical analysis

reinforces these conclusions (Table 3.5). The only exception was codefix for Randoop where

only one participant was able to fix the fault using a failing Randoop test. Again, to our

surprise, manually-written tests did not perform better than generated ones. Thus, we can

answer RQ2 by stating that, in general, generated tests are as effective as manually written

ones to help to find proper fixes, regardless of the tool.

RQ2: Generated tests are as effective as manually written ones to help to find proper fixes.

3.3 Results and Discussion 27

Task type Class Manual Evosuite Randoop

all all 13/20 (65%) 19/20 (95%) 10/20 (50%)

codefix all 5/10 (50%) 10/10 (100%) 3/10 (30%)

testfix all 8/10 (80%) 9/10 (90%) 7/10 (70%)

all FixedOrderComparator 1/5 (20%) 7/7 (100%) 6/8 (75%)

codefix FixedOrderComparator 1/3 (33%) 3/3 (100%) 2/4 (50%)

testfix FixedOrderComparator 0/2 (0%) 4/4 (100%) 4/4 (100%)

all ListPopulation 6/7 (85%) 6/6 (100%) 2/7 (28%)

codefix ListPopulation 2/3 (66%) 4/4 (100%) 1/4 (25%)

testfix ListPopulation 4/4 (100%) 2/2 (100%) 1/3 (33%)

all ComparatorChain 6/8 (75%) 6/7 (85%) 2/5 (40%)

codefix ComparatorChain 2/4 (50%) 3/3 (100%) 0/2 (0%)

testfix ComparatorChain 4/4 (100%) 3/4 (75%) 2/3 (66%)

Table 3.2: Comparison of correct decisions given Manual, Evosuite or Randoop tests.

Task type Hiphothesys p-value Final ranking

all

Manual = Evosuite 0.0218

Evosuite >Manual = RandoopManual = Randoop 0.5231

Evosuite = Randoop 0.0018

codefix

Manual = Evosuite 0.0162

Evosuite >Manual = RandoopManual = Randoop 0.6499

Evosuite = Randoop 0.0015

testfix

Manual = Evosuite 0.5

Evosuite = Manual = RandoopManual = Randoop 0.291

Evosuite = Randoop 1

Table 3.3: Statistical analysis and ranking considering correct decisions for maintenance

tasks.

3.3 Results and Discussion 28

Task type Class Manual Evosuite Randoop

all all 14/20 (70%) 14/20 (70%) 9/20 (45%)

codefix all 6/10 (60%) 8/10 (80%) 1/10 (10%)

testfix all 8/10 (80%) 6/10 (60%) 8/10 (80%)

all FixedOrderComparator 2/5 (40%) 5/7 (71%) 5/8 (62%)

codefix FixedOrderComparator 1/3 (33%) 1/3 (33%) 1/4 (25%)

testfix FixedOrderComparator 1/2 (50%) 4/4 (100%) 4/4 (100%)

all ListPopulation 5/7 (71%) 3/6 (50%) 1/7 (14%)

codefix ListPopulation 3/3 (100%) 2/4 (50%) 0/4 (0%)

testfix ListPopulation 2/4 (50%) 1/2 (50%) 1/3 (33%)

all ComparatorChain 7/8 (87%) 6/7 (85%) 3/5 (60%)

codefix ComparatorChain 4/4 (100%) 3/3 (100%) 0/2 (0%)

testfix ComparatorChain 3/4 (75%) 3/4 (75%) 3/3 (100%)

Table 3.4: Comparison of correct fixes using Manual, Evosuite or Randoop tests.

Task type Hiphothesys p-value Final ranking

all

Manual = Evosuite 1

Evosuite = Manual = RandoopManual = Randoop 0.2000

Evosuite = Randoop 0.2000

codefix

Manual = Evosuite 0.3142

Evosuite = Manual >RandoopManual = Randoop 0.0572

Evosuite = Randoop 0.0027

testfix

Manual = Evosuite 0.9296

Evosuite = Manual = RandoopManual = Randoop 1

Evosuite = Randoop 0.9296

Table 3.5: Statistical analysis and ranking considering correct fixes for maintenance tasks.

3.3 Results and Discussion 29

3.3.3 RQ3: Does it take longer to execute maintenance tasks when us-

ing generated tests instead of manually written ones?

For this analysis, we evaluated the time participants took to decide whether the maintenance

tasks were codefix or testfix. We also measured the time taken by the participants to perform

the fixes.

Figure 3.7 presents the boxplots of the time spent for the participants to decide the tasks.

On average, participants took 21 minutes to identify the faults. To better analyze the data, we

first ran the Shapiro-Wilk test that indicated a not normal distribution. Therefore, we used

the non-parametric Mann-Whitney U test [6] for comparisons of duration values. This test

could not find any significant difference among the strategies when considering all classes

neither for codefix or testfix. However, when observing the classes individually, we could

find differences. For instance, participants took, in general, longer time to identify codefixes

in the FixedOrderComparator class using manual tests. On the other hand, Evosuite’s tests

performed worse for testfixes in the ListPopulation class.

Figure 3.8 presents the distribution of the time that participants took to fix the faults.

On average, participants took 8 minutes to fix the faults. Again, the data does not follow a

normal distribution and we used the Mann-Whitney U test for comparisons. The test also did

not find any significant difference among the strategies in general. Differences were found

when observing the classes individually. For instance, participants took, in general, longer

time to identify codefixes in the ListPopulation class using Evosuite tests, but Randoop tests

were very effective when correcting testfixes in the same class.

Thus, we can answer RQ3 and state that, in general, we cannot say that it takes longer to

execute maintenance tasks when using generated tests, regardless of the used tool. However,

the class under maintenance may impact the results. Again, this goes against Shamshiri et

al.’s findings [61], which say that manually developers are more efficient at maintenance

tasks when using manually written tests. Our study did not find pieces of evidence in this

sense.

RQ3: We cannot say that it takes longer to execute maintenance tasks when using automati-

cally generated tests by tools.

3.3 Results and Discussion 30

Figure 3.7: The time developers spent to identify their maintenance tasks grouped by task

type and class.

Figure 3.8: The time developers spent to fix their maintenance tasks grouped by task type

and class.

3.3 Results and Discussion 31

3.3.4 RQ4: What is the developers’ perception of using generated tests

when performing maintenance tasks?

To answer RQ4, we went to the survey responses. Figures 3.9 summarize the answers for

testfix and codefix tasks. In general, participants found the tasks clear (Question 1) and

had enough time to finish them (Question 2). Participants found easier to identify the fault

type (Question 3) using Evosuite tests for codefixes, but not for testfixes. On the other hand,

Randoop and Manual tests responses were quite similar. These results agree with the analysis

and conclusions of Section 3.3.1.

Question 4 asked the participants’ perceptions about the activity of fixing the bugs. As we

can see, the majority of participants had a similar opinion about manual and Evosuite tasks

for codefixes and testfixes. This goes along with the actual success outcome of the partici-

pants (Table 3.4). However, they found it easier to fix bugs using Randoop tests. Although

easier to fix, according to participants, the results using Randoop tests were statistically sim-

ilar (codefix) and worst (testfix) when compared to the other two strategies.

Participants reported higher confidence in the correctness (Question 5) and quality (Ques-

tion 8) of their test fixing tasks when using manually written tests, which was expected since

generated tests tend to be less readable. However, responses were quite similar for correct-

ness when considering codefix tasks and comparing Randoop and Evosuite.

Regarding understanding the class under test (Question 6), for codefix tasks, participants

found manually written more helpful, followed by Evosuite and Randoop, respectively. For

testfixes, Manual and Evosuite tests were considered better help than Randoop tests. Possible

reasoning for Randoop’s poor evaluation is that its test cases focus on basic contract check-

ing, which might not reflect direct documentation of the intended behavior of the program.

Participants found manually written tests easier to understand when used in both code-

fixes and testfixes, followed by Evosuite’s and Randoop’s tests (Question 7). This suggests

that participants still find generated tests not ideal to read. Moreover, it reinforces the trend

that Randoop tests are hard to inspect due to test smells. For instance, a participant stated

the following: “I had to go back and forth to the code to understand the test’s behavior. The

test did not have a good name nor its variables, which made it hard to follow”. In the same

sense, a different participant stated: “The test was full of magic numbers and names that

3.3 Results and Discussion 32

Figure 3.9: Overview of the survey responses relating to (a) codefix and (b) testfix mainte-

nance tasks.

3.3 Results and Discussion 33

were not related to the class”.

Finally, we found that participants had lower confidence in the quality of their fixes when

using manually written tests to fix a code, but higher confidence when the fault was in the

test. Since manually written tests were found easier to understand, it was not a surprise that

developers were confident about their testfixes. However, they were not so sure about their

code fixes. This might reflect that, although easier to read, a manual test often does not

help to localize and/or understand code faults. In this sense, generated tests might be a good

option. Since they use systematic approaches for test generation, this might guide developers

to better understand the code and find its weak spots. Finally, the trend was again confirmed

when Evosuite tests were better evaluated than Randoop’s.

RQ4: Participants found it easier to identify the fault type using Evosuite tests for code fixes,

easier to fix bugs using Randoop tests, easier to understand the class under test using man-

ually written for code fixes, and Manual and Evosuite for test fixes, had higher confidence

in the correctness and quality of their test fixes tasks when using manually written tests, and

found manually written tests easier to understand to both tasks types.

3.3.5 Analysis by Roles

We reanalyzed the collected data now focusing on the participants’ roles. Regarding RQ1,

we found no difference, between the participant’s role in the effectiveness of developers on

determining the source of the problem. All of them were more effective when using the Evo-

suite tests. On the other hand, the Test analysts were more effective in fixing the bug using

manual tests, while software developers and Software engineers were more effective using

Evosuite tests (RQ2). We also analyzed the results from RQ3 and found that Test analysts,

System analysts and software engineers took less time to identify the fault using Randoop

tests, while Software developers were more efficient using Evosuite tests. Software develop-

ers, Software engineers, and Test analysts took less time to fix the bug using the Evosuite

tests, while the system analysts were more efficient using the Randoop tests. Nevertheless,

due to the small number of developers per role, these results have no statistical relevance.

3.4 Final Considerations 34

3.3.6 Diverging Results

The results of this investigation were, in some aspects, surprising and different from

Shamshiri et al.’s [61]. For instance, we found differences in the developers’ efficiency in

identifying bugs. Moreover, developers were less confident about their actions when guided

by manual tests. Moreover, Evosuite tests were found as a great help in the maintenance

tasks and without imposing more working time. Finally, Randoop tests, although as efficient

as the other strategies, did not perform well on the developers’ perception, which found them

hard to follow.

We see two possible reasons for the diverging results: i) different profiles of participants,

and ii) the impact of extra artifacts. Developers are likely to have faced similar tasks in

their regular jobs, which might be the reason why they found generated tests useful for bug

fixing, though harder to read. Students, on the other hand, are often less experienced, which

might be the reason why they performed better with more readable tests (manually written).

