UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIÊNCIAS E TECNOLOGIA UNIDADE ACADÊMICA DE ENGENHARIA QUÍMICA LABORATÓRIO DE REFERÊNCIA EM DESSALINIZAÇÃO PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA QUÍMICA

SISTEMA DE DESSALINIZAÇÃO DA COMUNIDADE DE URUÇU – SÃO JOÃO DO CARIRI - PB: ANÁLISES, MONITORAMENTO E AVALIAÇÃO DE UM MISTURADOR PARA O USO DO CONCENTRADO

SIDINEI KLEBER DA SILVA

ORIENTADOR: PROF. Dr. KEPLER BORGES FRANÇA

CAMPINA GRANDE, AGOSTO DE 2008

Felizes dos que têm amigos! Com eles é possível participar de tudo, atravessar qualquer montanha... Seguir em frente e crescer.

Silva, S. K.

SISTEMA DE DESSALINIZAÇÃO DA COMUNIDADE DE URUÇU – SÃO JOÃO DO CARIRI - PB: ANÁLISES, MONITORAMENTO E AVALIAÇÃO DE UM MISTURADOR PARA O USO DO CONCENTRADO

SIDINEI KLEBER DA SILVA

Dissertação apresentada ao Programa de Pós – Graduação de Engenharia Química da Universidade Federal de Campina Grande, como parte dos requisitos para obtenção do título de Mestre em Engenharia Química.

Área de Concentração: Recursos Regionais e Meio Ambiente

Orientador: Prof. Kepler Borges França.

Campina Grande, Agosto de 2008.

FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA CENTRAL DA UFCG

S586s

2008

Silva, Sidinei Kleber.

Sistema de dessalinização da comunidade de Uruçu — São João do Cariri — PB: análises, monitoramento e avaliação de um misturador para o uso do concentrado /Sidinei Kleber Silva. — Campina Grande, 2008.

162f.: il.

Dissertação (Mestrado em Engenharia Química) – Universidade Federal de Campina Grande, Centro de Ciências e Tecnologia.

Referências.

Orientador: Prof. Dr. Kleper Borges França.

1. Dessalinização. 2. Misturador. 3. Osmose Inversa. 4. Membrana. 5. Monitoramento. I. Título.

CDU -628.165(813.3)(043)

SISTEMA DE DESSALINIZAÇÃO DA COMUNIDADE DE URUÇU – SÃO JOÃO DO CARIRI - PB: ANÁLISES, MONITORAMENTO E AVALIAÇÃO DE UM MISTURADOR PARA O USO DO CONCENTRADO

SIDINEI KLEBER DA SILVA

Dissertação Aprovada em: 28/08/2008

BANCA EXAMINADORA:

Prof. Kepler Borges França (Ph.D) Orientador – UFCG/UAEQ

Prof. Dr. Luis Gonzaga Vasconcelos Examinador Externo – UFCG/UAEQ

Prof. *Cristiano Piacsek Borges* (Ph.D) Examinador Externo – UFRJ-COPPE

Prof. *Hélio De Lucena Lira* (Ph.D) Examinador Externo – UFCG/UAEM

AGRADECIMENTOS

Antes de tudo agradeço a Deus por ter me mostrado, em cada passo, as virtudes e dificuldades que tenho que vencer e continuar vencendo.

Aos meus pais Sebastião Joaquim da Silva e Severina Lima da Silva, por tudo.

Ao Prof. Kepler Borges pelos ensinamentos e pela exigência, os quais só me fizeram crescer, não apenas como pesquisador, mas como pessoa.

Aos professores do Laboratório de Referência em Dessalinização pelas informações e ensinamentos a mim prestados.

Um agradecimento especial à Weruska Brasileiro pelo apoio, confiança e incentivo, sempre.

Ao grande amigo Giovanne Monteiro pelo incentivo e ajuda durante a pesquisa.

Aos amigos que de uma maneira ou de outra, ajudaram e apoiaram a execução deste trabalho: José Esivaldo, Jorge Pereira, Raniere Henrique, Fernando Almeida, José Nilton, Shefora Henriques e Antônio Carlos (Toim).

As amigas Valéria Kelly e Suelene Cardoso pela dedicação aos trabalhos no laboratório, sempre muito prestativas.

A Coordenação do Programa de Pós-Graduação em Engenharia Química da UFCG.

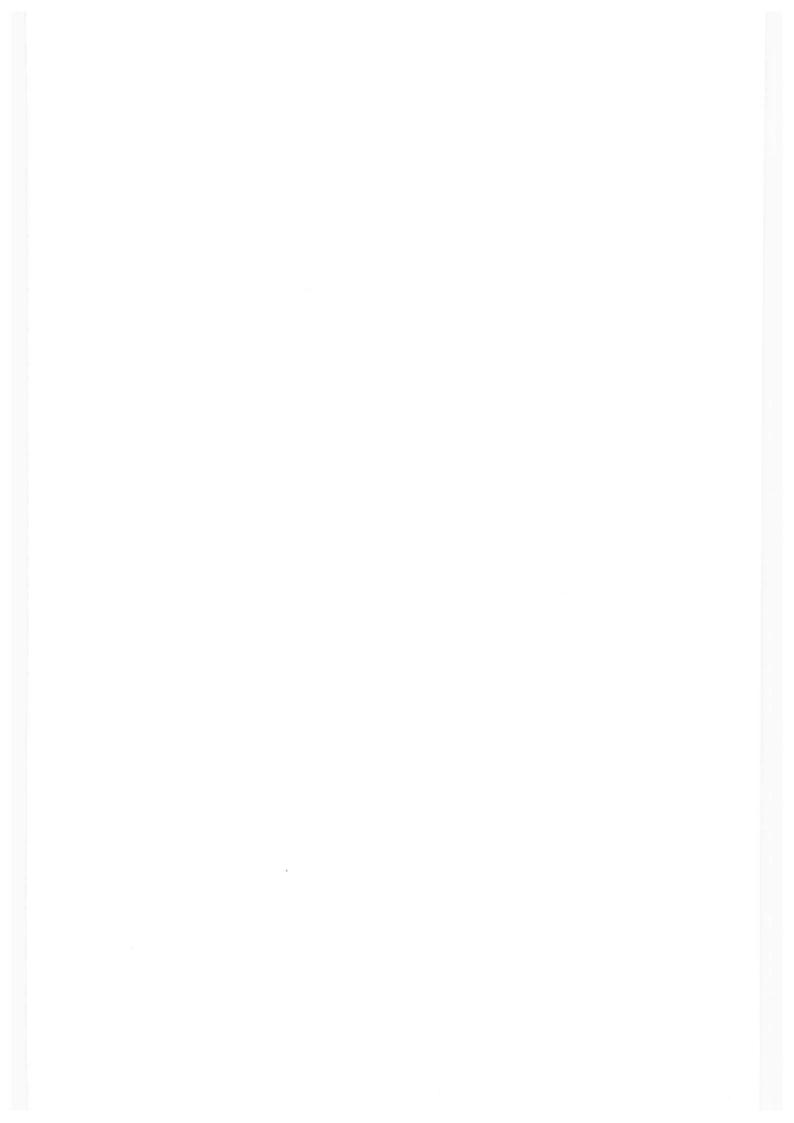
Agradeço a toda equipe do Projeto: "Água fonte de alimento e renda – uma alternativa sustentável para o Semi-árido", a PETROBRAS e ao LABDES, pelo apoio financeiro e suporte técnico sem os quais a conclusão desse trabalho não seria possível.

Resumo

O processo de membranas vem sendo uma das alternativas de produção de água potável para beneficiar as comunidades difusas nas regiões do Semi-árido do Nordeste. Todavia, a preocupação do aproveitamento do concentrado do processo ainda é um problema de ordem técnica e ambiental. Esse trabalho tem como objetivo, desenvolver e avaliar um misturador visando classificar os níveis de concentrações de sais dissolvidos na mistura que possam ser usados em hidroponia e produção de algas. Os perfis de concentrações de sais foram avaliados através de análises físico-químicas e do monitoramento do sistema de dessalinização. Observou-se que a limpeza química é uma das etapas de manutenção que procura manter a produção e a qualidade do permeado dentro dos padrões de potabilidade. Observou-se que o misturador tornou-se uma ferramenta para a produção de águas com diferentes concentrações de sais. De acordo com os resultados apresentados os estudos de simulações, experimentos de laboratórios e os dados obtidos no campo foram satisfatórios, chegando a ser utilizado 37,5% da produção do concentrado.

Palavras-Chave: Dessalinização; Misturador; Osmose Inversa, Membrana e monitoramento.

Abstract


Membrane processes have been used as an alternative to produce drinking water in order to benefit small communities of the Brazilian Northeast Semi-Arid. However, there are still technical and environmental concern about the use of the concentrate produced in desalination process. This work aims to study the performance of a mixer, with the objective of classifying the salts dissolved concentrations that can be used at the algae and hydroponics production. The salts dissolved concentration has been evaluated by physical-chemical analyses and the desalination process monitoring. The results shows that chemical cleaning is an important maintenance that could set the quality and production of permeate water in potable requirements'. The results show the mixer as a main step that produces different salt concentrations water. The studies of simulations, laboratories experimental and the obtained data in the field were satisfactory, which shown the use of 37,5% of concentrated production.

Key-Words: Desalination, Mixer, Reverse Osmosis, Membrane and monitoring.

ÍNDICE

RESUMO	5
ABSTRACT	2
ÍNDICE DE FIGURAS	I
ÍNDICE DE TABELAS	I
SIMBOLOGIA	
CAPÍTULO I	
1 - INTRODUÇÃO	
OBJETIVO	
OBJETIVOS ESPECÍFICOS	2
CAPÍTULO II	4
2. FUNDAMENTOS TEÓRICOS	4
2.1 Osmose	
2.2 OSMOSE INVERSA	
2.2.1 Soluções	
2.3 Pressão osmótica	
2.4. MEMBRANAS	10
2.4.1 Tipos de membrana	10
2.4.2 Seletividade das membranas	
2.5 PROCESSOS DE DESSALINIZAÇÃO DE ÁGUAS E APLICAÇÃO DE MEMBRANAS	
2.5.1 Modelos de membranas	
2.6 INCRUSTAÇÕES DOS ELEMENTOS DE MEMBRANA	
2.7 IMPORTÂNCIA DO PRÉ-TRATAMENTO E PÓS-TRATAMENTO	
2.8 INDICADORES DE INCRUSTAÇÕES	
2.10 EQUAÇÕES QUE REGEM O PROCESSO DE OSMOSE INVERSA	23
2.11 DESSALINIZADOR DA COMUNIDADE DE URUÇU – SÃO JOÃO DO CARIRI – PB	27
2.12 PROCESSO DE MISTURA	27
2.13 QUALIDADE DA ÁGUA E ANÁLISES FÍSICO-QUÍMICAS	27
CAPÍTULO III	
3. MATERIAIS E MÉTODOS	
3.1 Introdução	29
3.2 REAGENTES QUÍMICOS UTILIZADOS	30
3.3 Instrumentação	31
3.3.1 Descrição do dessalinizador	31
3.3.2 Descrição do misturador	32
3.4 PROCEDIMENTO EXPERIMENTAL	32
3.4.2 Qualidade de água produzida	33
3.4.3 Limpeza química	
3.4.4 Balanço de massa do sistema	33
3.5 SEGUNDA ETAPA: INSTALAÇÃO E MONITORAMENTO DO MISTURADOR	35
3.5.1 Procedimento experimental realizado no campo	37
3.5.2 Processo de mistura no campo	39
CAPÍTULO IV	
4. RESULTADOS E DISCUSSÃO	
4.1 MONITORAMENTO DO SISTEMA DE DESSALINIZAÇÃO	
4.1 MONITORAMENTO DO SISTEMA DE DESSALINIZAÇÃO	42
4.1.1 Fluxo de permeado	43

4.1.3 Qualidade da água produzida (Análises físico-químicas)	44
4.1.4 Comportamento da rejeição de sais do sistema	
4.1.5 Comparação entre os modelos de cálculo para a pressão osmótica do processo de dessala	
4.1.6 Coeficiente de transferência de solvente (Kw) e do soluto (Ks)	52
4.1.7 Índice de Saturação de Langelier e de Stiff e Davis	54
4.1.8 Observações sobre a sílica (SiO ₂)	
4.1.9 Limpeza química dos elementos de membrana	
4.1.10 Troca de filtro de cartucho	
4.2 COMPORTAMENTOS DOS PROCESSOS DE MISTURA	
4.2.1 Comparação entre os processos de mistura	60
4.2.2 Tempo de mistura no misturador	
4.2.2 Comparação entre alguns dados para os processos de mistura	63
4.2.3 Análise dos erros das misturas obtidas no LABDES e no campo	67
4.2.4 Análises dos níveis de concentrações de sais das misturas para cultura hidropônica e	l.
desenvolvimento de Spirulina	67
CAPÍTULO V	70
CONCLUSÕES	70
CAPÍTULO VI	72
6. PERSPECTIVAS	72
REFERÊNCIAS BIBLIOGRÁFICAS	73
ANEXOS	
ANEXUS	/9

Índice de Figuras

Figura 1. Fenômeno da osmose em um osmômetro	5
Figura 2. Exemplos de membranas densas.	.11
Figura 3. Exemplos de membranas porosas.	
Figura 4. Exemplos de espécies que podem ser retidas de acordo com o tamanho do poro	
da membrana. (Figura adaptada de Singh (2006)) Onde: ▲-DOW (2008); ●-Tratamento	
água (2008); ○-Koch (2008); Δ-Singh (2006); ■-Actew (2005); □-Osmonics (2008)	
Figura 5. Exemplo do processo de filtração direta (perpendicular) a área da membrana	
Figura 6. Exemplo do processo de filtração tangencial (fluxo cruzado) à área da	
membrana.	17
Figura 7. Módulos de membrana em espiral (Elementos fabricados pela Toray [®] Membra	ane
Europe do tipo 8 e 4 polegadas respectivamente).	
Figura 8. Módulo de membrana em espiral totalmente aberto	
Figura 9. Diagrama de bloco do processo de dessalinização, monitoramento e distribuição	
de água.	
Figura 10. Sistema de dessalinização	
Figura 11. Balanço de massa do sistema de dessalinização	
Figura 12. Tubulações dos afluentes do misturador.	
Figura 13. Misturador, afluentes e efluente montados no tanque de mistura	
Figura 14. Base do misturador com saídas independentes do misturador e do tanque	
Figura 15. Interior da base do misturador em funcionamento.	
Figura 16. Sistema hidráulico de mistura a montante do sistema de dessalinização	
Figura 17. Misturador em operação, vista lateral	
Figura 18. Misturador em operação.	
Figura 19. Efeito da limpeza química no fluxo do permeado com o tempo de operação	
Figura 20. Água turva.	
Figura 21. Água do poço após limpeza	
Figura 22. Variação das pressões de operação do sistema	
Figura 23. Precipitação de sais.	
Figura 24. Comportamento do Total de Sólidos Dissolvidos na corrente da alimentação.	
Figura 25. Variação da rejeição de sais para os elementos de membrana utilizados no	
	.49
Figura 26. Comparação entre as pressões osmóticas médias de processo obtidas por	
diferentes equações para o sistema. (*Valor de $\Delta\pi$ obtido a partir do programa Reverse	
Osmosis System Analysis – ROSA)	. 52
Figura 27. Comparação entre os coeficientes de transferência de soluto e solvente duran	ite
o monitoramento do sistema de dessalinização.	.53
Figura 28. Comparação entre os resultados do Índice de Saturação (IS) de Langelier e Sa	tiff
& Davis para a água de alimentação do sistema de dessalinização	
Figura 29. Comparação entre os resultados do Índice de Saturação (IS) de Langelier e Sa	tiff
& Davis para a água do concentrado do sistema de dessalinização	. 55
Figura 30. Comparação entre as concentrações de sílica para as correntes da alimentação	0,
permeado e concentrado.	
Figura 31. Solução de limpeza química após extração de sais.	.57
Figura 32. Efluente de limpeza química após extração de sais e solução de limpeza	.57
Figura 33. Efluente de limpeza química após decantação	.57
Figura 34. Comportamento da condutividade elétrica e do pH durante o processo de	
limpeza química com NaOH	. 58
Figura 35. Comportamento da condutividade elétrica e do pH durante o processo de	
limpeza guímica com HCl	59

Figura 36. Substâncias retidas pelo filtro.)
Figura 37. Comparação entre os filtros)
Figura 38. Tempo de mistura dentro do misturador	,
Figura 39. Comparação entre as médias das condutividades em função do volume do	
concentrado66)
Figura 40. Comparação entre as médias dos pHs em função do volume do concentrado 66	
Figura 41. Perfil dos erros apresentados com a variação de Q_m para as misturas realizadas	
no LABDES e no campo.	
Figura 42. Comparação entre as médias dos STDs em função do volume do concentrado.	
	3

Índice de Tabelas

Simbologia

RS (%) rejeição de sais

sólidos totais dissolvidos (mg/L)

STD

área da membrana (m²) A Alc alcalinidade total (mol/L) C_{i} concentração molar do soluto (mol/L) Ca concentração da solução de alimentação (mg/L) Cal concentração de cálcio (mol/L) Cr concentração do concentrado (mg/L) Cp concentração do permeado (mg/L) I forca iônica (mol/L) IS&D Índice de Saturação de Stiff&Davis ISL Índice de Saturação de Langelier fluxo do permeado (L/m². h) J_{w} fluxo mássico do soluto (L/m². h) J_{s} K_{f} constante que depende da força iônica e da temperatura Ks coeficiente de transferência do soluto (m/h) coeficiente de transferência de massa do solvente (m³/h.kgf) K_w condutividade elétrica da solução (μMHO ou μS/cm) Ksol concentração molar da espécie química (mol/L) m_i número de moles n pressão de alimentação (kgf/cm²) P_a pressão do concentrado (kgf/cm²) P_{c} pressão do concentrado (kgf/cm²) P_p potencial hidrogeniônico pН potencial hidrogeniônico de saturação pH_s logaritmo negativo da concentração de Ca⁺² pCa logaritmo negativo da alcalinidade palc Qa vazão de alimentação (L/min) vazão do permeado (L/min) Qp Qc vazão do concentrado total (L/min) vazão de mistura (L/min) Q_{m} vazão fracionada do concentrado (L/min) Q'c

- STD_a total de sais dissolvidos na corrente da alimentação (mg/L)
- STD_c total de sais dissolvidos na corrente do concentrado (mg/L)
- STD_p total de sais dissolvidos na corrente do permeado (mg/L)
- r recuperação do sistema (%)
- R constante dos gases ideais (kgf.L/cm².mol.K)
- T temperatura (°C) pode ser Kelvin, dependendo da aplicação
- v volume de permeado (cm³)
- z valência do íon

Subscritos

- t tempo atual
- i espécie química dissociada
- s solvente
- c solução

Letras gregas

- α atividade
- μ_i é o potencial químico da solução
- μ_i^o potencial químico do solvente puro
- $\Delta \pi$ gradiente de pressão osmótica (kgf/cm²)
- ΔP gradiente de pressão (kgf/cm²)
- π pressão osmótica (kgf/cm²)
- π_a pressão osmótica da alimentação (kgf/cm²)
- π_c pressão osmótica do concentrado (kgf/cm²)
- $\pi_{\rm p}$ pressão osmótica do permeado (kgf/cm²)

CAPÍTULO I

1 - Introdução

A água que se observa nos rios, lagos e mares é a mesma em que os dinossauros se banhavam e bebiam. É a mesma água que está sobre o planeta há bilhões de anos desde a origem da terra. Sem ela, não haveria vida. A quantidade total de água sobre o planeta é de 1,384 sextrilhão (10³⁶) de litros, que se distribuem da seguinte maneira: 97,5% nos oceanos, 1,8% na forma de gelo, 0,6% nas camadas subterrâneas, 0,015% nos lagos e rios, 0,005% de umidade do solo, 0,0009% em forma de vapor na atmosfera e 0,00004% na matéria viva (Tudo, 1996).

Obstante dos dados acima citados tem-se menos de 1% de água doce que pode ser explorada. Outro problema ainda: a água doce superficial disponível tem distribuição irregular. Ou seja, enquanto ela é abundante em algumas regiões do mundo, como no sul do Brasil, onde durante quase todo o ano proporciona um espetáculo de tirar o fôlego nas cataratas da Foz do Iguaçu, em outros sua ausência é sinônimo de pobreza e morte (França, 1998).

A ciência e a indústria já se encontram mobilizadas para combater o problema através de programas extensivos de combate ao desperdício, preservação da natureza e das fontes hídricas, dessalinização, transposição de vazões, racionalização do uso, reutilização das águas servidas e exploração do subsolo (Dos Anjos, 2002).

Estatísticas apontam que há no Nordeste, disponibilidade atual de 300.000 m³ de água salinizada de poços e açudes inativos, que potencialmente, abasteceriam mais de 12 milhões de habitantes do semi-árido castigado pela seca (Pereira & Santos, 1997).

Todavia, existem outras fontes de águas que são as águas subterrâneas. Em função da característica geológica do solo a água pode fluir entre as fendas e se armazenar no subsolo, gerando assim grandes potenciais hídricos. Em algumas regiões que apresentam condições semi-áridas e a formação litológica do solo é predominantemente de rochas cristalinas e ou sedimentares há maior possibilidade de ocorrer à salinização dos mananciais hídricos ao longo do tempo. O que se tem encontrado nas mais variadas profundidades em diversas regiões, principalmente no chamado polígono das secas, constitui um fato bastante comum: a qualidade das águas, na grande maioria das vezes, é condenável pelo seu alto grau de insalubridade, tornando-as impróprias para o consumo humano, animal e irrigação.

A osmose inversa é uma operação unitária que através de membranas semipermeáveis e com auxílio de um gradiente de pressão, pode rejeitar saís inorgânicos de baixo peso molecular, como também pequenas moléculas orgânicas. As moléculas de água, por outro lado, passam livremente através da superfície da membrana, criando uma corrente de água purificada. A parcela restante da água de alimentação que não atravessa a membrana, conhecida como concentrado leva consigo os compostos rejeitados pela mesma.

Objetivo

O presente trabalho tem como objetivo, estudar o desempenho de um sistema de dessalinização que se encontra em operação no Sítio Uruçu, em São João do Cariri – PB, e a partir dos dados das qualidades dos efluentes, desenvolver um mecanismo para a produção de águas com concentrações de sais variadas para dar suporte à aplicação do concentrado no desenvolvimento de hortaliças e algas.

Objetivos específicos

Os objetivos específicos podem ser divididos em duas etapas:

Primeira etapa

- Monitor o sistema de dessalinização através das propriedades de medida tais como:
 vazão, pressão, qualidade de água dessalinizada através de análises físico-químicas;
- Estudar o desempenho do sistema através dos dados físico-químicos da água da alimentação, permeado e concentrado, através da pressão de operação e dos coeficientes de transferência de soluto e solvente, bem como a capacidade de rejeição de sais dos elementos de membrana;
- Avaliar o potencial de incrustação por CaCO₃ nos elementos de membrana de acordo com as características físico-químicas da água de alimentação e concentrado;
- Avaliar a necessidade da manutenção do sistema de dessalinização através de limpezas químicas dos elementos de membrana de acordo com as características físico-químicas das amostras de águas.

Segunda etapa

 Construir e instalar um sistema de mistura de águas para utilizar os efluentes produzidos pelo sistema de dessalinização;

- Estudar o desempenho do sistema de mistura, comparar os dados obtidos no campo e os dados dos experimentos realizados no LABDES com os dados obtidos por simulação;
- Comparar os dados obtidos experimentalmente com os dados encontrados na literatura para sistemas hidropônicos e de Spirulina.

CAPÍTULO II

2. Fundamentos Teóricos

2.1 Osmose

A osmose é de fundamental importância na biologia. As membranas celulares são permeáveis à água, gás carbônico (CO₂), oxigênio (O₂), nitrogênio (N₂) e pequenas moléculas orgânicas como aminoácidos e glicose. Porém, são impermeáveis a grandes moléculas orgânicas como, por exemplo, proteínas e polissacarídeos (Levine, 1978).

Os seres vivos se depararam com a osmose desde sua origem, uma vez que tudo indica que eles surgiram em meios aquosos como sistemas isolados do ambiente por uma membrana semipermeável. Durante o processo evolutivo os seres vivos desenvolveram não só maneiras de evitar problemas causados pela osmose (inchação ou dessecamento), como também processos que aproveitam à dinâmica osmótica nos fenômenos biológicos (Vestibular1, 2007).

Somente no final do século XIX a palavra osmose foi adicionada aos dicionários brasileiros. Derivada da palavra grega *osmós*, significando impulso, a palavra osmose tem sido difundida pelos grandes pensadores de toda a história como uma das menções da palavra vida.

Segundo Lonsdale (1982) *apud* Brandt *et al* (1993), o fenômeno da osmose foi descoberto por Abbè Nollet há mais de 200 anos quando ele observou o transporte da água através de uma bexiga de porco que tampava a boca de uma jarra contendo vinho.

A osmose é um fenômeno físico-químico natural. Ela acontece quando duas soluções com diferentes concentrações de sais são separadas por uma membrana semipermeável, ou seja, facilita a passagem de solvente, mas não a de soluto. A solução com menor concentração de sais tende a atravessar a membrana na direção da solução mais concentrada, igualando a diferença de concentração (diferença de potencial químico) entre as soluções.

Quando as duas soluções entram em equilíbrio, observa-se uma diferença de pressão de coluna d'água entre os volumes das soluções. Essa diferença é chamada de pressão osmótica. O conceito de pressão osmótica será mais aprofundado no próximo item.

Somente em 1855, mas de 100 anos após a experiência de Nollet, Fick publicou sua lei da difusão, que até hoje é utilizada para descrever muitos fenômenos que ocorrem através de membranas (Glater, 1998, Narasimhan, 1999).

Ainda na segunda metade do século XIV, Traube, Pfiffer e Van't Hoff estudaram o fenômeno osmótico, que serviu de base para a descrição termodinâmica deste fenômeno para soluções diluídas – lei de Van't Hoff (Maron e Lando, 1974).

2.2 Osmose inversa

A osmose inversa ou hiperfiltração acontece quando uma pressão mecânica superior à pressão osmótica é aplicada no lado da solução mais concentrada, invertendo-se, desta maneira, o sentido do fluxo de solvente que atravessa a membrana. A Figura 1 mostra o mecanismo de osmose e osmose inversa.

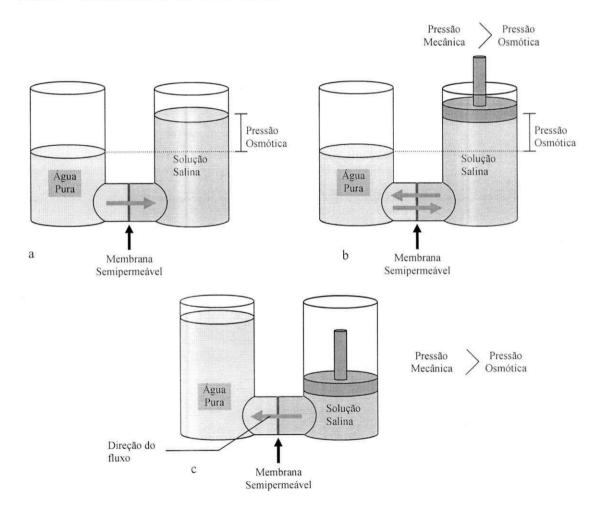


Figura 1. Fenômeno da osmose em um osmômetro.

Para um melhor entendimento do fenômeno da pressão osmótica, se faz necessário uma abordagem sobre os seguintes assuntos:

Soluções

Atividade

Força Iônica

2.2.1 Soluções

Uma solução é um produto obtido quando uma substância (soluto) é dissolvida no solvente (água). As soluções podem ser classificadas de acordo com seu estado de agregação da solução, estado de agregação do solvente e do soluto, com a proporção entre solvente e soluto e com a natureza do solvente e do soluto (Feltre, 1996). Ela pode ser ideal, na qual a solução não apresenta variação de volume nem absorção ou desprendimento de calor, e não ideais na qual há variação de volume, absorção ou desprendimento de calor.

Com relação a sua natureza, uma solução é dividida em dois importantes grupos de acordo com o comportamento do soluto dissolvido no solvente: Eletrólitos, que quando dissolvidos em água possuem a capacidade de conduzir eletricidade, e os não-eletrólitos, que quando dissolvidos em água, não têm capacidade de conduzir eletricidade (Vogel, 1979). Os íons formados nas soluções com eletrólitos fortes podem influenciar ou interferir a distribuição uniforme de todos os íons devido a atrações eletrostáticas (Hiemens & Rajagopalan, 1997).

2.2.2 Força iônica

A força iônica faz parte da teoria do coeficiente de atividade desenvolvido por Debye e E. Hückel. O modelo engloba o somatório do produto entre a massa molar de cada espécie química envolvida na solução pelo quadrado da sua valência, Equação 01.

Atualmente, sua formulação passou por modificações, sendo aproximada pelo produto de uma constante e a concentração de sais em uma solução ou sua condutividade elétrica (Newfoundland And Labrador, 2008), Equações 02 e 03.

Referência Modelo

Debye e E. Hückel (1923) $I = \frac{1}{2} \sum_{j} z_{j}^{2} . m_{j}$ apud Levine (1978) (01)

Newfoundland And
Labrador (1982)
$$I = (2.5 \times 10^{-5})STD$$
 (02)

Kim et al (2003)
$$I = (1.61 \times 10^{-5}) K_{sol}$$
 (03)

Onde z é a valência do íon, m é a concentração molar do íon, j é um determinado íon, 2.5×10^{-5} é uma constante de aproximação para o somatório das concentrações molares em mol/mg, K_{sol} é a condutividade elétrica da solução em μ MHO, 1.61×10^{-5} é uma constante de aproximação da unidade de μ MHO para mol/L e STD são os Sólidos Totais Dissolvidos em mg/L.

2.2.3 Atividade

O conceito de atividade é tomado como sendo a concentração efetiva de um soluto em uma solução não ideal. Segundo Stumm e Morgan (1970), a atividade pode ser considerada como uma concentração "não idealizada".

Não existe um meio de se determinar a atividade de um íon isoladamente, por ser impossível separar os efeitos entre os íons negativos e positivos, em uma solução eletricamente neutra (Lavorenti, 2002).

2.3 Pressão osmótica

A pressão osmótica é um fenômeno importantes no processo de osmose inversa. Sem o seu valor aproximado, qualquer tentativa de separação por membranas pode se tornar ineficaz ou ineficiente.

Existem vários modelos matemáticos teorizados para a aplicação na determinação da pressão osmótica, (Sato, 2004, Singh, 2006 e Ben-Naim, 2006).

