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Resumo

As instruções atuais para ensinar habilidades cognitivas de programação apresentam lacunas

em identificá-las, estruturá-las e sequenciá-las. Os novatos no Curso de Introdução à

Programação (CS1) geralmente têm níveis diferentes de conhecimento prévio e habilidades

de resolução de problemas amplamente variadas. Alunos que possuem algum contato

prévio com programação em estágios anteriores ao CS1 podem apresentar mais facilidade

de assimilar o conteúdo. Por outro lado, alunos que não tiveram essa experiência podem

apresentar dificuldades no aprendizado e devem receber mais atenção dos educadores.

Em geral, esse aprendizado por parte de alunos com diversos níveis de conhecimento é

impactado por variados níveis cognitivos até então pouco explorados. A falta de uma

correta compreensão desses níveis e a escassez de instrumentos confiáveis e válidos para

um atendimento personalizado podem ter sérias implicações no ambiente de ensino em

CS1. Cerca de um terço dos alunos matriculados no CS1 geralmente acabam reprovando

ou desistindo. Este fato induz a desmotivação nos alunos, e a desconfiança destes

cursos superiores pela comunidade acadêmica. Assim, é essencial preencher as lacunas

de conhecimento sobre a identificação/segmentação de quais habilidades cognitivas estão

envolvidas no aprendizado de programação, bem como, propor instrumentos confiáveis

para medi-la e fomentá-las. Desta forma, esta pesquisa tem como objetivo identificar,

medir e fomentar habilidades cognitivas em iniciantes em programação por meio de um

instrumento confiável, adaptativo e empiricamente válido. Este instrumento determina o

nível de desafio apropriado de acordo com o nível de habilidade do aluno. Para tanto,

identificamos habilidades cognitivas de programação e as abordagens para promover/medir

tais habilidades. Assumimos que sequenciar as habilidades cognitivas envolvidas no

aprendizado da programação por meio do Domínio Cognitivo da Taxonomia Revisada de

Bloom determina o nível de desafio correto em um instrumento de avaliação. Por meio

desta abordagem, criamos um banco de itens e analisamos os conteúdo e semântica desses

itens. Por meio das Teorias de Mensuração, calibramos o banco de itens e avaliamos a

consistência interna do instrumento. Além disso, analisamos a relação entre as habilidades

cognitivas de programação e a capacidade do participante em produzir código. Integramos a

seleção adaptativa ao instrumento criado a fim de melhorar a seleção dos itens e a estimativa
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das habilidades dos participantes. Por fim, investigamos se a promoção de habilidades

cognitivas de programação melhora o desempenho da escrita de código para iniciantes.

Como resultados, fornecemos uma abordagem para sequenciar as habilidades cognitivas

de programação a fim de promovê-las e medi-las. Oferecemos instrumentos confiáveis e

adaptativos, que fomentam e medem habilidades cognitivas em novatos em programação

de forma incremental. Além disso, obtivemos evidências empíricas sobre a influência das

habilidades cognitivas promovidas pelos instrumentos sobre o desempenho dos participantes

na escrita de código. Os resultados nos dão indícios que o aprendizado pode ocorrer de

forma linear à medida que os alunos avançam nos níveis cognitivos na Taxonomia Revisada

de Bloom. Concluímos que o desempenho cognitivo de iniciantes em programação bem

sucedidos, em tarefas de escrita de código, pode estar interligada com as habilidades

fomentadas pelo instrumento. Além disso, a escolha de itens administrados pelo instrumento

adaptativo determina uma redução na quantidade de itens e uma sequência adequada para

determinar o nível de habilidade do sujeito. Os resultados desta pesquisa podem contribuir

para a prática de ensino e aprendizagem em CS1, por fornecer um instrumento que permitirá

aos professores de programação coletar evidências de dificuldades iniciais de programação

de forma eficiente. Os professores podem fornecer atendimento personalizado indicando

questões de acordo com o nível de habilidade do aluno para compensar suas dificuldades.

Palavras-chave: Habilidades Cognitivas de Programação. Fomentação. Mensuração.

Taxonomia Revisada de Bloom. Teoria de Mensuração.
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Abstract

The current instructions to teach cognitive programming skills have gaps in identifying,

structuring and sequencing them. Novices in the Introduction to Programming Course

(CS1) often have different levels of prior knowledge and widely varying problem-solving

skills. Students who have some previous contact with programming in stages prior to

CS1 may find it easier to assimilate the content. On the other hand, students who have

not had this experience may have learning difficulties and should receive more attention

from educators. In general, the learning of students with different levels of knowledge

is impacted by several cognitive levels, which, until now, has been little explored. A

lack of the correct understanding of these levels and the need for more reliable and

valid instruments for personal assistance can have serious implications in the teaching

environment in CS1. About one-third of the students enrolled in CS1 usually end up

failing or dropping out. This fact leads to students’ demotivation and distrust of these

higher education courses by the academic community. Thus, it is essential to fill in the

gaps in the knowledge about the identification/segmentation of which cognitive skills are

involved in programming learning and propose reliable instruments to measure and foster

them. Thus, this research aims to identify, measure, and foster cognitive skills in novices in

programming through a reliable, adaptive, and empirically valid instrument. This instrument

determines the appropriate challenge level according to the student’s skill level. To do

so, we identify cognitive programming skills and approaches to foster/measure such skills.

We assume that sequencing the cognitive skills involved in programming learning through

the Cognitive Domain of Bloom’s Revised Taxonomy determines the correct challenge

level in an assessment instrument. Through this approach, we created an items bank and

analyzed the content and semantics of these items. Using Measurement Theories, we

calibrated the items bank and assessed the instrument’s internal consistency. In addition, we

analyzed the relationship between cognitive programming skills and the participant’s ability

to produce code. We integrated adaptive selection into the created instrument to improve

the item selection and the estimation of participants’ abilities. Finally, we investigated

whether fostering cognitive programming skills improves code writing performance for

novices. As a result, we provide an approach to sequencing cognitive programming skills
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to foster and measure them. We offer reliable and adaptive instruments that incrementally

foster and measure cognitive skills in programming novices. In addition, we obtained

empirical evidence on the influence of the cognitive skills fostered by the instruments on

the participants’ performance in writing code. The results indicate that learning can occur

linearly as students advance in cognitive levels in Bloom’s Revised Taxonomy. The cognitive

performance of successful novice programmers in code writing tasks may be interconnected

with the skills fostered by the instrument. In addition, the item choice managed by the

adaptive instrument determines a reduction in the number of items and an adequate sequence

to determine the subject’s skill level. These research results can contribute to teaching and

learning practice in CS1 by providing an instrument that will allow programming educators

to collect evidence of initial programming difficulties efficiently. Educators can assist by

assigning questions according to the student’s skill level to compensate for difficulties.

Keywords: Cognitive Programming Skills. Fostering. Measurement. Bloom’s Revised

Taxonomy. Measurement Theories.
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For our present troubles are small and won’t last very long. Yet they produce for us a glory

that vastly outweighs them and will last forever! So we don’t look at the troubles we can see

now; rather, we fix our gaze on things that cannot be seen. For the things we see now will

soon be gone, but the things we cannot see will last forever.

2 Corinthians 4:17-18.
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Chapter 1

Introduction

In this chapter, we present the Introduction to Programming Course (CS1) as the main

research topic. In Section 1.1, we provide a brief background on measuring and fostering

cognitive skills in CS1. In Section 1.2, we discuss the search problem. In Section 1.3, we

present the objectives. In Section 1.4, we describe the research methodology, presenting the

research phases and questions. In Section 1.5, we present the related work. In Section 1.6, we

present the contribution of this doctoral research. Finally, Section 1.7 presents an overview

of this thesis’s organization.

1.1 Contextualization

Computer Science (CS) programs in Higher Education have programming courses as their

central focus. One of the main courses is called CS1. CS1 can be challenging for novices

because it conventionally covers problem-solving skills, basic programming concepts,

syntax, and semantics of a programming language to formulate solutions [3].

Despite advanced teaching and learning practices in CS1, some instructors still adopt

traditional teaching practices. In this model, teaching in CS1 consists of theoretical classes,

pseudocode examples, and subsequent resolution of difficult-to-assimilate problems. The

instructor focuses on a specific series of commands in a programming language. The

instructor selects exercises as examples, often presenting them in a non-practical context.

This practice may be challenging to create images and mental models that help students

build algorithms [85].

1
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In addition to this teaching model, learners start CS1 with a wide range of skill

levels, particularly their prior knowledge of programming and problem-solving skills [109].

In the early stages of a programming course, low-achieving students find programming

difficult [125]. Generally, learners need help during problem analysis, planning, and

solutions design [121].

Students need help to analyze the flow of a program. In addition, they need help to correct

errors and debug programs, often relying on help from other colleagues to solve problems

and correct errors. The most critical activity for learners is understanding how to create their

programs while learning how to program [109]. Therefore, students write programs after

learning syntax rules and some examples. However, educators need to emphasize precursor

skills for writing code.

Even after going through CS1, studies show that learners still have serious problems

applying some programming concepts, considering it a complex task [77]. Studies also show

that most learners have their programming knowledge consolidated only at the end of the

second programming course [77, 109]. For this reason, programming teaching is considered

one of the most significant challenges in Computing Education [77, 85].

1.2 Problem

Learning a programming language requires a basic understanding of constructs and syntax

and synthesizing to apply those constructs in new ways. These components tend to be treated

indiscriminately by educators [125]. For example, to draw a parallel with another field,

imagine being given basic instructions on using scissors and, simultaneously, being asked

to use the scissors to construct a dress skillfully. For many learners, acquiring and applying

knowledge in rapid succession presents a different challenge than those found in less applied

courses [109].

Students who have previous contact with the CS field before entering a CS1 course may

find it easier to assimilate the content. For students with no previous contact with CS, the

effort of the new programming language syntax and developing algorithms for unknown

problems should be given more attention by educators. Therefore, students need to master

programming construction and problem-solving knowledge. The educator’s challenge is to
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provide enough support for inexperienced students in one or both domains to reduce learning

difficulties [109, 121].

In programming learning, a significant factor affecting learning comes from adopting

new programming constructs [138]. Introductory languages tend to have similar sets

of functional constructs to learn, including (but not limited to) variables and arithmetic,

assignment, selection, repetition, functions, and data structures. Each of these concepts will

involve learning syntax and usage. Unfortunately, the syntax presents complexities that take

time for students to master, for example, the difficulties with the variables’ declaration. A

student must include a keyword representing the variable’s data type before providing the

variable name during the declaration in many introductory programming languages, such as

C or Java. In later uses, adding the data type will reallocate the memory associated with

the variable. It is a pattern shift that the learner must understand before they can write code

freely. In addition to the syntactic rules, the learner must understand each new construction’s

functionalities, restrictions, and resources [109, 125].

Individually, syntax and usage will contribute to student learning. In combination, the

potential to overwhelm a student is high. Syntax and functionality exist for learners in other

contexts—mathematical expression or composition; however, the novice programmer must

take extra care. Learners often use new programming constructs with new problems soon

after the educator presents them. The task can be daunting if the learner cannot handle the

syntax and programming functionality while involved in the problem-solving process [125].

Students with previous programming and problem-solving experience may not feel the CS1

impact. Their experience might help them overcome obstacles in learning the syntax and

semantics of the programming language. Novices can only sometimes overcome these initial

challenges.

In addition to basic knowledge of program constructs, programming requires procedural

skills to perform tasks with these constructs. Learning to program also requires learning to

apply multiple skills, and CS1 instruction lacked adequate instruction in these skills [137]. In

traditional teaching, educators focus on writing code and superficially promote other skills.

Several research studies support the premise that people would learn to program more

effectively and efficiently if they spent more time decoding code (reading, tracing, and
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debugging) than writing code [31,51,71,72,115,120,137]. The learning progression 1 starts

with low-risk deconstruction activities like exploring, identifying, comparing, and debugging

before activities that require writing code [51].

In addition, another problem found in the traditional teaching approach is a possible

consequence of the need for more knowledge about the diversity of cognitive levels. The

traditional approach forces students to follow a learning pace imposed by educators. This

condition negatively influences those who cannot fully master the content and those who

already know how to program and need to wait for the rest of the class. On the other

hand, when it does not allow learners with difficulties to have time to master the content,

it increases their differences from more advanced colleagues [88].

To address these needs and make learners adopt more effective study methodologies,

programming educators must make decisions that guide their pedagogical practices. The

educators must organize instruction and learning activities that help students obtain the

necessary knowledge for the course (going beyond the content exposition in the classroom).

It is necessary to continuously use specific educational tools that give example concepts and

bring dynamic explanations of the theory when the student is studying without the educator’s

supervision [10].

Adopting these practices and offering learning conditions to students according to their

pace, learners must periodically ask questions indicated by the educator in the learning

activity. Depending on the subject’s limitations, the tutor/monitor proposes questions to

reinforce learning. However, the questions’ sequence/number may not suit the learner’s

skill level, so educators need to revise them. In the assessment, educators measure the

learner’s performance using instruments that may contain questions that need to be more

discriminating between learners with low/high ability [88].

Indicating and proposing a question is a complex task, which may lead to several

problems related to the motivation or demotivation of students. It is necessary to consider

the learner’s skill level to address tasks properly. If the item is too complex, instead of

fostering/reinforcing learning/support, it may discourage learners with low ability. If the

1Learning progressions describe how the skills might be demonstrated, both in their early forms and

increasingly advanced forms. Educators must be able to identify the behaviors that relate to these skills if

they are to intervene at the appropriate levels in the learning [99].



1.3 Objectives 5

item is too easy for her level, it may be boring for high-ability learners. Suppose the item

offers little information to the skill estimates. In that case, it may influence the learner

to give up practicing the exercises. The exact process occurs for assessment activities. A

small/very discriminating item can overestimate or underestimate the individual’s ability,

directly influencing the subject’s failure rate [8, 14, 101].

Given this scenario, we have the following problems: how do we identify cognitive skills

in programming? Is it possible to sequence them? How to measure them? Moreover, how

to foster them? Cognitive skills in programming are those introduced in developing a more

structured skill, that is, skills that must be measured and fostered in CS1 to make the subject

skilled in writing code. To achieve this goal, we need to know which cognitive skills are

involved in this process and how to organize them sequentially. The sequence of cognitive

programming skills involves a process so that knowledge of each skill can be demonstrated

and built upon knowledge of previous skills. So, this sequence directly affects instructional

design in CS1. Finally, once we know what cognitive skills in programming are and how to

sequence them, we must conduct an instructional design to measure and foster them in CS1.

However, we need a consensus on how institutions should work on cognitive skills in

CS1. We still need a solution to identify and sequence the cognitive skills in writing code.

We need to expand the development of reliable instruments to foster and measure such skills

to identify students’ limitations in CS1 [78, 85]. Reliable instruments present items that

are well understood and suitable for measuring the desired skill [8]. Therefore, there is a

need for research that provides a better understanding of cognitive programming skills and

an investigation into approaches to foster and measure these skills, allowing educators to

identify early failures of novices in CS1.

1.3 Objectives

This research aims to identify, measure, and foster novice programmers’ cognitive skills

through a reliable, adaptive, and empirically valid instrument. This instrument determines

the appropriate challenge level according to the learner’s skill level. We defined the following

specific objectives to accomplish this general research objective:

• SO1. To identify cognitive programming skills;
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• SO2. To identify approaches to measure cognitive programming skills;

• SO3. To identify approaches to foster cognitive programming skills;

• SO4. To sequence cognitive programming skills to determine the appropriate

challenge level in an assessment instrument;

• SO5. To develop an item bank with content and semantics analysis that include

cognitive programming skills’ indicators;

• SO6. To calibrate the item bank in the information terms they provide regarding the

specific psychological construct assessed;

• SO7. To evaluate the internal consistency of the item bank through measurement

theories;

• SO8. To investigate which cognitive programming skills are relevant to the

participant’s ability to program;

• SO9. To integrate adaptive selection through algorithms that improve performance in

estimating students’ abilities;

• SO10. To investigate whether fostering cognitive programming skills improves novice

code-writing performance.

1.4 Methodology

This research is a partnership between the Software Practices Laboratory (SPLab)

(Appendix A) and the Laboratório de Neuropsicologia Cognitiva e Inovação Tecnológica

(LabNEUROCIT) (Appendix B). This research (Appendices C, D, E) proposes to

automate approaches from an instrument that raises awareness of introductory programming

difficulties and aims to operationalize the knowledge of work rules and expert reasoning.

The research is applied, as it involves local interests [48]. This research aimed to

generate knowledge for practical application and aimed at solving specific problems. As for

the objective, this research is explanatory [118], as we described and identified skills that

determine or contribute to a better performance in novice programmers. As an approach, this
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research is quantitative [79] because we measured/classified/analyzed programming skills

and, therefore, it was necessary to use statistical resources and techniques.

At the end of this doctoral research, we investigated whether improving current practices

in measuring and fostering cognitive skills in novice programmers is possible. We divided

this research into six phases:

• Phase 1. Through a Systematic Literature Mapping (SLM), we identified the cognitive

programming skills and the existing strategies to measure and foster these skills. This

SLM included studies on cognitive programming skills and survey/categorization that

measure and foster such skills. At this phase, we have achieved the following specific

objectives: SO1, SO2, and SO3. We investigated the following research questions

(RQs):

– RQ1. What are the cognitive programming skills?

– RQ2. How to measure cognitive programming skills?

– RQ3. How to foster cognitive programming skills?

• Phase 2. We adapted Bloom’s Revised Taxonomy cognitive domain for programming

teaching, sequencing the cognitive programming skills in this adaptation. Then, we

developed and applied a survey to an expert group in CS1 to theoretically evaluate

this adaptation. At this phase, we have achieved the following specific objective: SO4.

We investigated the following research question:

– RQ4. How to sequence the cognitive skills involved in introductory

programming learning to determine the appropriate challenge level in an

assessment instrument?

• Phase 3. We designed an instrument based on the adaptation Cognitive Domain

of Bloom’s Revised Taxonomy for programming teaching. Then, we designed and

applied a survey to advanced programmers, educators, and CS1 experts to assess the

item’s semantics and content in the instrument. We have achieved this phase’s specific

objective: SO5. We investigated the following research questions:

– RQ5. Does the instrument have items with appropriate semantic analysis?
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– RQ6. Does the instrument have items with appropriate content analysis?

• Phase 4. We applied the instrument to a novice programmer’s sample. Moreover, we

calibrated the items bank present in the instrument to obtain information about their

psychometric properties. The item bank calibration consists of applying the items,

collecting data, choosing the response model and the calibration method, and preparing

and interpreting the scale. We evaluated the instrument’s internal consistency through

the Measurement Theories. Finally, we investigated the relationship between cognitive

programming skills and the participant’s ability to program. We have achieved the

following specific objectives at this phase: SO6, SO7, and SO8. We investigated the

following research questions:

– RQ7. Does the instrument have items with appropriate psychometric properties?

– RQ8. Does the instrument have appropriate internal consistency?

– RQ9. Which of the cognitive programming skills present in the instrument has a

strong correlation with the participant’s ability to program?

• Phase 5. We presented the adaptive selection’s integration into the assessment

instrument to improve the measurement of cognitive programming skills. We have

achieved this phase’s specific objective: SO9. We investigated the following research

question:

– RQ10. Which adaptive algorithm has better accuracy in estimating cognitive

programming skills?

• Phase 6. We presented an exploratory investigation into the instrument’s validity for

measuring introductory programming skills. We have achieved this phase’s specific

objective: SO10. We investigated the following research question:

– RQ11. Does the instrument that fosters cognitive programming skills improve

the code-writing performance of novices?
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1.5 Related Works

In this section, we report primary studies that analyze patterns of relationship/grouping

between different cognitive skills investigated to improve the teaching and learning process

in CS1. Among the main works, the following approaches/theories stand out: Seven

steps [56], Cognitive abilities to improve CS1 outcome [4], and instructional theory for

introductory programming skills [137].

Seven steps foster structure and guidance on how to approach a problem. The first four

steps focus on creating an English algorithm, and then the remaining steps are to translate

that algorithm into code, test the algorithm and debug failed test cases. This method gives

students a way to solve problems and ideas about what to do if they get stuck during the

process. Furthermore, it provides a way for instructors to work with examples in class that

focus on the code-writing process. Educators show how to create the code rather than show

an example of the code [56].

Other authors summarized their findings and listed cognitive skills in programming [4].

Cognitive skills in programming can translate into the existence or not of underlying

cognitive skills, which may be responsible for different perceptions about the difficulty of

programming phases. The skills highlighted by the authors are: i) reading and understanding

the problem; ii) resolving an instance of the problem manually; iii) generalizing the solution;

iv) developing an algorithm that solves the problem; v) algorithm simulation; vi) translating

the algorithm into a programming language; vii) compiling; and viii) test.

Xie et al. [137] created an instructional theory for introductory programming skills.

This theory proposes the development of specific and incremental skills to avoid overloading

students. These skills include: reading semantics, writing semantics, reading models, and

writing models. First, students develop language-related skills by tracking and writing the

correct syntax. Then, students start using the models, understanding common patterns in

the code, and writing programs that use those models. The most notable part of this theory

is different from the four specific skills. However, the emphasis is on being rigorous and

explicit on how skills are defined and ordered in instructions.

• Reading Semantics: refers to the ability to precisely control code and predict the effect

of syntax on program behavior. Reading semantics requires the student to trace the
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code and does not require other skills. This practice consists of examining hard-coded

questions in which the student determines the intermediate and final program states for

a predefined piece of code;

• Writing Semantics: after practicing reading semantics and receiving feedback from the

correct solution and an explanation, students begin to learn to write the correct syntax.

Writing semantics refers to translating unambiguous natural language descriptions of

language constructs into syntax that will compile and run as expected;

• Reading Templates after learning to read and write semantics for a new construct,

a student then transitions to using standard code usage pattern models to apply

knowledge of this construct. The reading model identifies reusable abstractions of

programming knowledge (which we will refer to as models) and maps them to a goal.

The theory taught four models: variable swapping, digit processing, floating equality,

and max./min. Instructions for reading the template usually start with an example or

visualization to make the template objects and steps more concrete;

• Writing Templates requires the student to begin with an ambiguous description of the

problem. Then identify a model they can use to solve the problem and implement each

component of the model in code. In parallel, the write semantics instruction specifies

rules to avoid syntactic errors. In this way, the write model statement specifies rules

to avoid logical errors that would be syntactically correct but would result in code that

would not work with the model specification.

Based on this theory, the authors [137] have created learning materials for a subset of

programming concepts. The materials included instructional content, hands-on exercises

with feedback, and a post-test covering the four skills. Then they conducted an exploratory

mixed-method assessment of this curriculum with two groups of novice programmers to

explore the theory’s validity more broadly. They compared exercises’ completion rate, error

rates, ability to explain code, and involvement in learning the program. The study indicated

that teaching skills improved the practical exercises’ completion rate, decreased errors, and

post-test comprehension.

The works listed above have some limitations. Although these works research a

method that helps students solve problems systematically, they do not provide tools to
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foster cognitive skills in CS1 programming. In addition to identifying and sequencing

cognitive programming skills, our research intends to develop instruments that measure

and foster these skills to improve programming teaching in CS1. Although Xie et al.

has developed instruments to improve the instructional design in CS1. They still need

to analyze the items’ psychometric properties of the Practical Instrument and Assessment

Instrument to determine the construct’s validity [137]. However, they could have measured

students’ results with different prior knowledge, learning contexts, and motivations. That

is, they did not measure the instrument’s validity. Other cognitive skills may be involved in

programming learning in addition to those listed in other works.

1.6 Contributions

Although related work has identified specific skills that novices learn, current theories

of CS1 instruction have limitations in sequencing them. Thus, as this research’s first

contribution, we proposed adapting the cognitive domain of Bloom’s Revised Taxonomy.

This proposal identifies and sequences different introductory programming skills that novices

can learn sequentially not to overwhelm students. This proposal emphasizes the adaptation

of cognitive skills for teaching programming and the explicit rigor of how skills are defined

and ordered in instruction. In such a way, this rigor allows the adaptation to help design

instruments and learning materials in CS1.

The second contribution of this research is the instrument that we developed based on

the proposed adaptation of the cognitive domain of Bloom’s Revised Taxonomy. To provide

empirical evidence for this proposal, we created an instrument and assessed its semantic and

content validity. The instrument comprises 750 items that foster and sequentially measure

each of the 19 skills for the introductory concepts in CS1. Then, through an empirical study,

we obtained the instrument’s internal consistency, the items’ psychometric properties, and

which skills were strongly related to the ability to write code.

The third contribution of this research is integrating adaptive selection into the

instrument. This integration improved the items’ administration and the participants’ ability

estimation. Computerized adaptive instruments do not need to select all items present in the

bank. Consequently, the instrument application time is reduced and maintains the same level
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of confidence as a conventional instrument, significantly reducing the fatigue of long tests.

Another advantage is selecting items according to the subject’s skill level, and this advantage

thus avoids selecting an item that brings little information for the subject’s evaluation.

The fourth and final contribution of this research is the instrument’s assessment. We seek

to understand the impact of explicit instruction and the practice of introductory programming

skills in novices. We developed hypotheses based on our proposal that predicted that students

who received practice in each of the 19 skills fostered by the instrument would be able to

perform better in code writing. To evaluate this hypothesis, we experimented with novice

programmers, where the experimental group learned with the instrument that reflected our

proposal, offering practice for all skills. In contrast, the control group learned from material

that provided practice only for the writing-related skill. We found evidence that those who

received practice in all skills performed better in writing code, producing responses that

reflected a greater depth of understanding.

The implications of this research extend to academia and industry. As a more diverse

group of students begin CS1, there is a need to make instruction more effective. As a result,

a greater need to address academia and industry about how people learn to code. However,

current CS1 instructions fail, starting with “hello world” or another similar command. Later,

students write code they cannot understand. These limitations include a need for more

structure around knowledge related to different programming skills and how to sequence

them. This gap between research and practice makes CS1 instruction difficult.

Specific learning taxonomies, such as the one proposed in this research, can help

support instructional design in CS1. Previous approaches/theories could be more precise

for developing instruments and learning materials. We can solve this gap with our proposal

that incrementally fosters and measures the progression of cognitive skills in programming

and avoids overloaded students.

1.7 Thesis’ Outline

In Figure 1.1, we present how we organize the remainder of this thesis.
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Figure 1.1: Thesis’ Outline.

• In Chapter 2, we report the research background of this work, namely: competency

model, taxonomies, measurement theory, and computerized adaptive testing;

• In Chapter 3, we describe the cognitive programming skills found in the literature and

the approaches and instruments that measure and foster such skills;

• In Chapter 4, we present a proposal for adapting Bloom’s Revised Taxonomy

cognitive domain for the context of programming teaching. In addition, we present

the cognitive skills’ association found in the literature within the adapted taxonomy.

Finally, we theoretically analyze this proposal through a survey applied to an expert

group in CS1;

• In Chapter 5, we report an instrument created based on Bloom’s Revised Taxonomy

cognitive domain and adapted for programming teaching. Then, we analyzed the

item’s semantics and content present in this instrument;

• In Chapter 6, we analyzed the psychometric properties of the item present in

the instrument and their internal consistency through measurement theories. We

performed a correlation test on the cognitive programming skills (present in the

instrument) and the participant’s ability to program;

• In Chapter 7, we present the adaptive selection integration into an assessment

instrument to improve the measurement of cognitive programming skills;
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• In Chapter 8, we present an exploratory investigation of the instrument’s validity for

measuring introductory programming skills.

• Finally in Chapter 9, we present the conclusions and future work.



Chapter 2

Background

In this chapter, we report the research background covering the following topics for the

understanding of this thesis: Competency Model (Section 2.1), Taxonomies (Section 2.2),

Measurement Theory (Section 2.3), and Computerized Adaptive Testing (Section 2.4). Such

theories, taxonomies, and models serve as theoretical support for the conclusion of this

thesis.

2.1 Competency Model

ACM Computing Curricula 2020 (CC2020) presents a competence idea as a practical

educational objective that enhances the Knowledge-Skill-Disposition (K-S-D) framework,

which was popularized in the IT2017 report1 [24]. Although different CS curricula have

explored computing knowledge extensively, skill and disposition received significantly less

focus [46, 126, 131].

The K-S-D dimensions compose the competence observed when a person performs a

task [24]. A competency specification lists the knowledge, skills, and dispositions visible

in performing a task with a purpose in a work context. Figure 2.1 illustrates the conceptual

competence framework.

In the K-S-D framework, knowledge is the “know-what” dimension of competence,

being a fact-based understanding. This dimension reflects the topics the educators list

1IT2017 report is the second edition of the ACM/IEEE-CS Curriculum Guidelines for Undergraduate

Programs in Information Technology [105].

15
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as courses in their syllabuses. Academic departments divide and balance content across

courses and develop an academic program. Knowledge designates a core concept essential

to competence. However, a concept is static and inert; it must be performed with the skill to

become a behavior.

Figure 2.1: Conceptual Structure of the CC2020 Competency Model [24].

Skills introduce the ability to apply knowledge to accomplish a task actively. Therefore, a

skill expresses a knowledge element as performed with proficiency to define the “know-how”

dimension of competence. Skills need time and practice to develop. Therefore, improving

skills generally requires engaging in a hierarchical sequence of higher-level cognitive

processes. CC2020 adopted Bloom levels of a cognitive process to specify the skill required

to perform any task successfully [24].

The evaluation process is primarily indirect and observes the competence dimension

through the result. The activation of “know-what” by “know-how” combines knowledge and

skills. As such, it only makes sense to use any knowledge item in a competency statement

when applied at a specified or observed level of ability—such as levels in Bloom’s cognitive

process. Therefore, each knowledge element and the required skill level work together with

the competency specification.

Dispositions frame the “know-why” of competence and prescribe a character

temperament in task performance. The provisions regulate the behavior of using the

“know-what,” which becomes the “know-how.” Dispositions regulate knowledge and skill,

linking their “optimal” or “proper” application to context.

Dispositions are habitual inclinations involving socio-emotional tendencies,

predilections, and attitudes. Dispositions control whether and how an individual is

inclined to use their abilities. The provisions can denote the values and motivations that
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guide knowledge application, in which they designate the quality of knowledge that is an

indicator of a standard of professional performance.

The task uses knowledge and provisions for practical application. The task provides

the setting for people to demonstrate their desires in situations where they moderate their

choices, actions, and efforts to achieve success efficiently and effectively. The task involves

the purposeful context of the competence, showing the knowledge, skills, and integral

dispositions. A task definition is a pragmatic rule that reflects professional practice relevant

to the specific view of graduate programs. In this way, task explanations provide a context

for the program to create a methodology that allows trainees to demonstrate capability as

Information Technology professionals.

2.2 Taxonomies

We can use Learning Taxonomies in various contexts and with distinct purposes, such as

to increase students’ awareness, improve understanding and study skills [27], or improve

critical thinking [94]. In addition, Learning Taxonomy is an essential tool for evaluating

student performance. There are numerous taxonomies related to CS teaching: Bloom’s

Cognitive Domain, Unified Domain Taxonomy, and Structure of the Observed Learning

Outcome (SOLO). In this work, we will apply Bloom’s Revised Taxonomy as a reference, as

argued by [70], that a professional programmer must be able to work at all cognitive levels.

2.2.1 Bloom’s Revised Taxonomy

Bloom’s Taxonomy is a conceptual framework designed to help define learning objectives.

It is a model for educators to adopt in the practice and understanding of any content, helping

them plan and evaluate. Although this taxonomy is suitable for Higher Education, few

educators use it because they need to learn how to use it [43, 91].

However, Bloom’s Taxonomy is a framework for classifying statements under which they

help students learn through instruction [68]. The definition of educational goals guides the

development of practices and activities that progressively foster students’ cognitive learning.

The educational goals are divided by taxonomy according to the cognitive, affective, and

psychomotor specific domain development [80]. Table 2.1 presents a summary of each
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domain’s characteristics.

Domain Features
Cognitive Related to learning, mastering knowledge. It involves acquiring new

knowledge, intellectual development, skills, and attitudes. Include

knowledge of specific facts, standard procedures, and concepts that

constantly stimulate intellectual development. The goals are grouped into

six categories and presented in a hierarchy of complexity and dependency

(categories), from the simplest to the most complex. The categories

of this domain are Knowledge; Understanding; Application; Analyze;

Synthesis; and Evaluation.
Affective Related to feelings and postures. It involves categories linked to the

development of the emotional and affective areas, which include behavior,

attitude, responsibility, respect, emotion, and values. The categories of

this domain are Responsiveness; Reply; Appreciation; Organization;

and Characterization.
Psycho-motor Related to specific physical abilities. Bloom and his team did not define

a taxonomy for the psychomotor area. However, others did and arrived at

six categories that include ideas related to reflexes, perception, physical

abilities, improved movements, and non-verbal communication. The

categories of this domain are Imitation; Manipulation; Articulation; and

Naturalization.

Table 2.1: Bloom’s Taxonomy’s Three Domains’ Features.

To advance to a new category, students need to perform adequately in the previous

category, as each level uses the skills acquired in the previous one to improve. The cognitive,

affective, and psychomotor domains are widely discussed and disseminated at different times

by researchers. However, the cognitive domain is the most popular and widely used. Thus,

we will address only this domain in this thesis. The cognitive domain involves knowledge

and intellectual skills development. Many educators rely on this domain’s theoretical

assumptions to define their educational plans, objectives, strategies, and assessment systems.

Since its creation, the taxonomy has changed to constantly innovate and keep up with the

teaching and learning process evolution. After 45 years, the need for updates to its conceptual

structure arose. Krathwohl and colleagues revised Bloom’s Taxonomy’s original version for
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the cognitive domain [68]. After the review, the taxonomy changed from a structure with

only one dimension to one with two dimensions: Knowledge and Cognitive Processes.

Although the original taxonomy is still the most used, several authors criticized

it [31, 71, 72]. They pointed out difficulties in its use, reporting that the categories are only

sometimes easy to apply, as there is a significant overlap between them. The overlap causes

debates on the order in which the categories analysis, synthesis, and evaluation appear in

the hierarchy. Many works originated from the first release of Bloom’s Taxonomy in the

cognitive domain. However, with the new publications and technologies incorporated into

the educational system, it was necessary to reassess and reread the theoretical assumptions

that supported the original research to assess the need for adaptations.

Among the many revised versions, the most used is that of David Krathwohl [68],

who even participated in developing the original taxonomy in 1956. He was the one who

supervised the expert group (psychologists, educators, curriculum specialists, tests, and

evaluation) and published the taxonomy review report in 2001. This group tried to balance

what existed, the original taxonomy’s structuring, and the new developments incorporated

into education in the forty-odd years of its existence.

The original taxonomy changed from one-dimensional to two-dimensional, separating

nouns and verbs, knowledge, and cognitive aspects. One of the two-dimensional structures

was named the Knowledge Dimension, and the other was the Cognitive Process Dimension.

The knowledge dimension has four types:

• Factual, relates to the essential elements that students must know to become familiar

with the topic to solve problems in it;

• Conceptual, consists of knowing the interrelationships between fundamental elements

of a larger structure that allows them to work together;

• Procedural is the knowledge of how to do something, questioning methods; criteria

for using skills, algorithms, techniques, and methods;

• Metacognitive, relates to cognition recognition in general and breadth awareness and

knowledge depth acquired from a given content.

As for the cognitive learning goals, according to Krathwohl [68], it covers the six
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categories of the original taxonomy; however, renamed to their verbal forms. The Knowledge

category became Remember; understanding became Understand; synthesis became Create

(and was promoted to the highest rank in the hierarchy); application, Analysis, and

Evaluation became, respectively, Apply, Analyze, and Evaluate. Next, we present the

different levels of Bloom’s Taxonomy with their behavior. Remember is the lowest, and

Create is the highest in the Bloom Cognitive Domain.

• Remember refers to learning the material presented; all that is needed is to recall the

appropriate information;

• Understand allows demonstrating work understanding based on knowledge of it.

• Apply uses data, principles, and learned theory to answer a question in a new

environment;

• Analyze breaks the material down into its constituent parts so that its organizational

structure can be understood;

• Evaluate shows the ability to judge the material value for a given purpose based on

definite criteria and fundamentals;

• Create recombines the parts created during analysis to create a new entity different

from the original.

Bloom’s Taxonomy helps the educator decide which action or behavior the student

should perform for a particular activity. Furthermore, Bloom’s Taxonomy helps reach the

proposed objective and organize content coherently in face-to-face or distance learning.

Thus, even keeping the original structure part, the revised taxonomy is better suited to

support new learning methods and take advantage of better educational goals [127].

There are verbs associated with the taxonomy levels. These verbs help to classify an

assessment question into the taxonomy levels. Table 2.2 shows the verb applied in the

programmer’s assessment of code comprehension tasks [63].
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Level Verbs
Remember collect, copy, define, describe, enumerate, examine, identify, label, list,

name, quote, read, recall, retell, record, repeat, reproduce, select, state, tell
Understand associate, cite, compare, contrast, convert, differentiate, discuss,

distinguish, elaborate, estimate, explain, extend, generalize, give, group,

illustrate, interact, interpret, observe, order, paraphrase, review, restate,

rewrite, subtract, trace
Apply administer, apply, calculate, capture, change, classify, complete, compute,

construct, demonstrate, derive, determine, discover, draw, establish,

experiment, illustrate, investigate, manipulate, modify, operate, practice,

prepare, process, produce, protect, relate, report, show, simulate, solve,

use
Analyze analyze, arrange, breakdown, classify, compare, connect, contrast,

correlate, detect, diagram, discriminate, distinguish, divide, explain,

identify, illustrate, infer, layout, outline, point, out, assess, select, separate,

subdivide
Evaluate appraise, assess, conclude, criticize, convince, decide, defend,

discriminate, evaluate, explain, grade, judge, justify, measure, rank,

recommend, reframe, support, test, validate, verify
Create adapt, combine, compile, compose, construct, correspond, create, depict,

design, devise, express, format, formulate, facilitate, improve, integrate,

invent, plan, propose, rearrange, reconstruct, refer, relate, reorganize,

revise, specify, speculate, substitute

Table 2.2: Verbs Used in Code Comprehension Tasks.

Educators can work on some activities at each level present in Bloom’s Taxonomy:

• For example, the Remember level consists of remembering information, knowing

the requirements to write a program, or understanding the language’s syntax. The

Educators can ask the learners to learn about the selection structure; at this level, the

learner should know three selection structure options;

• The second level is Understand and deals with remembering facts and interpreting

them. Learners understand how each selection design works and their behavior at this

stage;
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• The third level is Apply. This competence level consists of applying and using the

knowledge they have learned. The Educators can ask the learners to apply the correct

design to a given problem; the learner can modify the program to add a selection or

modify the existing selection structure in the program;

• The fourth level is Analyze. This level of competence is about seeing patterns and

using them to analyze a problem. The Educators can ask the learners to solve the

problem by applying nested selection or debugging the program selection design;

• The fifth level is Evaluate. This competence level concerns the learner’s ability to

judge the validity or idea quality. The Educators can ask the learners to justify using

the switch statement instead of the if statement.

• The sixth level is Create. This competence level concerns the student’s capability

to extract knowledge from multiple subjects and synthesize this information before

concluding. At this level, the learner should be able to apply selection structures in

appropriate situations.

2.2.2 SOLO Taxonomy

This taxonomy focuses on the students’ characteristics and observable results rather than

the cognitive activity required to produce those results. Thus, the SOLO Taxonomy can be

an excellent strategy for programming assessments to verify novice programmers’ learning

effects. CS research recently studied the SOLO taxonomy about reading and writing

code [49, 61, 89, 102, 117, 135, 137].

The educator can evaluate the student’s code writing according to the following SOLO

taxonomy hierarchy [18]:

• Prestructural [P] substantially lacks programming constructs’ knowledge or is

unrelated to the question;

• Unistructural [U] represents a direct specification translation. The code will be in the

specifications sequence;
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• Multi-structural [M] represents a translation close to a direct translation. The student

may have reordered the code to make a valid solution;

• Relational [R] provides an excellent well-structured program that removes all

redundancy and has a clear, logical structure. The students integrated the specifications

to form a logical whole;

• Extended Abstract [A] used constructs and concepts beyond those required in the

exercise to provide an improved solution.

The SOLO Taxonomy is suitable for measuring different types of learning outcomes.

However, it has some limitations. One of them is that the more refined categorization of

SOLO levels still needs to eradicate the problem of its conceptual ambiguity [22]. Educators

may find it difficult to sort student responses into a category [76]. Classifying students’

responses is also a manual task and requires the vision of many specialists involved in the

process, thus making large-scale applications difficult [61].

2.3 Measurement Theory

We aim to collect data and assess students’ cognitive skills related to our scientific topics

in Education and CS research. Therefore, we use the Measurement Theory, also known as

Psychometric Theory [104], which provides the foundation for evaluating educational tests

and their uses and interpretations. Numbers make it possible to quantify natural phenomena

in scientific studies, and measurement instruments and techniques carry out the quantification

that favors understanding these phenomena when linked to scientific methods.

Measurement Theory has two main statistical approaches to describe an individual’s

characteristics and analyze one’s abilities, namely: Classical Test Theory (CTT) and Item

Response Theory (IRT) [39, 101]. This section provides information about the essential

properties of theories. It determines the psychometric measurement process with details and

compares theories’ models. The earliest measurement theory, CTT, and this theory-enhanced

application, IRT models, are examined from familiar and different viewpoints. This section

emphasizes the importance of constructing, measuring, evaluating, and correctly interpreting

the educational measurement process.
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Validity and reliability are the most fundamental concepts of Measurement Theory.

These concepts provide the basis for judging the technical quality and use appropriateness

and educational interpretations of test results. There is a broad consensus among

measurement experts that while reliability is essential, validity is crucial in evaluating the

uses and inferences of test results. In addition, test results comparability for different

participants or from one occasion to another is also essential [74].

2.3.1 Classical Test Theory

CTT considers the total score of an instrument as a measure to assess a person’s performance.

The total score consists of the person’s actual sum of scores added to the possible

measurement errors made during the instrument application. The correct score would

measure skill in the perfect situation, in which the person will respond to the instrument

based only on their knowledge. That is, without the possibility of random hits and any

external or internal distractor [8, 12].

However, every measurement includes errors during the process, and we need to know

a person’s actual score as there is no strategy to measure it. Measurement errors happen

when we cannot control all factors influencing the measurement process. In addition, system

factors can cause measurement errors [101]. In practice, we minimize errors and produce

reliable items. Therefore, in the CTT, we can consider the answers’ correct number on the

instrument as the total score.

CCT uses norms to interpret an instrument’s score. These norms constitute a reference

for us to interpret and classify the scores, for example, situating the subject position in the

construct measured by the instrument or making comparisons [101, 103]. It is possible

to construct these norms from a large enough population sample. In addition, sampling

techniques, such as the stratified one, serve as a reference for the construction standards.

Thus, the sample is a reference to compare and classify the subjects who will respond to the

instrument [13].

We can use some measures to assess the items’ quality and the instrument through the

score, such as the Biserial Point Coefficient and Cronbach’s Alpha Coefficient [14]. In the

following subsection, we present the main application concepts.
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Biserial Point Coefficient

It is possible to calculate the correlation coefficient between two variables in traditional tests,

one numerical and the other nominal categorical. In this case, the categorical variable has

only two possible values: right and wrong; this variable is called dichotomous. Then, to

calculate the correlation between this categorical variable and a numeric variable, we can

proceed with Pearson’s coefficient, given the sample’s normality. This strategy is called

Biserial Point Coefficient [12].

Biserial Point Coefficient consists of a Pearson’s correlation between dichotomous

variables and the instrument’s score. We used the Biserial Point Coefficient to discriminate

the item instrument’s result. It indicates an item’s ability to differentiate people with weak

and strong abilities in the tested task [8]. Equation 2.1 defines the Biserial Point Coefficient:

Ppb =
XA −XT

ST

√

p

1− p
(2.1)

Where,

XA represents the global average of the respondent’s scores who reached the item right;

XT represents the global average of the instrument’s scores;

ST represents the instrument’s standard deviation;

p represents the respondents’ proportion who reached the item right.

