UNIVERSIDADE FEDERAL DE CAMPINA GRANDE
CENTRO DE ENGENHARIA ELETRICA E INFORMATICA
CURSO DE BACHARELADO EM CIENCIA DA COMPUTACAO

VINICIUS ABNER PEREIRA DE SOUZA

THE CORRESPONDENCE BETWEEN THE MEDIEVAL TRIVIUM AND
OBJECT-ORIENTED PROGRAMMING

CAMPINA GRANDE - PB
2023

VINICIUS ABNER PEREIRA DE SOUZA

THE CORRESPONDENCE BETWEEN THE MEDIEVAL TRIVIUM AND
OBJECT-ORIENTED PROGRAMMING

Trabalho de Conclusio Curso apresentado ao
Curso Bacharelado em Ciéncia da Computacio do
Centro de Engenharia Elétrica e Informatica da
Universidade Federal de Campina Grande, como
requisito parcial para obtencdo do titulo de
Bacharel em Ciéncia da Computacio.

Orientadora: Professora Eliane Cristina de Araujo.

CAMPINA GRANDE - PB
2023

VINICIUS ABNER PEREIRA DE SOUZA

THE CORRESPONDENCE BETWEEN THE MEDIEVAL TRIVIUM AND
OBJECT-ORIENTED PROGRAMMING

Trabalho de Conclusio Curso apresentado ao
Curso Bacharelado em Ciéncia da Computacio do
Centro de Engenharia Elétrica e Informatica da
Universidade Federal de Campina Grande, como
requisito parcial para obtencido do titulo de
Bacharel em Ciéncia da Computacio.

BANCA EXAMINADORA:

Professora Eliane Cristina de Araujo

Orientadora —- UASC/CEEI/UFCG

Professora Francilene

Examinadora — UASC/CEEI/UFCG

Professor Tiago Lima Massoni

Professor da Disciplina TCC — UASC/CEEI/UFCG

Trabalho aprovado em 14 de fevereiro de 2023.

CAMPINA GRANDE -PB

RESUMO

Ensinar o paradigma de programacao orientada a objetos costuma ser um desafio para os professores. A
principal dificuldade é muitas vezes atribuida a mentalidade que o paradigma exige. Essa mentalidade envolve
raciocinar sobre elementos da realidade em termos de classes, objetos, atributos, polimorfismo etc. Em suma, é
uma mentalidade que requer boas habilidades de abstracdo. Varias metodologias, abordagens e ferramentas ja
foram propostas para ajudar os alunos a alcancar a mentalidade necessaria para aplicar esse paradigma, mas o
aprendizado continua dificil. Diante disso, uma ferramenta que até entdo nunca havia sido considerada para o
ensino de programacao é o Trivium medieval. O Trivium consiste nas trés artes liberais de Gramatica, Logica e
Retdrica. O syllabus e a estrutura das aulas do Trivium podem ser um modelo interessante para ser aplicado em
cursos de programacao orientada a objetos, pois abordam de forma bastante didatica conceitos fundamentais
idénticos ao do paradigma orientado a objetos. A demonstragdo da correlagdo entre os dois assuntos é um dos
objetivos deste trabalho. Além disso, conjecturamos que ensinar os conceitos fundamentais da Gramatica antes
ou paralelamente ao ensino do paradigma orientado a objetos parece ser mais eficiente do que comegar logo
pela pratica de programacgao, como costuma ser feito em cursos de programacao. Este artigo propde duas
abordagens para o ensino do paradigma orientado a objetos. Eles consistem na estruturagao do curso de
Programacdo Orientada a Objetos com base na filosofia e metodologia educacional cldssica, a fim de facilitar a
compreensao do paradigma.

The Correspondence Between The Medieval Trivium And
Object-Oriented Programming

Vinicius Abner Pereira de

Souza
Federal University of Campina Grande

ORCID: 0000-0002-6048-4364
vinicius.souza@ccc.ufcg.edu.br

ABSTRACT

Teaching the object-oriented programming paradigm
is often a challenge for teachers. The main difficulty is
often attributed to the mindset that the paradigm
requires. This mindset involves reasoning about
elements of reality in terms of classes, objects,
attributes, polymorphism, etc. In short, it is a mindset
that requires good abstraction skills. Several
methodologies, approaches, and tools have already
been proposed to help students achieve the mindset
necessary to apply this paradigm, but it remains
difficult. In view of this, a tool that until then had
never been considered for the teaching of
programming is the medieval Trivium. The Trivium
consists of the three liberal arts of Grammar, Logic,
and Rhetoric. The syllabus and lesson structure of the
Trivium can be an interesting model to be applied in
object-oriented programming courses because it
addresses in a very didactic way fundamental
concepts that are identical to that of the
object-oriented paradigm. A demonstration of the
correlation between the two subjects is one of the
goals of this paper. Moreover, we conjecture that
teaching the fundamental concepts of Grammar
before or alongside the teaching of the
object-oriented paradigm seems to be more efficient
than starting right away with programming practice,
as it is usually done in programming courses. This
article proposes two approaches to teaching the
object-oriented paradigm. They consist of structuring
the Object-Oriented programming course based on
classical educational philosophy and methodology in
order to facilitate the understanding of the paradigm.

Keywords

Object-Orientation, education, Trivium, paradigm,
programming, abstract thinking, object-oriented
programming, education in Computer Science

1. INTRODUCTION

The object-oriented paradigm has been consolidating
itself as one of the most influential programming
paradigms in recent years, which makes teaching this
paradigm in programming courses indispensable.
However, teaching is often a challenge for teachers,
who recurrently report difficulties students face
when trying to understand the fundamental concepts
of the paradigm. The mindset necessary for the
application of this paradigm involves reasoning about
elements of objective reality in terms of classes,
objects, attributes, interfaces, etc. In short, having
good abstraction skills.

Several methodologies, approaches, and tools have
already been proposed to help students achieve this
mindset. However, there is still no consensus. In view
of this, a tool that has not been considered for the
teaching of programming is the medieval Trivium. The
Trivium consists of the three liberal arts of Grammar,
Logic, and Rhetoric. The concepts and theoretical
frameworks presented by these liberal arts are the
base for many modern knowledge fields, such as
Computer Science. If those arts are so correlated to a
field, it is natural to wonder whether aspects of the
Trivium can be used as a model to Computer Science
courses. More specifically, to Object-Oriented (0OO)
programming courses, since those liberal arts address
in a very didactic manner fundamental concepts of
object-orientation itself. Those concepts and their
correlation to the paradigm will be explained and
demonstrated later in section 4.