Todos os modelos gerados são baseados em equações de estado, sejam aplicados a soluções ideais ou a soluções não ideais. Uma ampla revisão sobre os conceitos termodinâmicos, aplicados ao desenvolvimento de equações para a determinação da pressão osmótica, é mostrada por Yokozeki (2006), Hiemenz e Rajagopalan (1997).

O processo de equilíbrio em um osmômetro, mostrado na Figura 1b, pode ser previamente relacionado ao potencial químico do soluto e do solvente, Equação 04.

$$\mu_i = \mu_i^o + RT \ln \alpha_i \tag{04}$$

Onde μ_i é o potencial químico da solução, μ_i^o é o potencial químico do solvente puro, R é a constante universal dos gases, T é a temperatura em Kelvin, α_i é a atividade e o índice "i" é o componente. Supondo que cada solução seja representada por um potencial químico onde o índice "s" significa solvente e o índice "c", solução (Habert et al, 2006).

Quando o sistema entra em equilíbrio isotérmico, o potencial químico solvente $\mu_{i,s}$ será igual em ambos os lados da membrana. Logo, $\mu_{i,s}$ se torna igual ao potencial do solvente puro μ_i^o . O lado que contem a solução também entra em equilíbrio e em ambos os lados da membrana, os potenciais químicos serão iguais, assim:

$$\mu_{i,s} = \mu_i^o = \mu_{i,c} \tag{05}$$

O potencial químico da solução contém um "excesso" de pressão (pressão osmótica, π) que precisa ser levada em consideração quando os potenciais químicos de ambos os lados da membrana forem igualados. Dessa maneira, tem-se:

$$\mu_c^o = \mu_c^o + RT \ln \alpha_i + \int_{P_c^o}^{P_c^o + \pi} \bar{V_c} dp$$
 (06)

Considerando o volume molar parcial na solução do concentrado para a espécie "i", $\overline{V_{ci}}$, como constante, a Equação 06 pode ser integrada. No final das operações, tem-se que:

$$\ln \alpha_i = -\frac{\pi \overline{V}_{ci}}{RT} \tag{07}$$

Para soluções ideais, aplicando-se a Lei de Raoult, onde $\alpha \approx x$, e Equação para a determinação da pressão osmótica tem a seguinte forma:

$$\ln x_i = -\frac{\pi \overline{V_i}}{RT} \tag{08}$$

Para uma solução ideal, com dois componentes e aplicando-se a série de Taylor para logaritmo neperiano a Equação 08 pode ser aproximada para:

$$\ln x_1 = -\frac{\pi \overline{V_1}}{RT} = \ln(1 - x_2) \approx -x_2 - \frac{x_2^2}{2} - \dots$$
 (09)

Onde x_2 é a fração molar do componente 2. A Equação 09 pode ser aproximada para:

$$x_2 = \frac{\pi \overline{V}_1}{RT} \tag{10}$$

Considerando que a solução é ideal com a diluição tendendo ao infinito, é possível fazer a seguinte suposição:

$$x_2 = \frac{n_2}{n_1 + n_2} \approx \frac{n_2}{n_1} \tag{11}$$

Onde n é o número de moles. Tendo que $n_1 >> n_2$, para soluções diluídas, a Equação 11 pode ser aplicada na equação 10:

$$n_2 = \frac{n_1 \pi \overline{V}_1}{RT} = \frac{\pi V}{RT} \rightarrow \frac{n_2}{V} = C_2 = \frac{\pi}{RT} \rightarrow \pi \approx C_2 RT \tag{12}$$

Onde V é o volume do solvente na solução e C_2 é a concentração molar da espécie 2. A Equação 12 é conhecida como a $Lei\ de\ Van't\ Huff$.

Alguns autores utilizam a Equação 12 para soluções com elevadas concentrações de sais, acrescentando a ela um novo termo do lado direito da equação, intitulado de fator de correção da pressão osmótica, y, que tem um valor de 0,7 para soluções concentradas e 1,0 para soluções com diluição infinita (Judd & Jefferson, 2003). A seguir, algumas equações que mostram outro rearranjo da Equação 12 juntamente com alguns fatores de correção para a pressão osmótica em sistemas com concentrações mais elevadas.

Fonte	Fator de Correção, y	Modelo	
Judd & Jefferson, (2003)	0,7	$\pi = y.R.T \sum C_i$	(13)
$FILMTEC^{TM}(2008)$	1,12	$\pi = y.R.T \sum C_i$	(14)
IMS Desing® (2006) (Hydranautics)	1,19	$\pi = y.R.T \sum C_i$	(15)

Onde C_i é a concentração molar para a espécie "i"do soluto.

2.4. Membranas

Após a descoberta de Abbè desencadeou-se um especial interesse aos processos através de membranas na área da biologia e da medicina. A primeira membrana inorgânica veio ser produzida por Traube, em 1867 (Brandt *et al*, 1993). Com o passo de Traube, deuse início ao desenvolvimento de membranas sintéticas de microfiltração para aplicação, em várias áreas da ciência.

Foi durante a *Segunda Guerra* que os processos de separação por membranas obtiveram seus maiores desenvolvimentos.

Outro grande momento de maior desenvolvimento na produção de membranas poliméricas foi entre os anos de 1960 a 1970 com a implantação de membranas de *acetato de celulose* para a dessalinização da água do mar (Hsieh, 1996). O problema deste tipo de polímero era sua baixa resistência à proliferação de *biofouling*, sensibilidade ao pH e sua baixa resistividade ao aumento de temperatura da água da alimentação.

No ano de 1975, foram produzidas as membranas de polisulfona, que até hoje é praticamente um dos principais polímeros utilizados nas indústrias de alimentos e aplicação na indústria de laticínios (Wagner, 2001). Sua fragilidade está na tolerância a: óleos, graxas, gordura e solventes polares.

Nos anos 80, surgiram às membranas com filme fino de *poliamida aromática* depositado em um suporte poroso apresentou melhores taxas de rejeição de sais (até 95%) tendo como vantagem, a não degradação biológica, elevadas pressões de operação, amplas faixas de pH e temperatura e que até hoje são base das membranas utilizadas na dessalinização de águas (Matsuura, 2001).

Hoje, com a aplicação de "finos filmes de compósitos", como *poliamida* ou *polieterureia* (Nunes & Peinemann, 2001), a rejeição de sais chega a ser no mínimo 99,5% e a rejeição para algumas espécies químicas supera os 99,9% (Ver **ANEXO 1**, sobre características das membranas de osmose inversa).

2.4.1 Tipos de membrana

As membranas são divididas em duas classes: densas e porosas. A classe da membrana indicará que tipo de estrutura ela apresenta e qual será sua aplicação final.

Membranas densas

As membranas densas são aquelas, nas quais o fluido precisa atravessar por processo difusivo. Elas são divididas em dois tipos: Simétrica ou Isotrópica e Assimétrica ou Anisotrópica. A Figura 2 mostra alguns exemplos desses tipos de membranas.

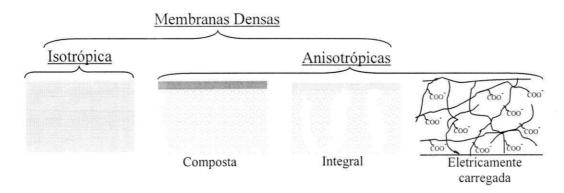


Figura 2. Exemplos de membranas densas.

Membranas porosas

Segundo Habert *et al* (2006) uma membrana pode ser considerada porosa quando o transporte do fluido que a atravessa se encontra em uma fase contínua. As membranas porosas também são divididas em isotrópicas e anisotrópicas. A Figura 3 mostra alguns tipos de membranas porosas.

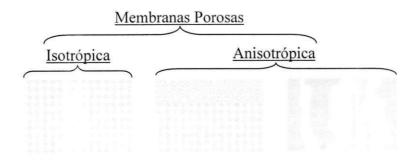


Figura 3. Exemplos de membranas porosas.

Uma ampla revisão sobre os tipos e preparações de membranas é dada por Nunes e Peinemann (2001), Baker (2004) e Habert *et al* (2006).

Membranas poliméricas

Foram os primeiros tipos de membranas a serem sintetizadas e aplicadas aos processos de separação. Até hoje, essa tecnologia só tem avançado, produzindo materiais

de elevada resistência à compressão, resistência química, trabalhabilidade a baixas temperaturas, exposição à luz solar (Souto *et al*, 2003) e resistência ao ataque biológico.

Membranas cerâmicas

As membranas cerâmicas ou zeólitas são formadas através de uma deposição de uma fina camada de cerâmica ou zeólita seletiva sobre o suporte cerâmico poroso (Backer, 2004). Segundo Silva *et al* (2003) algumas das características que pode definir o tipo de aplicação e a eficiência na separação da membrana são a morfologia e a natureza do material que a constitui.

Membranas eletricamente carregadas

As membranas eletricamente carregadas são aquelas que possuem elétrons não neutralizados em sua cadeia polimérica. Os átomos carregados atraem elétrons e cátions através de uma diferença de potencial elétrico (ddp). As membranas eletricamente carregadas podem ser densas ou porosas, porém as mais comuns são porosas.

2.4.2 Seletividade das membranas

A seletividade da membrana está diretamente ligada com o diâmetro de poro e nível de seletividade de sua rede polimérica. Atualmente, as membranas são divididas de acordo com "tamanho" do elemento a ser removido e podem ser apresentadas da seguinte maneira: Membranas de Microfiltração, Ultrafiltração, Nanofiltração e Osmose Inversa. A Figura 4 ostra os tipos de membranas e exemplos de separação.

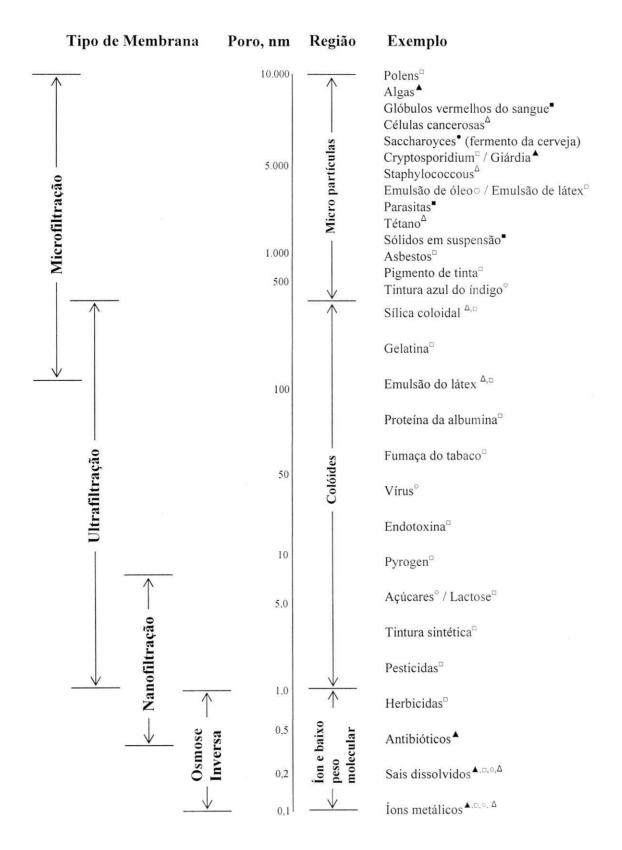


Figura 4. Exemplos de espécies que podem ser retidas de acordo com o tamanho do poro da membrana. (Figura adaptada de Singh (2006)) Onde: ▲-DOW (2008); ●-Tratamento de água (2008); ○-Koch (2008); △-Singh (2006); ■-Actew (2005); □-Osmonics (2008).

2.5 Processos de dessalinização de águas e aplicação de membranas

Existem diversos processos aplicados à purificação de água, mas para a dessalinização de águas, utilizam-se apenas os térmicos e com membranas (Ahmad & Schmid, 2001).

Assim, os processos podem ser divididos da seguinte maneira:

-Processos térmicos

- Destilação flash com múltiplos Estágios (MSF)
- Destilação Múltiplo Efeito (MED)
- Destilação por Compressão de Vapor (CV)

-Processos de membranas

- Osmose inversa (OI)
- Eletrodiálise (ED)

Todos os métodos citados apresentam vantagens e desvantagens em suas aplicabilidades e em relação aos seus custos de instalação, consumo de energia, manutenção, operação, volume de água tratada, volume de rejeito gerado, qualidade da água produzida, tempo e espaço físico utilizado.

Falando-se em dessalinização de águas, segundo a AMTA (2007), até o ano de 2007, 60% de toda a água dessalinizada consumida no mundo, é oriunda de processos térmicos.

Porém, esse quadro vem sendo mudado a cada ano. Após a obtenção de membranas com elevadas capacidades de rejeição de sais (Matsuura, 2001), e a capacidade de recuperação de boa parte da energia utilizada durante o processo (Skilhagen *et al*, 2008) os processos térmicos têm perdido espaço para os processos com membranas quando se fala em produção de água em escala industrial.

Pilat (2001) fala que o processo de dessalinização de águas com membranas tem maior vantagem no que se refere ao projeto instalado com perspectiva de futura ampliação, vantagem na venda de serviços pelas empresas executoras; possui baixo consumo de energia elétrica, o que faz com que o custo do produto final seja reduzido e ainda, o fator psicológico sobre a qualidade da água gerada, já que é um processo conhecido há mais de 20 nos.

Dentre as vantagens apresentadas por Pilat, é possível listar outra série de vantagens aplicadas aos processos com membranas, tais como:

- não necessita de grandes espaços físicos para sua instalação dependendo da capacidade de produção;
- é um processo contínuo;
- possui baixo custo de investimento;
- possui baixo custo energético;
- sua rejeição de sais chega a 99,5% e maior que 99,9% para algumas espécies químicas;
- 100% na rejeição de bactérias, fungos e microorganismos;
- o rendimento de água purificada produzida pode chegar a 75%;
- facilidade na construção, operação e manutenção;
- o concentrado gerado durante o processo pode ser utilizado na irrigação de plantas halófitas do tipo atriplex nummularia, da família Amaranthaceae e no cultivo de espécies hortaliças por meio hidropônico;
- o concentrado também pode ser utilizado em tanques viveiros de peixes tais como tilápia rosa e na obtenção de sais para o consumo animal;

Estima-se que a utilização de processos com membranas só tenha como resultado seu contínuo crescimento. A cada ano, novas usinas de dessalinização de águas são construídas para abastecer cidades inteiras. Para exemplos de projetos de engenharia, a Wangnick/GWI (2005) fala que até o final do ano 2007, mais de 21.404.184 m³/dia são gerados por processos de dessalinização, partindo de usinas como a de Misurata, Líbia, com capacidade de 80.000 m³/dia até a do Norte de Al-Zour, Kuwait, com capacidade de 567.000 m³/dia.

Outros grandes projetos de engenharia têm sido desenvolvidos para abastecer cidades com água dessalinizada, como, por exemplo, a usina proposta pela *Tractebel Engineering*®, que está sendo instalada em Jubal, Arábia Saudita, com início de operação estimado para o ano de 2009 e terá capacidade de produção de 800.000 m³/dia.

A aplicação de membranas não se retém apenas a "grandes" usinas de dessalinização. Em todo o mundo, equipamentos de médio e pequeno porte têm ganhado espaço nos projetos de desertificação aplicados nas regiões semi-áridas para a dessalinização de águas (Backer, 2004 & Fritzmann et al, 2007).

No Brasil, vários Estados, principalmente do Nordeste, utilizam a tecnologia de membranas para o abastecimento público de águas em pequenas comunidades, onde a escassez de água é um fato. Para o Estado da Paraíba, com os dessalinizadores instalados pelo *Programa Água Boa*, entre os anos de 1998 a 2001, destaca-se o sistema instalado no município de Riacho de Santo Antônio que possui capacidade de produção de 0,6 m³/hr, e abastece cerca de 40 famílias.

Atualmente, mais da metade dos processos com membranas são aplicados à dessalinização da água de poços, rios e lagos ou da água mar. Quarenta por cento está na produção de água ultra pura para a indústria de eletrônicos, farmacêutica, e indústrias geradoras de energia. O restante é aplicado em processos na indústria de alimentos e ao tratamento dos efluentes industriais (Baker, 2004).

Pallet et al (2005), Köseoglu e Gusman (1993), e Judd e Jefferson (2003) fazem uma abordagem sobre os principais processos relacionados à aplicação de membranas de osmose inversa, dentre eles destacam-se os seguintes:

- dessalinização de água do mar, água salobra e tratamento de água;
- recuperação de produtos em efluentes;
- concentração de produtos orgânicos e inorgânicos;
- dessalinização de corantes, tintas e produtos de química fina;
- ultra filtração de leite integral e desnatado para aumentar rendimento na produção de queijo;
- fracionamento e concentração de albumina de ovos e proteínas;
- concentração de sucos: laranja, tomate, maça, abacaxi, etc;
- separação e concentração de micro-solutos tais como: antibióticos, vitaminas e ácidos orgânicos;
- água ultra-pura para uso farmacêutico;
- tratamento da água na produção de papel e celulose;
- tratamento de água ultra-pura para hemodiálise.

2.5.1 Modelos de membranas

O modo como o fluxo de água ou de outro determinado fluido atravessa uma membrana pode variar de acordo com sua aplicação, seletividade e necessidade de reaproveitamento.

Ainda hoje, algumas membranas são confeccionadas para receber o fluido a ser tratado numa direção "normal" ou perpendicular a área filtrante, que é chamada filtração

convencional. Um exemplo para esse tipo de processo é o filtro de microfiltração e pode ser observada na Figura 5.

O problema com o fluxo perpendicular é o acúmulo de material (ou bolo) que se forma sobre a superficie da membrana com o tempo de filtração. Esse acúmulo produz a perda de carga, a redução do fluxo resultando em na troca da membrana.

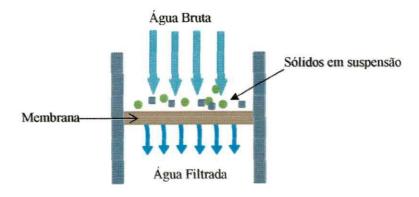


Figura 5. Exemplo do processo de filtração direta (perpendicular) a área da membrana.

Para modelos mais avançados de membranas, como os de osmose inversa, nanofiltração, ultrafiltração e microfiltração, o fluido atravessa a membrana em fluxo "cruzado" ou tangencial, ou seja, em um contato paralelo a área da membrana. A Figura 6 mostra o modelo de fluxo cruzado.

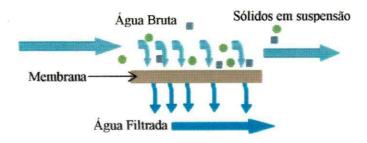


Figura 6. Exemplo do processo de filtração tangencial (fluxo cruzado) à área da membrana.

O processo de dessalinização ocorre pelo uso de elementos de membranas em escala industrial do tipo espiral. Nela, a dessalinização ocorre através do fluxo cruzado. Um exemplo desse tipo de módulo pode ser observado na Figura 7.

Figura 7. Módulos de membrana em espiral (Elementos fabricados pela Toray[®] Membrane Europe do tipo 8 e 4 polegadas respectivamente).

O módulo em espiral é composto por praticamente três camadas distintas com funções específicas: espaçador, membrana e filme coletor.

O espaçador como o próprio nome sugere, facilita a passagem da água através do módulo, aumenta a turbulência da água na superfície da membrana auxiliando no processo de dessalinização e ajuda a carrear os sais que tentem a precipitar nas superfícies das membranas.

A membrana é o elemento responsável pela seletividade, o que vai passar através da dela ou não, durante o processo de osmose inversa. E o filme coletor é responsável por captar toda a água que atravessou a membrana e direciona-la para o tubo coletor que se encontra no centro do módulo. A Figura 8 mostra um módulo espiral utilizado na dessalinização de águas salobras e salinas, de forma totalmente aberta.

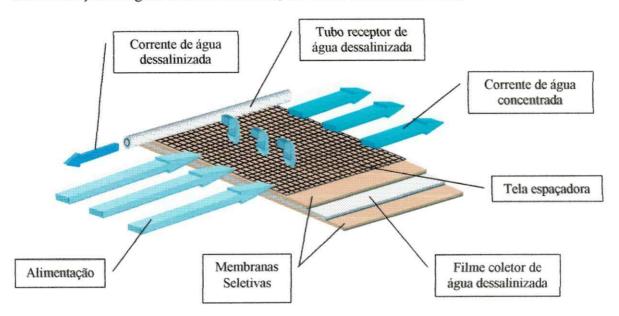


Figura 8. Módulo de membrana em espiral totalmente aberto.

2.6 Incrustações dos elementos de membrana

A dessalinização através de membranas seletivas é um processo quase perfeito. É possível dizer que uma de suas poucas imperfeições está nos mecanismos de incrustações (foulants) que acontecem durante o processo.

As incrustações de sais geralmente são as causas de muitas manutenções ou até mesmo da troca dos elementos de membrana. Segundo Amjad *et al* (1993) e Hoek *et al* (2000) é possível dividir os principais tipos de incrustações que podem ocorrer em quatro categorias:

Sais ou Scaling: Depósitos de minerais solúveis tais como: CaCO₃, CaSO₄·2H₂O, BaSO₄, SrSO₄, SiO₂.

Colóides e/ou metálicos: Aglomerados de materiais em suspensão ou particulados tais como: SiO₂, Fe(OH)₃, Al(OH)₃, FeSiO₃.

Biológico: Crescimento e acúmulo de colônias com bactérias e microorganismos do tipo: Bactérias redutoras do ferro (*Thiobacillus ferrooxidans*)¹, bactérias redutoras do enxofre (*Thiobacillus desulfovibrio*)⁴, Mycobatérias e Pseudomonas.

Orgânica: Agregação de espécies orgânicas tais como: Polieletrólitos, óleos e graxa.

A precipitação de sais nas superfícies das membranas acontece devido ao produto iônico do soluto, por exemplo, CaCO₃, ser maior que o produto solubilidade (Schneider & Schneider, 2001). Em outras palavras, a concentração de sais de CaCO₃ é tão elevada que a "solução" se torna saturada, havendo a precipitação como uma resposta à tentativa de equilíbrio da solução (Filmtec, 2008).

Quando isso acontece, o precipitado pode se depositar nas superficies das membranas e com isso trazer vários prejuízos ao dessalinizador (Bacchin & Aimar, 2005) como:

- redução do fluxo do permeado;
- limpezas químicas periódicas;
- aumento no consumo de energia;
- maior possibilidade de incrustações irreversíveis;
- efeitos irreversíveis nos elementos de membrana (efeito telescópio);
- possibilidade de perca dos elementos de membrana;

Maiores informações sobre as descrições e os tipos de bactérias oxidantes do ferro e do enxofre podem ser encontradas no capítulo 9, p. 74-84 do Standard Methods for Examination of Water and Wastewater, APHA, AWWA & WEF, 19° Edição, 1995.

queda na qualidade da água dessalinizada.

2.7 Importância do pré-tratamento e pós-tratamento

Para uma maior vida útil dos elementos de membranas, é preciso conhecer as características físico-químicas e bacteriológicas da água que vai alimentar o sistema. Muitas vezes, dependendo da fonte hídrica e do local onde ela se encontra, se faz necessárias análises freqüentes de amostras de água, pois esta pode sofrer variações em suas características devido às mudanças das estações do ano.

É possível citar algumas variações na qualidade da água, como por exemplo, através do processo de diluição e elevada carga de material argiloso aduzido à água após as chuvas; crescimento de material orgânico devido à eutrofização da fonte hídrica (Libânio, 2005) e/ou até mesmo pelo processo de concentração de sais em períodos de estiagem.

A instalação de qualquer projeto no qual se aplique membranas como processo de separação, implica na necessita indispensável de uma análise dos componentes dissolvidos no fluido a ser tratado. As análises indicarão quais os principais potenciais de incrustação, e a partir destes pontos, modela-se um pré-tratamento adequado.

O pré-tratamento tem como objetivo, reduzir o potencial de incrustação da água de alimentação do sistema, e depende do tipo de espécie química envolvida. Seja pela remoção de partículas micropoluentes e/ou microorganismos através de microfiltração (Ferreira et al, 2007); para intervir o processo de precipitação de cristais de CaCO₃ pela adição de coagulantes, como Alumínio (Shih et al, 2006) e zinco (Lisitsin et al, 2005) ou pela dosagem de soluções de ácido clorídrico ou sulfúrico (Bonné et al, 2000); para reduzir incrustações por colóides pela adição de cloreto férrico (Gabelish et al, 2004).

Existem também os métodos já conhecidos no mercado de anti-incrustantes aplicados a sistema de dessalinização, como as soluções de polieletrólitos, a utilização de soluções a base de ácido poli acrílico (FLOCON 100®) para evitar incrustações por CaCO₃, CaSO₄, BaSO₄, SrSO₄, ou soluções a base de ácido poli carboxílico (FLOCON 260®) que além de evitar a precipitação citados pelo FLOCON 100®, também evita incrustações causadas por SiO₂. Watson *et al* (2003) mostra uma lista com vários tipos de prétratamentos químicos oferecidos por empresas especializadas na área de anti-incrustantes.

Pretendendo-se, dessa maneira, melhorar a qualidade da água de alimentação em termos de precipitação de sais, resultando numa maior segurança de operação para os sistemas de osmose inversa (Dudley & Darton, 1997).

Para a água permeada, muitas vezes, se faz necessário um pós-tratamento, seja pela adição de sais através de dosagens de soluções salinas, ou pelo método "blend" onde uma pequena fração da água de alimentação já tratada é misturada à água do permeado; seja por tratamentos de esterilização através de ozonização, correção de pH, irradiação com luz ultravioleta, desinfecção, fluoretação e oxidação.

2.8 Indicadores de incrustações

Existem vários métodos de avaliação do potencial de incrustação de uma água, sejam eles calculados a partir do produto iônico das espécies químicas e comparados aos seus respectivos produtos solubilidade, como os utilizados para o CaSO₄, para o BaSO₄, e para SrSO₄ (FILMTEC, 2008), ou por índices de estabilidade, para espécies químicas que variam constantemente com a concentração de CO₂ dissolvido, com os valores do pH, da temperatura, e de sais dissolvidos como carbonatos e bicarbonatos.

No ano de 1936, (Watson et al, 2003) Langelier mostrava para a comunidade acadêmica sua metodologia para o cálculo do potencial de precipitação de sais causado por um dos mais comuns sais encontrados em águas de alimentação de caldeiras e destiladores entre outros processos térmicos, o CaCO₃.

O Índice de Saturação de Langelier (ISL) é um dos métodos mais utilizados para o cálculo do potencial de precipitação de sais de CaCO₃ aplicado a águas de alimentação de sistemas de osmose inversa (Byrne, 1995).

2.8.1 Cálculo do ISL

Para determinar o ISL, faz-se necessário saber a alcalinidade (mg/L como CaCO₃), dureza em cálcio (mg/L Ca²⁺ como CaCO₃), Sólidos Totais Dissolvidos (STD(mg/L)) e a temperatura da água (K). Com estes dados e a ajuda das seguintes equações pode-se obter o valor de ISL (Ning & Netwig, 2002).

$$ISL = pH - pHs$$

$$pHs = (9,3 + A + B) - (C + D)$$
(16)

Onde:

$$A = \frac{(\log_{10}(STD) - 1)}{10}$$

$$B = -13,12 \times \log_{10}(T(K)) + 34,55$$

$$C = \log_{10}(Ca^{+2} \text{ como } CaCO_3) - 0,4$$

$$D = \log_{10}(Alcalinidade \text{ como } CaCO_3)$$

Os valores de A, B, C e D são derivados de um gráfico que mostra o comportamento do pH em função do STD, da alcalinidade, da temperatura e da concentração de cálcio. Este gráfico pode ser encontrado no trabalho de Byrne (1995) e de Watson (2003).

Se o valor do pH atual da água for menor que o pHs, o ISL é negativo, isso implica que a água possui um potencial muito limitado de incrustação. Se o pH exceder o pHs, o ISL é positivo, esse fato condiz com uma água supersaturada com CaCO₃, a qual possui tendência de formação de incrustação. À medida que o índice aumenta positivamente, o potencial de formação de incrustação também aumenta.

O potencial de incrustação diminui quando o valor do ISL é próximo de zero. Para valores negativos do ISL, indica-se que a água em questão possui um caráter corrosivo, sendo necessário também à aplicação de um tratamento químico (Filho, 1983).

2.8.2 Calculo do Índice de Saturação de Stiff e Davis (IS&D)

Segundo Byrne (1995), as soluções concentradas de sais podem influenciar no processo de precipitação devido a forças atrativas que os íons exercem uns sobre os outros, essas são as chamadas de forças iônicas. Desta maneira, para concentrações de sais acima de 4.000 mg/L de sais dissolvidos, o modelo de Langelier perde sua exatidão. Os manuais da Filmtec (1995, 2008) sugerem que o a mudança de modelo seja realizada quando a concentração de sais na água for superior a 10.000 mg/L e Judd (2003) sugere que a mudança seja feita para águas com concentrações acima de 5.000 mg/L.

O Índice de Saturação de Stiff e Davis (IS&D) é um dos mais utilizados em processos de osmose inversa para concentrações de sais superiores às sugeridas anteriormente. Conforme os trabalhos de Al-Shammiri *et al* (2004) e Ning e Netwig (2002), o cálculo do IS&D pode ser realizado através da seguinte Equação:

$$IS \& D = pH - pHs \tag{17}$$

 $pHs = -\log_{10}(Cal) - \log_{10}(Alc.) + K_f$

Onde:

Cal é a concentração de cálcio (mol/L)

Alc. É a alcalinidade total (mol/L)

 K_f é uma constante que depende da força iônica e da temperatura. Uma carta de cálculo para a constante K_f pode ser observada no trabalho de Byrne (1995).

2.9 Processo de limpeza química dos elementos de membrana

Os procedimentos de manutenção de sistemas que utilizam membranas como processo de separação, são indispensáveis, mesmo que as águas da alimentação e do concentrado, não apresentem potencial de incrustação.

Essa necessidade se faz devido ao potencial de crescimento biológico que pode ocorrer nas superficies das membranas ou até mesmo o acúmulo de depósitos inorgânicos que podem se manter fortemente aderidos aos elementos de membrana com o tempo.

A eficácia do processo de limpeza química tem como fonte principal de informação, as características físico-químicas da água de alimentação do sistema. Através dela, pode-se aplicar uma solução preparada adequadamente para os tipos de *foulings* potencialmente depositados. Outro fator importante é o tipo de membrana na qual se aplicará a solução. Os fabricantes de membranas indicam as características e propriedades dos seus produtos bem como sua fragilidade em determinadas faixas de pH e temperatura.