To assess whether the artifacts introduced in our study (class ComparatorChain and

Randoop) influenced the results, we ran a side investigation considering a scenario identical

to the original study, analyzing the data excluding the related artifacts introduced. The results

remain. For instance, we found developers are as effective when performing maintenance

tasks using manual or generated tests, Shamshiri et al.’s found they performed better with

manual tests. Moreover, they could not find differences in the effectiveness for identifying

the type of the bug, we found that developers often perform better when using Evosuite

tests. Therefore, we believe the diverging results are mostly due to the different profiles of

participants, a more realistic scenario.

3.4 Final Considerations

In this chapter, we presented our first empirical study that compared how real develop-

ers perform maintenance tasks with automatically generated (Randoop and Evosuite) and

manually-written test cases. Our results found shows that developers were more accurate at

identifying maintenance tasks when using Evosuite tests, while they were equally accurate

when using manually written and Randoop tests. Moreover, they were similarly effective at

producing correct bugfixes using the three strategies (manually written, Evosuite, and Ran-

3.4 Final Considerations 35

doop). Regarding their perspectives, developers were more confident that produced correct

outputs when using Evosuite tests, but they found manual tests a better proxy for the classes

under test’s behavior. Those results indicate that automatically generated tests, specially

Evosuite’s, can be a great help for identifying faults during maintenance. Those results dif-

fer from previous findings [61]. Since all strategies were similar at helping to produce correct

bug fixes, and with similar efficiency, we can say developers may incorporate generated test

suites into their projects at any stage. Moreover, they still find generated tests hard to read,

specially Randoop’s. The Evosuite test case structure was more appreciated but still needs

some improvements.

These results evidence the need for quality improvements in automatically generated test

suites, especially Randoop ones. We believe that by solving test smells with well-known

refactoring strategies one may improve the quality of them in practice. In the next chapters,

we validate this hypothesis with

Chapter 4

A Survey to Evaluate Developers

Perspectives on Refactored Tests

In this chapter, we present a survey with developers to access their perception of the use of

refactored Randoop tests. In section 4.1, we discuss the motivation to apply this survey. The

research questions, study objects, and methodology are described in section 4.2. In section

4.3, we present and discuss the found results and implications. Finally, in section 4.4, we

present the final considerations of this chapter.

4.1 Motivation

The study presented in Chapter 3 showed that developers did not evaluate well Randoop

tests, mainly due to code quality issues related to test smells. To better understand this issue,

we conducted a survey of 82 software practitioners in order to compare their preferences on

different versions of Randoop test cases.

4.2 Design and Research Questions

Knowing that refactoring edits can improve code quality, the goal of this survey is to have

a deeper understanding of developers’ perspectives regarding test names and code, with and

without refactoring. To guide this investigation, we define the following research questions

(RQ):

36

4.2 Design and Research Questions 37

• RQ5: What is the developers’ perception concerning the names of Randoop test cases?

• RQ6: Do developers prefer the original Randoop tests or the refactored ones?

4.2.1 Methodology

The survey was presented as a three-section Google Form1 with three sections:

1. Context and Participant Background. In this section, we introduced the goal and

procedure of the survey and asked questions about the participant’s background and

her previous experiences with software development and unit testing.

2. Evaluating Test Naming. In this section, the participant needed to answer three ques-

tions: i) given a test case, indicate the level of agreement with a suggested name.

The suggested name was generated using an automatic refactoring strategy (details in

Chapter 2); ii) given a test case, select the most appropriate/descriptive name from

three options (original Randoop test name; automatic renaming; or a name chosen by

an experienced developer); and iii) given a list of candidate names, select the one that

fits better for a test that exercises a given code snippet. The candidate list includes the

original Randoop test name, an automatically generated one, and a test name chosen

by a developer. Figure 4.1 exemplifies questions from this section.

3. Evaluating Split Tests. In this section, given four versions of a given Randoop test

case (A - original Randoop test; B - split Randoop test; C - renamed Randoop test;

and D - split and renamed Randoop test). Versions B-D apply automatic refactorings

for reducing the Assertion Roulette and Eager Test smell (details in section 4.2.2).

We asked the participant to answer two questions: i) what is the best option?; and ii)

which option would you consider including in your test suite? Figure 4.2 exemplifies

questions from this section.

It is important to highlight that, to complement the objective questions, the survey in-

cluded open questions where participants justified their choices. Moreover, to avoid possible

bias related to the used artifacts, we randomly associated participants with classes and test

cases. Therefore, we have balanced responses.
1https://forms.gle/ESYSZLA5DMQ1PAmx8

https://forms.gle/ESYSZLA5DMQ1PAmx8

4.2 Design and Research Questions 38

(a) CUT presentation.

(b) Example of first question.

(c) Example of second question.

(d) Example of third question.

Figure 4.1: Examples of questions from the second section

4.2.2 Study Objects

In the survey, we presented examples of classes, tests, and test names. For that, we reused the

classes (ListPopulation, FixedOrderComparator, ComparatorChain)

and Randoop tests from our first experiment (Chapter 3). Moreover, we generated new

versions of the tests by refactoring them in order to fix the found test smells (Assertion

Roulette, Eager Test, and/or Anonymous Test). The refactorings were applied using the

following automatic strategies:

Test Renaming. This is an adaptation of the Rename Method refactoring designed to fix the

Anonymous Test smell. Randoop tests receive standard test names (e.g, test23). Ermira et al.

[18] propose an approach for generating names specifically for automatically generated tests.

It uses coverage goals (method coverage, exception coverage, output coverage, and input

coverage) for generating informative names. Coverage goals are a set of distinct objectives,

such that a set of tests is considered adequate if, for each objective, there is at least one

4.2 Design and Research Questions 39

Figure 4.2: Examples of questions from the third section.

test that exercises it. While coverage goals may not describe a real test intent, they serve

as reasonable approximations as they can describe what a test does. The approach was

designed for EvoSuite test cases . Although EvoSuite version 1.0.6, which was used in our

first study, include this naming strategy, we did not use it because we are reusing the tests

from Shamshiri et. al.’s work [61]. As far as we know, we are the first to adapt and apply

this approach for Randoop tests.

As EvoSuite captures coverage during its test-generating process, we extracted its test-

generating approach and adapted it to make it work with Randoop tests. Figure 4.3 presents

an example of a Randoop test before and after its automatic renaming. To generate the names

for each test, the coverage goals for each test are ranked according to the following hierarchy:

goals covered in the suite uniquely by this test, exception coverage, method coverage, output

coverage, and input coverage. Then, the N best-ranked goals are selected, and the number of

selected goals can be configured and is responsible for controlling the size of the generated

names, in all our work we use the default value, which is two. Next, the goals selected

are converted into text to be concatenated and composed of the test name. Finally, the test

names pass by basic processing with a technique based on abstract text summary algorithms,

4.2 Design and Research Questions 40

1 @Test

2 - public void test23() throws Throwable {

3 + public void testSetElitismRateThrowsOutOfRangeExceptionAndToString() throws Throwable

{

4 math.genetics.ElitisticListPopulation elitisticListPopulation2 = new math.

genetics.ElitisticListPopulation(100, 0.0d);

5 java.lang.String str3 = elitisticListPopulation2.toString();

6 try {

7 elitisticListPopulation2.setElitismRate((double) (byte) -1);

8 org.junit.Assert.fail("Expected exception of type math.exception.

OutOfRangeException; message: elitism rate (-1)");

9 } catch (math.exception.OutOfRangeException e) {

10 }

11 org.junit.Assert.assertTrue("’" + str3 + "’ = ’" + "[]" + "’",

str3.equals("[]"));

Figure 4.3: Renamed Randoop tests for ListPopulation class.

to simplify common patterns to more natural versions.

Splitting Tests. Randoop tests are often long and include a series of asserts (see Figures

4.4). To avoid Assertion Roulette and Eager Test smells, a test can be divided based on their

asserts. For that, we implement a script that reuses Eclipse Refactoring API2. It receives

a given test case t with n assertions and performs a series of Extract Method refactorings,

generating n new test cases. Each Extract Method is triggered by a test assertion. For that,

we analyze the test case Abstract Syntax Tree (AST) and extract to n new methods each

assertion statement along with its dependencies. By using the Eclipse Refactoring Engine

we guarantee that the new set of test cases are free of compilation errors and preserves the

original behavior. For instance, Figure 4.4 presents the original Randoop test case and its

respective split suite.

To automatically apply these refactorings, we create a tool. This tool is an Eclipse plug-in

that receives as input a Randoop test suite and automatically finds refactoring opportunities

and applies them to improve tests’ quality. This tool is available on our website 3

2https://www.eclipse.org/jdt/
3https://github.com/WesleyBrenno/generated-tests-in-the-context-of-maintenance-tasks-a-series-of-

empirical-studies/tree/main/plugin

https://www.eclipse.org/jdt/
https://github.com/WesleyBrenno/generated-tests-in-the-context-of-maintenance-tasks-a-series-of-empirical-studies/tree/main/plugin
https://github.com/WesleyBrenno/generated-tests-in-the-context-of-maintenance-tasks-a-series-of-empirical-studies/tree/main/plugin

4.2 Design and Research Questions 41

1 @Test

2 public void test() throws Throwable {

3 collections.comparators.FixedOrderComparator fixedOrderComparator0 = new

collections.comparators.FixedOrderComparator();

4 boolean boolean1 = fixedOrderComparator0.isLocked();

5 fixedOrderComparator0.setUnknownObjectBehavior((int) (byte) 1);

6 fixedOrderComparator0.compare((java.lang.Object) "hi!", (java.lang.Object) "");

7 try {

8 fixedOrderComparator0.setUnknownObjectBehavior((int) (short) -1);

9 org.junit.Assert.fail(

10 "Expected exception of type java.lang.UnsupportedOperationException;

11 message: Cannot modify a FixedOrderComparator after a comparison");

12 } catch (java.lang.UnsupportedOperationException e) {

13 }

14

org.junit.Assert.assertTrue("’" + boolean1 + "’ != ’" + false + "’", boolean1 == false);

15 }

(a) Original Randoop test example for FixedOrderComparator class.

1 @Test()

2 public void test_1() {

3 collections.comparators.FixedOrderComparator fixedOrderComparator0 = new collections.

comparators.FixedOrderComparator();

4 boolean boolean1 = fixedOrderComparator0.isLocked();

5

org.junit.Assert.assertTrue("’" + boolean1 + "’ != ’" + false + "’", boolean1 == false);

6 }

7

8 @Test()

9 public void test_2() {

10 collections.comparators.FixedOrderComparator fixedOrderComparator0 = new collections.

comparators.FixedOrderComparator();

11 boolean boolean1 = fixedOrderComparator0.isLocked();

12 fixedOrderComparator0.setUnknownObjectBehavior((int) (byte) 1);

13 fixedOrderComparator0.compare((java.lang.Object) "hi!", (java.lang.Object) "");

14 try {

15 fixedOrderComparator0.setUnknownObjectBehavior((int) (short) -1);

16 org.junit.Assert.fail(

17

"Expected exception of type java.lang.UnsupportedOperationException; message: Cannot modify a

FixedOrderComparator after a comparison");

18 } catch (java.lang.UnsupportedOperationException e) {

19 }

20 }

(b) Split Randoop tests from (a).

Figure 4.4: Original and split Randoop tests for FixedOrderComparator class.

4.3 Results and Discussion 42

4.3 Results and Discussion

In this section, we present the data analysis and results of the survey.