As already suggested in the literature [1][2][3][4],
teaching the fundamental concepts of the 0O
paradigm before the introduction of programming
seems to be more efficient than starting right away
with practice and waiting for students to learn the
fundamental concepts through exhaustive exercises
and examples. Given these points, different
approaches to teaching the object-oriented paradigm
are welcomed. Two of them will be suggested by the
end of this article.

2. METHODOLOGY

This work is a descriptive research based on
bibliographic references regarding approaches,
difficulties, and good practices for teaching OOP, as
well as classic education. This research aims to
demonstrate the correlation between classic Trivium
and OOP. The resulting demonstration will then be
used to base two teaching methodology proposals at
the end of this paper.

3. PROBLEMS IN THE
OBIJECT-ORIENTED PROGRAMMING
When it comes to learning a new subject, a common
approach is to first give the student a general
introduction to it before moving on to the details.
This approach is used in many Information
Technology courses, including Object-Oriented
Paradigm (OOP) courses. However, the main difficulty
students reportedly have when learning OOP is
understanding the fundamentals [1][2]. Anecdotal
evidence points out that teachers are not managing
to introduce the subject effectively, and the
discussion in the community often revolves around
whether the OOP itself is complex or whether the
tools, methodologies, and approaches used to teach
it are inappropriate [5]. It seems to be a combination
of both things.

TEACHING OF

OOP is complex because it fundamentally imitates
the high level of abstraction that human cognition
works with when interpreting reality [6]. Apparently,
this essential aspect of the paradigm as an emulation
of the mind’s process of abstracting information is
not taken into consideration as it should by teachers,
textbooks, and courses. That might be one of the
causes of ineffective teaching methodologies. This
conjecture is supported by [7], who argue that a
weak foundation on basic concepts leads to
difficulties in transforming textual problems into

mathematical formulae and programming solutions.
A reason why these fundamental concepts are not
taken into consideration as much as they should be is
that, as stated by [5], in general, teachers don’t really
understand these concepts themselves. Hence, it is
predictable that they will struggle to explain the
theory clearly. Consequently, teachers rely on coding
from lesson one in hope that students will learn
through tedious trial-and-error practice [2][8]. This
approach might work well for teaching simpler and
straightforward paradigms such as the procedural
one [1], but is ineffective and arguably even
counterproductive for teaching the
Object-Orientation mindset [3][8][9]. This is due to
the fact that when it comes to this paradigm,
designing the solution first before starting coding is
crucial. Starting the OOP course with coding right
away might accustom to (or reinforce) a bad habit of
focusing immediately on the code rather than on the
design [3][8].

Despite all of that, this code-since-day-one approach
works in the long run — that is, students will be able
to write and understand Object-Oriented programs.
Due to exhaustive practice, examples, and
persistence, students will eventually abstract patterns
of Object-Oriented design well enough to apply them
satisfactorily to get a passing grade [3][8][9].
However, in the end, after so much effort to reach
the desired mindset, students won’t really
understand why object orientation works so well as a
paradigm. One might argue that this know-how but
not know-why course outcome is not necessarily a
problem for forming an industry programmer. Indeed.
Nonetheless, when it comes to Computer Science
courses, which are expected to form computer
scientists, this outcome seems to be insufficient.
Besides, for both future scientists and industry
programmers, developing the necessary level of
abstract thinking for the OOP remains difficult
[2][3][8]. Abstract thinking can be defined as “a
mechanism that allows us to represent a complex
reality in terms of a simplified model so that
irrelevant details can be suppressed in order to
enhance understanding” [5]. A more technical
definition is “the act of creating classes to simplify
aspects of reality using distinctions inherent to the
problem” [3]. This surely requires a certain

intellectual caliber to be put into practice. However,
as accurately stated by [2], despite the need for
helping students reach that high caliber, “most of the
introductory programming teaching material only
emphasizes lower-level knowledge such as
declarative and procedural aspects. [...] Hence, it only
emphasizes ‘what’ and ‘how’ about programming
concepts and syntax. This is only suitable for learning
lower-level knowledge but not for solving complex
programming problems in the real world. Therefore,
in the long-term, students are unable to solve a
programming problem as they are only equipped
with low-level knowledge”. This might be due to the
nature of the Information Technology field, which is
extremely technical and practical. In addition to the
fact that procedural languages ruled the market for
such a long time, this may be the reason why
programming courses still focus on teaching the
technique — that is, focus on the ‘what’ and ‘how’ of
what they are teaching, but not on the ‘why’. This
limited view of the discipline given to students by the
traditional “programming-oriented” approach has
been concerning the computer science education
community for a long time, and some call for a
breadth-first approach for teaching programming
instead [8]. A breadth-first approach considers a
much broader range of topics in introductory courses
in order to provide a more holistic, deep
understanding of the discipline. However, developing
successful breadth-first approaches has shown to be
a challenge [8]. This way, there is a demand for
breadth-first teaching methodologies that give equal
importance to the ‘whys’ of the Object-Oriented
Paradigm, and a hint for such an approach can be
found in ancient knowledge long forgotten by
modernity’s thirst for innovation.

4. THE MEDIEVAL TRIVIUM

The Latin word trivium means "three roads." Ancient
and medieval education was structured on the three
“roads” of learning, which consisted of Grammar, the
skill of comprehending the facts; Logic, the skill of
reasoning out relationships between these facts; and
Rhetoric, the skill in wise, effective expression and
application of the facts and their relationships [10].
The Trivium is part of the Seven Liberal Arts of
western medieval education and it includes the arts
that are pertinent to the mind. The other part, the

Quadrivium (Music, Geometry, Astronomy, and
Arithmetic), includes the arts pertinent to matter and
nature [11]. These subjects were taught in European
universities aiming to form high-level intellectuals.

The Trivium was taught first because it promotes the
organization of the mind of the students and gives
them the intellectual tools necessary to comprehend
the complex reasonings and abstractions presented
further in the Quadrivium. This pedagogical
organization is due to the philosophy of medieval
education, which is: firstly, one must learn how to
think and express themselves correctly before trying
to understand things outside of their mind [11][12].
This philosophy substantiates the whole structure of
the medieval syllabus, which determined that the
three ways, Grammar, Logic, and Rhetoric, were to be
taught separately in this strict order.