Biserial Point Coefficient estimates the items that most impact the estimated skill. If

an evaluated individual gets this item right, he will have a higher chance of passing the

exam. The biserial Point Coefficient varies between -1 and 1. The closer to 1, the

more discriminating the item, the higher the coefficient value, and the stronger the item’s

correlation with the total score. This value will show that the item is essential for the

instrument. For example, if item 4 has a coefficient of 0.84 and item 5 has a coefficient

of 0.43, then item 4 is more discriminative than item 5. Individuals who get item 4 right are

likely to get better instrument results.

As an example, to estimate the item’s biserial correlation with the instrument’s score, the

following measures must be taken: the use of the ltm package with biserial.color() function,

passing as parameters the score rowSums(data.items), an item data.items[[1]] and informing

that the question is dichotomous level=2, according to an example of R code. In the end,
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the item’s biserial correlation with the score was 0.85, indicating that this item strongly

correlates with the test result by the CTT.

> biserial.cor(rowSums(data.itens), data.itens[[1]],level=2)

[1] 0.8596172

Cronbach’s Alpha Coefficient

Checking reliability while building an instrument is the most time-consuming and

cost-efficient approach. Internal consistency measures the instrument’s reliability. The

Internal consistency examines the items’ homogeneity that composes the instrument,

verifying the relationship magnitude between the items and the total score. Calculating

Internal Consistency from the instrument’s overall score and each item’s score is possible.

Equation 2.2 defines Cronbach’s Alpha Coefficient:

α =
n

n− 1
(1−

∑

S2
i

S2
T

) (2.2)

Where,

n represents the items’ number;
∑

S2
i represents the variances sum for n items;

S2
T represents the global range of test scores.

Internal consistency using Cronbach’s Alpha Coefficient ranges from 0 to 1. Values

closer to 1 indicate that the instrument has appropriate internal consistency [6]. Values

between 0.70 and 0.80 are considered acceptable but with caveats. When the values are

below 0.70, the instrument’s items need to be reassessed by the researcher [8].

It is possible to calculate the Instrument’s internal consistency using ltm package with

cronbach.alpha() function. The following code snippet shows the function cronbach.alpha()

passing as a parameter the items data.items. We depict a syntax example with the output

generated by the function. The result indicates that the alpha value was 0.919. This value is

considered acceptable for the Instrument’s Internal Consistency.
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> cronbach.alpha(data.itens)

Cronbach’s alpha for the data.items data-set

Items: 20

Sample units: 100

alpha: 0.919

2.3.2 Item Response Theory

IRT is a statistical theory used by psychometrics and the educational area for constructing,

evaluating, and validating instruments [8]. The mathematical models depend on the

adopted logistical model and the instrument dimension. In this section, we present the

three-parameter one-dimensional logistic model. We emphasize, through computational

resources, as packages in R, that we can perform all the IRT’s statistical analyses.

We may use IRT to design educational assessment tests, item calibration (characterizing

items by numerical parameter values), and other test development processes. We can also

fit the data into a model. This way, different subjects or the same subject can compare their

abilities at different times, using parameters that are measured statistically, regardless of the

sample used [96].

IRT considers the subject’s response to the set of items to provide estimates for the

assessed skill. The ability estimate, called theta (θ), is related to the subject’s probability

of responding correctly to the items, considering one or more parameters [13]. For this

reason, IRT is also known as Latent Trace Theory. This theory treats constructs as composed

of dimensions with different magnitudes properties that can be measured [101].

A set of hypothetical factors or variables can predict the individual’s behavior toward

an item. Furthermore, the dependency between behavior and skill may be related to a

growing monotonous mathematical function. This function sketches a graph called the Item

Characteristic Curve (ICC) [34] [101].

Item Characteristic Curve

Theta skill is related to the item hitting probability through mathematical functions. These

mathematics functions need to be estimated and are called ICC, which provide information
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about each subject’s probability of getting the item right [101]. ICC is a graph representing

the relationship between the estimated ability and performance on items [13]. Three

properties describe the ICC:

• Slope: item or “parameter a” is estimated together with the other parameters using

maximum likelihood estimation or some point characteristic of the parameters’

posterior distribution. The steeper the curve, the greater the item discrimination. This

parameter describes how many individuals with different abilities differ in the item

correct probability, that is, the power to specify subjects with similar magnitudes in the

latent trait to which it refers, ranging from 0 (not at all discriminative) to 4 (extremely

discriminative);

• Threshold: item or “parameter b” refers to the skill needed by an individual,

calculated from the probability of getting the item right. This parameter ranges from

-4 (easy items) to 4 (difficult items), passing through the value 0 (average items). An

item is easy when the model estimates the difficulty value at lower skill levels, and the

ICC is more to the left on the graph. As for more complex items, the difficulty value

has higher skill levels, and the ICC is positioned more to the right on the graph.

• Asymptote: item or “parameter c” refers to the subject probability with a low ability

to give a correct answer to a problematic item: the chance of an individual hitting the

item with a guess, ranging between 0 and 0.5. Values above 40% of guess probability

are critical, and the researcher should review the item. The model represents this

parameter at the curve’s origin axis, and its extension is proportional to this point’s

deviation value of 0.

Distinct mathematical models can be used depending on the number involved in the

parameters, dimensionality, or items present in the instrument. Equation 2.3 describes

the three-parameter one-dimensional logistic model. The equation determines the subject

probability with Theta skill getting item j right depending on the slope (a), threshold (b), and

asymptote (c).

P (θ) = cj + (1− cj)
1

1 + e−aj(θ−b1)
(2.3)
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Where,

θ represents an individual’s latent trait/skill;

aj represents the item’s slope parameter;

bj represents the item’s threshold parameter;

cj represents the item’s asymptote parameter.

Equation 2.3 is a three-parameter one-dimensional logistic model (3PL) because it uses

the cumulative distribution function of the logistic distribution. IRT uses other distributions

in the standard function, such as the normal or continuous cumulative distribution functions.

The model assesses the slope and threshold parameters in the 2-parameter logistic model

(2PL). In this case, in Equation 2.3, the value asymptote is considered zero [13, 14]. Finally,

the 1-parameter logistic model (1PL) only assesses item threshold, also known as the Rasch

model. In the latter case, the equivalent threshold value starts at 1. Choosing one of these

models depends on the data collected from the real world to the model [101].

We can use the ltm package and tpm() function to estimate the parameters’ values of the

items of the instrument. The following code snippet depicts the calling of tpm() function,

passing the responses of the given items data.items and control through a control value list

with optimized elements by a string ‘nlminb’. Next, we show the function’s output for the

first five items.

> data.tpm <- tpm(data = data.itens, control = list(optimizer = “nlminb”))

Coefficients:

Gussng Dffclt Dscrmn

i1 0.244 1.982 0.635

i2 0.191 0.254 1.896

i3 0.156 1.114 1.718

i4 0.140 0.246 1.078

i5 0.022 -2.765 0.935

The first column corresponds to the instrument items listed in the order of the source

file in the function’s output. In this case, we only print the first five items. Dscrmn column

corresponds to slope parameter. Dffclt column shows the threshold parameter. Finally,
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the Gussng column corresponds to the asymptote parameter. Analyzing the output, we

can observe that item i1 is the most difficult and with the most chances of getting it right

by chance. Item i5 is easier, less discriminating, and less likely to be guessed. Item i2 is

discriminating.

The graph in Figure 2.2 shows five ICC’s, each corresponding to an item, modeled from

Equation 2.3, which we will use as examples to illustrate the parameter’s behavior. The skill

value (Theta θ) can assume any actual number [12]. Generally, the x-axis representing the

skill scale (Theta θ) ranges from -4 to 4. The y-axis represents the item’s probability of

a correct answer ranging from 0 to 1. The lines indicate difficulty level when the correct

answer’s probability is 50%, as the threshold parameter and skill (Theta θ) are on the same

scale. In the example in Figure 2.2, item “3c” is the most discriminating, item “3b” is the

most difficult, and item “1” is the easiest and least discriminatory.

Figure 2.2: ICC’s Example.

We can elaborate the instrument’s ICC’s through the plot( ) function of the ltm package.

The following code shows the plot( ) function call, passing the item parameters.

> plot(data.tpm, legend=T)

We can obtain item parameters through the multiplicity of specialized computer

programs. These programs use nonlinear mathematical functions like the logarithmic

functions that produce ICC. However, the graphical representations of mathematical

functions that relate the item’s response probability to the latent trait’s level or skill [8].
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Latent Variable Estimate

Regardless of the model choice, the IRT generates a standardized scale (mean=0 and standard

deviation=1) called trait or latent ability that can vary, according to threshold parameters,

between -4 and 4. Thus, the IRT estimates the scores using an estimation method [45].

Maximum likelihood procedure estimates the examinee’s ability. It is an iterative

procedure, as in estimating the item’s parameter. It starts with some a priori value for

the examinee’s skill and the known values of the item’s parameters. The procedure used

this data to calculate each item’s correct answer probability. Then, the procedure obtains

an adjustment for the skill’s estimate that improves according to the probabilities calculated

from the test item response. The procedure repeats this process until the adjustment becomes

small enough that the change in estimated ability is negligible, resulting in an examinee’s

ability estimate. This process is repeated separately for each examinee [13]. Equation 2.4

defines the latent trait estimation.

θs+1 = θs +

∑n
i=1 ai[ui − Piθs]

∑n
i=1 a

2
iPi(θs)Qi(θs)

(2.4)

Where,

θs represents the examinee’s estimated ability within s iterations;

ai represents the slope parameter of item i, i = 1, 2, ..., N;

ui is the answer made by the examinee to the item (1 when right and 0 when wrong);

Pi(θs) is the correct answer probability to item i, under the ICC model at skill level θ;

Qi(θs) is the incorrect answer probability to item i under the ICC model at skill level θ.

Unfortunately, there is no way to know the examinee’s actual skill. In this case, the best

procedure is to estimate it. However, one should obtain a standard error of the estimated

skill that indicates accuracy. Applicants can administer the instrument and estimate the

examinee’s θ capacity as often as necessary. With each application, the examinee will have

different estimates for his skill. Standard error measures the θ values variability around the

subject’s value for the unknown ability. This error is estimated using Equation 2.5.

SE(θ) =
1

√

∑n
i=1 a

2
iPi(θs)Qi(θs)

(2.5)
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The term under the square root sign is precisely the denominator of Equation 2.4. As

a result, the estimated standard error results from the by-product of the examinee’s skill

estimate.

Another way to estimate an examinee’s ability is through the Expected A Posteriori

(EAP). EAP derives from Bayesian statistical principles. The term “a posteriori” derives

from the Bayesian concept of posterior probability. This context refers to a posterior

probability distribution of latent trait scores. Specifically, the scores’ predicted distribution

for a given case, given (a) that case’s response pattern and (b) the model’s estimated

parameters [101]. The term “expected” derives from the concept of an expected value. Thus,

an EAP estimate refers to the expected value of the posterior probability distribution of the

latent trait scores for a given case. Equation 2.6 defines the latent trait estimation.

θs+1 = θs +

∑n
i=1 ai[ui − Piθs]

∑n
i=1 a

2
iPi(θs)Qi(θs)

(2.6)

Where,

θs represents the examinee’s estimated ability within s iterations;

ai represents the slope parameter of item i, i = 1, 2, ..., N;

Through the irtoys package and eap() function, we can estimate the abilities of those

examined by a posteriori expectation. This estimator depends on the prior average of all

those examined, guaranteeing the exact estimate. The following code shows eap() function

call, passing: the items’ responses data.items, the items’ parameters already estimated

previously data.items.par$est and the choice of a quadrature object produced in normal

qu=normal.qu(). We show the extract function’s output of the first six examined outputs

using the head(hab) function:

The result above shows the values for the first six students. The est column represents the

skill estimate for each student. The sem column shows the estimate’s standard error. Finally,

column n shows the number of items in the instrument, in this case, 18 items.
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>hab <- eap(data.itens, data.itens.par, qu=normal.qu())

>head(hab)

est sem n

[1,] 0.61104042 0.4771454 18

[2,] 1.05883705 0.3089617 18

[3,] 1.92623806 0.4680334 18

[4,] -1.71143568 0.6046471 18

[5,] 0.47840008 0.3540985 18

[6,] -0.79040561 0.4448174 18

Item Information Function

In IRT, the goal is to estimate the examinee’s skill. During this process, the model calculates

the standard deviation of the examinee’s estimate. If this term is squared, it becomes a

variance, which measures how accurately the model estimates a given skill level. The Item

Information Function (IIF) at a given skill level is reciprocal of this variance [101].

If the amount of information is significant, the model can estimate an examinee whose

true capability is at that level more accurately. All estimates will be reasonably close to

the true value. If the amount of information is small, the model cannot accurately estimate

the capability, and the estimates will spread widely over the true capability. We can use

Equation 2.7 to calculate IIF.

I(θ) = a2
Qi(θ)(Pi(θ)− c)2

Pi(θ)(1− c)2
(2.7)

Where,

a represents the item’s slope parameter;

c represents the item’s asymptote parameter;

Pi(θ) is the correct answer probability to item i, under the ICC model at skill level θ;

Qi(θ) is the incorrect answer probability to item i under the ICC model at skill level θ.

The IRT gets the IFF for each item in a test. The amount of information for each item

is relatively small. Typically, an examinee’s skill with a single item is not estimated. The
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information amount at a capability level, and the test information function is of primary

interest. The IRT obtains test information by summing the item information at a specific

capability level. The mathematical definition of the amount of item information depends

exclusively on the ICC model used by the team that develops the instrument/test. Therefore,

examining these definitions in each model is necessary [13].

The IIF is a powerful tool for item analysis, allowing us to know how much information

an item accumulates at a given θ value and at what θ value of the most crucial information

of the item. IIF has been the most used item analysis’ method by test builders today [12].

The graph in Figure 2.3 shows five IIFs, each corresponding to an item, modeled from

Equation 2.7, which we will use as examples to illustrate the item’s behavior. The skill value

(θ) can assume any actual number [12]. Generally, the x-axis representing the skill scale (θ)

varies between -4 and 4. The y-axis represents the amount of information for this item in the

skill. The lines indicate each item’s information in each latent trait region. In the example

in Figure 2.3, item “3a” gives less information when the skill is at -2. However, this item

provides more information on the average skill (when theta is close to 0).

Figure 2.3: IIF’s Example.

We can use the function plot() to plot graphs of the instrument’s IFFs. The following

code shows the calling of the plot() function, passing the item’s parameters (data.tpm) and

the ICC function’ type.
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> plot(data.tpm, type = ‘IIC ′, legend=T)

Most of the instruments developed at IRT are on paper and pencil, and the subjects

answered the same items in these instruments in the same order. Due to the nature of the

administration of these instruments, educators can estimate the student’s ability imprecisely.

To overcome this limitation and improve the reliability of the assessment instruments, the

IRT has a great ally: Computerized Adaptive Testing (CAT).

2.4 Computerized Adaptive Testing

CAT seeks to adapt the instrument’s items to the skill level of each examined subject. CAT

chooses from the items the same way an expert would intuitively [25]. As a result, these tests

offer several advantages over traditional tests, such as:

• Reduction by one test size. The number of items in the adaptive tests is lower than in

a traditional test for the same level of accuracy. This reduction is only possible due to

the information reduction about the skill estimate in each administered item;

• Flexibility in test batteries. As with traditional tests, the participation of all subjects at

the same time in the test application is unnecessary;

• Greater control of test rules;

• Reduces errors that can occur in optical correction processes;

• Computerized tests better motivate individuals because they use multimedia features

that make them more attractive than traditional tests.

Given the limitations, these tests require more financial and human resources when

compared to traditional paper-and-pencil versions. Such resources aim to build the items’

database and information security that require investments in hardware and software for their

creation and application.

The instruments’ construction is a multi-step process, requiring multidisciplinary team

support to guide all steps. Experts in skill analysis, statistics, and psychometrics compose
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the team to build the instrument [101]. When the instrument is a CAT, we also need IT

professionals. This section presents the steps involved in producing an instrument based on

the IRT. In Figure 2.4, we detail the steps in developing a computerized instrument.

Figure 2.4: Computerized Adaptive Testing steps.

2.4.1 Step 1—Instrument Definition

At this step, verifying the instrument’s previous existence and defining its objective, skill, and

dimension is necessary. The instrument’s goal indicates its general purpose: to estimate a

grade or classify individuals. Skill is the characteristic to be evaluated: which the instrument

aims to measure. The instrument’s dimension indicates the number of skills assessed.

Figure 2.5 presents the Instrument Definition Step details.

The first step is to verify the instrument’s previous existence. If the instrument does

not exist, the team must build it, define its objective, skills, and dimension, then go to Step

2. Suppose the instrument the team wants to build already exists, even in a non-adaptive

default version. In this case, the team should check whether the instrument has psychometric

validity. Otherwise, the team must disregard it and create a new instrument. If the instrument

is valid, its adaptation to a CAT based on existing historical data is verified (item bank and

examinees’ answers) [101].
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Figure 2.5: Instrument Definition Step.

If the team uses an existing instrument, it is necessary to verify the objective, skills,

and dimensions. Otherwise, the team should define these aspects as discussed above before

proceeding. Once the team decides to use or define all three aspects, the next step is to

verify the item bank calibration and observe whether the instrument uses IRT in its standard

version [12]. If the instrument already uses IRT, item calibration will not be necessary, and

the next step will be the construction of the CAT algorithm; go to Step 4. If the instrument

did not use IRT, the scoring uses the CTT; the team must calibrate items and go to Step 3.

2.4.2 Step 2—Item Bank Preparation

When moving to the design stage of the items, the team must master the estimated skill

theory through the item. Furthermore, the team must design all items so the examinee can

express skill by answering them. In multiple-choice items, an item consists of a description,

its alternatives, and the correct alternative. This step is the most laborious because developing

items that assess only one skill is a self-reflection and a practical knowledge task [8].

Figure 2.6 presents the Item Bank Preparation Step details.

The item bank development also involves defining the item’s type and quantity

to compose the instrument. The item’s definition type depends on the instrument’s

objective [13]. For example, when we aim to measure proficiency, we should use a
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multiple-choice answer format. If the instrument is digital, the item comprises multimedia

resources such as images, animations, and sounds.

Figure 2.6: Item Bank Preparation Step.

In the item development stage, the team must consider the number of items managed

by the instrument, as this information depends exclusively on the item’s type. For example,

suppose the items belong to the proficiency instrument. In that case, it is necessary to control

their exposure, so the team must design many items. The number of items must be at least

five times the number of items the instrument will have. Due to the calibration process, some

items from the instrument are likely to be dropped [103]. The greater the number of items in

the bank, the better the instrument, as there will be more suited items to a certain skill level.

Suppose CAT selects items based on a cutoff point. In that case, the team should design

more items close to the cutoff region with the difficulty parameter. Otherwise, the team must

create items with difficulties distributed according to Θ and go to step 3.

After the item development process, the team should evaluate them. Judges can carry

out theoretical analyses. That is, specialists in the researched area carry out theoretical

analyses. The judges check if the items are well understood (semantic analysis) and if the

items adequately measure the desired skill (content analysis) [101].

A semantic analysis checks whether the items are intelligible to all subjects, and the items

need to be easy to understand by everyone, even subjects with lower skill traits. The semantic
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analysis ensures that the difficulty in understanding the items should be a manageable factor

that could interfere with the subject’s response [7].

Content analysis ensures that the items refer to the skill we aim to estimate. The number

of judges may vary, but the literature recommends that there should be at least three of

them [58]. An agreement of 80% among judges can be a reference to decide if the item refers

to skill and to include it in the instrument [8, 101]. If there is less than 80% agreement, we

must exclude the item from the instrument. In the case of having three judges, all three must

agree on including the item in the instrument. If there are only two judges, the agreement

level is 66.6%, not reaching the required 80%. However, the judge’s qualification is more

important than the agreement quantity in the research-specific area [8].

2.4.3 Step 3—Item Bank Calibration

Item Bank Calibration consists of applying the items, collecting data, choosing the response

model, choosing the calibration method, and designing and interpreting the scale. The items

have already gone through the judges’ semantic and content analysis and will go to an item

bank. Figure 2.7 shows the Item Bank Calibration Step details.

Figure 2.7: Item Bank Calibration Step.

When applying the items, the team needs a sufficient respondent sample. The sample

size depends on the number of items in the bank, so the more items, the larger the sample.
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For example, in a 20-item database, the sample must consist of at least 200 respondents (ten

subjects for each item) [14]. The team can apply the items in the traditional paper-and-pencil

format or a computerized version to obtain the sample. All subjects must answer all items in

this step.

If the sample is sufficient, the team should analyze the items using the CTT criteria and

calibrate and analyze them using the IRT. These analyzes will help eliminate inappropriate

items. After the Item Bank Calibration, the team must verify whether the item’s quantity

is adequate and whether it covers the latent trace. If the sample is sufficient, the team

can adopt some modifications to reduce the number of parameters. For example, the team

can eliminate underperforming items or reduce the number of item categories [101]. After

these modifications, the team must redo the preliminary analysis and continue the analysis

depending on the results’ consistency, in case the sample is sufficient. Suppose that the result

needs to be correctly calibrated by the team after all the efforts needed to take this sample.

In this case, the team cannot use IRT to calibrate the items and build the instrument.

The chosen response model consists in verifying which IRT model fits the instrument.

The team must verify that the fit was adequate and, if necessary, replace the adjusted model.

A poorly tuned model will not provide constant parameters for items and abilities. Suppose

the estimation of the item parameters through the IRT is inconsistent, for example, with

absurd values or high standard error. In that case, this may be due to inadequate sample

size [14].

Typically, the item bank is too large for all subjects to respond to all items. One way

to solve this is to use balanced incomplete block techniques and equalization methods [15].

Suppose there is a divergence in the instrument’s dimensionality constructions. In this case,

the team can choose a response model that considers this dimensionality and exclude items

that contribute to undesirable constructs or produce more items that consider the desired

constructs. However, the team can collect more samples from these new items’ calibration.

The Item Bank Calibration method uses the CTT and IRT criteria to estimate item

parameters. Analysis by CTT indexes helps to eliminate inappropriate items. The team

carries out the item calibration process through IRT and parameter analysis, and this analysis

will help in the decision to exclude inappropriate items. The team estimates the parameters

by the maximum likelihood using the ltm R package. Alternatively, it uses a Bayesian
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approach using the bairt R package. The team must verify whether the deletion will not

affect the other items. Then the team must rerun the calibration process to verify whether the

remaining items are adequate and not affected by deleting the other items.

The team must analyze the parameters to know if an item is suitable. Estimates with

critical slope, threshold, and asymptote parameters imply removing the item from the bank.

A slope index below 0.30 is inadequate for an item to have the power to differentiate

subjects with different skill estimates. Threshold ratings below -2.95 or above 2.95 are

also inappropriate, as the skill scale ranges from -3 to 3 in practice. Lastly, a random hit

probability above 0.40 is also a critical value. In all these cases, we recommend that the item

is excluded from the item bank so that the skill estimate is not compromised [129].

After the final Item Bank Calibration, the team must verify whether the number of items

in the bank is sufficient for the instrument’s application. According to the instrument’s

objective, the team must verify whether the items cover all the content [39]. In addition, the

team must verify if the items provide adequate information in all extensions of the evaluated

latent trait: easy, medium, and complex items.

Suppose the preparation of new items is required. In this case, the team must verify

whether it can start the instrument application without significant compromise. Thus, these

items can be later added and calibrated gradually according to the maintenance in Step 8.

Suppose the number of items remains compromised for the instrument’s validity. In that

case, it is necessary to elaborate on more items (go back to Step 2) and perform the pre-test

and calibration. After completing the calibration process and updating the item bank, the

team should build and interpret the scale and proceed to Step 4.

2.4.4 Step 4—Algorithm Elaboration

For computerized instruments, we can select items using an algorithm. The algorithm has as

a requirement the existence of a bank of calibrated items. The algorithm has the definition

of an initial selection criterion for the item, the selection method for the other items, the

stopping criterion, and the exposure rate of the item [106]. Figure 2.8 presents the details of

the Algorithm elaboration step.
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Figure 2.8: Algorithm Elaboration Step.

The initial item selection criteria determine the examinee’s degree of prior information.

The instrument selects the first item using the appropriate selection criteria. For example,

the instrument may use the ability estimated from previous applications, results from other

aptitude tests, or other variables related to the measured characteristic. An initial medium

skill level is usually adopted when this information is unavailable: fixed, centered on the

average, or a random value within the median range. If the instrument uses a fixed value,

the first item will always be the same, and its exposure rate will be high. So, this technique

is adopted if there is no item exposure rate. If the selection is a random median value, it

controls the items’ exposure better, reducing the instrument’s efficiency.

Suppose we need to get information about the examinee. The team can adopt a fixed

mean initial skill estimation level. For example, the skill estimate level on average 0 or a

random value within a range, such as between -1 and 1 [14].

The algorithm selects the items using the item selection criteria and the skill estimation

method. Item selection can use the most recent skill estimate—such as Fisher’s maximum

information [101]. Alternatively, it can use the maximum probability when the ability

estimate occurs after the individual has responded to an item.

Fisher’s Maximum Information selects items aiming to maximize the information in the

current skill estimation and Bayesian procedures that select items, minimizing the posterior
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variance. The maximum likelihood procedure is an iterative process used to estimate the

examinee skill [15]. The process begins with some a priori value for the examinee’s skill

and the known values of the item’s parameters. The team uses these values to calculate

the probability of the correct answer for each item. Then the team gets an adjustment for

the skill estimate, which improves according to the calculated probabilities of the item’s

response. The team repeats the process until the adjustment becomes small enough that the

change in estimated skill is negligible, resulting in an estimate of the examinee’s skill. The

algorithm repeats this process for each subject to be tested [14].

The team must check if there is a need to control the items’ exposure rate. If

the instrument’s items are confidential (for example, proficiency instrument), they need

to control the item’s exposure so that they do not become known and compromise the

instrument’s reliability. Controlling the item’s exposure and using content balancing or any

other restriction will restrict the instruments’ capacity to reach their best performance [101].

Inevitably, the current item will not be the best (the one with the most information for the

given skill level) due to the restrictions defined in the instrument’s algorithm. It will result

in an instrument accuracy loss since accuracy is related to item information, i.e., the more

information the item provides, the greater the accuracy in estimating the skill. For this loss to

be insignificant, the item bank must have an appropriate amount of quality items and items

with an appropriate amount of information distributed along the scale [39]. In addition, the

lower the value set for the item’s exposure rate, the greater the number of items in the bank.

Then, the stopping criterion must be defined, which depends on the instrument’s

objective. Suppose the objective is to estimate a value for the latent trait. In that case, the

literature recommends that the estimated skill reach a minimum precision level, a specific

minimum standard error [13]. Suppose the objective is to classify or divide respondents

into two or more groups (pass/fail). In that case, the literature recommends comparing the

estimated skill with one or more predetermined cutoff points.

2.4.5 Step 5—Instrument Accuracy and Validity Analysis

The Instrument’s Accuracy and Validity Analysis evaluates the algorithm through some

psychometric quality control. This analysis takes place through empirical data or

simulations. Figure 2.9 presents the Accuracy and Validity Analysis Step details.
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Figure 2.9: Accuracy and Validity Analysis Step.

In this step, the team designs multiple algorithms for the same instrument, combining

items, item selection criteria, latent feature estimation methods, stopping criteria, and

constraints [44]. For example, the team designs an Items Bank with acceptable parameters

and another stricter bank selecting only items that perform above the acceptable level. In

cases where the number of items is low, it is possible to assemble banks of different sizes.

However, the team tests them through simulations to verify how much the less suitable items

affect the instrument’s quality.

If the instrument has a cutoff point, the team should define those cutoff points necessary

for classification purposes. Regardless of this cutoff point, analyzing the sequential selection

algorithm’s accuracy is necessary. Suppose the instrument’s purpose is to estimate the

latent trait using a precision level as a stopping criterion. In that case, it is necessary to

consider some criteria for this analysis. Regarding accuracy and validity, we have: the

mean; estimated standard error; square root means; square error; empirical deviation means;

efficiency, and correlations between simulated skill and estimated skill, among other CTT

procedures [14]. It is necessary to analyze the results by observing how much the tested

algorithm could recover from the foster skill if the simulated and estimated skills were

similar. Then analyze the results according to the criteria that were selected earlier.

The team compares the algorithms trying to observe which one performed better.
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After the comparison, the team checks how many instruments performed adequately and

significantly better than the others. Suppose the analyzes show an adequate instrument with

a performance superior to the others [8]. In that case, it will be implemented (Step 6) and

used (Step 7). Otherwise, the team must reformulate the instrument.

Finally, applying a remote hypothesis to the instrument is necessary, verifying the

adequate performance for a CAT. If necessary, one needs to go back to Step 2, design

and incorporate more items, and calibrate them. If it is possible to change the algorithm,

one needs to go back to Step 4. If it is possible to add more items or change the algorithm,

building the CAT will also be possible.

2.4.6 Step 6—Instrument Implementation

The sixth step includes instrument implementation, which must consider several material

resources and a multidisciplinary team. Figure 2.10 presents the Instrument Implementation

Step details.

Figure 2.10: Instrument Implementation Step.

It is necessary to consider several factors, including the programming language, item

bank security, the users’ response security, the material resources, and the location of the

application’s access terminals. Whether items are confidential, it is necessary to invest in

user security [12]. However, if items are already confidential, investment should be made



2.4 Computerized Adaptive Testing 46

in better instrument infrastructure, data security, and items management. The team must

consider all precautions beforehand if the instrument is offline. If not, it will require the

team to build a website/application to manage the CAT and improve security [39].

2.4.7 Step 7—Instrument Application

In this step, the team must effectively apply the instrument and provide performance

feedback to the examinee. However, the team must build a database with the examinee’s

responses for later analysis and instrument maintenance. Figure 2.11 shows the Instrument

Application Step details.

If the instrument is on paper and pencil, it can be administered by an applicator or

virtually (self-administered). The instrument application identifies the person examined a

priori; this identification consists of recording the individual’s information to control the

responses provided by the instrument. Immediately after that, it is necessary to provide

feedback to the examinee to provide them with the performance or rating with a summary

report identifying the limitations. Finally, the data server stores this data (identification and

responses). The team must analyze the answers later for instrument maintenance [14, 101].

Figure 2.11: Instrument Application Step.

After applying each instrument, it is necessary to verify if it is necessary (and if possible)

to update the item’s exposure rate in instruments where the items are confidential. If the



2.4 Computerized Adaptive Testing 47

instrument applies something heavily, the algorithm should update this rate.

Suppose the instrument’s application is sufficient to perform the previous data analysis.

In that case, this application must be temporarily closed for this verification. If the

application number is still insufficient, the instruments continue to be applied.

2.4.8 Step 8—Instrument Maintenance

In the last step, it is necessary to carry out periodic maintenance on the instrument.

Figure 2.12 presents the Instrument Maintenance Step details.

When maintenance is required, we must consider some factors related to the instrument.

We need to check whether updating the exposure rate of managed items is necessary [101].

If the team designed the instrument to update this rate when applying the instruments, this

rate must be updated.

Then, it is necessary to check if any new item added in the last maintenance already

has enough responses to be calibrated [14]. This calibration will occur through a suitable

equalization method, which uses items in common and placed in the existing scale. The

team should review these new items based on the CTT and IRT criteria.

Figure 2.12: Instrument Maintenance Step.

Suppose there is a need to renew items in the bank (delete or add). It is necessary to

re-estimate the item’s parameters based on the responses collected during the instrument’s
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application. However, comparing them with the previously estimated parameters is

necessary to check whether the item should remain in the database [39]. If the parameter

estimates are similar, the item must remain in the bank; otherwise, excluded. These new

analyses will verify whether the team can or cannot add the items to the bank.

Finally, it is essential to verify changes in the instrument’s algorithm. Changing the

item bank will result in differences in its structure. For example, we need to check for

changes if the team designs the bank to have more items in a cutoff region or items spread

across the entire latent range. Such modifications can affect the algorithm’s performance

in CAT, which is necessary to modify it [96]. The team can perform simulations in this

sub-step, as mentioned in Step 5. Suppose there is a need to modify the algorithm. In

that case, the team must perform new simulations and analyze the data according to Step 5.

After the instrument’s validation, the team must make changes described in Step 6 and other

maintenance.



Chapter 3

Cognitive Programming Skills

In this Chapter, we identify cognitive programming skills and approaches for measuring and

fostering those skills. We defined the SLM protocol and presented the search and its review

results.

3.1 Initial Considerations

CS1 has low pass and retention rates, and students starting in CS1 enter with a broad range

of skill levels. To deal with the differences in skill levels, educators must better understand

the teaching practices. Educators can opt for easier tasks to simplify student learning and

decrease failure and dropout rates [109].

Previous and recent SLM papers have addressed the students, educators, curriculum,

assessment, and trends in CS1 [77]. Alternatively, focus on categorizing introductory

programming challenges in Higher Education [85]. However, there is a need for a consensus

on how institutions should work on cognitive skills during a CS1, as well as a clear and

complete categorization.

Due to the need for an overview of this area, this Chapter has the following objectives:

• SO1. To identify cognitive programming skills;

• SO2. To identify approaches to measure cognitive programming skills;

• SO3. To identify approaches to foster cognitive programming skills.

49
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Thus, we will answer the following research questions:

• RQ1. What are the cognitive programming skills?

• RQ2. How to measure cognitive programming skills?

• RQ3. How to foster cognitive programming skills?

To answer these research questions, we designed an SLM following the guidelines

proposed by Kitchenham [64]. This Chapter presents the results as the first contribution

to cognitive programming skills knowledge. We organize the remainder of this Chapter as

follows. In Section 3.2, we describe the study design. In Section 3.3, we present the results.

In Section 3.4, we discuss the results. In Section 3.5, we discuss the related works. Finally,

in Section 3.6, we conclude the Chapter with final remarks.

3.2 Study Design

This section presents the SLM design to identify studies that describe cognitive programming

skills and approaches to measure/foster these skills.

3.2.1 Search Strategy

Our search strategy consisted of an online search in the four main digital libraries with high

relevance for CS, namely: IEEE Xplore [59], ACM Digital Library [1], ScienceDirect [113],

and Scopus [114].

Search keywords are essential for the quality and results coverage, so they should be

carefully defined to search online digital libraries. The query has a raw string composed

of three terms, one standard term and the other consisting of a combination of identified

keywords’ synonyms. The first term (A) refers to Introduction to Programming and its

synonyms, the second term (B) refers to novice programmers or CS1, and the third term

(C) refers to skill and its synonyms. We presented the keywords and synonyms for each term

in Table 3.1.
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Term Keywords Synonyms
A Introduction to

Programming

Programming Course, Programming Language,

Programming Learning, Learning Programming,

Programming Teaching, Teaching Programming
B Novice programmers CS1
C Skill Expertise, Ability, Proficiency, Experience, Art, Technique,

Facility, Talent, Intelligence, Craft, Competence,

Readiness, Accomplishment, Knack, Ingenuity, Finesse,

Aptitude, Dexterity, Cleverness, Quickness, Adroitness,

Handedness, Skillfully

Table 3.1: Terms, Keywords, and Synonyms Used to Create the Search Query.

We performed a pilot search on the IEEE digital library to evaluate the search query. We

performed a full-text search and the publications’ metadata (title, keyword, and abstract).

After some trial and error with a databases range, we selected a combined search string that

seemed to capture the area of interest:

((“introduction to programming” OR “programming course” OR “programming

language” OR “programming learning” OR “learning programming” OR

“programming teaching” OR “teaching programming”) AND (“novice

programmers” OR CS1) AND (skill OR expertise OR ability OR proficiency OR

experience OR art OR technique OR facility OR talent OR intelligence OR craft

OR competence OR readiness OR accomplishment OR knack OR ingenuity OR

finesse OR aptitude OR dexterity OR cleverness OR quickness OR adroitness

OR handedness OR skillfulness))

3.2.2 Study Selection Strategy

We explicitly set the inclusion and exclusion criteria in reviewing the protocol for the

SLM. Primary studies must meet the following inclusion criteria: (IC): studies that identify

cognitive programming skills in CS1. We considered some exclusion criteria in the SLM,

namely:

• (EC1): preliminary studies, unavailable and duplicate studies (papers with the same

or updated version, keeping only the most recent);
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• (EC2): the study is a short paper or SLM;

• (EC3): studies are not written in English1;

• (EC4): studies published before the last decade;

• (EC5): studies that do not identify cognitive programming skills in CS1.

We organized our study selection process in four distinct phases, described below:

• Phase 1: as a preliminary selection, we performed the queries, applied EC4 and EC5,

and defined the study group that served for the second phase;

• Phase 2: based on the titles, abstracts, and words of the preliminary selection studies,

we determined and kept which studies were relevant;

• Phase 3: based on the inclusion and exclusion criteria and full reading of the study,

we reviewed relevant studies from the previous phase;

• Phase 4: A specialist evaluated and validated the selected studies, with the studies’

inclusion or exclusion criteria.

3.2.3 Data Extraction

We prepared a form to extract and synthesize relevant data to answer the research questions

in the SLM protocol. Data extraction aims at summarizing data from primary studies. We

define the items and their descriptions and present them in Table 3.2.

Common items Descriptions
Title Paper title
Year Paper publication year
Skill Cognitive programming skills described in the paper
Validation Study’s validation
Foster Studies that foster cognitive programming skills
Measure Studies that measure cognitive programming skills

Table 3.2: Description of Extracting Data From SLM.

1We consider English a universal language, and it is easy for the researcher to understand it, unlike other

languages that could be difficult in the translation process. Although the main Brazilian researchers publish in

national conferences/journals, they also publish versions of their articles in international vehicles (generally in

English).
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The SLM process defined in the previous section resulted in 5063 articles found in the

four databases. After Phase 1, we selected 262 studies for Phase 2, in which we identified 67

studies [2,4,9,11,16,17,19–21,23,28–33,35–38,40–42,47,49,51–53,55–57,60–62,69,71–

73,78,82–84,86,87,89,90,92,93,95,100,102,108,115–117,119,120,124,130,133,135–140]

as relevant after a careful reading of the paper. In the works whose principal researcher

had difficulties accepting or not the paper in the inclusion criteria, we consulted specialized

university professors in programming teaching to solve these doubts. We show the study’s

details in Table 3.3 by the library and Table 3.4 by phase.

Digital Library Search result
IEEE Xplore 421
ACM Digital Library 1,807
Science Direct 297
Scorpus 2,538
Total studies 5,063

Table 3.3: Details of Study Search and Selection by the Database.

Phase Descriptions Included Excluded
Phase 1 Search results 5,063 0
Phase 2 Title and abstract selection 262 4,801
Phase 3 Full reading selection 67 195
Phase 4 Selection validated by a specialist 67 0

Table 3.4: Search Phase Study Details.

3.2.4 Threats to Validity

Although our research followed the protocol, there are some threats to validity. The selected

studies are directly related to the search engine of virtual libraries, as each has specific

characteristics. Therefore, the search we performed in libraries may have returned only

some relevant studies. Furthermore, we only consider complete studies published in journals

and scientific events (conferences, symposia, workshops). Relevant studies may be outside

the SLM’s scope, which is introductory programming instruction. To mitigate this threat, we

have chosen several high-end libraries in CS to return as much relevant work as possible.

Furthermore, human factors can also influence data extraction. The researchers may

have yet to notice some relevant information or even misinterpreted it, as data extraction is

a manual process. However, the authors examined the selected studies more than once to

mitigate this threat.
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3.3 Results

In this section, we present the obtained results. In the subsections, we answer each previously

defined research question.

3.3.1 What are the Cognitive Programming Skills?

We have identified a set of cognitive programming skills in Table 3.5. Cognitive

programming skills are tracing, explaining, comprehension, reading, debugging, modifying,

and writing.

Skill Studies
Tracing [41, 42, 51, 52, 54, 55, 108, 116]
Explaining [11, 53, 83, 89, 116, 119, 130]
Comprehension [28, 30, 32, 35–38, 73, 86, 92, 93, 117, 139]
Reading [19, 20, 51, 57, 84, 90, 102, 108, 137]
Debugging [2,9,16,21,23,29,35–38,41,42,51,69,77,83,84,87,95,108,124,133]
Modifying [16, 86, 108, 116, 139]
Writing [16, 17,19,20,32,33,40–42,47,49,51–54,57,60–62,69,82–84,86,89,

90, 92, 93, 100, 102, 108, 116, 117, 135–140]

Table 3.5: Cognitive Programming Skills Identified in the Literature.

3.3.2 How to Measure Cognitive Programming Skills?

In Table 3.6, we present the instruments that measure cognitive programming skills.
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Skill Instruments
Tracing Universiti Teknikal Malaysia [54] PyKinetic [41, 42] University of Toronto

Scarborough [52] Benchmarking Programming Performance [116]
Explaining Uppsala University [53] E-assessment [83] Benchmarking Pacific

Lutheran University [89] Programming Performance [116] University of

Newcastle [119]
Comprehension New York City College of Technology [86] Medgar Evers College [139]
Reading Freie Universität Berlin [19] University of Washington [137]
Debugging Kent State University [2] University of Oslo [16] PyKinetic [41, 42]

E-assessment [83]
Modifying University of Oslo [16] New York City College of Technology [86]

Benchmarking Programming Performance [116] Medgar Evers

College [139]
Writing Universiti Teknikal Malaysia [54] University of Oslo [16] TUM School

of Education [17] Freie Universität Berlin [19] Predicted Difficulty

Index [33] PyKinetic [41,42] Tel-Aviv University [49] University of Toronto

Scarborough [52] Uppsala University [53] The University of Adelaide [61]

E-assessment [83] New York City College of Technology [86] Pacific

Lutheran University [89] Benchmarking Programming Performance [116]

AUT University [135] University of Washington [137] Walchand Institute of

Technology [138] Medgar Evers College [139] University of Toronto [140]

Table 3.6: Instruments That Measure Cognitive Programming Skills.

3.3.3 How to Foster Cognitive Programming Skills?

In Table 3.7, we present the methods, approaches, and tools that foster cognitive

programming skills.
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Skill Methods Approaches Tools
Tracing - Program Memory

Traces [55]

-

Explaining - Self-Explanation [130] -
Comprehension B-learning

Model [117]

Graphical

Language [124]

Schulte’s Block

Model [30]

Kane’s

Framework [92]

Slicing

Technique [35, 38]

PLTutor [93]

Thinkathon [28]

Reading - - C-doku [57] Java

Programming

Learning Assistant

System [90]
Debugging - Slicing Technique [35,

38]

Debugger Tool [95]

Debugging Teaching

Environment [9]

Ladebug [78] Quiz

Summary [133]
Modifying - - -
Writing B-learning

Model [117]

Kane’s

Framework [92]

Writing-to-learn [60]

C-doku [57]

CodeSpells [40]

Java Programming

Learning Assistant

System [90]

PLTutor [93]

Table 3.7: Methods, Approaches, and Tools That Foster Cognitive Programming Skills.

3.4 Discussion

This section discusses the data presented in the previous section on the studies that

characterize cognitive programming skills, highlighting methods, approaches, tools, and

instruments that foster/measure such skills.
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3.4.1 Cognitive Programming Skills

Programming requires many different skills. This subsection explores the different

programming skills found in the literature, such as tracing, explaining, comprehension,

reading, debugging, modifying, and writing.

Tracing

Tracing is a skill that involves hand-tracing the code by executing it mentally or with

paper and pencil (for example, code trace to get a variable value) [108, 116]. The novice

programmer should learn to trace code before writing it [52]. There is evidence on code

tracing, code writing, and code explanation [51,92,93]. There is a strong positive correlation

between tracking code and writing code [54].