A aplicação de uma limpeza química, com características aquém das indicadas pelos fabricantes, pode trazer danos irreparáveis aos elementos de membranas.

Existe no mercado, uma série de reagentes químicos especialmente formulados para eliminar mais que um tipo de incrustação em membranas de filme fino, tais como (Scott, 1999): Bioclean 511®, IPA 403®, Filtra Pure®, Filtra Pure HF®, (Applied, 2008) AM 11® e C-C2510-A22®.

Quando o fabricante não indica um tipo específico de produto comercial para a limpeza das membranas, outros reagentes podem ser aplicados (em solução) para cada tipo de incrustação. Os mais utilizados podem ser observados na Tabela 1.

Tabela 1 Incrustações e respectivos reagentes utilizados para sua limpeza.

Agentes	Fouling
★ Ácido cítrico →;	 Hidróxido férricoo;
Acido clorídrico◆●;	 Alguns tipos de depósitos de cálcio;
 Acido fosfórico□; Diffuente de emônico; 	❖ CaCO ₃ ◆●□, Bário◆;
 ❖ Bifluoreto de amônio○; ❖ Hidrosulfito de sódio○; 	 Óxidos metálicos⊙•; CaSO₄□, SrSO₄□,
❖ Polifosfatoo;	❖ Biológicos e Orgânicoso;
 ❖ Etileno Diamina○; ❖ Ácido tetra-acético○,◆; 	❖ Sulfatos◆;
❖ Formaldeído○◆;	❖ Esterilizanteo; Biológico◆
 Detergenteso; logo em seguida é importante a aplicação de um oxidante como: Hipoclorito de sódio ou peróxido de hidrogênio. ❖ Isopropanol□ 	 ❖ Proteínaso; ❖ Polieletrólitos, óleo e graxa□;
NaOH□◆	❖ Sílica◆, Orgânicos◆; Al(OH) ₃

oScott (1999); ◆Judd e Jefferson (2003); ◆Watson et al (2003); □Singh (2006).

2.10 Equações que regem o processo de osmose inversa

O processo de dessalinização, como qualquer outro processo químico, obedece às leis de conservação de massa e energia.

Para que o processo ocorra com sucesso, muitas vezes se faz necessário a modelagem, ou uma simulação do processo, resultando-se, desta maneira, no cálculo de vazões, pressões de operação, fluxo de permeado e concentrado, coeficientes de transferência de soluto e solvente, recuperação do sistema, dentre tantas outras equações que possam tornar o processo o mais real.

As mesmas equações podem ser utilizadas no processo de monitoramento, para se observar determinados comportamentos durante a dessalinização.

A seguir, estão listadas as equações de maior interesse neste trabalho para o processo de dessalinização.

Rejeição de sais (RS)

A Rejeição de Sais (RS) fornece a capacidade da membrana de rejeitar os sais dissolvidos durante a permeação da água.

$$RS(\%) = \left(\frac{C_a - C_p}{C_a}\right) 100 \tag{18}$$

Onde: RS é a rejeição de sais, C_a é a concentração de alimentação (mg/l), C_p é a concentração do permeado (mg/L).

Recuperação do sistema

A recuperação do sistema refere-se à razão da água de alimentação convertida em água purificada e depende de vários fatores, como a formação de scaling na superficie das membranas, a pressão osmótica, temperatura da água da alimentação e a qualidade do permeado.

$$r(\%) = \left(\frac{Q_p}{Q_a}\right)100 = \left(\frac{Q_p}{Q_p + Q_r}\right)100 \tag{19}$$

Onde: r é a recuperação do sistema, Q_p é a vazão da água produzida, Q_a é a vazão da água de alimentação e Q_r é a vazão da água de rejeito, ambas em L/min.

Com o aumento da recuperação do sistema, mais água é convertida em produto. Isto reduz o volume da água a ser rejeitada e, conseqüentemente, aumenta a concentração de sais dissolvidos na corrente do concentrado, assim como a possibilidade de incrustação dos elementos de membranas.

Fluxo de permeado e de soluto

Na osmose inversa, os sais dissolvidos e moléculas orgânicas retidas na superfície da membrana causam o aumento da concentração próxima à superfície considerada. Este aumento de concentração causa um acréscimo no valor da diferença de pressão osmótica da solução, o que tende a diminuir o fluxo de permeado. Os fluxos de permeado e de soluto são dados, respectivamente, por:

$$J_w = k_w (\Delta P - \Delta \pi) = \frac{Q_p}{A} \tag{20}$$

Onde: J_w é o fluxo de permeado, k_w o coeficiente de transferência de massa do solvente, ΔP é o gradiente de pressão aplicado, $\Delta \pi$ é o gradiente de pressão osmótica, Q_p é a vazão de permeado e A é a área de permeação da membrana.

$$J_s = k_s \Delta C = \frac{Q_p C_p}{A} \tag{21}$$

Onde: J_s é o fluxo mássico do soluto, k_s é o coeficiente de transferência de massa do soluto, ΔC (mg/L) é o gradiente de concentração e C_p é a concentração do permeado. Neste caso, ΔP , $\Delta \pi$ e ΔC são dados por:

$$\Delta P = \left(\frac{\left(P_a + P_c\right)}{2} - P_p\right) \tag{22}$$

$$\Delta \pi = \left(\frac{\left(\pi_a + \pi_c\right)}{2} - \pi_p\right) \tag{23}$$

$$\Delta C = \left(\frac{\left(C_a + C_c\right)}{2} - C_p\right) \tag{24}$$

Onde: P_{a} , P_{c} , P_{p} são a pressão da alimentação, do concentrado e do permeado, respectivamente. π_{a} , π_{c} , π_{p} são a pressão osmótica da alimentação, do concentrado e do permeado, respectivamente. C_{a} , C_{c} , C_{p} são a concentração da alimentação, do concentrado e do permeado, respectivamente.

 $\Delta\pi$ pode ser dado ainda por:

$$\Delta \pi = \left[\frac{(STD_a + STD_c)}{2} - STD_p \right] 7,033.10^{-4}$$
 (25)

Onde: STD_a é o total de sais dissolvidos na corrente da alimentação, STD_c é o total de sais dissolvidos na corrente do concentrado e STD_p é o total de sais dissolvidos na corrente do permeado (Taylor & Jacobs, 1996).

O TDS é dado em mg.L⁻¹ e $\Delta \pi$ é dado em kgf.cm⁻². O fator 7,033.10⁻⁴ converte a concentração para pressão (kgf/cm²) e é dado em kgf.L/mg.cm².

2.11 Dessalinizador da Comunidade de Uruçu - São João do Cariri - PB

O dessalinizador de Uruçu tem como objetivo, além de gerar água potável e de boa qualidade para a comunidade, utilizar o concentrado gerado durante o processo para alimentar tanques de peixes, para cultivar hortaliças através de hidroponia e servir de meio para cultivo de Spirulina.

Considerando que a água concentrada gerada pelo dessalinizador de Uruçu, possui uma elevada concentração de sais dissolvidos, a aplicação direta ao cultivo de hortaliças seria inviável. Necessitando-se, assim, de uma "diluição" do concentrado para sua ideal aplicação.

Nesta etapa do trabalho, insere-se o conceito de misturador. O misturador é um mecanismo que tem como objetivo, facilitar a homogeneização entre duas correntes de águas: permeado e concentrado. A quantidade de água para cada corrente também obedece ao balanço de massa, o que resulta numa prévia obtenção da qualidade da água misturada.

2.12 Processo de mistura

Devido ao tratamento de duas soluções cujo solvente é a água e o soluto se encontra em diferentes concentrações, o processo de mistura ocorre através da agitação natural, quando os dois fluidos se encontram no seio do misturador.

Para que a mistura seja efetiva, e que o produto final que sai do misturador não sofra grandes variações em sua concentração, o processo de homogeneização tem que acontecer ao longo do misturador.

2.13 Qualidade da água e análises físico-químicas

A qualidade e a quantidade da água dessalinizada produzida são alguns dos principais motivos de monitoramento do sistema. Através delas, pode-se agendar processos de manutenção, limpezas químicas de membrana, lavagem nos tanque de armazenamento, e/ou até mesmo a necessidade de paralisação do processo devido a algum desarranjo em um elemento de membrana.

A qualidade das águas do afluente e dos efluentes do sistema de dessalinização é monitorada através de análises físico-químicas. Sabendo-se que a água dessalinizada passa por um processo de esterilização (pós-tratamento) através da adição de "dióxido de cloro",

nos procedimentos de campo, a qualidade da água geralmente é estimada através de aparelhos como o condutivímetro e pH-metro.

A condutividade indicará, de maneira aproximada, a concentração de sais da água. De acordo com a Filmtec (2008) e Filho (1983), a concentração de sais pode ser estimada através do produto de um fator de conversão para mg/L e a condutividade elétrica. A Tabela 2 mostra as constantes que devem ser utilizadas de acordo com a condutividade da amostra.

Tabela 2. Constantes de conversão de condutividade para concentração.

Condutividade K(µS/cm)	Fator de conversão $\left(\frac{mg.cm}{\mu S.L}\right)$
K < 10	0,50
10 ≥K ≤ 800	0,55
$800 > K \le 4.000$	0,65
$4.000 > K \le 10.000$	0,75
K > 10.000	0,79

Tabela adaptada de Filmtec (2008) e Filho (1983).

Na prática, os resultados obtidos através desse método apresentam dados aproximados, apresentando desvios de acordo com os tipos de sais e outras substâncias que estejam dissolvidas na amostra. É importante frisar que nenhum resultado é tão próximo do real quanto aos adquiridos por análises físico-químicas.

A qualidade da água dessalinizada através de processos com membranas, deve responder as características físico-químicas indicadas pela *Portaria 518/2004 do Ministério da Saúde*.

CAPÍTULO III

3. Materiais e Métodos

3.1 Introdução

A metodologia utilizada para o desenvolvimento deste trabalho, foi dividida em duas etapas, assim como segue:

Primeira etapa – Monitoramento do sistema de dessalinização;

Foram tomadas medidas de vazão e pressão de operação do sistema e aplicadas limpezas químicas sempre o dessalinizador apresentava variações de 10 a 15% em suas variáveis de projeto.

Para o monitoramento da qualidade, foram coletadas amostras e realizadas análises físico-químicas em laboratório. Através das análises, também foi estudado o potencial de incrustação das correntes através de índices de saturação específicos.

Segunda etapa – Instalação e monitoramento do misturador.

Para a segunda etapa, são descritos os procedimentos experimentais de mistura realizados em laboratório e a instalação e viabilização do processo de mistura realizado no campo, através de medidas de condutividade, pH e Sólidos Totais Dissolvidos.

A Figura 9 apresenta um quadro geral do processo de dessalinização da comunidade de Uruçu, bem como um esquema geral das etapas.

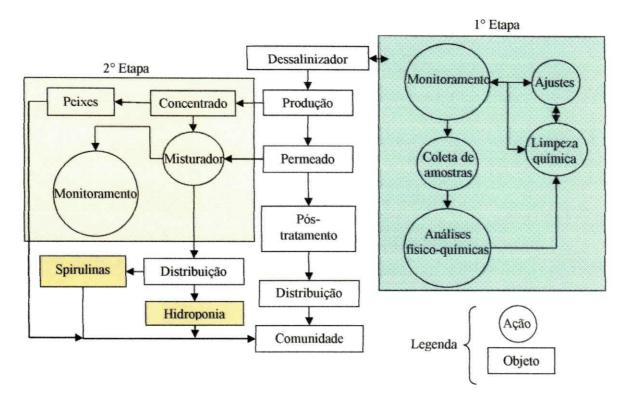


Figura 9. Diagrama de bloco do processo de dessalinização, monitoramento e distribuição de água.

3.2 Reagentes químicos utilizados

- Acido Clorídrico, HCl, P. A. da Quimex;
- Cloreto de Potássio, KCl, 3 e 0,3 Molar, da Hanna Instruments;
- Flocon 260[®], produto a base de ácido poli-acrílico;
- Hidróxido de Sódio, NaOH, P. A. da Quimex;
- Acido Sulfúrico (H₂SO₄) 0,02 N P.A. da Reagen;
- Acido Cítrico C₆H₈O₇ 1 M, P. A. da Chemco;
- Hidróxido de Amônio (NH₄OH), pH 10 P. A. da Reagen;
- Murexida, P. A. da Reagen;
- Metilorange 0,4 % P. A. da Reagen;
- Fenolftaleina P. A. da Reagen;
- Cromato de Potássio 5,0 % P. A. da Reagen;
- Negro de Eriocromo P. A. da Reagen;
- Ácido Etilenodiaminotetracético (EDTA) 0,05 N, P. A. da Reagen;
- Nitrato de Prata (AgNO₃) 0,05 N P. A. da Reagen;
- Hidróxido de Sódio 1N, P. A. da Reagen;
- Kits da Policontrol para análise de ferro total, sílica, nitrato, nitrito e amônia;

3.3 Instrumentação

Para os procedimentos experimentais realizados no laboratório e no campo foram utilizados os seguintes instrumentos:

- Agitador da 713D da Fisatom;
- Condutivímetro Dust 3 da HANNA Instruments;
- Condutivímetro 600 da Analyser
- pHmetro digital DMPH-2 da Digimed;
- pHmetro Digital PG 2000 da GEHAKA;
- Pipetador eletrônico Pipetus-akku da Hirschmann Laborgerateforam;
- Bureta eletrônica da modelo akku-drive 50 ml Titranion da Hirschmann Laborgerate;
- Termômetro com escala de temperatura de -10 a 210°C da INCOTERM;
- Fotômetro de chama modelo 910 da ANALYSER;
- Turbidímetro de bancada microprocessado modelo Hd 114;
- Colorímetro digital modelo SMARTCOLORIMETER da LaMOTTE série 481;
- Espectrofotômetro da Jenway série 6405 UV/Vis.

3.3.1 Descrição do dessalinizador

Dessalinizador da Comunidade de Uruçu

O sistema de dessalinização, da comunidade de Uruçu - São João do Cariri - PB, faz parte do Projeto: Água, Fonte de Alimento e Renda - Uma Alternativa Sustentável para o Semi-Árido, implantado pelo Programa Petrobras Ambiental.

Neste projeto, o dessalinizador produz água dessalinizada para o abastecimento da comunidade, e o concentrado gerado é aplicado ao cultivo para hortaliças, pelo método de hidroponia; direcionado aos tanques de criação de peixes; e serve de meio para o crescimento de *Spirulina*. A Figura 10 mostra o sistema de dessalinização de Uruçu.

Figura 10. Sistema de dessalinização.

 A descrição dos componentes que constituem o sistema de dessalinização utilizado bem como seu projeto podem ser encontrados no ANEXO 2.

3.3.2 Descrição do misturador

- Tubo de PVC reforçado de 25 cm de diâmetro interno, com 10 orificios de 6 cm de diâmetro. Os orificios perfurados no topo do misturador estão a 130 cm com relação à base;
- Placa de PVC 70x60 cm² com 3,0 cm de espessura, colada e parafusada na base do tubo de PVC;
- Rotâmetro confeccionado no LABDES em acrílico com faixa de leitura de 1 a 15
 L/min.

3.4 Procedimento Experimental

3.4.1 Primeira etapa: Monitoramento do sistema de dessalinização

O sistema de dessalinização foi monitorado através de coleta de dados referentes à quantidade e qualidade das águas, dessalinizada e concentrada; pressões de operação do sistema. Com base nos dados obtidos, foram realizadas limpezas químicas periódicas para que o sistema retornasse a funcionar de acordo com as variáveis de medidas de projeto.

3.4.2 Qualidade de água produzida

As coletas das amostras de águas foram realizadas no sentido de verificar a qualidade do afluente e dos efluentes em termos de sais dissolvidos. As amostras foram coletadas durante o funcionamento do sistema, e se limitaram a uma amostra da corrente de alimentação, uma do permeado e uma do concentrado. Os procedimentos de coleta foram realizados sempre que o sistema de dessalinização de Uruçu era visitado por um técnico do LABDES.

As análises também são importantes no sentido de verificar o potencial de incrustação da água de alimentação do sistema e da corrente de concentrado.

As amostras foram enviadas para o Laboratório de Referência em Dessalinização (LABDES) para a realização de análises físico-químicas. Os procedimentos aplicados aos ensaios analíticos das amostras correspondem às metodologias descritas no *Stardard Methods for the Examination of Water and Wastewater* (1998).

Após as análises físico-químicas foram calculados os Índices de Saturação de Langelier e o de Stiff and Davis através das Equações 16 e 17, respectivamente.

Também foi calculada a rejeição de sais para as espécies químicas analisadas, observandose a seletividade das membranas utilizadas com o tempo de operação da máquina, o efeito do processo de incrustação e limpeza química.

3.4.3 Limpeza química

A limpeza química dos elementos de membrana do dessalinizador foi realizada sempre que a diferença de pressão ou vazão do permeado se desviou dos 10% a 15% da pressão ou vazão normalizada do valor de projeto ou quando a passagem de sais na corrente de permeado chegava a 50% do valor normalizado de passagem de sais do valor de projeto. A metodologia aplicada à limpeza química se baseia no trabalho de França (2004) e se encontra no **ANEXO 3**.

3.4.4 Balanco de massa do sistema

Através de dados da quantidade e qualidade da água da alimentação, da recuperação do sistema e da qualidade da água do permeado, foi possível realizar um balanço de massa do sistema de dessalinização.

O balanço é importante para futuras comparações com os dados reais gerados pelo sistema em operação e para a realização de "misturas" ou diluições necessárias para se obter uma água com determinada concentração de sais. Com base na Figura 11, foi possível desenvolver os seguintes balanços de massa para o sistema e para o misturador.

$$C_a \times Q_a = C_p \times Q_p + C_c \times Q_c \tag{26}$$

$$C_c \times Q_c' + C_p \times Q_p = C_m \times Q_m \tag{27}$$

Onde:

 C_a = Concentração de alimentação

 C_p = Concentração do permeado

 C_c = Concentração do concentrado

 C_m = Concentração de mistura

 Q_a = Vazão de alimentação do sistema

 Q_p = Vazão do permeado

 Q_c = Vazão do concentrado

 Q'_c = Vazão fracionada do concentrado para o tanque de mistura

 Q_m = Vazão de mistura

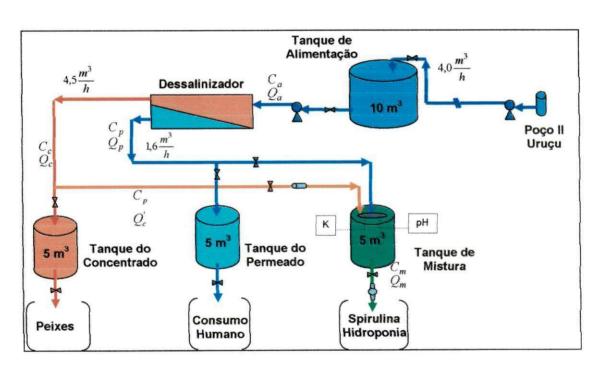


Figura 11. Balanço de massa do sistema de dessalinização.

3.5 Segunda Etapa: Instalação e monitoramento do misturador

A água de alimentação do sistema de dessalinização de Uruçu possui qualidade, em termos de concentrações de sais, diferente das encontradas nos poços artesianos perfurados na região Nordeste. Enquanto sistemas de dessalinização na região do semi-árido são alimentados com águas de concentrações de sais variando entre 2.000 mg/L a 6.000 mg/L, a água da alimentação do sistema utilizado possui uma concentração de sais dissolvidos de aproximadamente 12.000 mg/L.

O processo tem como um dos resultados, a geração de um concentrado com uma elevada concentração de sais, cerca de 18.100 mg/L. Correntes com essas concentrações não podem ser descartadas sem tratamento, devido ao seu potencial de salinização do solo.

O objetivo do *Projeto Água: Fonte de alimento e renda — Uma alternativa* sustentável para o Semi-Árido é a distribuição de água potável para a comunidade, utilizando o concentrado gerado no cultivo de hortaliças pelo método hidropônico, produção de algas do tipo Spirulina e aplicação na piscicultura para a criação de peixes como a tilápia.

A elevada concentração de sais da corrente de alimentação, por conseguinte, do concentrado gerado, faz com que a aplicação direta deste no processo de produção da hidroponia e Spirulina se torne inviável devido à "fragilidade" das plantas e algas às elevadas concentrações, necessitando-se de uma diluição do concentrado para aplicação nos cultivos desejados. Para isso, foi construído um misturador com o objetivo de viabilizar águas com diferentes concentrações de sais.

Para a realização dos procedimentos experimentais têm-se como base de cálculo as variáveis de medida geradas pelo sistema de dessalinização tais como:

- Pressões de operação do sistema;
- Concentração de sais dissolvidos na alimentação do sistema de dessalinização e em seus efluentes;
- Vazões do permeado e do concentrado;
- Temperaturas das correntes de alimentação, permeado e concentrado;
- Tempo de mistura para uma boa homogeneização;
- Tipo de agitação da solução, etc.

Nesta etapa, o primeiro passo foi produzir experimentalmente em laboratório um mecanismo de mistura de águas que pudesse ser reproduzido no campo mostrando resultados similares.

Antes de iniciar os procedimentos de mistura, foram tomadas informações relativas à condutividade elétrica, pH, Sólidos Totais Dissolvidos (STD) "calculado", temperatura, vazão e pressão de operação do sistema para a água da alimentação, do permeado e do concentrado. Em seguida, foram realizadas análises físico-químicas das misturas obtidas no laboratório para fins de se observar o perfil da qualidade da água gerada.

Tomando-se como base a vazão de água permeada (Q_p) gerada pelo dessalinizador, que entra no misturador, um valor constante de 27 L/min. Tomou-se como variável a fração da vazão do concentrado (Q'_c) acrescida à água permeada no misturador.

Considerando a alta concentração de sais da corrente do concentrado (Q'c), um balanço de massa foi realizado para se referenciar quais seriam as vazões da água dessalinizada e da água concentrada a serem somadas, tanto para o experimento proposto, quanto para o misturador quando estivesse em funcionamento.

Com o objetivo de estudar o efeito de mistura em escala laboratorial, foram tomadas vazões do concentrado (Q'_c) que se misturará com o permeado no misturador. Os valores estudados para Q'_c foram: 50, 100, 150, 200, 300, 400, 500, 700 e 900 L/h.

O modelo matemático para utilização dessas "vazões" de mistura no laboratório foi realizado da seguinte forma:

- para a realização do processo de mistura no laboratório, obtiveram-se volumes de 60 litros de água dessalinizada e 60 de água concentrada gerada pelo sistema já mencionado;
- cada uma das correntes de efluente foi dividida pela vazão de mistura, ou seja, a soma entre a vazão do permeado e a vazão do concentrado, gerando uma percentagem para a água dessalinizada e para o concentrado utilizados durante o processo de mistura;
- essa percentagem foi multiplicada por 1.000 mL (volume escolhido para a realização das misturas no laboratório) resultando nos volumes das duas águas dessalinizada e concentradas que foram utilizadas;

- as frações de água previamente calculadas foram inseridas em um becker de 2.000
 mL e logo em seguida foi realizada o processo de mistura com um agitador 713D
 da Fisatom;
- o tempo de mistura, a uma velocidade de 870 RPM, foi de 5 minutos para todos os volumes;
- após o processo de mistura, foram tomados os valores da condutividade elétrica, pH e temperatura;
- os procedimentos de mistura das frações de águas permeada e concentrada foram repetidos três vezes para uma melhor observação dos resultados obtidos.

As equações 28 e 292 mostram como obter a fração percentual do permeado e do concentrado respectivamente.

$$X_p(\%) = \left(\frac{Q_p}{Q_p + Q_c}\right) 100 \tag{28}$$

$$X_{c}(\%) = 1 - X_{p} \tag{29}$$

Onde X_p é a fração de água permeada; X_c é a fração de água concentrada; Q_p e Q_c são as vazões (L/min) utilizadas como base do permeado e do concentrado respectivamente.

3.5.1 Procedimento experimental realizado no campo

Instalação do misturador

Para o processo de mistura dos efluentes no campo, foi construído um equipamento para diminuir o tempo de homogeneização da mistura e facilitar a obtenção da água com concentrações de sais desejadas.

O misturador foi instalado dentro de um tanque de fibra de vidro com capacidade de 5.000 litros, que foi batizado de "tanque de mistura". As Figuras 12 e 13 mostram o misturador instalado no centro do tanque. Ainda nas fotografias, observam-se duas tubulações que saem do abrigo do sistema de dessalinização e "penetram" no tanque de mistura findando dentro do misturador. As duas tubulações são referentes às descargas do permeado e do concentrado.

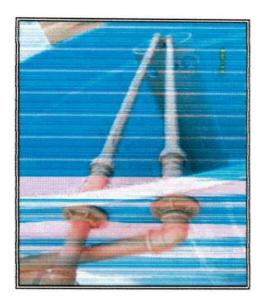


Figura 12. Tubulações dos afluentes do misturador.

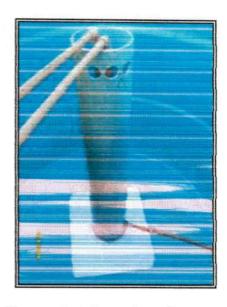


Figura 13. Misturador, afluentes e efluente montados no tanque de mistura.

No fim de cada tubulação, existe um "joelho" que direciona a saída de um efluente no sentido oposto a do outro efluente, resultando no choque de ambos no objetivo de se aplicar um maior contato entre os efluentes.

A Figura 14 mostra duas saídas independentes para os fluidos. Uma das saídas se refere ao esvaziamento do misturador e outra, ao tanque que recebe a mistura para distribuição. A Figura 15 mostra o interior da base do misturador em um momento de mistura.

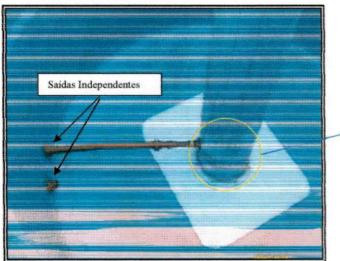


Figura 14. Base do misturador com saídas independentes do misturador e do tanque.

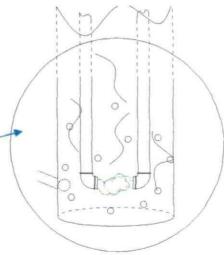


Figura 15. Interior da base do misturador em funcionamento.

Instalação hidráulica do misturador/dessalinizador

Para o funcionamento do misturador, foi necessário modificar o arranjo hidráulico do sistema de efluentes do dessalinizador. O sistema foi reformado de uma maneira que fosse simples de ser operado. O novo sistema hidráulico é dotado de válvulas de ajuste de vazão do concentrado, válvulas de mudança de direção de fluxo de permeado e um rotâmetro que indica a quantidade de água concentrada que está sendo dosada no misturador. A Figura 16 mostra o dessalinizador após a instalação do sistema hidráulico de mistura.

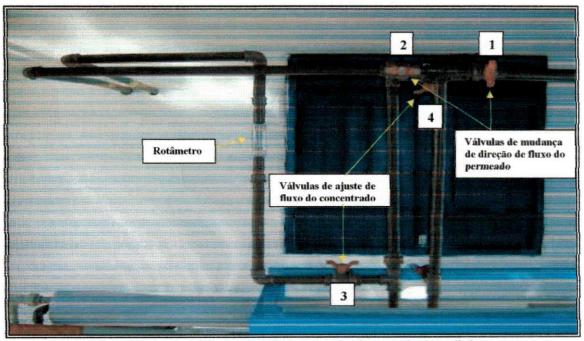


Figura 16. Sistema hidráulico de mistura a montante do sistema de dessalinização.

3.5.2 Processo de mistura no campo

Antes de dar início ao processo de mistura das duas correntes de efluentes, o sistema de dessalinização manteve-se em operação durante 10 minutos para estabilização de suas variáveis. Após o período de estabilização, foram coletadas amostras da água de alimentação, permeado e concentrado para medidas "in loco" de condutividade elétrica, pH e temperatura.

Após o tempo de estabilização, com o sistema em funcionamento, iniciou-se o processo de mistura das correntes. A válvula 2 da tubulação do permeado que dá acesso ao tanque de mistura foi totalmente aberta e a válvula 1 da tubulação que leva o permeado ao tanque de água dessalinizada foi totalmente fechada.

Com toda água dessalinizada direcionada para o misturador, a válvula 3 foi aberta até que o rotâmetro indicasse o volume de água concentrada desejado para o processo de mistura. Para alguns volumes, foi preciso ajustar a válvula 4.

Logo após o ajuste da vazão de concentrado requerido para uma determinada mistura, iniciou-se a contagem de tempo com um cronômetro. A cada 2 minutos de mistura, foram coletadas amostras em um dos orificios no topo do misturador, e tomadas medidas de condutividade, pH e temperatura. Após o tempo de estabilização da mistura, ou seja, quando os valores de condutividade e pH das amostras eram praticamente constantes, foram coletadas amostras de água para análise em laboratório. As Figuras 17 e 18 mostram o misturador em operação durante um dos experimentos realizados.

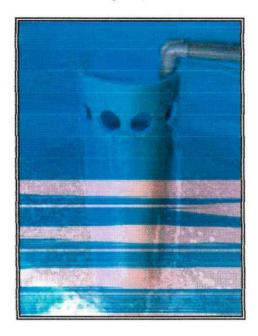


Figura 17. Misturador em operação, vista lateral.

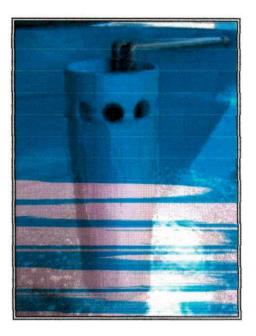


Figura 18. Misturador em operação.

Foram realizadas três séries de experimentos no campo no sentido de utilizar as médias dos valores obtidos e compará-los aos dados obtidos em laboratório. Os resultados obtidos para a primeira e segunda etapa serão mostrados no próximo capítulo.

CAPÍTULO IV

4. Resultados e Discussão

No presente capítulo, são abordados os resultados obtidos na primeira e na segunda etapa descritas no capítulo anterior, onde foram estudados os seguintes pontos:

Primeira etapa:

- Através do monitoramento do sistema, foram observados os comportamentos do fluxo de permeado, da pressão de operação do sistema e da qualidade da água produzida através de análises físico-químicas.
- A partir das análises, foi estudado o comportamento da capacidade de rejeição de sais das membranas; a comparação entre as pressões osmóticas de operação do sistema, bem como os coeficientes de transferência de massa para o tipo de membrana aplicada nesse processo.
- O potencial de incrustação de sais das correntes de alimentação e concentrado, através de índices de saturação que tiveram como base, os dados gerados pelas análises físico-químicas.
- No final da primeira etapa, fez-se uma abordagem sobre a manutenção do sistema, através da limpeza química e da troca de filtros. Caracterizando, dessa maneira, o funcionamento do dessalinizador, sem que haja variações significativas em suas variáveis.