4.3.1 Participants Demographics

For this study, we recruited volunteers by convenience (contacting developers from part-

ner companies and universities), social networking platforms (e.g., LinkedIn), and snowball

sampling [71], i.e., participants were asked to resend the survey invitation to others. The

developers have previous experience in Java/JUnit.

We received a total of 82 responses: six graduate students; three master students; two pro-

fessors; and 71 active developers from various software companies: 51 software engineers,

seven software QA analysts, four software analysts, four team leaders, three data scientists,

and two requirements analyst. Though this survey was sent to different mailing lists, all

participants are from Brazil.

The first section of the survey helped us to understand the participants’ backgrounds

(Figure 4.5). Most participants have at least three years of experience with Java and create

unit tests regularly. Only 20% used test generating tools, mostly Randoop. Next, we answer

and discuss RQ5 and RQ6.

4.3.2 RQ5: What is the developers’ perception concerning the names

of Randoop test cases?

To answer this question, we analyzed the responses of the second section.. In the first ques-

tion, participants were asked to set their agreement level to the suggested automatically gen-

erated name. Figure 4.6 summarized the answers. Most participants (51%) did not find

the suggested name suitable for the presented Randoop tests, while 35% agreed with the

suggested name. However, by using bootstrap [32], with 95% of confidence, we found no

statistical difference to conclude that participants disagree or agree with the proposed names.

Some participants found the suggested names helpful. Here, we list some quotes col-

lected from the open-ended questions: “The name clearly represents the idea of the test”;

“The test name already lets me know what will be tested”; and “The suggested name pro-

4.3 Results and Discussion 43

Figure 4.5: Participants’ background information.

vides a great improvement when compared to other options”.

Although previous works have found significant improvements when renaming Evosuite

tests with Ermira et al’s technique [18], our results show that although promising, the renam-

ing strategy needs improvement when dealing with Randoop tests. Some participants found

the suggested names not descriptive enough for the nature of the test code: “The test does a

lot of internal things which make the name too long. The test should be split into different

test cases, so the test names would be more descriptive”. This quote highlights issues related

to Eager test smell and the need for smaller and more focused Randoop test cases. Moreover,

some participants disagreed with part of the suggested name: “One should avoid reserved

names such as List, String, Null as much as possible”.

The second question of this section asked participants to choose the most suitable name

for a given Randoop test among three options: a name suggested by an invited developer, an

automatic generated name (using the Test Renaming refactoring strategy), and the original

Randoop name (test). As expected, no participant chose the “test” option (Figure 4.7. In

general, the participants preferred the names chosen by the invited developers (54%) over

the automatically generated names (46%), except for the ComparatorChain class (47%

4.3 Results and Discussion 44

47%

55%

53%

51%

37%

33%

37%

35%

16%

12%

10%

14%

ListPopulation

FixedOrderComparator

ComparatorChain

All classes

100 50 0 50 100

Percentage

Response Fully disagree Partially disagree Neither Partially agree Fully agree

Figure 4.6: Overview of answers about the agreement with automatically generated test

names.

and 53%). By using bootstrap, with 95% of confidence, we can not conclude that develop-

ers prefer manually written or automatically generated test names. However, participants’

comments provide us some reasoning and directions for improving the automatically gen-

erated names. A developer that preferred the generated option stated the chosen name was

“very descriptive and reflected the purpose of the test”. Even when the name was long, one

reported: “the name, despite being long, makes it clear what is being tested and expected

results”. As for the ones who chose the developer’s naming, they found the names simpler

and easier to understand: “By reading the names of the test I can easily understand it”, “The

name reflects the test result and what caused it”.

In the last question of the second section, we asked participants to select from three

options (a name suggested by an invited developer, an automatically generated one, and

the original Randoop test name) the best name for a test that would exercise a given code

snippet.. Figure 4.8 summarizes the answers. In general, most participants associated the

given piece of code under test with the manually written names (61%), followed by the

automatic generate names (39%), except for the ComparatorChain class (47% and 53%).

No participant chose the “test” option. Again, our statistical analysis found no difference

between the manually chosen and the automatically generated names.

We can then answer RQ5 stating that although there is a numerical advantage for man-

4.3 Results and Discussion 45

46%

53%

45%

43%

54%

47%

55%

57%

0%

0%

0%

0%

0%

0%

0%

0%

All classes

FixedOrderComparator

ListPopulation

ComparatorChain

100 50 0 50 100

Percentage

Response manually test automatically

Figure 4.7: Overview of answers about more appropriate test names.

ually chosen test names in our survey, we cannot say that developers prefer them over au-

tomatically generated ones. This may indicate that an automatic strategy can be a valuable

option for renaming Randoop tests. However, the used renaming strategy is limited and

requires further improvements for Randoop tests.

RQ5: We cannot say that developers prefer manually chosen test names over automatically

generated ones, which indicates that an automatic strategy can be a valuable option for

renaming Randoop tests.

39%

53%

27%

43%

61%

47%

73%

57%

0%

0%

0%

0%

0%

0%

0%

0%

All classes

FixedOrderComparator

ListPopulation

ComparatorChain

100 50 0 50 100

Percentage

Response manually test automatically

Figure 4.8: Answers about the test that should exercise a CUT.

4.3 Results and Discussion 46

4.3.3 RQ6: Do developers prefer the original Randoop tests or the

refactored ones?

To answer this RQ, we analyzed the responses of the third section. In this section, given a

CUT and four test code snippets for it (A - original Randoop test; B - split Randoop test; C

- renamed Randoop test; and D - split and renamed Randoop test), we asked participants: i)

what is the most readable code snippet?; and ii) which of these codes snippets would you

prefer to add to your test suite for the CUT?

Figures 4.9 and 4.10 summarize the collected answers to each question, respectively. Our

results showed that most participants find split-renamed tests the best option (84%). Only

2% preferred the option with split tests, 9% the renamed option, 5% found all options similar,

and 0% the original Randoop test. Moreover, most participants also prefer to reuse the split-

renamed tests (78%). In both cases, with a 95% confidence, there is a significant difference

in the developers’ preference for Code D (split-renamed tests) to all other options.

The participants’ comments on those questions may help us better understand their per-

spectives. Participants point out that the transformation applied in Code D improves read-

ability and helps fault localization: “By breaking a test into different methods and renaming

them according to their purposes, it makes it easier to read the code. Although the code is

more extensive, the simplified parts make help understanding the whole thing”, “Although

there is code duplicity, when a test fails, one can better understand the reasoning for the

fail, because the names are descriptive and the code modularized”. When choosing option

C (Randoop test automatically renamed), participants clearly favor less code duplication:

“more readable code and without redundancies”. On the other hand, some participants

pointed out the refactored versions still need improvement regarding readability: “Internal

variables need to be more descriptive”, and “don’t use full class names instead of simple

names (e.g., don’t use collections.comparators.Fixed OrderComparator instead only Fixe-

dOrderComparator)”. Finally, one participant commented: “Although the names help to

identify the purpose of the test, the body of the test is not easy to read. Maintaining these

tests might be too costly, therefore, I would avoid their reuse”.

We can now answer RQ6 by stating that developers prefer the refactored version (split-

renamed) that fixes most test smells. However, those versions still require improvements to

4.3 Results and Discussion 47

Figure 4.9: Answers about the most readable test code.

be fully accepted. The most cited limitation refers to readability and reuse issues, such as the

need for variables renaming and avoiding code duplicities.

RQ6: Developers prefer refactored (split-renamed) Randoop tests over the other alternatives

(original, only renamed, and only split tests).

4.3.4 Analysis by Roles

When we analyzed the results by role, we found no significant differences regarding the

code readability questions. Refactored codes are considered more readable and eligible to

compose a test suite in all scenarios. On the other hand, there was a difference between

the participant’s answers of each role regarding their preference about manually chosen test

names and automatically generated ones for the Randoop tests. Software engineers, tech-

nical leaders, undergraduate and systems analysts did not find the suggested name suitable

for the presented Randoop tests. While master students and quality analysts agreed with

the suggested names. Software engineers may be more careful with test names because they

work directly with activities influenced by names, such as software evolution and mainte-

nance tasks. Data scientists, professors and requirement analysts did not present an opinion

about this topic. Notice that these results may be influenced by the sample sizes instead of

the participant roles. Again, due to the small number of developers from each role, these

results have no statistical relevance.

4.4 Final Considerations 48

Figure 4.10: Answers about the most appropriate test to include into a test suite.

In practice, often software engineers and quality analysts actually deal with unit tests.

Thus, ran a side investigation by filtering our results considering only these two roles. How-

ever, we found no significant difference regarding to the code readability questions, as well

as for test names questions. The graphs for this analysis can be found in Appendix B.

4.4 Final Considerations

This Chapter presented a survey with 82 developers that assessed developers’ perception of

the use of refactored Randoop tests. The results shows that: (1) Although we cannot say that

developers preferred automatically generated test names over manually written ones, the au-

tomatic renaming of Randoop tests was well-received; (2) Developers preferred refactored

Randoop tests over original ones. However, in order to fully accepted them, they indicated

the need for extra refactorings, such as variables renaming, and extract method. These re-

sults motivated us to access the practical impact of the refactorings on the performance of

maintenance activities. For this, we performed a third empirical study, where we replicated

the first one (Chapter 3), now focusing on different versions of Randoop tests (original and

refactored). This study is presented in the next chapter.

Chapter 5

An Study on the Use of Refactored

Generated Tests to Guide Maintenance

Tasks

In this chapter, we rerun our first study (Chapter 3.3.1), now focusing on different versions of

Randoop tests. In the section 5.1, we present the motivation to this replication. The research

questions, study objects, study procedure, and follow-up interviews, are described in section

5.2. In the section 5.3, we present and discuss the found results and their implications.

Finally, in the section 5.4, we present the final considerations of this chapter.

5.1 Motivation

The survey results (Section 4.3) indicate that Ermira et al.’s [18] renaming strategy can be a

plausible solution for replacing stub names, but it is not enough to improve the test quality.

On the other hand, developers’ perception was that split-renamed tests were the best option

and greatly improve test code readability. However, we still have to access how those trans-

formations impact performance in maintenance activities. For this, we ran a new empirical

study.

In the study reported in Chapter 3, we investigated the performance and perception of

developers when performing maintenance activities when guided by manual and generated

test suites (Evosuite or Randoop). Here, we replicate this study focusing on different versions

49

5.2 Design and Research Questions 50

of Randoop tests. The goal of the new study is to investigate the effectiveness of refactored

Randoop tests when used for maintenance.

5.2 Design and Research Questions

In this study, developers needed to perform maintenance tasks guided by three types of failing

Randoop tests: an original Randoop test, a renamed version, and a split-renamed version.

The last two were created by applying the refactoring strategies presented in Section 4.2.2

for reducing test smells. Our goal is to understand whether the refactored tests can impact

the use of Randoop tests in maintenance activities when they need to identify a fault and fix

it.