A study involving 384 students investigated the limitations of students’ ability to trace

and write code. In the exam environment, participants answered two questions and were

randomly assigned to perform code tracking in one question and code writing in another.

Results showed that 56% of participants had almost no difference in performance between

code tracking and writing skills. There was a strong negative correlation between student

performance and gap size for the remaining students. They scored at least two of the eight

grades. Regardless of whether the student is better at tracking or writing code, the study

suggested that a significant gap is likely due to student difficulties in the course. The students

needed help understanding key programming concepts [52]. These findings prove that good

tracing skills also have a higher order of code writing skills.

The novice’s debugging skills positively correlate with the code tracing skills. In

addition, code tracing skill is also positively correlated with code modifying skill. Lastly,

code modifying skill is also positively correlated with code debugging skills. All these

correlations are solid and significant. They show evidence that students with less prior

knowledge perform similarly in various coding activities, from debugging, tracing, and code

correction [41, 42].

An experiment using a tool to improve code tracing skills presented reasonable

expectations in the students. The code tracing activities exposed students’ unfeasible models

and, more importantly, provided the clearest starting point for discussing the correct models.
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While this should have encouraged students to track down the code, they would avoid these

questions and guessed the program’s final state. As other studies found, students needed

more support to do any tracing independently. This experiment showed that code tracing

helps students understand code rather than just exploring material that fosters writing code.

In addition, a teaching approach based on tracing improved the students’ learning. In which

students showed statistically significant improvements in grades in programming. There is

evidence that the ability to track code helps students to develop viable programming concepts

and increases students’ course completion rate [55].

Furthermore, there is evidence that underachieving students often have a significant

gap in coding skills, as they are more likely to struggle with basic programming concepts.

Basic programming concepts are essential for learning to debug, trace, and correct coding

skills [41, 42].

Explaining

A code reading or explaining question presents students with a small snippet and asks them

to explain it, not line by line, but in general-purpose terms. Students spontaneously explain

the content’s meaning in self-explanatory studies, typically text passages or other written

material, as they study a target domain. Educators can compare self-explanations to any

learning gains demonstrated by students [130]. However, the students who pass CS1 seem

unable to explain the simple code snippets’ purpose, like a loop, to find the most significant

element in an array [119].

Several recent studies have explored the relationship between novice programmers’

ability to read and explain code and their ability to write code [11, 53, 83, 89, 116, 119, 130].

There is a strong correlation between the skill to answer a question about the code and

explain the code in simple English questions correctly. The skill to write code indicates that

the code’s reasoning aspects are common to both writing and explaining code [89].

One study compared students’ responses across multiple offerings from a CS1. Students

expressed the purpose in their own words; in later offerings, they chose the purpose among

several options in a multiple-choice question. Students performed significantly better on the

multiple-choice question; on a local campus, performance was better but insignificant. Many

students needed help identifying the correct purpose of small code fragments when given
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that purpose and some alternatives. The students need to perform better on code explanation

questions because they cannot recognize it in a different way [119].

One approach to helping students learn to program consists of self-explanation tasks,

and students explain instructional materials using domain knowledge covered in the course

in these assignments. The experiment showed that the experimental group that received

self-explanatory tasks with supporting questions performed better on the test questions when

compared to the control group. This evidence argues that incorporating self-explanatory

questions into programming material benefits students [130].

There are reasoning aspects of code that are common to both writing and explaining code.

There are specific reasoning skills for writing code and specific skills for explaining code.

However, the results of a survey suggest that there is a possibility that common reasoning

skills for both writing code and explaining code are not trivial. The results suggest other

ways of teaching and learning to program in addition to writing code, given the statistical

relationships between student performance in explaining and writing code [89]. These other

ways focus on the common elements of reading, writing, and explaining code. Tracing,

reading, and writing code can lead to a more effective and efficient process by which many

novices would learn to reason about code.

Comprehension

Comprehension consists of the student’s skill to understand a code piece or a program [86,

117,139]. Ways to assess this skill include: i) asking students to select the code piece from an

option set that performs a specific task; ii) describing what a program does; indicating what

the return value is when calling a function; iii) indicating what a program would display on

the screen when running; iv) indicating the state of one or more variables after executing a

program; v) identifying the part of the program that the compiler executes in a certain action.

Traditionally, educators work on code comprehension in CS1 through sample solutions,

design road-maps, implementation tips, and early code, emphasizing code writing. Providing

students with these resources is not a code-understanding practice; it is not the focus, and

educators rarely verify this skill in students [86, 139].

Code comprehension skills are a precursor to code writing skills [32, 36, 37, 92, 93, 139].

The educator should ensure that students exercise code compression before asking them to
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write code [86,139]. Code comprehension skills in the early stages of programming courses

can ensure good learning outcomes [30].

Understanding the programming language requires high cognitive skills (e.g., reading,

writing, working memory) and information processing. This difference is evident when

we compare an expert with a programming novice. One study in neuroscience compared

novice programmers and experts during a program comprehension tasks series [73]. Experts

exhibit greater brainwave activation than novices. These results indicate that experts have

excellent skills associated with program comprehensions, such as digit coding, coarse

coding, short-term memory, and subsequent memory effect.

There is also evidence that more than code comprehension skill is needed to be a

forerunner in programming [28]. This finding contradicts other research studies indicating

that understanding code is a significant step in the development process of novice

programmers. This study analyzed a CS1 and found that students’ performance on the final

exam was unrelated to code comprehension practice. In the study, final exams required

writing and code comprehension exercises.

Reading

Programming consists of a process that connects reading and writing code. Until now,

research in Computer Education has always focused on the writing part [20]. Active code

reading is a particular case of active learning [51, 57]. Many instructors believe students

would write better code if they read it more. Unfortunately, we need precise goals and

practical evaluation mechanisms to understand the code. Many students can learn more

about programming if they take the time to read code [57].

In this scenario, code reading is an essential programming skill [19] [20, 90, 102]. It is

inspired by people’s linearity when they read natural language text. One study designed local

and global gaze-based measures to characterize linearity in reading source code. Linearity

involves looking at code from left to right and top to bottom. Unlike natural language

text, source code is executable and requires a specific reading approach. To validate these

measures, the authors compared the eye movements of novice and expert programmers

when reading and understanding small snippets of natural language text and Java programs.

The results showed that novices read source code less linearly than natural language text.
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Furthermore, experts read code less linearly than novices. These findings indicate differences

between natural language and source code reading and suggest that nonlinear reading skills

increase with experience [19].

The code reading task provides students with a short program in the appropriate language

and a series of questions about the code execution. Understanding measurement in this

task presents users with questions about the variables’ values at various points during

execution [84].

Another study showed that the explicit indication of code reading instructions and

their practice improves student skills in code writing in the reinforcement and evaluation

activity [137]. Students who practiced semantic reading and reading models skills performed

better in code writing when compared to participants in the control group.

However, learning to write code is a complex activity [108]. The scientific community

widely accepts that students would write better if they spent more time reading code. Some

tools like C-doku aim to fill this need by improving code reading skills [57]. An instructor

can motivate students to focus on selected aspects of a code snippet, and this tool reinforces

that practicing code reading skills helps to improve code writing skills.

Debugging

Debugging is an essential skill that is difficult for novice programmers to learn and

challenges educators to teach [133]. Debugging is a necessary aspect of a CS course that can

be difficult for novice and experienced programmers [21, 29]. Debugging involves reading

code, tracing it, and mentally running it according to the programming language’s rules in

question [51]. This skill is usually self-taught and acquired through trial and error, perhaps

with the help of educators or other experts [21].

Debugging is essential for all programmers, especially novices still learning the

programming language’s syntax and semantics. Therefore, novices are more likely to write

incorrect code than experienced programmers [51, 78]. Novice programmers often find it

challenging to perform debugging tasks effectively [9, 35–38]. Students need to understand

how the program works and run the program with bugs, know the application domain and the

programming language, and know about (specific) bugs and debugging methods. Moreover,

students’ systematic exposure to error types different from those found in their learning
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environment can improve debugging skills [2, 108, 124].

However, most students believe that debugging depends on individual aptitude.

Furthermore, students believe that debugging code develops through learning [87]. Most

students do not use tools for debugging the environment or even know them [23, 83, 84].

Some students often apply a trial-and-error approach to programming errors. Compile-time

errors represent a significant obstacle for many students. Educators are running from

computer to computer trying to help [87]. Error messages help novices to find and fix errors,

but compiler messages are often uninformative [29].

The debugger improves the conceptual understanding of novices, and Low-achieving

students benefit most from this experience. The debugger can help minimize logical errors

and improve writing skills [16, 95].

Therefore, self-sufficiency in debugging is essential and a significant challenge for

learning to program. However, educators focus on heuristics for common mistakes and

debugging strategies related to teaching debugging skills [69]. Educators need to conduct

a systematic process for dealing with errors. Furthermore, they need to employ explicit

teaching lessons on debugging. Educators need a more systematic approach to teaching

debugging, as there are only vague concepts and materials [41, 42, 87].

Modifying

Modifying involves using or changing the existing code [16,86,108,116,139]. The educator

can foster this skill in their students with exercises, namely: i) completing a code snippet

(either writing the missing code or choosing it from a set of options); ii) writing function

calls to certain functions so that a specific result can be given; iii) build a program from a

set of code fragments, not all which can be part of the solution; iv) reordering a scrambled

program (also known as Parson’s programming puzzles).

Writing

Writing consists of the student’s skill to write code for a particular task [16, 17, 19, 20, 32,

33,40–42,47,49,51–54,57,60–62,69,82–84,89,90,92,93,100,102,108,116,117,135,136,

138, 140]. The standard assessment method provides students with a problem specification

for writing a program. However, other skills are needed to write code, which educators do
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not pay much attention to promoting in traditional education, such as:

• Identify programming constructs (variables, data types, expressions, function

definitions, function calls, and parameters);

• Explain the code (to be able to explain what a piece of code does verbally);

• Understand the technical documentation (i.e., Error messages help novices to find and

fix errors, but compiler messages are often inappropriate);

• Refactoring existing code.

Several studies support the premise that novice programmers would learn more

effectively and efficiently if they spend more time deconstructing code than writing code.

Deconstructing code involves reading, tracing, and debugging code skills [31, 51, 71, 72,

115, 120, 137]. Educators can adopt cognitive science principles in the learning process

to solve problems. The progression starts with low-risk deconstructionist activities, such

as exploring, identifying, comparing, and debugging, before activities that require writing

code [51].

3.4.2 Measuring Cognitive Programming Skills

Several studies use the CTT to measure cognitive programming skills [2, 19, 32, 33, 41, 42,

49,52–54,83,86,89,108,116,119,137–140]. However, some universities have adopted other

theories and taxonomy for this practice, such as IRT [16, 17], SOLO Taxonomy [49, 61,

89, 102, 117, 120, 135–137] and Bloom’s Revised Taxonomy [31, 71, 72, 108, 115, 120]. We

define these theories and taxonomies in Chapter 2.

3.4.3 Fostering Cognitive Programming Skills

On the one hand, the number of employees in the IT industry is continuously growing.

On the other hand, there is a growing need for more IT specialists, especially in

software development. This problem can be solved by increasing student interest in

computer programs or decreasing the number of students who drop out of the course

early. While the first solution requires the involvement of all stakeholders, influencing
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students (parents, teachers, schools, friends), in the second, students have already decided

to study programming. Therefore, it is “easier” to invest time and resources in designing

an appropriate educational concept. Which could increase the likelihood that students will

successfully graduate and have the knowledge and skills required by the job market [120].

With the advent of the internet and the popularization of information, many young people

prefer to be self-taught. They choose what they want to study and are not interested in

listening to lectures or watching long-term educational videos. They prefer learning anytime,

anywhere, not just at university. They prefer the immediate use of applying the knowledge

and skills gained. In addition, they prefer to select the knowledge and skills whose usefulness

they can imagine or prove in a short time.

Innovative educational models and frameworks that minimize obstacles and meet student

requirements and expectations use well-known learning approaches and develop the skills

and knowledge needed for taxonomies. Programming teaching is a complicated educational

process. Educational theories and taxonomies are valuable tools for developing learning

objectives and assessing student performance. However, they do not apply directly to this

area. Programming requires students to understand the relevant theory and apply it to solve

real problems [120].

Researchers use different approaches to foster programming based on different

educational theories, teaching structures, or educational approaches. Some studies have

sought to simplify the acquisition of knowledge’s complexity and skills. On the other hand,

other studies described and mapped the skills accurately. In the following subsection, we

discuss methods, approaches, and tools to foster cognitive programming skills.

Tracing

Program Memory Traces consists of an approach that fosters tracing skills. Program

Memory Traces accurately represents the program’s memory usage to balance the abstraction

required by novice students with the precision needed for advanced students. Program

memory traces represent all the program’s accessible memory, dividing the tracking area

into different regions representing memory’ types differently: stack, heap, and static. In a

program memory trace, program execution begins with a method call. The Program memory

traces present an accurate memory model that educators can use to explain programming
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concepts to students [55].

Explaining

Self-explanation is an approach that fosters explaining skills. Self-Explanation is an

approach educators use for students to explain the content’s meaning spontaneously. Usually,

the content is text passages or other written material used to study a target domain. The

resulting explanations are coded and compared to any learning gains demonstrated by

students. Several studies in various fields, particularly science and mathematics, have

found that high-quality self-explanations positively correlate with learning gains. In

the programming context, students who use the material with self-explanatory questions

perform significantly better on the questions of an explanatory exam than those without

self-explanatory questions [130].

Comprehension

There are several methods able to foster comprehension in novices programming, namely:

B-learning Model [117], Graphical Language [124], and Schulte’s Block Model [112].

B-learning, sometimes called blended learning, is a teaching and learning approach

combining traditional face-to-face instruction and distance learning. Educators can provide

novices with programs to read and explain in the web-based learning platform. The

B-learning environment on program learning can result in marked improvements in pass

rates and positive student evaluations [117].

B-learning provides a way to improve the learning of novice programmers. On the

other hand, reading and explaining computer programs with a B-learning learning method

is a challenge for many novice programmers. Roles represent programming knowledge

higher than simple knowledge of a programming language. The results show significant

improvements, including novice’s performances on the final examination and the ability to

read and write a program. These results indicate that the B-learning with roles of variables

to provide scaffoldings virtually affects the learning of novice programmers [117].

Graphical Language is a method to improve students’ understanding of programming

techniques, enhancing students’ problem-solving skills. The method focuses on teaching

students graphical representations of program techniques because studies have shown that
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humans remember pictures more efficiently than text. Students’ overall feedback showed

they could understand programming terminologies introduced using graphical languages.

Side notes from quizzes and assignments showed that students use graphical approaches to

help themselves understand problems. For example, they use tables for tracking loops [124].

Schulte’s Block Model is a model that supports educators’ understanding of how to

divide the skill into parts that are more manageable for a student [112]. The model considers

the code understanding at four levels:

• The atom level, which considers programs at the level of the smallest program

components, may be exemplified by a single assignment statement, an input or output

statement, or even the expressions contained within these components;

• The block level considers contiguous lines within a program that are bounded logically,

for example, the body of a loop or a branch in a selection statement or a subprogram

body;

• The relations level considers separated lines of code that are related to one another this

could be relevant to variable roles;

• At the top-level, macrostructure concerns the understanding of the whole program.

Different approaches foster comprehension skills: Kane’s Framework [92] and Slicing

Technique [35, 38]. PLTutor [93] and Thinkathon [123] are tools that foster comprehension

skills.

Kane Framework designs a formative assessment of program tracking, developing

a compelling argument for a specific use that includes: 1) a refined scoring model to

guide practice; 2) items’ design to test parts of the refined model with low variation

caused by confusion; 3) a coverage test project that shows samples of an item space and

covers the scoring model and 4) a feasibility argument for effective informative use (can

guide and improve learning). The framework contributes a new way of modeling possible

conceptions of a programming language’s semantics. The framework modeling predominant

compositions of control flow and data flow graphs and the paths through them, a process to

generate test items and principles to minimize the items’ confusion [92].
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Slicing Technique has been widely used in software testing, debugging, and

assessment [35, 38]. For example, while debugging, there could be syntactic and semantic

errors within the source code which could throw multiple errors without showing the code,

which caused the bug. Slicing helps overcome this by modularizing the entire code into slices

to debug the erroneous code easily and reduce the compilation time by improving program

code. This approach also helps learners to acquire better programming skills;

PLTutor is an instrument that allows building the experience of using a debugger

with the following features: 1) allows stepping forward and backward in time, 2) allows

stepping at an instruction-level instead of line-level granularity, and 3) interleave conceptual

instruction on semantics throughout the execution of the program. PLTutor also conveys

constraints, functional forms, and ontology by showing natural language explanations of

action instructions. PLTutor reinforces functional forms by showing an instruction form

as a description filled with concrete values. PLTutor presents learning gains among CS1

students [93].

Thinkathon is a tool that works on the ability to comprehend code. The Thinkathon

idea was born from the realization that students were not developing appropriate conceptual

comprehension. This approach aims to provide an extended immersive experience [123].

Reading

C-doku [57], and Java Programming Learning Assistant System [90] are tools that foster

reading skills.

C-doku evaluates code-reading skills with quizzes containing four simple question types.

The tool showed results that support the claim that its practice improves the ability to write

code [57]. With C-doku, an instructor can motivate students to focus on selected aspects of

the code pieces. The instrument has four principles: active code reading, template-based,

automated oracle, and strong authoring support.

Java Programming Learning Assistant System provides the fill-in-blank problem to

support the self-studies of novices in Java programming. The fill-in-blank problem aims to

improve students’ self-studies for learning grammar and basic programming skills through

code reading [90].
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Debugging

Debugger Tool [95], Debugging Teaching Environment [9], Ladebug [78] and Quiz

Summary [133] are tools that foster comprehension skills.

Debugger Tool improves the conceptual understanding of the programming language

and the program’s execution flow for novices. Students discover and correct logical errors

when using a debugging tool for their program. Furthermore, they can understand the

program’s execution flow, which helps them predict the output correctly [95].

Debugging Teaching Environment is an extension of the Eclipse Integrated

Development Environment platform. It exploits the Eclipse Modeling Framework to

implement its guidance model. The Debugging Teaching Environment receives the buggy

system’s source code as a workspace project and the metadata for the bugs specified by

the instructor. The Debugging Teaching Environment provides the contextually evaluated

suggestion. In this way, the developer only focuses on the subset of source code elements

with direct or indirect dependencies on the bug site [9].

Ladebug explicitly teaches debugging skills, finds flaws in the code, provides feedback,

and encourages repetition [78]. Finally, Quiz Summary is a web-based software tool

for assessing the debugging skills of CS students. The Quiz Summary creates debugging

skills assessment questionnaires. After identifying the student’s skill level, the application

recommends a list of tutorials and practices to improve the debugging skill. The application

tracks student activities such as assessment results and the tutorial and completion status

of the exercises. This relationship allows the application to deliver skills-based material to

everyone [133].

Writing

The B-learning Model is also a method that fosters writing skills. Writing-to-learn [60] and

Kane’s Framework are approaches that foster writing skills. C-doku [57], CodeSpells [40],

Java Programming Learning Assistant System [90] and PLTutor [93] are tools that foster

writing skill.

Writing-to-learn is a critical reflective act. There is a correspondence between writing

and learning strategies to improve the learning of the content of the course. Writing to learn



3.5 Related Works 69

is a technique for learning programming. Thus, this technique improves student learning in

CS1 [60].

CodeSpells is a game that engages students in introductory programming concepts

similar to Scratch2 but using Java. CodeSpells provides students with a magic metaphor

that tries to mimic the CS culture. The game involves students in the safe writing of Java

code [40].

We did not find studies addressing methods to foster tracing, explaining, reading,

debugging, and modifying skills. None of the studies present approaches that foster reading

and modifying skills, and we did not find any tools that foster tracing, explaining, and

modifying skills. Based on this limitation, new research should emerge to increase the

discussions that such skills are essential for learning programming. This research can support

the need for empirically tested tools to foster them.

3.5 Related Works

Existing studies address instruction/assessment challenges in CS1, alternative methods,

formative feedback, or mention some programming skills [77,85]. These studies are essential

because they provide a fundamental overview of CS1 and indicate some skills that should be

fostered and evaluated but do not categorize them. However, to our knowledge, an SLM has

yet to categorize students’ skills in learning to program.

The works of Luxton et al. and Medeiros et al. characterized the challenges in CS1.

They highlight some fundamental skills for a novice student to learn to program and their

difficulties in this process. The main teaching challenge concerns the need for adequate

methods and tools for personal teaching. Problem-solving remains one of the leading

learning challenges, followed by motivation, involvement, and difficulty in learning the

programming languages syntax [77, 85].

This Chapter introduces an SLM that categorizes cognitive programming skills and

highlights approaches that foster and measure those skills. This Chapter’s contributions

2Scratch is one of the most popular visual programming languages. Many institutions use it to

develop computational thinking skills, fundamental computational concepts [107], algorithmic-level thinking

skills [26], and problem-solving [66].
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guide higher education institutions in formulating their curricula and assessment instruments.

Such practices can foster programming skills in novices, thus reducing the students’

difficulty, consequently, the dropout and failure rates in CS1.

3.6 Final Considerations

This Chapter has presented a cognitive programming skills categorization and approaches

to foster/measure those skills. Therefore, we defined the SLM protocol and presented the

search and the results. As main results, we found that, in recent years, several studies have

shown that:

• (RQ1:) Cognitive programming skills are tracing, explaining, comprehension,

reading, debugging, modifying, and writing;

• (RQ2:) Researchers use CTT to measure cognitive programming skills. However,

some universities have adopted other theories and taxonomies for this practice, such

as IRT, SOLO Taxonomy, and Bloom’s Revised Taxonomy;

• (RQ3:) Researchers use different approaches in programming teaching based on

different educational theories, teaching structures, or educational approaches.



Chapter 4

A Cognitive Domain Adaptation to

Bloom’s Revised Taxonomy

In this Chapter, we present a proposal for adapting the cognitive domain of Bloom’s

Revised Taxonomy to programming teaching and the cognitive skills’ association raised

in the literature within the Adapted Taxonomy. To validate the proposal, we analyzed it

theoretically through a Survey applied to an expert group in CS1.

4.1 Initial Considerations

In Chapter 3, we identified the most cited cognitive programming skills in the literature

and the existing approaches to fostering and measuring them. However, we did not find

unanimity in the literature about which skills educators foster in a CS1. This sequence

involves the construction of linear knowledge; that is, the previous skills influence the later

skill. The sequence of activities involved in learning programming can be progressive,

allowing the student to learn without frustration. Therefore, this sequence directly affects

the instructional design in CS1. This Chapter aims:

• SO4. To sequence cognitive programming skills to determine the appropriate

challenge level in an assessment instrument.

In this chapter, we answer the following research question:

71
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• RQ4. How to sequence the cognitive skills involved in introductory programming

learning to determine the appropriate challenge level in an assessment instrument?

To answer this question, in Chapter 3, we present the cognitive domain of Bloom’s

Revised Taxonomy to sequence learning and improve the assessment quality [5]. Each skill

in the cognitive domain of Bloom’s Revised Taxonomy has a goal that guides the educator

to develop tests in different areas. To our knowledge, no work explores adapting these skills’

goals to programming teaching. With that in mind, this Chapter presents a proposal that

sequences programming skills in the cognitive domain of Bloom’s Revised Taxonomy. To

validate this proposal, we applied a Survey to an expert group in CS1 to theoretically evaluate

this adaptation.

We organize the remainder of this Chapter as follows: In Section 4.2, we discuss related

work. In Section 4.3, we present the adaptation of the cognitive domain of Bloom’s Revised

Taxonomy to programming teaching, sequencing the cognitive programming skills in this

adaptation. In Section 4.4, we describe the study design. In Section 4.5, we present the

results of the proposal validation. Then, in Section 4.6, we discuss the results. Finally, in

Section 4.7, we conclude the Chapter with final remarks.

4.2 Related Works

There are several learning approaches and taxonomies in the context of programming

teaching; one of these approaches is called Bloom’s Revised Taxonomy [120]. Other studies

used the older version of this taxonomy [31, 71, 72]. In its traditional version, Bloom’s

Taxonomy has the following levels: knowledge, understanding, application, analysis,

synthesis, and evaluation. The Revised Taxonomy aimed to correct some problems in the

original taxonomy. Bloom’s taxonomy revision changed the sequence of some categories

and used verbs instead of nouns [5]. Another element to highlight in the review was that

creativity was considered superior (in the sequence of levels) to evaluation. In addition, it

included subcategories that indicate a way to assess whether the educational objective has

been achieved [5].

Recently, researchers applied the cognitive domain levels of Bloom’s Taxonomy to

determine the appropriate challenge level of test questions in CS1 [31]. This study aimed
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to expose students to well-defined assessment tests to challenge them based on different

Bloom’s Taxonomy domains. Furthermore, identify difficult areas for students to redesign

and reorganize class activities. To this end, the authors developed an artifact to classify

questions based on the cognitive domains of Bloom’s Taxonomy. They then signed up to

assess the three-semester tests and write a final exam. In designing the final test, the goal

was to challenge students’ abilities in a predetermined ratio and combination mapped to

Bloom’s Taxonomy domains. After each test, the authors identified the students’ problem

areas and adjusted the class-related activities to address these deficiencies [31].

Another research studied the current scenario of assisted assessment for practical

programming, focusing on competency-based assessment. The study presented Bloom’s

Taxonomy used to assess skills [71]. As a result, the study exemplifies how Bloom’s

Taxonomy can help to guide learning. Its skills characterization identifies which skill level

the student is being assessed at, which helps improve their learning. The survey cites each

Bloom Taxonomy skill level and gives examples of programming tasks educators can work

on [71]. Then, the authors proposed an assessment framework based on the cognitive domain

of Bloom’s Taxonomy to assess the students’ programming skills [72].

A previous study identified tasks that could effectively promote program understanding

for novices [115]. The authors identified and classified the tasks into homogeneous

categories based on Bloom’s Revised Taxonomy. The researchers conducted the study to

classify these tasks into each Bloom’s Revised Taxonomy category based on their potential

effectiveness in understanding the program targeting novices [115].

Despite advances, these studies have some limitations, namely: i) they did not consider

some abilities contained in the cognitive domain of Bloom’s Taxonomy, whether in its

traditional or revised version [31,71,72,115]; ii) they associated tasks with cognitive domains

without considering the sequence of skill subcategories that indicate a way of assessing

whether the educator managed to achieve the educational objective [115]; iii) they considered

the cognitive domains as unique skills without investigating the set of skills present in each

level [71, 72]; iv) they considered the older version of Bloom’s Taxonomy instead of its

revised version [31, 71, 72].

These works show that programming tasks within Bloom’s Taxonomy’s domains

improve students’ understanding. However, given the limitations, we need a deeper
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investigation of the contributions of Bloom’s Taxonomy to programming teaching in its

revised version. So, in this chapter, we adapt the cognitive domain of Bloom’s Revised

Taxonomy for programming teaching, sequencing the cognitive programming skills in this

adaptation. Then, we applied a Survey to an expert group in CS1 to empirically evaluate this

adaptation.

4.3 Adapting the Cognitive Domain of Bloom’s Revised

Taxonomy

This section presents the original version of Bloom’s Revised Taxonomy and its

adaptation/association with programming instruction. Together with a team of two

specialists in programming instruction, we developed the initial stages of the adaptation

(Fig. 4.1), adaptation synthesis, and cognitive programming skills’ association to the

cognitive domain of Bloom’s Revised Taxonomy in programming teaching. In the following

subsections, we describe these processes.

Figure 4.1: Adapting the Cognitiva Domain of Bloom’s Revised Taxonomy.
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4.3.1 Remember

The first cognitive domain of Bloom’s Revised Taxonomy involves remembering previously

covered information and content. This domain involves remembering important information

or specific facts, and this level’s objective is to bring this knowledge to consciousness [5].

Table 4.1 presents the level of “remember” adaptation for programming teaching and the

cognitive programming skills associated with this level.

Skill Definition Adaptation Association
Recognizing Locate knowledge in

long-term memory

consistent with the

presented material.

Retrieve relevant

knowledge from

long-term memory

and compare it with the

information presented.

-

Recalling Retrieve relevant

knowledge from

long-term memory.

Retrieve relevant

knowledge from

long-term memory

when requested.

-

Table 4.1: Adaptation of the Level Remember and Cognitive Programming Skills

Association.

4.3.2 Understand

The cognitive level Understand applies meaning to content. This cognitive level translates

the understood content into a new form (i.e., oral, written, and diagrams) or context. There is

the ability to understand the information or fact, capture its meaning, and use it in different

contexts [5]. Table 4.2 presents the level of “understand” adaptation to programming

teaching and the cognitive programming skills associated with this level.

4.3.3 Apply

The cognitive level Apply uses information, methods and content learned in new concrete

situations. It includes applications of rules, methods, models, concepts, laws, and

theories [5]. Table 4.3 presents the level of “apply” adaptation to programming teaching

and the cognitive programming skills associated with this level.
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Skill Definition Adaptation Association
Interpreting Change from one

representation form

to another.

Translate from one

algorithm form into

another.

Comprehension

and Reading.

Exemplifying Find a specific example

or concept illustration, or

principle.

Find an example of a

particular problem.

Comprehension

and Reading.

Classifying Determine that something

belongs to a category.

Determine that something

belongs to a category.

Comprehension

and Reading.
Summarizing Abstract a general theme

or significant point(s).

Summarize/comment on

code snippets/parts.

Comprehension

and Reading.
Inferring Draw a logical conclusion

from the presented

information.

Draw a logical conclusion

from a presented code.

Comprehension,

Reading, and

Tracing.
Comparing Detect correspondences

between two ideas,

objects, and the like.

Detect matches between

pseudocode and a code.

Comprehension

and Reading.

Explaining Construct a system’s

cause-and-effect model.

Construct an algorithm’s

cause-and-effect model.

Comprehension,

Reading, and

Explaining.

Table 4.2: Adaptation of the Level Understand and Cognitive Programming Skills

Association.

Skill Definition Adaptation Association
Executing Apply a procedure to a

familiar task.

Apply a procedure to a

familiar problem.

-

Implementing Apply a procedure to an

unfamiliar task.

Apply a procedure to an

unfamiliar problem.

-

Table 4.3: Adaptation of the Level Apply and Cognitive Programming Skills Association.

4.3.4 Analyse

The cognitive level Analyse subdivides the content into smaller parts to understand

the final structure. This level may include identifying the parts, analyzing their

relationship, recognizing the organizational principles involved, and identifying parts and

their interrelationships. At this point, it is necessary to understand the content and study the
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object structure [5]. Table 4.4 presents the level of “analyse” adaptation to programming

teaching and the cognitive programming skills associated with this level.

Skill Definition Adaptation Association
Differentiating Distinguish relevant parts

from irrelevant ones or

important parts from

unimportant ones in the

presented material.

Distinguish relevant

parts from irrelevant

ones presented by the

algorithm.

-

Organizing Determine how elements

fit or function within a

structure.

Organize code parts to

achieve the program’s

purpose.

Modifying

Attributing Determine a viewpoint,

bias, values, or intent

underlying the presented

material.

Determine the code’s

viewpoint.

-

Table 4.4: Adaptation of the Level Analyse and Cognitive Programming Skills Association.

4.3.5 Evaluate

The cognitive level Evaluate involves judging material value (proposal, research, project) for

a specific purpose. The criteria for this judgment can be external (relevance) or internal

(organization) and can be provided or identified together [5]. Table 4.5 presents the

adaptation of the level “evaluate” programming teaching and the cognitive programming

skills associated with this level.

4.3.6 Create

The cognitive level Create aggregated parts to create a new whole. This level involves

a single communication production (theme or discourse), an operation plan (research

proposals), or a set of abstract relationships (scheme for classifying information). This level

combines unorganized parts to form a “whole” [5]. Table 4.6 presents the adaptation of

the level “create” to programming teaching and the cognitive programming skills associated

with this level.
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Skill Definition Adaptation Association
Checking Detect inconsistencies or

fallacies within a process

or product, determining

whether a process or

product has internal

consistency.

Detect/fix flaws in an

implemented program.

Debugging

Critiquing Detect the procedure’s

suitability for a given

problem.

Criticize procedures to

solve a problem.

-

Table 4.5: Adaptation of the Level Evaluate and Cognitive Programming Skills Association.

Skill Definition Adaptation Association
Generating Come up with alternative

hypotheses based on

criteria.

Create alternative

hypotheses based on

criteria.

-

Planning Devise a procedure for

accomplishing some task.

Develop a procedure to

perform a problem.

-

Producing Create a product. Create a program. Writing

Table 4.6: Adaptation of the Level Create and Cognitive Programming Skills Association.

4.4 Design

This section presents the study design to validate the adaptation of the cognitive domain

of Bloom’s Revised Taxonomy to programming teaching, sequencing the cognitive

programming skills in this adaptation.

4.4.1 Participants

A group of five university educators who supervise CS1 evaluated the adaptation of the

cognitive domain of Bloom’s Revised Taxonomy to programming instructions and the

association of the skills raised in the literature in this adaptation.
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4.4.2 Techniques and Metrics

The evaluation covered the objectives of the cognitive-level skills of Bloom’s Revised

Taxonomy for instructional programming and cognitive programming skills’ association

with the adapted taxonomy. We asked the following questions:

• Indicate the degree of agreement with the objective of the skill’s adaptation to

programming instruction;

• Indicate the degree of agreement with the association (if any) of cognitive

programming skill at the cognitive domain of Bloom’s Revised Taxonomy.

We present a Likert-type scale, with the options for the judge to carry out the evaluation,

with the answer for each question represented as follows:

1. Not adequate: nothing suitable, not adapted, not corresponding at all to the proposed

objective for programming teaching;

2. Not very adequate: 25% adequate, adapted, corresponding very little to the proposed

objective for programming teaching;

3. Moderately adequate: 50% adequate, adapted, moderately corresponding to the

proposed objective for programming teaching;

4. Very adequate: 75% adequate, adapted, corresponding intensely to the proposed

objective for programming teaching.

5. Completely adequate: 100% adequate, adapted, corresponding perfectly to the

proposed objective for programming teaching.

4.4.3 Data Analysis

A judges’ panel inspected the adaptation of the cognitive domain of Bloom’s Revised

Taxonomy to programming instruction. Then, we extracted the data contained in this study

through an exploratory survey. We use the function agree, available in the IRR package in

the R language, to evaluate the agreement’s rate between the judges. We used the Intraclass

Correlation Coefficient to assess inter-judge reliability.



4.4 Design 80

Inter-rater agreement is how two or more raters achieve identical results under similar

assessment conditions. We can use Equation 4.1 to calculate the agreement between raters.

agree =
a

a+ b
.100 (4.1)

Where,

a = number of participants who agree;

b = number of participants who disagree.

The Intraclass Correlation Coefficient assesses inter-observer or intra-observer reliability

for numerical variables [67]. The Intraclass Correlation Coefficient has four questions that

guide its correct use for the reliability study between evaluators:

1. Do we have the same rates for all subjects?

2. Do we have a raters’ sample randomly selected from a larger population or a

raters-specific sample?

3. Are we interested in the reliability of a single rater or the several raters’ mean values?

4. Are we concerned about consistency or agreement?

The first two questions guide the “Model” selection, the third question guides the “Type”

selection, and the last question guides the “Definition” selection [65]. Our model is two-way

mixed effects because we use the same set of raters for all subjects and choose the sample in

a specific way. The type is average measure because we base our measurement protocol on

multiple rater averages. In the end, we adopted the definition absolute agreement because

we wanted to assign the same score to the same subject.

We can use Equation 4.2 to calculate the Intraclass Correlation Coefficient bidirectional

mixed effects, absolute agreement, and multiple rates/measurements.

ICC =
MSR −MSE

MSR + MSC−MSE

n

(4.2)

Where,

MSR = mean square for rows;

MSE = mean square for error;
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MSC = mean square for columns;

n = subject number.

Values less than 0.5 indicate low reliability; values between 0.5 and 0.75 indicate

moderate reliability; values between 0.75 and 0.9 indicate appropriate reliability; and values

greater than 0.90 indicate excellent reliability [65].

4.4.4 Methodological Process

Figure 4.2 represents the methodological process of the adaptation stage of the cognitive

domain of Bloom’s Revised Taxonomy.

Figure 4.2: Methodological Process of Adaptation Stage of the Cognitive Domain of

Bloom’s Revised Taxonomy.

After completing the final version (Appendix F), we developed a survey (Appendix G)

to inspect the adaptation of the cognitive domain of Bloom’s Revised Taxonomy to

programming teaching.

Then, we selected a professional sample to compose the judge’s panel. These judges

are professionals specialized in programming teaching. We sent an invitation letter to

professionals by email. The email contained the objectives and methodology of the
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study, the justification for adapting the cognitive domain of Bloom’s Revised Taxonomy

to programming teaching, and the request to participate in the research as an evaluator.

The judges answered the online survey individually and did not have access to the

opinions of the other judges participating. Each judge signed the Informed Consent Form

(ICF) (Appendix H) to participate in the research. We separated and analyzed the data, and

we based it on the results obtained.

4.4.5 Threats to Validity

We consider some factors that can generate threats and directly influence this study’s

conclusions; among them:

• It is possible that this research application has been long, which may influence the

specialists’ answers. One way to mitigate this threat was to guarantee the judge’s

withdrawal at any time during the research. We applied the Ethics Committee

in Research with Human Beings’ guidelines of the Federal University of Campina

Grande (UFCG) and the State University of Paraiba (UEPB), which approved

this research (Protocols: 23933919.4.0000.5182 | 23933919.4.3001.5187). Only

participants who signed the ICF participated in this study;

• The number of subjects participating in the study does not allow the inference of the

results;

• The criteria cannot be clear, and the experts’ answers do not reflect the response we

expect for this study. Which may also disqualify the adaptation validation.

4.5 Results

This section presents the results of our theoretical analysis on adapting the cognitive levels

of Bloom’s Revised Taxonomy to programming teaching and the cognitive programming

skills’ association with the Adapted Taxonomy.

In Figure 4.3, we present the score distribution barplot, among the judges, within the

Likert scale for each skill. We identify how much each judge agrees with adapting the

definition of the skill to programming teaching.
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Figure 4.3: Degree of Agreement Between the Judges in the Skills Adaptation.

The judges’ responses to adapting the cognitive level skill definition of Bloom’s

Revised Taxonomy to programming teaching achieved high agreement of 84.20% and high

consistency, with Cronbach’s alpha reaching 0.958. In addition, the Intraclass Correlation

Coefficient test 0.956 also indicated excellent reliability between the scores assigned by the

evaluators [95% = 0.915− 0.981]; F(18.72) = 24, p− value < 0.001, as shown in Table 4.7.

ICC Lower Upper F-test df1 df2 P-value

Average measurements 0.956 0.915 0.981 24 18 72 < 0.001

Table 4.7: Intraclass correlation coefficient in adapting of skills.

In Figure 4.4, we present the barplot of the score distribution, among the judges, within

the Likert scale for each skill. We indicate the degree of agreement with the association (if

any) of cognitive programming skill in the cognitive domain of Bloom’s Revised Taxonomy.

The judges’ responses achieved a high agreement of 80.00% and a high consistency,

with Cronbach’s alpha reaching 0.935. In addition, the Intraclass Correlation Coefficient

test 0.940 also indicated that there was excellent reliability between the scores given by the

evaluators [95% = 0.850 − 0.983]; F(9.36) = 15.483, p − value < 0.001, as shown in

Table 4.8.
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Figure 4.4: Degree of Agreement Between the Judges in the Skills Association.

ICC Lower Upper F-test df1 df2 P-value

Average measurements 0.940 0.850 0.983 9 36 15.483 < 0.001

Table 4.8: Intraclass Correlation Coefficient in the Association of Skills.

4.6 Discussions

In tables 4.1 4.3 4.4 4.5 and 4.6, we can see some gaps in the association of cognitive

programming skills within the taxonomy. Gaps include the need for more training in some

skills in CS1.

4.6.1 Remember

Traditionally, the educator focuses only on mechanical learning, and teaching and assessment

focus only on remembering elements or knowledge fragments, often isolated from their

context. However, when educators focus on significant learning, learning is integrated

with building new knowledge or solving new problems. For example, selection structure

knowledge is necessary if the student wants to solve flow deviation problems. This

knowledge because it allows executing one or more commands if the tested condition is

“true” or executing one or more commands if it is “false.” The cognitive skills in the

Remember level include:
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• Recognizing involves retrieving relevant knowledge from long-term memory to

compare it with the information presented. Recognize the student’s demand for

long-term memory information identical to the information presented (as represented

in the working memory). When presented with the new information, the student

determines whether this information corresponds to previously learned knowledge;

• Recalling involves retrieving relevant knowledge from long-term memory when asked

to do so. The prompt is often a question. When remembering, the student searches

the long-term memory for the information and processes part of the working memory

information.

Let us assume that a student has learned selection structures. A memory test may involve

asking the student to match each selection structure with its respective functioning in a

second list (i.e., recognize). Alternatively, the student writes the corresponding functioning

beside each selection structure presented in the list (i.e., recalling).

4.6.2 Understand

Several research studies have confused skill with “cognitive level.” Comprehension is not a

skill, but a synonym related to the “understand” cognitive level [28, 30, 32, 35–38, 73, 86, 92,

93, 117, 139], as well as “reading,” which involves the “understand” cognitive level [4, 17,

20, 51, 84, 90, 102, 108, 137]. These works need to specify the level of cognitive ability.

Students understand when they build connections between “new” knowledge and prior

knowledge. Existing cognitive structures and schemata integrate the new knowledge. Since

concepts are the building blocks for these schemes and structures, conceptual knowledge

provides a basis for understanding.

The cognitive skills of the Understand level include:

• Interpreting is the student’s ability to translate an algorithm form to another form (for

example, translate an algorithm to a flowchart);

• Exemplifying involves identifying the defined characteristics of the concept or

a general principle (for example, the rules for variable names) and using these
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characteristics to select or construct a specific instance (for example, being able to

select which of the variable name declarations is incorrect);

• Classifying occurs when a student recognizes that something (e.g., a particular

instance or example) belongs to a specific category (e.g., concept or principle).

Classifying involves detecting relevant features or patterns that “fit” the specific

instance and the concept or principle. Classifying is a complementary process to

exemplifying. Whereas exemplifying begins with a general concept or principle and

requires the student to find a specific instance or example, classifying begins with

a specific instance or example and requires the student to find a general concept or

principle;

• Summarizing occurs when a student suggests a single statement representing

presented information or abstracts a general theme (for example, learning to

summarize the subroutine’s purposes in a program. An assessment item presents

a program and asks a student to write a sentence describing the subgoal that each

program section accomplishes within the overall program);

• Inferring is the student’s ability to draw a logical conclusion from a presented

algorithm or code (for example, finding out the code output) [41, 42, 51, 52, 54, 55,

93, 116];

• Comparing is the student’s ability to detect similarities and differences between two

or more ideas and determine how well-known an event is with a less familiar one (for

example, detect matches between pseudocode and a code);

• Explaining is the student’s ability to build and use a system’s cause-and-effect

model. Several tasks can assess a student’s ability to explain, including reasoning,

problem-solving, redesign, and prediction [11,20,28,30,83,86,89,116,119,130,139].

In reasoning tasks, a student offers a reason for a particular event. In problem-solving,

a student diagnoses what could have gone wrong in a flawed system. In the redesign,

a student changes the system to achieve some goal. In the prediction, the student may

assess that changing one part of the system will affect another.
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4.6.3 Apply

Apply consists of two cognitive processes: Executing and Implementing. When executing,

the educator presents the student with a familiar task and a procedure to solve it. The student

can provide an answer or, where appropriate, select from the possible answers set. In the

implementation, the student receives an unfamiliar problem that must be solved. Therefore,

most evaluation formats start with specifying the problem. Students determine the procedure

required to solve the problem, use the selected procedure (making the necessary changes),

or generally both.