Segunda etapa:

- Foram realizados ensaios de mistura no laboratório, dos quais foram obtidos dados para projetar a relação de Q'_c e Q_p para uma dada concentração de sais dissolvidos e comparar aos dados obtidos pelo balanço de massa e auxiliar nos experimentos que foram realizados no campo com o misturador.
- O monitoramento do efeito de mistura foi realizado através de medidas de pH, condutividade e Sólidos Totais Dissolvidos (STD), tanto para os experimentos realizados no laboratório, como no campo.
- Os resultados foram então comparados para a verificação do desvio entre os experimentos.

4.1 Monitoramento do sistema de dessalinização

4.1.1 Fluxo de permeado

A Figura 19 mostra o comportamento do fluxo de permeado por unidade de área de membrana, em função do tempo de operação do sistema. Observa-se uma queda do fluxo com o tempo de operação e após a aplicação da limpeza química, o fluxo retorna ao seu valor de operação de projeto. A limpeza química dissolve e retira os sais depositados nas superfícies das membranas, "facilitando" o processo de dessalinização. A queda de fluxo e a aplicação da limpeza química são fatos periódicos, sendo este um procedimento necessário para manter o sistema em operação.

Durante o processo de dessalinização, o produto iônico de algumas espécies químicas pode se tornar maior que os seus respectivos produtos solubilidade. Este fato pode gerar a precipitação de sais nas superfícies das membranas, causando queda de fluxo de permeado, elevação da pressão de operação do sistema, queda na qualidade da água dessalinizada, etc., (Dydo et al, 2003).

Os picos observados na Figura 19, "período das chuvas", foram causados devido à pequena variação da qualidade da água durante o período das chuvas. Essa variação pode ter sido causada devido a uma "infiltração" ocorrida no poço artesiano que abastece o dessalinizador.

Com as enchentes causadas pelas chuvas do mês de março do corrente ano (Brito, 2008 & Farias, 2008), a área onde se localiza o poço foi totalmente alagada. A enchente pode ter causado algum tipo de "fluidização" do material que faz parte da composição geológica de onde o poço foi perfurado. Iniciou-se, então, o processo de infiltração do material arenoso no poço.

O resultado foi o bombeamento de água turva, com materiais em suspensão, para o tanque de alimentação do poço. Dessa maneira, houve uma redução de 18% na quantidade de água dessalinizada. As Figuras 20 e 21 mostram a água que foi bombeada para o sistema durante o período chuvoso e a água após a limpeza do poço. Os dados do monitoramento podem ser encontrados no ANEXO 4.

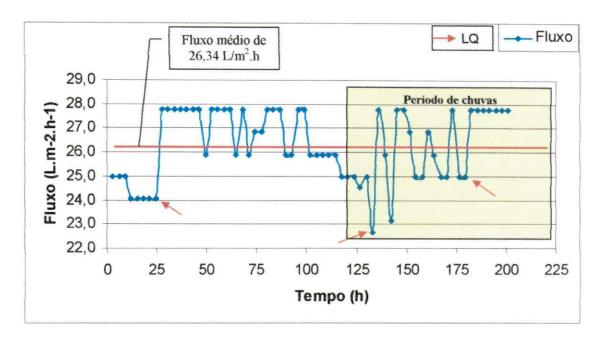


Figura 19. Efeito da limpeza química no fluxo do permeado com o tempo de operação.

Onde LQ = Limpeza Química.

Figura 20. Água turva.

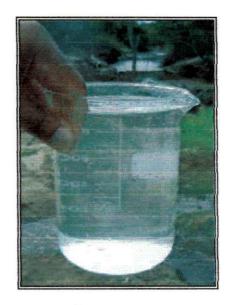


Figura 21. Água do poço após limpeza

4.1.2 Variação da pressão de operação do sistema

A Figura 22 mostra o comportamento da variação das pressões de operação do sistema, ou seja, pressões de entrada e saída. Observa-se que com o tempo de operação, a pressão necessária para produzir a quantidade de água desejada, pressão de entrada, se

mantém praticamente constante. Enquanto a pressão de saída, ou pressão do concentrado, diminui com o tempo de operação.

Este comportamento se dá devido ao processo de incrustação dos elementos de membrana. O sistema aplica praticamente a mesma força por unidade de área de membrana para dessalinizar cada vez menos água, devido à obstrução por depósitos de cristais nos poros dos elementos de membrana.

A diminuição da pressão de saída ocorre devido às percas de carga nas superficies das membranas. Durante o processo de dessalinização, perde-se pressão por conta da resistência do polímero que constitui as membranas. O polímero oferece resistência à passagem da água e dos sais, que é então somada à resistência causada pelos depósitos de sais nas superficies das membranas.

A pressão média de entrada foi de 19,12 kgf/cm² enquanto a pressão média de saída chegou a um valor aproximado de 18,5 kgf/cm². Esses resultados indicam que mesmo com as variações de pressão, o sistema ainda opera dentro das características de projeto, conforme **Anexo 2**.

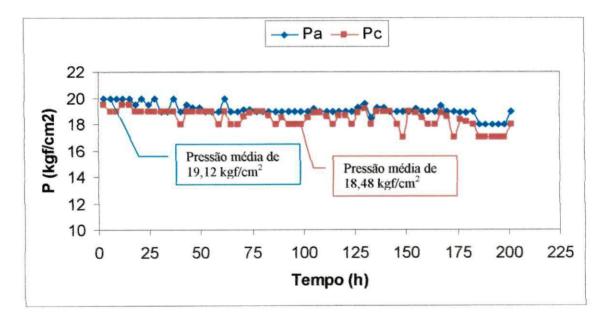


Figura 22. Variação das pressões de operação do sistema.

4.1.3 Qualidade da água produzida (Análises físico-químicas)

A Tabelas 3 mostra dos dados das médias dos parâmetros físico-químicos analisados para as correntes de alimentação, do concentrado e do permeado. As médias foram obtidas a partira das Tabelas 888 a 999, que sem encontram no ANEXO 5. As

análises foram realizadas com o intuito de monitorar a qualidade do afluente e dos efluentes gerados pelo sistema de dessalinização.

Observa-se que durante o monitoramento, ocorreram algumas variações das concentrações de sais para as correntes de alimentação e concentrado. As variações da alimentação podem ser explicadas por dois motivos principais:

 Devido ao potencial de cristalização de sais que a água do poço possui. O resultado é uma pequena variação na concentração de sais da água de alimentação. A Figura 23 mostra os a formação de cristais no interior de um tanque.

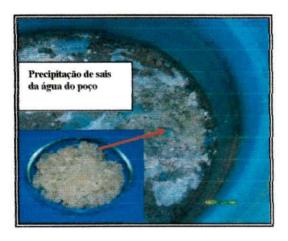


Figura 23. Precipitação de sais.

 Outra fonte de variação da concentração de sais da água é a mudança das estações do ano. Apesar de a fonte hídrica ser um poço artesiano, durante o período de estiagem, a taxa de evaporação se eleva, o que pode fazer com que haja a concentração de sais do aquifero;

Durante o período das chuvas, a água por processo difusivo, chega ao aquífero, o que pode resultar na diluição da água. A Figura 24 mostra o comportamento dos Sólidos Totais Dissolvidos (STD) na corrente da alimentação, concentrado e permeado de acordo com as datas das coletas.

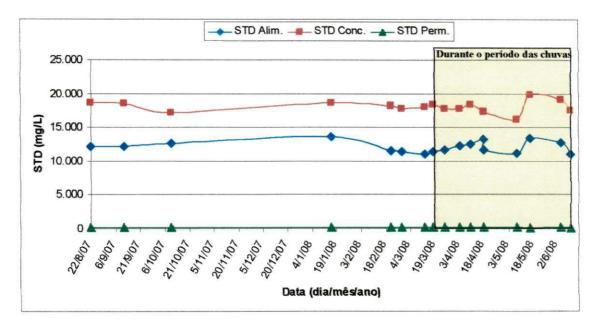


Figura 24. Comportamento do Total de Sólidos Dissolvidos na corrente da alimentação.

A variação da concentração de sais da corrente do concentrado é uma resposta à concentração de sais da alimentação, obtendo então, o mesmo comportamento da alimentação durante o tempo de funcionamento do sistema. O concentrado também possui elevada capacidade de cristalizar sais.

A qualidade do permeado permaneceu praticamente constante e mesmo com o pequeno acréscimo de sais, o permeado se encontrou dentro dos padrões de potabilidade segundo a Legislação vigente (Portaria 518, 2004).

Tabela 3. Médias dos parâmetros físico-químicos para as correntes de alimentação, permeado e concentrado.

PARÂMETROS	Alimentação	Concentrado	Permeado	VMP (*)
Condutividade Elétrica, µmho/cm a 25 °C	16.530,5	24.231,6	411,0	
Potencial Hidrogeniônico, pH	7,3	7,5	6,1	6,5 a 8,5
Turbidez, (uT)	0,22	0,17	0,15	1,0 a 5,0
Cor, Unidade Hazen (mg Pt-Co/L).	3,42	1,95	0,0	15,0
Dureza em Cálcio, mg/L Ca ⁺⁺	709,6	1.024,5	2,7	
Dureza em Magnésio, mg/L Mg ⁺⁺	809,1	1.182,1	3,2	
Dureza Total, mg/L CaCO ₃	5.052,9	7.486,8	20,0	500,0
Sódio, mg/L Na ⁺	2.268,1	3.623,7	74,0	200,0
Potássio, mg/L K ⁺	17,7	41,9	0,5	
Alumínio (Al ³⁺), mg/L	0,0	0,0	0,0	0,2
Ferro Total, mg/L	0,01	0,02	0,01	0,3
Alcalinidade em Hidróxidos, mg/L CaCO ₃	0,0	0,0	0,0	
Alcalinidade em Carbonatos, mg/L CaCO ₃	124,4	222,1	0,76	
Alcalinidade em Bicarbonatos, mg/L CaCO ₃	342,1	470,7	11,1	
Alcalinidade Total, mg/L CaCO ₃	466,5	692,8	11,9	
Sulfato, mg/L SO ₄	372,1	528,3	3,2	250,0
Cloreto, mg/L Cl	6.646,2	10.441,3	114,0	250,0
Nitrato, mg/L NO ₃	0,06	0,09	1,33	10,0
Nitrito, mg/L NO ₂	0,02	0,04	0,01	1,0
Amônia (NH ₃), mg/L	2,72	5,38	0,22	1,3
Sílica, mg/L SiO ₂	58,6	92,5	0,46	
ISL (Índice de Saturação de Langelier)	0,98	1,48	-4,01	≤0
Total de Sólidos Dissolvidos Secos a 180°C, mg/L	12.076,2	18.105,7	215,8	1.000,0

^(*)VMP - Valor Máximo Permissível ou recomendável pela Legislação Brasileira (PORTARIA 518/04 MS).

4.1.4 Comportamento da rejeição de sais do sistema

Com base nos dados das análises físico-químicas, das correntes de alimentação e permeado, foram calculadas as rejeições de sais, seus valores médios, máximos e mínimos, com o auxílio da Equação 18.

A Figura 25 mostra a variação da rejeição de sais de Cálcio (Ca⁺⁺), Magnésio (Mg⁺⁺), Cloreto (Cl⁻), Sódio (Na⁺), Potássio (K⁺), Amônia (NH₃) Sílica (SiO₂) e Sulfato (SO₄⁻), Carbonato (CO₃⁻) e Bicarbonato (HCO₃⁻) dissolvidos de acordo com as datas das coletas das amostras e de suas análises físico-químicas.

Observa-se que a rejeição média para os sais de Na⁺ e Cl⁻, foi de 96,73% e 98,29% respectivamente. Segundo a ficha técnica do fabricante, este tipo de membrana tem capacidade de rejeição de sais de 95,0% nas seguintes condições: Solução de NaCl de 2.000 mg/L, pressão de operação de 15,81 kgf/cm², a uma temperatura de 25°C e recuperação de 15%, ANEXO 6. Isso indica que mesmo com a elevada concentração de sais da água de alimentação, o grau de seletividade das membranas permanece o mesmo.

Para o CO₃⁼ e Bicarbonato HCO₃⁻, a rejeição média ficou na casa dos 99,4% e 96,5% respectivamente. O desvio para o bicarbonato, pode ser explicado devido à variação do pH das amostras que é uma função da temperatura durante a coleta. Também pode ser causada pela passagem do CO₂ para a corrente do permeado, o que pode resultar numa água com pH mais baixo, e com isso uma maior concentração de bicarbonatos.

Para a NH₃, observou-se uma maior faixa de rejeição, chegando a um valor mínimo de 87,4 e um máximo de 93,4. Essa variação pode ser explicada devido ao aumento na concentração de NH₃ na corrente de alimentação como mostra o Laudo 95 no **ANEXO 2** se comparado a concentração média do mesmo elemento na Tabela 3. Outro fator importante é uma menor rejeição para espécies nitrogenadas para as membranas utilizadas, aonde para o nitrato de sódio chega a 97%. Para as demais espécies químicas, a rejeição média ficou na faixa de 99%. Os valores podem ser encontrados na Tabela 4.

Os valores obtidos para a rejeição do ferro e do nitrito variaram de forma desordenada. Isso aconteceu devido aos resultados obtidos para essas espécies durante as análises físico-químicas. O equipamento utilizado possui uma faixa de erro de $\pm 0,02$ para a leitura do ferro e $\pm 0,01$ para o nitrito.

A pequena variação entre os valores obtidos para rejeição de sais pode ser explicada pelos seguintes fatores:

- mudanças na temperatura da água de alimentação durante o dia, fazendo com que haja uma dilatação dos poros dos elementos de membrana, facilitando a passagem dos sais para a corrente de permeado;
- a elevada pressão pode "forçar" a passagem dos sais através dos poros das membranas;
- processo de incrustação dos elementos de membrana durante o período de funcionamento do sistema, fazendo com que alguns sais sejam forçados a passar através das membranas e se dissolvam em um fluxo de água dessalinizada menor que o fluxo determinado no projeto.

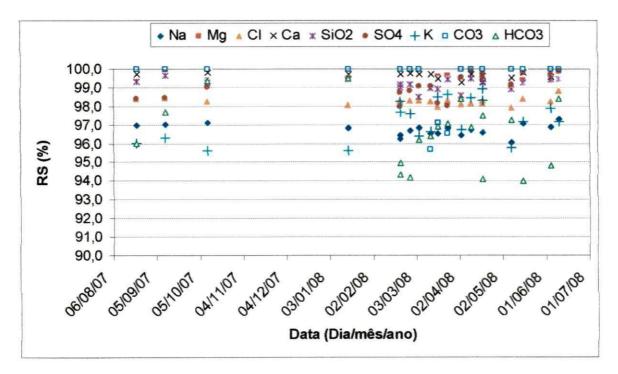


Figura 25. Variação da rejeição de sais para os elementos de membrana utilizados no sistema de dessalinização.

Tabela 4. Rejeição média do sistema de dessalinização durante o período de 08/2007 a 07/2008.

Espécie Química	Máximo (%)	Mínimo (%)	Média (%)	Desvio médio Absoluto (%)
NH ₃	100,0	87,4	93,6	4,6
Na ⁺	97,33	96,08	96,73	0,31
Mg^{2+}	99,89	99,11	99,59	0,18
Cl	98,85	97,96	98,29	0,19
\mathbf{K}^{+}	99,0	95,6	97,3	1,1
Ca ²⁺	99,83	99,30	99,62	0,14
Fe Total	100,0	0,0	15,8	33,6
SiO ₂	99,66	98,50	99,20	0,30
NO ₂	100,0	0,0	46,1	35,3
NO ₃	***	***	***	***
SO ₄	99,90	98,01	99,08	0,64
CO ₃	100,0	95,7	99,4	1,3
HCO ₃	99,5	94,0	96,5	1,8

Nitrito (NO₂), Nitrato (NO₃).

4.1.5 Comparação entre os modelos de cálculo para a pressão osmótica do processo de dessalinização

As pressões osmóticas das correntes de alimentação, concentrado e permeado do sistema podem variar com o tempo devido, principalmente, aos seguintes fatores:

- entupimento dos filtros de cartucho;
- processo de incrustação dos elementos de membrana;
- concentração de sais das correntes;
- temperatura da água de alimentação do sistema;
- periodicidade de limpezas químicas.

A pressão osmótica é o valor mínimo necessário ao sistema, para que haja o processo de osmose inversa. Os valores das pressões osmóticas de processo foram obtidos através das Equações 13, 14, 15 e 25.

A Figura 26 mostra a média os valores obtidos para as pressões osmóticas de operação através dos modelos matemáticos utilizados. A figura ainda mostra o valor obtido pelo ROSA® (Software da Filmtec).

Observa-se que os resultados dos modelos da Hydranautics e da Filmtec foram praticamente os mesmos. Enquanto os demais métodos apresentaram variações, com maiores divergências para os resultados apresentados pelo software e pelo modelo de Judd&Simon.

Este comportamento pode ser explicado devido à diferença entre os métodos utilizados para a obtenção da pressão osmótica do concentrado e do permeado. O programa *ROSA* obtém seus valores de pressão osmótica, através de equações que calculam as concentrações de sais resultantes, tanto para a corrente do concentrado como para a do permeado.

Os valores calculados para os demais modelos matemáticos se baseiam em dados reais de concentração, obtidos através de análises físico-químicas de amostras coletadas durante o funcionamento do sistema.

Outro fator importante é a variação do resultado devido ao tipo de equação utilizada. Sabe-se que para meios não ideais (soluções com elevadas concentrações de sais) a equação de Judd&Simon (Van't Huff, aplicada às soluções com diluições infinitas, meio ideal) não pode ser utilizada diretamente, sendo necessário um fator de correção (Judd, 2003), que neste caso, o fator de correção utilizado pode não ser adequado para as concentrações de sais das amostras da alimentação e do concentrado.

Os desvios também podem ser causados devido à relação pressão osmótica e concentração de sais, que raramente é linear como as Equações 13, 14, 15 e 25 sugerem, devido ao desvio da idealidade em soluções com elevadas concentrações.

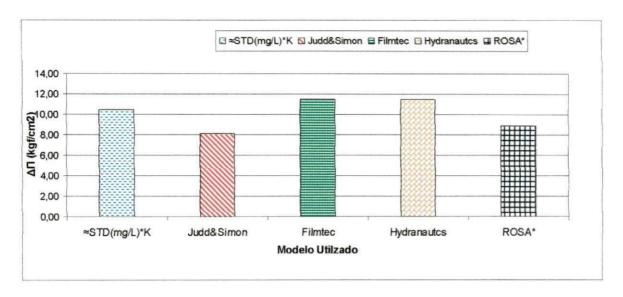


Figura 26. Comparação entre as pressões osmóticas médias de processo obtidas por diferentes equações para o sistema. (*Valor de $\Delta\pi$ obtido a partir do programa Reverse Osmosis System Analysis – ROSA).

4.1.6 Coeficiente de transferência de solvente (Kw) e do soluto (Ks)

Os coeficientes foram obtidos com o auxílio das Equações 20 e 21, utilizando-se como dados para cálculos os valores das concentrações de sais, obtidas durante as análises físico-químicas, e as pressões osmóticas obtidas pelos modelos já citados.

A Figura 27 mostra os comportamentos dos coeficientes de transferência de soluto (Ks) e solvente (Kw), em função do fluxo de permeado.

Observa-se uma pequena variação nos valores do Kw e do Ks durante o período de operação. Esse comportamento pode ocorrer, devido a precipitação de sais nas superfícies das membranas, dificultando a passagem da água, diminuindo o Kw e elevando a diferença de pressão do sistema.

O resultado é uma maior passagem de sais através dos poros das membranas, o que eleva o valor de Ks.

Os coeficientes Kw e Ks também podem variar com a temperatura da água de alimentação. Isso acontece porque os poros das membranas sofrem dilatação, elevando o fluxo de água "dessalinizada" e reduzindo a seletividade da membrana.

Observa-se que os comportamentos dos quatro modelos aplicados são semelhantes, variando nos valores de Kw para Judd&Simon e STD aproximado. Para os modelos da Filmtec e da Hydranautics, os resultados foram praticamente os mesmos.

As diferenças entre os valores são as respostas das variações dos gradientes de pressão osmótica utilizados pelos modelos matemáticos. Comparando os resultados do STD aproximado com os modelos da Filmtec e da Hydranautics, observa-se que eles são próximos, sugerindo a convergência dos métodos aplicados.

É importante frisar que os coeficientes de transferência de soluto e solvente, para os modelos da Filmtec e da Hydranautics, são obtidos através de soluções salinas, como por exemplo, às soluções de cloreto de sódio. O que também implica em um pequeno desvio dos valores obtidos pelo modelo do STD aproximado.

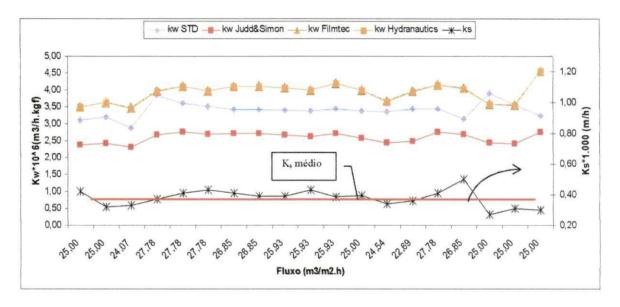


Figura 27. Comparação entre os coeficientes de transferência de soluto e solvente durante o monitoramento do sistema de dessalinização.

Através dos dados da Figura 27, calculou-se os coeficientes Kw e Ks médios. Os resultados obtidos foram comparados aos descritos na literatura, característicos para sistemas de osmose inversa e podem ser observados nas Tabelas 5 e 6.

Os resultados mostram que os coeficientes obtidos experimentalmente estão dentro das escalas descritas pela literatura. O que indica que o sistema vem operando dentro das suas características técnicas de funcionamento.

Tabela 5. Comparação entre os coeficientes Kw e os dados da literatura.

Modelos	Kw Experimental (m³/h.kgf)	Kw teórico (m³/h.kgf)□	Kw teórico (m³/h.kgf)	
Aprox. STD	0,34x10 ⁻⁵		per un ter a comment de la	
Judd&Simon	0.26×10^{-5}	4.9x10 ⁻³ a 4.9x10 ⁻⁵	2,94x10 ⁻³ a 5,88x10 ⁻⁵	
Filmtec	0,39x10 ⁻⁵	4,9810 84,9810	2,94x10 a 3,00x10	
Hydranautics	0,39x10 ⁻⁵	56 56		

^{□(}Scott, 1999), ◆(Singh, 2006).

Tabela 6. Comparação entre os coeficientes Ks e os dados da literatura.

Ks Experimental (m³/m²,h)	Ks teórico (m³/m².h)□
0,37x10 ⁻³	5x10 ⁻³ a 1x10 ⁻⁴
□(Scott, 1999)	

4.1.7 Índice de Saturação de Langelier e de Stiff e Davis

Para se determinar o potencial de incrustação por carbonato de cálcio (CaCO₃), foram calculados os Índices de Saturação de Langelier (ISL) e de Stiff e Davis (S&DIS) com o auxílio das Equações 16 e 17.

As Figuras 28 e 29 mostram o potencial de incrustação para as correntes de alimentação e de concentrado aplicando-se os dois mecanismos. Os resultados obtidos foram gerados tomando-se como base a temperatura do ambiente no qual o pH-metro fez a leitura, que foi de 25°C. Os valores medidos "in loco" podem ser um pouco menores, devido à influência da solubilidade com a variação da temperatura (Mahan, 1984).

Nas Figuras, observa-se que os valores obtidos pelo S&DIS são menores que os obtidos pelo ISL. Comprovando o desvio do ISL para soluções com elevadas concentrações de sais.

O importante em se aplicar uma metodologia adequada é a maior precisão nos resultados obtidos. Através deles é que são feitas as dosagens do pré-tratamento.

Dados com elevados desvios podem gerar erros de dosagem, dispêndio de solução, elevação dos custos e ainda pode virar um fator de risco para os elementos de membrana, pois a água após o pré-tratamento inadequado, pode ganhar caráter corrosivo.

Mesmo com valores menores que os indicados pelo ISL, o S&SD indica um potencial de precipitação de CaCO₃ para a corrente de alimentação, o que se eleva para os resultados obtidos para a corrente de concentrado.

Os desvios dos resultados podem ser explicados devido à aplicabilidade de cada equação. O ISL é utilizado para soluções com concentrações de sais mais baixas, soluções de até 10.000 mg/L de sais dissolvidos, não utilizando a influência da força iônica do meio. O modelo de S&DIS leva em consideração a força iônica da solução devido às suas elevadas concentrações de sais, acima de 10.000 mg/L para este trabalho.

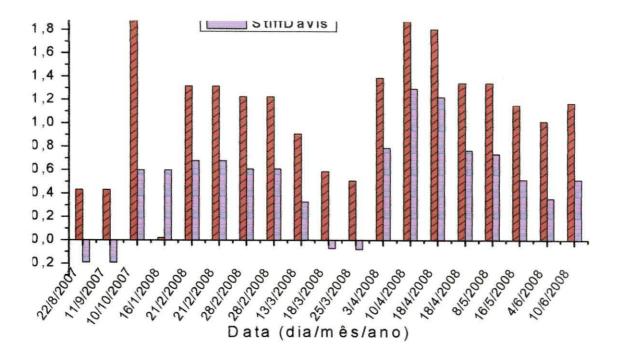


Figura 28. Comparação entre os resultados do Índice de Saturação (IS) de Langelier e Stiff & Davis para a água de alimentação do sistema de dessalinização.

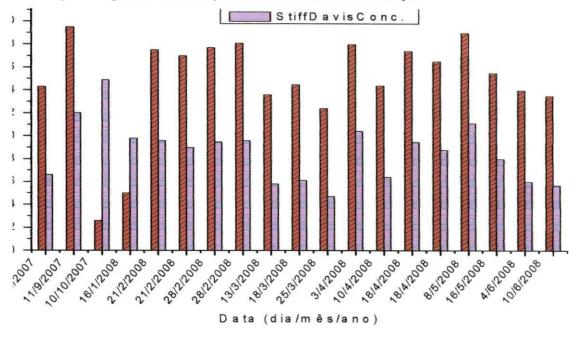


Figura 29. Comparação entre os resultados do Índice de Saturação (IS) de Langelier e Stiff & Davis para a água do concentrado do sistema de dessalinização.

4.1.8 Observações sobre a sílica (SiO2)

A Figura 30 mostra o perfil das concentrações de sílica nas três correntes do sistema. A sílica pode se apresentar com várias formas na água, são elas: sílica dissolvida e

reativa, sílica dissolvida e não reativa (coloidal) e a sílica não dissolvida (particulada) (Ning, 2003). Os dois primeiros tipos de sílicas são prejudiciais às membranas, onde requer um pré-tratamento químico diferenciado e mais rigoroso.

Elevadas concentrações podem incrustar rapidamente as membranas com depósitos insolúveis. Segundo Lisitsin *et al*, (2005), a concentração de sílica na ordem de 10 mg/L na água de alimentação do sistema, na prática, já é um nível de concentração sujeito a formação de incrustações. Considerando que a concentração de sílica na água do poço está acima de 50 mg/L a sequência de limpeza química poderá ficar maior em função do tempo de operação.

Até o presente momento, o processo de monitoramento e pré-tratamento aplicado, tem oferecido segurança ao funcionamento do sistema.

Esses resultados servirão como dados de referência na aplicação de procedimentos corretivos para a prevenção de depósitos de sais, de natureza inorgânica, nas superfícies das membranas.

Figura 30. Comparação entre as concentrações de sílica para as correntes da alimentação, permeado e concentrado.

4.1.9 Limpeza química dos elementos de membrana

Foram utilizadas duas soluções para a realização da limpeza química: Uma alcalina com pH \approx 12,0 (NaOH) e uma ácida com pH \approx 3,0 (HCl), ambas à uma temperatura de 35°C.

Foram realizadas um total de 3 limpezas químicas durante o monitoramento. Os resultados das três foram similares. Desta forma, serão abordados os resultados de apenas uma como meio de ilustração dos resultados.

Durante o processo de limpeza química com NaOH, observou-se a formação de uma coloração branca no efluente que retornava ao tanque de limpeza, conforme a Figura 31. Supõe-se que seja um precipitado de carbonato de cálcio e/ou sílica, etc. Considerando que estes são elementos de alta concentração na água do poço. As Figuras 32 e 33 mostram uma amostra da solução de limpeza após a saída do sistema de dessalinização e a mesma amostra após um intervalo de tempo.

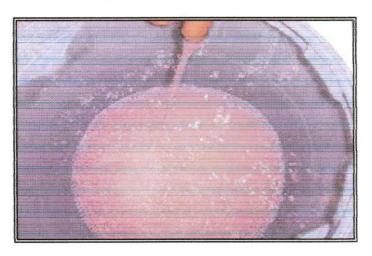


Figura 31. Solução de limpeza química após extração de sais.

Figura 32. Efluente de limpeza química após extração de sais e solução de limpeza.

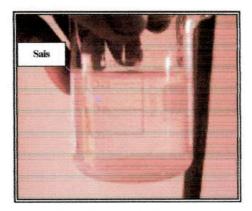


Figura 33. Efluente de limpeza química após decantação.

A Figura 34 mostra o comportamento do pH e da condutividade elétrica durante a limpeza química com NaOH. Observa-se um ganho na condutividade elétrica devido à extração de sais das superficies das membranas durante a limpeza. O pH da solução diminui devido à reação da hidroxila com os sais depositados nas membranas.

Observa-se que a variação da condutividade elétrica da solução chega a aproximadamente 1,2 mS/cm, que transformando para concentração de sais através da Tabela 2 do Capitulo II, chega a um valor de aproximadamente 780 mg/L de sais retirados das superficies dos elementos de membrana.

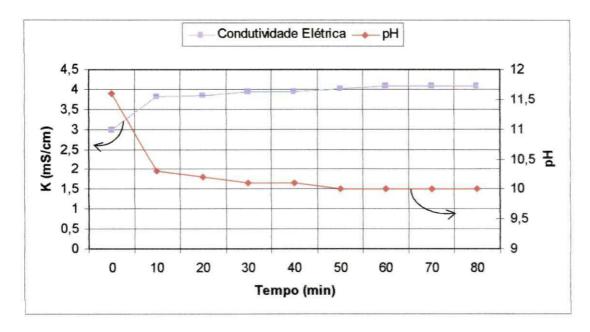


Figura 34. Comportamento da condutividade elétrica e do pH durante o processo de limpeza química com NaOH.