To guide this investigation we adapted the research questions from our first study:

• RQ7: Do refactored Randoop tests improve developers’ effectiveness in determin-

ing the source of an issue? Here, we want to understand whether refactored generated

tests, can better help developers to determine the source of a problem;

• RQ8: Do refactored Randoop tests improve developers’ effectiveness in perform-

ing proper fixes? We aim to investigate whether developers produce correct fixes

when using refactored Randoop tests;

• RQ9: Do refactored Randoop tests improve the developers’ performance to exe-

cute maintenance tasks? Here, we investigate if refactored Randoop tests may speed

up the process of identifying and performing maintenance tasks;

• RQ10: What is the developers’ perception about using refactored Randoop tests

in maintenance tasks? Here, we collect developers’ opinions on the use of refactored

generated tests.

5.2.1 Participants Selection and Demographics

For this study, we applied the same selection criteria as the first one (Section 3.2.1). We

recruited 24 volunteer active Brazilian developers (20 males and four females) from 10 dif-

ferent companies (12 from company 1, three from company 2, two from Company 3, and

5.2 Design and Research Questions 51

one for companies 4-10). It is a different set of participants, i.e., none of them participated

in our first study. They came from different companies (small and medium-size) and per-

form the following roles: software engineering (17), team leader (3), data scientist (2), and

test analyst (2). Similar to the first group, these developers work on projects from different

natures (e.g., Mobile and Web Applications, Embedded Systems)

Prior to the study, they answered a background questionnaire (Figure 5.1). Half of the

participants have had experience with Java programming for at least three years. Although

most find unit testing important for software development, they do not write or run unit tests

very frequently. Finally, one participant has used test generation tools before.

Figure 5.1: Study participants’ background information.

5.2.2 Study Objects

To run our study, we reused the implementations and faults from our first study

(ListPopulation, FixedOrderComparator and ComparatorChain classes,

and Randoop tests), replacing the manual and Evosuite tests by renamed Randoop tests,

and split-renamed Randoop tests. To generate refactored Randoop tests we ran the strate-

gies presented in Section 4.2.2. While the original Randoop test and its renamed version

refer to a single test, the split-renamed refers to a suite with n tests, where n is the num-

5.2 Design and Research Questions 52

ber of asserts from the original Randoop test. Thus, in our study, we rely on the incorrect

and faulty implementations of the ListPopulation, FixedOrderComparator and

ComparatorChain classes, as well as the correct and faulty Randoop, renamed, and split-

renamed tests, for each class.

5.2.3 Study Procedure

This study procedure replicates the one followed in Section 3.2.3 with a single difference:

the maintenance tasks. By replacing the manually and Evosuite generated tests with split

and split-renamed Randoop suites, our study worked with the following maintenance tasks:

• < codefix, randoop >: Faulty implementation and a correct Randoop failing test;

• < codefix, split >: Faulty implementation and a correct split Randoop failing test;

• < codefix, split− renamed >: Faulty implementation and a split and renamed Ran-

doop failing test;

• < testfix, randoop >: Correct implementation and a faulty Randoop failing test;

• < testfix, split >: Correct implementation and a faulty split Randoop failing test;

• < testfix, split−renamed >: Correct implementation and a faulty split and renamed

Randoop failing test.

The participants of our study are real developers with limited time. Therefore, to reduce

the time required, we opted to not include a treatment related to only renamed tests. It is

important to highlight that, this study was run between 2020-2021. Due to imposed COVID

restrictions, we adapted our study procedure to work in a totally remote environment. For

that, we used tools such as TeamViewer1 and AnyDesk2 to provide a controlled environment

so the participants could perform the required tasks and Microsoft Teams3 e Google Meet4

for remote calls. This configuration allowed the participants to work more flexible hours (the

1https://www.teamviewer.com/
2https://anydesk.com/
3https://www.microsoft.com/microsoft-teams/
4https://meet.google.com/

https://www.teamviewer.com/
https://anydesk.com/
https://www.microsoft.com/microsoft-teams/
https://meet.google.com/

5.3 Results and Discussion 53

first authors still live-watched all sessions), which enabled us to recruit a relatively larger

number of developers this time (24).

All artifacts used in our study, including implementations, faults, tests, and question-

naires, are available on our website 5.

5.2.4 Follow-up Interviews

To complement our analysis, after running the study, we selected a subset of participants

and interviewed them with the goal of having a better understanding of the found results.

We divided the participants into three groups, according to the type of tests they performed

better in the study. For each group, we invited three participants, however, only five were

available for the interview (three software engineer, one data scientist and one test analyst).

During the interviews, the following questions were asked:

• What difficulties did you experience when deciding the maintenance task to be per-

formed?

• Do you consider the provided test case name good and representative? Did it help you

identify/fix the fault?

• Related to tasks with split tests: Did you consider the non-failing tests when identify-

ing/fixing the fault?

• Which of the three treatments (Randoop, renamed, split-renamed tests) would you

consider the best option to assist the maintenance activities and why?

All interviews were conducted remotely using either Google Meet6 or Microsoft Teams7.

5.3 Results and Discussion

In this section, we discuss the data analysis and results for each of our research questions,

and the responses collected during the follow-up interviews.
5https://github.com/WesleyBrenno/generated-tests-in-the-context-of-maintenance-tasks-a-series-of-

empirical-studies/tree/main/study-with-refactored-generated-tests
6https://meet.google.com
7https://www.microsoft.com/microsoft-teams/

https://github.com/WesleyBrenno/generated-tests-in-the-context-of-maintenance-tasks-a-series-of-empirical-studies/tree/main/study-with-refactored-generated-tests
https://github.com/WesleyBrenno/generated-tests-in-the-context-of-maintenance-tasks-a-series-of-empirical-studies/tree/main/study-with-refactored-generated-tests
https://meet.google.com
https://www.microsoft.com/microsoft-teams/

5.3 Results and Discussion 54

5.3.1 RQ7: Do refactored Randoop tests improve developers’ effective-

ness in determining the source of an issue?

To answer this question, we compared the participants’ effectiveness at identifying whether

the faults were in the implementation or test code. Table 5.1 summarizes the results of

this investigation. The first three lines refer to results considering all classes, while the

remaining present the results per class. As we can see, the tasks helped by original Randoop

tests presented the better rates considering all (62%), codefix (41%), and testfix tasks (83%)

compared with split Randoop tests (37%, 16%, and 58%) and split-renamed Randoop ones

(54%, 41%, and 66%).

To our surprise, original Randoop tests performed better than refactored ones. This fact

may be evidence that the refactoring, or the treated test smells, did not bring enough improve-

ments or guidance to identify maintenance tasks correctly. However, when we compared the

refactored strategies, we found that the split-renamed strategy performed better compared

to the split one, which shows that automatically generated names can help developers better

understand the tests.

To measure statistical significance when comparing treatments, we ran the Shapiro-Wilk

[56] normality test, and the non-parametric Fisher’s exact test [20] for comparisons of cor-

rectness. With a confidence of 95%, we were able statically compare strategies considering

the results for all, code fix, and testfix tasks, individually (this analysis is similar to the one

described in Section 3.3.1 and is summarized in table 5.2). With all p-values greater than

0.05, we cannot reject the null hypothesis that treatments have similar performance for all,

code fix, and testfix tasks.

Thus, we can answer RQ7 by saying that the performed refactorings did not improve

(but also not worsen) the developers’ performance in determining the source of the problem.

Furthermore, our results suggest that replacing bad test names has more impact on the test

understanding than splitting it by assertions.

RQ7: The refactoring performed in the original Randoop tests, did not improve nor worsen

the developers’ performance in determining the source of a problem.

5.3 Results and Discussion 55

Task type Class Randoop Split Split-renamed

all all 15/24 (62%) 9/24 (37%) 13/24 (54%)

codefix all 5/12 (41%) 2/12 (16%) 5/12 (41%)

testfix all 10/12 (83%) 7/12 (58%) 8/12 (66%)

all FixedOrderComparator 5/8 (62%) 3/8 (37%) 5/8 (62%)

codefix FixedOrderComparator 1/4 (25%) 0/4 (0%) 2/4 (50%)

testfix FixedOrderComparator 4/4 (100%) 3/4 (75%) 3/4 (75%)

all ListPopulation 7/8 (87%) 4/8 (50%) 4/8 (58%)

codefix ListPopulation 4/4 (100%) 2/4 (50%) 1/4 (25%)

testfix ListPopulation 3/4 (75%) 2/4 (50%) 3/4 (75%)

all ComparatorChain 3/8 (37%) 2/8 (25%) 4/8 (50%)

codefix ComparatorChain 0/4 (0%) 0/4 (0%) 2/4 (50%)

testfix ComparatorChain 3/4 (75%) 2/4 (50%) 2/4 (50%)

Table 5.1: Comparison of correct decisions given Randoop, Randoop split or Randoop split-

renamed tests.

Task type Hiphothesys p-value Final ranking

all

Randoop = Splitted 0.1482

Randoop = Splitted = Split-renamedRandoop = Split-renamed 0.7702

Splitted = Split-renamed 0.3852

codefix

Randoop = Splitted 0.3707

Randoop = Splitted = Split-renamedRandoop = Split-renamed 1

Splitted = Split-renamed 0.3707

testfix

Randoop = Splitted 0.3707

Randoop = Splitted = Split-renamedRandoop = Split-renamed 0.6404

Splitted = Split-renamed 1

Table 5.2: Statistical analysis and ranking considering correct decisions for maintenance

tasks.

5.3 Results and Discussion 56

5.3.2 RQ8: Do refactored Randoop tests improve developers’ effective-

ness in performing proper fixes?

To answer this question, we observed if participants were effective at producing correct fixes.

Similar to our first study, a codefix solution is classified as correct if it does not break any

additional tests from the original test suite and satisfies a manual inspection. For test-fixing

tasks, we created reference solutions based on the original test purpose. Then, the first author

ran the tests and inspected the code to classify the fix. Table 5.3 presents the collected results.

As we can see, in the tasks with split-renamed tests, developers had the better rates in all

(50%) and codefix (50%). When compared with original and split tests they had the same

rates (41% for all and 25% for codefix). However, for testfix tasks, the original Randoop and

split tests had slightly better rates (58%) than split-renamed (50%). Overall, these results

evidence that, while split tests have not brought any improvement to the developers’ perfor-

mance in producing correct fixes, split-renamed tests have shown to be better for guiding

developers to the solutions. However, our statistical analysis, performed similarly to RQ7

and summarized in Table 5.4, does not allow us to conclude that the observed difference is

significant.

Therefore, we can answer RQ8 by saying that, compared to original Randoop tests, de-

velopers’ effectiveness in producing correct fixes was not improved when using split tests.

However, when guided by split-renamed tests, developers were more effective than the other

two strategies. However, this improvement is not statistically significant.

RQ8: Developers were more effective in performing proper fixes when guided by split-

renamed tests, however, this improvement was not statistically significant.

5.3.3 RQ9: Do refactored Randoop tests improve the developers’ per-

formance to execute maintenance tasks?

For this analysis, we evaluated the time participants took to decide whether the maintenance

tasks were codefix or testfix. We also measured the time spent performing the fixes.

Figure 5.2 presents the boxplots of the time spent for the participants to identify the tasks.