• Executing is the student’s ability to perform a familiar problem procedure (e.g.,

requesting the student to perform a procedure on the familiar problem);

• Implementation is the student’s ability to use an unfamiliar problem procedure (e.g.,

requesting the student to perform a procedure on the unfamiliar problem).

4.6.4 Analyse

Although learning to analyze can be seen as an end, educationally, it is more defensible to

consider analysis as an understanding extension or as a prelude to evaluating or creating.

Many universities aim to improve students’ code analysis skills in teaching programs. In

introductory programming courses, educators provide code examples for students to “learn

to analyze” as an important goal. For example, they may wish to develop their students’

abilities: i) divide a programming task into parts; ii) organize the parts to achieve a general

objective; iii) identify critical or unimportant components for development.

Understand, Analyse and Evaluate are interrelated and often used iteratively in

performing cognitive tasks. At the same time, however, it is essential to maintain them

as separate process categories. A person who understands a problem may need to analyze it

better. Similarly, someone skillful in analyzing a problem may need to improve.

This process category includes cognitive skills:

• Differentiating is the student’s ability to distinguish relevant parts of the presented

code or algorithm (for example, distinguish irrelevant parts of code). Differentiating

occurs when a student discriminates relevant/essential from irrelevant/unimportant
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information. This skill is different from the cognitive skills associated with

understanding because it involves structural organization and, in particular, determines

how the parts fit into the overall structure or the whole;

• Organizing is the student’s ability to order the parts to achieve the program goal

(such as organizing code or algorithm snippets so that the logic is correct). In

organizing, a student builds systematic and coherent connections among presented

information. Organizing usually occurs in conjunction with differentiating. The

student first identifies the relevant or essential elements and then determines the overall

structure in which the elements fit. Organizing can also occur in conjunction with

attributing, in which the focus is on determining the author’s intention or viewpoint;

• Attributing is the student’s ability to determine a given code’s viewpoint (for example,

the student constructs or selects a description of a given code). The attributing involves

a deconstruction process in which the student determines the material objectives

presented. Unlike interpreting, in which the student seeks to understand the meaning

of the material presented, attribution involves an extension beyond the necessary

understanding to infer the intended or viewpoint underlying the material presented.

4.6.5 Evaluate

The evaluate category includes cognitive verification processes and critical judgments based

on external criteria. These criteria can be determined by the student or by others. For

example: is this code or algorithm sufficiently compelling?

This level involves the following skills:

• Checking is the student’s ability to detect the effectiveness of a program as the student

implements it (for example, finding/correcting a logical error in a given piece of

code) [2,9,16,21,23,29,35–38,41,42,51,69,78,83,84,87,95,124,133]. CS considers

checking as testing or debugging [21, 29, 133].

• Critiquing is the student’s ability to criticize procedures for solving a problem based

on coding standards (for example, judging which of two code snippets or algorithms

is the best way to solve a given problem) [16, 83, 86, 116, 139].
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When combined with planning (a cognitive skill in the category Create) and

implementing (a cognitive skill in the category Apply), the checking determines how well the

plan works. When critiquing, the student observes the positive and negative characteristics of

a code or algorithm and makes a judgment based, at least partially, on those characteristics.

Critiquing is at the heart of what has been called critical thinking. A critiquing example is to

judge the particular solution’s merits to the problem in terms of its efficiency [68].

4.6.6 Create

Students create new code or algorithms at this level by mentally rearranging some elements

or parts in a pattern or structure that was not present. To carry out this process, students draw

on previous learning experiences. Although it requires creative thinking on the student’s

part, it does not imply free creative expression.

Although this level includes goals that require unique production, it also refers to goals

that require production that all students can and will do. When fulfilling these objectives,

many students synthesize information or materials to form a new whole, such as solving a

problem.

Although the Understand, Apply, and Analyze process levels may involve detecting

relationships between the elements presented, Create is different because it involves building

an original product. Unlike the Create level, the other levels involve working with a particular

set of elements that are part of a given whole and part of a larger structure the student is trying

to understand. On the other hand, the student must draw on elements from many sources and

put them together in a new structure or pattern related to his previous knowledge. Creating a

new program or algorithm can be observed, that is, more than the student’s initial material.

A task that requires Create is likely to require aspects of each of the previous cognitive

processes’ categories to some extent.

Thus, the creative process begins with a divergent phase in which the student thinks about

various possible solutions to understand the task (generate). The student conceives a solution

method and transforms it into an action plan (planning). Finally, the student executes the plan

while building the solution (producing). It is not surprising that Creating is associated with

three cognitive processes:
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• Generating is the student’s ability to create alternative hypotheses based on criteria

(for example, hypothesizing that an algorithm’s new combination will solve the

problem).

• Planning is the student’s ability to develop a procedure to perform a task (for example,

planning an algorithm, process, or an alternative strategy for a problem);

• Producing is the student’s ability to create a program (for example, build a program

using invented algorithms) [16,17,19,20,32,33,40–42,47,49,52–54,57,60–62,69,81,

83, 84, 86, 89, 90, 93, 100, 102, 116, 117, 135–140].

4.7 Final Considerations

Programming is a complex activity involving several concepts and structural regulations

addressed by different cognitive levels operating in different stages, making it a challenge

for students to learn and for educators to teach. Current introductory instructions fail to

sequence the many skills involved in programming [137].

With that in mind, (RQ4:) we start from the assumption that sequencing the cognitive

skills involved in programming learning determines the appropriate challenge level in an

assessment instrument. We adapted the cognitive domain of Bloom’s Revised Taxonomy

to programming teaching, sequencing the cognitive programming skills in this adaptation.

Then, we validate the proposal through a survey applied to a group of judges in CS1.

As a result, we conclude that the judges’ responses to the adaption/association of

cognitive level skill definition of Bloom’s Revised Taxonomy to programming teaching

achieved high agreement and high consistency. The Intraclass Correlation Coefficient test

also indicated excellent reliability between the scores assigned by the judges.



Chapter 5

An Instrument to Measure and Foster

Cognitive Programming Skills

In this Chapter, we present the instrument built on adapting the cognitive domain of Bloom’s

Revised Taxonomy to programming teaching. Then, we analyzed the item’s semantics and

content present in this instrument through a survey applied to a group of experts in CS1.

5.1 Initial Considerations

In Chapter 3, we present a wide variety of resources with recommendations for their

application to fostering and measurement in CS1. However, not all recommendations

are relevant to be applied as additional resources for educators to sequence the cognitive

load involved in programming learning. Thus, the vast majority do not have specific

characteristics that meet the needs of these individuals.

Based on this knowledge gap of these specific characteristics, we present the

development of an instrument. The instrument contains a bank of 750 items based on the

indicators in the Cognitive Domain of Bloom’s Revised Taxonomy adapted to programming

teaching (Subsection 4.3). The instrument aims at developing the student’s ability to

understand and write code. However, how do we develop a reliable instrument to measure

such skills? We use Measurement Theories (Section 2.3) to answer this question. The initial

steps in developing an instrument include i) Instrument definition; ii) Item Bank Preparation.

Therefore, this Chapter aims to:

91
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• SO5. To develop an item bank with content and semantics analysis that include

indicators of cognitive programming skills;

In this chapter, we answer the following research questions:

• RQ5. Does the instrument have items with appropriate semantic analysis?

• RQ6. Does the instrument have items with appropriate content analysis?

In this initial study, we applied a survey to a group of 38 judges of advanced

programmers, educators, and experts in CS1. The judges assessed whether the items were

well understood (semantic analysis) and adequate to measure the expected ability (content

analysis). The IRT considers an item with appropriate semantics and content if the judges’

agreement is greater than 80% [8, 14, 101].

We organized the remainder of this Chapter as follows. In Section 5.2, we describe the

instrument’s development. In Section 5.3, we describe the study design. In section 5.4, we

present the results. In Section 5.5, we discuss the results. In section 5.6, we discuss the

related works. Finally, in Section 5.7, we conclude the Chapter with final considerations.

5.2 Instrument Development

This section presents the instrument definition and the building process of the items’ bank.

5.2.1 Instrument Definition

The first step in building an instrument consists of formalizing the purpose and defining the

skill and dimensions necessary to respond.

• Instrument’s purpose: indicates its general purpose, which can be, for example, to

estimate a grade or classify individuals [8, 103]. In our case, the instrument’s purpose

is to measure the student’s performance in CS1;

• Skill: is the characteristic we aim to evaluate. It is what the instrument aims to measure

[8]. We want to measure the cognitive skills that influence students’ performance in

CS1;
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• Instrument’s dimension: indicates the number of skills evaluated [8]. In our case,

the instrument has 19 skills, as shown in Table 5.1.

Level skill Description

Remember
Recognizing Retrieving relevant knowledge from long-term memory

and comparing it with the information presented.
Recalling Retrieving relevant knowledge from long-term memory

when requested.

Understand

Interpreting Translate from one algorithm form into another.
Exemplifying Finding an example of a particular problem.
Classifying Determining that something belongs to a category.
Summarizing Summarize/comment on code snippets/parts.
Inferring Draw a logical conclusion from a presented code.
Comparing Detecting matches between pseudocode and a code.
Explaining Construct an algorithm’s cause-and-effect model.

Apply
Executing Apply a procedure to a familiar problem.
Implementing Apply a procedure to an unfamiliar problem.

Analyse
Differentiating Distinguish relevant parts from irrelevant ones presented

by the algorithm.
Organizing Organizing code parts to achieve the purpose of the

program.
Attributing Determining the code’s viewpoint.

Evaluate
Checking Detecting/fixing flaws in an implemented program.
Critiquing Criticizing procedures to solve a problem.

Create
Generating Creating alternative hypotheses based on criteria.
Planning Developing a procedure to perform a problem.
Producing Creating a program.

Table 5.1: Skills Investigated and Proposed in the Instrument.

5.2.2 Item Bank Building

Combined with a multidisciplinary team of experts composed of two experts in programming

teaching, a statistician and a psychometric psychologist, we developed an instrument that

measures cognitive programming skills. The instrument addresses the following contents:

i) data input and output; ii) conditional statement; iii) iteration statement, and vi) function.

The instrument fosters the 19 skills contained in the cognitive domain of Bloom’s Revised

Taxonomy for each content.

Developing items that foster the “Differentiating” skill to the “data input and output”

content was impossible. Such impossibility is because data input and output are the

first content taught in a programming language. This content focuses on structured

problem-solving without flow deviation so that the solution does not present irrelevant parts.
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We developed ten items for each skill x content combination, totaling 30 items per

differentiating skill and 40 for the other skills. Thus, the instrument comprises 750 items, as

specified in Table 5.2.

Skill Data input

and output

Conditional

statement

Iteration

statement

Function Total

Recognizing 10 10 10 10 40
Recalling 10 10 10 10 40
Interpreting 10 10 10 10 40
Exemplifying 10 10 10 10 40
Classifying 10 10 10 10 40
Summarizing 10 10 10 10 40
Inferring 10 10 10 10 40
Comparing 10 10 10 10 40
Explaining 10 10 10 10 40
Executing 10 10 10 10 40
Implementing 10 10 10 10 40
Differentiating - 10 10 10 30
Organizing 10 10 10 10 40
Attributing 10 10 10 10 40
Checking 10 10 10 10 40
Critiquing 10 10 10 10 40
Generating 10 10 10 10 40
Planning 10 10 10 10 40
Producing 10 10 10 10 40
Total 750

Table 5.2: Total Items Contained in the Instrument.

When developing the measurement instrument, we ordered the constructions to

depend only on the knowledge of the constructions learned in CS1. We chose Python

programming because it is a standard introductory language that appeals to many students

(including non-graduates). To write programs, python does not require more advanced

programming constructs, such as methods or classes [41, 42]. Below, we present example

items present in the measurement instrument in CS1 (Conditional statement) within the

Adaptive Cognitive Domain of Bloom’s Revised Taxonomy to measure and foster cognitive

programming skills (Section 4.4). Other items in their Portuguese version are available at:

https://screeningprogramming.com/.

Remember

Bloom’s Taxonomy first level reinforces curriculum mastery skills: Recognize and

Remember. Such skills relate to recognition or recall in conditions as the student learned
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from the material.

Recognizing

Figure 5.1 depicts a case of an item that assesses the student’s ability to retrieve relevant

knowledge from long-term memory and compare it with the information presented. In this

case, we retrieve knowledge about selection commands.

Figure 5.1: Example of the Item Recognizing Skill.

Recalling

Figure 5.2 is an example of an item that assesses the student’s ability to retrieve relevant

knowledge from long-term memory when asked to do so.

Understand

If instruction fosters retention, the focus is on skills that emphasize the cognitive level.

However, if instruction promotes transfer, the focus shifts to the other seven cognitive skills

at the Comprehend level. This level can be exercised intensely in CS1, as many programming

activities involve, in some way, the Understand level.
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Figure 5.2: Example of the Item Recalling Skill.

It becomes easier for students to succeed in problem-solving when they understand

that they can construct meaning from instructional messages, including syntax and code

examples with specific problems.

Examples to explain what the code does or even infer the code output (execute the code

mentally or on paper) extend the cognitive levels of understanding a particular concept in

programming. As a result, students understand the subject better and connect the “new”

knowledge and their previous knowledge. The knowledge received is integrated into existing

cognitive schemes and structures. Since concepts are the building blocks for these schemas

and structures, conceptual knowledge provides a foundation for understanding. Skills such as

interpreting, exemplifying, classifying, summarizing, inferring, comparing, and explaining

are part of the second cognitive level of Bloom’s Taxonomy.

Interpreting

Once the student has mastered the definitions of a given concept (in this case, selection

commands), we move on to the Understand level. First, we present an example of a problem

that can be solved for each selection command type so that the student can assimilate the

definitions with examples in practice. We can present flowcharts with the student’s intention
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to interpret through a visual image (i.e., interpreting). This skill is called interpretation and

occurs when students can convert information from one representational form to another. In

Figure 5.3, we present an example of an item that assesses this ability.

Figure 5.3: Example of the Item Interpreting Skill.

We can assess the student’s ability to exemplify and classify selection commands. For

example, we can select among the options which of the code snippets is a composed

selection command (i.e., exemplify). Alternatively, sort a code snippet among the types

of selection commands (i.e., classifying). Overall, the ability to classify is complementary to

exemplification. At the same time, exemplification starts with a general concept or principle,

requiring the student to find a specific instance or example. The classification starts with a

specific instance or example and requires the student to find a general concept or principle.

Exemplifying

Figure 5.4 depicts an example of an item that assesses the student’s ability to exemplify.

That is, to identify the defining characteristics of the general concept or principle and to use

these characteristics to select or build a specific instance.
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Figure 5.4: Example of the Item Exemplifying Skill.

Classifying

Figure 5.5 depicts an example of an item that assesses the student’s ability to classify,

that is, to recognize that something belongs to a specific category.

Summarizing

In this process, the student can foster the ability to summarize the code and understand

the various subroutines’ purpose in a program. In Figure 5.6, we present an assessment item

with a code piece. The item asks the student to write a sentence describing the subgoal that

each section of the program accomplishes within the general program.

Inferring

In addition to explaining the code, we can exercise the student’s ability to infer and

compare on this cognitive level of Bloom’s Taxonomy. We can provide items that assess the

student’s ability to draw logical conclusions from a given code and discover its output (as

demonstrated in Fig. 5.7).
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Figure 5.5: Example of the Item Classifying Skill.

Figure 5.6: Example of the Item Summarizing Skill.
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Figure 5.7: Example of the Item Inferring Skill.

Comparing

Figure 5.8 depicts an item example that assesses a student’s ability to detect similarities

and differences between two or more ideas. Furthermore, this item determines how

well-known an event relates to a less familiar one.

Explaining

Finally, we can assess the student’s ability to explain, that is, to build and use a

system’s cause-and-effect model. An example of several items that can assess this skill

in programming involves reasoning, problem-solving, redesign, and prediction. Figure 5.9

depicts an example of an item that works on the student’s reasoning, which asks a student to

provide a reason for a specific event.
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Figure 5.8: Example of the Item Comparing Skill.

Figure 5.9: Example of the Item Explaining Skill.
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Apply

Once the student can understand the content, we must encourage him/her to apply the

knowledge. This third cognitive level of Bloom’s Taxonomy consists of two cognitive skills:

Execution and Implementation. In addition, it involves using procedures to perform exercises

or to solve problems.

Executing

In Executing, the student solves a familiar task using a well-known procedure. For

example, we can present a problem and the technique/model that solves this problem. We

can ask students to provide the answer or, when appropriate, select the correct answer from

a set of possible answers. Figure 5.10 depicts an example of an item that assesses a student’s

ability to select and use a procedure for a familiar problem.

Figure 5.10: Example of the Item Executing Skill.

Implementing

In the implementation, the student analyzes an unfamiliar problem to find a solution.

Therefore, most assessment formats start with problem specifications. We can ask students

to determine the procedure needed to solve the problem, use the selected procedure, or both.
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Figure 5.11 depicts an example of an item that assesses the student’s ability to receive an

unfamiliar problem to solve it.

Figure 5.11: Example of the Item Implementing Skill.

Analyse

The fourth cognitive level of Bloom’s Taxonomy refers to analyzing, that is, segmenting the

material and its constituent parts and determining how the parts correlate with the general

structure. Although learning to analyze is seen as an end, it is more educationally defensible

to regard analysis as an extension of understanding or a prelude to evaluating or creating.

The process includes three cognitive skills at this level: differentiation, organization,

and attribution. In programming, the analysis includes learning to determine the relevant

or essential parts of a code (differentiation), how the parts of the code are organized

(organization), and the code’s purpose (attribution).

Differentiating

Differentiation differs from the cognitive processes associated with Understanding

because it involves structural organization and determining how the parts fit into the general

or whole structure. Mainly, Differentiating differs from Comparing in the use of context.
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Figure 5.12 depicts an item that assesses the student’s ability to distinguish relevant parts

from irrelevant ones of the oral algorithm of the presented code.

Figure 5.12: Example of the Item Differentiating Skill.

Organizing

The student builds systematic and coherent connections between the information

presented by Organizing. An organization usually relates to differentiation. The student

first identifies the relevant or essential elements and then determines the general structure in

which the elements fit. Figure 5.13 depicts an example of an item that assesses the student’s

ability to order the parts to achieve the program’s objective.

Attributing

Attributing involves a deconstruction process in which a student determines the intentions

of the presented code. In contrast to interpretation, in which the student seeks to understand

the meaning of the code, attribution involves extending beyond basic understanding to infer

the presented code’s underlying intent or point of view. Figure 5.14 depicts an example of

an item that assesses the student’s ability to determine the point of view of a given code.
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Figure 5.13: Example of the Item Organizing Skill.

Figure 5.14: Example of the Item Attributing Skill.
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Evaluate

Most cognitive processes require some form of judgment. What most differentiates Evaluate

as defined here from other judgments made by students is the use of performance standards

with clearly defined criteria. The main objective of this cognitive level of Bloom’s Taxonomy

is to improve the student’s critical sense, verifying and criticizing the presented code.

Checking

Checking involves testing internal inconsistencies or fallacies in an operation or product.

Checking occurs when a student tests whether or not a conclusion follows from its premises,

whether the data supports or disproves a hypothesis, or whether the material presented

contains parts that contradict each other. Figure 5.15 is an example of an item that assesses

the student’s ability to detect/correct flaws in an implemented program.

Figure 5.15: Example of the Item Checking Skill.
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Critiquing

Critiquing involves judging a product or operation against externally imposed criteria

and standards. When criticizing, the student looks at a product’s positive and negative

characteristics and makes a judgment based, at least partly, on those characteristics.

Figure 5.16 depicts an example of an item that assesses the student’s ability to criticize

procedures for solving a problem.

Figure 5.16: Example of the Item Critiquing Skill.

Create

Traditional teaching in programming defines selection commands, presents an example using

the syntax, and then asks the student to create programs that solve a given problem. The

cognitive load involved in these processes is high, making it necessary for the foster learning

to program to occur more naturally.

This last level of Bloom’s Taxonomy involves the student’s ability to create a new product

by mentally Reorganizing some elements or parts into a pattern or structure that was not

present. The student’s previous learning experiences coordinate the cognitive processes

involved in this phase. Although this level requires creative thinking on the part of the
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student, this is not a free creative expression, not constrained by the demands of the task or

learning situation.

Thus, the creative process can start with a divergent phase through various possible

solutions. The student tries to understand the task (generate). A convergent phase follows,

in which the student conceives a solution method and transforms it into an action plan

(planning). Finally, the student executes the plan to build a solution (producing).

Generating

Generating involves representing the problem and developing alternatives or hypotheses

that meet specific criteria. Figure 5.17 depicts an example of an item that assesses the

student’s ability to create alternative hypotheses based on criteria.

Figure 5.17: Example of the Item Generating Skill.

Planning

Planning involves designing a solution method that meets a problem’s criteria and

developing a plan to solve the problem. Figure 5.18 depicts an example of an item that

assesses the student’s ability to develop a procedure to perform a task.
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Figure 5.18: Example of the Item Planning Skill.

Producing

Producing involves planning to solve a particular problem that meets certain

specifications. Figure 5.19 depicts an example of an item that assesses this ability.

Figure 5.19: Example of the Item Producing Skill.
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5.3 Study Design

This section presents the study design to validate the item bank content and semantics that

measures cognitive programming skills.

5.3.1 Participants

For the item bank evaluation process, we had a team of experts comprising three university

educators from the local community who teach CS1 courses. In addition, we had 35

experienced programmers who participated in the evaluation process.

5.3.2 Techniques and Metrics

The survey covered both the item bank semantics and the content. We asked the following

questions: i) semantic analysis: Indicate the degree of agreement in understanding the item.

Is the item understandable? Easy to read? ii) content analysis: Indicate the degree of

agreement of the item’s suitability for the desired skill. Is the item suitable for measuring

this skill?

In the semantic analysis, we present a Likert-type scale, with the options for the judge to

carry out the evaluation, with the answer options for each question represented as follows:

1—Not understandable: Not at all understandable, not understood, not understood when

reading. 2—Not very understandable: 25% understandable, understood, understand very

little when reading. 3—Moderately understandable: 50% understandable, understood,

understand moderately when reading. 4—Very understandable: 75% understandable,

understood, understand intensely when reading. 5—Completely understandable: 100%

understandable, understood, understood perfectly when reading.

In the content analysis, we present a Likert-type scale, with the options for the judge

to carry out the evaluation, with the answer options for each question represented as

follows: 1—Not appropriate: Not at all appropriate, not adapted, not corresponding at all

to the objective of the skill proposed. 2—Not very appropriate: 25% appropriate, adapted,

corresponding very little to the proposed skill objective. 3—Moderately appropriate: 50%

appropriate, adapted, moderately corresponding to the objective of the skill proposed.

4—Very appropriate: 75% appropriate, adapted, and intensely corresponding to the proposed
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skill objective. 5—Completely appropriate: 100% appropriate, adapted, corresponding

perfectly to the proposed skill objective.

5.3.3 Data Analysis

A group of judges inspected the semantics and content present in the item bank. Then,

we extracted the data contained in this study through an exploratory survey. We use the

function agree, available in the IRR package in the R language, to evaluate the agreement’s

rate between the judges. We used the intraclass correlation coefficient to assess inter-judge

reliability (Subsection 4.4.3).

5.3.4 Methodological Process

Figure 5.20 represents the methodological process of the item bank semantic and content

evaluation stage.

Figure 5.20: Methodological Process of the Item Bank Semantic and Content Evaluation

Stage.

We have developed an item bank that includes cognitive programming skills. Each item

has a description, alternatives (for multiple-choice items), and a correct answer. We designed
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all items so the examinee could express his/her ability by responding to the item.

After preparing the items, we developed a survey (Appendix I) for the items’ theoretical

evaluation. We applied an online survey to expert judges in the researched area. The

judges checked whether the items were well understood (semantic analysis) and adequate

to measure the desired skill (content analysis).

5.3.5 Threats to Validity

We consider some factors that can generate threats and directly influence this study’s

conclusions; among them:

• It is possible that the application of this research was long, which may influence the

specialists’ answers. One way to mitigate this threat was to guarantee the judge’s

withdrawal at any time during the research. We applied the Ethics Committee

in Research with Human Beings’ guidelines of the UFCG and the UEPB, which

approved this research (Protocols: 23933919.4.0000.5182 | 23933919.4.3001.5187).

Only participants who signed the ICF (Appendix H) participated in this study;

• The instrument was automatically corrected to mitigate possible human errors;

• The number of subjects participating in the study does not allow the inference of

the results. The criteria must be clarified, and the experts’ answers must reflect our

expected response for this study. Which may also disqualify the adaptation validation.

5.4 Results

In Tables 5.3 5.4, we present the results of the items’ content and semantic analysis by skill,

respectively. The degree of agreement among the judges for content analysis, between skills,

ranged between 90%-97.5%; for semantic analysis, this level ranged between 72.5%-95%.

The internal consistency in the responses provided by the judges ranged from 0.740 to 0.979

for content analysis. As for semantic analysis, the responses’ internal consistency ranged

from 0.716 to 0.897. In addition, the intraclass correlation coefficient indicated excellent

reliability between the scores assigned by the judges in the content analysis ranging from
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(0.743 − 0.979 [95% = 0.565 − 0.988]; F(39.78) = 3.848 − 60.888, p − value < 0.001).

For the semantic analysis, this index varied between (0.720− 0.897 [95% = 0.525− 0.942];

F(39.78) = 3.681− 9.619, p− value < 0.001).

Skill Agree. α ICC Lower Upper F-test df1 df2 P-value
Recognizing 97.5% 0.970 0.970 0.950 0.983 33.615 39 78 <0.001
Recalling 97.5% 0.921 0.921 0.867 0.956 12.692 39 78 <0.001
Interpreting 97.5% 0.898 0.898 0.829 0.943 9.846 39 78 <0.001
Exemplifying 97.5% 0.952 0.952 0.919 0.973 20.923 39 78 <0.001
Classifying 95% 0.984 0.984 0.973 0.991 60.888 39 78 <0.001
Summarizing 95% 0.875 0.876 0.791 0.930 7.987 39 78 <0.001
Inferring 95% 0.897 0.894 0.822 0.940 9.684 39 78 <0.001
Comparing 95% 0.929 0.928 0.878 0.959 14.013 39 78 <0.001
Explaining 90% 0.966 0.967 0.944 0.981 29.377 39 78 <0.001
Executing 97.5% 0.969 0.969 0.947 0.982 32.000 39 78 <0.001
Implementing 97.5% 0.979 0.979 0.964 0.988 47.154 39 78 <0.001
Differentiating 90% 0.852 0.843 0.713 0.920 6.778 29 58 <0.001
Organizing 95%¨ 0.740 0.743 0.565 0.855 3.848 39 78 <0.001
Attributing 95% 0.938 0.937 0.893 0.964 16.197 39 78 <0.001
Checking 97.5% 0.965 0.965 0.941 0.980 26.692 39 78 <0.001
Critiquing 97.5% 0.921 0.921 0.867 0.956 12.692 39 78 <0.001
Generating 97.5% 0.898 0.898 0.829 0.943 9.846 39 78 <0.001
Planning 97.5% 0.937 0.937 0.895 0.965 16.000 39 78 <0.001
Producing 97.5% 0.959 0.959 0.931 0.977 24.385 39 78 <0.001

Table 5.3: Reliability Analysis of Item Content Among Judge.

Skill Agree. α ICC Lower Upper F-test df1 df2 P-value
Recognizing 85% 0.837 0.832 0.717 0.905 6.124 39 78 <0.001
Recalling 95% 0.853 0.851 0.750 0.916 6.805 39 78 <0.001
Interpreting 92.5% 0.869 0.865 0.772 0.924 7.611 39 78 <0.001
Exemplifying 90% 0.826 0.823 0.703 0.900 5.745 39 78 <0.001
Classifying 80% 0.881 0.880 0.798 0.933 8.374 39 78 <0.001
Summarizing 87.5% 0.716 0.720 0.525 0.843 3.518 39 78 <0.001
Inferring 87.5% 0.766 0.758 0.594 0.864 4.273 39 78 <0.001
Comparing 90% 0.869 0.862 0.766 0.922 7.612 39 78 <0.001
Explaining 72.5% 0.859 0.862 0.766 0.922 7.075 39 78 <0.001
Executing 75% 0.879 0.880 0.798 0.933 8.242 39 78 <0.001
Implementing 87.5% 0.897 0.897 0.826 0.942 9.619 39 78 <0.001
Differentiating 86.7% 0.728 0.723 0.498 0.858 3.681 29 58 <0.001
Organizing 90%¨ 0.729 0.729 0.544 0.847 3.692 39 78 <0.001
Attributing 85% 0.784 0.786 0.638 0.880 4.620 39 78 <0.001
Checking 87.5% 0.802 0.803 0.668 0.889 5.056 39 78 <0.001
Critiquing 95% 0.847 0.851 0.747 0.916 6.550 39 78 <0.001
Generating 95% 0.740 0.743 0.565 0.855 3.848 39 78 <0.001
Planning 95% 0.817 0.813 0.686 0.894 5.461 39 78 <0.001
Producing 92.5% 0.883 0.883 0.803 0.934 8.538 39 78 <0.001

Table 5.4: Reliability Analysis of Item Semantics Among Judges.

This way, we can analyze the judges’ reliability and agreement to a high degree. After

analyzing the answers among the judges, all items obtained agreement rates above 80%, and
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we selected them for the instrument’s construction for all skills.

5.5 Discussions

Content analysis is an essential step in the development of a new instrument. At this stage,

we can associate abstract concepts with measurable indicators. Content analysis determines

the degree to which each item of a measurement instrument is relevant and representative of

a specific construct. Therefore, the procedures for verifying the evidence validity based on

content can assess whether the items refer to the behavior characteristic in question.

The Semantic analysis assesses the understanding of the items by the target audience. In

this analysis, judges can make comments to determine the degree of difficulty and specific

terms and suggest possible changes in the language of the item.

Judges who are specialists in the subject are responsible for carrying out these

steps [101]. In the present study, we used a group of expert judges to analyze evidence on the

item’s content and semantic validity. The analysis of the judges contributed substantially to

the validation process of the items’ content, indicating which items could confuse the target

population and including behaviors aimed at the Brazilian reality. The semantic analysis

identified difficulties in understanding the instructions, examples, and items.

These steps were essential for validating the instrument, as the suggestions given by

the judges served to ease the item’s understanding, avoiding possible mistakes by the

participants. Thus, throughout this investigation, we verified the need for changes in the

items to make them more objective. These changes are pertinent to avoid causing doubts to

the participants and provide improvements in the instructions’ descriptions. We accepted all

the suggestions made by the judges and incorporated these adaptations into the items. The

collaborations mentioned were helpful and relevant for improving the instrument.

In addition, presenting the instrument to a group of judges who were more experienced

programmers made it possible to verify whether the participants could understand their items

and instructions. It provided essential reflections on the presentation of the items, enabling

their adequacy and instructions through suggestions from the population for which we have

designed the instrument.

In short, the methodological procedures performed were relevant. In this context,
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instrument validation methods can contribute to the design of future research on the

construction of instruments to measure skills. From a practical viewpoint, the instrument

can help in the initial exploration of the metacognitive skills of novice programmers. The

instrument can provide indications that ease professionals’ understanding of these skills and

foster them. Therefore, it is necessary to accumulate other valid evidence to determine the

quality of the instrument; we will address these studies in the following chapters.

5.6 Related Works

Significant research in the CS area did not perform content, and semantic analysis on its

items [2,9, 11,16,17,19–21, 23,28–30,32,33, 35–38,40–42,47,49,51–55, 57,60–62,69,73,

77,82–84,86,87,89,90,92,93,95,100,102,108,116,117,119,124,130,133,135–140]. This

step is essential since the items need to undergo a theoretical evaluation [101]. It is important

to use quantitative analysis to give greater consistency, validity and reliability to the items

bank [8].

The theoretical assessment of the items involves content analysis and semantic analysis.

An experienced group of judges in the target area of the instrument can perform these

analyses. The content analysis investigates whether the content is correct and appropriate

to the proposed. The semantic analysis seeks to identify whether the target audience

understands the items [101].

Recently, one study presented and discussed an instrument’s construction and validation

stages through psychometric and semantic analyses. The instrument assesses the Critical

Thinking skill of high school students. The researchers validated the instrument in four

domains: agreement percentage, content validity index, coherence and agreement between

participants, and instrument reliability. The analysis investigated whether the 20 items seek

to identify the capacities manifestation of Critical Thinking [134].

In this Chapter, we report the instrument’s construction based on the adaptation of the

cognitive domain of Bloom’s Revised Taxonomy or to programming teaching. Then, we

analyze the semantics and content of the items present in this instrument through a survey

applied to a group of judges. To reduce subjectivity in this analysis, we verify the judges’

degree of agreement, consistency, and reliability.
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5.7 Final Considerations

Based on the adaptation of the cognitive domain of Bloom’s Revised Taxonomy to

programming teaching, we developed an items bank. We performed a theoretical analysis

of these items through a survey applied to a group of CS1 specialists. The results indicated

that:

• (RQ5:) Items have an appropriate content analysis that includes indicators of cognitive

programming skills;

• (RQ6:) The items have an appropriate semantic analysis; that is, they are

understandable.



Chapter 6

Assessing the Instrument’s Reliability

In this Chapter, we introduce the calibration of the item bank, instrument consistency to

measure and foster cognitive programming skills, and these skills’ correlation with code

writing. We conducted an empirical study, applying the instrument to a group of novices in

CS1 at UEPB to analyze whether the constructed scale is minimally adjusted to continue the

study.

6.1 Initial Considerations

In previous Chapters, we presented the adaptation of the cognitive domain of Bloom’s

Revised Taxonomy to teaching programming (Chapter 4). This adaptation proposes the

development of cognitive programming skills in a sequential order to avoid students’

cognitive overload. In addition, we developed an instrument based on this adaptation to

measure and encourage such skills. Based on empirical studies, the items have adequate

content and semantic analysis (Chapter 5). We have not analyzed the item’s psychometric

properties and the response’s internal consistency to determine the instrument’s reliability.

Thus, this Chapter has the following objectives:

• SO6. To calibrate the item bank in the information terms they provide regarding the

specific psychological construct assessed;

• SO7. To evaluate the internal consistency of the item bank through measurement

theories;

117
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• SO8. To investigate which cognitive programming skills are relevant to the

participant’s ability to program;

We answer the following research questions:

• RQ7. Does the instrument have items with appropriate psychometric properties?

• RQ8. Does the instrument have appropriate internal consistency?

• RQ9. Which of the cognitive programming skills present in the instrument has a strong

correlation with the participant’s ability to program?

To answer our RQ7, we used the IRT to assess whether the items have appropriate

psychometric characteristics [8]. We used the CTT to assess the instrument’s internal

consistency to answer our RQ8 [96]. Finally, to answer our RQ9, we combined the

instrument’s abilities to explain the ability to produce code.

The IRT considers an item with appropriate psychometric properties if this item has an

index between 0 and 4 for the slope parameter, an index between -3 and 3 for the threshold

parameter, and an index less than 40% for the asymptote parameter. The CTT considers an

instrument appropriate when it has an index greater than 0.8 for Cronbach’s alpha [8,14,101].

Our subjects consist of 100 students who participated in CS1 at UEPB. We developed

and performed our study using the Python language in CS1. We provide participants with

study material, instructions, educational videos, practice problems, and a database containing

items to build and measure their skills.

We then assessed the participants to investigate how much they learned. We verified

the relationship between cognitive programming skills (present in the instrument) and the

participant’s ability to produce code. This analysis is essential and can reduce the number of

skills investigated, focusing only on those that have the most significant impact on writing

code. To contribute to the state of art, we aim to advance this Chapter’s discussions.

We organize the remainder of this Chapter as follows. In Section 6.2, we describe the

study design. In Section 6.3, we present the results. After that, in Section 6.4, we discuss the

results. In Section 6.5, we discuss the related works. Finally, in Section 6.6, we conclude the

Chapter with final remarks.
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6.2 Design

The study design aims to calibrate the item bank, verify the instrument’s consistency, and

identify the correlation between the investigated skills and producing (writing code).

6.2.1 Participants

We selected 100 novices in CS at UEPB to participate in this empirical study. We estimate the

participant’s skills during the academic semester. Participants met the following inclusion

criteria: i) the participants signed the ICF (Appendix J), and we informed them, in a

simplified way, about the procedures we apply; ii) the participant was enrolled in the first

semester of a course in CS; and, iii) the participant could not have any sensory, cognitive,

auditory, or visual problems so as not to compromise the results of the calibration of the

items.

6.2.2 Data Analysis

We analyzed the IRT’s data collected at this stage with the help of the Excel tool available

at: http://psychometricon.net/libirt/. We use tools’ resources to analyze and adjust the 2PL

and 3PL logistic models by the maximum likelihood’s marginal estimate.

We analyzed the instrument’s reliability through the item’s psychometric properties and

the internal consistency (correlation between different items in the same Instrument). This

procedure is essential in constructing any instrument as it checks if the constructed scale

is minimally adequate to continue the study. Through this study, we verify whether the

instrument adds sufficient reliability; if not, we should improve that specificity.

Finally, we estimate the individuals’ skills and correlate them with code production. This

analysis can reduce the number of skills investigated, focusing only on those that have the

most significant impact on code production.

6.2.3 Methodological Process

Figure 6.1 represents the methodological process of the item bank calibration steps,

the instrument’s internal consistency, and the correlation of cognitive abilities with the
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participants’ programming ability.

Figure 6.1: Methodological Process of Instrument Reliability Assessment.

We mentioned the purpose of the research to participants who signed the IFC to

participate in the study. We divided the tasks so that some were virtual and others

face-to-face to ensure the accessibility of the study participants. Individuals needed a

cell phone or a computer with an internet connection to respond to the assessments in the

virtual groups.

During four weeks, we provided participants with study material, instructions, video

lessons, practical problems, and solutions. The participants worked on the content at their

own pace. However, we suggested an agenda to simplify the study control, noting that the

response should be made without online consultation or with a tutor of programming courses.

Each participant answered all items present in the instrument.

We transformed the answers given during the application into dichotomous items

(right/wrong), assigning 0 to the wrong one and 1 to the right one. We calibrated the item

bank and analyzed the instrument consistency. Finally, we estimated the individuals’ abilities

and correlated them with producing (writing code).
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6.2.4 Threats to Validity

We consider some factors that generated threats and directly influenced the conclusions of

this phase. Among these threats, we have:

• Problems related to the incorrect interpretation of the questions;

• The survey participants may be intimidated or uncomfortable performing the tests.

To mitigate these threats, we applied the Ethics Committee in Research with Human

Beings’ guidelines of the UFCG and the UEPB, which approved this research

(Protocols: 23933919.4.0000.5182 | 23933919.4.3001.5187). Only participants who

signed the free and ICF participated in this study;

• Part of the answers given to the instrument was manually corrected. Human errors

can happen in corrections. However, part of the responses given by the participants

involved computerized applications and corrections to reduce possible errors;

• Like all empirical research, this work has threats to validity. The subjects number

participating in the study does not allow results’ generalization;

• The sample must be considered since it will allow the creation of a database based

on probability, statistics, measurement axioms, and considering the instrument’s

objective. This bank must have centralized application control.

6.3 Results

This section presents the instrument’s reliability and the relationship between cognitive skills

and Producing skills (writing code). We analyzed the instrument’s reliability through the

items’ psychometric properties and internal consistency.

6.3.1 Items’ Psychometric Properties

We interpreted the distribution of the participant responses on each task item using 2PL/3PL.

Planning and Producing skills are open items, so their model is 2PL; we consider only slope

and threshold parameters. The items for the other skills are multiple-choice. We use the 3PL,



6.3 Results 122

considering the slope, threshold, and asymptote. In addition, we considered the hit ratio and

the point-biserial correlation between the correct answer on the item and the total score on

the task. We present the output part in Table 6.1, in which we present the first ten items of

the 40 that compose the recognizing skill with the respective parameters. The complete item

table and all skills are available in Appendix K.

Item Slope Threshold Asymptote Hit ratio Point-biserial
REMREC01ES 0.912 0.619 0.200 0.470 0.234
REMREC02ES 1.702 0.000 0.200 0.380 0.044
REMREC03ES 0.847 -0.189 0.152 0.560 0.296
REMREC04ES 0.953 0.350 0.167 0.480 0.289
REMREC05ES 1.346 1.139 0.187 0.340 0.225
REMREC06ES 1.193 -2.311 0.161 0.900 0.280
REMREC07ES 1.331 -0.466 0.160 0.620 0.336
REMREC08ES 1.007 0.218 0.157 0.490 0.318
REMREC09ES 1.181 -1.083 0.192 0.750 0.315
REMREC10ES 1.016 -1.587 0.149 0.790 0.272
Mean 1.386 -0.179 0.171 0.561 0.303
Standard deviation 0.445 0.997 0.034 0.179 0.088

Table 6.1: Recognizing Skill—Ten First Items Calibrated.

In Figure 6.2, we present the ICC’s graphic representation for the first ten items of the

Recognizing skill, highlighting the extreme values of the slope, threshold, and asymptote

parameters. Moreover, in Figure 6.3, we present the IIF’s graphic representation for the

first ten items of the Recognizing skill. Each item provides information in a specific latent

trait region. All item figures and all skills are available in Appendix L and Appendix M,

respectively.

Figure 6.2: Recognizing Skill ICC’s With Ten First Items Calibrated.
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Figure 6.3: Recognizing Skill IIF’s With Ten First Items Calibrated.

6.3.2 Internal Consistency

In Table 6.2, we present the instrument’s internal consistency through the values obtained by

Cronbach’s alpha.

Skill Items Score’s mean Standard deviation Cronbach’s alpha
Recognizing 40 22.450 6.709 0.830
Recalling 40 22.600 6.902 0.840
Interpreting 40 22.630 6.985 0.844
Exemplifying 40 22.650 7.178 0.854
Classifying 40 22.710 7.252 0.858
Summarizing 40 22.680 7.193 0.855
Inferring 40 22.670 7.092 0.850
Comparing 40 22.770 7.341 0.862
Explaining 40 22.610 7.120 0.851
Executing 40 22.710 7.338 0.861
Implementing 40 22.650 7.245 0.857
Differentiating 30 18.910 5.757 0.837
Organizing 40 22.540 7.274 0.859
Attributing 40 22.500 7.235 0.857
Checking 40 22.500 7.282 0.859
Critiquing 40 22.500 7.311 0.860
Generating 40 22.520 7.425 0.866
Planning 40 22.520 7.994 0.887
Producing 40 22.530 8.202 0.894

Table 6.2: Internal Consistency of the Instrument.
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6.3.3 Factor Correlation Analysis

We investigated the relationship between cognitive programming skills (present in the

instrument) and the participant’s ability to produce code. We aim to investigate which of

these skills strongly correlates with the Producing skill (code writing). We estimated the

participants’ abilities who answered the instrument and used the EAP method. Figure 6.4

provides the data summary.

Table 6.3 shows the measures of the central tendency, where the median values are

similar, indicating a symmetrical distribution. The table also presents the standard deviation

dispersion estimates, where it is possible to observe different values and outliers. At the end

of the table, we present the Shapiro test for data normality.

Thus, Comparing, Organizing, Planning, and Producing skills estimates do not follow a

normal distribution. The others follow a distribution with a confidence level of 95%. Some

skill estimates did not follow a normal distribution. Therefore, we correlated skills using

the “spearman” method. We illustrate the correlation between skills using a correlogram, as

shown in Figure 6.5.