Grammar in the Trivium does not have the same
meaning as it has today, which is the study of a
specific language and how to write it correctly. That
would be a specific Grammar. Instead, Grammar in
the Trivium is the general Grammar, which studies
language itself; simply as the medium in which
thought is expressed in any spoken language. General
Grammar relates words to objective reality and
applies to all subjects as the first set of building
blocks to integrated or fully mindful, objective
knowledge. Special Grammar, on the other hand, is
concerned with the relation of words to words within
a specified language, such as English [11]. General
Grammar points out that roughly every existing
language classifies words morphologically. These
classes are adjectives, adverbs, substantives, verbs,
and so on. That means that there are structural
aspects of reality that are commonly perceived by
humans and are abstracted by them into common
words in common categories in order to
systematically organize knowledge and, finally, allow
thoughts to be communicated.

Logic was taught next, and it aimed to teach students
how to use the language; how to define terms,
construct arguments, and detect fallacies [11][12].
This might be the only one among the classical three
roads that remain recurrent in modern syllabuses
since it consists of basic formal propositional logic.
Finally, Rhetoric was taught so that students could
use the language to express themselves logically,

elegantly, and persuasively [11][12]. After being
approved in the studies of the Trivium, the student
was ready to dig into the more abstract and complex
subjects of the Quadrivium.

Despite its effectiveness, this classical education has
become obsolete as the social, economic, and
cultural changes that took place after the
Renaissance. It promoted a different educational
philosophy focused on social demands. This new
philosophy states that education should primarily
socially distribute knowledge and form good
professionals with certain competencies rather than
wise erudites [12][13]. However, due to its huge
educational value, in recent years some experts are
calling for a revival of the medieval Trivium in
21st-century education. They stress that it is not
obsolete, but, on the contrary, the Trivium is a great
tool to develop the competencies expected from
modern citizens [14]. That includes programming
competencies.

5. THE RELATION BETWEEN TRIVIUM AND OOP
What have these ancient pearls of wisdom and
methodologies to do with such a modern concept as
Object-Oriented programming? As surprising as it
might sound, the answer is everything. One of the
advantages of the OOP is that it gives us tools for
organizing our programs and our thoughts about
them [15], and, as seen, organizing our thoughts
about reality is the main goal of studying the Trivium.
Moreover, as argued by Dorothy Sayers, every subject
in every field of knowledge can be broken into three
aspects analogous to Grammar, Logic, and Rhetoric
[12]. Sayers states that every subject has its
Grammar, that is, the study of the basic facts and
concepts and the fundamental rules. Furthermore,
every subject has its Logic; the theoretical
understanding of the relationships between these
facts and the rules — in other words, how all the
parts fit together. Finally, every subject has its
Rhetoric, which is the wisdom to verbally express and
practically apply what one knows and understands.
To fully understand a subject, one must study all of
these aspects of it. The next sections will focus on
demonstrating how Object-Oriented programming
can also be broken down into these three aspects and
how it can be useful for understanding the paradigm.

5.1 Grammar in Object-Orientation

One of the first concepts that are taught in Grammar
is the essence. Essence is defined as “what makes a
being what it is”[11]. This is such a crucial concept
because the essence of an object is the result of the
mind’s abstraction process of reality. Miriam Joseph
explains it: “The intellect through abstraction
produces the concept. The imagination is the
meeting ground between the senses and the
intellect. From the phantasms [mental image of the
individual object perceived] in the imagination, the
intellect abstracts that which is common and
necessary to all the phantasms of similar objects [...];
this is the essence [...]. The intellectual apprehension
of this essence is the general or universal
concept.”[11]. This mental process is so important for
computational thinking and modeling
Object-Oriented software that it is also mentioned by
many Computer Science publications [3][6][14][16].
What makes a bench a "bench" and not a table is its
essence. The essence is sometimes hard to define in
words, but the mind can easily tell the difference
between a bench and a table. After abstracting the
essence of objects, the next step the intellect takes is
to classify them into groups of objects that share the
same specific essence [11]. In Grammar, these groups
are called species; in the Object-Oriented paradigm,
they are called classes. For comparison, this is one
definition of class extracted from a Computer Science
article: “A description of the organization and actions
shared by one or more similar objects.” [5].

Another core concept in Grammar that is taught
concurrently with that of species is that of an
individual. An individual is a physical being that
instantiates the essential characteristics of a species
[11]. A species cannot exist on its own because it is
not a substance, rather it is an abstraction: “[...] for
one cannot photograph the species horse or dog; one
can photograph only an individual horse or dog since
every horse or dog that exists is an individual”[11]. In
the same way, a class in Java is not useful unless it is
instantiated as an object that can act and be acted
on. A class definition is merely the description of the
essential characteristics of a potential object.
Alongside species, Grammar teaches the concept of
genus, which is a wider class made up of two or more
different species that have in common the same

generic essence or nature [11]. For example, a real
horse is an individual of the abstract concept of
‘horse’, which is a specific kind of the even more
abstract concept of ‘animal’. A genus in Grammar
would be equivalent to an abstract class in Java.
Therefore, it can be said that the species that
compose the genus inherits some common
characteristics from an upper class. As can be seen,
Grammar teaches that there are layers of abstraction
in our perception of reality, although the concept of
inheritance is not explicitly explained as in OOP.

5.1.1 Aristotle’s Categories in Object-Orientation
Aristotle’s Categories are also taught in Grammar as
an important framework of thinking to guide one’s
investigations and understanding of reality. Those ten
categories are Substance, Quantity, Quality, Relation,
Action, Passion, When, Where, Possession, and
Posture. In this Categories theory, also known as
categorialism [17], words are categorized by their
relationship to being and to each other. Aristotle’s
categories enable us to translate the linguistic symbol
into a logical entity ready to take its place in a logical
proposition [11].

Substance (or subject) is the most important category
since it denotes an individual being that exists in
themselves, whereas the other nine categories
denote accidents (or predicates). Accidents are
concepts that cannot exist on their own, but only in
others. As an example, a chair is a substance while its
attributes are accidents. Those attributes might be
the chair’s color (Quality), the chair’s location
(Where), whether the chair is being used (Passion),
whether the chair has four legs (Quantity), whether
the chair in question is in the present or in the past
(When), and so forth. In summary, the usage of the
Categories as a framework evolves breaking down
facts of a being into categories so our knowledge
about it is clearer.