Após a limpeza química com NaOH, as membranas foram lavadas com água dessalinizada para eliminar o excesso da solução alcalina.

A segunda etapa da limpeza química foi dada com uma solução de HCl. Com o início da limpeza química com HCl, iniciou-se o processo de neutralização do meio ainda alcalino. Dessa maneira, o pH da solução de HCl foi corrigido todas as vezes que o valor do pH aumentava bruscamente. Isso explica os picos mostrados na Figura 35.

A condutividade elétrica também se elevou, devido a extração de sais na membrana, à adição de HCl sempre que necessário e à neutralização do NaOH.

No final, a limpeza dos elementos de membranas com água dessalinizada foi mais uma vez realizada para expulsar todos os resíduos remanescentes nas membranas e deixar o pH neutro.

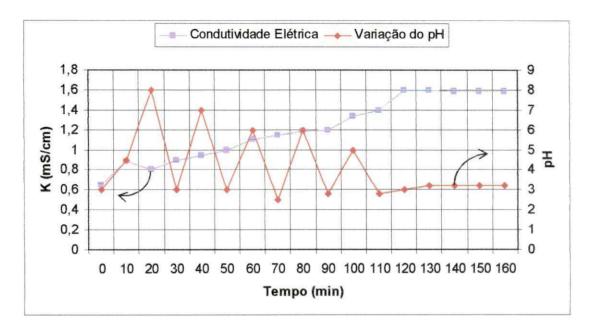


Figura 35. Comportamento da condutividade elétrica e do pH durante o processo de limpeza química com HCl.

Após os procedimentos de limpeza química, o equipamento foi ligado e permaneceu em operação durante um período de uma hora para que todas as variáveis de medida fossem ajustadas. Uma nova coleta de dados foi efetuada e comparada com os dados previamente adquiridos, como mostra a Tabela 7.

É possível observar que, após a limpeza química, o equipamento obteve um ganho na produção de água permeada de 5,5 L/min apresentando uma melhoria na qualidade da água dessalinizada gerada, com uma condutividade elétrica de 0,41mS/cm.

Tabela 7. Variáveis de medida antes e após processo de limpeza química.

	F1 (kgf/cm ²)	F2 (kgf/cm ²)	P1 (kgf/cm ²)	P2 (kgf/cm ²)	Q1 (L/min)	Q2 (L/min)	Kp (mS/cm)
Antes da limpeza	5,25	4,75	18,5	18,0	45,0	24,5	0,50
Após a limpeza	5,0	5,0	19,3	19,0	47,0	30,0	0,41

Onde:

P2 = Pressão de saída das membranas

F1 = Pressão de entrada dos filtros

Q1 = Vazão do concentrado

F2 = Pressão de saída dos filtros

Q2 = Vazão do permeado

P1 = Pressão de entrada das membranas

Kp = Condutividade da água permeada

O descarte da solução de limpeza química das membranas trata-se de uma solução de sais minerais com pH neutro devido às reações químicas que ocorreram durante a

limpeza. De acordo com as características do ácido clorídrico ocorreu em maior proporção a formação de cloretos de cálcio, cloreto de sódio, cloreto de magnésio, os quais são sais solúveis que não afetam o meio ambiente. No final da limpeza a solução da limpeza química foi levada para o laboratório para ser usada para outros fins.

4.1.10 Troca de filtro de cartucho

O filtro de cartucho é um indicador do processo de incrustação que pode estar acontecendo nos elementos de membrana. Quando o filtro fica saturado com os materiais em suspensão, sua eficiência diminui e inicia-se então a passagem de material para os elementos de membrana.

Durante o período das chuvas, a única proteção das membranas, foi o filtro de cartucho que recebia todo o material arenoso que era captado pela bomba do poço.

Antes de dar início aos procedimentos de limpeza química, o filtro de cartucho foi substituído por um novo. As Figuras 36 e 37 mostram o estado que o mesmo se encontrava, ou seja, sem condições de filtrar devidamente os materiais em suspensão.

Figura 36. Substâncias retidas pelo filtro.

Figura 37. Comparação entre os filtros.

4.2 Comportamentos dos processos de mistura

4.2.1 Comparação entre os processos de mistura

Foram realizadas análises físico-químicas das três correntes do sistema: alimentação, concentrado e permeado, após as coletas de suas amostras. A Tabela 8 mostra as características físico-químicas das amostras que foram utilizadas para o processo de mistura no laboratório.

Tabela 8. Dados referentes às águas de alimentação, permeado e concentrado utilizadas para o procedimento de mistura no LABDES.

PARÂMETROS	Alimentação	Concentrado	Permeado	VMP (*)
Condutividade Elétrica, µmho/cm a 25 °C	15.410,0	22.600,0	394,0	***
Potencial Hidrogeniônico, pH	6,5	7,8	5,9	6,5 a 8,5
Turbidez, (uT)	0,7	0,2	0,2	1,0 a 5,0
Cor, Unidade Hazen (mg Pt-Co/L).	0,0	5,0	0,0	15,0
Dureza em Cálcio, mg/L Ca ⁺⁺	767,0	1.157,0	2,6	
Dureza em Magnésio, mg/L Mg ⁺⁺	842,4	1.164,6	1,4	
Dureza Total, mg/L CaCO ₃	5.427,5	7.745,0	12,5	500,0
Sódio, mg/L Na ⁺	2.222,3	3.294,2	65,6	200,0
Potássio, mg/L K ⁺	35,3	87,9	1,3	
Alumínio (Al ³⁺), mg/L	0,00	0,00	0,00	0,2
Ferro Total, mg/L	0,01	0,04	0,01	0,3
Alcalinidade em Hidróxidos, mg/L CaCO ₃	0,0	0,0	0,0	
Alcalinidade em Carbonatos, mg/L CaCO ₃	132,0	244,0	0,0	
Alcalinidade em Bicarbonatos, mg/L CaCO ₃	404,0	446,0	9,2	
Alcalinidade Total, mg/L CaCO ₃	536,0	690,0	9,2	
Sulfato, mg/L SO ₄	350,3	519,4	5,4	250,0
Cloreto, mg/L Cl	6.851,5	10.209,8	105,1	250,0
Nitrato, mg/L NO ₃	0,00	0,00	0,08	10,0
Nitrito, mg/L NO ₂	0,03	0,04	0,01	1,0
Amônia (NH ₃), mg/L	0,29	0,63	0,14	1,3
Sílica, mg/L SiO ₂	58,4	90,0	0,2	
ISL (Índice de Saturação de Langelier)	0,43	1,95	-4,16	≤0
Total de Sólidos Dissolvidos Secos a 180°C, mg/L	12.188,0	18.584,0	193,1	1.000,0

(*)VMP - Valor Máximo Permissível ou recomendável pela Legislação Brasileira (PORTARIA 518/04 MS).

Através dos resultados das análises, foram feitos balanços de massa e calculadas as frações de água necessárias para a realização das misturas com concentrações desejadas no laboratório. Obedecendo as Equações 28 e 29, foram obtidos os valores das frações de concentrado e permeado para uma mistura que posteriormente pudesse ser repetida no campo. A Tabela 9 mostra as frações de águas dessalinizada e concentrada.

Tabela 9. Média dos dados de três experimentos de mistura realizados para dar suporte aos ajustes do misturador de águas.

Vazão do Permeado (Q _p [L/min])	Vazão do Concentrado Misturada (Qc[L/min])	Vazão da Mistura (Q _p + Q _c) [L/min]	Razão de Mistura do Permeado (X _p [%])	Razão de Mistura do Concentrado (X _c [%])	Volume Exp*. (mL)	Volume do Permeado (mL)	Volume do Concentrado (mL)
27	0,83	28	97,0	3,0	1.000	970	30
27	1,67	29	94,2	5,8	1.000	942	58
27	2,50	30	91,5	8,5	1.000	915	85
27	3,33	30	89,0	11,0	1.000	890	110
27	5,00	32	84,4	15,6	1.000	844	156
27	6,67	34	80,2	19,8	1.000	802	198
27	8,33	35	76,4	23,6	1.000	764	236
27	11,67	39	69,8	30,2	1.000	698	302
27	15,00	42	64,3	35,7	1.000	643	357

Exp* - Experimental

A Tabela 10 mostra a variação da concentração de sais para três misturas obtidas pelos métodos estudados: o simulado através de um balanço de massa, os resultados experimentais obtidos no LABDES e os dados obtidos no campo. Os erros foram calculados tomando os dados do balanço de massa como valor teórico e os dois outros métodos foram tomados como dados experimentais.

Observa-se que as médias dos STD dos três experimentos, os maiores desvios apresentados foram para os dados do campo, chegando a 19% do valor obtido pela simulação. A divergência dos percentuais entre os valores de campo e o simulado está diretamente relacionada com os seguintes pontos:

- o efeito de temperatura e pH do meio pode influenciar na concentração iônica da alcalinidade e a formação de CO₂;
- o controle da fração da vazão do concentrado se torna uma das fontes de erro na leitura do rotâmetro devido às vibrações causadas pela pressão de saída do concentrado e ajuste da válvula de controle.

Esses desvios podem ser minimizados com o uso de rotâmetros digitais e válvulas de passagem que ofereçam ajustes finos.

4.2.2 Tempo de mistura no misturador

A Figura 38 mostra o comportamento do tempo de mistura do misturador com o aumento de Q_m . Observou-se o t_m no misturador diminui em função do aumento do Q_m . A mistura principal ocorreu no tubo central do misturador, onde o tempo de mistura foi calculado em função seu volume e as vazões de alimentação. O processo de homogeneização acontece ao longo do misturador e mesmo com a redução do tempo de mistura, o produto gerado ainda apresenta características aproximadas às simuladas e as obtidas durante os experimentos realizados no LABDES.

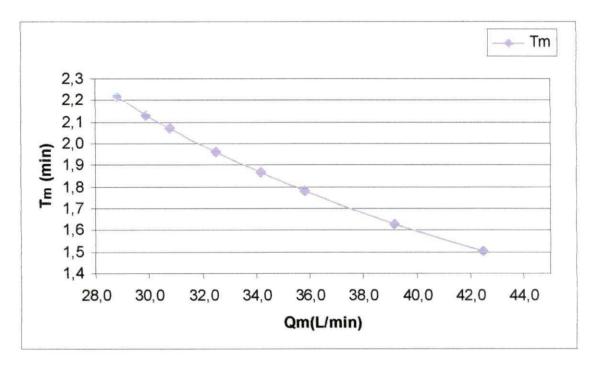


Figura 38. Tempo de mistura dentro do misturador.

4.2.2 Comparação entre alguns dados para os processos de mistura

As Figuras 39 a 40 mostram as comparações entre os valores médios obtidos durante os experimentos feitos no laboratório e no campo. Observa-se que o comportamento das curvas apresentadas nas Figuras 39 e 40 foram similares.

Nota-se na Figura 39 que ocorreu uma pequena divergência a partir do Q'_c acima de 4,0 L/min. quando comparado com razões de volumes do permeado e do concentrado medidos no LABDES. Esse fato pode ser explicado pelos valores do pH, conforme mostra a Figura 40, os valores dos pHs lidos no LABDES sempre foram superiores ao do campo.

De certa forma ambos os casos estão relacionados intrinsecamente, através da temperatura e a dissociação do carbonato e bicarbonato, conforme mostra as Equações 30 e 31.

A questão dos ajustes de vazão do concentrado, conforme mencionado no Item 4.2.1, também pode ser um atenuante dessa diferença de valores obtidos no LABDES e no campo para os parâmetros estudados.

$$HCO_3^- + H^+ \leftrightarrow H_2CO_3 \leftrightarrow H_2O + CO_2 \uparrow \text{ (Formação do dióxido de carbono pelo Bicarbonato)} \tag{30}$$

$$CO_3^- + H^+ \leftrightarrow HCO_3^- \leftrightarrow HCO_3^- + H^+ \leftrightarrow H_2CO_3 \leftrightarrow H_2O + CO_2 \uparrow \text{ (Formação do dióxido de carbono pelo carbonato)} \tag{31}$$

Tabela 10. Variação da concentração iônica da mistura do permeado (Q_p = 27 L/min) com a vazão do concentrado (Q'_c [L/min]).

		Exp. 02 Q'c (1,67 L/min)				Exp. 05 Q'c	(5,0 L/min))		E	xp. 08 Q'c (1	1,67 L/min)		
Parâmetros	Simulado	LABDES	Campo	Erro 1(%)	Erro 2(%)	Simulado	LABDES	Campo	Erro 1(%)	Erro 2(%)	Simulado	LABDES	Campo	Erro 1 (%)	Erro 2 (%)
K (μS/cm)	1.911,6	2.450,0	2.400,7	28,2	25,6	4.443,4	5.410,0	4.558,3	21,8	2,6	8.220,0	8.907,3	7.400,8	8,4	10,0
pН		7,2	6,2	0,0	0,0		7,6	6,5	0,0	0,0	***	7,9	6,7	0,0	0,0
Ca ⁺⁺ (mg/L)	68,5	73,3	72,5	7,0	5,9	179,5	198,5	160,0	10,6	10,9	345,1	381,7	269,7	10,6	21,9
Mg ⁺⁺ (mg/L)	78,2	69,7	85,7	10,8	9,6	204,8	203,8	171,4	0,5	16,3	393,6	369,5	286,4	6,1	27,2
Na ⁺ (mg/L)	278,3	284,9	336,6	2,4	20,9	622,9	674,5	631,6	8,3	1,4	1.136,9	1.228,5	964,2	8,1	15,2
K ⁺ (mg/L)	2,1	0,9	1,0	0,0	0,0	4,8	2,7	1,8	0,0	0,0	8,8	4,2	3,5	0,0	0,0
Al ³⁺ (mg/L)	0,00	0,0	0,0	0,0	0,0	0,00	0,0	0,0	0,0	0,0	0,00	0,0	0,0	0,0	0,0
Fe total (mg/L)	0,01	0,0	0,0	0,0	0,0	0,01	0,0	0,0	0,0	0,0	0,01	0,0	0,0	0,0	0,0
OH (mg CaCO ₃)	0,00	0,0	0,0	0,0	0,0	0,00	0,0	0,0	0,0	0,0	0,00	0,0	0,0	0,0	0,0
CO ⁼ ₃ (mg CaCO ₃)	13,2	0,0	0,0	0,0	0,0	34,3	14,7	20,0	57,2	41,7	65,7	94,7	52,0	44,1	20,9
HCO3(mg CaCO3)	41,9	59,2	77,3	41,1	84,4	93,9	121,3	122,0	29,2	29,9	171,5	135,5	174,7	21,0	1,9
alc Total(mg CaCO ₃)	54,2	59,2	77,3	9,2	42,6	125,6	136,0	142,0	8,3	13,0	232,1	230,7	226,7	0,6	2,4
SO ₄ (mg/L)	37,6	51,1	52,0	36,1	38,5	95,5	147,1	114,5	54,1	19,9	181,9	283,8	223,2	56,0	22,7
Cl (mg/L)	722,0	696,9	797,0	3,5	10,4	1.748,0	1.773,0	1.521,8	1,4	12,9	3.278,4	3.312,5	2.588,0	1,0	21,1
NO ₃ (mg/L)	1,21	0,1	0,0	0,0	0,0	1,01	0,2	0,1	0,0	0,0	0,71	0,1	0,1	0,0	0,0
NO ₂ (mg/L)	0,01	0,1	0,0	0,0	0,0	0,01	0,1	0,0	0,0	0,0	0,02	0,0	0,0	0,0	0,0
NH ₃ (mg/L)	0,45	0,2	0,3	0,0	0,0	0,84	2,4	1,2	0,0	0,0	1,43	3,4	6,0	0,0	0,0
SiO ₂ (mg/L)	5,87	6,3	7,6	6,8	30,0	15,0	15,9	15,7	6,3	4,7	28,60	32,0	28,3	11,9	1,2
STD (mg/L)	1.319,9	1.340,7	1.560,3	1,6	18,2	3.182.8	3.516.3	2.940,0	10,5	7,6	5.961,5	6.336,7	4.811,7	6,3	19,3

Onde:

Exp. - Média dos Experimentos realizados por Simulação, procedimentos experimentais no LABDES e experimentos no Campo;

Alc. - Alcalinidade;

STD – Sólidos Totais Dissolvidos evaporados a 180°C;

Erro 1 – Tomando como valor teórico o Simulado e os valores das colunas LABDES como experimental;

Erro 2 – Tomando como valor teórico o Simulado e os valores das colunas Campo como experimental.

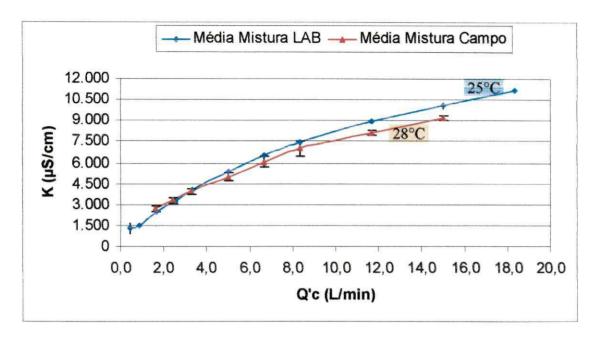


Figura 39. Comparação entre as médias das condutividades em função do volume do concentrado.

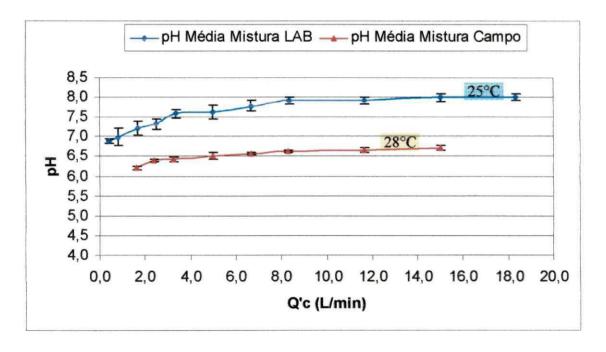


Figura 40. Comparação entre as médias dos pHs em função do volume do concentrado.

Todos os dados referentes aos três experimentos podem ser encontrados no Anexo 8.

4.2.3 Análise dos erros das misturas obtidas no LABDES e no campo

A Figura 41 mostra o perfil dos erros obtidos para as médias dos experimentos realizados no LABDES e no campo. Observou-se que as composições de misturas no campo apresentaram maiores desvios em relação aos do balanço de massa. Conforme, já foi comentada a leitura do Q'_c no rotâmetro, a qual está sujeita as várias oscilações em função da influencia da pressão do concentrado e conseqüentemente das oscilações das tubulações de PVC devido às perturbações. A partir dessas informações pode-se observar que a média dos erros para os experimentos no campo foi na ordem de 12,3% e para os realizados no LABDES foi de 5,7%. Essa margem de erro não interfere na qualidade final da mistura, conforme mostra os dados da Figura 41.

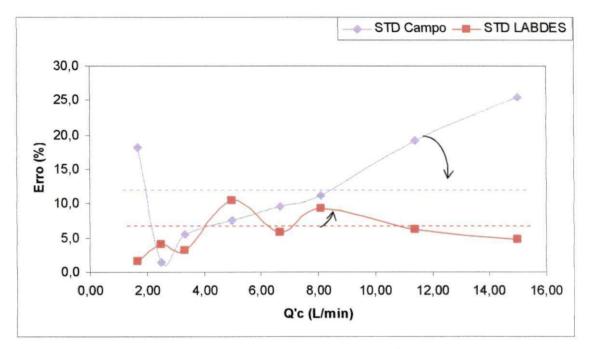


Figura 41. Perfil dos erros apresentados com a variação de Q_m para as misturas realizadas no LABDES e no campo.

4.2.4 Análises dos níveis de concentrações de sais das misturas para cultura hidropônica e desenvolvimento de Spirulina

A Figura 42 apresenta também o comportamento do STD simulado e os valores de STD do LABDES e dos obtidos no campo, oriundos de análises físico-químicas.

Observou-se que os dados da curva de mistura obtidos no campo apresentam um pequeno desvio quando comparada aos obtidos pelo balanço de massa, e aqueles obtidos através das misturas no LABDES. Pode-se também usar os mesmos argumentos dados aos perfis das

curvas das Figuras 39 e 40, uma vez que as divergências dos valores de STD estão relacionadas com as condutividades elétricas e as variações do pH e temperatura do meio.

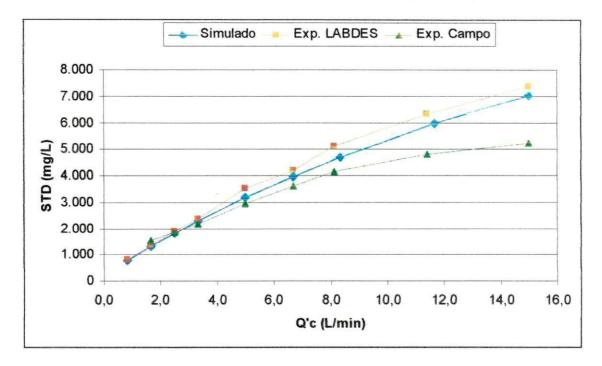


Figura 42. Comparação entre as médias dos STDs em função do volume do concentrado.

Observa-se que os valores do STD aumentam em função do Q'_c , conforme esperado. Em termos de composição iônica as misturas apresentação concentrações de sais definidas, as quais podem variar à medida que a fração do concentrado aumenta.

De acordo com os STD obtidos pode-se observar que se enquadra para ser usado na irrigação do tomate, onde a concentração de cloreto de sódio acima de 1,4 mS/cm (de acordo com a Tabela 2 do Capitulo II a concentração de NaCl é igual a 910 mg/L) torna o tomate mais doce e influencia na acidez (Sato et al, 2006).

Enquanto que já foi testado a irrigação hidropônica do tomate com concentrações na faixa de condutividade elétrica de nutrientes de (2,5 a 8,0) mS/cm, com concentrações de cloreto de até 1.800 mg/L, onde a faixa do STD chega a (1.625 a 6.240) mg/L (Magán et al, 2008).

Essas informações mostram que o uso do misturador no processo de dessalinização para fins de aproveitamento do concentrado é viável, no sentido de obter misturas de diferentes níveis de concentrações sais dissolvidos para fins irrigações de sistemas hidropônicos. Como no caso em estudo a concentração da mistura também visa beneficiar a produção de algas do tipo *Spirulina platensis*, o misturador também pode produzir soluções de misturas de acordo com as características físico-químicas exigidas pelo meio, assim como segue: Devido a sua elevada tolerância a salinidade (7 a 56 g/L) e requerendo todos os elementos necessários aos organismos autotróficos: N, P, Mg, S, Fe, K e Na (Guérin-Dumartrait & Moyse; 1976). A restrição acontece com relação à razão de concentração de potássio e sódio que deverá ser menor ou igual a 5 e as concentrações de cálcio (Ca⁺⁺) no meio de cultivo da Spirulina, que segundo Paoletti *et al* (1975), concentração mais adequada é de 10⁻⁴ M ou 4,0 mg/L de cálcio.

Como as misturas obtidas possuem concentrações de Ca⁺⁺ superiores às sugeridas pela literatura, os efluentes obtidos pelo misturador precisam passar por um pós-tratamento para reduzir a concentração da espécie química citada.

Qualquer água obtida pelo processo de mistura pode ser aplicada no desenvolvimento e produção de Spirulina com a aplicação das devidas correções de concentrações de Ca⁺⁺.

CAPÍTULO V

Conclusões

As conclusões obtidas no presente trabalho podem ser divididas em duas partes, assim como segue:

Parte 1 - Monitoramento do sistema de dessalinização

- A vazão do permeado diminuiu e a qualidade do permeado foi alterada em função do tempo de funcionamento do sistema, devido os altos índices de concentrações de sais presentes na corrente de alimentação;
- Independentemente dos sólidos totais dissolvidos na água da corrente de alimentação a rejeição média de sais foi de 98 %, a qual se encontra dentro da faixa de rejeição especificada pelo fabricante dos elementos;
- As pressões osmóticas de operação, obtidas pelos modelos do STD aproximado, da Filmtec, da Hydranautics foram similares, divergindo apenas do modelo Judd&Simon;
- Os coeficientes de transferência de solvente e soluto tiveram comportamentos similares, diferenciando em seus valores numéricos, havendo uma maior aproximação entre os valores obtidos pelos modelos do STD aproximado, da Filmtec e da Hydranautics;
- Os potenciais de incrustação foram positivos para as análises realizadas nas correntes de alimentação e concentrado, indicando a necessidade de um ajuste no pré-tratamento químico para a água da alimentação;
- As variações das variáveis de medidas e os resultados das análises físico-químicas foram indicadores importantes para o monitoramento do sistema de dessalinização e decisões das realizações das limpezas químicas dos elementos de membranas.

Parte 2 - Misturador

- O misturador foi construído e instalado com sucesso;
- As misturas realizadas no laboratório e no campo obtiveram resultados aproximados relacionados à condutividade elétrica e STD;

- Os valores do pHs das misturas realizadas no laboratório e das amostras analisadas no campo foram diferentes devido à variação de temperatura do meio, onde no campo as temperaturas médias durantes os experimentos chegaram a 28°C e as dos experimentos realizados no LABDES foram de 25°C;
- Observou-se que a válvula de controle da vazão do concentrado e pressão do concentrado são fontes de erros para a leitura da vazão do concentrado Q'c.para o misturador;
- O funcionamento do sistema de mistura pode ser aplicado para produção de águas com diferentes níveis de concentrações de sais;
- Os resultados das concentrações de sais de mistura para os níveis estudados se enquadram com os níveis de concentrações de sais para irrigação do tomate e desenvolvimento da Spirulina;
- Para o nível da concentração da corrente de alimentação, 37,5% do concentrado ainda foi aproveitado para os casos estudados. Obviamente, esse percentual pode ser aumentado em função dos níveis de tolerância de sais que serão exigidos por uma dada cultura hidropônica/e ou Spirulinas;
- De acordo com os dados obtidos para as características das correntes de alimentação e do concentrado, o misturador pode ser utilizado para diluir a concentração iônica do concentrado com a corrente de alimentação, gerando assim, uma "nova água" com concentrações definidas para um dado produto.

CAPÍTULO VI

6. Perspectivas

Em função dos dados obtidos a partir desse trabalho as seguintes perspectivas visam melhorar a qualidade dos dados e o desempenho do misturador:

- Aplicar esse modelo para fontes hídricas com menores níveis concentrações de sais dissolvidos visando o melhor aproveitamento do concentrado;
- Estudar a relação de volume do concentrado consumido em função dos níveis de tolerâncias de sais para o desenvolvimento da Spirulina, uso na piscicultura e irrigação hidropônicas;
- Desenvolver um balanço sócio-econômico com o consumo do permeado e a renda dos produtos obtidos a partir do uso do concentrado do processo dessalinização.

Referências bibliográficas

- AHMAD. G. E; SCHIMIDE, J. Feasibility Study of Brackich Water Desalination in the Egyptian Deserts and Rural Regions Using PV Sistems. Energy Conversion and Management, 2001. p. 9.
- AL-SHAMMIRI, M., AHMED, M., AL-RAGEEB, M., Nanofiltration and calcium sulfate limitation for top brine temperature in Gulf desalination plants, **Desalination** 167, 2004. p. 335-346).
- AMJAD, Z.; WORKMAN, K. R.; CASTETE, D. R. Considerations in membrane cleaning. Reverse Osmosis: Membrane Technology, Water Chemistry & Industrial Applications. Edited by Amjad Zahid, Copyright, by Van Nostrand Reinhold, 1993. p. 222.
- AMTA American Membrane Technology Association, Improving America's Waters Through Membrane Treatment and Desalting - Water Desalination Processes 2409 SE Dixie Hwy., Stuart, Florida 34996, Feb. 2007.
- BACCHIN, P.; AIMAR, P. Critical fouling conditions induced by colloidal surface interaction: from causes to consequences, **Desalination** v.175, p. 21-27, 2005.
- BAKER, R. W. Membrane technology and applications. 2th Edition, John Wiley & Sons Ltd, 2004, p. 3-4.
- BEM-NAIM, A. Molecular theory of solutions. Press New York: Oxford University. 2006, p. 182, 191 e 194.
- 8. BYRNE, W. Reverse Osmosis, A Practical Guide for Industrial Users, Tall Oaks Publishing Inc., First Edition Chapter 3, 1995, p. 159-165.
- BONNÉ, P. A. C., HOFMAN, J. A. M. H., HOEK, J. P. van der., Scaling control of RO membranes and direct treatment of surface water. Desalination v. 132, p. 109-119, 2000.
- BRANDT, D. C.; LEITNER, G. F.; LEITNER, W. E. Reverse osmosis membranes State of the art. Osmosis: membrane technology, water chemistry & industrial applications. Edited by Zahid Amijad, Copyright, by Van Nostrand Reinhold, 1993. p. 1.
- BRITO, P. Chuva deixa população ilhada em duas cidades. Jornal da Paraíba, Campina Grande, Paraíba, capa, 21 de março de 2008.
- 12. DOS ANJOS, G. G. Comparação de Dois sistemas dessalinização via Osmose inversa e efeitos da manutenção. 2002. 45f. Dissertação (Programa Pibic CNPq) Centro de Ciências e Tecnologia, Universidade Federal da Paraíba, Campina Grande.
- DUDLEY, L. Y.; Darton, E. G. Pretreatment Procedures to Control Brograwth and Scale Formation in Membranes Systems, Desalination, v.110, p. 11-20. 1997.
- DYDO, P.; TUREK, M.; CIBA, J. Scaling analysis of nanofiltration systems fed with saturated calcium sulfate solutions in the presence of carbonate ions. **Desalination**, v. 159, p. 245-251, November 2003.
- FARIAS, B. Chove em mais de 100 municípios e vários açudes sangram. Jornal a União, Governo do Estado da Paraíba, 19 de março de 2008.