Figure 6.4: Boxplot in the Pre-test With the Estimate of the Subjects’ Skills.
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Skill Median Standard deviation Shapiro P-value
Recognizing -0.204 0.901 0.974 0.053
Recalling -0.034 0.943 0.983 0.234
Interpreting 0.015 0.929 0.981 0.168
Exemplifying -0.020 0.968 0.981 0.164
Classifying -0.073 0.982 0.971 0.030
Summarizing -0.074 0.977 0.976 0.070
Inferring -0.108 0.947 0.978 0.104
Comparing -0.133 0.979 0.967 0.014
Explaining -0.086 0.955 0.980 0.142
Executing -0.141 0.965 0.976 0.067
Implementing -0.061 0.972 0.980 0.146
Differentiating -0.004 0.954 0.987 0.455
Organizing -0.006 0.978 0.974 0.050
Attributing 0.005 0.979 0.975 0.055
Checking 0.048 0.996 0.997 0.099
Critiquing -0.024 0.965 0.975 0.057
Generating -0.051 0.975 0.976 0.071
Planning -0.053 0.994 0.937 <0.001
Producing 0.021 1.001 0.934 <0.001

Table 6.3: Exploratory Data Analysis of the Correlation Between the Skills.

Figure 6.5: Correlation Heat Map Between the Skills.
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6.4 Discussions

In this section, we discuss the previous results. Through CTT and IRT, we determined the

instrument’s construct validity indications.

6.4.1 Does the Instrument Have Items With Appropriate Psychometric

Properties?

Using the IRT, we estimated the item’s psychometric properties. We evaluated the conditions

of the required item parameters for the 2PL/3PL model to avoid compromising the domain.

After verifying the 3PL logistic model, we did not find critical values for the estimated

parameters. All items for the skills of Recognizing, Recalling, Interpreting, Exemplifying,

Classifying, Summarizing, Inferring, Comparing, Explaining, Executing, Implementing,

Differentiating, Organizing, Attributing, Checking, Critiquing, and Generating have values

greater than 0.30 for the slope; for the threshold values between 3.95 and -3.95; and, the

asymptote below 0.40. Regarding the 2PL logistic model, we did not find critical values for

the estimated parameters; all items for the Planning and Producing skills have values within

the expected outcomes.

The threshold parameter presents values represented within the entire latent trait,

representing subjects with varying skill levels. In short, this result is excellent given the

complexity involved in estimating the difficulty of an item based only on the designer’s tacit

knowledge, without considering the empirical results. Furthermore, the results on the correct

answer rate revealed that all skills have easy items (with scores above 75%), moderate items

(with scores between 50 and 75%), and difficult items (with scores below 50%).

The point-biserial correlations revealed that the participants with higher scores for all

skills tended to choose the wrong option. Despite this, all items fit correctly to 2PL/3PL, so

they have appropriate reliability and an appropriate skill separation index.

Among the items presented in Table 6.2 and Figure 6.2, the easiest item is

“REMREC06ES,” and the most difficult is “REMREC05ES.” The item with the most guesses

is “REMREC02ES,” which is also the item with the highest discrimination. The item

“REMREC03ES” is the least discriminating. Whereas the item with the lowest guesses

is “REMREC10ES.” The skills’ asymptote with multiple choice items presents average
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rates below 17.1%, which is below the expected since the items of these skills have four

alternatives each. It can be mathematically affirmed that the probability of a low-skill student

hitting the item is approximately equal to 25%.

Regarding Figure 6.3, the item “REMREC02ES” offers more information to assess

subjects of average ability, that is, and a computerized instrument. This item will be the

first chosen if the instrument places the θ skill at 0 as the average skill.

6.4.2 Does the Instrument Have Appropriate Internal Consistency?

Using the CTT, we calculated the biserial point correlation and Cronbach’s alpha coefficient

to estimate the instrument’s internal consistency. High biserial point correlation values

contributed to the instrument’s internal consistency appropriateness. High item-total

correlations indicate that items are closely associated with each other. From the values

obtained for Cronbach’s alpha in Table 6.1, we conclude that the results obtained in

evaluating the instrument are reliable for all skills.

Appropriate internal consistency indicates that the instrument has items that measure a

single latent trait. We can evaluate each skill purely through this instrument. Although our

instrument has 19 skills, we can measure and foster them individually.

Allied with the results of the previous section, for IRT, these findings guarantee the

construction of a one-dimensional model with local independence. By one-dimensionality,

we understand that the instrument measures a single latent trait at a time, which may

represent a proficiency or even a composition of abilities and proficiencies of the assessed

subjects (in our case). By local independence, we understand that the latent trait of the

evaluated ones perfectly explains the dependency between the items. In such a way, it is

possible to position items (based on the threshold parameter) and subjects in the same scale

(represented in the plane by their estimated ability).

6.4.3 Which of the Cognitive Programming Skills Present in the

Instrument Has a Strong Correlation With the Producing Skill?

All the cognitive skills investigated in the instrument strongly correlate with the ability to

produce code. The data suggest that this correlation increases when the student advances
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in the cognitive levels in adapting Bloom’s Revised Taxonomy to programming teaching,

which indicates that learning occurs linearly.

6.5 Related Works

Various approaches and instruments support educators and students in improving the

evaluation process in programming teaching. A study reports a project that explored

students’ skills in basic syntax, tracking code, comprehension code, and writing code, aiming

to establish the relationships between these skills [75].

However, these works have no constructive validity in their instrument. For CCT and IRT,

the trust and validation of an instrument are critical steps since they will be the ones that will

determine the level of scientific evidence that the Instrument has on a given construct [8,96].

In CS [7,16,132], the practice of these theories cited has become common in the scientific

community. Studies have proven the instrument’s validity that measures individual skills.

Bergersen et al. [16] have developed/validated an instrument that measures programming

skills. The Instrument had satisfactory (internal) psychometric properties and correlated

with external variables according to theoretical expectations. Araújo et al. [7] explored

the computational thinking evaluation in CS1 using the Bebras test. They conducted a

preliminary study using IRT to improve the item selection and the instrument design. Wang

et al. [132] used IRT to model students’ learning results in a programming language course.

One study assessed whether there is still a difference between tracing and writing code.

This study found that not only does the gap appear to be missed by CS2, but students

are just as likely to show a reverse gap in the writing-tracing direction. However, a more

accurate analysis reveals a strong correlation between students who remain with a gap (in

either direction) and poor overall achievement in the course [52]

This study used CTT and IRT to measure cognitive skills according to Bloom’s Revised

Taxonomy for programming teaching (Chapter 4). We evaluated the instrument’s reliability,

assessing its internal consistency and whether the items had appropriate psychometric

characteristics. Finally, we combined the instrument’s skills to explain the skill of producing

code.
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6.6 Final Considerations

In this study, we explored the IRT/CTT to analyze the instrument’s internal consistency

and items’ psychometric properties by measuring the programming skills. We developed an

instrument based on an adaptation of the cognitive domain of Bloom’s Revised Taxonomy

to programming teaching. As a result, we conclude that:

• (RQ7:) the 750 items present in the instrument are well-calibrated according to the

slope, threshold, and asymptote parameters;

• (RQ8:) the instrument for each skill has a reliable internal consistency, with crobrach’s

alpha ranging between 0.8 and 1;

• (RQ9:) all the cognitive skills investigated in the instrument present strong correlations

with the ability to produce code. The data suggested that this correlation increases

when the student advances in the cognitive levels within the adaptation of the cognitive

domain of Bloom’s Revised Taxonomy to programming teaching, which indicates that

learning occurs linearly.



Chapter 7

Integrating Adaptive Selection to the

Instrument

In this Chapter, we aim to integrate adaptive selection into the instrument to improve the

measurement of cognitive programming skills. We developed algorithms based on the IRT,

defining an initial criterion for skill, item selection procedure, skill estimation method, and

different stopping criteria. To determine the best algorithm for the items’ adaptive selection,

we used the item bank and feedback from study participants in Chapter 6. We performed

simulations of how the instrument would behave through these inputs.

7.1 Initial Considerations

We developed an instrument with understandable items and indicators of cognitive

programming skills (Chapter 5). The instrument has adequate internal consistency and items

that have adequate psychometric properties. In addition, all cognitive skills investigated in

the instrument showed strong correlations with the ability to produce code (Chapter 6). Thus,

the instrument measures cognitive programming skills through items presented in sequential

order.

However, the sequence/number of items must be appropriate for the student’s skill

level. An item with a low level of difficulty for high-ability subjects becomes exhausting,

as the correct answers add little information to the proficiency assessment of these

individuals [103]. In addition, items that do not offer any challenge can make the individual

130
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bored, responding without further care. Likewise, items with high degrees of difficulty

for subjects with low proficiency can become exhausting. Such items allow individuals to

guess and incorporate incorrect responses into items. This fact may influence the student’s

withdrawal from the practice of the exercise [122]. Therefore, items presented sequentially

may not discriminate well between low/high-ability students. A poorly chosen item can

overestimate or underestimate the individual’s ability, directly influencing the estimate of

the student’s ability on the instrument.

We can improve this reality if the algorithm chooses the item based on the student’s skill

level. These changes may reduce the number of items to be administered in the assessment

and will estimate skill more accurately. Thus, it is possible to use the IRT and manage the

Instrument items through an algorithm that adaptively selects them according to the subject’s

skill level.

The IRT considers the item as the basic unit of analysis and aims to represent

the individual probability of answering the item according to its parameters and latent

characteristics. This way, the adaptive selection of items can help professionals solve

problems requiring quality tools and specialized knowledge. The same set of items is applied

to all individuals, allowing greater accuracy, speed, and ease of updating. In addition, this

instrument is less error-prone in disseminating its results [111]. Therefore, this Chapter aims:

• SO9. To integrate adaptive selection through algorithms that improve performance in

estimating students’ abilities;

Integrating adaptive selection into an instrument aims to improve the measurement

of cognitive programming skills. In this way, we developed algorithms for the adaptive

selection of items (Section 7.3). We analyzed them to determine the best option for selecting

items and estimating ability. Thus, we answer the following question:

• RQ10. Which adaptive algorithm has better accuracy in estimating cognitive

programming skills?

We organize the remainder of this Chapter as follows. In Section 7.2, we describe

the study design. In Section 7.3, we present the adaptive algorithms’ construction. In

Section 7.4, we present the results. In Section 7.5, we discuss the results. In Section 7.6,
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we discuss the related works. Finally, in Section 7.7, we conclude the Chapter with final

remarks.

7.2 Adaptive Algorithms

In Figure 7.1, we present the criteria adopted for developing an adaptive algorithm targeting

item selection.

Figure 7.1: Criteria for Elaborating Algorithms Targeting the Selection of Adaptive Items.

We adopted the maximum likelihood method [13] as a procedure for estimating the

individuals’ abilities (Algorithm 1). For the item selection, we chose Fisher’s Maximum

Information method [101] (Algorithm 2). This method depends on the probability of

an individual getting an item right (Algorithm 3). We control item exposure through

auto-selection. Once the algorithm administers the item to the subject, the algorithm will

not select this item in subsequent estimations.
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Algorithm 1 Maximum Likelihood Method.
denTheta← 0.0f

numTheta← 0.0f

numTheta← numTheta+ (a[id] ∗ (mirror[iS][idmirror]− p[id]))

denTheta← denTheta+ ((a[id] ∗ a[id]) ∗ p[id] ∗ (1− p[id]))

theta← theta+ (numTheta/denTheta)

if theta < −3.0f then

theta← −3.0f

else if theta > 3.0f then

theta← 3.0f

end if

erro← (1/Math.sqrt(denTheta))

if admin = 0 then

difErro← erro− 0

else if admint > 0 then

difErro← erroAux− erro

end if

erroAux← erro

We summarize the procedure for calculating Maximum likelihood as follows:

1. theta starts with a value of zero, as the algorithm does not have prior information about

the examinee;

2. The algorithm administers an item to the examinee. Based on the answer provided by

the user (1—right or 0—wrong), the theta will be updated based on the following

formula: theta = theta + (numTheta + (a[id] ∗ (mirror[iS][idmirror] −

p[id]))/denTheta + ((a[id] ∗ a[id]) ∗ p[id] ∗ (1 − p[id]))). The theta depends on

the slope parameter, the answer provided, and the individual’s probability of getting

the item right. If theta is less than -3, the algorithm updates theta to -3. However, if

theta is greater than 3, the algorithm updates theta to 3;

3. Next, the algorithm calculates the error in estimating theta based on the following

formula error = (1/Math.sqrt(denTheta+ ((a[id] ∗ a[id]) ∗ p[id] ∗ (1− p[id]))));
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4. At each estimate of theta, the algorithm calculates the difErro. If the number of items

managed by the algorithm equals zero, the algorithm calculates this difference based

on error− 0. Otherwise, the algorithm calculates this difference based on the last two

errors in the skill estimates;

5. This procedure returns the theta and the difErro.

Algorithm 2 Fisher’s Maximum Method.
max← 0.0f

index← 0

while index < i.length do

if model is 3-parameter then

i[index]← (a[index] ∗ a[index]) ∗ ((1.0f − p[index])/p[index]) ∗ ((p[index]−

c[index]) ∗ (p[index]− c[index]))/((1.0f − c[index]) ∗ (1.0f − c[index]))

else if model is 2-parameter then

i[index]← (a[index] ∗ a[index]) ∗ p[index] ∗ (1.0f − p[index])

end if

index← index+ 1

end while

index← 0

while index < i.length do

if i[index] > max AND i[index] = 0 then

max← i[index]

id← index

idmirror ← id+ 1

end if

index← index+ 1

end while

Fisher’s maximum information procedure determines the item’s information in each

latent trait. The algorithm will select the item that obtains the most information. We

summarize this procedure as follows:
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1. As we do not know which item (index) the algorithm will select, as well as the

maximum information (max). The algorithm starts index and max with zero;

2. While the index is smaller than the size of the information vector i[index], each index

of the vector i[index] will be updated according to the logistic model adopted. If

the logistic model is 3PL, i[index] will be updated based on the following formula:

i[index] = (a[index] ∗ a[index]) ∗ ((1.0f − p[index])/p[index]) ∗ ((p[index] −

c[index]) ∗ (p[index] − c[index]))/((1.0f − c[index]) ∗ (1.0f − c[index])). If the

logistic model is 2PL, i[index] will be updated based on the following formula:

i[index] = (a[index] ∗ a[index]) ∗ p[index] ∗ (1.0f − p[index]). For 2PL, item

information depends on the slope parameter and the probability of hitting the item

(Algorithm 3). For 3PL, in addition to the above information, the asymptote parameter

is also required to calculate item information;

3. After filling the i[index] array, the algorithm will select the highest value using a

sequential search;

4. This algorithm returns the item (index) that has more information (max) in the latent

trait.

Algorithm 3 Probability of Hitting the Item.
index← 0

while index < p.length do

if model is 3-parameter then

den← (1.0f +Math.exp(−a[index] ∗ (theta− b[index])))

p[index]← c[index] + ((1.0f − c[index])/den)

else if model is 2-parameter then

den← (1.0f +Math.exp(−a[index] ∗ (theta− b[index])))

p[index]← (1.0f/den)

end if

index← index+ 1

end while
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We summarize the procedure for calculating the probability of getting the item right as

follows:

1. The index starts at zero and controls the position of the item within the probability

vector p[index];

2. While the index is smaller than the size of the probability vector p[index], each index

of the vector p[index] will be updated according to the adopted logistic model. If

the logistic model is 3PL, p[index] will be updated based on the following formula:

p[index] = c[index] + ((1.0f − c[index])/(1.0f +Math.exp(−a[index] ∗ (theta−

b[index])))). If the logistic model is 2PL, p[index] will be updated based on the

following formula: p[index] = (1.0f/(1.0f + Math.exp(−a[index] ∗ (theta −

b[index])))). For 2PL, the item probability depends on the slope and threshold

parameters. For 3PL, in addition to these parameters, the asymptote parameter is also

needed to calculate the probability of getting the item right;

3. This algorithm returns the probability vector that the individual has in hitting each of

the items (p[index]) according to his latent trait.

It is essential to determine when the individual will no longer answer to items (stopping

criterion). We vary the algorithms on the instrument’s stopping criterion in three ways:

• Z1. maximum number of managed items;

• Z2. estimation standard error <0.01;

• Z3. previous criteria combination and the minimum and maximum number of

managed items.

We developed a script to find the estimate of each skill, the number of items administered,

and if the subject responded to the adaptive instrument for each stopping criterion—Z1,

Z2, and Z3, respectively. We found these estimate values by simulating the instrument

application based on the answers given by the participants in the study of chapter 5. Next,

we detail these algorithms.
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7.2.1 Adaptive Selection Algorithm Z1

In the Algorithm 4, we generated the estimate of the subjects’ skills adaptively. The

algorithm manages all items according to the subject’s skill level.

The algorithm 4 works as follows:

1. For this algorithm to work, it is necessary: the number of items for the skill to

be estimated (item); vectors containing slope (a[index]), threshold (b[index]) and

asymptote (c[index]) indices of all items for skill a to be cherished; vectors to store, at

each iteration, the item’s information (i[index]) and the item’s probability (p[index]);

a vector that controls the exposure of items (ic[index]), and the responses given by

users to each administered item (mirror[iS][index]);

2. For each user managed by the algorithm, theta, error, the vector (ic[index]) and the

number of managed items (admint) are reset;

3. As long as there are users to be managed, the algorithm will manage the items and

estimate the users’ skills;

4. theta starts with a value of zero, as the algorithm does not have prior information about

the examinee;

5. The algorithm calculates the probability of hitting the item and the item information

based on the current theta;

6. Based on the item information, the algorithm will select the item that contains the

maximum fisher information;

7. The algorithm manages this item and adds it to the array of items we manage, thus

controlling its exposure;

8. Based on the answer provided by the examinee, the algorithm estimates their ability;

9. The algorithm repeats steps 5, 6, 7, and 8 until the number of administered items

(admint) is less than the number of skill items (item);

10. The algorithm returns the administered items and the individual’s estimated skill at

each iteration.
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Algorithm 4 Adaptive Selection Algorithm Z1.
Require:

item← 40 ▷ Insert the quantity of items for the skill

a← []{} ▷ Insert the calibrated items for the slope parameter

b← []{} ▷ Insert the calibrated items for the threshold parameter

c← []{} ▷ Insert the calibrated items for the asymptote parameter

p← [item]{} ▷ Probability to hit the item

i← [item]{} ▷ Item Information Function

ic← [item]{} ▷ Item Expose Control Method

mirror ← [][]{} ▷ Insert the participant responses

Ensure:

iS ← 0

idStudant← mirror[iS][0]

do

admint← 0

theta← 0.0f

do

probI() ▷ Calculates the subject’s probability of answering the item

infoI() ▷ Fisher’s Maximum Information Method

newTheta() ▷ Maximum Likelihood Method

ic[id]← 1

admint← admint+ 1

while admint < item ▷ Instrument Stop Method

print theta

print admint

ic← newint[]{0, ..., 0}

iS ← iS + 1

if iS < mirror.length then

idStudant← mirror[iS][0]

end if

denTheta← 0.0f

numTheta← 0.0f

erro← 0.0f

while iS < mirror.length
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7.2.2 Adaptive Selection Algorithm Z2

In the Algorithm 5, we add the standard error <0.01 as a stopping criterion. Thus, based on

the data obtained, we analyzed that some subjects would respond quickly without needing

to manage all the items in the bank. Then, we obtained the frequency of items applied, as

shown in Figure 7.2 and Table 7.1.

Figure 7.2: Item Frequency Boxplot Applied Across All Skills for the Z3.

Min. 1 quartile Average S. d. 3 quartile Max.
Recognizing 5 10.75 12.610 3.673 15 22
Recalling 5 9 11.460 3.751 14 20
Interpreting 5 8 10.870 4.012 13 21
Exemplifying 5 9 11.600 3.774 14 20
Classifying 5 10 11.780 3.070 13 22
Summarizing 5 11 11.670 3.012 13 23
Inferring 5 11 11.780 3.886 13 22
Comparing 5 6 9.970 3.471 12 18
Explaining 5 9 11.650 4.215 12 22
Executing 6 8 11.110 4.362 15 22
Implementing 5 9 11.960 4.144 14 22
Differentiating 8 11.75 13.240 2.931 15 21
Organizing 6 10 10.980 2.542 12.25 18
Attributing 5 10 11.190 2.856 13 21
Checking 5 10 11.410 3.072 13 19
Critiquing 5 9 10.950 2.826 13 17
Generating 5 10 10.100 2.254 11 17
Planning 6 7 10.370 3.311 13 19
Producing 5 7 10.590 3.450 13 19

Table 7.1: Minimum and the Maximum Number of Items for All Skills.
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Algorithm 5 Adaptive Selection Algorithm Z2.
Require:

item← 40 ▷ Insert the quantity of items for the skill

a← []{} ▷ Insert the calibrated items for the slope parameter

b← []{} ▷ Insert the calibrated items for the threshold parameter

c← []{} ▷ Insert the calibrated items for the asymptote parameter

p← [item]{} ▷ Probability to hit the item

i← [item]{} ▷ Item Information Function

ic← [item]{} ▷ Item Expose Control Method

mirror ← [][]{} ▷ Insert the participant responses

Ensure:

iS ← 0

idStudant← mirror[iS][0]

do

admint← 0

theta← 0.0f

do

probI() ▷ Calculates the subject’s probability of answering the item

infoI() ▷ Fisher’s Maximum Information Method

newTheta() ▷ Maximum Likelihood Method

ic[id]← 1

admint← admint+ 1

while admint < item AND difErro > 0.01 ▷ Instrument Stop Method

print theta

print admint

ic← newint[]{0, ..., 0}

iS ← iS + 1

if iS < mirror.length then

idStudant← mirror[iS][0]

end if

denTheta← 0.0f

numTheta← 0.0f

erro← 0.0f

while iS < mirror.length
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The only difference between the algorithm 4 and the algorithm 5 is in step 9, where the

stopping criterion is a combination of two factors: the number of items managed (admint) is

less than the number of skill items (item), and difErro is less than 0.01.

7.2.3 Adaptive Selection Algorithm Z3

We use the previous results to generate the algorithm with stopping criterion Z3

(Algorithm 6). It consists of the estimated standard error when less than 0.01 and the

minimum and maximum number of administered items. We found the minimum and

maximum values based on the first and third quartiles of the data set represented by the

boxplot (Fig. 7.2)

According to Table 7.1 and Figure 7.2, the selection algorithm will not select more

items when the standard error of the skill calculation is less than 0.01 and the number

of applied items is at least nine and a maximum of 14, whichever comes first, for the

Recalling, Implementing and Exemplifying skill. Classifying, Attributing, and Checking

skills are between 10 and 13 items. For Planning and Producing skills between 7 and 13. For

Summarizing and inferring skills, between 11 and 13 items, recognizing between 11 and 15,

interpreting between 8 and 13, comparing between 6 and 12, explaining between 9 and 12,

executing between 8 and 15, differentiating between 12 and 15, organizing between 10 and

12, and critiquing between 9 and 13, finally, for the Generating skill between 10 and 11.

The only difference between the algorithm 5 and the algorithm 6 is in step 9, where the

stopping criterion is a combination of two factors: the number of managed items (admint)

is in the skill’s minimum, and maximum item amount range and difError is less than 0.01,

whichever comes first.
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Algorithm 6 Adaptive Selection Algorithm Z3.
Require:

item← 40 ▷ Insert the quantity of items for the skill

a← []{} ▷ Insert the calibrated items for the slope parameter

b← []{} ▷ Insert the calibrated items for the threshold parameter

c← []{} ▷ Insert the calibrated items for the asymptote parameter

p← [item]{} ▷ Probability to hit the item

i← [item]{} ▷ Item Information Function

ic← [item]{} ▷ Item Expose Control Method

mirror ← [][]{} ▷ Insert the participant responses

Ensure:

iS ← 0

idStudant← mirror[iS][0]

do

admint← 0

theta← 0.0f

do

probI() ▷ Calculates the subject’s probability of answering the item

infoI() ▷ Fisher’s Maximum Information Method

newTheta() ▷ Maximum Likelihood Method

ic[id]← 1

admint← admint+ 1

while (admint < minItem OR (admint < maxItem AND difErro > 0.01)) ▷

Instrument Stop Method

print theta

print admint

ic← newint[]{0, ..., 0}

iS ← iS + 1

if iS < mirror.length then

idStudant← mirror[iS][0]

end if

denTheta← 0.0f

numTheta← 0.0f

erro← 0.0f

while iS < mirror.length
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7.3 Design

In this section, we present the study design to integrate adaptive selection into the instrument

to improve the measurement of cognitive programming skills.

7.3.1 Dependent and Independent Variables

One of the requirements for having an instrument managed by adaptive algorithms is the

existence of a calibrated items bank. These algorithms have:

• Estimation Method;

• Adaptive Selection Method;

• Item Exposure Control Method;

• Instrument Stop Method.

We use these measures as Independent Variables. In such a way, these measures

allowed the elaboration of different algorithms. Then, we conducted simulations with the

calibrated items bank and the answers provided by the subjects in the pre-test and performed

the subjects’ abilities estimation (Dependent Variable) based on these algorithms.

7.3.2 Data Analysis

We simulated the data of this phase through the answers provided by the subjects in the

pre-test. Based on these answers and the item bank calibration, we adapted the participants’

answers through a script in Java language (Appendix N). We analyzed these data based on

descriptive and inferential statistics, aiming to meet the proposed objectives of this study

regarding the integration of adaptive selection through algorithms that improve performance

in estimating students’ abilities.

7.3.3 Methodological Process

Figure 7.3 represents the methodological process of analyzing the integration of adaptive

selection to the instrument.
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Figure 7.3: Methodological Process of Analyzing the Integration of Adaptive Selection to

the Instrument.

In order to determine the best algorithm for the items’ adaptive selection, we used the

item bank and feedback from study participants in the pré-test. We performed simulations

of how the instrument would behave through these inputs. We calculated the Spearman

correlation between the skills estimated in the pre-thesis by EAP using the eirt macro (EAP)

and the skills estimated between the adaptive algorithms (Z1, Z2, and Z3).

7.3.4 Threats to Validity

The main idea in implementing the algorithms is to perform a computerized adaptive test

with the exact specifications (and the same validity) as a standard pen-paper test and still

provide a smaller number of items. In the simulations, we used the responses provided in

the pre-test stage (Chapter 6). In this way, we must consider the same threats to the validity

of the previous step. We use the calibrated item bank and response database to estimate the

algorithms’ abilities, and the ability estimates may not exactly match reality.
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7.4 Results

We estimated the students’ ability in the EAP pre-test using the eirt macro (EAP), as well as

the estimate generated by the three algorithms: Z1, Z2 and Z3. The skill estimates generated

by the algorithms are quantitative variables without causality; one variable does not influence

the other. In Table 7.2, we present the descriptive statistics (mean and standard deviation

(Sd)) of the ability estimation between the algorithms. As we can see from the data, the

algorithms generated different estimates for each observed scenario.

Skill
EAP Z1 Z2 Z3

Mean Sd Mean Sd Mean Sd Mean Sd
Recognizing -0.267 0.901 -0.248 2.079 -0.304 1.878 -0.499 1.793
Recalling -0.090 0.943 -0.021 1.850 -0.094 1.890 -0.217 1.808
Interpreting -0.032 0.930 -0.190 1.779 -0.041 1.805 -0.100 1.772
Exemplifying -0.043 0.969 -0.074 1.747 0.053 1.886 -0.050 1.810
Classifying -0.063 0.983 -0.176 1.874 -0.095 1.845 -0.233 1.751
Summarizing -0.066 0.978 -0.050 1.869 -0.126 1.793 -0.275 1.765
Inferring -0.113 0.947 -0.104 1.873 -0.090 1.967 -0.333 1.871
Comparing -0.119 0.980 -0.188 1.883 -0.034 1.927 -0.118 1.882
Explaining -0.092 0.955 -0.137 1.727 0.031 1.858 -0.204 1.804
Executing -0.145 0.966 -0.186 1.770 -0.130 1.651 -0.201 1.663
Implementing -0.090 0.972 -0.101 1.777 -0.179 1.816 -0.360 1.743
Differentiating 0.003 0.954 0.024 1.907 0.049 1.918 0.024 1.923
Organizing -0.060 0.978 -0.018 1.863 -0.080 1.857 -0.237 1.734
Attributing -0.056 0.980 -0.019 1.883 -0.056 1.796 -0.193 1.705
Checking -0.023 0.997 0.067 1.962 -0.036 1.805 -0.181 1.728
Critiquing -0.076 0.965 0.042 1.939 -0.087 1.854 -0.178 1.740
Generating -0.067 0.975 0.029 2.027 -0.068 1.731 -0.144 1.644
Planning 0.026 0.994 0.079 2.009 0.218 1.916 0.235 1.896
Producing 0.027 1.002 0.073 1.978 0.351 1.819 0.365 1.776

Table 7.2: Descriptive Statistics of Abilities’ Estimation Among Algorithms.

To determine which of the algorithms (Z1, Z2 and Z3) has the best estimate when

compared to EAP, we correlate the variables. For this, first, we calculate the normal

distribution of the data through the shapiro.test() function present in the R language. In

Table 7.3, we present the results of the normality test of the ability estimates between the

algorithms.
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Skill EAP Z1 Z2 Z3
Recognizing 0.052 <0.001 <0.001 <0.001
Recalling 0.233 <0.001 <0.001 <0.001
Interpreting 0.167 0.002 0.002 0.004
Exemplifying 0.163 0.002 <0.001 0.001
Classifying 0.030 <0.001 <0.001 0.002
Summarizing 0.070 <0.001 0.002 0.002
Inferring 0.104 <0.001 <0.001 <0.001
Comparing 0.014 <0.001 <0.001 <0.001
Explaining 0.141 0.002 <0.001 0.001
Executing 0.067 0.003 0.023 0.001
Implementing 0.146 0.002 0.001 0.002
Differentiating 0.454 <0.001 <0.001 <0.001
Organizing 0.050 <0.001 <0.001 0.002
Attributing 0.054 <0.001 <0.001 0.003
Checking 0.098 <0.001 <0.001 0.001
Critiquing 0.056 <0.001 <0.001 0.002
Generating 0.070 <0.001 0.001 0.015
Planning <0.001 <0.001 <0.001 <0.001
Producing <0.001 <0.001 <0.001 <0.001

Table 7.3: Normality Test of Skills Estimates Between Algorithms.

According to the results of Table 7.3, all skill estimates by the algorithms do not follow

a normal distribution, as the p − values were less than 0.05. In this way, we calculated the

Spearman correlation between the skills estimated in the pre-thesis by EAP using the eirt

macro (EAP) and the skills estimated between the adaptive algorithms (Z1, Z2 and Z3). To

calculate the Spearman correlation, we use the cor.test() function present in the R language,

passing the estimates to the parameters x and y, and spearman for the method parameter. In

Table 7.4, we present these results.

EAP

Skill Z1 Z2 Z3
Recognizing 0.605 0.634 0.649
Recalling 0.634 0.752 0.781
Interpreting 0.622 0.725 0.738
Exemplifying 0.663 0.804 0.824
Classifying 0.710 0.693 0.748
Summarizing 0.665 0.713 0.759
Inferring 0.651 0.763 0.783
Comparing 0.671 0.792 0.800
Explaining 0.674 0.778 0.827
Executing 0.670 0.784 0.826
Implementing 0.685 0.737 0.790
Differentiating 0.701 0.753 0.744
Organizing 0.650 0.705 0.731
Attributing 0.647 0.716 0.724
Checking 0.673 0.698 0.724
Critiquing 0.655 0.710 0.723
Generating 0.662 0.770 0.797
Planning 0.622 0.726 0.735

Table 7.4: Correlation of Skills Estimation Between Eap and Adaptive Algorithms.
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7.5 Discussions

As we can observe in the results of Table 7.4, all algorithms present moderate or strong

correlations to estimate the individuals’ abilities. However, among the correlations, the Z3

algorithm was the one that obtained the best estimate for all skills. Based on our results, the

algorithm that best selects items and estimates abilities more accurately to the full test has

the following characteristics:

• Estimation method: maximum likelihood;

• Adaptive Selection Method: maximum information from Fisher;

• Item Exposure Control Method: item exposure control;

• Instrument Stop Method: standard error in estimation <0.01 and the minimum and

maximum quantity of administered items.

7.6 Related Works

Assessment is one of the most critical issues in the learning process. In many cases, it defines

the instruction sequence because it measures the student’s performance in the educational

process. In recent decades, information technology inclusion in the teaching-learning

process has caused meeting the characteristics of the diversity of students and teachers.

Learning technologies make it possible to adapt different learning and teaching methods

in the educational context through user adaptation and modeling [128].

Because testing consumes time that might otherwise be devoted to instruction, it is

important to design efficient tests. Doing so requires a careful balance of contributions

from technology, psychometrics, test design, and learning sciences. Educational research

and student testing use computer-adaptive testing [106].

One study offered suggestions for implementing a CAT in practice, providing an

overview of how it works. The study aimed to motivate researchers and professionals

to conduct tests and evaluations in this little-practiced area. The works above help them

understand some relevant technical concepts [25, 106].
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A study described the IRT and how it can be applied in an online course test scenario

to generate adaptive assessments. This application took place within an Introduction to

Object-Oriented Programming course based on items (evaluation questions). The study

outlines the variables to consider and how to calculate the probability of a student correctly

answering a specific item based on an ability test and their past responses, duly normalized

in the adaptation process. The main contributions of this study are the probabilistic theory’s

implementation in the generation of adaptive evaluation. Whereas the used distributed

repositories allow properly parameterized items’ reuse [128].

In this chapter, we integrate adaptive selection into the instrument to improve the

measurement of cognitive programming skills. We follow the IRT and CTT guidelines for

the development of algorithms [101]. Thus, to understand some specific concepts, we follow

the suggestions given by the works of Costa [25] and Sadeghi [106]. Finally, we determined

the best algorithm for the adaptive selection of items through simulations with the database

from the study of Chapter 6.

7.7 Final Considerations

This thesis started with the need to integrate adaptive selection into an instrument to measure

cognitive programming skills to improve the system’s efficiency in selecting items and

estimating students’ skills. To better understand whether it is possible to improve the

application of an instrument adaptively, we selected items according to the subject’s skill

level and administered fewer items than conventional. As a result, we conclude that:

• (RQ10:) among the algorithms developed to select items adaptively, the algorithm

that obtained the best accuracy in the skill estimation process has the following

characteristics: i) maximum likelihood as a skill estimation method; ii) maximum

fisher information as an adaptive selection method; iii) obtain an item exposure control;

iv) and for the method of stopping the instrument, a combination of factors such as the

standard error in the estimation <0.01 and the minimum and a maximum number of

administered items.



Chapter 8

Assessing the Instrument Validity

In this Chapter, we present an exploratory investigation into the instrument’s validity for

measuring introductory programming skills.

8.1 Initial Considerations

As reported in previous chapters, one way to gradually reduce the cognitive load of novices

to programming is to build cognitive skills in CS1. Skills can be fostered by following the

six cognitive domains of Bloom’s Revised Taxonomy.

Therefore, (i) we adapted Bloom’s Revised Taxonomy to programming teaching and

empirically evaluated this adaptation (Chapter 4); (ii) according to this adaptation, we

developed an instrument to measure and foster cognitive programming skills and analyzed

the items’ semantics and content (Chapter 5); (iii) we evaluated the items’ psychometric

properties and the instrument’s internal consistency; we evaluated the correlation of cognitive

programming skills with code writing (producing) (Chapter 6); finally, we integrate adaptive

selection into the instrument through an algorithm that improves item selection and the

estimation of students’ ability (Chapter 7). In this Chapter, we aim to investigate whether

fostering these skills improves the novices’ performance in writing code. Therefore, this

Chapter aims to:

• SO10. To investigate whether fostering cognitive programming skills improves novice

code-writing performance.

149
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We will answer the following research question:

• RQ11. Does the instrument that fosters cognitive programming skills improve the

code-writing performance of novices?

Thus, we have the following hypotheses:

• H1–0: Participants who had their skills fostered by the instrument had lower estimates

of writing code when compared to participants using the traditional method.

• H1–1: Participants who had their skills fostered by the instrument had higher

estimates of writing code when compared to participants using the traditional method.

To investigate whether practicing a set of cognitive skills improves students’ performance

in writing code, we applied an experiment to a group of 50 individuals who participated in a

CS1 course at UEPB. We provide the participants with study material, instructions, practical

problems, and solutions based on different experimental conditions. We then assessed the

participants to investigate their learning performance. We estimate the individuals’ abilities

to verify whether the instrument can distinguish the groups.

We organize the remainder of this Chapter as follows. In Section 8.2, we describe the

study design. In Section 8.3, we present the results. In Section 8.4, we discuss the results. In

Section 8.5, we discuss the related works. Finally, In Section 8.6, we conclude the Chapter

with final remarks.

8.2 Design

This section presents the experiment’s design to verify whether the support provided by the

instrument can positively impact the student’s performance in programming.

8.2.1 Participants

We selected 50 novices in CS from UEPB to participate in this study. We also allocated the

participants into two study groups called the experimental group and the control group. In

this step, we consider the same inclusion criteria described in subsection 6.3.1.
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We divided the experiment participants according to a subjective analysis of trust in

Python (Appendix O). To avoid errors in this division—a group that receives participants

with excellent performance and others that do not—we applied a survey before the study.

We adopted a seven-point Likert scale assessment model in the survey.

We represented the answer to each question as follows: 1 (not at all confident) to 7

(completely confident). We calculated the response average for each subject based on the

scores assigned. We order and separate the groups as we present the distribution of the

measures of the groups as depicted in Figure 8.1.

Figure 8.1: Boxplot Between Groups of How Many Users Master the Python Language.

Then, we test the data normality and obtain the p-value = 0.7144 for the control group

and p-value = 0.8455 for the experimental group. Thus, we can conclude that the samples

follow a normal distribution with a confidence level of 95%.

As the data follow a normal distribution and the samples are independent, we apply

a parametric test called t-test. This test compares two means and shows whether their

differences are significant. This test allows us to assess whether these differences occurred

by chance. We present the output of this test in Table 8.1.

Control Group Experimental Group
Null hypothesis Mean Sd Mean Sd P-value
There is significance in the

difference between groups

3.968 0.413 4.020 0.399 0.6531

Table 8.1: Cross-Group Analysis of How Many Users Master the Python Language.
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The test shows an insignificant difference between the treatment and control groups.

As a null hypothesis, the confidence level in Python in the experimental group is the same

compared to the control group. In the pre-research, the p-value of 0.6531 shows that we

distributed the individuals evenly among the groups, that is, without having more qualified

individuals in one group compared to the other.

8.2.2 Dependent and Independent Variables

In research, variables are characteristics that can take on different values, such as height,

age, species, or exam grade. In scientific research, we often aim to study the effect of one

variable on another. For example, a study investigates whether students who spend more

time studying can score better on exams.

The variables in a cause-and-effect relationship study are called independent and

dependent variables. The Independent Variable is the cause, and its value does not

depend on other variables in the study. The Dependent Variable is the effect, and its value

depends on changes in the independent variable. Next, we will detail these variables in our

experiment.

The Independent Variables used in our experiment are the abilities: recognizing,

recalling, interpreting, exemplifying, classifying, summarizing, inferring , comparing,

explaining, executing, implementing, differentiating, organizing, attributing, checking,

critiquing, generating and planning. The Dependent Variable is the estimate of the

producing skill.

8.2.3 Data Analysis

Data collected through psychometric tests were initially analyzed, as indicated in the

instrument application manuals. Then, all collected data were analyzed according to

inferential descriptive statistics, aiming to meet the proposed objectives of the experiment.

8.2.4 Methodological Process

Figure 8.2 represents the methodological process of assessing the Instrument Validity.
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Figure 8.2: Methodological Process of Assessing the Instrument Validity.

We conducted the study simultaneously in two classrooms, with participants separated

by condition (control and experimental). We explained the purpose of the research to the

participants who signed the consent form to participate in the study.

We conducted a pre-research with questions about how much they mastered the Python

language. We separated the participants as described in the subsection 8.2.1. It should be

noted that we did not exclude students who already knew how to program or had previous

experience. However, most students had their first contact with programming through this

study.

During the 4-hour instructional time, we provided both groups with study material,

instructions, practical problems, and solutions. In addition, unlike the control group, we

fostered, through the instrument, the cognitive abilities of the participants in the experimental

group (independent variables), except for the producing ability. Participants could pause and

ask questions only related to the material’s content. We answered practice questions after we

completed the study.

Interactions were weekly. At each iteration, we used only one of the modules present

in the instrument. Thus, weekly we present the following sequence: input and output data,

selection commands, iteration commands, and functions. The participants worked through
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the content at their own pace. We encouraged them to work sequentially through the material

and try to solve problems before looking for solutions. Participants could pause and ask

questions. We answered all questions related to the content of the material. Finally, after

the study’s conclusion, we answered all doubts related to the questions of the evaluated

instrument.

In the end, we verified if the actions contained in the instrument positively impacted the

final performance of the experimental group. Both groups had to produce (code-writing)

skills estimated by a 10-item assessment test1. Participants took up to two hours to complete

it to measure how much they learned.

In total, participants answered 40 items. We evaluated the answers and assigned 1 to

correct answers and 0 to incorrect answers. Next, we estimated the participants’ abilities

through a script (Chapter 7). This script simulated the participants’ abilities if they had

responded to an online tool. That is, selecting items according to the student’s skill level.

8.2.5 Validity Threats

We consider some factors that generated threats and directly influenced the conclusions of

this last phase. Among these threats, we have:

• Problems related to incorrect interpretation of questions;

• Survey participants may feel intimidated or uncomfortable when taking the tests. To

mitigate these threats, we applied the guidelines of the Ethics Committee for Research

with Human Beings of UFCG and UEPB, which approved this research (Protocols:

23933919.4.0000.5182 | 23933919.4.3001.5187). Only participants who signed the

free and ICF participated in this study;

• Part of the answers given to the instrument was manually corrected. Human errors can

happen in corrections. However, part of the answers given by the participants involved

computerized applications and corrections to reduce possible errors;

1These are the ten items developed in the previous phase for each module 6. We did not present these items

in the intervention, only in applying the final performance test.
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• Like all empirical research, this work has threats to validity. The number of subjects

participating in the study does not allow the generalization of results.

8.3 Results

We analyzed the performance of the groups in the evaluation test. We aimed to investigate

whether promoting the skills of recognizing, recalling, interpreting, exemplifying,

classifying, summarizing, inferring, comparing, explaining, executing, implementing,

differentiating, organizing, attributing, checking, critiquing, generating, and planning

improves the performance of novices when writing code.

To answer this question, we estimated the participants’ abilities in both groups who

answered the producing item bank. Figure 8.3 provides a data summary. Despite some

discrepant values, the experimental group showed less variation when compared to the

control group. In general, many individuals in the experimental group had significantly

higher ability estimates when compared to the control group.

Figure 8.3: Boxplot of Groups’ Performance in the Ability to Produce Codes.

Table 8.2 shows the mean and standard deviation of the performance of both groups in

the assessment, respectively. The mean estimate of the participant’s skills in the assessment

is higher for the experimental group. We checked the distribution of our data set. We applied

the Shapiro-Wilk test, with a significance level of 95%, to observe whether the data set

follows a normal distribution. The control group had a p-value of 0.680. The experimental
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group p-value <0.001. Since not all variables follow a normal data distribution, we used the

Mann-Whitney test to compare the estimated ability of the participants in both groups who

responded to the assessment, as shown in Table 8.2.

Control Group Experimental Group
Null hypothesis Median Sd Median Sd P-value
Participants who had their skills

fostered by the instrument had

lower estimates of writing code

when compared to participants

using the traditional method.

0.108 1.228 3 1.105 <0.001

Table 8.2: Analysis of the Group’s Performance in the Ability to Produce Codes.

We consider as a null hypothesis that the estimate for each skill of the experimental group

is lower when compared to the control group for the performance in the assessment. Based

on the p-value of Table 8.2, which was <0.001, we can conclude that the performance of

participants who practiced the skills of recognizing, recalling, interpreting, exemplifying,

classifying, summarizing, inferring, comparing, explaining, executing, implementing,

differentiating, organizing, attributing, checking, critiquing, generating, and planning

performed better in producing skill when compared to participants in the control group.