An analogous breaking-down process happens when
we design classes in OO0 programs. For example, if we
design a class that represents a client, one of the first
guestions to be asked in the brainstorming step is:
what is a client in a specific context of the program?
When this question is answered, programmers have
defined the substance. The next questions revolve
around the substance’s attributes. Does the client
have a name? (Quality). Does the client’s class inherit

from another upper class or exchange information
with another class? (Relation). Are there different
types or tiers of clients? (Quality, once again). Which
methods should clients have? (Action). How can
other classes interact with the client? (Passion).
Therefore, roughly speaking, a class name in an OO
program defines a substance whereas everything
inside the class is a description of their accidents.

Here, the concept of information hiddenness is subtly
present. Since an accident cannot exist on its own, it
needs to be associated with a substance in order to
exist. For instance, the color red doesn’t exist, unless
it is part of another being. In other words, we can
only talk about an attribute if there is something
concrete that it is attributing. This need for an
association is analogous to information hiddenness.
In pure OO programming, there are no global
variables that can be defined outside a class and used
anywhere by all the classes that compose the
program. A variable must be defined inside a class
before it can ever be referred to in a program.

5.2 Logic in Object-Orientation

In the Logic stage, medieval students sort the facts
they learned in the Grammar stage and learn how to
discern the truth from the falsity. This discernment
ability is developed by training students to establish
valid relationships among facts, which includes the
ability to identify fallacies, structure a valid argument,
detect and avoid contradictions, and so on. In other
words, by studying Logic the student will learn to
translate the words in natural language into logical
entities in order to find the truth in them. The logic
studied in the Trivium is simple propositional logic.

In the study of OOP, the logical step refers to how
classes can relate to each other and how to associate
them correctly. The relationship between classes and
the way of handling information access is the main
differential of OOP and it is one of the reasons for it
being so efficient. From an object-oriented
perspective, it would make no sense to design a
program that allows every class to access and
manipulate data held by every other class. That
would go against the very reason for grouping
information into classes in the first place, which is to
hide information. In other words, this solution design
would violate the core OO concept of encapsulation.
Despite still running if it has no lexical or syntactic

errors, the program has serious logical
inconsistencies from an object-oriented point of view.

The other two main logical concepts of OOP,
polymorphism, and inheritance, were already
mentioned in the subsection regarding the Grammar
of OOP. As demonstrated before, the concepts of
species and genus and how they relate have the
notion of polymorphism embedded into them.
Polymorphism is “the ability of different classes to
respond to the same message and each implement
the method appropriately”[5], and this ability is also
seen in the physical realm. For example, the abstract
concept of an animal manifests itself in reality in
many different specific forms, like a horse or a dog.
Each form of animal shares behaviors that are
characteristics of animals, such as reproducing,
eating, sleeping, moving, etc.; They all do those
things roughly differently from one another. This
differentiation is what drives the abstraction and
classification of entities into species and genera.
Likewise, an abstract class (or interface) User can be
instantiated as (or implemented by) concrete classes
such as one for a Client or an Administrator. Every
species of user has its own methods implementation
of the methods defined for a User. Similarly,
inheritance is also embedded in the relationship
between levels of abstraction, although it is slightly
different from the one of polymorphism. Inheritance
is defined as “a mechanism that allows the data and
behavior of one class to be included in or used as the
basis for another class”[5]. In other words, the main
difference between polymorphism and inheritance is
that, whereas in polymorphism the implementation
of shared methods varies, in inheritance, those
implementations remain the same as the upper
classes. In the end, both core logical concepts of OOP
are somewhat derived from levels of abstraction.

Finally, Logic is intrinsically connected to Computer
Science itself, not only OOP [18]. In general,
Computer Science graduation includes at least one
subject related to formal logic and its application of it
in computer systems. However, it is important to note
that the logic used in these courses is more modern
than the one taught in the classical Trivium. For
instance, the classic trivial art focused on classical
propositional logic and, therefore, didn’t include
modern contributions to the field such as Boole’s

laws, which are an essential part of the logic for
Computer Science. Although it is surely not sufficient
for the needs of a modern computer scientist, the
Logic as it is presented in the Trivium is the base of all
the other further developments of logic and its study
stands as necessary even in modern times.

5.3 Rhetoric in Object-Orientation

The relation between object-orientation
programming and Rhetoric is more subtle. That is
because Rhetoric in the classical Trivium aims
towards appropriate verbal communication, whether
by written or spoken speech [11]. In more detalil,
classical Rhetoric teaches students how to use the
facts they learned in Grammar alongside the rules of
Logic in order to make a persuasive, coherent and
appropriate speech. Sayers adds that the rhetorical
aspect of a subject is the practical application of all
the knowledge associated with it and not only verbal
communication [12].

Given this, it is possible to notice a rhetorical aspect
in the practice of programming regardless of the
paradigm. When programmers code an abstracted
model from reality, they are applying their knowledge
to something practical; the program. However, the
programmer should not write the code only aiming
towards making it work. That is because, in the end, a
program is also a form of communication. Thus, they
need to write it clearly and neatly because other
programmers will eventually need to work on that
program, and they must understand it. Choosing
good variable names, keeping a decent indentation,
extracting blocks of code into well-named methods
and many other good practices are exactly forms of
appropriate speech; the Rhetoric of programming.

Moreover, it is possible to identify a rhetorical aspect
in the practice of OOP specifically. As mentioned
before, classical Rhetoric aims towards teaching
students how to use the body of information they
learned in Grammar in combination with the logic
rules for associating them correctly to communicate
knowledge and thoughts effectively. Because of this,
modeling languages such as UML and OMT can be
considered to be rhetorical devices used for OO
programming. That is because one of their main goals
is to communicate the design of an OO system
effectively. Furthermore, in order to build a model for
a 00 system, one needs to have an understanding of

the body of information associated with the system
(classes, attributes, methods, etc) and an
understanding of how these pieces of information
should be associated for the system to work correctly
(inheritance, polymorphism, and other classes
associations). All this knowledge is then graphically
communicated through UML, which has become a
standard in the industry due to its rhetorical
effectiveness [19].

6. APPLYING THE TRIVIUM TO PROGRAMMING
TEACHING

There is, indeed, a correlation between the Trivium
and Object-Oriented Programming — and, more
generally, programming itself. In face of that, the
guestion that emerges is: is it possible to apply the
Trivium to the teaching of Object-Oriented
Programming somehow?

6.1 Some possibilities of using the Trivium for
teaching OOP

As demonstrated, OOP has aspects analogous to
Grammar, Logic, and Rhetoric. However, among the
three classical subjects, Grammar seems to be the
most useful for the teaching of the paradigm in most
programming courses. More precisely, it can be
useful to introduce the paradigm and provide an
easier mindset shift. Next, there are two proposed
approaches that use Grammar as a teaching tool for
the Object-Oriented Paradigm.