- FILHO, D. F. S. Tecnologia de tratamento de água água para a indústria. 2ª Ed. Livraria Nobel S.A., 1983, p. 99-115.
- 17. FELTRE, R. Físico-Química Química. 4ª Ed. Volume 2, Editora Moderna, 1996, p. 3-5.
- 18. FERREIRA, W. B.; PEREIRA, M. L. F.; SILVA, S. K.; CARTAXO, J. M.; SILVA, J. N.; CIRNE, M. I.; FRANÇA, K. B. Pré-tratamento com membranas de microfiltração na dessalinização. VI Congresso Ibero-Americano em Ciências e Tecnologia de Membrana, realizado no Centro de Convenções Raimundo Asfora, 08 a 11 de julho de 2007.
- 19. FILMTEC, Membrane elements: technical Manual. April 1995, Cap. 2, p. 9.
- 20. FILMTEC, Dow water solutions: reverse osmosis membranes technical manual, 2008, p. 89-90, 37.
- 21. FRANÇA, D. O planeta água esta secando. Globo Ciência, v. 85, 1998, p. 54-61.
- 22. FRANÇA, K. B. Limpeza Química de Sistemas de Dessalinização via OI. Centro de Ciências e Tecnologia, Universidade Federal de Campina Grande. 2004.
- 23. FRITZMANN, C.; LÖWENBERG, J.; WINTGENS, T.; MELIN, T. State-of-the-art of reverse osmosis desalination. Desalination, v. 216, p. 1–76, 2007.
- 24. GABELICH, C. J.; GERRINGER, F. W.; FRANKLIN, J. C.; GAO, J.; COHEN, Y.; SUFFET, I. H. M. Reverser osmosis pretreatment: challenges with conventional treatment. AWWA ACE, Orlando, Florida, p. 1-15, 2004.
- 25. GLATER, J. The early history of reverse osmosis membrane development. **Desalination**, v. 117, p. 297 309, 1998.
- 26. GUÉRIN-DUMARTRAIT, E., MOYSE, A. Caractéristiques biologiques des spirulines. Annales de la Nutrition et de L'alimentation, v.30, p.489-496, 1976.
- 27. HABERT, A. C.; BORGES, C. P.; NOBREGA, R. Processos de separação por membranas. E-Papers Serviços Editoriais, 2006, p. 109-110.
- 28. HIEMENZ, P. C.; RAJAGOPALAN, R. Principles of colloid and surface chemistry, 3th Ed. Revised and Expanded, Printed by Marcel Dekker, 1997, p. 105-114.
- 29. HOEK van der, J. P.: HOFMAN, J. A. M. H.: BONNÉ, P. A. C.; NEDERLOF, M. M.; VROUWENVELDER, H. S. RO treatment: selection of a pretreatment scheme based on fouling characteristics and operating conditions based on environmental impact. **Desalination**, v.127, p. 89-101, 2000.
- 30. HSIEH, H. P. Inorganic membranes for separation and reaction Membrane science and technology series. Volume 3, Amsterdam: Elsevier science & technology books, 1996, p. 5.
- 31. IMS Desing®, Integrated Membrane Solutions Softwere da Hydranautics Sistemas de Membranas, Versão 2006.
- 32. JUDD, S.; JEFFERSON, B. Membranes for industrial wastewater recovery and re-use. Elsevier science & technology books, 2003, Chapter 2, p. 43, 62.

- KIM, C. G.; YOON, T. I.; LEE, M. J. Characterization and control of foulants occurring from RO disc-tube-type, membrane treating, fluorine manufacturing, process wastewater. Desalination, v.151, p. 283-292, January 2003.
- KÖSEOĞLU, S. S.; GUZMAN, G. J.; Application of reverse osmosis Technology in food industry - Reverse Osmosis: Membrane Technology, Water Chemistry & Industrial Applications. Edited by Amjad Zahid, Copyright, by Van Nostrand Reinhold, 1993. p. 300-327.
- 35. LAVORENTI, A. Atividade Iônica Publicação destinada ao ensino de ciências Química Professor Associado do Depto. de Ciências Exatas, ESALQ/USP, Piracicaba SP, 28 de marco de 2002.
- 36. LIBÂNIO, M. Fundamentos de qualidade e tratamento de água, Editora Átomo, 2005, p. 39-40.
- LEVINE, I. N. Physical chemistry. McGraw-Hill Book Company, Chapter 12, 1978, p. 289, 244-245.
- LISITSIN, D.; HASSON, D.; SEMIAT, R. Critical flux detection in a silica scaling RO system. Desalination, v. 186, p. 311 – 318, December 2005.
- MAGÁN, J.J.; GALLARDO, M.; THOMPSON, R.B.; LORENZO, P. Effects of salinity on fruit yield and quality of tomato grown in soil-less culture in greenhouses in Mediterranean climatic conditions. Agricultural Water Management, v. 95, p. 1041 – 1055, 2008.
- MAHAN, B. H. Química Um curso Universitário. 2ª Ed. Edgard Blücher LTDA, 1984, p. 108 – 124.
- 41. MARON, S. H.; LANDO, J. B. Fundamentals of Physical Chemistry. Collier Macmillian International Editions, 1974, p. 511, 461-468.
- 42. MATSUURA, T. Progress in membrane science and technology for seawater desalination a review. **Desalination**, 134, p. 47-54, April 2001.
- 43. NARASIMHAM, T. N. Ohm's Law, Fick's Law, Joule's Law, and ground water flow - Ernest Orlando Lawrence Berkeley National Laboratory, Earth Science Division, February, 1999.
- 44. NING, R. Y. Discussion of silica speciation, fouling, control and maximum reduction. **Desalination**, v. 151, p. 67-73, January 2003.
- NING, R. Y.; NETWIG, J. P. Complete elimination of acid injection in reverse osmosis plants. Desalination, v. 143, p. 29-34, 2002.
- 46. NUNES, S. P.; PEINEMANN, K.-V. Membrane technology in the chemical industry, Wiley-VCH, 2001, p. 13, 6-7.
- 47. PALLET D.; CABRAL, L.; MATTA, V.; GARCÍA, N. H. P.; MENEZES, H. C.; ABREU, F. A. P.; DORNIER, M.; REYNES, M. Aplicação da tecnologia de membranas no processamento de sucos de frutas brasileiras. Cadernos de Ciência & Tecnologia, Brasília, v. 22, n. 2, p. 427-437, maio/ago. 2005.

- PAOLETTI, C.; PUSHPARAJ, B.; TOMASELLI, L. Ricerche sulla nutrizione minerale di Spirulina platensis. In: Atti del XVII Congresso Nazionale della Società Italiana di Microbiologia. Italian Society of Microbiology, Padova, Italy. p. 833–839, 1975.
- PEREIRA R. B.; SANTOS, J. A. Projeto de dessalinizador por osmose inversa. IX Congresso Brasileiro de Águas Subterrâneas, 1997.
- PILAT B. Practice of water desalination by electrodialysis. Desalination, v. 139, p. 385-392, September 2001.
- 51. Portaria nº 518, de 25 de março de 2004, do Ministério da Saúde. Estabelece os procedimentos e responsabilidade relativa ao controle e vigilância da qualidade da água para consumo humano e seu padrão de potabilidade, e dá outras providências Brasília DF, 2004.
- SATO, N. Chemical energy and exergy: an introduction to chemical thermodynamics for engineers. Elsevier Science & Technology Books, 2004, p. 78-80.
- SATO S.; SAKAGUCHI S.; FURUKAWA, H.; IKEDA, H. Effects of NaCl application to hydroponic Nutrient solution on fruit characteristics of tomato (Lycopersicon esculentum Mill.). Scientia Horticulturae v.109, p. 248–253, 2006.
- SHIH, W. Y.; GAO, J.; RAHARDIANTO, A.; GLATER, J. COHEN, Y.; GABELICH, C. J. Ranking of antscalant performance for gypsum scale suppression in the presence or residual aluminum, Desalination v. 196, p. 280-292, 2006.
- SCHNEIDER, R. P.; TSUTIYA, M. T.; Membranas Filtrantes para o Tratamento de Água, Esgoto e Água de Reuso. ABES, 1ª Edição, 2001, p. 58.
- 56. SILVA, A. A.; MELO, K. S.; MAIA, J. B. N.; FRANÇA, R.V.; SILVA, R. A. V.; LIRA, H. L.; CARVALHO, L. H.; FRANÇA, K. B.; RODRIGUES, M. G. F. Estudo do potencial de separação água/óleo de membranas cerâmicas tubulares de alumina através da análise das medidas de fluxo e turbidez. 2º Congresso Brasileiro de P&D em Petróleo & Gás, Hotel Glória, Rio de Janeiro, Organizado pela UFRJ, 15 a 18 de junho de 2003.
- 57. SINGH, R., Hybrid membrane systems for water purification: Technology, systems design and operations. Elsevier Science & Technology Books, January 2006, p.19-20.
- 58. SOUTO, K. M.; SILVA A. A.; CARVALHO, L. H.; LIRA, H. L. Estudos sobre a produção de membranas para separação água/óleo a partir do polietileno de ultra alto peso molecular. 2º Congresso Brasileiro de P&D em Petróleo & Gás, Hotel Glória, Rio de Janeiro, Organizado pela UFRJ, 15 a 18 de junho de 2003.
- SKILHAGEN, S. E.; DUGSTAD, J. E.; AABERG, R. J., Osmotic power power production based on the osmotic pressure difference between waters with varying salt gradients. Desalination 220, 2008, p. 476–482.
- SKOTT K. Handbook of Industrial Membranes. Second edition, Publisher: Elsevier Science & Technology Books, April 1, 1999, p. 88.
- Standard Methods For The Examination of Water end Wastewater, Edited by Leonore S. Clesceri, Arnold E. Greenberg, Andrew D. Eaton, 20th Edition, 1998.
- STUMM, W.; MORGAN, J. J. Aquatic Chemistry, An introduction emphasizing chemical equilibria in natural waters. Wilely –Interscience, 1970, p. 28-31.

- 63. TAYLOR, J. S.; JACOBS, Reverse osmosis and nanofiltration Water Treatment Membrane Processes. AWWA. Research Foundation. Lyonnaise des Eaux. WRCSA. McGraw-Hill, Chapter 9, 1996, p. 9.39.
- 64. TUDO O livro do conhecimento. Editora Três LTDA. 1996. p. 120.
- 65. VOGEL, A. I. Vogel's macro and semimicro qualitative inorganic analysis. 5th Ed. Revised by G. Svehla, Longman, 1979, p. 6-8.
- 66. WATSON, I. C; MORIN, O. J. JR.; HENTHORNE, L. Water Treatment Engineering and Research Group DESALTING HANDBOOK FOR PLANNERS, United States Department of the Interior, Bureau of Reclamation, Technical Service Center, Third Edition Edited by RosTek Associates, Inc., Tampa, Florida, July, 2003, p. 110-115.
- 67. WAGNER, J. Membrane Filtration Handbook Practical Tips and Hints. Osmonics®, 2th Ed. Revision 2, November 2001, p. 10.
- 68. WANGNICK/GWI. Worldwide desalting plants inventory/Global Water Intelligence. Oxford, England. 2005/2004.
- 69. YOKOZEKI, A. Osmotic pressures studied using a simple equation-of-state and its applications. Applied Energy, v. 83, p. 15-41, July 2006.

Referências da Web

- ACTEW. Seletividade de membranas. Disponível em: http://www.actew.com.au/water2water/documents/MicrofiltrationandUltrafiltration.pdf. (Actew, 2005) Acessado em janeiro 2008.
- APPLIED. Disponível em: http://www.appliedmembranes.com/chemical_info_downloads.htm>. Acesso em 18 de janeiro de 2008.
- DOW. Características das membranas. Disponível em:
 http://www.dow.com/liquidseps/prod/mfs.htm> Acesso em: 25 de Janeiro de 2008.
- KOCH. Seletividade das membranas. Disponível em: http://www.kochmembrane.com/sep mf.html>. Acesso em 5 de Fevereiro de 2008.
- NEWFOUNDLAND AND LABRADOR, GOVERNMENT OF, Department of Environment and Conservation, encontrado em: http://www.env.gov.nl.ca/Env/env/waterres/Surfacewater/Langelier/Calculation%20of%2 Othe%20Langelier%20Index.pdf>. p. 2. Acessado em Fevereiro de 2008.
- OSMONICS. Características de membranas filtrantes (1996). Disponível em: <http://www.gewater.com/pdf/1117987-%20Lit-%20Filtration%20Spectrum.pdf>. Acesso em 18 de janeiro de 2008.
- TRATAMENTO DE ÁGUA. Seletividade dos tipos de membrana. Disponível em: http://www.tratamentodeagua.com.br/a1/informativos/acervo.php?chave=131&cp=est. Acesso em: 3 de Março de 2008.

REFERÊNCIAS BIBLIOGRÁFICAS

8. VESTIBULAR1, Revisão – Curso de biologia. Disponível em: http://www.vestibular1.com.br/revisao/osmose.doc>. Acesso em Dez. de 2007.

ANEXOS

ANEXO 1. DADOS DAS CARACTERÍSTICAS DAS MEMBRANAS DE OSMOSE INVERSA

FILMTEC Membranes

Basics of RO and NF: Membrane Performance

Membrane Performance

FILMTEC™ thin film composite membranes give excellent performance for a wide variety of applications, including low-pressure tapwater use, seawater desalination, brackish water purification, chemical processing and waste treatment. This membrane exhibits excellent performance in terms of flux, salt and organics rejection, and microbiological resistance. FILMTEC elements can operate over a pH range of 2 to 11, are resistant to compaction and are suitable for temperatures up to 45°C. They can be effectively cleaned at pH 1 and pH 12. Their performance remains stable over several years, even under harsh operating conditions.

The membrane shows some resistance to short-term attack by chlorine (hypochlorite). The free chlorine tolerance of the membrane is < 0.1 ppm. Continuous exposure, however, may damage the membrane and should be avoided. Under certain conditions, the presence of free chlorine and other oxidizing agents will cause premature membrane failure. Since oxidation damage is not covered under warranty, FilmTec recommends removing residual free chlorine by pretreatment prior to membrane exposure. Please refer to <u>Chlorination / Dechlorination (Section 2.6.3)</u> for more information.

The parameters which characterize the performance of a membrane are the water permeability and the solute permeability. The ideal reverse osmosis membrane has a very high water permeability and a zero salt permeability. The ideal nanofiltration membrane has also a very high water permeability, but the ideal permeability of solutes might be zero or some positive value, depending on the solute and on the application; for example zero permeability for pesticides and 50% permeability for calcium ions.

Membrane systems are typically designed and operated at a fixed average flux, see <u>System Design - Introduction (Section 3.1)</u>, Membrane System Design. Membranes with a high water permeability require a low feed pressure and thus a low energy to operate at a given flux. Table 1.2 shows a comparison of the performance of different membranes based on a given flux as typically encountered in membrane systems.

Table 1.2 Performance of some FILMTEC membranes

	SW30HR	BW30	XLE	NF270
Feed pressure (psi)	370	150	70	50
Feed pressure (bar)	25	10	5	3.5
Rejection (%)				
Sodium chloride NaCl	99.7	99.4	98.6	80
Calcium chloride CaCl ₂	99.8	99.4	98.8	50
Magnesium sulfate MgSO ₄	99.9	99.7	99.2	99.3

At 18 GFD (30 l/m²h), 2,000 mg/l solute concentration, 25°C, pH 7-8, 10% recovery per 40-inch element.

Membrane Performance (cont.)

As a general rule, membranes with a high water permeability (low feed pressure) also have a higher salt permeability compared to membranes with lower water permeability. The permeability of solutes decreases (the rejection increases) with an increase in the:

- degree of dissociation: weak acids, for example lactic acid, are rejected much better at higher pH when the dissociation is high
- ionic charge: e.g. divalent ions are better rejected than monovalent ions
- molecular weight: higher molecular weight species are better rejected
- nonpolarity: less polar substances are rejected better
- degree of hydration: highly hydrated species, e.g. chloride, are better rejected than less hydrated ones, e.g. nitrate
- degree of molecular branching: e.g. iso-propanol is better rejected than n-propanol.

FILMTEC Membranes For more information about FILMTEC membranes, call the Dow Liquid Separations business:

North America: 1-800-447-4369 Latin America: (+55) 11-5188-9222 Europe: (+32) 3-450-2240

Pacific (ex. China): +800-7776-7776 China: +10-800-600-0015

http://www.filmtec.com

Notice: The use of this product in and of itself does not necessarily guarantee the removal of cysts and pathogens from water. Effective cyst and pathogen reduction is dependent on the complete system design and on the operation and maintenance of the system.

Notice: No freedom from any patent owned by Seller or others is to be inferred. Because use conditions and applicable laws may differ from one location to another and may change with time, Customer is responsible for determining whether products and the information in this document are appropriate for Customer's use and for ensuring that Customer's workplace and disposal practices are in compliance with applicable laws and other governmental enactments. Seller assumes no obligation or liability for the information in this document. NO WARRANTIES ARE GIVEN; ALL IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY EXCLUDED.

FILMTEC™ Membranes

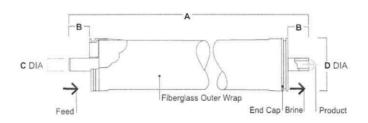
FILMTEC Fiberglassed Elements for Light Industrial Systems

Features

FILMTEC™ brackish water reverse osmosis membrane elements provide consistent, outstanding system performance in light industrial applications.

- FILMTEC LE-4040 delivers highest performance at lowest pressure resulting in less energy usage and lower costs.
- FILMTEC BW30-4040 is the industry standard for reliable operation and production of the highest quality water.
- FILMTEC BW30-2540 elements are designed for systems smaller than 1 gpm (0.2 m³/h) offering a hard shell exterior for extra strength.

Elements with a hard shell exterior are recommended for systems with multiple-element housings containing three or more membranes, as they are designed to withstand higher pressure drops.


Product Specifications

Product	Part Number	Active Area ft ² (m ²)	Feed Spacer Thickness (mil)	Permeate Flow Rate gpd (m ³ /d)	Stabilized Salt Rejection (%)
LE-4040	275173	78 (7.2)	34	2,500 (9.5)	99.0
BW30-4040	80783	78 (7.2)	34	2,400 (9.1)	99.5
BW30-2540	80766	28 (2.6)	28	850 (3.2)	99.5

^{1.} Permeate flow and salt rejection based on the following test conditions: 2,000 ppm NaCl, applied pressure: 150 psig (10.3 bar) for LE-4040 and 225 psig (15.5 bar) for BW30-4040 and BW30-2540, 77°F (25°C) and 15% recovery.

- 2. Permeate flows for individual elements may vary +/-20%.
- 3. For the purpose of improvement, specifications may be updated periodically.
- 4. LE-4040 replaces BW30LE-4040.

Figure 1

FilmTec sells coupler part number 89055 for use in multiple element housings. Each coupler includes two 2-210 EPR o-rings, FilmTec part number 89255

Dimensions - Inches (mm)

Product	Α	В	С	D	
LE-4040	40.0 (1,016)	1.05 (26.7)	0.75 (19)	3.9 (99)	
BW30-4040	40.0 (1,016)	1.05 (26.7)	0.75 (19)	3.9 (99)	
BW30-2540	40.0 (1,016)	1.19 (30.2)	0.75 (19)	2.4 (61)	

Refer to FilmTec Design Guidelines for multiple-element systems.

¹ inch = 25.4 mm

^{2.} BW30-2540 elements fit nominal 2.5-inch I.D. pressure vessel. BW30LE-4040 and BW30-4040 elements fit nominal 4-inch I.D. pressure vessel.

Operating Limits

 Membrane Type Polyamide Thin-Film Composite

Maximum Operating Temperaturea 113°F (45°C) Maximum Operating Pressure 600 psi (41 bar) Maximum Feed Flow Rate - 4040 elements 16 gpm (3.6 m³/h)

- 2540 elements 6 gpm (1.4 m³/h)

Maximum Pressure Drop 15 psig (1.0 bar)

pH Range, Continuous Operationa 2 - 11 pH Range, Short-Term Cleaningb 1 - 13 Maximum Feed Silt Density Index SDI 5 Free Chlorine Tolerance^c <0.1 ppm

Maximum temperature for continuous operation above pH 10 is 95°F (35°C).

Refer to Cleaning Guidelines in specification sheet 609-23010.

Under certain conditions, the presence of free chlorine and other oxidizing agents will cause premature membrane failure. Since oxidation damage is not covered under warranty. FilmTec recommends removing residual free chlorine by pretreatment prior to membrane exposure. Please refer to technical bulletin 609-22010 for more information.

Important Information

Proper start-up of reverse osmosis water treatment systems is essential to prepare the membranes for operating service and to prevent membrane damage due to overfeeding or hydraulic shock. Following the proper start-up sequence also helps ensure that system operating parameters conform to design specifications so that system water quality and productivity goals can be achieved.

Before initiating system start-up procedures, membrane pretreatment, loading of the membrane elements, instrument calibration and other system checks should be completed.

Please refer to the application information literature entitled "Start-Up Sequence" (Form No. 609-02077) for more information.

Operation Guidelines

Avoid any abrupt pressure or cross-flow variations on the spiral elements during start-up. shutdown, cleaning or other sequences to prevent possible membrane damage. During start-up, a gradual change from a standstill to operating state is recommended as follows:

- Feed pressure should be increased gradually over a 30-60 second time frame.
- Cross-flow velocity at set operating point should be achieved gradually over 15-20 seconds.
- · Permeate obtained from first hour of operation should be discarded.

General Information

- Keep elements moist at all times after initial wetting.
- · If operating limits and guidelines given in this bulletin are not strictly followed, the limited warranty will be null and void.
- . To prevent biological growth during prolonged system shutdowns, it is recommended that membrane elements be immersed in a preservative solution.
- The customer is fully responsible for the effects of incompatible chemicals and lubricants on elements.
- Maximum pressure drop across an entire pressure vessel (housing) is 50 psi (3.4 bar).
- Avoid static permeate-side backpressure at all times.

Regulatory Note

These membranes may be subject to drinking water application restrictions in some countries: please check the application status before use and sale.

FILMTEC™ Membranes For more information about FILMTEC membranes, call the Dow Water Solutions business:

1-800-447-4369 North America: Latin America: (+55) 11-5188-9222 (+32) 3-450-2240 Europe: +60 3 7958 3392 +813 5460 2100 +86 21 2301 9000

http://www.filmtec.com

Notice: The use of this product in and of itself does not necessarily guarantee the removal of cysts and pathogens from water. Effective cyst and pathogen reduction is dependent on the complete system design and on the operation and maintenance of the system.

Notice: No freedom from any patent owned by Seller or others is to be inferred. Because use conditions and applicable laws may differ from one location to another and may change with time, Customer is responsible for determining whether products and the information in this document are appropriate for Customer's use and for ensuring that Customer's workplace and disposal practices are in compliance with applicable laws and other governmental enactments. Seller assumes no obligation or liability for the information in this document. NO WARRANTIES ARE GIVEN; ALL IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY EXCLUDED.

ANEXO 2. DESCRIÇÃO DO SISTEMA DE DESSALINIZAÇÃO E PROJETO REALIZADO COM AJUDA DO SOFTWARE "ROSA" DA FILMTEC.

O sistema de dessalinização da comunidade de Uruçu, São João do Cariri – PB apresenta os seguintes componentes:

2. Membranas:

09 elementos de membranas de osmose inversa, *FILMTEC*TM *BW30-4040* de alta rejeição. Cada elemento de membrana apresentando uma área de aproximadamente 7,2 m², com diâmetro de 0,1 m e comprimento de 1,0 m.

3. Vasos de alta pressão:

03 vasos de alta pressão completos de fibra de vidro reforçado, diâmetro interno de 0,1 m, composto com molas elásticas, tampas (ou espelhos), cada um com capacidade de encapsular 03 elementos de membranas.

4. Pré-tratamento químico para anti-incrustante, composto de:

- 01 bomba dosadora de produto químico;
- 01 recipiente de polietileno (bombona) com capacidade para 50 litros;

5. Pré-tratamento físico composto de:

- 01 copo de filtro de cartucho de polipropileno de alta densidade, com 0,3 m de comprimento;
- 01 filtro de cartucho de polipropileno de baixa densidade 5μm, com 0,25 m de comprimento;

6. Medidores de pressões:

- 02 manômetros glicerinados, diâmetro de 63 mm, para painel, apresentando a faixa de (0,0 a 4,0) kgf/cm²;
- 02 manômetros glicerinados, diâmetro de 63 mm, para painel, apresentando a faixa de (0,0 a 20,0) kgf/cm².

7. Medidores de vazão:

- 01 medidor de vazão tipo rotâmetro, de preferência com área variável apresentando uma faixa de (0 a 35) L/min;
- 01 medidor de vazão tipo rotâmetro, de preferência com área variável apresentando uma faixa de (20 a 50) L/min.

8. Bomba de alta pressão:

01 bomba de alta pressão de 5,0 CV, trifásica, contendo 25 estágios em aço inox. Considerando que há contato do eixo do motor com água salobra.

9. Sistema de Proteção:

01 pressostato para proteção da bomba de alta pressão com *switch* para desligamento automático em caso de falta de água. O pressostato possui as seguintes características:

Pressão operacional admissível – 18,0 kg/cm²; faixa de regulagem – 0,2 a 8,0 kg/cm²; diferencial ajustável – 0,5 a 2,0 kg/cm².

10. Sistema de Limpeza Química:

- 01 bomba centrífuga, horizontal, auto-aspirante, monofásica, 1/3CV;
- 01 bombona de 50 litros para armazenamento de água permeada.

11. Bomba de Auxílio:

01 bomba centrífuga, horizontal, trifásica, 2 CV;

12. Sistema elétrico:

01 painel elétrico completo para comando de operação e proteção dos motores.

13. Tubulações:

Tubulação de baixa pressão em PVC de 32 mm;

Tubulação de alta pressão em CPVC de 28 mm.

Estrutura metálica composta com "vibra-stop" e pintura contra corrosão.

Reverse Osmosis System Analysis for FILMTECTM Membranes Project: dissertação mestrado

ROSA v6.1.5 ConfigDB U238786_55 Case: 1

7/16/2008

Project Information:comparação entre a pressão osmótica obtida experimentalmente e a pressão calculada por projeto

System Details

Feed Flow to Stage 1	4.65 m³/h	Pass 1 Permeate Flow	1.65 m³/h	Osmotic Pressure:	
Raw Water Flow to System	$4.65 \text{ m}^3/\text{h}$	Pass 1 Recovery	35.50 %	Feed	7.58 bar
Feed Pressure	19.40 bar	Feed Temperature	28.0 C	Concentrate	11.60 bar
Fouling Factor	0.85	Feed TDS	11277.31 mg/l	Average	9.59 bar
Chem. Dose (100% H2SO4)	0.00 mg/l	Number of Elements	9	Average NDP	8.93 bar
Total Active Area	65.22 M ²	Average Pass 1 Flux	25.32 lmh	Power	3.13 kW
Water Classification: Well Wa	iter SDI < 3			Specific Energy	1.90 kWh/m³
Stage Element #PV #Ele	Feed Feed Flow Press (m³/h) (bar)	Recirc Conc Flow Flow (m³/h) (m³/h)	Conc Perm Press Flow (bar) (m³/h)		Boost Perm Press TDS (bar) (mg/l)
1 BW30-4040 2 3	4.65 19.05	0.00 3.43	18.50 1.22	28.17 0.00	0.00 112.91
2 BW30-4040 1 3	3.43 18.16	0.00 3.00	17.04 0.43	19.62 0.00	0.00 183.47

			Pass Streams (mg/l as Ion)				
Name	Feed	A Jimes J F . J	Concer	ntrate		Permeate	
Name	reed	Adjusted Feed	Stage 1	Stage 2	Stage 1	Stage 2	Total
NH4	3.50	3.50	4.73	5.39	0.05	0.08	0.06
K	17.69	17.69	23.93	27.28	0.23	0.38	0.27
Na	2268.14	2276.46	3080.04	3511.28	28.59	47.00	33.34
Mg	809.07	809.07	1096.22	1250.77	5.82	9.21	6.69
Ca	709.55	709.55	961.43	1096.99	4.96	7.96	5.73
Sr	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ba	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CO3	6.85	6.85	11.98	15.21	0.00	0.00	0.00
HCO3	377.33	377.33	504.83	572.33	5.45	8.47	6.23
NO3	0.06	0.06	0.08	0.09	0.01	0.02	0.01
Cl	6646.17	6646.17	8998.56	10262.75	65.72	107.08	76.40
F	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SO4	372.07	372.07	504.46	575.81	1.72	2.65	1.96
SiO2	58.55	58.55	79.35	90.54	0.38	0.61	0.44
Boron	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CO2	6.57	6.57	8.38	9.46	6.98	8.59	7.40
TDS	11268.98	11277.31	15265.62	17408.44	112.91	183.47	131.14
рН	7.60	7.60	7.58	7.56	6.04	6.13	6.07

Permeate Flux reported by ROSA is calculated based on ACTIVE membrane area. DISCLAIMER: NO WARRANTY, EXPRESSED OR IMPLIED, AND NO WARRANTY OF MERCHANTABILITY OR FITNESS, IS GIVEN. Neither FilmTec Corporation nor The Dow Chemical Company assume liability for results obtained or damages incurred from the application of this information. FilmTec Corporation and The Dow Chemical Company assume no liability, if, as a result of customer's use of the ROSA membrane design software, the customer should be sued for alleged infringement of any patent not owned or controlled by the FilmTec Corporation nor The Dow Chemical Company.

Reverse Osmosis System Analysis for FILMTEC™ Membranes

Project: dissertação mestrado

ROSA v6.1.5 ConfigDB U238786 55

Case: 1

7/16/2008

Design Warnings

-None-

Solubility Warnings

Langelier Saturation Index > 0 Stiff & Davis Stability Index > 0

Antiscalants may be required. Consult your antiscalant manufacturer for dosing and maximum allowable system recovery.

Stage Details

Stage 1 Element	Recovery	Perm Flow (m³/h)	Perm TDS (mg/l)	Feed Flow (m³/h)	Feed TDS (mg/l)	Feed Press (bar)
1	0.10	0.23	91.50	2.33	11277.31	19.05
2	0.10	0.20	112.85	2.09	12508.78	18.84
3	0.09	0.18	140.82	1.89	13846.18	18.66
		Perm Flow	Perm TDS	Feed Flow	Feed TDS	Feed Press
Stage 2 Element	Recovery	(m ³ /h)	(mg/l)	(m³/h)	(mg/l)	(bar)
Stage 2 Element	Recovery 0.05					
Stage 2 Element 1 2		(m^3/h)	(mg/l)	(m^3/h)	(mg/l)	(bar)

Permeate Flux reported by ROSA is calculated based on ACTIVE membrane area. DISCLAIMER: NO WARRANTY, EXPRESSED OR IMPLIED, AND NO WARRANTY OF MERCHANTABILITY OR FITNESS, IS GIVEN. Neither FilmTec Corporation nor The Dow Chemical Company assume liability for results obtained or damages incurred from the application of this information. FilmTec Corporation and The Dow Chemical Company assume no liability, if, as a result of customer's use of the ROSA membrane design software, the customer should be sued for alleged infringement of any patent not owned or controlled by the FilmTec Corporation nor The Dow Chemical Company.