8.4 Discussions

With our proposal to adapt the cognitive domain of Bloom’s Revised Taxonomy for

programming teaching, we developed a valid and adaptable instrument to measure and foster

cognitive skills in CS1. We evaluated the potential learning outcomes of this instrument

based on this experiment in such a way that the contributions of this research improve the

instructional design in CS1.

Results suggest that sequential practice of each of the cognitive programming skills

fostered by the instrument can improve code writing and instruction in CS1. We found that

experimental group participants who received practice in all skills had a better estimate for

producing code, providing better solutions to problems. These results support our proposed

adaptation of the cognitive domain of Bloom’s Revised Taxonomy. Furthermore, these
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results show that sequential instructions in CS1 help novices learn to program compared

to traditional teaching instructions.

The imbalance of the cognitive stimuli in the experimental conditions caused the

difference in the estimates of skills by the groups. While the control group only reached

stimuli from the traditional learning material, the experimental group reached stimuli through

the instrument that fostered cognitive skills in sequential programming.

8.5 Related Works

A preliminary study investigated the validity of instruments to measure cognitive

programming skills [110]. This study provided participants with instructional material,

practical problems, and solutions based on different experimental conditions. The study

used CTT and IRT to estimate individuals’ abilities to verify whether the instruments can

distinguish groups. The authors investigated whether explicit enunciation and the applicable

provision of the ability to read semantics and reading models improve students’ performance

in semantics and writing models. The results suggest that participants who practiced code

reading outperformed in problem-solving compared to participants in the control group.

Another study presented results of an intervention strategy aimed at improving students’

program understanding skills [86]. The authors used the automatic generation of items to

generate a set of individualized practical exercises for the needs of each student. Results

from pre- and post-assessments for the intervention group and a control group show the

benefits of taking time to understand the program.

A moderating effect on programming ability between the level of familiarity with

programming and abstract thinking has also been reported in recent studies [97] [98]. It

is noticed that when students have a high level of abstract thinking skills, their programming

skills improve much more than those with a low level of abstract thinking skills. This

pattern of behavior is observable with the application of Screening Programming and the

Programming Aptitude Test. In programming questions involving a high level of students’

abstract thinking, students who performed poorly in abstract thinking also failed these items

[50].

In this chapter, we present the results of the validity of an instrument to measure
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cognitive programming skills. We provide participants with study material, instructions,

practice problems, and solutions based on different experimental conditions. We then

assessed participants to investigate their learning performance. We estimated the abilities of

individuals to verify whether the instrument could distinguish between groups. We conclude

that participants who practiced programming using the instrument had better performance in

problem-solving when compared to participants in the control group.

8.6 Final Considerations

In this Chapter, we present a study to compare the performance of two sample groups

(experimental and control) in writing code. We estimated the participants’ ability to write

codes through the experimental conditions in both groups. As a result, we conclude that:

• (RQ11:) Participants who practiced programming using the instrument had better

performance in code production when compared to participants in the control group.

This result reinforces the claim that students should learn other cognitive skills before

learning to write code. Through this study, we present ways to foster or measure preliminary

skills in a CS1. Finally, this result supports our theoretical assumptions that the cognitive

levels of Bloom’s Revised Taxonomy, through its measurement instrument, can sequence

the learning process in CS1.



Chapter 9

Conclusions and Future Work

In this Chapter, we present this thesis’ final considerations, limitations of this research, and

future work.

9.1 Conclusions

Teaching CS1 is a complex task, and several researchers point out problems related to

students’ difficulties in understanding programming concepts and the motivation to perform

the problem-solving activity correctly. Despite the advances made by researchers in teaching

and learning CS1 courses, dropout and failure rates are still high.

At the same time, recent studies indicate that it should foster cognitive programming

skills during CS1. Some studies have found that commenting, debugging, and understanding

code have significantly improved students’ ability to write code and solve problems,

decreasing dropout and failure rates. However, current introductory instructions need to

identify, structure, and sequence the cognitive skills involved in programming.

Despite advances in the literature, we need studies that guide the instruction of educators

to work with these skills and at what level they should be encouraged. Therefore, our main

objective in this doctoral research was to investigate the cognitive performance of novice

programmers in code writing tasks. For that, we did the following:

• We performed a systematic literature review to describe cognitive programming skills

and the approaches/instruments that measure/foster such skills. We concluded that

(RQ1.) cognitive programming skills are tracing, explaining, comprehension, reading,

159



9.1 Conclusions 160

debugging, modifying, and writing. (RQ2.) Researchers use CTT to measure

cognitive programming skills. However, some universities have adopted other theories

and taxonomies for this practice, such as IRT, SOLO Taxonomy, and Bloom’s Revised

Taxonomy. (RQ3.) Researchers use different approaches to programming teaching

based on different educational theories, teaching structures, or educational approaches.

• We presented (RQ4.) a proposal for adapting the cognitive domain of Bloom’s

Revised Taxonomy to programming teaching and the cognitive skills’ association

raised in the literature within the adapted taxonomy. We empirically analyze this

proposal through a survey applied to a group of specialists in CS1. We concluded

that the judges’ responses achieved high agreement regarding the adaption/association

of the cognitive level skill definition of Bloom’s Revised Taxonomy for programming

teaching. High consistency and ICC test also indicated excellent reliability between

the scores assigned by the judges.

• We reported the instrument’s development based on the adaptation of the cognitive

domain of Bloom’s Revised Taxonomy to programming teaching. Then, we analyzed

the items’ semantics and content present in this instrument. We concluded that (RQ5)

items have appropriate content analysis and (RQ6) items have appropriate semantics;

• We analyzed the item’s psychometric properties present in the instrument and

their internal consistency through Measurement Theories. We correlated cognitive

programming skills (present in the instrument) and the participant’s ability to produce

code. We concluded (RQ7) that the 750 items present in the instrument are

well-calibrated according to the slope, threshold, and asymptote parameters. (RQ8)

The instrument for each skill had a reliable internal consistency, with Cronbach’s

alpha ranging between 0.8 and 1. (RQ9) All the cognitive skills investigated in the

instrument presented strong correlations with the ability to produce code. The data

suggested that this correlation increases when the student advances in the cognitive

levels within Bloom’s Revised Taxonomy adaptation to programming teaching, which

indicates that learning occurs linearly.

• We presented the adaptive selection integration into assessment instruments to improve



9.2 Future Work 161

the measurement of cognitive programming skills. We concluded (RQ10.) among the

algorithms developed to select items adaptively, the algorithm that obtained the best

accuracy in the skill estimation process has the following characteristics: i) maximum

likelihood as a skill estimation method; ii) maximum fisher information as an adaptive

selection method; iii) obtain an item exposure control; iv) and for the method of

stopping the instrument, a combination of factors such as the standard error in the

estimation <0.01 and the minimum and a maximum number of administered items.

• Finally, we presented an exploratory investigation into the instrument’s validity to

measure introductory programming skills. We concluded that (RQ11.) the participants

who practiced programming using the instrument performed better in code production

when compared to participants in the control group.

9.2 Future Work

Among the possibilities for future work, the following stand out:

• To obtain other algorithm variations with item selection and skill estimation criteria.

Algorithms may have different estimation methods, item selection, exposure control,

and stopping criteria. Measurement Theories address these methods, their equation

models, and how they work during item selection and skill estimation [14, 25]. Next,

to check which of these algorithms correlates best with the skill estimates in the pretest.

The results of this research are satisfactory, but there are areas for improvement so that

other researchers can replicate the design of Chapter 7.

• To conduct experiments to investigate whether skills cannot be sequenced.

Alternatively, even which one would have more impact on the student’s ability to

program being fostered separately. To achieve this goal, researchers can adapt the

design of the study we describe in Chapter 8;

• To develop the instrument in its online version for wide application. Also, develop

more items to expand the item bank and cover more latent trait regions. We describe

these sub-tasks in the subsections 2.4.6 and 2.4.8, respectively;
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• To adapt the affective and psychomotor domain of Bloom’s Revised Taxonomy for

teaching programming. Moreover, produce instruments that foster and measure these

skills. To achieve this goal, researchers can adapt the design of the studies we describe

in Chapters 4 5 and 6.

• Standardize the instruments to normalize the procedures for their use based on the

precautions taken in their application. Evaluate uniformity of testing conditions, group

control, and standardized instructions, and motivate examinees by reducing anxiety.

Develop parameters or criteria to interpret the results obtained. This phase includes

mathematical models to obtain norms for interpreting the scores of an instrument [14,

101].
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UNIVERSIDADE FEDERAL DE CAMPINA GRANDE
LABORATÓRIO DE PRÁTICAS DE SOFTWARE

Rua.: Aprígio Veloso, no 882, Bairro Universitário, Campina Grande, PB.
CEP.: 58429-900 - Tel.: 2101-1429

DECLARAÇÃO DE ANUÊNCIA

Eu, Dr. Dalton Dario Serey Guerrero, Coordenador do Laboratório de Práticas de Software,
autorizo o desenvolvimento da pesquisa intitulada: “Mensuração de habilidades cognitivas
introdutórias de programação por meio de uma avaliação adaptativa informatizada” .
A pesquisa será realizada em parceria com o referido laboratório, nos anos de 2020 a 2022, tendo
como orientadores Dr. Wilkerson de Lucena Andrade e Dr. João Arthur Brunet Monteiro e
orientando Ms. Jucelio Soares dos Santos.

Campina Grande - PB, 19 de dezembro de 2020.
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UNIVERSIDADE FEDERAL DE CAMPINA GRANDE
LABORATÓRIO DE NEUROPSICOLOGIA COGNITIVA E INOVAÇÃO TECNOLÓGICA

Av. Juvêncio Arruda, 795 - Bodocongó, Campina Grande - PB.
Cep.: 58429-600

DECLARAÇÃO DE ANUÊNCIA

Eu, Dra. Monilly Ramos de Araújo Melo, Coordenadora do Laboratório de Neuropsicologia
Cognitiva e Inovação Tecnológica, autorizo o desenvolvimento da pesquisa intitulada: “Mensura-
ção de habilidades cognitivas introdutórias de programação por meio de uma avaliação
adaptativa informatizada” . A pesquisa será realizada em parceria com o referido laboratório,
nos anos de 2020 a 2022, tendo como orientadores Dr. Wilkerson de Lucena Andrade e Dr. João
Arthur Brunet Monteiro e orientando Ms. Jucelio Soares dos Santos.

Campina Grande - PB, 19 de dezembro de 2020.
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Termo de Parceria

Este termo celebra a parceria entre o Laboratório de Neuropsicologia Cognitiva e Inovação
Tecnológica - LabNEUROCIT/UFCG/CNPQ, coordenado pela Professora Dra Monilly Ramos
Araújo Melo, o Doutorando Jucelio Soares dos Santos e seus Orientadores Dr. Wilkerson Lucena
de Andrade e Dr. João Arthur Brunet Monteiro, do Programa Pós-graduação em Ciência da
Computação da Universidade Federal de Campina Grande, em que todos assumem o compromisso
de registrar nos trabalhos acadêmicos e publicações derivadas dessa parceria, os autores e créditos
dos instrumentos psicométricos, softwares, e demais documentos elaborados para os fins necessários
ao desenvolvimento dos trabalhos mediante prévia autorização expressa.

Campina Grande - PB, 19 de dezembro de 2020.
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Termo de Compromisso dos Pesquisadores

Por este termo de responsabilidade, nós abaixo–assinados, Orientador e Orientando(s) respec-
tivamente, da pesquisa intitulada “Mensuração de habilidades cognitivas introdutórias de

programação por meio de uma avaliação adaptativa informatizada” , assumimos cumprir
fielmente as diretrizes regulamentadoras emanadas da Resolução no 466, de 12 de Dezembro de
2012 do Conselho Nacional de Saúde/ MS e suas Complementares, homologada nos termos do
Decreto de delegação de competencias de 12 de novembro de 1991, visando assegurar os direitos e
deveres que dizem respeito à comunidade cientifica, ao (s) sujeito (s) da pesquisa e ao Estado.

Reafirmamos, outros sim, nossa responsabilidade indelegável e intransferível, mantendo em
arquivo todas as informações inerentes a presente pesquisa, respeitando a confidencialidade e sigilo
das fichas correspondentes a cada sujeito incluído na pesquisa, por um período de 5 (cinco) anos
após o término desta. Apresentaremos sempre que solicitado pelo CEP/ CFP/UFCG (Comitê de
Ética em Pesquisas/ Centro de Formações de Professores) ou CONEP (Comissão Nacional de Ética
em Pesquisa) ou, ainda, as Curadorias envolvidas no presente estudo, relatório sobre o andamento
da pesquisa, comunicando ainda ao CEP/CFP/UFCG, qualquer eventual modificação proposta no
supracitado projeto.

Campina Grande - PB, 19 de dezembro de 2020.
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Termo de Compromisso de Divulgação dos Resultados

Por este termo de responsabilidade, nós, abaixo – assinados, respectivamente, orientadores,

orientando e colaborada da pesquisa intitulada “Mensuração de habilidades cognitivas in-

trodutórias de programação por meio de uma avaliação adaptativa informatizada” ,

assumimos o compromisso de:

• Preservar a privacidade dos participantes da pesquisa cujos dados serão coletados;

• Assegurar que as informações serão utilizadas única e exclusivamente para a execução do

projeto em questão;

• Assegurar os benefícios resultantes do projeto retornem aos participantes da pesquisa, seja

em termos de retorno social, acesso aos procedimentos, produtos ou agentes da pesquisa;

• Assegurar que as informações somente serão divulgadas de forma anônima, não sendo usadas

iniciais ou quaisquer outras indicações que possam identificar o sujeito da pesquisa;

• Assegurar que os resultados da pesquisa serão encaminhados para a publicação, com os

devidos créditos aos autores.

Campina Grande - PB, 19 de dezembro de 2020.
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Taxonomia Revisada de Bloom Adaptada para Mensurar/Fomentar
Habilidades Cognitivas de Programação

Este documento apresenta a versão original da Taxonomia Revisada de Bloom, a síntese de
sua adaptação para o Ensino de Programação e associação das habilidades cognitivas de
programação aos níveis cognitivos da Taxonomia Adaptada.

Contextualização                                                                                                                    -

Escrever código requer outras habilidades que o professor não ensina tradicionalmente. Em
estudos anteriores, identificamos várias linhas de pesquisa sustentam a premissa de que as
pessoas aprenderiam a programar de forma mais eficaz e eficiente se gastassem mais
tempo rastreando, explicando, entendendo, lendo, depurando e modificando código do que
escrevendo código.

Os princípios da Ciência Cognitiva incluem um modelo gráfico que suporta o
processo de aprendizagem para resolver problemas. Educadores e designers instrucionais
podem usar essa progressão para promover o aprendizado em seus alunos. A progressão
começa com atividades desconstrucionistas de baixo risco, como explorar, identificar,
comparar e depurar, antes de atividades que exigem a escrita de código. Os educadores de
informática devem ajustar o design instrucional da Educação Tradicional e escolher tarefas
menos densas para reduzir a carga cognitiva dos alunos.

Paralelamente, educadores em Ciência da Computação (CS) relatam que a
satisfação dos alunos com o aprendizado aumenta quando se sentem desafiados. No
entanto, desafios levados ao extremo podem desencorajá-los, dificultando seu progresso.
Portanto, é essencial fornecer aos alunos o nível de desafio adequado que expanda suas
habilidades e compreensão de conceitos, mas não os faça se sentir frustrados. Praticar e
classificar os alunos no nível de desafio apropriado é particularmente crítico no Curso
Introdutório de Programação (CS1), que historicamente enfrenta problemas de retenção.

Precisamos considerar alguns fatores para determinar o nível de desafio
"apropriado" de um teste ou atividade. Em primeiro lugar, é essencial notar que o "nível de
desafio" de uma atividade é um conceito relativo que varia de acordo com o contexto e a
situação, como repetição de materiais ou exemplos semelhantes. Segundo, deve haver
algumas métricas para determinar o nível de desafio relacionado a diferentes contextos.
Assim, como sequenciamos as habilidades cognitivas envolvidas no aprendizado
introdutório de programação para determinar o nível de desafio apropriado em um
instrumento de avaliação?

Para começar a responder a esta pergunta, ressaltamos em estudos anteriores o
domínio cognitivo da Taxonomia Revisada de Bloom para sequenciar a carga cognitiva e
melhorar a qualidade da avaliação. A Taxonomia Revisada de Bloom é amplamente
utilizada em diversas áreas do conhecimento para promover e avaliar a aprendizagem. A
estrutura hierárquica do domínio cognitivo da Taxonomia Revisada de Bloom representa a
profundidade de aprendizado do aluno em um determinado assunto. Em seu domínio
cognitivo, esta Taxonomia possui seis níveis, a saber: lembrar, compreender, aplicar,
analisar, avaliar e criar.

Em sua versão tradicional, a Taxonomia Revisada de Bloom começa com o nível
"lembrar", que indica o nível mais baixo de aprendizado do aluno (ou seja, recordação de
fatos e observação e recordação de informações aprendidas). O próximo nível é "entender",



que pode entender as informações e traduzi-las em um contexto diferente. O nível "aplicar"
é a capacidade de aplicar informações em uma situação concreta ou em um novo contexto
usando as habilidades e conhecimentos que os alunos aprenderam. Então, no nível
"analisar", os alunos devem ser capazes de dividir um problema em partes menores e
identificar relacionamentos. No nível "avaliar", o aluno avalia possíveis soluções ou ideias
para um determinado problema e faz julgamentos. Finalmente, no nível "criar", é a
capacidade de combinar as diferentes partes para formar uma nova entidade, relacionando
conhecimentos de várias áreas e usando ideias antigas para criar uma nova  [1].

Assim, começamos inicialmente com uma hipótese alternativa: H1-1. Sequenciar as
habilidades cognitivas envolvidas no aprendizado introdutório de programação dentro do
nível cognitivo da Taxonomia Revisada de Bloom melhora a adoção/medição em CS1.

Cada habilidade presente no nível cognitivo da Taxonomia Revisada de Bloom tem
um objetivo que orienta o professor a desenvolver testes em diferentes áreas. Até onde
sabemos, nenhum trabalho explorou a adaptação dos objetivos dessas habilidades no
ensino de programação. Com isso em mente, este documento apresenta uma proposta para
sequenciar habilidades de programação introdutórias no nível cognitivo da Taxonomia
Revisada de Bloom. Para implementar esta proposta, adaptamos o nível cognitivo da
Taxonomia Revisada de Bloom no CS1. Associamos as habilidades de programação
cognitiva com a Taxonomia Adaptada. Por fim, precisamos da sua ajuda para analisar
teoricamente as etapas de adaptação e associação.

Adaptação/Associação                                                                                                           -

Remember/Lembrar
O primeiro nível cognitivo da Taxonomia Revisada de Bloom envolve lembrar informações e
conteúdos previamente cobertos (ou seja, classificações, regras ou procedimentos). Este
nível envolve lembrar uma quantidade significativa de informações ou fatos específicos, e o
objetivo deste nível é trazer esse conhecimento à consciência [1]. A Tabela 1 apresenta a
adaptação do nível cognitivo remember/lembrar para o ensino de programação, bem como
as habilidades de programação cognitiva associadas aos níveis cognitivos da Taxonomia
Adaptada.

Tabela 1. Adaptação do Nível Remember/Lembrar e Associação das Habilidades Cognitivas
de Programação.

Habilidade Definição Original Adaptação Associação

Recognizing/
Reconhecer

Locate knowledge in
long-term memory that is
consistent with the presented
material.
Localizar o conhecimento na
memória de longo prazo que
seja consistente com o
material apresentado.

Localizar o conhecimento
relevante da memória de
longo prazo e compará-lo
com a informação
apresentada.

-

Recalling/
Recordar

Retrieve relevant knowledge
from long-term memory.
Recuperar conhecimento
relevante da memória de
longo prazo.

Recuperar o conhecimento
relevante da memória de
longo prazo quando
solicitado.

-



Tradicionalmente, o professor se concentra apenas no aprendizado mecânico; O
ensino e avaliação concentram-se apenas na lembrança de elementos ou fragmentos de
conhecimento, muitas vezes isolados de seu contexto. No entanto, quando os professores
se concentram na aprendizagem significativa, a aprendizagem é integrada com a tarefa
mais ampla de construir novos conhecimentos ou resolver novos problemas. Por exemplo, o
conhecimento das estruturas de seleção é necessário se o aluno deseja resolver problemas
de desvio de fluxo, pois permite executar um ou mais comandos se a condição testada for
real ou executar um ou mais comandos se for falsa.

As habilidades cognitivas no nível Remember/Lembrar incluem:
● Recognizing/Reconhecer envolve recuperar conhecimento relevante da memória

de longo prazo para compará-lo com a informação apresentada. Reconhecer a
demanda do aluno por informações de memória de longo prazo idênticas às
informações apresentadas (conforme representadas na memória de trabalho). Ao
apresentar a nova informação, o aluno determina se esta informação corresponde
ao conhecimento previamente aprendido;

● Recalling/Recordar envolve recuperar conhecimento relevante da memória de
longo prazo quando solicitado a fazê-lo. O prompt é muitas vezes uma pergunta. Ao
lembrar, o aluno procura a informação na memória de longo prazo e processa parte
da informação da memória de trabalho.
Se, por exemplo, um aluno aprendeu estruturas de seleção, um teste de memória

pode envolver pedir ao aluno para combinar cada uma das estruturas de seleção com seu
respectivo funcionamento em uma segunda lista (ou seja, recognizing/reconhecendo) ou
escrever o funcionamento correspondente ao lado de cada uma das estruturas de seleção
apresentadas na lista (ou seja, recalling/recordando).

Understand/Compreender

O nível cognitivo Understand/Compreender aplicar o significado ao conteúdo. Esse nível
cognitivo traduz o conteúdo entendido em uma nova forma (ou seja, oral, escrita e
diagramas) ou contexto. Existe a capacidade de entender a informação ou fato, capturar
seu significado e usá-lo em diferentes contextos [1]. A Tabela 2 apresenta a adaptação do
nível cognitivo Understand/Compreender para o ensino de programação, bem como as
habilidades de programação cognitiva associadas aos níveis cognitivos da Taxonomia
Adaptada.

Os alunos entendem quando constroem conexões entre os "novos" conhecimentos
adquiridos e seus conhecimentos prévios. O conhecimento que chega é integrado com as
estruturas e esquemas cognitivos existentes. Como os conceitos são os blocos de
construção desses esquemas e estruturas, o conhecimento conceitual fornece uma base
para a compreensão.



Tabela 2. Adaptação do Nível Understand/Compreender e Associação das Habilidades
Cognitivas de Programação.

Habilidade Definição Original Adaptação Associação

Interpreting/
Interpretar

Change from one
representation form to
another.
Mudar de uma forma de
representação para outra.

Traduzir de uma forma de
algoritmo para outra.

Compreensão e
Leitura.

Exemplifying/
Exemplificar

Find a specific example or
concept illustration or
principle.
Encontrar um exemplo
específico de ilustração de
conceito ou princípio.

Encontrar um exemplo de
um problema específico.

Compreensão e
Leitura.

Classifying/
Classificar

Determine that something
belongs to a category.
Determinar que algo
pertence a uma categoria.

Determinar que algo
pertence a uma categoria.

Compreensão e
Leitura.

Summarizing/
Sumarizar

Abstract a general theme or
significant point(s).
Abstrair um tema geral ou
ponto(s) significativo(s).

Resumir/comentar sobre
trechos/partes do código.

Compreensão e
Leitura.

Inferring/
Inferir

Draw a logical conclusion
from the presented
information.
Tirar uma conclusão lógica
das informações
apresentadas.

Tirar uma conclusão lógica
de um código apresentado.

Compreensão,
Leitura e
Rastreamento.

Comparing/
Comparar

Detect correspondences
between two ideas, objects,
and the like.
Detectar correspondências
entre duas ideias, objetos e
similares.

Detectar correspondências
entre pseudocódigo e um
código.

Compreensão e
Leitura.

Explaining/
Exemplificar

Construct a system'
cause-and-effect mode.
Construir o modo de causa e
efeito de um sistema.

Construir um modelo de
causa e efeito de um
algoritmo.

Compreensão,
Leitura e
Explicando.

As habilidades cognitivas do nível Understand/Compreender incluem:
● Interpreting/Interpretar é a capacidade do aluno de traduzir uma forma de

algoritmo para outra forma (por exemplo, traduzir um algoritmo para um fluxograma);
● Exemplifying/Exemplificar envolve identificar as características definidoras do

conceito ou princípio geral (por exemplo, as regras para nomes de variáveis) e usar
essas características para selecionar ou construir uma instância específica (por
exemplo, poder selecionar qual dos nomes de variáveis   apresentados é declarado
de forma incorreta);

● Classifying/Classificar ocorre quando um aluno reconhece que algo (por exemplo,
uma instância ou exemplo particular) pertence a uma categoria específica (por



exemplo, conceito ou princípio). A classificação envolve a detecção de
características ou padrões relevantes que "se ajustam" tanto à instância específica
quanto ao conceito ou princípio. A classificação é um processo complementar à
exemplificação. Enquanto a exemplificação começa com um conceito ou princípio
geral e exige que o aluno encontre uma instância ou exemplo específico, a
classificação começa com uma instância ou exemplo específico e exige que o aluno
encontre um conceito ou princípio geral;

● Summarizing/Sumarizar ocorre quando um aluno sugere uma única afirmação
representando a informação apresentada ou resume um tema geral (por exemplo,
aprender a resumir os propósitos da sub-rotina em um programa geral);

● Inferring/Inferir é a capacidade do aluno de tirar uma conclusão lógica de um
algoritmo ou código apresentado (por exemplo, descobrir a saída do código) [2] [23]
[24] [27] [28] [30] [47] [52].

● Comparing/Comparar é a capacidade do aluno de detectar semelhanças e
diferenças entre duas ou mais ideias e determinar o quão conhecido um evento é
com um menos familiar (por exemplo, detectar correspondências entre
pseudocódigo e um código);

● Explaining/Exemplificar é a capacidade do aluno de construir e usar o modelo de
causa e efeito de um programa. Várias tarefas podem avaliar a capacidade de
explicação de um aluno, incluindo raciocínio, resolução de problemas, redesenho e
previsão [6] [10] [42] [44] [52] [55] [61]. Em tarefas de raciocínio, um aluno oferece
uma razão para um determinado evento. Na resolução de problemas, um aluno
diagnostica o que poderia ter dado errado em um programa falho. No redesenho, um
aluno altera o programa para atingir algum objetivo. Na previsão, o aluno pode
avaliar que uma mudança em uma parte do programa afetará outra parte do
programa.

Várias linhas de pesquisa têm confundido "habilidade cognitiva" com "nível
cognitivo". A compreensão não é uma habilidade, mas um sinônimo relacionado ao nível
cognitivo "understand/entender" [13] [15] [16] [18] [19] [20] [21] [36] [42] [46] [47] [53] [61],
bem como “leitura” de código, que envolve o nível cognitivo “entender” [4] [8] [10] [27] [41]
[45] [50] [51] [59]. Esses trabalhos não especificaram quais habilidades de nível cognitivo a
que se referiam, por isso associamos compressão e leitura em todas as habilidades do nível
cognitivo understand/entender.

Apply/Aplicar

O nível cognitivo de aplicação utiliza informações, métodos e conteúdos aprendidos em
novas situações concretas. Inclua aplicações, métodos, modelos, conceitos, leis e teorias
de regras [1]. A Tabela 3 apresenta a adaptação do nível cognitivo Apply/Aplicar para o
ensino de programação, bem como as habilidades de programação cognitiva associadas
aos níveis cognitivos da Taxonomia Adaptada.



Tabela 3. Adaptação do Nível Apply/Aplicar e Associação das Habilidades Cognitivas de
Programação.

Habilidade Definição Original Adaptação Associação

Executing/
Executar

Apply a procedure to a
familiar task.
Aplicar um procedimento a
uma tarefa familiar.

Aplicar um procedimento a
um problema familiar.

-

Implementing/
Implementar

Apply a procedure to an
unfamiliar task.
Aplicar um procedimento a
uma tarefa desconhecida.

Aplicar um procedimento a
um problema
desconhecido.

-

Apply/Aplicar consiste em dois processos cognitivos: Executar e Implementar. Ao
executar, o professor apresenta ao aluno um problema familiar e um procedimento para
resolvê-la. O aluno pode fornecer uma resposta ou, se for o caso, selecionar um conjunto
de respostas possíveis. Na implementação, o aluno recebe um problema desconhecido que
deve ser resolvido. Portanto, a maioria dos formatos de avaliação começa com a
especificação do problema. Os alunos determinam o procedimento necessário para resolver
o problema, usam o procedimento selecionado (fazendo as alterações necessárias) ou
geralmente ambos.

As habilidades cognitivas do nível Apply/Aplicar incluem:
● Executing/Executar é a capacidade do aluno de realizar um procedimento de

problema familiar (por exemplo, solicitar ao aluno que execute um procedimento no
problema da família);

● Implementing/Implementar é a capacidade do aluno de usar um procedimento de
problema desconhecido (por exemplo, solicitar ao aluno que execute um
procedimento em um problema desconhecido).

Analyse/Analisar

O nível cognitivo Analyse/Analisar subdivide o conteúdo em partes menores para
compreender a estrutura final. Esse nível cognitivo pode incluir a identificação das partes, a
análise do relacionamento entre as partes e o reconhecimento dos princípios
organizacionais envolvidos. Identificar partes e suas inter-relações. Neste ponto, é
necessário ter compreendido o conteúdo e a estrutura do objeto de estudo [1]. A Tabela 4
apresenta a adaptação do nível cognitivo Analyse/Analisar para o ensino de programação,
bem como as habilidades de programação cognitiva associadas aos níveis cognitivos da
Taxonomia Adaptada.



Tabela 4. Adaptação do Nível Analyse/Analisar e Associação das Habilidades Cognitivas de
Programação.

Habilidade Definição Original Adaptação Associação

Differentiating/
Diferenciar

Distinguish relevant from
irrelevant parts or important
from unimportant parts of the
presented material.
Distinguir partes relevantes
de irrelevantes ou
importantes de partes sem
importância do material
apresentado.

Distinguir partes relevantes
de partes irrelevantes do
código/algoritmo
apresentado.

-

Organizing
/Organizar

Determine how elements fit
or function within a structure.
Determinar como os
elementos se encaixam ou
funcionam dentro de uma
estrutura.

Organizar as partes do
código para atingir o
objetivo do programa.

Modificar

Attributing/
Atribuir

Determine a viewpoint, bias,
values, or intent underlying
the presented material.
Determinar um ponto de
vista, preconceito, valores ou
intenção subjacente ao
material apresentado.

Determinar o ponto de vista
do código.

-

Embora aprender a analisar possa ser visto como um fim em si mesmo, é
provavelmente mais defensável educacionalmente considerar a análise como uma extensão
da compreensão ou como um prelúdio para avaliar ou criar. Melhorar as habilidades de
análise de código dos alunos é um objetivo em muitas universidades em programas de
ensino. Nos cursos introdutórios de programação, os professores fornecem exemplos de
código para os alunos "aprenderem a analisar" como objetivos essenciais. Por exemplo,
eles podem desejar desenvolver a capacidade de seus alunos de dividir uma tarefa de
programação em partes, organizar as partes para atingir um objetivo geral e identificar
componentes críticos ou sem importância para o desenvolvimento.

Compreender, Analisar e Avaliar são inter-relacionados e frequentemente usados   de
forma iterativa na execução de tarefas cognitivas. Ao mesmo tempo, porém, é essencial
mantê-los como categorias de processo separadas. Uma pessoa que entende um problema
pode não analisá-lo bem e, da mesma forma, alguém hábil em analisar um problema pode
avaliá-lo mal.

As habilidades cognitivas do nível Analyse/Analisar incluem:
● Differenting/Diferenciar é a capacidade do aluno de distinguir partes relevantes de

partes irrelevantes do código ou algoritmo apresentado (por exemplo, distinguir
partes irrelevantes do código). A diferenciação ocorre quando um aluno discrimina
informações relevantes/essenciais de informações irrelevantes/sem importância.
Essa habilidade é diferente das habilidades cognitivas associadas à compreensão



porque envolve organização estrutural e, em particular, determina como as partes se
encaixam na estrutura geral ou no todo;

● Organizing/Organizar é a capacidade do aluno de ordenar as partes de um código
para atingir o objetivo do programa (como organizar código ou trechos de algoritmo
para que a lógica esteja correta). Ao organizar, o aluno constrói conexões
sistemáticas e coerentes entre as informações apresentadas. A organização
geralmente ocorre em conjunto com a diferenciação. O aluno primeiro identifica os
elementos relevantes ou essenciais e, em seguida, determina a estrutura geral na
qual os elementos se encaixam. A organização também pode ocorrer em conjunto
com a atribuição, em que o foco está em determinar a intenção ou o ponto de vista
do autor;

● Attributing/Atribuir é a capacidade do aluno de determinar o ponto de vista de um
determinado código (por exemplo, o aluno constrói ou seleciona uma descrição de
um determinado código). A atribuição envolve um processo de desconstrução, no
qual o aluno determina os objetivos materiais apresentados. Ao contrário da
interpretação, em que o aluno procura compreender o significado do material
apresentado, a atribuição envolve uma extensão além da compreensão necessária
para inferir a intenção ou o ponto de vista subjacente ao material apresentado.

Modificar envolve usar ou modificar o código existente [7] [42] [51] [52] [61]. O
professor pode estimular essa habilidade em seus alunos com exercícios, a saber: i)
preenchimento de um trecho de código (seja escrevendo o código que falta ou
escolhendo-o em um conjunto de opções); ii) escrever chamadas de função para
determinadas funções para que um resultado específico; iii) construir um programa a partir
de um conjunto de fragmentos de código, nem todos podem fazer parte da solução; iv)
ordenar um programa embaralhado (também conhecido como quebra-cabeças de
programação de Parson).

Evaluate/Avaliar

O nível cognitivo Evaluate/Avaliar envolve julgar o valor material (proposta, pesquisa,
projeto) para uma finalidade específica. O julgamento é baseado em critérios que podem
ser externos (relevância) ou internos (organização) e podem ser fornecidos ou identificados
conjuntamente [1]. A Tabela 5 apresenta a adaptação do nível cognitivo avaliado para o
ensino de programação, bem como as habilidades de programação cognitiva associadas
aos níveis cognitivos da Taxonomia Adaptada.

Esses critérios podem ser determinados pelo aluno ou por outros. Além disso, os
padrões podem ser quantitativos ou qualitativos e, se aplicados aos critérios, por exemplo,
esse código ou algoritmo é suficientemente convincente? A categoria de avaliação inclui
processos de verificação cognitiva e julgamentos críticos baseados em critérios externos.

As habilidades cognitivas do nível Evaluate/Avaliar incluem:
● Checking/Verificar é a capacidade do aluno de detectar a eficácia de um programa

conforme o aluno o implementa (por exemplo, encontrar/corrigir um erro lógico em
um determinado trecho de código) [3] [5] [7] [11] [12] [14] [18] [19] [20] [21] [23] [24]
[27] [35] [37] [40] [41] [43] [48] [54] [56].

● Critiquing/Criticar é a capacidade do aluno de criticar procedimentos para resolver
um problema com base em padrões de codificação (por exemplo, julgar qual dos
dois códigos ou algoritmos é a melhor maneira de resolver um determinado
problema) [7] [40] [42] [52] [61].



Tabela 5. Adaptação do Nível Evaluate/Avaliar e Associação das Habilidades Cognitivas de
Programação.

Habilidade Definição Original Adaptação Associação

Checking/
Verificar

Detect inconsistencies or
fallacies within a process or
product, determining whether
a process or product has
internal consistency.
Detectar inconsistências ou
falácias dentro de um
processo ou produto,
determinando se um
processo ou produto tem
consistência interna.

Detectar/corrigir falhas em
um programa
implementado.

Depurar

Critiquing/
Criticar

Detect the procedure
suitability for a given
problem.
Detectar a adequação do
procedimento para um
determinado problema.

Criticar procedimentos para
resolver um problema.

-

Quando combinado com planejamento (uma habilidade cognitiva na categoria Criar)
e implementação (uma habilidade cognitiva na categoria Aplicar), a verificação envolve
determinar como o plano funciona. Ao criticar, o aluno observa as características positivas e
negativas de um código ou algoritmo e faz um julgamento baseado, pelo menos
parcialmente, nessas características. A crítica está no cerne do que tem sido chamado de
pensamento crítico. Um exemplo crítico é julgar os méritos da solução particular para o
problema em termos de sua eficiência.

A computação conhece a verificação como teste ou depuração. A depuração é uma
habilidade essencial que é difícil para programadores iniciantes aprenderem e desafia os
educadores a ensinar [56]. A depuração é um aspecto necessário da ciência da
computação que pode ser difícil para programadores novatos e experientes [11] [14]. A
habilidade geralmente é autodidata e adquirida por tentativa e erro, talvez com a ajuda de
um professor ou outra figura especialista [11].

A depuração é essencial para todos os programadores, mas especialmente para os
novatos, que ainda estão aprendendo a sintaxe e a semântica da linguagem de
programação e, portanto, são mais propensos a escrever código incorreto do que
programadores mais experientes [38]. Os programadores iniciantes geralmente acham difícil
executar tarefas de depuração de forma eficaz [5]. Os alunos precisam entender como o
programa funciona e como executá-lo com bugs; conhecer o domínio da aplicação e a
linguagem de programação; conhecer bugs (específicos) e métodos de depuração. Além
disso, a exposição sistemática dos alunos a diferentes tipos de erros em um ambiente de
aprendizagem têm o potencial de melhorar as habilidades de depuração [3].

No entanto, a maioria dos alunos acredita que a capacidade de depuração é devido
à aptidão individual e não pode ser desenvolvida através da aprendizagem. A maioria dos
alunos não utiliza ferramentas para depuração do ambiente ou sequer conhece essas
ferramentas [12]. Alunos especialmente mais fracos geralmente são impotentes e aplicam



uma abordagem de tentativa e erro para erros de programação. Acontece que os erros em
tempo de compilação representam um obstáculo significativo para muitos alunos. Os
professores estão correndo de computador em computador, tentando ajudar [43]. As
mensagens de erro ajudam os novatos a encontrar e corrigir erros, mas as mensagens do
compilador geralmente são inadequadas [14].

O depurador melhora a compreensão conceitual dos alunos iniciantes, e os alunos
mais baixos são os mais beneficiados com essa experiência. O depurador pode ajudar a
minimizar erros lógicos e melhorar as habilidades de escrita do programa [48].

Portanto, a autossuficiência na depuração é essencial e um desafio significativo para
aprender a programar. No entanto, os professores se concentram em heurísticas para erros
comuns e estratégias de depuração relacionadas ao ensino de habilidades de depuração.
Os professores não conduzem nenhum processo sistemático para lidar com erros. Além
disso, eles não empregam aulas explícitas de ensino sobre depuração. Os professores não
têm uma abordagem sistemática para ensinar depuração, pois existem apenas conceitos e
materiais vagos [43].

Create/Criar

O nível cognitivo Create/Criar agrega e une partes para criar um novo todo. Esse nível
cognitivo envolve uma única produção de comunicação (tema ou discurso), um plano de
operações (propostas de pesquisa) ou um conjunto de relações abstratas (esquema de
classificação da informação). Combinando partes desorganizadas para formar um "todo" [1].
A Tabela 6 apresenta a adaptação do nível cognitivo Create/Criar para o ensino de
programação, bem como as habilidades de programação cognitiva associadas aos níveis
cognitivos da Taxonomia Adaptada.

Tabela 6. Adaptação do Nível Create/Criar e Associação das Habilidades Cognitivas de
Programação.

Habilidade Definição Original Adaptação Associação

Generating/
Hipotetizar

Come up with alternative
hypotheses based on
criteria.
Criar hipóteses alternativas
com base em critérios.

Crie hipóteses alternativas
com base em critérios.

-

Planning/
Planejar

Devise a procedure for
accomplishing some task.
Elaborar um procedimento
para realizar alguma tarefa.

Desenvolver um
procedimento para resolver
um problema.

-

Producing/
Produzir

Invente a product.
Inventar um produto.

Criar um programa. Escrever

Nesse nível, os alunos criam um novo código ou algoritmo organizando mentalmente
alguns elementos ou partes em um padrão ou estrutura que não estava presente antes.
Para realizar este processo, os alunos recorrem a experiências de aprendizagem anteriores.
Embora exija pensamento criativo por parte do aluno, isso não implica livre expressão
criativa e não se restringe às demandas da tarefa ou da situação de aprendizagem.



Embora este nível inclua metas que exigem produção exclusiva, também se refere a
metas que exigem produção que todos os alunos podem e farão. Ao cumprir esses
objetivos, muitos alunos irão criar sua síntese de informações ou materiais para formar um
novo todo, como resolver um problema.

Apesar dos níveis de processo Compreender, Aplicar e Analisar possam envolver a
detecção de relacionamentos entre os elementos apresentados, Criar é diferente porque
envolve a construção de um produto original. Ao contrário do nível Criar, os outros níveis
envolvem o trabalho com um determinado conjunto de elementos que fazem parte de um
determinado todo; eles são parte de uma estrutura maior que o aluno está tentando
entender. Por outro lado, o aluno deve recorrer a elementos de muitas fontes e juntá-los em
uma nova estrutura ou padrão em relação ao seu conhecimento anterior. A criação de um
novo programa ou algoritmo pode ser observada, ou seja, mais do que o material inicial do
aluno. Uma tarefa que requer Criar provavelmente exigirá aspectos de cada uma das
categorias de processos cognitivos anteriores até certo ponto, mas não necessariamente na
ordem em que estão listados na Taxonomia.

Assim, o processo criativo começa com uma fase divergente em que o aluno pensa
em várias soluções possíveis ao tentar entender a tarefa (gerar). Segue-se uma fase
convergente, na qual o aluno concebe um método de solução e o transforma em um plano
de ação (planejamento). Por fim, o aluno executa o plano enquanto constrói a solução
(produzindo).

As habilidades cognitivas do nível Create/Criar incluem:
● Generating/Hipotetizar é a capacidade do aluno de criar hipóteses alternativas com

base em critérios (por exemplo, hipotetizar que uma nova combinação de algoritmos
resolverá o problema).

● Planning/Planejar é a capacidade do aluno de desenvolver um procedimento para
realizar uma tarefa (por exemplo, planejar um algoritmo, processo ou estratégia
alternativa para um problema);

● Producing/Produzir é a capacidade do aluno de criar um programa (por exemplo,
construir um programa usando algoritmos inventados) [2] [7] [8] [9] [10] [16] [17] [22]
[23] [24] [25] [26] [28] [29] [31] [32] [33] [34] [35] [39] [40] [41] [42] [44] [45] [47] [49]
[50] [52] [53] [58] [57] [59] [60] [61] [62].
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Appendix G

Inspection of Bloom’s Revised Taxonomy

for Measuring and Fostering Cognitive

Programming Skills

Prezado(a) juiz(a),

Solicitamos-lhe a avaliação da adaptação do nível cognitivo da Taxonomia Revisada de

Bloom para ensino de programação. O mesmo foi criado para sequenciar as habilidades

de programação, no domínio cognitivo, a fim melhorar o aprendizado dos alunos. Sua

avaliação é muito importante para a validação desta etapa e continuidade da pesquisa. Para o

processo de inspecção deste artefato é necessário a leitura do material em anexo. Em seguida,

considere as seguintes definições para cada item da escala seleccionada para a realização da

avaliação. Apresentamos uma escala do tipo LIKERT, com as opções para você realizar sua

avaliação, considerando 1 a pior nota e 5 a melhor nota a ser atribuída em cada uma das

habilidades.