6.1.1 The Introduction to Object Orientation Module
In this approach, the OOP course includes an
introductory module that is divided into two parts.
The first part is used for introducing how the human
brain interprets and abstracts reality. In other words,
the first part is a Grammar module. Since the
proposition is not to teach the Trivium itself, this part
doesn’t need to be long. It could be the first couple of
lessons, depending on each course’s chronogram and
structure. The second part of the introductory
module is used for introducing OO programming
itself by writing programs based on what was
discussed in the first part.

In more detail, in the first part, the lecturer will
explain how human communication works based on
the concepts of substance, genus, individuals, and
classes (as in the Trivium, not in OOP yet). Moreovetr,
it will be explained how Aristotle's Categories can be

a useful tool to organize our understanding of reality.
By the end of this part, the students are expected to
understand how the human intellect abstract and
classify words and concepts in order to compose the
human language.

The programming paradigm itself will be introduced
in the following part, which will introduce the basic
Object-Oriented concepts, such as objects, classes,
abstract classes (or interfaces), attributes, methods,
polymorphism, and inheritance. This introduction will
be based on writing programs based on the examples
given in the previous part. With this methodology,
students should note how the same cognitive process
they learned in the introductory module is emulated
by the Object-Oriented Paradigm. This way, their
mindset shift to Object-Orientation would be more
natural and quick.

It would be interesting to use examples related to
entities of the natural realm, such as animals, rather
than entities of the ‘corporate’ or digital realm. Those
corporate or digital realm entities include common
roles in computer programs, such as Users, Clients,
Administrators, or even companies and organizations.
These entities are usually used as examples in
programming textbooks and classrooms because they
are common in real world programs. However, they
are not to be used in this proposed approach. That is
because the teachers of the Trivium would teach
Grammar by using examples related to what their
students would see concretely in their daily lives.
Those concrete entities would include animals,
objects, and other natural elements that students are
likely to be used to from their personal experiences.
By starting with these more concrete examples, we
would probably take the most out of Grammar
because it would be closer to how it was originally
taught. An application of this approach will be
detailed below:

6.1.1.1 Introductory Module Part 1: Introduction to
Grammar

The lecturer should start the module by explaining
that, in order to understand the Object-Oriented
Paradigm, it is important to understand human
communication first. Below, the concepts to be
tackled in this module are listed in order, followed by
a summary of what the lecturer should explain about
them. Both order and explanation of these concepts

were based on the Grammar section of Miriam
Joseph’s Trivium textbook [11].

Language. Only human beings can emit sounds that
are tied into phrases to express thoughts. This is a
language, and it is formed by symbols that have
arbitrary meanings. Those symbols are called “words”
and they represent concepts of reality. Some
examples of words can then be given, such as “horse”
(substantive), “good” (adjective), “eat” (verb), “fast”
(adverb), etc. It would be interesting to give examples
of words from different morphological classes to
prevent students from sticking too much on
substantives when they think of “words”. According
to Aristotle, language and reality have the same
structure.

Individuals. Words can mean individuals or entities.
An individual is a unique physical being. Examples of
individuals that can be given are a woman, a tree, a
horse, a snake, a rock, and so forth. For this
demonstration, three individual animals, a horse, a
snake, and a human will be used as examples from
now on. For better understanding, the lecturer
should show an illustration of them when needed
(whether by drawing on the board or by showing a
picture). In this example, the chosen animal for
representing the concept of an individual was a horse
(figure 1).

Figure 1 - an individual.

Essence. Essence is what makes an entity what it is,
and without which it can’t be what it is. At this point,
a discussion can be proposed by the lecturer by
asking the class what makes a horse a horse. What do
all horses have in common? What is it that something
needs to have in order to be a horse? This reflection
would be a good initial abstraction exercise, which

will happen more often during the course when they
need to define classes.

Species. A species is a word that represents a
collection of all the individuals that share the same
specific essence. The species of the individual
illustrated in figure 1 is horse (figure 2).

HORSE

i .
! £l
(i

L @

Figure 2 - The word horse is a species.

Now, the lecturer should make clear that a species in
this context is a word that represents an essence, not
the biological classification, as students might think at
first. In order to make this clear for the students, it
can be given the example of the word umbrella as
being a species of objects. Once the concept of
species in Grammar is understood, a link can be made
between the two previous concepts: the essence is
what makes an individual similar to the other
individuals of their species, whereas his individuality
is what makes him different from the other
individuals of his species. To exemplify this concept in
a sentence, all horses are similar but each one of
them is unique.

Genus. Genus is a word that represents a collection
of all the species that share the same generic
essence. In other words, a genus is an even more
abstract species. The species “horse” is part of the
genus “animal”, as well as the species “snake”.
Another discussion can be proposed by the lecturer
by asking students questions such as “What makes a
horse an animal? What does a horse have in common
with a snake?” The level of abstraction of a genus can
be explained as the following: When one thinks of a
“horse”, they will think of individuals which have the
specific characteristics of what would be considered a
horse. However, when one thinks of an “animal”, they

can think of a wider variety of individuals that have
the specific characteristics of an animal, like a horse,
a snake, a human, a fish, etc. The concept of genus
can be illustrated as in figure 3.

Animal

I

Figure 3 - Another level of abstraction.

Specific Essence and Generic Essence. These
concepts can be exemplified like this: Only animals
can be born, grow, eat, reproduce and die — this is
part of their generic essence. Every specific animal,
however, has its own way of doing some of those
things. The same action can have many forms. How
the animal sleeps, what it eats, and how it
reproduces are part of its specific essence. Note how
the concept of polymorphism can be subtly
introduced by stating that different species act the
same in different ways.

Ten Categories of Aristotle. Words are created by our
intellect in order to abstract reality, and they can be
manipulated and cataloged to increment our
understanding of reality. The Ten Categories of
Aristotle classify words and phrases according to our
knowledge of the being. In other words, Aristotle’s
Categories give us a framework of reasoning to
understand what we know and what we don’t know
about a being. Almost every word in human language
can be used to describe an aspect of a being. Those
aspects that can be described are exactly what the
categories try to classify. The principle of the
categories is: every being exists on itself or in
another.

Substance. If it exists in itself, it is a substance (or a
subject). That’s the first category.

Accident. If it exists in another, it is an accident (or a
predicate). Those are all the other nine categories.
The accidents are Quantity, Quality, Relation, Action,
Passion, When, Where, State and Posture.