On average, participants took 18 minutes to identify the faults. Considering the treatments,

the average times were: 14 minutes for original Randoop, 17 minutes for split tests, and 22

5.3 Results and Discussion 57

Task type Class Randoop Split Split-renamed

all all 10/24 (41%) 10/24 (41%) 12/24 (50%)

codefix all 3/12 (25%) 3/12 (25%) 6/12 (50%)

testfix all 7/12 (58%) 7/12 (58%) 6/12 (50%)

all FixedOrderComparator 6/8 (75%) 6/8 (75%) 7/8 (87%)

codefix FixedOrderComparator 2/4 (50%) 2/4 (50%) 3/4 (75%)

testfix FixedOrderComparator 4/4 (100%) 4/4 (100%) 4/4 (100%)

all ListPopulation 2/8 (25%) 1/8 (12%) 1/8 (12%)

codefix ListPopulation 0/4 (0%) 0/4 (0%) 0/4 (0%)

testfix ListPopulation 2/4 (50%) 1/4 (25%) 1/4 (25%)

all ComparatorChain 2/8 (25%) 3/8 (37%) 4/8 (50%)

codefix ComparatorChain 1/4 (25%) 1/4 (25%) 3/4 (75%)

testfix ComparatorChain 1/4 (25%) 2/4 (50%) 1/4 (25%)

Table 5.3: Comparison of correct fixes using Randoop (original), Split or Split-renamed

Randoop tests.

Task type Hiphothesys p-value Final ranking

all

Randoop = Splitted 0.3376

Randoop = Splitted = Split-renamedRandoop = Split-renamed 0.0869

Splitted = Split-renamed 0.2438

codefix

Randoop = Splitted 1

Randoop = Splitted = Split-renamedRandoop = Split-renamed 0.4003

Splitted = Split-renamed 0.4003

testfix

Randoop = Splitted 0.0781

Randoop = Splitted = Split-renamedRandoop = Split-renamed 0.2365

Splitted = Split-renamed 0.6643

Table 5.4: Statistical analysis and ranking considering correct fixes for maintenance tasks.

5.3 Results and Discussion 58

minutes for split-renamed tests.

Although developers took less time to identify the faults when guided by original Ran-

doop tests, our statistical tests, following the same procedures as our first experiment and

summarized in Table 5.5, did not find any significant difference among the strategies, even

though the performance of developers driven by original Randoop tests is lower only on

codefix tasks of the FixedOrderComparator class.

Figure 5.3 presents the distribution of the time that participants took to fix the faults. On

average, participants took 12 minutes to fix the faults (17 minutes - original Randoop, 12

minutes - split tests, and seven minutes - split-renamed). Developers performed better in all

scenarios when guided by split-renamed tests, except for the ListPopulation class.

Regarding the statistical tests, summarized in Table 5.6, it was not possible to notice a

difference between the performances guided by split tests in relation to the other two strate-

gies. However, the developers performed better with split-renamed tests than when guided

by original Randoop tests.

Thus, we can answer RQ9 by saying that, while it is not possible to observe significant

improvements in fault identification time using the refactored Randoop tests, fault fixing was

less time-consuming with split-renamed tests.

RQ9: When guided by split-renamed tests, developers took less time in fault fixing, but the

same was not observed in fault identification.

5.3.4 RQ10: What is the developers’ perception about using refactored

Randoop tests in maintenance tasks?

To answer RQ10, we looked at participants’ responses to the questionnaire at the end of

the study. Figure 5.4 summarizes the answers for testfix and codefix tasks. In general, par-

ticipants found the tasks clear (Question 1) and they had enough time to finish the tasks

(Question 2). Participants found it easier to identify the fault type (Question 3) using split-

renamed tests for both maintenance tasks. However, they found it easier to identify the

fault type when guided by original Randoop than split tests. These results go against those

presented in table 5.1, which shows that developers were more at identifying faults when

guided by Randoop tests. However, our statistical analyses did not show that the strategies

5.3 Results and Discussion 59

Task type Hiphothesys p-value Final ranking

all

Randoop = Splitted 0.3376

Randoop = Splitted = Split-renamedRandoop = Split-renamed 0.0869

Splitted = Split-renamed 0.2438

codefix

Randoop = Splitted 0.8428 Randoop = Splitted

Randoop = Split-renamed 0.3262 Randoop = Split-renamed

Splitted = Split-renamed 0.0068 Splitted > Split-renamed

testfix

Randoop = Splitted 0.0781

Randoop = Splitted = Split-renamedRandoop = Split-renamed 0.2365

Splitted = Split-renamed 0.2438

Table 5.5: Statistical analysis and ranking considering identification time for maintenance

tasks.

Task type Hiphothesys p-value Final ranking

all

Randoop = Splitted 0.5040 Randoop = Splitted

Randoop = Split-renamed 0.0490 Split-renamed > Randoop

Splitted = Split-renamed 0.0630 Splitted = Split-renamed

codefix

Randoop = Splitted 0.5040

Randoop = Splitted = Split-renamedRandoop = Split-renamed 0.0490

Splitted = Split-renamed 0.0630

testfix

Randoop = Splitted 0.1885 Randoop = Splitted

Randoop = Split-renamed 0.0250 Split-renamed > Randoop

Splitted = Split-renamed 0.3400 Splitted = Split-renamed

Table 5.6: Statistical analysis and ranking considering correction time for maintenance tasks.

5.3 Results and Discussion 60

Figure 5.2: The time developers spent to identify their maintenance tasks grouped by task

type and class.

have similar performance at this point.

Question 4 asked the participants’ perceptions about the activity of fixing the bugs. For

code fixes, the participants found it easier to perform a bug fix using refactored tests, espe-

cially the split-renamed ones. These results agree with those presented in Table 5.3, which

shows that the developers were more effective in code fixes when guided by split-renamed

tests. This goes according to our expectations since a less smelly test tends do be easier to

follow. However, statistical tests have shown that these differences have no relevant signifi-

cance.

Participants reported higher confidence about the correctness (Question 5) of their code

fixes when using refactored tests, but the same was not observed for test fixes, in which

participants were more confident with original Randoop tests in those scenarios. Again,

these results are in accordance with those classified in Table 5.1.

Developers found that was is easier to understand the class under test (Question 6) and

the tests (Question 7) when they were guided by original Randoop tests. For test fixes,

they found it easier when guided by the refactored tests. In question 8, for code fix tasks,

participants pointed out that the refactored tests were more useful in understanding CUT,

5.3 Results and Discussion 61

Figure 5.3: The time developers spent to fix their maintenance tasks grouped by task type

and class.

especially the split-renamed tests. As for the test fixes tasks, they believe that they produced

a better solution for the faults present in the Randoop tests.

In summary, we can answer RQ10 by saying that refactored tests contribute better to the

understanding of CUT, facilitate the identification of maintenance activities (for both tasks),

and facilitate code fixes, but developers feel more confident in their testfixes when it is done

in the original Randoop tests.

RQ10: Refactored tests contribute more to the understanding of CUT, and facilitate the

identification of maintenance activities and code fixes, but the developers feel more confident

in their test fixes when it is done using original Randoop tests.

5.3.5 Analysis by Roles

All participant roles were more effective in determining the source of a problem using the

original Randoop tests, except software engineers, which were more effective using the

refactored (renamed and split) tests (RQ7). These results may be influenced by the sam-

ple sizes. There were 17 software engineers, while for the other roles there were less than

four participants. Regarding RQ8, data scientists and software engineers were more effective

5.3 Results and Discussion 62

Figure 5.4: Overview of the questionnaire responses relating to (a) codefix and (b) testfix

maintenance tasks.

in fixing the bug using the refactored (renamed and split) tests. On the other hand, technical

leaders and test analysts were more effective using the original Randoop tests. Finally, tech-

5.3 Results and Discussion 63

nical leaders and software engineers took less time to identify the fault using the refactored

(renamed and split) tests, while test analysts and data scientists were faster using the original

Randoop tests (RQ9). Again, these results may be influenced by the sample sizes instead of

the participant roles. Moreover, due to the small number of developers from each role, these

results have no statistical relevance.

Similar to the survey presented in the previous chapter, we also analyzed the results

only for software engineers and quality analysts. However, we also found no significant

difference. The tables and graphs of this analysis can be found in Appendix B.

5.3.6 Follow-up Interviews

Here we discuss the results of our guided interviews:

• What difficulties did you experience when deciding the maintenance task to be per-

formed?

Most interviewees pointed out poor test code readability as their main difficulty. Non-

descriptive variable names, long test statements, and confusing assert messages were

mentioned as reasons for performing the maintenance task incorrectly. These test

smells were not addressed by the refactored tests. Therefore, we can say that even

those versions require further improvements considering other test smells;

• Do you consider the provided test case name good and representative? Did it help you

identify/fix the fault?

All interviewees pointed out the generated names (renamed refactoring) as suitable for

the test cases. Some respondents stated that those tests “guided them in solving the

problem and understanding the tests”. However, one participant stated that some of

the test names were too long which ended up working as a confusing factor;

• Related to tasks with split tests: Did you consider the non-failing tests when identify-

ing/fixing the fault?

Most interviewees stated that they focused only on the failed test. One participant

reported that he scanned the other tests but only for understanding the structure of

5.4 Final Considerations 64

the assertions. This shows that the refactoring strategy Split tests makes it easier for

developers to focus on a smaller code snippet where the fault is evidenced;

• Which of the three treatments (Randoop, renamed, split-renamed tests) would you

consider the best option to assist the maintenance activities and why?

Although some disadvantages were listed (e.g., duplicate and unused code, number of

test cases, test suite execution time), all interviewees preferred the split-renamed option over

the original Randoop tests. The main advantages listed were the opportunity to focus on

a single objective (one assert per test), and test names that facilitated the understanding of

what the test is doing. On the other hand, most mentioned the fact that by dividing a test

per asserts some code duplication was added. When splitting a test, we use static analysis to

find variable dependencies related to the asserts. To avoid compilation errors or behavioral

change, any found statement related to this asserts’ dependencies remained in the split tests.

This may lead to some duplicate and unwanted code in the test.

5.4 Final Considerations

In this chapter, we presented our third empirical study on how developers deal with mainte-

nance tasks now using different versions of Randoop tests (original and refactored ones). The

results of this investigation were quite interesting. Although developers agree that splitting

and renaming a Randoop test improves its quality (Sections 4.3 and 5.3.6), we could not find

significant practical improvements when they faced a maintenance task with refactored tests.

However, the use of refactored Randoop tests did not worsen the results. Moreover, the refac-

torings brought gains to the time spent in fixing bugs, both in the CUT and test suites, which

shows that they can contribute to reducing the costs of maintenance tasks. Furthermore, the

best results were obtained when removing the two test smells together (split-renamed tests),

which demonstrates that the more test smells are removed, the better those tests tend to be

adopted in practice. These results may guide further studies focused on improving tests au-

tomatically generated by Randoop and similar tools. In the next chapter, we present some

threats related to our studies.

Chapter 6

Threats to validity

This work is based on a series of empirical studies. In this chapter, we discuss the main

threats to our conclusions.

In terms of construct validity, both studies (Chapter 3 and 5) reuse most of the artifacts

(classes and faults) from other empirical study [61]. We decided to reuse those artifacts to be

able to compare results. The added extra class and fault added were also inspired by previous

unit testing empirical study [58]. Although limited, those artifacts were selected from open-

source projects and reflect real-world faults. Moreover, a more complex configuration (more

classes and test suites with more than a single test) would be impractical. Even with such

limited artifacts, participants took an average of 30 minutes to find and fix the faults per

session (total of 1.5h per participant). It is important to remember that participants are real

developers, which often have limited time to participate in such studies.