Scaling Calculations

	Raw Water	Adjusted Feed	Concentrate
pH	7.60	7.60	7.56
Langelier Saturation Index	1.42	1.42	1.74
Stiff & Davis Stability Index	0.81	0.81	0.97
Ionic Strength (Molal)	0.26	0.26	0.40
TDS (mg/l)	11268.98	11277.31	17408.44
HCO3	377.33	377.33	572.33
CO2	6.57	6.57	9.45
CO3	6.85	6.85	15.21
CaSO4 (% Saturation)	11.00	11.00	18.19
BaSO4 (% Saturation)	0.00	0.00	0.00
SrSO4 (% Saturation)	0.00	0.00	0.00
CaF2 (% Saturation)	0.00	0.00	0.00
SiO2 (% Saturation)	44.69	44.69	69.11
Mg(OH)2 (% Saturation)	0.04	0.04	0.06

To balance: 8.32 mg/l Na added to feed.

ANEXO 3. METODOLOGIA DA LIMPEZA QUÍMICA DOS ELEMENTOS DE MEMBRANA.

Com objetivo de eliminar possível a bio-incrustação recomenda-se iniciar a limpeza química com uma solução alcalina como, por exemplo: hidróxido de sódio.

O procedimento descrito abaixo apresenta etapas padrões para uma limpeza química de membranas:

- 1. Lave (flushing) as membranas com água permeada a 30°C, durante 15 minutos sob uma pressão de 3,0 kg/cm². Limpe cada estágio (banco de membranas) um de cada vez. No final dos 15 minutos mantenha as membranas embebidas com água permeada a 30°C durante 15 minutos e em seguida descarte a água no ralo (observe a coloração da água e faça suas observações).
- Preparar a solução de limpeza de acordo com as instruções do boletim da respectiva membrana. Ajuste o pH da solução e a temperatura de acordo com o limite máximo estabelecido pelo fabricante das membranas.
- Com ajuda de uma bomba passe a solução de limpeza através dos elementos de membranas durante 1 a 2 minutos deixando-a cair no ralo. Desligue a bomba e todas as válvulas durante 30 minutos.
- 4. Repita o item 3 mais duas vezes. Monitore a cor da solução de limpeza. Se estiver ocorrendo mudança de cor, repita o item 3 até minimizar a coloração da solução.
- 5. Recicle o concentrado para o tanque da solução de limpeza durante 45 minutos e monitore a temperatura e o pH da solução. Procurar manter a temperatura constante durante a limpeza. Quanto o pH, este variará em função do tipo de material que esta sendo usando na limpeza. Para soluções ácidas o pH tente a subir, para soluções alcalinas o pH tende a diminuir. Em ambas situações no final da limpeza química o pH tende a ficar constante.
- 6. Quando o pH da solução de limpeza se apresentar constante, dirija a solução de limpeza para o ralo. (Em caso de repetir a limpeza recomenda-se tirar amostras da solução anterior e a nova com o propósito de avaliar a taxa de remoção de impurezas a partir das análises físico-química).
- Recomenda-se que toda a tubulação hidráulica do sistema de dessalinização seja lavada com uma solução de ácido clorídrico de pH 3 e/ou hidróxido de sódio com pH 12.

8. Em seguida lave as membranas e toda tubulação hidráulica com água permeada durante 15 minutos sob um fluxo moderado a 3,0 kg/cm² (ou até se atingir a qualidade de permeado desejado). A temperatura da água deve se encontrar acima de 20°C, nunca acima de 40°C. No final desta operação o pH deve ficar próximo do valor do pH da água permeada. (Lembre-se que o concentrado e permeado desta operação deve ser drenado para o ralo ou um recipiente, o qual pode ser reutilizado).

Considerações importantes:

No início da limpeza se devem tomar as seguintes medidas:

- Procurar medir o pH e a condutividade elétrica da água de alimentação, do permeado e concentrado do sistema e anotá-las em uma planilha de dados.
- Calcular o volume do tanque da solução de limpeza do sistema de dessalinização.
- Preparar a solução de limpeza com um volume superior de 10% ao calculado para não passar por dificuldade durante a limpeza.
- O controle de temperatura é muito importante durante a limpeza química.
- Não esquecer de lavar as membranas com própria água de alimentação pelo menos 15 minutos antes de dar partida no sistema novamente.

As medidas tomadas para recuperar o desempenho de um sistema são as seguintes:

- Verificar a operação dos instrumentos de medidas (observar a precisão dos instrumentos de medidas, rotâmetros, manômetros, condutivímetros, pHmetro, etc)
- Re-analisar o banco de dados (significa analisar as planilhas de monitoramento do sistema em termos das variáveis de medidas normalizadas).
- Comparar os resultados das análises da água de alimentação com os critérios empregados no projeto do sistema (em função destas informações, pode-se estudar a possibilidade de encontrar um problema mecânico ou detectar um "stresse" causando por produtos químicos. Um exemplo típico é um O-ring rompido ou

fadigado, vazamentos, instrumentos não calibrados, filtros sem funcionar, membranas com defeitos, problemas de bombas, mistura do permeado com o concentrado durante a operação, etc).

Identificar os tipos de incrustações (comparar as análises da água de alimentação, recente com outras análises realizadas na instalação do sistema, mudanças de resultados, pode levar a um adicional pré-tratamento ou mudanças no programa do pré-tratamento existente. Isso significa que a variação química da água de alimentação pode gerar outras condições de incrustações).

ANEXO 4. MONITORAMENTO DO SISTEMA DE DESSALINIZAÇÃO DA COMUNIDADE DE URUÇU EM SÃO JOÃO DO CARIRI – PB.

Tabela 01. Dados referentes ao monitoramento do sistema de dessalinização para o terceiro trimestre

_	F1	F2	P1	P2	Q1	Q2	Fluxo	Tempo de
Data	(kg/cm ²)	(kg/cm ²)	(kg/cm ²)	(kg/cm ²)	(L/min)	(L/min)	(L/m2.hr)	Operação do Sistema (hr)
29/8/2007	5,5	5,25	20	19,5	42	27	25,00	3,1
4/9/2007	5,5	5,25	20	19	41	27	25,00	6,2
5/10/2007	5,5	5,25	20	19	42	27	25,00	9,3
10/10/2007	5,5	5,00	20	19,5	41	26	24,07	12,4
19/10/2007	5,35	5,00	20	19,5	42	26	24,07	15,5
8/11/2007	5	4,80	19,5	19	43	26	24,07	18,6
14/11/2007	6	5,00	20	19	45	26	24,07	21,7
20/11/2007	5,1	5,00	19,5	19	43,5	26	24,07	24,8
3/12/2007	5,5	5,50	20	19	45	30	27,78	27,9
10/12/2007	5,5	5,50	19	19	45	30	27,78	31
12/12/2007	5,5	5,50	19	19	45	30	27,78	34,1
29/12/2007	5	5,00	20	19	45	30	27,78	37,2
11/1/2008	5,5	5,00	19	18	45	30	27,78	40,3
16/1/2008	5,1	4,90	19,5	19	44	30	27,78	43,4
24/01/2008	5	4,80	19,3	19	43,5	30	27,78	46,5
29/1/2008	5	4,90	19,25	19	44	28	25,93	49,6
30/1/2008	5	4,90	19	19	44	30	27,78	52,7
5/2/2008	5	5,00	19	19	45	30	27,78	55,8
8/2/2008	5	5,00	19	18	45	30	27,78	58,9
12/2/2008	5	5,00	20	19	45	30	27,78	62
13/2/2008	5	5,00	19	18	45	28	25,93	65,1
16/2/2008	5	5,00	19	18	45	30	27,78	68,2
21/2/2008	5	4,90	19,1	18,6	45	28	25,93	71,3
21/2/2008	5	4,60	19,1	18,9	43	29	26,85	74,4
22/2/2008	5	4,90	19	19	45	29	26,85	77,5
25/2/2008	5	4,00	19	19	45	30	27,78	80,6
28/2/2008	5	4,60	19	18,7	44	30	27,78	83,7

Tabela A 01. Dados referentes ao monitoramento do sistema de dessalinização para o terceiro trimestre (*Continuação*).

1/3/2008	4,9	4,90	19	18	45	30	27,78	86,8
5/3/2008	4,9	4,60	19	18,5	44	28	25,93	89,9
7/3/2008	5	4,90	19	18	45	28	25,93	93
10/3/2008	5	4,90	19	18	45	30	27,78	96,1
12/3/2008	5	4,90	19	18	45	30	27,78	99,2
13/3/2008	5	4,50	19	18,5	44	28	25,93	102,3
18/3/2008	5	4,90	19,2	18,9	45	28	25,93	105,4
20/3/2008	5	4,80	19	18,9	45	28	25,93	108,5
25/3/2008	4,9	4,75	19	18,6	44	28	25,93	111,6
1/4/2008	5	5,00	19	18	45	28	25,93	114,7
3/4/2008	5	4,90	19	18,7	45	27	25,00	117,8
4/4/2008	5	4,90	19	18,7	45	27	25,00	120,9
7/4/2008	5	5,00	19	18	46	27	25,00	124
10/04/200/	5	4,90	19,3	18,9	46	26,5	24,54	127,1
15/4/2008	5,2	5,00	19,6	19,2	46	27	25,00	130,2
16/4/2008	5,25	4,75	18,5	18	45	24,5	22,69	133,3
16/4/2008	5	5,00	19,3	19	47	30	27,78	136,4
18/4/2008	5	5,00	19,3	19	47	28	25,93	139,5
19/4/2008	5	5,00	19	19	41	25	23,15	142,6
22/4/2008	5	4,90	19	18	45	30	27,78	145,7
3/5/2008	5	4,90	19	17	45	30	27,78	148,8
9/5/2008	5	4,90	19	19	45	29	26,85	151,9
16/5/2008	4,9	4,80	19,2	18,9	48	27	25,00	155
19/5/2008	4,9	4,50	19	18,5	48	27	25,00	158,1
28/5/2008	5	4,90	19	18	50	29	26,85	161,2
31/5/2008	5	4,80	19	18	50	28	25,93	164,3

Tabela A 01. Dados referentes ao monitoramento do sistema de dessalinização para o terceiro trimestre (*Continuação*).

3/6/2008	5,1	4,90	19,4	18,9	48	27	25,00	167,4
5/6/2008	5,1	4,20	19	18,6	48	27	25,00	170,5
7/6/2008	4,9	5,00	19	17	49	30	27,78	173,6
10/6/2008	5	4,75	18,9	18,4	48	27	25,00	176,7
11/6/2008	4,9	4,50	18,9	18,2	48	27	25,00	179,8
13/6/2008	4,5	5,00	19	18	49	30	27,78	182,9
16/6/2008	5	4,00	18	17	49	30	27,78	186
19/6/2008	5	4,90	18	17	49	30	27,78	189,1
20/6/2008	5	4,90	18	17	49	30	27,78	192,2
21/6/2008	5	5,00	18	17	49	30	27,78	195,3
25/6/2008	5	4,00	18	17	49	30	27,78	198,4
26/6/2008	5	4,00	19	18	50	30	27,78	201,5

ANEXO 5. TABELAS DE DADOS REFERENTES ÀS ANÁLISES FÍSICO-QUÍMICAS REALIZADAS DURANTE O MONITORAMENTO DO SISTEMA DE DESSALINIZAÇÃO DA COMUNIDADE DE URUÇU – PB.

Tabela 3. Dados das análises físico-químicas realizadas para as amostras das águas de alimentação do sistema de dessalinização.

Amostra	136	139	171	20	54	55	57	
Data	22/08/07	11/09/07	10/10/07	16/01/08	21/02/08	21/02/08	28/02/08	
Parâmetros	Resultados	VMP*						
Condutividade elétrica, µmho/cm a 25°C	15.410.0	15.410,0	14.710,0	15.630.0	17.140,0	17.140,0	16.430,0	
Potencial Hidrogeniônico, pH	6,5	6,5	7,4	7,4	7,5	7,5	7,5	6,5 a 8,5
Turbidez, (uT)	0,7	0,7	1,0	0,3	0,1	0.1	0	1,0 a 5,0
Cor, Unidade Hazen (mg Pt-Co/L).	0	0	0	0	5	5	5	15,0
Dureza em Cálcio, mg/L Ca	767	767	713	730	681	681	675	
Dureza em Magnésio, mg/L Mg ⁺	842,4	842,4	1.174,2	759	729	729	733.2	
Dureza Total, mg/L CaCO ₃	5.427,5	5.427,5	4.925,	4.987,5	4.740,0	4.740,0	4.742,5	500,0
Sódio, mg/L Na	2.222,3	2.222,3	2.428,7	2.333,6	2.136,6	2.136,6	2.368,9	200,0
Potássio, mg/L K [†]	35,3	35.3	36,7	36,7	17,5	17,5	8,4	
Alumínio, mg/L Al	0	0	0	0	0	0	0	0.2
Ferro Total, mg/L Fe	10,0	0,01	0.01	0,02	0,01	0,01	10,0	0,3
Alcalinidade em Hidróxidos,mg/L CaCO3	0	0	0	0	0	0	0	
Alcalinidade em Carbonatos.mg/L CaCO ₃	132	132	136	120	132	132	140	
Alcalinidade em Bicarbonatos, mg/L CaCO ₃	404	404	312	320	318	318	242	
Alcalinidade Total, mg/L CaCO ₃	536	536	448	440	450	450	382	
Sulfato, mg/L SO ₄	350,3	350,3	361,0	314,7	371,7	371,7	528,5	250.0
Cloreto, mg/L Cl'	6.851,5	6.851,5	6.727,3	6.656,30	6.354,5	6.354,5	6.603,0	250,0
Nitrato, mg/L NO ₃	0	0	0	0,04	0	0	0,18	10,0
Nitrito, mg/L NO ₂	0,03	0.03	0,02	0.03	0,02	0,02	0.04	1,0
Amônia, mg/L NH ₃	3,2	3,3	3,24	3,21	3,47	3,47	3,49	1,3
Silica, mg/L SiO ₂	58,4	58,4	57	54.8	63	63	60	
ILS (Índice de Saturação de Langelier)	0,43	0.43	-0,49	0,02	1,32	1,32	1.23	≤ 0
Sólidos Totais Dissolvidos, mg/L	12.188,0	12.188,0	12.642,0	13.678,0	11.554,0	11.554,0	11.413,0	1.000,0
Erro (%)	1,18	1.18	0,96	1,92	-1,84	-1,84	-1.84	2,0

Onde:

VMP* - Valor máximo permissível baseado na Portaria 518/2004 MS.

Tabela 3. Dados das análises físico-químicas realizadas para as amostras das águas de alimentação do sistema de dessalinização (Continuação).

Amostra	58	72	76	79	90	91	101	
Data	28/02/08	13/03/08	18/03/08	25/03/08	3/04/08	10/04/08	18/04/08	
Parâmetros	Resultados	VMP*						
Condutividade elétrica, µmho/cm a 25°C	16.430,0	16.260,0	17.700,0	17.800,0	16.580.0	16.840,0	16.880,0	
Potencial Hidrogeniônico, pH	7,5	7,2	6,7	6,7	7,7	8,1	8	6,5 a 8,5
Turbidez, (uT)	0	0	0	0	0,2	0,3	0,2	1,0 a 5,0
Cor, Unidade Hazen (mg Pt-Co/L).	5	5	0	0	5	5	5	15,0
Dureza em Cálcio, mg/L Ca ⁺⁺	675	671	73 I	701	681	719	733,5	
Dureza em Magnésio, mg/L Mg	733,2	726	893,4	923,4	729,6	708,6	753,3	er es v-
Dureza Total, mg/L CaCO ₃	4.742,5	4.702,5	5.550,0	5.600,0	4.742,5	4.750,0	4.972,5	500,0
Sódio, mg/L Na	2.368,9	2.261,5	2.325,6	2.368,9	2.408,5	2.364,0	2.378,8	200,0
Potássio, mg/L K ⁺	8,4	6	13,5	14,8	24,5	19,4	19,4	
Alumínio, mg/L Al	0	0	0	0	0	0	0	0,2
Ferro Total, mg/L Fe	0,01	0,01	0,01	0,01	0,01	10,0	0,01	0,3
Alcalinidade em Hidróxidos, mg/L CaCO ₃	0	0	0	0	0	0	0	EC VI. VV
Alcalinidade em Carbonatos, mg/L CaCO ₃	140	112	168	140	84	84	108	
Alcalinidade em Bicarbonatos, mg/L CaCO ₃	242	288	300	340	282	362	354	
Alcalinidade Total, mg/L CaCO ₃	382	400	468	480	366	446	462	
Sulfato, mg/L SO ₄	528,5	439,4	218,4	239,8	549,9	603,4	271,9	250,0
Cloreto, mg/L Cl	6.603,0	6.489,4	6.745,0	6.816,0	6.954,5	6.336,8	6.745,0	250,0
Nitrato, mg/L NO ₃	0,18	0,18	0	0,09	0,22	0,18	0	0,01
Nitrito, mg/L NO ₂	0,04	0,04	10,0	10,0	0,03	0,04	0,02	1,0
Amônia, mg/L NH ₃	3,49	3,52	3,51	3,48	3,2	3,1	2,9	1,3
Sílica, mg/L SiO ₂	60	61	58	57,6	58	62	59	
ILS (Índice de Saturação de Langelier)	1,23	0,91	0,59	0,51	1,39	1,88	1,81	≤ 0
Sólidos Totais Dissolvidos, mg/L	11.413,0	11,121,0	11.506,0	11.698,0	12.320,0	12.561,0	13.346,0	0,000.1
Erro (%)	1,84	-1,94	1,93	1,9	-1,15	1,98	1,96	2,0

Onde:

VMP* - Valor máximo permissível baseado na Portaria 518/2004 MS. Erro (%) – Erro analítico durante os procedimentos laboratoriais.

Tabela 3. Dados das análises físico-químicas realizadas para as amostras das águas de alimentação do sistema de dessalinização (Continuação).

Amostra	102	105	108	112	137	
Data	18/04/08	08/05/08	16/05/08	04/06/08	10/06/08	
Parâmetros	Resultados	Resultados	Resultados	Resultados	Resultados	VMP*
Condutividade elétrica, µmho/cm a 25°C	16.220,0	16.000,0	17.500,0	17.500,0	16.500,0	
Potencial Hidrogeniônico, pH	7,5	7,5	7,3	7,2	7,1	6,5 a 8,5
Turbidez, (uT)	0,1	0,1	0,3	0,5	0,4	1,0 a 5,0
Cor, Unidade Hazen (mg Pt-Co/L).	5	5	5	5	5	15,0
Dureza em Cálcio, mg/L Ca++	650	730	708	658	810	
Dureza em Magnésio, mg/L Mg ⁺⁺	915	810	663,6	699	1.008,0	
Dureza Total, mg/L CaCO ₃	5.437,5	5.200,0	4.535,0	4.557,5	6.225,0	500,0
Sódio, mg/L Na ⁺	2.119,6	2.147,7	2.091,8	2.119,6	2.290,7	200,0
Potássio, mg/L K ⁺	11,9	7,1	7,1	9,5	7,1	
Alumínio, mg/L Al	0	0	0	0	0	0,2
Ferro Total, mg/L Fe	0,01	0,01	0,02	0,02	0,02	0,3
Alcalinidade em Hidróxidos, mg/L CaCO ₃	0	0	0	0	0	
Alcalinidade em Carbonatos, mg/L CaCO ₃	0	0	284	200	120	
Alcalinidade em Bicarbonatos, mg/L CaCO ₃	580	480	188	240	526	
Alcalinidade Total, mg/L CaCO ₃	580	480	472	440	646	
Sulfato, mg/L SO ₄	353,9	328,9	311,1	311,1	264,8	250,0
Cloreto, mg/L Cl	6.567,5	6.532,0	6.010,2	6.091,8	7.987,5	250,0
Nitrato, mg/L NO ₃	0,04	0,04	0	0	0,04	10,0
Nitrito, mg/L NO ₂	0	0,02	0,02	0,01	0,01	1,0
Amônia, mg/L NH ₃	3,3	3,4	3,2	3,48	3,5	1,3
Sílica, mg/L SiO ₂	56	57	55,2	55	59	
ILS (Índice de Saturação de Langelier)	1,35	1,35	1,16	1,02	1,18	≤ 0
Sólidos Totais Dissolvidos, mg/L	11.761,0	11.205,7	13.457,0	12.774,0	11.068,0	1.000,0
Erro (%)	1,91	1,40	1,95	1,93	-1,91	2,0

Onde:

VMP* - Valor máximo permissível baseado na Portaria 518/2004 MS.

Tabela 4. Dados das análises físico-químicas realizadas para as amostras das águas do concentrado gerado pelo sistema de dessalinização.

Amostra	136	139	171	20	54 AL	55 DL	57	
Data	22/08/07	11/09/07	10/10/07	16/01/08	21/02/08	21/02/08	28/02/08	
Parâmetros	Resultados	VMP*						
Condutividade elétrica, µmho/cm a 25°C	22.700,0	22.600,0	19.500,0	21.600,0	26.000,0	24.900,0	25.800,0	
Potencial Hidrogeniônico, pH	7,2	7,8	8,1	7,6	7,6	7,5	7,6	6,5 a 8,5
Turbidez, (uT)	0,2	0,2	0	0,1	0,2	0	0,2	1,0 a 5,0
Cor, Unidade Hazen (mg Pt-Co/L).	8	5	6	0	5	0	3	15,0
Dureza em Cálcio, mg/L Ca++	1.205,00	1.157,0	1.120,0	1.113,0	1.070,0	1.070,0	1.055,0	
Dureza em Magnésio, mg/L Mg++	1.309,20	1.164,6	1.818,0	1.179,6	1.176,0	1.192,8	1.153,2	
Dureza Total, mg/L CaCO ₃	8.467,5	7.745,0	7.600,0	7.697,5	7.575,0	7.645,0	7.442,5	500,0
Sódio, mg/L Na ⁺	3.612,9	3.294,2	3.982,4	3.666,7	3.427,2	3.760,3	3.355,5	200,0
Potássio, mg/L K ⁺	87,9	87,9	67,8	175,8	27,1	29,7	27,1	
Alumínio, mg/L Al	0	0	0	0	0	0	0	0,2
Ferro Total, mg/L Fe	0,02	0,04	0,03	0,03	0,02	0,01	0,02	0,3
Alcalinidade em Hidróxidos, mg/L CaCO ₃	0	0	0	0	0	0	0	
Alcalinidade em Carbonatos, mg/L CaCO ₃	164	244	172	168	176	180	220	
Alcalinidade em Bicarbonatos, mg/L CaCO ₃	592	446	520	514	514	560	456	
Alcalinidade Total, mg/L CaCO ₃	756	690	692	682	690	740	676	
Sulfato, mg/L SO ₄	733,2	519,4	581,7	305,5	581,7	626,3	590,6	250,0
Cloreto, mg/L Cl	10.855,9	10.209,8	10.703,3	10.596,8	10.366,0	10.493,8	10.199,2	250,0
Nitrato, mg/L NO ₃	0,18	0	0,13	0	0,04	0,13	0,04	10,0
Nitrito, mg/L NO ₂	0,09	0,04	0,07	0,02	0,02	0,03	0,03	1,0
Amônia, mg/L NH ₃	0,63	0,63	0,52	0,56	6,12	6,52	6,15	1,3
Sílica, mg/L SiO ₂	92,8	90	88	89,2	108	98	106	
ILS (Índice de Saturação de Langelier)	1,43	1,95	0,26	0,5	1,75	1,7	1,77	≤ 0
Sólidos Totais Dissolvidos, mg/L	18.718,5	18.584,0	17.278,0	18.680,0	18.172,0	18.326,0	17.910,0	1.000,0
Erro (%)	-1,13	-1,93	1,2	1,98	1,04	-0,4	-1,96	2,0

Onde: AL – Antes da limpeza química dos elementos de membrana.

DL – Depois da limpeza química dos elementos de membrana. VMP* - Valor máximo permissível baseado na Portaria 518/2004 MS.

Tabela 4. Dados das análises físico-químicas realizadas para as amostras das águas do concentrado gerado pelo sistema de dessalinização

(Continuação).

Amostra	58	72	76	79	90	91	101AL	
Data	05/03/08	13/03/08	18/03/08	25/03/08	03/04/08	10/04/08	18/04/08	
Parâmetros	Resultados	VMP*						
Condutividade elétrica, µmho/cm a 25°C	26.100,0	25.300,0	26.300,0	25.000,0	24.000,0	25.000,0	24.600,0	
Potencial Hidrogeniônico, pH	7,6	7,2	7,2	7,1	7,8	7,2	7,5	6,5 a 8,5
Turbidez, (uT)	0,2	0	0,1	0,2	0	0,2	0	1,0 a 5,0
Cor, Unidade Hazen (mg Pt-Co/L).	4	0	0	0	0	1	5	15,0
Dureza em Cálcio, mg/L Ca**	1.070,0	1.048,0	1.132,0	1.111,0	954	1.310,0	1.170,0	
Dureza em Magnésio, mg/L Mg ⁻¹	1.174,2	1.177.2	1.128,0	1.193,4	1.141,2	937,2	1.128,0	
Dureza Total, mg/L CaCO ₃	7.567,5	7.525,0	7.530,0	7.750,0	7.140,0	7.180,0	7.625,0	500,0
Sódio, mg/L Na	3,180,1	3.703,5	3.914,0	3.573,0	3.593,3	3.803,1	3.750,1	200,0
Potássio, mg/L K ⁺	27,3	28,4	27,6	27,3	54,1	43,8	9,4	
Alumínio, mg/L Al	0	0	0	0	0	0	0	0,2
Ferro Total, mg/L Fe	0,03	0,01	0,02	0,02	0,02	0,01	0,02	0,3
Alcalinidade em Hidróxidos, mg/L CaCO ₃	0	0	()	0	0	0	0	
Alcalinidade em Carbonatos, mg/L CaCO ₃	192	280	252	248	112	216	560	
Alcalinidade em Bicarbonatos, mg/L CaCO ₃	488	442	464	418	468	450	200	
Alcalinidade Total, mg/L CaCO ₃	680	722	716	666	580	666	760	
Sulfato, mg/L SO ₄	661,9	359	376,8	385,7	813,4	813,4	483,7	250,0
Cloreto, mg/L Cl	9.904,5	10.831,1	10.912,7	10.685,5	10.053,6	10.295,0	9.762,5	250,0
Nitrato, mg/L NO ₃	0,04	0,04	0,09	0,31	0,27	0,27	0,04	10,0
Nitrito, mg/L NO ₂	0.04	0,02	0,03	0,09	0,06	0,06	0,02	1,0
Amônia, mg/L NH ₃	6,32	6,29	6,79	6,42	7,05	6,07	6,75	1,3
Sílica, mg/L SiO ₂	108	91	95	82	85	85	86	
ILS (Índice de Saturação de Langelier)	1,81	1,36	1,45	1,24	1,8	1,44	1,74	≤ 0
Sólidos Totais Dissolvidos, mg/L	17.842,0	18.042,0	18.505,0	17.876,0	17.876,0	18.513,0	17.437,0	1.000,0
Erro (%)	-1,60	-1,67	-0,78	-1,05	1,90	1,98	1,06	2,0

Onde: AL -- Antes da limpeza química dos elementos de membrana.

VMP* - Valor máximo permissível baseado na Portaria 518/2004 MS.

Erro (%) -- Erro analítico durante os procedimentos laboratoriais.

Tabela 4. Dados das análises físico-químicas realizadas para as amostras das águas do *concentrado* gerado pelo sistema de dessalinização

(Continuação).

Amostra	102DL	105	108	112	137	
Data	18/04/08	08/05/08	16/05/08	04/06/08	10/06/08	
Parâmetros	Resultados	Resultados	Resultados	Resultados	Resultados	VMP*
Condutividade elétrica, µmho/cm a 25°C	24.000,0	22.900,0	24.800,0	25.100,0	24.200,0	
Potencial Hidrogeniônico, pH	7,5	7,8	7,5	7,3	7,2	6,5 a 8,5
Turbidez, (uT)	0,1	0,2	0,6	0,2	0,5	1,0 a 5,0
Cor, Unidade Hazen (mg Pt-Co/L).	0	0	0	0	0	15,0
Dureza em Cálcio, mg/L Ca++	1.050,0	1.010,0	1.025,0	1.006,00	900	
Dureza em Magnésio, mg/L Mg++	1.149,0	1.044,0	986,4	1.004,40	1.404,0	
Dureza Total, mg/L CaCO ₃	7.412,5	6.875,0	6.672,5	6.700,0	8.100,0	500,0
Sódio, mg/L Na ⁺	3.541,7	3.750,1	3.439,6	3.910,0	3.593,3	200,0
Potássio, mg/L K ⁺	18,9	18,9	9,4	18,9	9,4	
Alumínio, mg/L Al	0	0	0	0	0	0,2
Ferro Total, mg/L Fe	0,01	0,01	0,02	0,02	0,02	0,3
Alcalinidade em Hidróxidos, mg/L CaCO ₃	0	0	0	0	0	
Alcalinidade em Carbonatos, mg/L CaCO ₃	140	220	332	344	0	
Alcalinidade em Bicarbonatos, mg/L CaCO ₃	580	420	292	286	834	
Alcalinidade Total, mg/L CaCO ₃	720	640	624	630	834	
Sulfato, mg/L SO ₄ ⁼	421,3	457	448,1	448,1	430,3	250,0
Cloreto, mg/L Cl	10.348,3	10.295,0	9.727,0	10.429,9	11.715,0	250,0
Nitrato, mg/L NO ₃	0,04	0,04	0,04	0	0	10,0
Nitrito, mg/L NO ₂	0	0	0,02	0,02	0,01	1,0
Amônia, mg/L NH ₃	7,11	6,71	7,17	7,28	7,09	1,3
Sílica, mg/L SiO ₂	90	90	95	89	89	
ILS (Índice de Saturação de Langelier)	1,65	1,9	1,55	1,4	1,35	≤ 0
Sólidos Totais Dissolvidos, mg/L	17.318,0	16.210,0	19.948,0	19.222,0	17.551,0	1.000,0
Erro (%)	1,89	1,88	-1,58	-1,58	-1,91	2,0

Onde: DL – Depois da limpeza química dos elementos de membrana.

VMP* - Valor máximo permissível baseado na Portaria 518/2004 MS.

Tabela 5. Dados das análises físico-químicas realizadas para as amostras das águas do permeado gerado pelo sistema de dessalinização.