The lecturer will then show how to classify what is
known of an arbitrary individual based on the
Categories. The individual chosen for this
demonstration is the horse used as an example so far.
Even though there are ten categories, only six of
them (namely Substance, Quantity, Quality, Relation,
Action, and Passion) will be taken into consideration
for this example. This is because they are the ones
that will be more useful in a later programming
exercise. However, how many categories and which
of them will be used for demonstration is up to the
teacher. In order to demonstrate the Categories, let’s
consider that the horse used as an example so far is a
male white Arabian horse, with four legs, 185.5 cm in
height, and is trotting while being mounted on by his
owner. Table 1 shows what the classification with
those six categories could look like.

Facts: A male white Arabian horse, with four legs and
185.5 cm in height is trotting while being mounted on
by his owner.

Facts classification:

Category Knowledge

Substance Horse

Quantity Four leg; 185.5cm in height

Quality White; Arabian; Male

Relation Ownership (relation with
human)

Action Trotting

Passion Being mounted on

Table 1 - A classification of the known fact using
Aristotle’s Categories.

The elaboration of this table can be done through a
discussion with the students led by the lecturer. In

this discussion, the lecturer can guide the student’s
classification of the given fact by asking questions
about each category. Those questions could be:
“What are the horse’s qualities?”, “What are its
guantities? How many things can we count on it?”,
“What relation does it have with anything in this
context?”, “What is it doing? What can it do?”, “Is it
suffering from some action? ”, and so forth. Those
guestions are very similar to the ones that are made
during the process of designing OO programs.
Therefore, by doing this exercise, the students are
being trained to abstract certain information about
an entity and classify them, which is a crucial ability
for OO programming.

Conclusion. After exercising Aristotle's categories, the
introductory module should head to its conclusion.
The conclusion is that the human language is
structured following grammatical concepts (species,
genera, individuals, substances, accidents, etc). Those
concepts are rules that allow us to systematically
organize raw factual data gathered from objective
reality in such a way that communication is possible.
This is useful knowledge because the Object-Oriented
Paradigm, in practice, emulates human language. The
demonstration of this correspondence is the goal of
the next module.

6.1.1.2 Introductory Module Part 2: Introduction to
the Object-Oriented Paradigm

The second module should introduce the
Object-Oriented Paradigm itself. In this module, the
teacher will write OO programs based on the familiar
examples given in the previous module. The idea
behind this approach is that the two modules should
follow somewhat the same structure and use the
same examples. This way, it will be easier for students
to note the similarities between human language and
OOP. Once they understand this, their mindset shift
would happen more naturally. Moreover, this
approach considers the programming language used
in the course as a tool for conceptual modeling,
which is one of the roles of programming languages
[20]. In other words, in this part, the programming
language is used for expressing the concepts and
structure discussed in the previous part [20] and not
as the main focus. To demonstrate how this module
could be conducted, a pseudo code based on Java will
be used for the coding examples for simplicity

reasons. In this pseudo code, access modifiers are
going to be ignored and the standard Java printing
statement “System.out.println” will be referred to as
“print”. Irrelevant code for the specific example will
be suppressed and represented by three dots (“..").
However, any OO programming language other than
Java can be used in class for this module.

Classes. The lecturer should start by explaining that
an Object-Oriented program is mostly made of
classes and their relationship with one another. A
class is a structure that describes something. More
technically, a class is a data structure that holds data
related to some entity. These data can be called the
attributes or fields of a class. A class that describes a
horse can be defined as shown in figure 4.

-lass Horse |

Figure 4 - A class which describes a horse.

This piece of code defines the class Horse. It can also
be said that it defines the species horse. It would be
the programming equivalent of the species
illustration in figure 2.

Attributes. The body of the class is where we are
supposed to write a species’ characteristics (or
attributes). Attributes are what is known (and
relevant) about a class. The process of defining a
class’ attributes and methods is analogous to the
process of categorizing with the Ten Categories. The
lecturer can either conduct a discussion similar to the
one that happened for the construction of table 1 or
use table 1 already in this step. In a class, the
substance is the class name itself whereas everything
inside the class body can be considered to be its
accidents. To show how attributes are defined in a
OO program, firstly let's try to define the familiar
example of a white male Arabian horse, with four legs
and 185.5 cm in height as a class. Let’s start with its
qualities, which were already listed in table 1 (figure
5).

clasz Horse |
String colo
ring gendsr

tring breed

A

i
i

{7 [. B

Figure 5 - The horse’s qualities translated to code.

This is a good opportunity to explain to students what
variables and data types are if they are not aware of
them yet. The horse's quantities can be used to
introduce numeric data types (figure 6).

claz=z Horse |
string color

hL] b= - r
v = -
white™

Etring gendesr "male”;
String breed “rrabian®;
int legs = 4;

float height = 185.5;

Figure 6 - The horse’s qualities translated to code as
well.

Methods. The Action category can be used to
introduce the concept of methods, arguments, and
return types (figure 7). As discussed in the previous
module, since a horse is an animal, it can eat, move,
and sleep. Moreover, a “toString” method will be
defined for later use in this module. For simplicity,
attribute definitions will be suppressed for the
following figure.

clags Horae |

Figure 7 - A horse’s potential actions translated to
code as methods.

As for the other categories (namely, Where, When,
and Posture), they won't be considered for this
demonstration. However, lecturers can exercise them
as much as they wish.

Object. All that was done until now was to describe
which characteristics a horse has and what it can do.
However, as a class is simply a description of
something, it can't do anything or have
characteristics itself. That is because a species (which
is what a class defines) is simply an abstraction; a
collection of potential individuals. Only individuals
can act and have attributes such as color, gender,
number of legs, and height. For a class to be useful in
a program, it is necessary to instantiate an individual
out of it. In Object-Oriented Programming, an
individual is called an object. To create an object, a
constructor method must be defined (figure 8).

slaszs Horse

Horse ()]

Figure 8 - A constructor method added to the Horse
class.

Once again, for simplicity, previously defined
methods and attributes were suppressed in the last
figure.

Running the program. After the first class is properly
defined, students should see it working. For that, a
Main class will be created and, for this
demonstration, two horses will be instantiated and
then printed (figure 9). It is a good chance to explain
how to access data and methods inside an object.

class Main

void main{)
Horse horsel = new Horsal):

=]

Figure 9 - A program which instantiates and uses the
Horse class.

The expected output for this program is shown in
figure 10.