We also believe that the used artifacts in each maintenance task (single class and failing

test case) emulate real scenarios. When identifying and fixing faults (source code or test

code), developers often focus on a single class and/or small edits [33]. That said, our results

do not generalize beyond our dataset of subject programs, faults, and tests. For instance, a

different set of tests cases may lead to different results. However, by selecting a test that fails

after fault injection, we guarantee it relates to the fault and, therefore, it can help detect and

fix the fault. Thus, we believe the selected artifacts are good representatives maintenance

tasks.

We did not assess the quality of the code nor selected test cases, as its not our goal. We

used developers’ output artifacts, their video recordings, and multiple-choice questions to

65

66

investigate aspects such as effectiveness and perception. Other strategies could be used in

this sense, however, our goal was to see the practical aspects of a maintenance task using

failing test cases. In addition, we counterbalanced the order and task assignment to mitigate

learning effects.

We adapted two refactoring strategies (Rename and Extract Method) for improving Ran-

doop tests (Test Renaming and Split Tests). To apply them, we proposed a script that reuses

and adapts Ermira et al.’s renaming strategy [18] and the Eclipse Refactoring Engine. The

Eclipse Refactoring Engine was used by other works [5] and is known to have a robust test

suite that validates its transformations. Moreover, to validate our implementation, a series of

tests were conducted and manually validated by the authors. Although, a larger scale study

is needed to ensure the use of these techniques in practice.

As for conclusion validity, our studies deal with a limited number of participants. Again,

since we chose to work with real developers we were subjected to the availability of devel-

opers from partner companies. However, we selected participants from different projects,

with different roles and levels of experience. We believe that by working with real-world de-

velopers we apply a more practical investigation. Works on empirical software engineering

(e.g., [12; 35]) reinforce the need for real-world participants in empirical studies. Moreover,

our study ended up providing interesting conclusions that even went against a similar study

that used students as participants [61].

To mitigate internal validity, before the participants started their maintenance tasks, we

ran a short tutorial on the procedure of the tasks. Moreover, they were familiar with the

general aspects of a Java/JUnit application and identifying and fixing bugs. The participants

were not familiar with the tests and CUTs before the study sessions. However, this scenario

resembles a very common one in real projects, where developers need to maintain others

or even legacy code. Furthermore, we cannot generalize our findings to contexts where

developers maintain familiar code. Furthermore, during the sections, the first author was

available for questions regarding the study procedure and provided environment.

Regarding external validity, our studies delt with Brazilians developers, we evaluated

two test generation tools (Evosuite and Randoop), both used for unit tests in Java language,

two refactoring techniques and three test smells. Due to these limitations, the found results

may not be generalized.

Chapter 7

Related work

In this chapter, we relate our work to other important research. First, we discuss the method-

ology used to find those papers (Section 7.1). Next, we present a series of works that com-

pared the usage of manual and generated test cases (Section 7.2), test smells on generated

tests (Section 7.3), and test Code Improvement (Section 7.4). Finally, in Section 7.5, final

considerations are discussed.

7.1 Methodology

We found the related work by performing ad-hoc queries (varying the search keys) to a

series of online repositories: IEEE Xplore Digital Library, ACM Digital Library, and Google

Scholar. For that, we considered keywords such as "test smells", "refactoring", "software

testing", "automated test generation", "automatically generated unit tests", "test naming",

"software maintenance", and "test maintenance". The keywords were verified both in the

title and/or in the text of the paper’s content of the work.

The articles that included the keywords were selected for reading, while the others were

discarded. In addition, we followed the track of references to find new studies, a technique

known as snowball sampling [71].

By following this process, we selected 42 studies. After filtering, reading the abstract,

and doing a superficial reading in some cases, we ended up with 28 papers. They are pre-

sented below.

67

7.2 Comparing Manual and Generated Test Cases 68

7.2 Comparing Manual and Generated Test Cases

Regarding comparing manual and generated test cases, there are works that are worth men-

tioning. Fraser et al. [25] and Rojas et al. [58] compare the behavior of participants when

writing tests to the use of test generators. By not finding measurable improvements in the

number of bugs actually found by developers, they confirmed the necessity of increasing

the usability of automated unit test generation tools to better integrate them during software

development, and to educate software developers on how to best use those tools. Alves et

al. [64; 63] investigate whether generated tests (Randoop and Evosuite) can be used to find

specific refactoring faults. Panichella et al. [53] run an empirical study with developers to in-

vestigate test understandability when comparing regular generated tests and generated tests

with textual test summaries (comments in the test class, explaining each test case and the

CUT). They concluded that developers find twice as many bugs using tests with summaries.

Daka et al. [16] investigate the effect of test readability on the time developers take to pre-

dict generated test outputs. They conclude that readability has a significant impact on the

time developers need to reach a decision. These results corroborate our findings since par-

ticipants of our study complained that some generated tests require improvements regarding

code readability.

Our empirical study was greatly inspired by Shamshiri et al.’s work [61]. The authors

run a study with students to investigate how they perform maintenance tasks using Evosuite

and manually-written tests. In our study, we focused on real developers and we deal with a

more comprehensive set of strategies: study 01 - manual, Evosuite tool, and Randoop tool;

study 02 - original and refactored versions of Randoop tests. As discussed before, in several

points, our conclusions differ from Shamshiri et al.’s. Therefore, we believe both works are

complementary, they apply an investigation using different contexts and treatments. More-

over, we expanded the investigation by running a survey with developers and a new study on

effectiveness of generated tests, now focusing in different versions of Randoop tests cases

that reduced test smells.

7.3 Test Smells on Generated Tests 69

7.3 Test Smells on Generated Tests

There are several works about test smells in unit tests. Most of them focus on analysis of

occurrence, prevalence and impacts of test smells on software project (e.g., [9; 8; 27; 66;

52]). Moreover, many studies propose tools to detect/refactoring test smells (e.g., [70; 60;

54]). However, few studies address test smells in automatically generated tests.

In their study, Palomba et. al [51] investigate the diffusion of test smells in automat-

ically generated unit tests. Their findings indicated a high diffusion of test smells and a

strong positive correlation with characteristics of structural elements. Moreover, they in-

vestigated whether CUT characteristics influence test smells generation [29]. They found

that test smells generated by random algorithms (e.g., Randoop) are not influenced by CUT

characteristics.

Virgilio et al. [69] compared tests generated by Randoop and Evosuite with the existing

tests suite of open-source projects, regarding the presence of 19 types of test smells. The

results indicate that the existing tests had a smaller distribution of test smells compared to

the generated by tools, Randoop tests had a larger test smells distribution when compared to

Evosuite tests.

In our work, we focused on assessing developers’ perception of the use of refactored

Randoop tests, using well-known refactoring to solve three kinds of test smells (Chapter 4)

and how they impact on the performance of tasks maintenance (Chapter 5).

7.4 Test Code Improvements

About strategies that use refactoring-like transformations in test cases, we can discuss a series

of works. J. Xuan and M. Monperrus [72] propose an approach that divides test cases with

the goal of improving fault localization. Stefano et. al. [36] present DARTS, an IntelliJ plug-

in that detects and refactors tests based on multiple asserts. They extract asserts to a private

method that is called by original test. Zhang et al. [73] propose an approach to generate

names for unit tests based on common test structures. Given a test, it identifies the action

(e.g., the method being tested), the testing scenario (e.g., the parameters and context of the

action), and the expected result (e.g., an assertion). The paper does not focus on generated

7.4 Test Code Improvements 70

tests, however, we believe this strategy might not work well in this context. Testing scenario

identification often depends on variables with descriptive names and the expected result is

assumed to be a single assertion. Moreover, generated tests often cover several methods in a

single test case, which may confuse the renaming strategy.

Allamanis et al. [4] apply a log-bilinear neural network model that suggests method

names based on source code features. Again, this is a technique that might be hard to apply

in generated tests, since those tests tend to use short sequences of calls and less descriptive

names.

Ermira Daka et al. [18] present an approach for generating Evosuite test names. It uses

coverage goals to create the names. As as far as we know, this is the first approach that deals

with generated tests. Therefore, we adapted it to use with Randoop tests (Section 4.2.2).

Moreover, we ran a survey (Chapter 4) and an empirical study (Chapter 5) to evaluate it in

this novel scenario.

Our results show that, although important, applying extract and rename refactorings

might not be enough to improve its quality. Other works have proposed strategies for refac-

toring test cases focused on other quality aspects, such as improving identifies names, code

simplification, and quality metrics. For instance, Thies and Roth [67] propose an approach

based on static analysis to support the identifiers renaming. Allamanis et al. [3] proposed

NATURALIZE, an approach based on an n-gram language model that suggests new names

for identifiers. The n-gram model predicts the probability of the next token, considering the

previous n-1 tokens. NATURALIZE learns coding conventions from the code base, pro-

moting consistency in the use of identifiers. Lin et al. [38] evolve NATURALIZE with an

approach that combines code analysis and n-gram language models.

Another way to improve the quality of unit tests is to simplify them. Search-based ap-

proaches can be used to make tests more understandable by generating more realistic sce-

narios [26], closer to natural language [2], or with better quality metrics (e.g., coupling and

cohesion) [50]. Those strategies are yet to be evaluated when dealing with generated tests.

7.5 Final Considerations 71

7.5 Final Considerations

In this chapter, we presented the related work. We discussed papers that focusing on the

comparison between usage of manually-generated and generated tests, tests smells in gen-

erated tests, and test code improvements. In general, we can say that few works focus on

how these issues impact software maintenance tasks. Regarding test code improvement re-

searches, most of them were dedicated to manually-generated tests, and present limitations

to be applied in generated tests. In the next chapter, we present our final conclusions and

future work.

Chapter 8

Conclusions and Future Works

Developers often use failing test cases to guide maintenance tasks. However, good and

trustworthy test cases are not always available. Generated suites have become an option

to cope with this problem. The goal is to reduce the burden of creating sound test cases.

However, we need to assess how developers perform and perceive the use of generated tests

during maintenance. In this context, we ran three empirical studies with a total of 126 real

developers, in various roles.

The first study compared how 20 developers perform maintenance tasks with two types

of automatically generated (Randoop and Evosuite) and manually-written test cases. We

found that developers were more accurate at identifying maintenance tasks when using Evo-

suite tests, while they were equally accurate when using manually written and Randoop tests.

Moreover, they were similarly effective at producing correct bug fixes using the three strate-

gies (manually written, Evosuite, and Randoop). Regarding their perspectives, developers

were more confident that produced correct outputs when using Evosuite tests, but they found

manual tests a better proxy for understading the classes under test’s behavior.

Test smells may be the main factors that impair test code comprehension, readability, and

maintenance. Randoop tests often include a number of test smells, such as non-descriptive

names, assertion roulette, duplicate assert, eager test, lazy test, and magic number. This

observation motivated us to perform the second study, a survey with 82 developers, that

evaluated developers’ perception about refactored Randoop tests. We found that automatic

renaming is well-received. Moreover, they preferred refactored Randoop tests over original

ones. They also reported needing more refactorings (e.g., better variable names) to fully

72

73

accept Randoop tests.