• 1—Não adequado: Nada adequado, não adaptado, não correspondendo em nada ao

objetivo proposto para o ensino de programação;

• 2—Pouco adequado: 25% adequado, adaptado, correspondendo muito pouco ao

objetivo proposto para o ensino de programação;

• 3—Moderadamente adequado: 50% adequado, adaptado, moderadamente
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correspondente ao objetivo proposto para o ensino de programação;

• 4—Muito adequado: 75% adequado, adaptado, correspondendo intensamente ao

objetivo proposto para o ensino de programação.

• 5—Completamente adequado: 100% adequado, adaptado, correspondendo

perfeitamente ao objetivo proposto para o ensino de programação.

Em relação a adaptação, indique o seu grau de concordância com a adaptação do

objetivo da habilidade do nível cognitivo da Taxonomia Revisada de Bloom para ensino

de programação.

Skill 1 2 3 4 5
Reconhecer
Recordar
Interpretar
Exemplificar
Classificar
Resumir
Inferir
Comparar
Explicar
Executar
Implementar
Diferenciar
Organizar
Atribuir
Verificar
Criticar
Hipotetizar
Planejar
Produzir

Indique o seu grau de concordância com a associação (se houver) da habilidade cognitiva

de programação levantada na literatura com a definição adaptativa da habilidade do Nível

Cognitivo da Taxonomia Revisada de Bloom.

Skill 1 2 3 4 5
Interpretar
Exemplificar
Classificar
Resumir
Inferir
Comparar
Explicar
Organizar
Verificar
Produzir
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Termo de Consentimento Livre Esclarecido

Você está sendo convidado(a) a participar do projeto de pesquisa “Mensuração de habilidades cognitivas
introdutórias de programação por meio de uma avaliação adaptativa informatizada” coordenado pelos
professores Dr. Wilkerson de Lucena Andrade e Dr. João Arthur Brunet Monteiro vinculados ao Programa de Pós
Graduação da Universidade Federal de Campina Grande, a quem poderar contatar/consultar a qualquer momento
que julgar necessário através dos e-mails {wilkerson, joao.arthur}@computacao.ufcg.edu.br. O documento abaixo
contém todas as informações necessárias sobre a pesquisa que estamos fazendo. Sua colaboração neste estudo será
de muita importância para nós, mas se desistir a qualquer momento, isso não causará nenhum prejuízo a você.

Eu, ................................................................................................................., portador da Cédula de identidade,
RG ............................., e inscrito no CPF........................................., abaixo assinado(a), concordo de livre e espon-
tânea vontade em participar como voluntário(a) deste estudo. Declaro que obtive todas as informações necessárias,
bem como todos os eventuais esclarecimentos quanto às dúvidas por mim apresentadas.

Estou ciente que:

• Este estudo tem por objetivo mensurar as habilidades cognitivas introdutórias relacionadas à programação
de alunos em cursos técnicos e superiores com intuito de analisar suas limitações e descrever métodos para
aprimorar o processo de ensino-aprendizagem.

• Serei submetido aos seguintes procedimentos: i) avaliar a usabilidade de instrumentos psicométricos; ii) elen-
car requisitos de instrumentos por meio de entrevistasemi-estruturada; iii) elaborar itens para instrumentos
psicométricos; e iv) avaliar a reação dos indivíduos no decorrer da aplicação de instrumentos psicométricos,
medindo assim o grau de satisfação ao utilizá-los. Na qual serei benificiado(a) na colaboração/produção de
instrumentos que poderão me auxiliar futuramente em sala de aula.

• Caso sinta riscos por está intimidado(a) ou desconfortado(a) durante a participação na pesquisa, poderei
desistir a qualquer momento, retirando meu consentimento, sem que isso me traga nenhum prejuízo ou
penalidade e receberei apoio necessário a questão apresentada.

• Todas as informações obtidas serão sigilosas e meu nome não será identificado em nenhum momento. Os
dados serão guardados em local seguro e a divulgação dos resultados será feita de maneira que não permita
a minha identificação.

• Se eu tiver algum gasto decorrente de minha participação na pesquisa, serei ressarcido, caso solicite. Em
qualquer momento, se eu sofrer algum dano comprovadamente decorrente desta pesquisa, serei indenizado.

• Caso me sinta prejudicado (a) por participar desta pesquisa, poderei recorrer ao Comitê de Ética em Pes-
quisas com Seres Humanos – CEP, do Hospital Universitário Alcides Carneiro - HUAC, situado a Rua:
Dr. Carlos Chagas, s/ n, São José, CEP: 58401 – 490, Campina Grande-PB, Tel: 2101 – 5545, E-mail:
cep@huac.ufcg.edu.br; Conselho Regional de Medicina da Paraíba e a Delegacia Regional de Campina Grande.

• Atesto recebimento de uma via assinada deste Termo de Consentimento Livre e Esclarecido, conforme reco-
mendações da Comissão Nacional de Ética em Pesquisa (CONEP). Outros esclarecimentos sobre esta pesquisa,
poderei entrar em contato com o pesquisador principal Ms. Jucelio Soares dos Santos, Rua Severino Pimentel,
n. 785D - Liberdade - Campina Grande - PB, tel. (83) 99694.0954.

Campina Grande - PB, .... de .............................. de 20 ....

(Assinatura do participante)

(Testemunha 1 | Nome/RG/Telefone)

(Testemunha 2 | Nome/RG/Telefone)

Ms. Jucelio Soares dos Santos
(Responsável pelo projeto)



Appendix I

Item Bank Inspection

Prezado(a) juiz(a),

A seguir, apresentamos um exemplo dos formulários de inspeção.

Solicitamos-lhe a avaliação dos itens a seguir a fim de melhorar a sua qualidade.

Os itens foram desenvolvidos a fim de mensurar habilidades cognitivas dos alunos em

programação. Sua avaliação é muito importante para a validação desta etapa. Para o processo

de inspecção das questões é necessário assistir o vídeo que contém a definição da habilidade,

bem como avaliar se cada item mensura esta habilidade. Para tanto, deverá considerar as

seguintes definições para cada item da escala seleccionada para a realização da avaliação.

Apresentamos uma escala do tipo LIKERT, com as opções para você realizar sua avaliação,

considerando 1 a pior nota e 5 a melhor nota a ser atribuída em cada uma das habilidades.

• 1—Não adequado: Nada adequado, não adaptado, não correspondendo em nada ao

objetivo proposto para a habilidade inspeccionada;

• 2—Pouco adequado: 25% adequado, adaptado, correspondendo muito pouco ao

objetivo proposto para a habilidade inspeccionada;

• 3—Moderadamente adequado: 50% adequado, adaptado, moderadamente

correspondente ao objetivo proposto para a habilidade inspeccionada;

• 4—Muito adequado: 75% adequado, adaptado, correspondendo intensamente ao

objetivo proposto para a habilidade inspeccionada;
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• 5—Completamente adequado: 100% adequado, adaptado, correspondendo

perfeitamente ao objetivo proposto para a habilidade inspeccionada.

Algumas observações:

• Caso você avalie o item em notas 3 e 4, por favor informe o que deve ser ajustado. Os

itens podem conter os seguintes erros de: i) sintaxe em relação a linguagem Python;

ii) escrita, concordância ou até mesmo má compreensão no que foi apresentado; iii)

contém mais de uma alternativa correta; iv) não contém alternativa correta; e v) demais

sugestões;

• Caso você avalie o item em notas 1 e 2, compreenderemos que o item não está

adequado para avaliar esta habilidade e não tem como ser ajustado;

• Ao atribuir nota 5, compreenderemos que você está de acordo com todas as

especificações do item, bem como concorda com a alternativa correta entre as

opções. Assim, você certifica que este item está totalmente apto para ser utilizado

em avaliações.

Definição da habilidade e exemplo de item: https://youtu.be/7Z-jSFAnQxE

Informe o avaliador: ......................................................................................................

Item 1 2 3 4 5
#REMREC01ES
#REMREC02ES
#REMREC03ES
#REMREC04ES
#REMREC05ES
#REMREC06ES
#REMREC07ES
#REMREC08ES
#REMREC09ES
#REMREC10ES

Algum item precisa de ajuste? Se você avaliou algum item em notas 3 e 4 indica que o

item apresenta algum erro e precisa ser ajustado. Informe o item e indique o ajuste que ele

precisa obter.
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Termo de Consentimento Livre Esclarecido

Você está sendo convidado(a) a participar do projeto de pesquisa “Mensuração de habilidades cognitivas
introdutórias de programação por meio de uma avaliação adaptativa informatizada” coordenado pelos
professores Dr. Wilkerson de Lucena Andrade e Dr. João Arthur Brunet Monteiro vinculados ao Programa de Pós
Graduação da Universidade Federal de Campina Grande, a quem poderar contatar/consultar a qualquer momento
que julgar necessário através dos e-mails {wilkerson, joao.arthur}@computacao.ufcg.edu.br. O documento abaixo
contém todas as informações necessárias sobre a pesquisa que estamos fazendo. Sua colaboração neste estudo será
de muita importância para nós, mas se desistir a qualquer momento, isso não causará nenhum prejuízo a você.

Eu, ................................................................................................................., portador da Cédula de identidade,
RG ............................., e inscrito no CPF........................................., abaixo assinado(a), concordo de livre e espon-
tânea vontade em participar como voluntário(a) deste estudo. Declaro que obtive todas as informações necessárias,
bem como todos os eventuais esclarecimentos quanto às dúvidas por mim apresentadas.

Estou ciente que:

• Este estudo tem por objetivo mensurar as habilidades cognitivas introdutórias relacionadas à programação
de alunos em cursos técnicos e superiores com intuito de analisar suas limitações e descrever métodos para
aprimorar o processo de ensino-aprendizagem.

• Serei submetido aos seguintes procedimentos: i) fornecer respostas à exercícios durante a aplicação de instru-
mentos piscométricos; e, ii) avaliar o seu nível de satisfação ao usar os instrumentos psicométricos. Na qual
serei beneficiado por avaliar minhas habilidades introdutórias em Programação.

• Caso sinta riscos por está intimidado(a) ou desconfortado(a) durante a participação na pesquisa, poderei
desistir a qualquer momento, retirando meu consentimento, sem que isso me traga nenhum prejuízo ou
penalidade e receberei apoio necessário a questão apresentada.

• Todas as informações obtidas serão sigilosas e meu nome não será identificado em nenhum momento. Os
dados serão guardados em local seguro e a divulgação dos resultados será feita de maneira que não permita
a minha identificação.

• Se eu tiver algum gasto decorrente de minha participação na pesquisa, serei ressarcido, caso solicite. Em
qualquer momento, se eu sofrer algum dano comprovadamente decorrente desta pesquisa, serei indenizado.

• Caso me sinta prejudicado (a) por participar desta pesquisa, poderei recorrer ao Comitê de Ética em Pes-
quisas com Seres Humanos – CEP, do Hospital Universitário Alcides Carneiro - HUAC, situado a Rua:
Dr. Carlos Chagas, s/ n, São José, CEP: 58401 – 490, Campina Grande-PB, Tel: 2101 – 5545, E-mail:
cep@huac.ufcg.edu.br; Conselho Regional de Medicina da Paraíba e a Delegacia Regional de Campina Grande.

• Atesto recebimento de uma via assinada deste Termo de Consentimento Livre e Esclarecido, conforme reco-
mendações da Comissão Nacional de Ética em Pesquisa (CONEP). Outros esclarecimentos sobre esta pesquisa,
poderei entrar em contato com o pesquisador principal Ms. Jucelio Soares dos Santos, Rua Severino Pimentel,
n. 785D - Liberdade - Campina Grande - PB, tel. (83) 99694.0954.

Campina Grande - PB, .... de .............................. de 20 ....

(Assinatura do participante)

(Testemunha 1 | Nome/RG/Telefone)

(Testemunha 2 | Nome/RG/Telefone)

Ms. Jucelio Soares dos Santos
(Responsável pelo projeto)
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1 Recognizing

In Table 1, we present the items that make up the recognizing skill with the respective parameters.

Item Slope Threshold Asymptote Hit ratio Point-biserial
REMREC01ES 0.912 0.619 0.200 0.470 0.234
REMREC02ES 1.702 0.000 0.200 0.380 0.044
REMREC03ES 0.847 -0.189 0.152 0.560 0.296
REMREC04ES 0.953 0.350 0.167 0.480 0.289
REMREC05ES 1.346 1.139 0.187 0.340 0.225
REMREC06ES 1.193 -2.311 0.161 0.900 0.280
REMREC07ES 1.331 -0.466 0.160 0.620 0.336
REMREC08ES 1.007 0.218 0.157 0.490 0.318
REMREC09ES 1.181 -1.083 0.192 0.750 0.315
REMREC10ES 1.016 -1.587 0.149 0.790 0.272
REMREC01CS 1.746 0.765 0.180 0.360 0.331
REMREC02CS 1.530 0.403 0.178 0.440 0.319
REMREC03CS 1.497 0.027 0.175 0.520 0.368
REMREC04CS 1.811 -0.084 0.162 0.530 0.405
REMREC05CS 1.783 -0.382 0.166 0.610 0.410
REMREC06CS 1.130 -0.952 0.166 0.710 0.332
REMREC07CS 1.057 -1.397 0.176 0.780 0.282
REMREC08CS 1.963 1.177 0.144 0.250 0.277
REMREC09CS 1.748 -2.087 0.156 0.920 0.330
REMREC10CS 0.890 0.237 0.164 0.500 0.289
REMREC01CI 2.785 1.359 0.329 0.410 0.068
REMREC02CI 1.932 -1.910 0.153 0.910 0.359
REMREC03CI 1.782 0.070 0.109 0.450 0.476
REMREC04CI 1.064 -1.342 0.148 0.760 0.331
REMREC05CI 0.926 -0.054 0.157 0.540 0.322
REMREC06CI 1.434 -0.793 0.152 0.690 0.383
REMREC07CI 1.533 0.778 0.157 0.350 0.316
REMREC08CI 0.695 0.256 0.174 0.520 0.187
REMREC09CI 0.795 0.540 0.159 0.460 0.243
REMREC10CI 1.495 -0.342 0.214 0.630 0.298
REMREC01FU 1.336 -1.255 0.189 0.790 0.329
REMREC02FU 1.565 -0.626 0.156 0.660 0.392
REMREC03FU 1.333 -0.254 0.139 0.560 0.366
REMREC04FU 1.063 -1.752 0.179 0.830 0.256
REMREC05FU 1.074 -0.022 0.158 0.530 0.320
REMREC06FU 2.512 0.892 0.174 0.300 0.305
REMREC07FU 1.366 2.005 0.246 0.320 0.090
REMREC08FU 1.591 0.553 0.159 0.390 0.383
REMREC09FU 1.161 0.072 0.159 0.510 0.325
REMREC10FU 1.364 0.275 0.135 0.440 0.412
Mean 1.386 -0.179 0.171 0.561 0.303
Standard deviation 0.445 0.997 0.034 0.179 0.088

Table 1: Recognizing skill - all items calibrated.



2 Recalling

In Table 2, we present the items that make up the recalling skill with the respective parameters.

Item Slope Threshold Asymptote Hit ratio Point-biserial
REMREL01ES 1.036 -1.020 0.185 0.433 0.308
REMREL02ES 1.215 0.499 0.133 0.496 0.404
REMREL03ES 1.589 0.755 0.159 0.488 0.391
REMREL04ES 1.189 1.122 0.236 0.492 0.057
REMREL05ES 0.812 -0.010 0.151 0.496 0.298
REMREL06ES 1.191 -0.313 0.158 0.485 0.328
REMREL07ES 1.680 0.188 0.212 0.499 0.271
REMREL08ES 0.975 0.416 0.158 0.500 0.323
REMREL09ES 0.995 -1.447 0.149 0.407 0.279
REMREL10ES 1.204 -2.155 0.161 0.300 0.284
REMREL01CS 0.988 0.574 0.154 0.498 0.309
REMREL02CS 1.267 0.225 0.169 0.500 0.364
REMREL03CS 2.184 0.949 0.195 0.480 0.339
REMREL04CS 1.024 -1.264 0.176 0.414 0.293
REMREL05CS 1.828 0.123 0.170 0.499 0.418
REMREL06CS 1.553 -0.212 0.167 0.488 0.406
REMREL07CS 1.084 -0.807 0.166 0.454 0.336
REMREL08CS 1.060 0.445 0.158 0.500 0.337
REMREL09CS 1.293 1.392 0.188 0.474 0.228
REMREL10CS 1.754 -1.952 0.156 0.271 0.333
REMREL01CI 1.652 0.275 0.110 0.497 0.478
REMREL02CI 1.373 -0.637 0.154 0.462 0.384
REMREL03CI 1.890 1.450 0.146 0.433 0.281
REMREL04CI 1.307 -0.185 0.210 0.483 0.301
REMREL05CI 0.806 0.454 0.162 0.500 0.288
REMREL06CI 1.932 -1.778 0.153 0.286 0.361
REMREL07CI 0.946 0.125 0.158 0.498 0.328
REMREL08CI 1.340 1.035 0.150 0.477 0.318
REMREL09CI 1.011 -1.222 0.148 0.427 0.337
REMREL10CI 1.417 0.634 0.178 0.496 0.320
REMREL01FU 0.994 -1.674 0.178 0.376 0.255
REMREL02FU 1.224 -0.061 0.143 0.496 0.366
REMREL03FU 1.180 0.297 0.170 0.500 0.329
REMREL04FU 2.937 1.121 0.182 0.458 0.311
REMREL05FU 0.672 0.454 0.174 0.500 0.188
REMREL06FU 1.085 0.679 0.195 0.499 0.288
REMREL07FU 0.986 0.182 0.159 0.499 0.320
REMREL08FU 0.695 2.654 0.195 0.466 0.091
REMREL09FU 1.277 -1.130 0.188 0.407 0.338
REMREL10FU 1.442 -0.474 0.157 0.474 0.397
Mean 1.302 -0.007 0.168 0.460 0.315
Standard deviation 0.437 1.038 0.023 0.060 0.077

Table 2: Recalling skill - all items calibrated.



3 Interpreting

In Table 3, we present the items that make up the interpreting skill with the respective parameters.

Item Slope Threshold Asymptote Hit ratio Point-biserial
UNDINT01ES 1.046 -0.985 0.186 0.750 0.307
UNDINT02ES 1.694 -1.972 0.156 0.920 0.330
UNDINT03ES 0.626 0.515 0.173 0.520 0.187
UNDINT04ES 0.785 0.033 0.152 0.560 0.299
UNDINT05ES 1.414 -0.123 0.218 0.630 0.304
UNDINT06ES 1.169 1.506 0.184 0.340 0.225
UNDINT07ES 1.655 0.308 0.108 0.450 0.477
UNDINT08ES 0.926 0.474 0.158 0.490 0.321
UNDINT09ES 1.502 0.824 0.159 0.390 0.392
UNDINT10ES 1.212 -1.148 0.185 0.790 0.340
UNDINT01CS 1.863 -1.794 0.153 0.910 0.358
UNDINT02CS 1.005 -1.414 0.149 0.790 0.278
UNDINT03CS 1.189 -0.273 0.160 0.620 0.331
UNDINT04CS 3.453 1.165 0.246 0.360 0.287
UNDINT05CS 1.255 0.254 0.167 0.520 0.364
UNDINT06CS 1.973 1.039 0.194 0.360 0.341
UNDINT07CS 0.874 0.180 0.159 0.540 0.331
UNDINT08CS 1.041 0.496 0.159 0.480 0.341
UNDINT09CS 1.468 0.681 0.183 0.440 0.324
UNDINT10CS 1.032 -0.802 0.166 0.710 0.338
UNDINT01CI 0.963 -1.297 0.174 0.780 0.291
UNDINT02CI 1.138 -2.216 0.161 0.900 0.282
UNDINT03CI 1.145 0.329 0.167 0.510 0.332
UNDINT04CI 1.381 -0.604 0.155 0.690 0.382
UNDINT05CI 1.285 0.524 0.135 0.440 0.407
UNDINT06CI 1.021 0.218 0.161 0.530 0.320
UNDINT07CI 1.057 0.736 0.196 0.470 0.292
UNDINT08CI 2.566 1.206 0.179 0.300 0.314
UNDINT09CI 0.936 0.640 0.227 0.520 0.246
UNDINT10CI 1.543 -0.181 0.167 0.610 0.408
UNDINT01FU 1.224 -0.031 0.142 0.560 0.368
UNDINT02FU 1.481 -0.435 0.158 0.660 0.398
UNDINT03FU 0.757 0.517 0.162 0.500 0.286
UNDINT04FU 1.026 -1.609 0.180 0.830 0.254
UNDINT05FU 1.844 0.163 0.172 0.530 0.417
UNDINT06FU 0.896 0.662 0.154 0.460 0.310
UNDINT07FU 1.019 -1.190 0.148 0.760 0.336
UNDINT08FU 2.073 1.438 0.146 0.250 0.288
UNDINT09FU 1.114 1.169 0.232 0.410 0.056
UNDINT10FU 1.384 1.069 0.152 0.350 0.320
Mean 1.326 0.002 0.170 0.566 0.320
Standard deviation 0.526 0.990 0.027 0.175 0.069

Table 3: Interpreting skill - all items calibrated.



4 Exemplifying

In Table 4, we present the items that make up the exemplifying skill with the respective parameters.

Item Slope Threshold Asymptote Hit ratio Point-biserial
UNDEXE01ES 0.973 -1.036 0.182 0.750 0.307
UNDEXE02ES 1.248 -1.116 0.185 0.790 0.350
UNDEXE03ES 1.041 -0.006 0.145 0.560 0.355
UNDEXE04ES 1.742 -1.931 0.157 0.920 0.322
UNDEXE05ES 1.528 0.235 0.169 0.520 0.385
UNDEXE06ES 1.171 -0.176 0.202 0.630 0.303
UNDEXE07ES 1.536 0.790 0.152 0.390 0.400
UNDEXE08ES 1.134 1.562 0.185 0.340 0.223
UNDEXE09ES 0.968 0.459 0.156 0.490 0.329
UNDEXE10ES 1.642 0.314 0.107 0.450 0.482
UNDEXE01CS 1.915 -1.756 0.154 0.910 0.349
UNDEXE02CS 0.983 -1.421 0.150 0.790 0.286
UNDEXE03CS 1.127 -0.285 0.156 0.620 0.333
UNDEXE04CS 1.120 0.118 0.151 0.540 0.377
UNDEXE05CS 1.456 0.693 0.183 0.440 0.333
UNDEXE06CS 1.166 0.284 0.168 0.520 0.359
UNDEXE07CS 1.051 0.488 0.156 0.480 0.346
UNDEXE08CS 1.899 1.050 0.190 0.360 0.347
UNDEXE09CS 1.301 1.175 0.181 0.370 0.300
UNDEXE10CS 1.046 -0.787 0.165 0.710 0.340
UNDEXE01CI 1.028 0.229 0.161 0.530 0.325
UNDEXE02CI 1.159 -2.177 0.161 0.900 0.275
UNDEXE03CI 1.014 0.449 0.215 0.530 0.279
UNDEXE04CI 1.327 -0.601 0.157 0.690 0.380
UNDEXE05CI 2.759 1.252 0.188 0.300 0.315
UNDEXE06CI 1.527 -0.160 0.171 0.610 0.408
UNDEXE07CI 1.163 0.715 0.200 0.470 0.299
UNDEXE08CI 1.212 0.544 0.132 0.440 0.407
UNDEXE09CI 1.073 0.364 0.169 0.510 0.328
UNDEXE10CI 1.001 -1.251 0.174 0.780 0.302
UNDEXE01FU 0.943 -1.703 0.177 0.830 0.248
UNDEXE02FU 1.030 -1.173 0.147 0.760 0.335
UNDEXE03FU 1.217 -0.011 0.145 0.560 0.375
UNDEXE04FU 1.922 0.177 0.175 0.530 0.417
UNDEXE05FU 1.216 0.508 0.148 0.460 0.378
UNDEXE06FU 0.775 0.519 0.162 0.500 0.295
UNDEXE07FU 1.247 1.153 0.151 0.350 0.309
UNDEXE08FU 1.868 1.529 0.146 0.250 0.279
UNDEXE09FU 1.393 -0.443 0.156 0.660 0.392
UNDEXE10FU 1.204 1.158 0.240 0.410 0.066
Mean 1.303 -0.007 0.167 0.566 0.331
Standard deviation 0.378 0.988 0.023 0.175 0.066

Table 4: Exemplifying skill - all items calibrated.



5 Classifying

In Table 5, we present the items that make up the classifying skill with the respective parameters.

Item Slope Threshold Asymptote Hit ratio Point-biserial
UNDCLA01ES 1.476 0.205 0.169 0.520 0.393
UNDCLA02ES 0.829 -0.001 0.150 0.560 0.303
UNDCLA03ES 1.304 -0.196 0.204 0.630 0.307
UNDCLA04ES 1.646 0.272 0.105 0.450 0.477
UNDCLA05ES 0.936 0.444 0.156 0.490 0.329
UNDCLA06ES 1.100 1.551 0.182 0.340 0.223
UNDCLA07ES 1.399 0.813 0.153 0.390 0.394
UNDCLA08ES 1.474 -0.810 0.211 0.760 0.353
UNDCLA09ES 1.842 -1.890 0.156 0.920 0.321
UNDCLA10ES 1.313 -1.101 0.188 0.790 0.343
UNDCLA01CS 1.826 -1.119 0.150 0.810 0.392
UNDCLA02CS 2.037 -1.721 0.153 0.910 0.348
UNDCLA03CS 1.015 -0.834 0.164 0.710 0.342
UNDCLA04CS 1.621 1.056 0.181 0.360 0.346
UNDCLA05CS 1.370 0.657 0.176 0.440 0.331
UNDCLA06CS 0.915 0.149 0.158 0.540 0.340
UNDCLA07CS 1.146 0.242 0.164 0.520 0.361
UNDCLA08CS 1.047 0.472 0.159 0.480 0.348
UNDCLA09CS 1.419 1.144 0.190 0.370 0.308
UNDCLA10CS 1.210 -0.303 0.157 0.620 0.339
UNDCLA01CI 1.525 -0.198 0.170 0.610 0.407
UNDCLA02CI 1.185 0.545 0.137 0.440 0.413
UNDCLA03CI 1.190 -2.155 0.161 0.900 0.275
UNDCLA04CI 1.118 0.681 0.195 0.470 0.302
UNDCLA05CI 1.313 -1.101 0.188 0.790 0.343
UNDCLA06CI 1.521 0.262 0.187 0.520 0.372
UNDCLA07CI 1.328 -0.639 0.154 0.690 0.378
UNDCLA08CI 1.734 0.227 0.223 0.530 0.281
UNDCLA09CI 1.040 0.193 0.161 0.530 0.327
UNDCLA10CI 2.470 1.259 0.184 0.300 0.316
UNDCLA01FU 1.464 -0.466 0.156 0.660 0.391
UNDCLA02FU 1.869 0.121 0.168 0.530 0.415
UNDCLA03FU 0.720 0.530 0.163 0.500 0.289
UNDCLA04FU 1.003 -1.652 0.178 0.830 0.249
UNDCLA05FU 1.131 -0.050 0.142 0.560 0.367
UNDCLA06FU 2.545 1.788 0.330 0.410 0.075
UNDCLA07FU 1.931 1.502 0.147 0.250 0.294
UNDCLA08FU 1.320 1.084 0.152 0.350 0.318
UNDCLA09FU 1.425 -1.041 0.148 0.770 0.398
UNDCLA10FU 1.163 0.498 0.149 0.460 0.377
Mean 1.398 0.010 0.170 0.568 0.337
Standard deviation 0.403 0.974 0.034 0.177 0.065

Table 5: Classifying skill - all items calibrated.



6 Summarizing

In Table 6, we present the items that make up the summarizing skill with the respective parameters.

Item Slope Threshold Asymptote Hit ratio Point-biserial
UNDSUM01ES 1.854 -1.895 0.156 0.920 0.322
UNDSUM02ES 1.334 -1.086 0.191 0.790 0.344
UNDSUM03ES 1.281 -0.189 0.205 0.630 0.306
UNDSUM04ES 1.490 0.211 0.171 0.520 0.392
UNDSUM05ES 0.938 0.448 0.157 0.490 0.327
UNDSUM06ES 0.994 -1.044 0.183 0.750 0.312
UNDSUM07ES 0.832 0.001 0.150 0.560 0.305
UNDSUM08ES 1.164 1.505 0.184 0.340 0.225
UNDSUM09ES 1.618 0.281 0.106 0.450 0.477
UNDSUM10ES 1.470 0.793 0.154 0.390 0.395
UNDSUM01CS 1.820 -1.126 0.150 0.810 0.394
UNDSUM02CS 1.362 0.653 0.174 0.440 0.329
UNDSUM03CS 0.936 0.149 0.159 0.540 0.339
UNDSUM04CS 1.185 -0.309 0.155 0.620 0.339
UNDSUM05CS 1.042 0.475 0.159 0.480 0.347
UNDSUM06CS 1.198 0.252 0.169 0.520 0.362
UNDSUM07CS 1.015 -0.832 0.165 0.710 0.342
UNDSUM08CS 1.516 1.149 0.198 0.370 0.308
UNDSUM09CS 2.047 -1.728 0.152 0.910 0.350
UNDSUM10CS 1.822 1.040 0.189 0.360 0.346
UNDSUM01CI 1.334 -1.086 0.191 0.790 0.344
UNDSUM02CI 1.211 -2.137 0.161 0.900 0.276
UNDSUM03CI 1.086 0.328 0.168 0.510 0.329
UNDSUM04CI 1.017 0.202 0.161 0.530 0.326
UNDSUM05CI 1.148 0.708 0.203 0.470 0.300
UNDSUM06CI 1.765 0.225 0.225 0.530 0.279
UNDSUM07CI 1.200 0.543 0.137 0.440 0.411
UNDSUM08CI 2.490 1.264 0.185 0.300 0.312
UNDSUM09CI 1.454 -0.201 0.169 0.610 0.407
UNDSUM10CI 1.328 -0.638 0.154 0.690 0.379
UNDSUM01FU 0.965 -1.703 0.177 0.830 0.250
UNDSUM02FU 1.173 0.502 0.151 0.460 0.376
UNDSUM03FU 1.099 -0.044 0.143 0.560 0.367
UNDSUM04FU 1.924 1.493 0.146 0.250 0.289
UNDSUM05FU 1.440 -0.469 0.155 0.660 0.391
UNDSUM06FU 1.824 0.120 0.165 0.530 0.414
UNDSUM07FU 0.745 0.517 0.163 0.500 0.290
UNDSUM08FU 2.365 1.787 0.329 0.410 0.071
UNDSUM09FU 1.306 1.096 0.152 0.350 0.315
UNDSUM10FU 0.984 -1.232 0.149 0.760 0.336
Mean 1.369 0.001 0.170 0.567 0.333
Standard deviation 0.406 0.986 0.033 0.176 0.064

Table 6: Summarizing skill - all items calibrated.



7 Inferring

In Table 7, we present the items that make up the inferring skill with the respective parameters.

Item Slope Threshold Asymptote Hit ratio Point-biserial
UNDINF01ES 1.857 -1.915 0.157 0.920 0.316
UNDINF02ES 1.236 -1.187 0.184 0.790 0.345
UNDINF03ES 0.992 0.379 0.157 0.490 0.328
UNDINF04ES 1.585 0.703 0.155 0.390 0.399
UNDINF05ES 1.614 0.246 0.109 0.450 0.479
UNDINF06ES 1.592 0.141 0.167 0.520 0.390
UNDINF07ES 0.871 -0.052 0.149 0.560 0.302
UNDINF08ES 1.197 -0.248 0.201 0.630 0.303
UNDINF09ES 1.003 -1.076 0.183 0.750 0.313
UNDINF10ES 1.153 1.453 0.184 0.340 0.223
UNDINF01CS 1.101 -0.831 0.164 0.710 0.343
UNDINF02CS 1.323 1.055 0.177 0.370 0.301
UNDINF03CS 2.045 -1.749 0.154 0.910 0.344
UNDINF04CS 1.013 0.078 0.156 0.540 0.337
UNDINF05CS 1.862 0.947 0.186 0.360 0.343
UNDINF06CS 1.072 0.409 0.157 0.480 0.345
UNDINF07CS 1.180 -0.350 0.155 0.620 0.336
UNDINF08CS 1.190 0.204 0.168 0.520 0.360
UNDINF09CS 1.454 0.596 0.179 0.440 0.335
UNDINF10CS 0.977 -1.486 0.151 0.790 0.276
UNDINF01CI 1.099 0.281 0.168 0.510 0.327
UNDINF02CI 1.248 -2.126 0.161 0.900 0.270
UNDINF03CI 1.135 0.621 0.194 0.470 0.297
UNDINF04CI 1.572 -0.227 0.173 0.610 0.406
UNDINF05CI 1.358 -0.662 0.156 0.690 0.377
UNDINF06CI 1.231 0.467 0.133 0.440 0.407
UNDINF07CI 1.021 0.150 0.160 0.530 0.323
UNDINF08CI 0.986 -1.328 0.174 0.780 0.297
UNDINF09CI 1.702 0.000 0.200 0.550 0.191
UNDINF10CI 2.630 1.163 0.185 0.300 0.314
UNDINF01FU 1.397 -0.513 0.155 0.660 0.390
UNDINF02FU 1.026 -1.237 0.148 0.760 0.334
UNDINF03FU 1.864 1.443 0.146 0.250 0.280
UNDINF04FU 0.960 -1.744 0.176 0.830 0.252
UNDINF05FU 1.241 0.417 0.147 0.460 0.377
UNDINF06FU 1.229 -0.083 0.146 0.560 0.377
UNDINF07FU 1.259 1.061 0.151 0.350 0.308
UNDINF08FU 1.111 1.155 0.229 0.410 0.070
UNDINF09FU 0.794 0.434 0.162 0.500 0.293
UNDINF10FU 1.968 0.104 0.178 0.530 0.413
Mean 1.329 -0.083 0.166 0.567 0.326
Standard deviation 0.381 0.962 0.021 0.175 0.068

Table 7: Inferring skill - all items calibrated.



8 Comparing

In Table 8, we present the items that make up the comparing skill with the respective parameters.

Item Slope Threshold Asymptote Hit ratio Point-biserial
UNDCOM01ES 1.282 -0.268 0.200 0.630 0.306
UNDCOM02ES 0.840 -0.061 0.149 0.560 0.301
UNDCOM03ES 1.573 -0.827 0.215 0.760 0.353
UNDCOM04ES 1.264 -1.189 0.185 0.790 0.343
UNDCOM05ES 1.453 0.141 0.167 0.520 0.396
UNDCOM06ES 0.970 0.372 0.156 0.490 0.330
UNDCOM07ES 1.110 1.469 0.180 0.340 0.226
UNDCOM08ES 1.356 0.762 0.152 0.390 0.394
UNDCOM09ES 1.594 0.221 0.106 0.450 0.478
UNDCOM10ES 1.927 -1.895 0.156 0.920 0.319
UNDCOM01CS 2.132 -1.733 0.153 0.910 0.346
UNDCOM02CS 1.887 -1.155 0.150 0.810 0.391
UNDCOM03CS 1.022 -0.885 0.164 0.710 0.343
UNDCOM04CS 1.195 -0.363 0.157 0.620 0.339
UNDCOM05CS 1.720 0.978 0.184 0.360 0.353
UNDCOM06CS 1.310 0.607 0.174 0.440 0.328
UNDCOM07CS 3.147 0.420 0.196 0.410 0.412
UNDCOM08CS 1.067 0.407 0.159 0.480 0.350
UNDCOM09CS 0.975 0.081 0.158 0.540 0.344
UNDCOM10CS 1.101 0.183 0.162 0.520 0.358
UNDCOM01CI 1.532 -0.260 0.169 0.610 0.409
UNDCOM02CI 1.393 -0.680 0.154 0.690 0.379
UNDCOM03CI 1.264 -1.189 0.185 0.790 0.343
UNDCOM04CI 1.018 0.139 0.160 0.530 0.325
UNDCOM05CI 1.201 0.606 0.200 0.470 0.304
UNDCOM06CI 1.818 0.248 0.231 0.530 0.285
UNDCOM07CI 1.177 0.484 0.136 0.440 0.409
UNDCOM08CI 1.503 0.197 0.185 0.520 0.376
UNDCOM09CI 1.228 -2.161 0.161 0.900 0.274
UNDCOM10CI 2.719 1.201 0.189 0.300 0.325
UNDCOM01FU 1.881 0.058 0.169 0.530 0.417
UNDCOM02FU 1.122 -0.110 0.142 0.560 0.367
UNDCOM03FU 1.930 1.441 0.146 0.250 0.298
UNDCOM04FU 1.175 0.437 0.150 0.460 0.382
UNDCOM05FU 2.372 1.780 0.330 0.410 0.073
UNDCOM06FU 1.020 0.236 0.169 0.520 0.364
UNDCOM07FU 1.426 -0.532 0.154 0.660 0.392
UNDCOM08FU 1.228 1.070 0.150 0.350 0.316
UNDCOM09FU 1.003 -1.706 0.177 0.830 0.250
UNDCOM10FU 1.424 -1.095 0.147 0.770 0.395
Mean 1.459 -0.064 0.171 0.569 0.342
Standard deviation 0.493 0.952 0.034 0.175 0.066

Table 8: Comparing skill - all items calibrated.



9 Explaining

In Table 9, we present the items that make up the explaining skill with the respective parameters.

Item Slope Threshold Asymptote Hit ratio Point-biserial
UNDEXP01ES 1.600 0.177 0.170 0.520 0.386
UNDEXP02ES 1.057 -0.061 0.144 0.560 0.352
UNDEXP03ES 0.956 -1.099 0.180 0.750 0.306
UNDEXP04ES 1.280 -1.140 0.186 0.790 0.350
UNDEXP05ES 0.996 0.398 0.156 0.490 0.329
UNDEXP06ES 1.648 0.262 0.107 0.450 0.482
UNDEXP07ES 1.561 0.718 0.151 0.390 0.399
UNDEXP08ES 1.170 -0.227 0.201 0.630 0.304
UNDEXP09ES 1.774 -1.949 0.157 0.920 0.323
UNDEXP10ES 1.202 1.448 0.186 0.340 0.226
UNDEXP01CS 0.976 -1.470 0.150 0.790 0.285
UNDEXP02CS 1.049 0.433 0.155 0.480 0.343
UNDEXP03CS 1.079 -0.818 0.165 0.710 0.339
UNDEXP04CS 1.165 0.058 0.149 0.540 0.375
UNDEXP05CS 1.407 0.629 0.178 0.440 0.326
UNDEXP06CS 0.950 1.793 0.182 0.330 0.184
UNDEXP07CS 1.953 -1.776 0.154 0.910 0.350
UNDEXP08CS 1.162 0.234 0.168 0.520 0.359
UNDEXP09CS 1.130 -0.335 0.155 0.620 0.331
UNDEXP10CS 2.015 0.965 0.192 0.360 0.345
UNDEXP01CI 1.117 0.651 0.194 0.470 0.292
UNDEXP02CI 1.098 0.312 0.170 0.510 0.328
UNDEXP03CI 1.751 0.216 0.223 0.530 0.275
UNDEXP04CI 1.189 -2.179 0.161 0.900 0.275
UNDEXP05CI 1.347 -0.642 0.157 0.690 0.382
UNDEXP06CI 1.191 0.495 0.131 0.440 0.404
UNDEXP07CI 3.187 1.138 0.189 0.300 0.322
UNDEXP08CI 1.038 -1.261 0.175 0.780 0.305
UNDEXP09CI 1.506 -0.216 0.169 0.610 0.407
UNDEXP10CI 1.001 0.180 0.160 0.530 0.322
UNDEXP01FU 1.201 -0.060 0.145 0.560 0.373
UNDEXP02FU 0.924 -1.775 0.176 0.830 0.248
UNDEXP03FU 1.002 -1.238 0.148 0.760 0.331
UNDEXP04FU 1.311 0.428 0.148 0.460 0.380
UNDEXP05FU 2.001 0.125 0.177 0.530 0.418
UNDEXP06FU 1.295 1.138 0.248 0.410 0.063
UNDEXP07FU 1.422 -0.483 0.157 0.660 0.398
UNDEXP08FU 0.799 0.452 0.162 0.500 0.295
UNDEXP09FU 1.854 1.476 0.147 0.250 0.278
UNDEXP10FU 1.290 1.081 0.153 0.350 0.313
Mean 1.341 -0.048 0.167 0.565 0.328
Standard deviation 0.437 0.999 0.024 0.176 0.070

Table 9: Explaining skill - all items calibrated.



10 Executing

In Table 10, we present the items that make up the executing skill with the respective parameters.

Item Slope Threshold Asymptote Hit ratio Point-biserial
APPEXE01ES 1.217 -1.239 0.182 0.790 0.350
APPEXE02ES 1.193 -0.287 0.200 0.630 0.303
APPEXE03ES 0.991 -1.124 0.181 0.750 0.302
APPEXE04ES 1.476 0.244 0.112 0.450 0.483
APPEXE05ES 1.683 -2.049 0.158 0.920 0.317
APPEXE06ES 1.089 -0.119 0.143 0.560 0.357
APPEXE07ES 1.531 0.129 0.171 0.520 0.391
APPEXE08ES 1.056 0.321 0.156 0.490 0.333
APPEXE09ES 1.206 1.400 0.186 0.340 0.229
APPEXE10ES 1.446 0.700 0.150 0.390 0.395
APPEXE01CS 1.051 0.376 0.155 0.480 0.350
APPEXE02CS 1.876 -1.858 0.155 0.910 0.349
APPEXE03CS 1.326 0.609 0.179 0.440 0.330
APPEXE04CS 0.910 -1.596 0.151 0.790 0.277
APPEXE05CS 2.022 0.928 0.195 0.360 0.356
APPEXE06CS 3.397 0.421 0.203 0.410 0.410
APPEXE07CS 1.161 0.175 0.167 0.520 0.356
APPEXE08CS 1.169 -0.383 0.156 0.620 0.335
APPEXE09CS 1.185 -0.006 0.148 0.540 0.382
APPEXE10CS 1.082 -0.871 0.165 0.710 0.344
APPEXE01CI 1.143 -2.287 0.162 0.900 0.272
APPEXE02CI 2.007 -0.239 0.177 0.610 0.411
APPEXE03CI 1.394 -0.685 0.157 0.690 0.380
APPEXE04CI 1.113 0.236 0.166 0.510 0.335
APPEXE05CI 0.976 -1.376 0.173 0.780 0.303
APPEXE06CI 1.244 0.419 0.131 0.440 0.405
APPEXE07CI 1.189 0.604 0.202 0.470 0.301
APPEXE08CI 0.999 0.125 0.160 0.530 0.326
APPEXE09CI 2.172 0.291 0.260 0.530 0.283
APPEXE10CI 2.936 1.128 0.189 0.300 0.324
APPEXE01FU 2.488 -0.165 0.162 0.580 0.461
APPEXE02FU 1.086 -1.236 0.146 0.760 0.335
APPEXE03FU 0.919 -1.839 0.176 0.830 0.250
APPEXE04FU 1.192 1.089 0.153 0.350 0.308
APPEXE05FU 1.746 1.806 0.322 0.410 0.063
APPEXE06FU 2.141 1.249 0.146 0.250 0.284
APPEXE07FU 1.224 0.392 0.147 0.460 0.384
APPEXE08FU 1.343 -0.554 0.156 0.660 0.392
APPEXE09FU 1.267 0.170 0.145 0.500 0.429
APPEXE10FU 1.990 0.060 0.175 0.530 0.421
Mean 1.466 -0.126 0.170 0.568 0.340
Standard deviation 0.558 0.995 0.035 0.174 0.071

Table 10: Executing skill - all items calibrated.



11 Implementing

In Table 11, we present the items that make up the implementing skill with the respective param-

eters.