Figure 10 - The desired outcome of the program.
However, this is very limited. Every object
instantiated from this class will always have the same
attributes (accidents). As seen, a class (species)
represents a potential objects
(individuals) who share the same specific
characteristics (specific essence). Every object has its
individuality which differentiates it from the other
objects instantiated from its class. For example, every
horse has a color, a gender, a breed, and a height. But
not every horse is white, male, or Arabian, nor has
185.5cm in height. Horses can have different
attribute values. To enable individuality for classes’
objects, both attribute definitions and constructor
need to be changed as in figure 11. In figure 11
irrelevant methods for this step were suppressed,
along with some arguments and declarations on the
body of the constructor.

collection of

zlass Horse |
SEring calor;
Etring gender;
Etring bresd;
ne léCL:

float height:

Horse(5tring color, S5tring gender,...]|
this.coler = color;

Lniu.uuuuu: = genager;:

Figure 11 - A horse’s attributes are now defined in
run-time.

By removing initial values, the attributes a horse can
have were made generic. In other words, the “color”
field now, since it is not initialized, is a species of
attributes, whereas the color name, such as “white”,
is an individual color. In order to create an individual
horse object, it is necessary to manually specify its
attributes as in figure 12. The expected output is
shown in figure 13.
laas Main |

1t maini) |

Figure 12 - A program that instantiates and uses
custom horses.

L'm a malea white Arab

and my helgnt

Figure 13 - The desired outcome of the program.

Inheritance. The concept of inheritance can be
explained next as another level of abstraction in OO
programs. Inheritance will be explained with an
abstract class. An abstract class cannot be
instantiated because it does not define a collection of

individuals, but a collection of classes instead. An
abstract class would be equivalent to a generic word
(genus) which can mean different specific words
(species). The generic word used as an example in the
previous module, animal, will be used again to
explain how inheritance works in an OO program.
However, before that, it is important to create a
similar class to that of a horse but for a snake,
another familiar example from the previous module
(figure 14).

ciass Snake |

ng gendery

Figure 14 - A similar class to that of a horse, but for a
snake instead.

A class that describes a snake as illustrated in figure
14 will show students how similar the two classes,
horse and snake, are. This is because they share
common characteristics that can (and should) be
abstracted as animalistic attributes. However, these
classes are not completely the same. In this specific
case, only horses have breeds and only snakes can be
venomous. Therefore, these are specific
characteristics of an animal that aren’t necessarily
true for other animals. The classes’ common
attributes can be defined in a generic, abstract class
that describes an animal (figure 15).

abstract class Animal |
String golor;
String gender;
int legs:
Float height;

voild eat (String fooad) ;
void move (float distance);
vidid sleep{int hours);

Figure 15 - A class that abstracts the characteristics of
animals.

This way, every class that shares the generic essence
of an animal can inherit this essence from this
abstract class. By adding the ‘extends’ notation to a
class definition, we denote that the class is a specific
type of another more general class. As illustrated in
figure 16, both Horse and Snake are specific types of
Animal. In Object-Oriented programming, this is
called inheritance. Figure 16 suppresses the methods
defined in both classes.

Horse{String breed) |

supari{};:
this. bresd = bready
-I
|
class Snake egxtends Animal |

boclean venomous;

Snake {boclaan venomous) |
super () ;

chiz.venomois = Venomous;

Figure 16 - The Horse and Snake classes inherit
common characteristics from the Animal class.

The other methods defined in the Animal class (eat
and sleep) can also be implemented in these classes
to reinforce the concept of polymorphism (figure 17).
The idea of general characteristics and specific

characteristics could continue to be exercised by the
lecturer by implementing special methods for the
classes used as examples. Those methods could
include actions such as a kick method for the Horse
class and a bite method for the Snake class, for
instance.

doverride

vold move (int distance) |
print ("Trotting for “ + distance +
" miles™);

class Snake extends Animal |

@override
valid mave (int distance) |
print (“Crawling for ™ + distance 4
miles™);
]

iy

Figure 17 - Classes might have different
implementations for the same inherited methods.

Object manipulation. The Passion category can be
useful to explain how objects can be manipulated by
other objects. The phrase used as an example to be
categorized in table 1 was: “A male white Arabian
horse, with four legs and 185.5 cm in height is
running while being mounted on by its owner”. The
substance in this example is horse, whereas its
passion (action being suffered) is “being mounted
on” (table 1). This can be codified as well. For that, a
Human class will be created and it will have a method
to mount a horse. (figure 18). The other methods
pertinent to an animal were suppressed for this
figure.

5 Human cxtand Animal |

Figure 18 - A Human class is defined as a type of
Animal as well.

This piece of code defines that a species can suffer
actions by another species. More accurately, a
Human object can manipulate a Horse object — it can
access the horse’s breed. This possibility of
information hiddenness shown in figure 18 is the core
idea and the biggest advantage of the OOP. Finally,
there should be a demonstration of the program
running (figure 19). The expected output is illustrated
in figure 20.
~lass Main |

void maind)

Figure 19 - A program in which a Human instance
manipulates a horse instance.

Bok, the: Jackay, maunted the arabian chidrcge!

Figure 20 - The desired outcome of the program.

Conclusion. This is basically how the Object-Oriented
Paradigm functions. We define classes of objects and
try to abstract them into more generic classes.
Classes can hold specific data and exchange them
with other classes.

This should be the end of the second module and the
introductory part of the course. In this module, the

basic concepts of OO programming were explained in
light of what the students learned in the previous
Grammar module. Hopefully, students will finish the
two introductory modules with a more sound
understanding of how OOP works and, more
importantly, why it works. The methodology to be
used from now on to teach what is left from OOP is
up to the lecturer.

6.1.2 The Iterative Cycle Methodology

A good methodology for the teaching of OOP is the
Iterative Cycle [3]. This methodology utilizes both
abstract representation and detailed programming
experience in order to provide abstract thinking skills
to novice students learning OO. This is accomplished
by iterating over two basic steps, which are:

1. Explaining a target OO concept through
modeled examples built with the aid of UML
—the abstract step.

2. Code the example modeled in the previous
step — the concrete step.

In practice, for teaching an OO concept, the lecturer
will initially draw the relevant entities’ shapes and
their associations using UML and discuss their
theoretical meaning (the abstract step). Immediately
after, they will write the basic code which represents
the diagram, and conclude with inner detailed code
insertion (the concrete step). The students are
expected to absorb the equivalence of the two views
(model and code) and become familiar with the
simplified abstract representation [3]. Once those
steps are completed, the cycle starts over for the
teaching of the next concept. It is important to note
that the authors of the Iterative Cycle Methodology
described a successful application of this approach as
the student being able to absorb the equivalence of
the model and the code implementation. This
perception of equivalence is also the goal of the first
methodology proposed in this paper.