Finally, our third study replicated the first one focusing on evaluating whether refactored

Randoop tests have an impact on the performance of maintenance tests when compared to

original ones. We found that refactorings did not improve the performance when identifying

maintenance tasks. However, developers were more effective, and a little bit more efficient

to fix the faults with refactored Randoop tests. This task was also less time-consuming.

Based on those results we can conclude that automatically generated tests, specially Evo-

suite’s, can be a great help for identifying/fixing faults during maintenance, which differs

from previous findings [61]. Randoop tests, although effective for fault identification, re-

quire improvements to be better accepted in practice. Refactoring transformations might be

a good way to improve them. The suggested refactorings (split-rename) were better appre-

ciated by developers, but have shown little improvements in developers’ time spent in fixing

bugs. We believe that other refactoring types could also be used in this context, such as

variables renaming and combined method extractions.

In future work, we plan to extend our studies with a larger group of participants and

consider other configurations (e.g., working with an entire test suite instead of a single failing

test). We also intend to improve the generation tools (Evosuite and Randoop) in order to

solve some of the issues that cause test smells. Moreover, we plan to investigate the use

of different refactoring transformations (e.g., variable/field Renaming) and their impact on

developers’ performance of maintenance tasks with generated tests.

Bibliography

[1] Ieee standard for software maintenance. IEEE Std 1219-1998, pages 1–56, 1998.

[2] S. Afshan, P. McMinn, and M. Stevenson. Evolving readable string test inputs using a

natural language model to reduce human oracle cost. In 2013 IEEE Sixth International

Conference on Software Testing, Verification and Validation, pages 352–361, 2013.

[3] M. Allamanis, E. Barr, C. Bird, and C. Sutton. Learning natural coding conventions.

In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations

of Software Engineering, FSE 2014, pages 281–293, 2014.

[4] M. Allamanis, E. Barr, C. Bird, and C. Sutton. Suggesting accurate method and class

names. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software

Engineering, ESEC/FSE 2015, pages 38–49, 2015.

[5] E. Alves, P. Machado, T. Massoni, and S. Santos. A refactoring-based approach for test

case selection and prioritization. In 2013 8th International Workshop on Automation of

Software Test (AST), pages 93–99, 2013.

[6] A. Arcuri and L. Briand. A hitchhiker’s guide to statistical tests for assessing random-

ized algorithms in software engineering. Software Testing, Verification and Reliability,

24:219–250, 2014.

[7] S. Bauersfeld, T. Vos, and K. Lakhotia. Unit testing tool competitions - lessons learned.

In Future Internet Testing, pages 75–94, 2014.

[8] G. Bavota, A. Qusef, R. Oliveto, A. De Lucia, and D. Binkley. An empirical analysis of

the distribution of unit test smells and their impact on software maintenance. In 2012

74

BIBLIOGRAPHY 75

28th IEEE International Conference on Software Maintenance (ICSM), pages 56–65,

2012.

[9] Gabriele Bavota, Abdallah Qusef, Rocco Oliveto, Andrea Lucia, and Dave Binkley.

Are test smells really harmful? an empirical study. Empirical Software Engineering,

20, 08 2014.

[10] K. Beck. Test Driven Development. By Example (Addison-Wesley Signature). 2002.

[11] K. Bennett and V. Rajlich. Software maintenance and evolution: a roadmap. In Pro-

ceedings of the Conference on the Future of Software Engineering, pages 73–87, 2000.

[12] J. Carver, L. Jaccheri, S. Morasca, and F. Shull. Issues in using students in empirical

studies in software engineering education. In Proceedings. 5th International Work-

shop on Enterprise Networking and Computing in Healthcare Industry (IEEE Cat.

No.03EX717), pages 239–249, 2003.

[13] IEEE Standards Coordinating Committee et al. Ieee standard glossary of software

engineering terminology (ieee std 610.12-1990). los alamitos. CA: IEEE Computer

Society, 169, 1990.

[14] C. Csallner and Y. Smaragdakis. Jcrasher: An automatic robustness tester for java.

Software: Practice and Experience, 34:1025–1050, 2004.

[15] W. Cunningham. Bugs in the test. http://wiki.c2.com/?BugsInTheTests.

[16] E. Daka, J. Campos, G. Fraser, J. Dorn, and W. Weimer. Modeling readability to

improve unit tests. In Proceedings of the 2015 10th Joint Meeting on Foundations of

Software Engineering, ESEC/FSE 2015, pages 107–118, 2015.

[17] E. Daka and G. Fraser. A survey on unit testing practices and problems. In 2014 IEEE

25th International Symposium on Software Reliability Engineering, pages 201–211,

2014.

[18] E. Daka, J. Rojas, and G. Fraser. Generating unit tests with descriptive names or: Would

you name your children thing1 and thing2? In Proceedings of the 26th ACM SIGSOFT

BIBLIOGRAPHY 76

International Symposium on Software Testing and Analysis, ISSTA 2017, pages 57–67,

2017.

[19] A. Deursen, L. Moonen, A. Bergh, and G. Kok. Refactoring test code. In Proceedings

of the 2nd International Conference on Extreme Programming and Flexible Processes

in Software Engineering (XP2001, pages 92–95, 2001.

[20] R. Fisher. On the interpretation of χ2 from contingency tables, and the calculation of

p, 1922.

[21] M. Fowler. Refactoring: Improving the Design of Existing Code. 1999.

[22] G. Fraser and A. Arcuri. A large-scale evaluation of automated unit test generation

using evosuite. ACM Transactions on Software Engineering and Methodology, pages

1–42.

[23] G. Fraser and A. Arcuri. Evosuite: Automatic test suite generation for object-oriented

software. In Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European

Conference on Foundations of Software Engineering, ESEC/FSE ’11, pages 416–419,

2011.

[24] G. Fraser and A. Arcuri. Evosuite: On the challenges of test case generation in the real

world. In 2013 IEEE Sixth International Conference on Software Testing, Verification

and Validation, pages 362–369, 2013.

[25] G. Fraser, M. Staats, P. McMinn, A. Arcuri, and F. Padberg. Does automated unit test

generation really help software testers? a controlled empirical study. ACM Transactions

on Software Engineering and Methodology, 24, 2015.

[26] G. Fraser and A. Zeller. Exploiting common object usage in test case generation. In

2011 Fourth IEEE International Conference on Software Testing, Verification and Val-

idation, pages 80–89, 2011.

[27] V. Garousi and B. Küçük. Smells in software test code: A survey of knowledge in

industry and academia. Journal of Systems and Software, 138:52–81, 2018.

BIBLIOGRAPHY 77

[28] R. Glass. Software Engineering: Facts and Fallacies. Addison-Wesley Longman Pub-

lishing Co., Inc., 2002.

[29] G Grano, F. Palomba, D. Di Nucci, A. De Lucia, and H. Gall. Scented since the begin-

ning: On the diffuseness of test smells in automatically generated test code. Journal of

Systems and Software, 156:312–327, 2019.

[30] M. Harrold and M. Souffa. An incremental approach to unit testing during maintenance.

In Proceedings. Conference on Software Maintenance, 1988., pages 362–367, 1988.

[31] W. Herculano, M. Mongiovi, and E. Alves. Manually written or generated tests? a

study with developers and maintenance tasks. In Proceedings of the 34th Brazilian

Symposium on Software Engineering, SBES ’20, pages 273–282, 2020.

[32] T. Hesterberg. Bootstrap. Wiley Interdisciplinary Reviews: Computational Statistics,

3:497–526, 2011.

[33] René Just, Darioush Jalali, and Michael D Ernst. Defects4j: A database of existing

faults to enable controlled testing studies for java programs. In Proceedings of the 2014

International Symposium on Software Testing and Analysis, pages 437–440, 2014.

[34] F. Kifetew, X. Devroey, and U. Rueda. Java unit testing tool competition - seventh

round. In 2019 IEEE/ACM 12th International Workshop on Search-Based Software

Testing (SBST), pages 15–20, 2019.

[35] B. Kitchenham, S. Pfleeger, L. Pickard, P. Jones, D. Hoaglin, K. Emam, and J. Rosen-

berg. Preliminary guidelines for empirical research in software engineering. Software

Engineering, IEEE Transactions on, 28:721–734, 2002.

[36] S. Lambiase, A. Cupito, F. Pecorelli, A. De Lucia, and F. Palomba. Just-in-time test

smell detection and refactoring: The darts project. In Proceedings of the 28th Interna-

tional Conference on Program Comprehension, ICPC ’20, pages 441–445, 2020.

[37] Bennett P. Lientz and E. Burton Swanson. Software Maintenance Management.

Addison-Wesley Longman Publishing Co., Inc., USA, 1980.

BIBLIOGRAPHY 78

[38] B. Lin, S. Scalabrino, A. Mocci, R. Oliveto, G. Bavota, and M. Lanza. Investigating the

use of code analysis and nlp to promote a consistent usage of identifiers. In 2017 IEEE

17th International Working Conference on Source Code Analysis and Manipulation

(SCAM), pages 81–90, 2017.

[39] P. McMinn. Search-based software test data generation: a survey. Software Testing,

Verification and Reliability, 14:105–156, 2004.

[40] G. Meszaros. XUnit Test Patterns: Refactoring Test Code. 2006.

[41] M. Mongiovi. Scaling testing of refactoring engines. In Proceedings of the 38th Inter-

national Conference on Software Engineering Companion, ICSE ’16, pages 674–676,

2016.

[42] M. Mongiovi, R. Gheyi, G. Soares, M. Ribeiro, P. Borba, and L. Teixeira. Detecting

overly strong preconditions in refactoring engines. IEEE Transactions on Software

Engineering, 44:429–452, 2018.

[43] R. Moser, P. Abrahamsson, W. Pedrycz, A. Sillitti, and G. Succi. A case study on the

impact of refactoring on quality and productivity in an agile team. In IFIP Central and

East European Conference on Software Engineering Techniques, pages 252–266, 2007.

[44] G. Myers, C. Sandler, and T. Badgett. The art of software testing. Wiley Publishing,

3rd edition, 2012.

[45] A. Onoma, W. Tsai, M. Poonawala, and H. Suganuma. Regression testing in an indus-

trial environment. Communications of the ACM, 41:81–86, 1998.

[46] Int. Standards Organisation. Iso12207 information technology - software life cycle

processes. 1995.

[47] C. Pacheco and M. Ernst. Randoop: Feedback-directed random testing for java. In

Companion to the 22nd ACM SIGPLAN Conference on Object-Oriented Programming

Systems and Applications Companion, OOPSLA ’07, pages 815–816, 2007.

BIBLIOGRAPHY 79

[48] C. Pacheco, S. Lahiri, and T. Ball. Finding errors in .net with feedback-directed random

testing. In Proceedings of the 2008 International Symposium on Software Testing and

Analysis, ISSTA ’08, pages 87–96, 2008.

[49] C. Pacheco, S. Lahiri, M. Ernst, and T. Ball. Feedback-directed random test generation.

In 29th International Conference on Software Engineering (ICSE’07), pages 75–84,

2007.