Item Slope Threshold Asymptote Hit ratio Point-biserial
APPIMP01ES 1.293 0.429 0.146 0.460 0.383
APPIMP02ES 1.217 1.445 0.185 0.340 0.227
APPIMP03ES 1.638 -2.039 0.158 0.920 0.319
APPIMP04ES 1.295 0.222 0.144 0.500 0.426
APPIMP05ES 2.398 1.747 0.330 0.410 0.065
APPIMP06ES 1.168 -0.229 0.201 0.630 0.303
APPIMP07ES 1.308 -1.129 0.187 0.790 0.350
APPIMP08ES 1.932 0.253 0.241 0.530 0.279
APPIMP09ES 0.950 -1.105 0.181 0.750 0.301
APPIMP10ES 1.062 -0.064 0.142 0.560 0.357
APPIMP01CS 1.560 1.110 0.199 0.370 0.303
APPIMP02CS 1.156 0.052 0.147 0.540 0.379
APPIMP03CS 0.940 -1.512 0.151 0.790 0.283
APPIMP04CS 1.031 0.392 0.157 0.490 0.335
APPIMP05CS 1.532 0.190 0.171 0.520 0.390
APPIMP06CS 1.078 -0.824 0.164 0.710 0.343
APPIMP07CS 1.542 0.738 0.152 0.390 0.396
APPIMP08CS 1.584 0.277 0.108 0.450 0.483
APPIMP09CS 1.826 -1.844 0.155 0.910 0.351
APPIMP10CS 1.101 -0.341 0.155 0.620 0.336
APPIMP01CI 1.125 -2.267 0.162 0.900 0.272
APPIMP02CI 1.309 -0.655 0.157 0.690 0.379
APPIMP03CI 1.369 0.648 0.178 0.440 0.327
APPIMP04CI 0.976 0.185 0.160 0.530 0.322
APPIMP05CI 1.149 0.249 0.171 0.520 0.353
APPIMP06CI 2.134 0.972 0.196 0.360 0.353
APPIMP07CI 1.524 -0.221 0.166 0.610 0.413
APPIMP08CI 1.062 -1.245 0.176 0.780 0.306
APPIMP09CI 1.026 0.446 0.156 0.480 0.348
APPIMP10CI 2.973 1.109 0.178 0.300 0.322
APPIMP01FU 0.996 -1.249 0.147 0.760 0.335
APPIMP02FU 1.371 -0.494 0.157 0.660 0.391
APPIMP03FU 1.834 1.491 0.145 0.250 0.279
APPIMP04FU 0.894 -1.826 0.176 0.830 0.250
APPIMP05FU 1.201 -0.065 0.143 0.560 0.377
APPIMP06FU 1.257 1.121 0.155 0.350 0.309
APPIMP07FU 1.901 0.121 0.172 0.530 0.418
APPIMP08FU 1.158 0.682 0.203 0.470 0.296
APPIMP09FU 1.082 0.312 0.168 0.510 0.334
APPIMP10FU 1.179 0.501 0.131 0.440 0.403
Mean 1.378 -0.060 0.169 0.566 0.335
Standard deviation 0.435 1.013 0.035 0.175 0.068

Table 11: Implementing skill - all items calibrated.



12 Differentiating

In Table 12, we present the items that make up the differentiating skill with the respective param-

eters.

Item Slope Threshold Asymptote Hit ratio Point-biserial
ANADIF01CS 1.576 0.045 0.146 0.560 0.428
ANADIF02CS 1.215 0.362 0.175 0.520 0.326
ANADIF03CS 1.079 0.282 0.162 0.530 0.330
ANADIF04CS 0.979 0.500 0.153 0.490 0.328
ANADIF05CS 1.549 -2.017 0.159 0.920 0.325
ANADIF06CS 1.071 0.611 0.147 0.460 0.358
ANADIF07CS 0.979 -0.207 0.184 0.630 0.294
ANADIF08CS 0.885 -0.843 0.162 0.710 0.314
ANADIF09CS 1.092 -1.115 0.180 0.780 0.327
ANADIF10CS 0.953 -1.644 0.178 0.830 0.256
ANADIF01CI 1.297 -0.557 0.156 0.690 0.396
ANADIF02CI 1.803 0.223 0.166 0.530 0.424
ANADIF03CI 0.990 0.052 0.144 0.560 0.364
ANADIF04CI 1.104 -0.236 0.155 0.620 0.352
ANADIF05CI 0.907 0.413 0.156 0.510 0.303
ANADIF06CI 0.994 0.590 0.161 0.480 0.317
ANADIF07CI 1.324 -1.013 0.192 0.790 0.366
ANADIF08CI 1.203 -1.016 0.146 0.760 0.402
ANADIF09CI 1.732 -1.811 0.155 0.910 0.378
ANADIF10CI 1.795 0.358 0.105 0.450 0.518
ANADIF01FU 0.970 -2.419 0.163 0.900 0.235
ANADIF02FU 0.970 0.190 0.150 0.540 0.357
ANADIF03FU 1.148 0.390 0.152 0.500 0.380
ANADIF04FU 1.048 -1.313 0.150 0.790 0.331
ANADIF05FU 0.917 0.795 0.180 0.470 0.258
ANADIF06FU 1.536 0.786 0.194 0.440 0.308
ANADIF07FU 1.055 -0.910 0.188 0.750 0.317
ANADIF08FU 1.344 -0.395 0.156 0.660 0.401
ANADIF09FU 1.824 -0.077 0.175 0.610 0.440
ANADIF10FU 1.462 0.318 0.173 0.520 0.370
Mean 1.227 -0.322 0.162 0.630 0.350
Standard deviation 0.298 0.891 0.018 0.150 0.059

Table 12: Differentiating skill - all items calibrated.



13 Organizing

In Table 13, we present the items that make up the organizing skill with the respective parameters.

Item Slope Threshold Asymptote Hit ratio Point-biserial
ANAORG01ES 1.004 -1.018 0.186 0.750 0.307
ANAORG02ES 1.482 0.221 0.170 0.520 0.391
ANAORG03ES 1.994 1.854 0.326 0.410 0.061
ANAORG04ES 1.156 1.483 0.180 0.340 0.228
ANAORG05ES 1.377 -1.050 0.192 0.790 0.354
ANAORG06ES 1.619 -2.019 0.157 0.920 0.318
ANAORG07ES 1.018 -0.021 0.146 0.560 0.365
ANAORG08ES 1.323 0.551 0.201 0.460 0.206
ANAORG09ES 1.006 0.411 0.153 0.490 0.340
ANAORG10ES 1.249 -0.198 0.200 0.630 0.302
ANAORG01CS 2.151 -0.958 0.139 0.790 0.471
ANAORG02CS 1.006 -0.827 0.164 0.710 0.338
ANAORG03CS 1.101 -0.304 0.157 0.620 0.331
ANAORG04CS 1.271 0.262 0.172 0.520 0.362
ANAORG05CS 1.816 -1.817 0.153 0.910 0.354
ANAORG06CS 1.068 0.475 0.159 0.480 0.354
ANAORG07CS 1.475 0.782 0.151 0.390 0.386
ANAORG08CS 1.785 0.266 0.104 0.450 0.484
ANAORG09CS 1.091 0.103 0.151 0.540 0.383
ANAORG10CS 1.058 1.915 0.204 0.330 0.184
ANAORG01CI 1.093 -1.184 0.178 0.780 0.310
ANAORG02CI 1.057 0.322 0.163 0.510 0.328
ANAORG03CI 1.049 0.190 0.157 0.530 0.329
ANAORG04CI 1.349 -0.615 0.156 0.690 0.383
ANAORG05CI 1.409 0.659 0.177 0.440 0.322
ANAORG06CI 1.883 1.033 0.191 0.360 0.348
ANAORG07CI 3.034 1.189 0.188 0.300 0.315
ANAORG08CI 1.083 -2.295 0.162 0.900 0.271
ANAORG09CI 1.492 -0.198 0.165 0.610 0.413
ANAORG10CI 1.611 0.795 0.252 0.470 0.301
ANAORG01FU 1.822 1.511 0.144 0.250 0.271
ANAORG02FU 1.285 1.134 0.156 0.350 0.302
ANAORG03FU 1.255 0.491 0.152 0.460 0.387
ANAORG04FU 1.313 0.256 0.146 0.500 0.434
ANAORG05FU 1.213 0.521 0.131 0.440 0.413
ANAORG06FU 1.673 -1.240 0.166 0.830 0.382
ANAORG07FU 1.145 -0.032 0.144 0.560 0.368
ANAORG08FU 1.464 -0.452 0.155 0.660 0.391
ANAORG09FU 1.716 0.120 0.159 0.530 0.410
ANAORG10FU 1.018 -1.203 0.146 0.760 0.345
Mean 1.400 0.028 0.169 0.564 0.339
Standard deviation 0.407 1.015 0.035 0.177 0.077

Table 13: Organizing skill - all items calibrated.



14 Attributing

In Table 14, we present the items that make up the attributing skill with the respective parameters.

Item Slope Threshold Asymptote Hit ratio Point-biserial
ANAATT01ES 1.001 0.423 0.154 0.490 0.339
ANAATT02ES 1.455 0.227 0.168 0.520 0.390
ANAATT03ES 1.797 0.268 0.102 0.450 0.483
ANAATT04ES 1.211 1.443 0.181 0.340 0.230
ANAATT05ES 1.277 -0.181 0.202 0.630 0.299
ANAATT06ES 1.365 -1.049 0.193 0.790 0.353
ANAATT07ES 1.052 -0.971 0.189 0.750 0.305
ANAATT08ES 0.986 -0.008 0.147 0.560 0.359
ANAATT09ES 2.067 1.879 0.329 0.410 0.057
ANAATT10ES 1.638 -2.006 0.157 0.920 0.323
ANAATT01CS 2.150 -0.956 0.139 0.790 0.474
ANAATT02CS 1.091 -0.297 0.157 0.620 0.331
ANAATT03CS 0.991 -0.830 0.165 0.710 0.340
ANAATT04CS 1.034 0.494 0.159 0.480 0.352
ANAATT05CS 1.431 0.279 0.182 0.520 0.364
ANAATT06CS 1.042 0.121 0.152 0.540 0.380
ANAATT07CS 1.408 0.659 0.176 0.440 0.323
ANAATT08CS 2.308 1.821 0.258 0.330 0.186
ANAATT09CS 1.524 0.787 0.154 0.390 0.384
ANAATT10CS 1.836 -1.808 0.153 0.910 0.359
ANAATT01CI 1.088 -1.182 0.179 0.780 0.309
ANAATT02CI 1.473 -0.190 0.165 0.610 0.411
ANAATT03CI 1.321 -0.620 0.155 0.690 0.381
ANAATT04CI 3.026 1.172 0.187 0.300 0.314
ANAATT05CI 1.040 0.334 0.163 0.510 0.322
ANAATT06CI 1.216 0.531 0.132 0.440 0.412
ANAATT07CI 1.774 1.057 0.188 0.360 0.342
ANAATT08CI 1.054 0.199 0.158 0.530 0.331
ANAATT09CI 1.071 -2.309 0.162 0.900 0.275
ANAATT10CI 1.201 0.743 0.211 0.470 0.296
ANAATT01FU 1.837 1.485 0.142 0.250 0.276
ANAATT02FU 1.393 0.267 0.151 0.500 0.440
ANAATT03FU 1.259 0.504 0.154 0.460 0.386
ANAATT04FU 1.677 0.122 0.156 0.530 0.410
ANAATT05FU 1.528 -0.431 0.157 0.660 0.395
ANAATT06FU 1.131 -0.026 0.144 0.560 0.364
ANAATT07FU 1.002 -1.211 0.146 0.760 0.343
ANAATT08FU 1.312 1.118 0.155 0.350 0.304
ANAATT09FU 1.688 -1.232 0.166 0.830 0.385
ANAATT10FU 1.383 0.920 0.235 0.420 0.129
Mean 1.428 0.039 0.171 0.563 0.336
Standard deviation 0.430 1.013 0.038 0.178 0.081

Table 14: Attributing skill - all items calibrated.



15 Checking

In Table 15, we present the items that make up the checking skill with the respective parameters.

Item Slope Threshold Asymptote Hit ratio Point-biserial
EVACHE01ES 1.311 -0.133 0.207 0.630 0.300
EVACHE02ES 1.773 0.311 0.103 0.450 0.488
EVACHE03ES 1.036 -0.958 0.188 0.750 0.310
EVACHE04ES 1.564 -2.041 0.157 0.920 0.326
EVACHE05ES 1.419 0.263 0.167 0.520 0.394
EVACHE06ES 0.968 0.026 0.147 0.560 0.362
EVACHE07ES 1.310 -1.048 0.193 0.790 0.351
EVACHE08ES 1.245 1.468 0.182 0.340 0.232
EVACHE09ES 0.963 0.468 0.153 0.490 0.340
EVACHE10ES 2.233 1.950 0.334 0.410 0.054
EVACHE01CS 0.987 0.540 0.157 0.480 0.350
EVACHE02CS 0.994 0.152 0.150 0.540 0.377
EVACHE03CS 1.537 0.833 0.156 0.390 0.384
EVACHE04CS 1.443 -0.683 0.146 0.710 0.452
EVACHE05CS 2.069 -0.946 0.140 0.790 0.475
EVACHE06CS 1.355 0.712 0.175 0.440 0.321
EVACHE07CS 1.091 -0.267 0.157 0.620 0.335
EVACHE08CS 1.373 0.316 0.180 0.520 0.365
EVACHE09CS 2.121 1.837 0.254 0.330 0.188
EVACHE10CS 1.753 -1.833 0.153 0.910 0.362
EVACHE01CI 1.026 0.231 0.157 0.530 0.329
EVACHE02CI 1.047 0.366 0.162 0.510 0.322
EVACHE03CI 1.778 1.120 0.192 0.360 0.340
EVACHE04CI 1.037 -2.343 0.162 0.900 0.278
EVACHE05CI 1.058 -1.173 0.180 0.780 0.310
EVACHE06CI 1.480 -0.163 0.164 0.610 0.414
EVACHE07CI 1.060 0.774 0.197 0.470 0.294
EVACHE08CI 1.196 0.571 0.132 0.440 0.409
EVACHE09CI 1.314 -0.595 0.154 0.690 0.384
EVACHE10CI 3.117 1.208 0.185 0.300 0.315
EVACHE01FU 1.859 1.505 0.140 0.250 0.274
EVACHE02FU 1.327 0.299 0.147 0.500 0.440
EVACHE03FU 1.664 -1.218 0.166 0.830 0.386
EVACHE04FU 1.223 0.546 0.152 0.460 0.389
EVACHE05FU 1.553 -0.398 0.157 0.660 0.398
EVACHE06FU 1.148 0.010 0.144 0.560 0.365
EVACHE07FU 1.324 1.173 0.158 0.350 0.302
EVACHE08FU 0.989 -1.196 0.146 0.760 0.344
EVACHE09FU 0.797 1.508 0.226 0.420 0.120
EVACHE10FU 1.684 0.173 0.161 0.530 0.407
Mean 1.406 0.084 0.169 0.563 0.340
Standard deviation 0.446 1.044 0.037 0.178 0.084

Table 15: Checking skill - all items calibrated.



16 Critiquing

In Table 16, we present the items that make up the critiquing skill with the respective parameters.

Item Slope Threshold Asymptote Hit ratio Point-biserial
EVACRI01ES 1.313 -1.088 0.192 0.790 0.350
EVACRI02ES 1.065 -0.982 0.188 0.750 0.312
EVACRI03ES 1.287 -0.192 0.204 0.630 0.302
EVACRI04ES 1.670 -1.993 0.157 0.920 0.325
EVACRI05ES 1.018 -0.033 0.146 0.560 0.363
EVACRI06ES 1.528 0.189 0.166 0.520 0.395
EVACRI07ES 1.804 0.249 0.103 0.450 0.486
EVACRI08ES 1.010 0.384 0.151 0.490 0.338
EVACRI09ES 1.057 1.232 0.233 0.410 0.054
EVACRI10ES 1.246 1.382 0.180 0.340 0.234
EVACRI01CS 2.119 -0.969 0.139 0.790 0.473
EVACRI02CS 1.115 1.833 0.205 0.330 0.187
EVACRI03CS 1.545 0.746 0.153 0.390 0.386
EVACRI04CS 1.391 0.632 0.174 0.440 0.323
EVACRI05CS 1.130 -0.314 0.156 0.620 0.336
EVACRI06CS 1.871 -1.797 0.153 0.910 0.360
EVACRI07CS 1.088 0.082 0.149 0.540 0.379
EVACRI08CS 1.377 0.247 0.177 0.520 0.366
EVACRI09CS 1.493 -0.716 0.145 0.710 0.453
EVACRI10CS 1.060 0.449 0.156 0.480 0.351
EVACRI01CI 3.019 1.143 0.186 0.300 0.314
EVACRI02CI 1.527 -0.206 0.165 0.610 0.415
EVACRI03CI 1.047 -1.226 0.178 0.780 0.306
EVACRI04CI 1.246 0.488 0.130 0.440 0.410
EVACRI05CI 1.069 0.307 0.163 0.510 0.324
EVACRI06CI 1.146 0.677 0.199 0.470 0.296
EVACRI07CI 1.110 -2.266 0.161 0.900 0.277
EVACRI08CI 1.816 1.016 0.189 0.360 0.342
EVACRI09CI 1.379 -0.622 0.154 0.690 0.386
EVACRI10CI 1.041 0.172 0.156 0.530 0.330
EVACRI01FU 1.171 -0.042 0.145 0.560 0.366
EVACRI02FU 1.321 0.782 0.204 0.420 0.179
EVACRI03FU 1.517 -0.453 0.156 0.660 0.400
EVACRI04FU 1.310 1.098 0.156 0.350 0.301
EVACRI05FU 1.266 0.463 0.150 0.460 0.387
EVACRI06FU 1.896 1.423 0.141 0.250 0.273
EVACRI07FU 1.395 0.226 0.146 0.500 0.441
EVACRI08FU 1.668 -1.249 0.166 0.830 0.385
EVACRI09FU 1.711 0.120 0.163 0.530 0.406
EVACRI10FU 1.010 -1.219 0.146 0.760 0.343
Mean 1.396 -0.001 0.165 0.563 0.341
Standard deviation 0.391 0.971 0.024 0.178 0.081

Table 16: Critiquing skill - all items calibrated.



17 Generating

In Table 17, we present the items that make up the generating skill with the respective parameters.

Item Slope Threshold Asymptote Hit ratio Point-biserial
CREGEN01ES 0.966 -0.019 0.148 0.560 0.360
CREGEN02ES 0.953 0.421 0.153 0.490 0.336
CREGEN03ES 1.281 -0.168 0.212 0.630 0.302
CREGEN04ES 1.327 -1.065 0.198 0.790 0.349
CREGEN05ES 1.742 0.250 0.101 0.450 0.485
CREGEN06ES 1.046 -1.003 0.184 0.750 0.318
CREGEN07ES 1.430 0.170 0.157 0.520 0.394
CREGEN08ES 3.309 -1.634 0.154 0.930 0.375
CREGEN09ES 0.995 1.283 0.229 0.410 0.051
CREGEN10ES 1.221 1.444 0.184 0.340 0.234
CREGEN01CS 3.770 -1.515 0.148 0.920 0.407
CREGEN02CS 0.932 1.866 0.184 0.330 0.188
CREGEN03CS 2.122 -0.975 0.138 0.790 0.470
CREGEN04CS 1.000 0.488 0.158 0.480 0.349
CREGEN05CS 1.336 0.634 0.169 0.440 0.327
CREGEN06CS 1.580 0.747 0.153 0.390 0.392
CREGEN07CS 1.353 0.254 0.177 0.520 0.371
CREGEN08CS 1.010 0.124 0.156 0.540 0.378
CREGEN09CS 1.169 -0.320 0.152 0.620 0.342
CREGEN10CS 1.403 -0.726 0.150 0.710 0.454
CREGEN01CI 1.065 0.177 0.158 0.530 0.333
CREGEN02CI 1.022 0.334 0.165 0.510 0.324
CREGEN03CI 1.214 0.509 0.131 0.440 0.412
CREGEN06CI 3.131 1.156 0.187 0.300 0.320
CREGEN05CI 1.851 1.003 0.186 0.360 0.346
CREGEN04CI 1.111 0.649 0.189 0.470 0.300
CREGEN07CI 1.245 -2.098 0.160 0.900 0.278
CREGEN08CI 1.481 -0.986 0.183 0.780 0.401
CREGEN09CI 1.343 -0.632 0.154 0.690 0.388
CREGEN10CI 1.571 -0.176 0.176 0.610 0.417
CREGEN01FU 1.828 -0.877 0.145 0.760 0.491
CREGEN02FU 1.983 1.403 0.140 0.250 0.276
CREGEN03FU 1.191 -0.026 0.149 0.560 0.369
CREGEN04FU 1.205 1.127 0.148 0.350 0.297
CREGEN05FU 1.534 -0.460 0.153 0.660 0.404
CREGEN06FU 1.715 -1.235 0.164 0.830 0.383
CREGEN07FU 1.745 0.126 0.166 0.530 0.407
CREGEN08FU 1.397 0.281 0.161 0.500 0.442
CREGEN09FU 1.283 0.487 0.156 0.460 0.390
CREGEN10FU 1.285 0.809 0.204 0.420 0.177
Mean 1.504 0.046 0.165 0.563 0.351
Standard deviation 0.627 0.921 0.024 0.179 0.085

Table 17: Generating skill - all items calibrated.



18 Planning

In Table 18, we present the items that make up the planning skill with the respective parameters.

Item Slope Threshold Hit ratio Point-biserial
CREPLA01ES 0.829 -0.724 0.630 0.309
CREPLA02ES 0.921 -1.371 0.750 0.328
CREPLA03ES 1.579 -2.042 0.920 0.326
CREPLA04ES 1.410 0.609 0.340 0.467
CREPLA05ES 0.913 0.052 0.490 0.337
CREPLA06ES 1.037 -0.282 0.560 0.378
CREPLA07ES 1.182 -0.093 0.520 0.409
CREPLA08ES 1.075 -1.467 0.790 0.358
CREPLA09ES 1.394 0.173 0.450 0.480
CREPLA10ES 0.964 0.446 0.410 0.361
CREPLA01CS 1.736 -1.836 0.910 0.361
CREPLA02CS 0.972 0.096 0.480 0.370
CREPLA03CS 1.059 -0.187 0.540 0.397
CREPLA04CS 1.927 -1.018 0.790 0.470
CREPLA05CS 1.027 -0.570 0.620 0.349
CREPLA06CS 0.947 -0.099 0.520 0.362
CREPLA07CS 1.002 0.531 0.390 0.389
CREPLA08CS 1.624 -0.768 0.710 0.458
CREPLA09CS 0.775 0.358 0.440 0.323
CREPLA10CS 1.014 0.731 0.350 0.374
CREPLA01CI 1.137 -2.295 0.900 0.279
CREPLA02CI 1.349 -1.200 0.780 0.415
CREPLA03CI 1.678 -0.056 0.510 0.471
CREPLA04CI 0.946 -0.149 0.530 0.337
CREPLA05CI 0.811 0.174 0.470 0.317
CREPLA06CI 1.152 0.251 0.440 0.421
CREPLA07CI 1.230 -0.817 0.690 0.387
CREPLA08CI 1.638 -0.396 0.610 0.412
CREPLA09CI 1.210 0.877 0.300 0.410
CREPLA10CI 0.868 0.770 0.360 0.344
CREPLA01FU 2.361 -0.809 0.760 0.504
CREPLA02FU 0.812 0.875 0.350 0.305
CREPLA03FU 2.641 -0.192 0.560 0.541
CREPLA04FU 0.795 1.579 0.250 0.277
CREPLA05FU 1.285 -0.662 0.660 0.399
CREPLA06FU 1.554 -1.365 0.830 0.379
CREPLA07FU 1.256 -0.132 0.530 0.403
CREPLA08FU 1.185 -0.009 0.500 0.438
CREPLA09FU 0.784 0.472 0.420 0.305
CREPLA10FU 0.986 0.191 0.460 0.387
Mean 1.227 -0.259 0.563 0.383
Standard deviation 0.420 0.856 0.177 0.062

Table 18: Planning skill - all items calibrated.



19 Producing

In Table 19, we present the items that make up the producing skill with the respective parameters.

Item Slope Threshold Hit ratio Point-biserial
CREPRO01ES 0.843 -0.715 0.630 0.313
CREPRO02ES 0.929 -1.363 0.750 0.331
CREPRO03ES 1.530 -2.089 0.920 0.318
CREPRO04ES 1.028 0.725 0.350 0.376
CREPRO05ES 0.903 0.054 0.490 0.342
CREPRO06ES 1.047 -0.279 0.560 0.379
CREPRO07ES 1.208 -0.091 0.520 0.412
CREPRO08ES 1.056 -1.488 0.790 0.356
CREPRO09ES 1.427 0.171 0.450 0.484
CREPRO10ES 0.980 0.441 0.410 0.363
CREPRO01CS 1.696 -1.869 0.910 0.356
CREPRO02CS 0.972 0.097 0.480 0.374
CREPRO03CS 1.064 -0.185 0.540 0.403
CREPRO04CS 1.946 -1.014 0.790 0.471
CREPRO05CS 1.008 -0.577 0.620 0.351
CREPRO06CS 0.921 -0.100 0.520 0.359
CREPRO07CS 1.034 0.520 0.390 0.396
CREPRO08CS 1.689 -0.751 0.710 0.463
CREPRO09CS 0.784 0.355 0.440 0.326
CREPRO10CS 1.445 0.600 0.340 0.473
CREPRO01CI 1.102 -2.353 0.900 0.272
CREPRO02CI 1.321 -1.218 0.780 0.411
CREPRO03CI 1.661 -0.054 0.510 0.473
CREPRO04CI 0.942 -0.149 0.530 0.337
CREPRO05CI 1.129 0.257 0.440 0.419
CREPRO06CI 0.828 0.171 0.470 0.320
CREPRO07CI 1.233 -0.816 0.690 0.392
CREPRO08CI 1.543 -0.407 0.610 0.410
CREPRO09CI 1.197 0.887 0.300 0.409
CREPRO10CI 0.895 0.753 0.360 0.353
CREPRO01FU 2.299 -0.817 0.760 0.506
CREPRO02FU 1.395 0.573 0.350 0.457
CREPRO03FU 2.459 -0.194 0.560 0.538
CREPRO04FU 2.034 0.774 0.260 0.542
CREPRO05FU 1.260 -0.670 0.660 0.395
CREPRO06FU 1.519 -1.387 0.830 0.377
CREPRO07FU 1.212 -0.133 0.530 0.406
CREPRO08FU 1.190 -0.008 0.500 0.440
CREPRO09FU 0.894 0.423 0.420 0.358
CREPRO10FU 0.973 0.195 0.460 0.386
Mean 1.265 -0.293 0.563 0.396
Standard deviation 0.403 0.819 0.177 0.063

Table 19: Producing skill - all items calibrated.
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Items Characteristic Curves
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1 Recognizing

In Figure 1, we present the ICC’s graphic representation for the recognizing skill. The slope,

threshold, and asymptote’ parameters extreme values.

Figure 1: Recognizing skill, all ICC’s.

2 Recalling

In Figure 2, we present the ICC’s graphic representation for the recalling skill. The slope, threshold,

and asymptote’ parameters extreme values.

Figure 2: Recalling skill, all ICC’s.



3 Interpreting

In Figure 3, we present the ICC’s graphic representation for the interpreting skill. The slope,

threshold, and asymptote’ parameters extreme values.

Figure 3: Interpreting skill, all ICC’s.

4 Exemplifying

In Figure 4, we present the ICC’s graphic representation for the exemplifying skill. The slope,

threshold, and asymptote’ parameters extreme values.

Figure 4: Exemplifying skill, all ICC’s.



5 Classifying

In Figure 5, we present the ICC’s graphic representation for the classifying skill. The slope,

threshold, and asymptote’ parameters extreme values.

Figure 5: Classifying skill, all ICC’s.

6 Summarizing

In Figure 6, we present the ICC’s graphic representation for the summarizing skill. The slope,

threshold, and asymptote’ parameters extreme values.

Figure 6: Summarizing skill, all ICC’s.



7 Inferring

In Figure 7, we present the ICC’s graphic representation for the inferring skill. The slope, threshold,

and asymptote’ parameters extreme values.

Figure 7: Inferring skill, all ICC’s.

8 Comparing

In Figure 8, we present the ICC’s graphic representation for the comparing skill. The slope,

threshold, and asymptote’ parameters extreme values.

Figure 8: Inferring skill, all ICC’s.



9 Explaining

In Figure 9, we present the ICC’s graphic representation for the explaining skill. The slope,

threshold, and asymptote’ parameters extreme values.

Figure 9: Explaining skill, all ICC’s.

10 Executing

In Figure 10, we present the ICC’s graphic representation for the executing skill. The slope,

threshold, and asymptote’ parameters extreme values.

Figure 10: Executing skill, all ICC’s.



11 Implementing

In Figure 11, we present the ICC’s graphic representation for the implementing skill. The slope,

threshold, and asymptote’ parameters extreme values.

Figure 11: Implementing skill, all ICC’s.

12 Differentiating

In Figure 12, we present the ICC’s graphic representation for the differentiating skill. The slope,

threshold, and asymptote’ parameters extreme values.

Figure 12: Differentiating skill, all ICC’s.



13 Organizing

In Figure 13, we present the ICC’s graphic representation for the organizing skill. The slope,

threshold, and asymptote’ parameters extreme values.

Figure 13: Organizing skill, all ICC’s.

14 Attributing

In Figure 14, we present the ICC’s graphic representation for the attributing skill. The slope,

threshold, and asymptote’ parameters extreme values.

Figure 14: Attributing skill, all ICC’s.



15 Checking

In Figure 15, we present the ICC’s graphic representation for the checking skill. The slope, thresh-

old, and asymptote’ parameters extreme values.

Figure 15: Checking skill, all ICC’s.

16 Critiquing

In Figure 16, we present the ICC’s graphic representation for the critiquing skill. The slope,

threshold, and asymptote’ parameters extreme values.

Figure 16: Critiquing skill, all ICC’s.



17 Generating

In Figure 17, we present the ICC’s graphic representation for the generating skill. The slope,

threshold, and asymptote’ parameters extreme values.

Figure 17: Generating skill, all ICC’s.

18 Planning

In Figure 18, we present the ICC’s graphic representation for the planning skill. The slope, thresh-

old, and asymptote’ parameters extreme values.

Figure 18: Planning skill, all ICC’s.



19 Producing

In Figure 19, we present the ICC’s graphic representation for the producing skill. The slope,

threshold, and asymptote’ parameters extreme values.

Figure 19: Producing skill, all ICC’s.
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1 Recognizing

In Figure 1, we present the IIF’s graphic representation for the recognizing skill, in which each

item provides information in a specific latent trait region.

Figure 1: Recognizing skill, all IIF’s.

2 Recalling

In Figure 2, we present the IIF’s graphic representation for the recalling skill, in which each item

provides information in a specific latent trait region.

Figure 2: Recalling skill, all IIF’s.



3 Interpreting

In Figure 3, we present the IIF’s graphic representation for the interpreting skill, in which each

item provides information in a specific latent trait region.

Figure 3: Interpreting skill, all IIF’s.

4 Exemplifying

In Figure 4, we present the IIF’s graphic representation for the exemplifying skill, in which each

item provides information in a specific latent trait region.

Figure 4: Exemplifying skill, all IIF’s.



5 Classifying

In Figure 5, we present the IIF’s graphic representation for the classifying skill, in which each item

provides information in a specific latent trait region.

Figure 5: Classifying skill, all IIF’s.

6 Summarizing

In Figure 6, we present the IIF’s graphic representation for the summarizing skill, in which each

item provides information in a specific latent trait region.

Figure 6: Summarizing skill, all IIF’s.



7 Inferring

In Figure 7, we present the IIF’s graphic representation for the inferring skill, in which each item

provides information in a specific latent trait region.

Figure 7: Inferring skill, all IIF’s.

8 Comparing

In Figure 8, we present the IIF’s graphic representation for the comparing skill, in which each item

provides information in a specific latent trait region.

Figure 8: Comparing skill, all IIF’s.



9 Explaining

In Figure 9, we present the IIF’s graphic representation for the explaining skill, in which each item

provides information in a specific latent trait region.

Figure 9: Explaining skill, all IIF’s.

10 Executing

In Figure 10, we present the IIF’s graphic representation for the executing skill, in which each item

provides information in a specific latent trait region.

Figure 10: Executing skill, all IIF’s.



11 Implementing

In Figure 11, we present the IIF’s graphic representation for the implementing skill, in which each

item provides information in a specific latent trait region.

Figure 11: Implementing skill, all IIF’s.

12 Differentiating

In Figure 12, we present the IIF’s graphic representation for the differentiating skill, in which each

item provides information in a specific latent trait region.

Figure 12: Differentiating skill, all IIF’s.



13 Organizing

In Figure 13, we present the IIF’s graphic representation for the organizing skill, in which each

item provides information in a specific latent trait region.

Figure 13: Organizing skill, all IIF’s.

14 Attributing

In Figure 14, we present the IIF’s graphic representation for the attributing skill, in which each

item provides information in a specific latent trait region.

Figure 14: Attributing skill, all IIF’s.



15 Checking

In Figure 15, we present the IIF’s graphic representation for the checking skill, in which each item

provides information in a specific latent trait region.

Figure 15: Checking skill, all IIF’s.

16 Critiquing

In Figure 16, we present the IIF’s graphic representation for the critiquing skill, in which each item

provides information in a specific latent trait region.

Figure 16: Critiquing skill, all IIF’s.



17 Generating

In Figure 17, we present the IIF’s graphic representation for the generating skill, in which each

item provides information in a specific latent trait region.

Figure 17: Generating skill, all IIF’s.

18 Planning

In Figure 18, we present the IIF’s graphic representation for the planning skill, in which each item

provides information in a specific latent trait region.

Figure 18: Planning skill, all IIF’s.



19 Producing

In Figure 19, we present the IIF’s graphic representation for the producing skill, in which each

item provides information in a specific latent trait region.

Figure 19: Producing skill, all IIF’s.



Appendix N

Script for Adaptive Item Selection and

Skill Estimation

1 p u b l i c c l a s s S c r i p t {

2

3 p r i v a t e s t a t i c i n t iS , id , i d S t u d a n t , i d m i r r o r , max = 10 , admin t ;

4

5 p r i v a t e s t a t i c f l o a t d i f E r r o , e r r o , e r r o 1 , e r r o 2 , erroAux , t h e t a , numTheta , denTh

6

7 / / I n s e r t t h e c a l i b r a t e d i t e m s f o r t h e s l o p e p a r a m e t e r

8 p r i v a t e s t a t i c f l o a t [ ] a = new f l o a t [ ] { } ;

9

10 / / I n s e r t t h e c a l i b r a t e d i t e m s f o r t h e t h r e s h o l d p a r a m e t e r

11 p r i v a t e s t a t i c f l o a t [ ] b = new f l o a t [ ] { } ;

12

13 / / I n s e r t t h e c a l i b r a t e d i t e m s f o r t h e a s y m p t o t e p a r a m e t e r

14 p r i v a t e s t a t i c f l o a t [ ] c = new f l o a t [ ] { } ;

15

16 / / P r o b a b i l i t y t o h i t t h e i t e m

17 p r i v a t e s t a t i c f l o a t [ ] p = new f l o a t [ 1 0 ] ;

18

19 / / I t em I n f o r m a t i o n F u n c t i o n

20 p r i v a t e s t a t i c f l o a t [ ] i = new f l o a t [ 1 0 ] ;

21

22 / / I t em Exposure C o n t r o l

23 p u b l i c s t a t i c i n t [ ] i c = new i n t [ ] { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } ;

255
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24

25 p r i v a t e s t a t i c i n t [ ] [ ] m i r r o r = new i n t [ ] [ ] {

26 { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } ,

27 { 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 } ,

28 / / I n s e r t d a t a b a s e i n t h i s f o r m a t

29 { 9 9 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 }

30 } ;

31

32 p u b l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) {

33 iS = 0 ;

34 i d S t u d a n t = m i r r o r [ iS ] [ 0 ] ;

35 do {

36 admin t = 0 ;

37 t h e t a = 0 . 0 f ;

38 do {

39 newItem ( ) ;

40 i c [ i d ] = 1 ;

41 admin t = admin t + 1 ;

42 / / S t o p p i n g c r i t e r i o n f o r Z2

43 / / } w h i l e ( admint <10) ;

44 / / S t o p p i n g c r i t e r i o n f o r Z3

45 / / } w h i l e ( admint <10 && d i f E r r o > 0 . 0 1 ) ; / / S t o p p i n g c r i t e r i o n f o r Z4

46 } w h i l e ( admint < 1 1 | | ( admint <15 && d i f E r r o > 0 . 0 1 ) ) ;

47 System . o u t . p r i n t f ( "%.3 f \ n " , t h e t a ) ;

48 / / System . o u t . p r i n t f ("%d \ n " , admin t ) ;

49 i c = new i n t [ ] { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } ;

50 iS = iS + 1 ;

51 i f ( iS < m i r r o r . l e n g t h ) {

52 i d S t u d a n t = m i r r o r [ iS ] [ 0 ] ;

53 }

54 denThe ta = 0 . 0 f ;

55 numTheta = 0 . 0 f ;

56 e r r o = 0 . 0 f ;

57 } w h i l e ( iS < m i r r o r . l e n g t h ) ;

58 }

59

60 p u b l i c s t a t i c vo id newItem ( ) {
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61 p r o b I ( ) ;

62 i n f o I ( ) ;

63 newTheta ( ) ;

64 }

65

66 p u b l i c s t a t i c vo id p r o b I ( ) {

67 f o r ( i n t i n d e x = 0 ; i n d e x < p . l e n g t h ; i n d e x ++) {

68 / / 3 − P a r a m e t e r L o g i s t i c Model .

69 f l o a t den = ( f l o a t ) ( 1 . 0 f + Math . exp ( − a [ i n d e x ] * ( t h e t a − b [ i n

70 f l o a t pThe ta = c [ i n d e x ] + ( ( 1 . 0 f −c [ i n d e x ] ) / den ) ;

71

72 / / 2 − P a r a m e t e r L o g i s t i c Model .

73 / / f l o a t den = ( f l o a t ) ( 1 . 0 f + Math . exp ( − a [ i n d e x ] * ( t h e t a − b [

74 / / f l o a t pThe ta = ( 1 . 0 f / den ) ;

75

76 p [ i n d e x ] = pThe ta ;

77 }

78 }

79

80 p u b l i c s t a t i c vo id i n f o I ( ) {

81 f l o a t max = 0 . 0 f ;

82 f o r ( i n t i n d e x = 0 ; i n d e x < i . l e n g t h ; i n d e x ++) {

83 / / 3 − p a r a m e t e r L o g i s t i c Model .

84 f l o a t i I t e m = ( a [ i n d e x ]* a [ i n d e x ] ) * ( ( 1 . 0 f −p [ i n d e x ] ) / p [ i n d e x ] ) * ( ( p [ i

85

86 / / 2 − P a r a m e t e r L o g i s t i c Model .

87 / / f l o a t i I t e m = ( a [ i n d e x ]* a [ i n d e x ] ) *p [ i n d e x ] * ( 1 . 0 f −p [ i n d e x ] ) ;

88

89 i [ i n d e x ] = i I t e m ;

90 }

91

92 f o r ( i n t i n d e x = 0 ; i n d e x < i . l e n g t h ; i n d e x ++) {

93 i f ( i [ i n d e x ] > max ) {

94 i f ( i c [ i n d e x ] == 0) {

95 max = i [ i n d e x ] ;

96 i d = i n d e x ;

97 i d m i r r o r = i d + 1 ;
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98 }

99 }

100 }

101 }

102

103 p u b l i c s t a t i c vo id newTheta ( ) {

104 numTheta = numTheta +( a [ i d ] * ( m i r r o r [ iS ] [ i d m i r r o r ] − p [ i d ] ) ) ;

105 denThe ta = denThe ta + ( ( a [ i d ]* a [ i d ] ) *p [ i d ]*(1 − p [ i d ] ) ) ;

106 t h e t a = t h e t a + ( numTheta / denThe ta ) ;

107 i f ( t h e t a < −3.0 f ) {

108 t h e t a = −3.0 f ;

109 }

110 e l s e i f ( t h e t a > 3 . 0 f ) {

111 t h e t a = 3 . 0 f ;

112 }

113 e r r o = ( f l o a t ) ( 1 / Math . s q r t ( denThe ta ) ) ;

114

115 i f ( admin t == 0) {

116 e r r o 1 = 0 ;

117 e r r o 2 = e r r o ;

118 d i f E r r o = e r r o 2 − e r r o 1 ;

119 } e l s e i f ( admin t > 0) {

120 e r r o 1 = e r r o ;

121 e r r o 2 = erroAux ;

122 d i f E r r o = e r r o 2 − e r r o 1 ;

123 }

124 erroAux = e r r o ;

125 }

126 }



Appendix O

Trust in Python

Prezado participante,

Solicitamo-lhe a avaliação da sua confiança na sintaxe e semâtica da linguagem de

programação Python. Apresentamos uma escala do tipo LIKERT, com as opções para você

realizar sua avaliação, considerando 1 (de maneira alguma confiante) a 7 (absolutamente

confiante). Se um termo ou tarefa específica não lhe for totalmente familiar, marque 1.

Item 1 2 3 4 5 6 7
Escrevo instruções Python sintaticamente corretas
Entendo a estrutura da linguagem do Python e o uso das

palavras reservadas
Escrevo blocos de código logicamente corretos usando Python
Escrevo um programa Python que exiba uma mensagem de

saudação
Escrevo um programa Python que calcule a média de três

números
Uso funções internas disponíveis nas várias bibliotecas Python
Construo minhas próprias bibliotecas Python
Escrevo um pequeno programa Python, devido a um pequeno

problema que me é familiar
Escrevo um programa Python de tamanho razoável que possa

resolver um problema que é apenas vagamente familiar para

mim
Escrevo um programa Python longo e complexo para resolver

qualquer problema, desde que as especificações estejam

claramente definidas
Organizo e projeto meu programa de maneira modular

259
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Item 1 2 3 4 5 6 7
Compreendo o paradigma orientado a objetos
Identifico os objetos no domínio do problema e declare, defina

e use-os
Faço uso de uma função pré-escrita, dada uma declaração

claramente rotulada da função
Faço uso de uma classe que já está definida, dada uma

declaração claramente rotulada da classe
Depuro (corrijo todos os erros) um programa longo e complexo

que eu havia escrito e faça com que funcione
Compreendo um programa longo e complexo de múltiplos

arquivos
Concluo um projeto de programação se alguém me mostrar

como resolver o problema primeiro
Concluo um projeto de programação se eu tiver apenas o

manual de referência do idioma para obter ajuda
Concluo um projeto de programação se eu puder pedir ajuda a

alguém, se eu ficar preso
Concluo um projeto de programação quando outra pessoa me

ajudar a começar
Concluo um projeto de programação se eu tiver muito tempo

para concluir o programa
Concluo um projeto de programação se eu tivesse apenas o

recurso de ajuda interno para obter assistência
Encontro maneiras de superar o problema se eu ficar preso

em um ponto enquanto estiver trabalhando em um projeto de

programação
Crio uma estratégia adequada para um determinado projeto de

programação em pouco tempo
Gerencio meu tempo de forma eficiente se eu tivesse um prazo

premente em um projeto de programação
Rastreio mentalmente a execução de um programa longo e

complexo que me foi dado
Reescrevo longas partes confusas do código para ficar mais

legível e claro
Encontro uma maneira de me concentrar no meu programa,

mesmo quando houver muitas distrações ao redor de mim
Encontro maneiras de me motivar a programar, mesmo que a

área problemática não me interesse
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