The Grammar can be useful during the abstract step.
The following proposed methodology is a
combination of the first approach (the Introductory
Module) and the original Iterative Cycle approach.
Instead of dividing the introductory part of the course
into two parts as proposed in the Introductory
Module approach (one part for theory and the other,
for practice), this alternative doesn’t divide theory

and practice so strictly. For each concept explained,
the practice will be taught immediately after, as in
the lterative Cycle methodology. The course should
start similarly to what was proposed before, that is,
introducing how the human language works. What
follows is an example of the application of this
approach to the teaching of the concept of a class.
The chosen class is, once again, that of a horse.

After introducing what is a language, an individual,
and an essence, just like in the previous approach,
the teacher should then introduce the concept of a
species. As seen, a species in Grammar is equivalent
to a class in a programming language. The lecturer
will illustrate a species with a drawing, then abstract
it into a UML model, and, finally, convert it into code.
Figure 21 shows the flow of this cycle.

- String color
- String gender

- String breed

- int legs

- float height void eat (String food){...}
void move (int miles){...}
void sleep(float hours){...}

}

Figure 21 - The flow of this Iterative Methodology
approach for teaching the concept of a class.

The illustrated species will be modeled as a UML
class, which will end the abstract step of this cycle.
The concrete step will follow immediately when the
teacher writes the class represented in the UML. The
cycle is then complete, and the next concept, that of
an object, will follow the same steps. The Ten
Categories of Aristotle can also be used in this
approach similar to how it was used in the previous
approach. It can be introduced before the first
modeling with UML and applied to the construction
of a table such as table 1. The table can then be used
to support the design of the UML model.

After each cycle, the students will be able to grasp
the equivalence between the concrete entity, its UML
model, and the code.

7. CONCLUSION

This paper demonstrated the correlation between
Object-Oriented Paradigm and the classic Trivium.
This correlation hints towards Trivium being a
promising teaching tool for introducing the 0O

programming paradigm. In face of that, two
approaches for teaching this paradigm based on
Trivium classical teaching were proposed in this work.
Although it is not possible to say whether those
approaches are indeed efficient, because they
weren’t tested in real subjects, what goes beyond the
scope of this research, this validation will be
addressed as a future work.

8. ACKNOWLEDGMENTS

Our thanks to the artists of the drawings used in this

papetr.

9. REFERENCES

[1] KOLLING, M (1999). The Problem of Teaching
Object-Oriented Programming, Part 1: Languages.
Journal of Object-Oriented Programming, 11 (8).
pp. 8-15.

[2] CHEAH, C. S. (2020). Factors Contributing to the
Difficulties in Teaching and Learning of Computer
Programming: A Literature Review. Contemporary
Educational Technology, 12(2), ep272.

[3] HADAR, I., HADAR, E. (2006) lterative cycle for
teaching object oriented concepts: from abstract
thinking to specific language implementation.

[4] SIVASAKTHI, M., RAJENDRAN R. (2011) Learning
difficulties of ‘object-oriented programming
paradigm using Java’: students’ perspective.

[S] ARMSTRONG, DEB. (2006). The quarks of
object-oriented development. Commun. ACM.
49, 123-128.10.1145/1113034.1113040.

[6] WIRFS-BROCK, R., WILKERSON, B., WIENER, L.
(1990) Designing Object-Oriented Software.

[7] BYRNE, P, & LYONS, G. (2001). The effect of
student attributes on success in programming.
SIGCSE Bull., 33(3), 49-52,
https://doi.org/10.1145/507758.377467.

[8] ROBERTS, ERIC & ENGEL, G. & CHANG, CARL &
CROSS, J. & SHACKELFORD, R. & SLOAN, ROBERT
& CARVER, D. & ECKHOUSE, RICHARD & KING, W.
& LAU, FRANCIS & SRIMANI, PRADIP & AUSTING,
R.. (2001). Computing curricula 2001: computer
science. ACM Transactions on Computing
Education / ACM Journal of Educational
Resources in Computing - TOCE/JERIC.

[9] BENNEDSEN, J. (2008). Teaching and learning
introductory programming a model-based
approach.

[10] BLUEDORN, H. (1993) What Is the Trivium?

[11] JOSEPH, M. (1948) The Trivium: The Liberal Arts
of Logic, Grammar, and Rhetoric.

[12] SAYERS, Dorothy (1947) The Lost Tools of
Learning.

[13] COMENIUS, J. A (1649) Magna Didactica.

[14]TEIRA-LAFUENTE, J., GIL-GONZALEZ, A.B,
REBOREDO, A.(2021) From Trivium to Smart
Education. In: Herrero, A., Cambra, C., Urda, D.,
Sedano, J., Quintian, H., Corchado, E. (eds) The
11th International Conference on EUropean
Transnational Educational (ICEUTE 2020). ICEUTE
2020. Advances in Intelligent Systems and
Computing, vol 1266. Springer, Cham.
https://doi.org/10.1007/978-3-030-57799-5 2.

[15] GRIES, D. (2002). Where is programming
methodology these days? SIGCSE Bulletin
(Association for Computing Machinery, Special
Interest Group on Computer Science Education),
34(4), 5-7.

[16] BUDD, T. (2000) Understanding Object Oriented
Programming with Java.

[17] STUDTMANN, P ,(2012) Aristotle’s Categorial
Scheme, in Shields (ed.) 2012, pp. 63—80.

[18] HALPERN, J., HARPER, R., IMMERMAN, N.,
KOLAITIS, P., VARDI, M., & VIANU, V. (2001). On
the Unusual Effectiveness of Logic in Computer
Science. Bulletin of Symbolic Logic, 7(2), 213-236.
doi:10.2307/2687775.

[19] KOG, H.; ERDOGAN, A.M.; BARJAKLY, Y.; PEKER, S.
UML Diagrams in Software Engineering Research:
A Systematic Literature Review. Proceedings
2021, 74, 13.
https://doi.org/10.3390/proceedings2021074013

[20] KNUDSEN, J. L., & MADSEN, O. L. (1988).
Teaching object-oriented programming is more
than teaching object-oriented programming
languages. ECOOP '88 European Conference on
Object-Oriented Programming, Oslo, Norway. 21-40.

https://doi.org/10.1145/507758.377467
https://doi.org/10.1007/978-3-030-57799-5_2