[50] F. Palomba, A Panichella, A. Zaidman, R. Oliveto, and A. De Lucia. Automatic test

case generation: What if test code quality matters? In Proceedings of the 25th Inter-

national Symposium on Software Testing and Analysis, ISSTA 2016, pages 130–141,

2016.

[51] F. Palomba and A. Zaidman. Notice of retraction: Does refactoring of test smells induce

fixing flaky tests? In 2017 IEEE International Conference on Software Maintenance

and Evolution (ICSME), pages 1–12, 2017.

[52] F. Palomba and A. Zaidman. The smell of fear: on the relation between test smells and

flaky tests. Empirical Software Engineering, 24:2907–2946, 2019.

[53] S. Panichella, A. Panichella, M. Beller, A. Zaidman, and H. Gall. The impact of test

case summaries on bug fixing performance: An empirical investigation. In Proceedings

of the 38th International Conference on Software Engineering, ICSE ’16, pages 547–

558, 2016.

[54] Anthony Peruma, Khalid Almalki, Christian Newman, Mohamed Wiem Mkaouer, Ali

Ouni, and Fabio Palomba. tsdetect: an open source test smells detection tool. pages

1650–1654, 11 2020.

[55] Rudolf Ramler, Dietmar Winkler, and Martina Schmidt. Random test case generation

and manual unit testing: Substitute or complement in retrofitting tests for legacy code?

pages 286–293, 2012.

[56] N. Razali and B. Yap. Power comparisons of shapiro-wilk, kolmogorov-smirnov, lil-

liefors and anderson-darling tests. Journal of Statistical Modeling Analytics, 2:21–33,

2011.

BIBLIOGRAPHY 80

[57] S. Reichhart, T. Gîrba, and S. Ducasse. Rule-based assessment of test quality. Journal

of Object Technology, 6:231–251, 2007.

[58] J. Rojas, G. Fraser, and A. Arcuri. Automated unit test generation during software

development: A controlled experiment and think-aloud observations. In Proceedings

of the 2015 International Symposium on Software Testing and Analysis, ISSTA 2015,

pages 338–349, 2015.

[59] U. Rueda, F. Kifetew, and A. Panichella. Java unit testing tool competition - sixth

round. In 2018 IEEE/ACM 11th International Workshop on Search-Based Software

Testing (SBST), pages 22–29, 2018.

[60] Railana Santana, Luana Martins, Larissa Soares, Tássio Virgínio, Adriana Cruz, Heitor

Costa, and Ivan Machado. Raide: a tool for assertion roulette and duplicate assert

identification and refactoring. pages 374–379, 10 2020.

[61] S. Shamshiri, J. Rojas, J. Galeotti, N. Walkinshaw, and G. Fraser. How do automatically

generated unit tests influence software maintenance? In 2018 IEEE 11th International

Conference on Software Testing, Verification and Validation (ICST), pages 250–261,

2018.

[62] Sina Shamshiri, Rene Just, José Miguel Rojas, Gordon Fraser, Phil Mcminn, and An-

drea Arcuri. Do automatically generated unit tests find real faults? an empirical study

of effectiveness and challenges. 2015.

[63] I. Silva, E. Alves, and W. Andrade. Analyzing automatic test generation tools for

refactoring validation. In 2017 IEEE/ACM 12th International Workshop on Automation

of Software Testing (AST), pages 38–44, 2017.

[64] I. Silva, E. Alves, and P. Machado. Can automated test case generation cope with ex-

tract method validation? In Proceedings of the XXXII Brazilian Symposium on Software

Engineering, SBES ’18, pages 152–161, 2018.

[65] G. Soares. Making program refactoring safer. In 2010 ACM/IEEE 32nd International

Conference on Software Engineering, volume 2, pages 521–522, 2010.

BIBLIOGRAPHY 81

[66] Davide Spadini, Fabio Palomba, Andy Zaidman, Magiel Bruntink, and Alberto Bac-

chelli. On the relation of test smells to software code quality. In 2018 IEEE Inter-

national Conference on Software Maintenance and Evolution (ICSME), pages 1–12,

2018.

[67] Andreas Thies and Christian Roth. Recommending rename refactorings. In Proceed-

ings of the 2nd International Workshop on Recommendation Systems for Software En-

gineering, RSSE ’10, pages 1–5, 2010.

[68] M. Umar. Comprehensive study of software testing: Categories, levels, techniques, and

types. International Journal of Advance Research, Ideas and Innovations in Technol-

ogy, 5:32–40, 2019.

[69] T. Virgínio, L. Martins, L. Soares, R. Santana, H. Costa, and I. Machado. An empirical

study of automatically-generated tests from the perspective of test smells. In Pro-

ceedings of the 34th Brazilian Symposium on Software Engineering, SBES ’20, pages

92–96, 2020.

[70] Tássio Virgínio, Luana Martins, Larissa Soares, Railana Santana, Adriana Cruz, Heitor

Costa, and Ivan Machado. Jnose: Java test smell detector. pages 564–569, 10 2020.

[71] Claes Wohlin. Guidelines for snowballing in systematic literature studies and a repli-

cation in software engineering. In Proceedings of the 18th International Conference on

Evaluation and Assessment in Software Engineering, EASE ’14, 2014.

[72] J. Xuan and M. Monperrus. Test case purification for improving fault localization. In

Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of

Software Engineering, FSE 2014, pages 52–63, 2014.

[73] B. Zhang, E. Hill, and J. Clause. Towards automatically generating descriptive names

for unit tests. In 2016 31st IEEE/ACM International Conference on Automated Software

Engineering (ASE), pages 625–636.

Appendix A

Experiment procedure

In this appendix, we present a more detailed overview of the procedure in the studies depicted

in Chapters 3 and 5. They both follow the same procedure, but the first was run in person

while the second was run remotely, due to the Covid-19 pandemic.

‘

Background
questionnaire

Study and tasks
explanation

Maintenance tasks executions

class A test

task
identification

Codefix
Fixed class
shipping

Task
survey

Task 1

class B test

task
identification

testfix Fixed test
shipping

Task
survey

Task 2

class C test

task
identification

Codefix
Fixed class
shipping

Task
survey

Task 3

Max duration per task: 1 hour

Check
solution

Figure A.1: Detailed procedure overview of the studies from chapters 3 and 5, considering a

single participant

82

Appendix B

Extra analysis

In this appendix, we present tables and graphs from the survey results and the study with

refactored Randoop tests (Chapters 4 and 5, respectively). Here, we filter the results by con-

sidering only participants that usually deal with unit tests in practice (e.g., software engineers

or quality analysts).

Figure B.1: Overview of survey answers about the agreement with automatically generated

test names, considering only software engineers and quality analysts participants.

83

84

Figure B.2: Overview of survey answers about more appropriate test names, considering

only software engineers and quality analysts participants.

Figure B.3: Survey answers about the test that should exercise a CUT, considering only

software engineers and quality analysts participants.

85

Figure B.4: Survey answers about the most readable test code, considering only software

engineers and quality analysts participants

Figure B.5: Survey answers about the most appropriate test to include in a test suite, consid-

ering only software engineers and quality analysts participants

86

Task type Class Randoop Split Split-renamed

all all 10/19 (42%) 10/19 (47%) 10/19 (54%)

codefix all 4/11 (36%) 4/9 (44%) 2/8 (25%)

testfix all 6/8 (75%) 6/10 (60%) 7/11 (63%)

Table B.1: Comparison of correct decisions given Randoop, Randoop split or Randoop split-

renamed tests, considering only software engineers and quality analysts participants.

Task type Class Randoop Split Split-renamed

all all 8/19 (42%) 9/19 (47%) 10/19 (52%)

codefix all 3/11 (27%) 5/9 (55%) 3/8 (37%)

testfix all 5/8 (62%) 5/10 (50%) 6/11 (54%)

Table B.2: Comparison of correct fixes using Randoop (original), Split or Split-renamed

Randoop tests, considering only software engineers and quality analysts participants.

All codefix testfix

A
ll

C
hain

C
om

parator
List

 randoop splitted/
renamed

splitted randoop splitted/
renamed

splitted randoop splitted/
renamed

splitted

00:00:00

00:15:00

00:30:00

00:45:00

01:00:00

00:15:00

00:30:00

00:45:00

01:00:00

00:00:00

00:15:00

00:30:00

00:45:00

01:00:00

00:15:00

00:30:00

00:45:00

01:00:00

Treatment

D
ur

at
io

n

Figure B.6: The time developers spent to identify their maintenance tasks grouped by task

type and class, considering only software engineers and quality analysts participants.

87

All codefix testfix

A
ll

C
hain

C
om

parator
List

 randoop splitted/
renamed

splitted randoop splitted/
renamed

splitted randoop splitted/
renamed

splitted

00:00:00

00:15:00

00:30:00

00:45:00

01:00:00

00:15:00

00:30:00

00:45:00

01:00:00

00:00:00

00:15:00

00:30:00

00:45:00

01:00:00

00:15:00

00:30:00

00:45:00

01:00:00

Treatment

D
ur

at
io

n

Figure B.7: The time developers spent to fix their maintenance tasks grouped by task type

and class, considering only software engineers and quality analysts participants.

	Introduction
	Context
	Motivational Example

	The Problem
	Objectives
	Results and Implications
	Relevance
	Work organization

	Background
	Test Generation Tools
	Randoop
	EvoSuite

	Test smells
	Refactoring Test Cases
	Software Maintenance
	Final Considerations

	A Study On The Use Of Generated Tests To Guide Maintenance Tasks
	Motivation
	Design and Research Questions
	Participants Selection and Demographics
	Study Objects
	Study Procedure

	Results and Discussion
	RQ1: Do generated tests influence the effectiveness of developers on determining the source of a problem?
	RQ2: Are generated tests effective to help to find proper fixes?
	RQ3: Does it take longer to execute maintenance tasks when using generated tests instead of manually written ones?
	RQ4: What is the developers' perception of using generated tests when performing maintenance tasks?
	Analysis by Roles
	Diverging Results

	Final Considerations

	A Survey to Evaluate Developers Perspectives on Refactored Tests
	Motivation
	Design and Research Questions
	Methodology
	Study Objects

	Results and Discussion
	Participants Demographics
	RQ5: What is the developers' perception concerning the names of Randoop test cases?
	RQ6: Do developers prefer the original Randoop tests or the refactored ones?
	Analysis by Roles

	Final Considerations

	An Study on the Use of Refactored Generated Tests to Guide Maintenance Tasks
	Motivation
	Design and Research Questions
	Participants Selection and Demographics
	Study Objects
	Study Procedure
	Follow-up Interviews

	Results and Discussion
	RQ7: Do refactored Randoop tests improve developers' effectiveness in determining the source of an issue?
	RQ8: Do refactored Randoop tests improve developers' effectiveness in performing proper fixes?
	RQ9: Do refactored Randoop tests improve the developers' performance to execute maintenance tasks?
	RQ10: What is the developers' perception about using refactored Randoop tests in maintenance tasks?
	Analysis by Roles
	Follow-up Interviews

	Final Considerations

	Threats to validity
	Related work
	Methodology
	Comparing Manual and Generated Test Cases
	Test Smells on Generated Tests
	Test Code Improvements
	Final Considerations

	Conclusions and Future Works
	Experiment procedure
	Extra analysis