Amostra	136	139	171	20	54 AL	55 DL	57	
Data	22/08/07	11/09/07	10/10/07	16/01/08	21/02/08	21/02/08	28/02/08	
Parâmetros	Resultados	VMP*						
Condutividade elétrica, µmho/cm a 25°C	440	394	424	485	413	410	385	
Potencial Hidrogeniônico, pH	5,7	5,9	7,5	6	6,1	6,8	6,1	6,5 a 8,5
Turbidez, (uT)	0,1	0,2	0	0,1	0,3	0	0	1,0 a 5,0
Cor, Unidade Hazen (mg Pt-Co/L).	0	0	0	0	0	0	0	15,0
Dureza em Cálcio, mg/L Ca ⁺⁺	2,2	2,6	1,4	2,2	2,4	2	1,6	
Dureza em Magnésio, mg/L Mg ⁺⁺	4,2	1,4	4	2,8	2,3	2,6	2,4	
Dureza Total, mg/L CaCO ₃	23	12,5	20	17	15,5	16	14	500,0
Sódio, mg/L Na ⁺	67,1	65,6	69,7	74,2	75,8	79,9	78,7	200,0
Potássio, mg/L K ⁺	1,4	1,3	1,6	1,6	0,4	0,3	0,2	
Alumínio, mg/L Al	0	0	0	0	0	0	0	0,2
Ferro Total, mg/L Fe	0,01	0,01	0	0,01	0,02	0,01	0,01	0,3
Alcalinidade em Hidróxidos, mg/L CaCO ₃	0	0	0	0	0	0	0	
Alcalinidade em Carbonatos, mg/L CaCO ₃	0	0	0	0	0	0	0	
Alcalinidade em Bicarbonatos, mg/L CaCO ₃	16	9,2	2	1,6	18	16	14	
Alcalinidade Total, mg/L CaCO ₃	16	9,2	2	1,6	18	16	14	
Sulfato, mg/L SO ₄	5,6	5,4	3,5	1,5	4,7	7,4	6,1	250,0
Cloreto, mg/L Cl ⁻	109,3	105,1	117,2	126,4	107,9	111,5	110,1	250,0
Nitrato, mg/L NO ₃	1,99	0,08	1,68	1,33	0,53	2,57	2,21	10,0
Nitrito, mg/L NO ₂	0,01	0,01	0,03	0	0,01	0,01	0,02	1,0
Amônia, mg/L NH ₃	0,13	0,14	0,01	0,01	0,09	0,24	0,28	1,3
Sílica, mg/L SiO ₂	0,4	0,2	0,4	0,3	0,5	0,6	0,5	
ILS (Índice de Saturação de Langelier)	-4,3	-4,16	-3,54	-4,92	-3,77	-3,17	-4,04	≤ 0
Sólidos Totais Dissolvidos, mg/L	254,0	193,1	202,5	213,0	216,6	226,6	219,2	1.000,0
Erro (%)	-1,96	-1,94	0,19	-0,47	-1,65	-1,57	-1,21	2,0

Onde: AL – Antes da limpeza química dos elementos de membrana.

DL – Depois da limpeza química dos elementos de membrana.

VMP* - Valor máximo permissível baseado na Portaria 518/2004 MS.

Tabela 5. Dados das análises físico-químicas realizadas para as amostras das águas do permeado gerado pelo sistema de dessalinização

(Continuação).

Amostra	58	72	76	79	90	91	101AL	
Data	05/03/08	13/03/08	18/03/08	25/03/08	03/04/08	10/04/08	18/04/08	
Parâmetros	Resultados	VMP*						
Condutividade elétrica, µmho/cm a 25°C	415	408	413	347	441	377	445	
Potencial Hidrogeniônico, pH	6	5,5	5,5	5,6	6,8	5,9	6,1	6,5 a 8,5
Turbidez, (uT)	0,2	0	0	0	0,1	0,1	0	1,0 a 5,0
Cor, Unidade Hazen (mg Pt-Co/L).	0	0	0	0	0	0	0	15,0
Dureza em Cálcio, mg/L Ca++	1,8	1,8	3,8	3,6	4,8	2,2	4	
Dureza em Magnésio, mg/L Mg++	2	2	3,5	3	4,4	2,3	4,3	
Dureza Total, mg/L CaCO ₃	13	13	24	21,5	30,5	15	28	500,0
Sódio, mg/L Na ⁺	75,2	78,1	80,6	74,6	84,9	76,4	80,5	200,0
Potássio, mg/L K ⁺	0,3	0,2	0,2	0,2	0,8	0,3	0,2	
Alumínio, mg/L Al	0	0	0	0	0	0	0	0,2
Ferro Total, mg/L Fe	0,02	0,01	0,01	0,02	0,03	0,01	0,02	0,3
Alcalinidade em Hidróxidos, mg/L CaCO ₃	0	0	0	0	0	0	0	
Alcalinidade em Carbonatos, mg/L CaCO ₃	0	4,8	4,8	4,8	0	0	0	
Alcalinidade em Bicarbonatos, mg/L CaCO ₃	9,2	10,4	9,2	10	4,4	11,2	20,8	
Alcalinidade Total, mg/L CaCO ₃	9,2	15,2	14	14,8	4,4	11,2	20,8	
Sulfato, mg/L SO ₄	4,7	4	4	4,7	2,4	0,6	1,2	250,0
Cloreto, mg/L Cl	110,8	112,2	134,9	112,9	131,4	115,7	123,5	250,0
Nitrato, mg/L NO ₃	1,55	0,44	1,51	0,97	1,33	1,51	0,58	10,0
Nitrito, mg/L NO ₂	0,01	0,01	0,01	0,01	0,01	0,01	0,01	1,0
Amônia, mg/L NH ₃	0,02	0,24	0,34	0,44	0,04	0	0,34	1,3
Sílica, mg/L SiO ₂	0,9	0,6	0,6	0,3	0,8	0,3	0,4	
ILS (Índice de Saturação de Langelier)	-4,3	-4,53	-4,25	-4,21	-3,46	-4,19	-3,53	≤ 0
Sólidos Totais Dissolvidos, mg/L	208,5	215,2	243,6	215,8	236,2	211	240,5	1.000,0
Erro (%)	-1,61	-1,95	-1,83	-1,74	2,00	-1,73	-1,65	2,0

Onde: AL – Antes da limpeza química dos elementos de membrana.

VMP* - Valor máximo permissível baseado na Portaria 518/2004 MS.

Tabela 5. Dados das análises físico-químicas realizadas para as amostras das águas do permeado gerado pelo sistema de dessalinização (Continuação).

Amostra	102DL	105	108	112	137	
Data	18/04/08	08/05/08	16/05/08	04/06/08	10/06/08	
Parâmetros	Resultados	Resultados	Resultados	Resultados	Resultados	VMP*
Condutividade elétrica, µmho/cm a 25°C	380	461	384	440	347	
Potencial Hidrogeniônico, pH	6,1	6,7	6,3	5,6	5,5	6,5 a 8,5
Turbidez, (uT)	0	0,1	0,7	0,5	0,5	1,0 a 5,0
Cor, Unidade Hazen (mg Pt-Co/L).	0	0	0	0	0	15,0
Dureza em Cálcio, mg/L Ca ⁺⁺	2,6	3,4	1,2	2,8	4,2	
Dureza em Magnésio, mg/L Mg ⁺⁺	4	7,2	3,2	4,1	1,1	
Dureza Total, mg/L CaCO ₃	23	38,5	16,5	24	15	500,0
Sódio, mg/L Na ⁺	72,3	84,2	61,1	66,3	61,1	200,0
Potássio, mg/L K ⁺	0,2	0,3	0,2	0,2	0,2	
Alumínio, mg/L Al	0	0	0	0	0	0,2
Ferro Total, mg/L Fe	0,01	0	0,02	0,01	0,03	0,3
Alcalinidade em Hidróxidos, mg/L CaCO ₃	0	0	0	0	0	
Alcalinidade em Carbonatos, mg/L CaCO ₃	0	0	0	0	0	
Alcalinidade em Bicarbonatos, mg/L CaCO ₃	14,4	13,2	11,2	12,4	8,4	
Alcalinidade Total, mg/L CaCO ₃	14,4	13,2	11,2	12,4	8,4	***
Sulfato, mg/L SO ₄ ⁼	0,9	2,7	0,6	0,9	0,3	250,0
Cloreto, mg/L Cl	111,5	133,5	95,9	103,7	91,6	250,0
Nitrato, mg/L NO ₃	0,89	1,55	1,28	2,26	0,97	10,0
Nitrito, mg/L NO ₂	0,01	0	0,01	0,01	0,01	1,0
Amônia, mg/L NH ₃	0,37	0,3	0,35	0,41	0,36	1,3
Sílica, mg/L SiO ₂	0,4	0,6	0,4	0,3	0,3	
ILS (Índice de Saturação de Langelier)	-3,87	-3,16	-4,04	-4,34	-4,46	≤ 0
Sólidos Totais Dissolvidos, mg/L	210,7	249,8	177,8	196	170,3	1.000,0
Erro (%)	-0,65	0,42	-1,25	-0,02	1,48	2,0

Onde: DL – Depois da limpeza química dos elementos de membrana.

VMP* - Valor máximo permissível baseado na Portaria 518/2004 MS.

ANEXO 6. CARACTERÍSTICAS DAS MEMBRANAS DE OSMOSE INVERSA UTILIZADAS NO SISTEMA DE DESSALINIZAÇÃO DE URUÇU.

ANEXO 7. DADOS DOS EXPERIMENTOS REALIZADOS NO LABORATÓRIO.

Tabela A 7. 1. Dados referentes aos experimentos realizados no laboratório para diferentes vazões de Q¹_c

Batelada 01 09/10/2007

Vazão do Permeado (Q _p =[L/min])	Vazão do Concentrado (Q _c =[L/min])	Vazão da Mistura (Q _p + Q _c)	Razão de Mistura do Permeado (X _p = [%])	Razão de Mistura do Concentrado (X _c = [%])	Volume Experimental (mL)	Volume do Permeado (mL)	Volume do Concentrado (mL)	Condutividade Elétrica Km da Mistura (µS)	pH _m da Mistura	Sólidos Totais Dissolvidos (Estimado) (mg/L)	Temperatura (°C)
27	0,42	27	98,5	1,5	1.000	985	15	1.289	6,83	902,3	23,0
27	0,83	28	97,0	3,0	1.000	970	30	1.514	6,75	1.059,8	23,0
27	1,67	29	94,2	5,8	1.000	942	58	2.610	7,02	1.827,0	23,0
27	2,50	30	91,5	8,5	1.000	915	85	3.250	7,18	2.275,0	23,0
27	3,33	30	89,0	11,0	1.000	890	110	4.252	7,68	3.189,0	23,0
27	5,00	32	84,4	15,6	1.000	844	156	5.520	7,44	4.140,0	23,0
27	6,67	34	80,2	19,8	1.000	802	198	6.310	7,64	4.732,5	23,0
27	8,33	35	76,4	23,6	1.000	764	236	7.640	7,97	5.730,0	23,0
27	11,67	39	69,8	30,2	1.000	698	302	8.920	7,84	6.690,0	23,0
27	15,00	42	64,3	35,7	1.000	643	357	9.900	7,88	7.425,0	23,0
27	18,33	45	59,6	40,4	1.000	596	404	10.960	7,9	8.220,0	23,0

Batelada 02 15/10/2007

Vazão do Permeado (Q _p =[L/min])	$\begin{aligned} Vazão & do \ Concentrado \\ & (Q_c = [L/min]) \end{aligned}$	Vazão da Mistura (Q _p + Q _c)	Razão de Mistura do Permeado (X _p = [%])	Razão de Mistura do Concentrado ($X_c = [\%]$)	Volume Experimental (mL)	Volume do Permeado (mL)	Volume do Concentrado (mL)	Condutividade Elétrica Km da Mistura (µS)	pH _m da Mistura	Sólidos Totais Dissolvidos (Estimado) (mg/L)	Temperatura (°C)
27	0,42	27	98,5	1,5	1.000	985	15	1.650	6,87	1.155,0	23,0
27	0,83	28	97,0	3,0	1.000	970	30	1.483	7,08	1.038,1	23,0
27	1,67	29	94,2	5,8	1.000	942	58	2.360	7,29	1.652,0	21,8
27	2,50	30	91,5	8,5	1.000	915	85	3.170	7,36	2.219,0	21,6
27	3,33	30	89,0	11,0	1.000	890	110	3.920	7,48	2.744,0	22,3
27	5,00	32	84,4	15,6	1.000	844	156	5.320	7,69	3.990,0	22,4
27	6,67	34	80,2	19,8	1.000	802	198	6.560	7,8	4.920,0	22,5
27	8,33	35	76,4	23,6	1.000	764	236	7.350	7,83	5.512,5	22,8
27	11,67	39	69,8	30,2	1.000	698	302	9.002	7,91	6.751,5	22.8
27	15,00	42	64,3	35,7	1.000	643	357	10.280	8,04	7.710,0	24,4
27	18,33	45	59,6	40,4	1.000	596	404	11.240	8,06	8,430,0	24,1

Tabela A7. 1. Dados referentes aos experimentos realizados no campo para diferentes vazões de Q c Continuação.

17/10/2007

Vazão do Permeado (Q _p ≖[L/min])	Vazão do Concentrado (Q. =[L/min])	Vazão da Mistura (Q _p + Q _c)	Razão de Mistura do Permeado (X _p = [%])	Razão de Mistura do Concentrado ($X_r = [\%]$)	Volume Experimental (mL)	Volume do Permeado (mL)	Volume do Concentrado (mL)	Condutividade Elétrica Km da Mistura (µS)	pH _m da Mistura	Sólidos Totais Dissolvidos (Estimado) (mg/L)	Temperatura (°C)
27	0.42	27	98.5	1.5	1.000	985	15	928	6,95	649,6	22.8
27	0,83	28	97.0	3	1.000	970	30	1.420	7.15	994,0	22,8
27	1,67	29	94,2	5.8	1.000	942	58	2.380	7.36	1.666,0	23,0
27	2.50	30	91.5	8.5	1.000	915	85	3.210	7, 13	2.247,0	23,0
27	3.33	30	89,0	11	1,000	890	110	3.880	7,61	2.716,0	23.0
27	5,00	32	84.4	15.6	1.000	8.14	156	5.390	7.75	4.042,5	23,1
27	6.67	34	80.2	. 19.8	1.000	802	198	6.620	7.89	4.965,0	23 0
27	8.33	35	76,4	23.6	1.000	764	236	7.440	7.96	5.580.0	23.0
27	11.67	39	69,8	30.2	1.000	698	302	8.800	8,01	6.600,0	22,8
27	15.00	42	64,3	35.7	1.000	643	357	10.010	8.05	7.507,5	23,0
27	18.33	45	59,6	40.4	1.000	596	404	11.200	8,06	8.400,0	23.0

Média dos três experimentos

Vazão do Permeado (Q _p =[L/min])	Vazão do Concentrado (Q, =[L/miπ])	Vazão da Mistura (Q _p + Q _c)	Razão de Mistura do Permendo (X _p = [%])	Razão de Mistura do Concentrado (X, = [%])	Volume Experimental (mL)	Volume do Permeado (ml.)	Volume do Concentrado (ml.)	Condutividade Elétrica Km da Místura (µS)	pH _m da Mistora	Sólidos Totais Dissolvídos (Estimado) (mg/L)	Temperatura (°C)
27	0.42	27	98.5	1.5	1.000	985	15	1.289	6.88	902,3	22,9
27	0,83	28	97.0	3	1.000	970	30	1.472	6.99	1.030.6	22.9
27	1,67	29	94.2	5.8	1.000	942	58	2,450	7.22	1.715.0	22.6
27	2.50	30	91.5	8.5	1,000	915	85	3.210	7.32	2 247,0	22,5
27	3.33	30	89,0	11	1.000	890	110	4.017	7,59	3.013,0	22,8
27	5.00	32	84,4	15,6	1.000	844	156	5.410	7,63	4.057,5	22,8
27	6.67	34	80,2	19,8	1.000	802	198	6.497	7,78	4.872,5	22,8
27	8.33	35	76,4	23.6	1.000	764	236	7,477	7.92	5.607.5	22,9
27	11,67	39	69.8	30.2	1.000	698	302	8,907	7.92	6.680,5	22,9
27	15.00	42	64.3	35.7	1.000	643	357	10.063	7.99	7.547,5	23,5
27	18.33	45	59,6	40.4	1.000	596	404	11.133	8,01	8.350,0	23,4

Tabela A 7.2. Desvio padrão absoluto para as médias dos experimentos realizados no laboratório

Desvio Padrão Absoluto da condutividade	Desvio Padrão Absoluto do pH	Desvio Padrão Absoluto do STD
361	0,06	253
48	0,21	34
139	0,18	97
40	0,13	28
204	0,10	265
101	0,16	76
164	0,13	123
148	0,08	111
102	0,09	76
196	0,10	147
151	0,09	114

ANEXO 8. DADOS DOS EXPERIMENTOS REALIZADOS NO CAMPO.

Tabela A8, 1. Dados referentes aos experimentos realizados no campo para diferentes vazões de Q\c.

Experimento 01

Vazão do Permeado (Q _p =[L/min])	Vazão do Concentrado (Q _c = [L/min])	V azāo da Mistura $(Q_p + Q_c)$	Razão de Mistura do Permeado (X _p = [%])	Razão de Mistura do Concentrado (X _c = [%])	Condutividade Elétrica Km da Mistura "in loco"(µS)	pH _m da Mistura "in loco":	Sólidos Totais Dissolvidos (Estimado) (mg/L)	Temperatura (°C)
27.0	1,60	29	94,4	5,6	2.960	6,25	2.072,0	28,0
27,0	2,50	30	91,5	8,5	3.530	6,42	2.471,0	28,0
27,0	3,20	30	89,4	10,6	4.060	6,37	3.045,0	28,0
27.0	5,00	32	84,4	15,6	5.380	6,49	4.035,0	28,0
27,0	6.60	34	80,4	19,6	6.520	6,60	4.890,0	28,0
27.0	8.30	35	76.5	23,5	7.660	6,65	5.745,0	28,1
27,0	11,60	39	69,9	30,1	8.270	6.71	6.202,5	27,0
27.0	15,00	42	64,3	35,7	9.380	6,79	7.035,0	27,5

Experimento

Vazão do Permeado (Q _p = L/min])	Vazão do Concentrado (Q _c = [L/min])	V azão da Mistura $(Q_p + Q_c)$	Razão de Mistura do Permeado $(X_p = \lceil \% \rceil)$	Razão de Mistura do Concentrado ($X_c = [\%]$)	Condutividade Elétrica Km da Mistura "in loco" (µS)	pH _m da Mistura "in loco"	Sólidos Totais Dissolvidos (Estimado) (mg/L)	Temperatura (°C)
27,0	1,60	29	94,4	5,6	2.570	6,20	1.799,0	26,1
27,5	2,50	30	91,7	8,3	3.100	6,42	2.170,0	25.0
27,5	3,33	31	89,2	10,8	3.690	6,48	2.583,0	25,0
27,5	5,00	33	84,6	15,4	4.840	6,60	3.630,0	26,1
27,5	6,70	34	80.4	19,6	5.820	6.53	4.365,0	26,0
27,5	8,33	36	76.8	23,2	6.660	6.59	4.995,0	27,0
27,5	11,67	39	70,2	29,8	8.040	6,67	6.030,0	27,0
27,5	15.00	43	64.7	35,3	9.000	6,71	6.750,0	27,0
							· · ·	

Tabela A8. 1. Dados referentes aos experimentos realizados no campo para diferentes vazões de Q c Continuação.

Vazão do Permeado (Q _p =[L/min])	Vazão do Concentrado (Q _c = [L/min])	Vazão da Mistura (Q _p + Q _c)	Razão de Mistura do Permeado (X _p = [%])	Razão de Mistura do Concentrado (X _c = [%])	Condutividade Elétrica Km da Mistura "in loco" (µS)	pH _m da Mistura "in loco"	Sólidos Totais Dissolvidos (Estimado) (mg/L)	Temperatura (°C)
27,5	1,67	29	94,3	5,7	2.560	6.18	1.792,0	27,0
28,0	2,25	3()	92,6	7,4	3.200	6,35	2.240,0	26,0
28,0	3,30	31	89,5	10,5	4.060	6,43	3.045,0	26,3
28,0	5,00	33	84,8	15,2	4.800	6,43	3.600,0	26,4
28,0	6,70	35	80,7	19.3	5,860	6.58	4.395,0	27,1
28,0	8,30	36	77,1	22,9	6.660	6,65	4.995,0	27,0
28,0	11,70	40	70,5	29,5	7.960	6.6 l	5.970,0	27.2
28,0	15,00	43	65,1	34,9	9.200	6,66	6.900,0	27,7
	<u> </u>					<u> </u>		
					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			

Média dos três experimentos

Vazão do Permeado $(Q_p = [L/min])$	Vazão do Concentrado (Q _c = [L/min])	Vazão da Mistura (Q _p + Q _c)	Razão de Mistura do Permeado (X _p = [%])	Razão de Mistura do Concentrado (X _c = [%])	Condutividade Elétrica Km da Mistura (μS)	pH _m da Mistura	Sólidos Totais Dissolvidos (Estimado) (mg/L)	Temperatura Média (°C)
27.2	1,62	28,79	94,4	1,5	2.697	6,21	1.887,7	27.0
27,5	2,42	29,92	91,9	3	3.277	6,40	2.293,7	26,3
27,5	3,28	30,78	89,4	5,8	3.937	6,43	2.891,0	26,4
27,5	5.00	32,50	84.6	8.5	5.007	6,51	3.755,0	26.8
27.5	6,67	34,17	80,5	11	6.067	6.57	4.550,0	27,0
27,5	8,31	35,81	76.8	15,6	6.993	6.63	5.245,0	27,4
27,5	11,66	39,16	70.2	19.8	8.090	6.66	6.067,5	27,1
27,5	15,00	42.50	64,7	23.6	9.193	6,72	6.895,0	27,4

Tabela A 8.2. Desvio padrão absoluto para as médias dos experimentos realizados no laboratório

Desvio Padrão Absoluto da condutividade	Desvio Padrão Absoluto do pH	Desvio Padrão Absoluto do STD
228	0,04	160
225	0,04	158
214	0,06	267
324	0,09	243
393	0,04	295
577	0,03	433
161	0,05	121
190	0,07	143

ANEXO 9. DADOS COMPLEMENTARES: CÁLCULO DA MOLARIDADE, FORÇA IÔNICA, DAS AMOSTRAS DA ALIMENTAÇÃO PERMEADO E CONCENTRADO

ALIMENTAÇÃO	136	139	171	20	54 Base	55 Base	57 Base	58 Base	72 Base	76 Торо	79 Topo	90	91	101AL	102DL	105	108	112	137	MÉDIA
Data	22/8/2007	11/9/2007	10/10/2007	16/1/2008	21/2/2008	21/2/2008	28/2/2008	28/2/2008	13/3/2008	18/3/2008	25/3/2008	3/4/2008	10/4/2008	18/4/2008	18/4/2008	8/5/2008	16/5/2008	4/6/2008	10/6/2008	
Parâmetros	Resultados	ALIMENTAÇÃO																		
Condutividade elétrica, µmho/cm a 25°C	15.410.00	15.410.00	14.710.00	15.630.00	17,140,00	17.140.00	16.430.00	16.430.00	16.260,00	17,700,00	17.800.00	16.580.00	16.840,00	16.880,00	16.220.00	16.000,00	17.500,00	17.500,00	16.500,00	16.530,53
Potencial Hidrogeniónico, pH	6,5	6,5	7,4	7.4	7.5	7.5	7.5	7,5	7,2	6.7	6.7	7.7	8,1	8	7,5	7,5	7,3	7,2	7,1	7,31
Turbidez, (uT)	0.7	0.7	0.1	0,3	0.1	0,1	0	0	0	0	0	0,2	0,3	0,2	0,1	0,1	0,3	0,5	0.4	0,22
Cor, Unidade Hazen (mg Pt-Co/L).	0	0	0	0	5	5	5	5	5	0	0	5	5	5	5	5	5	5	5	3,42
Dureza em Cálcio, mg/L Ca	767	767	713	730	681	681	675	675	671	731	701	681	719	733,5	650	730	708	658	810	709,55
Dureza em Magnésio, mg/L Mg	842,4	842.4	1.174,20	759	729	729	733,2	733,2	726	893,4	923,4	729,6	708,6	753,3	915	810	663,6	699	1.008,00	809,07
Dureza Total, mg/L CaCO3	5.427,50	5.427,50	4.925,00	4.987,50	4.740,00	4.740,00	4.742,50	4.742,50	4.702,50	5.550,00	5.600,00	4.742,50	4.750,00	4.972,50	5.437,50	5.200,00	4.535,00	4.557,50	6.225,00	5.052,89
Sódio, mg/L. Na	2.222,30	2.222,30	2.428,70	2.333,60	2.136,60	2.136,60	2.368,90	2.368,90	2.261,50	2.325,60	2.368,90	2.408,50	2.364,00	2.378,80	2.119,60	2.147,70	2.091,80	2.119,60	2.290,70	2.268,14
Potássio, mg/L K	35,3	35,3	36,7	36,7	17,5	17,5	8,4	8,4	6	13,5	14,8	24,5	19,4	19,4	11,9	7.1	7,1	9,5	7,1	17,69
Aluminio, mg/L Al	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,00
Ferro Total, mg/L Fe	0,01	0,01	0,01	0.02	0.01	0,01	0,01	0.01	0,01	0.01	0.01	0,01	0,01	0,01	0.01	0.01	0,02	0.02	0,02	0,01
Alcalinidade em Hidróxidos.mg/L CaCO3	.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,00
Alcalinidade em Carbonatos.mg/L CaCO3	132	132	136	120	132	132	140	140	112	168	140	84	84	108	0	0	284	200	120	124,42
Alcalinidade em Bicarbonatos, mg/L CaCO3	404	404	312	320	318	318	242	242	288	300	340	282	362	354	580	480	188	240	526	342,11
Alcalinidade Total, mg/L CaCO3	536	536	448	440	450	450	382	382	400	468	480	366	446	462	580	480	472	440	646	466,53
Sulfato, mg/L SO4	350,3	350.3	361	314.7	371.7	371.7	528.5	528.5	439,4	218.4	239.8	549,9	603,4	271,9	353,9	328,9	311,1	311,1	264,8	372,07
Cloreto, mg/L, Cl	6.851,50	6.851,50	6.727,30	6.656,30	6.354,50	6.354,50	6.603,00	6.603,00	6.489,40	6.745,00	6.816,00	6.954,50	6.336,80	6.745,00	6.567,50	6.532,00	6.010,20	6.091,80	7.987,50	6.646,17
Nitrato, mg/L NO3	0	0	0	0.04	0	0	0.18	0.18	0.18	0	0.09	0,22	0,18	0	0,04	0,04	0	0	0.04	0,06
Nitrito, mg/L NO2	0.03	0.03	0.02	0.03	0.02	0.02	0.04	0.04	0.04	0.01	0.01	0.03	0.04	0.02	0	0,02	0,02	0,01	0.01	0,02 2,72
Amónia, mg/L NH3	0.29	0.29	0.3	0.32	3,47	3,47	3,49	3,49	3,52	3,51	3,48	3,2	3,1	2,9	3,3	3,4	3,2	3,48	3,5	
Silica, mg/L SiO2	58,4	58,4	57	54.8	63	63	60	60	61	58	57,6	58	62	59	56	57	55,2	55	59	58,55
ILS (Índice de Saturação de Langelier)	0.43	0.43	1,99	0.02	1,32	1.32	1.23	1.23	0.91	0.59	0.51	1.39	1,88	1,81	1,35	1,35	1,16	1,02	1,18	1,11
Sólidos Totais Dissolvidos, mg/L	12.188,0	12,188,0	12.642,0	13.678,0	11.554,0	11.554,0	11,413,0	11,413,0	11.121,0	11,506,0	11.698,0	12.320,0	12.561,0	13.346,0	11.761,0	11.205,7	13.457,0	12.774,0	11.068,0	12.076,19

	n° moles	n° moles	n° moles	n° moles	n° moles	n° moles	n° moles	n° moles	n" moles	n° moles	n° moles	n° moles	n° moles	n' moles	n° moles	n° moles	n° moles	n° moles	n' moles	n° moles
												- 4								
Dureza em Cáldo, mg/L, Ca	0,01913768	0,01913768	0,01779031	0,01821448	0,01699187	0.01699187	0,01684216	0,01684216	0,01674235	0,01823943	0,01749089	0,01699187	0,01794002	0,01830181	0,01621837	0,01821448	0,01766555	0,01641798	0,02021059	0,01770429
Dureza em Magnésio, mg/L Mg	0,03465954	0.03465954	0.04831105	0,03122814	0,02999383	0,02999383	0,03016663	0,03016663	0,02987040	0.03675787	0,03799218	0,03001851	0,02915449	0,03099362	0,03764657	0,03332648	0,02730302	0,02875951	0,04147295	0,03328815
Dureza Total, mg/L CaCO3	CHARLES INVITABLE	ELECTRIC RE	TEXAS STREET			NO.	de la company	ar more ser	THE RELIES			AND REAL PROPERTY.			THE RESERVE					
Sódio, mg/L. Na	0,09666473	0,09666473	0,10564264	0,10150602	0,09293699	0.09293699	0,10304148	0,10304148	0,09836984	0,10115804	0,10304148	0,10476399	0,10282834	0,10347211	0,09219753	0,09341981	0,09098830	0,09219753	0,09963997	0,09865853
Potássio, mg/L K	0,00090285	0,00090285	0,00093866	0,00093866	0,00044759	0,00044759	0,00021484	0,00021484	0,00015346	0,00034528	0,00037853	0,00062663	0,00049619	0,00049619	0,00030436	0,00018159	0,00018159	0,00024298	0,00018159	0,00045244
Numínio, mg/L Al		BEATS HE SE			A PROPERTY OF STREET			CONTRACTOR OF THE PARTY OF THE	SECTION SHAPE			CONTRACTOR MINISTRA	BURNESS SERVICES	HE WAS TO SERVE	OF PARTY HERE	Offerten acts	E-VIEW ROLL			
Ferro Total, mg/L Fe			COLUMN TO SE			THE PARTY OF THE P	Name of Street, or other	ADDED AND SERVE		TO SECURE		CHARLES MANAGEMENT								
Alcalinidade em Hidróxidos,mg/L CaCO3	THE RESERVE			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							THE PARTY OF THE P					THE RESERVE				
Alcalinidade em Carbonatos,mg/L CaCO3	0,00132000	0,00132000	0,00136000	0,00120000	0,00132000	0,00132000	0,00140000	0,00140000	0,00112000	0,00168000	0,00140000	0,00084000	0,00084000	0,00108000	0,00000000	0,00000000	0,00284000	0,00200000	0,00120000	0,00124421
Alcalinidade em Bicarbonatos, mg/L CaCO3	0,00808000	0,00808000	0,00624000	0,00640000	0,00636000	0,00636000	0,00484000	0,00484000	0,00576000	0,00600000	0,00680000	0,00564000	0,00724000	0,00708000	0,01160000	0,00960000	0,00376000	0,00480000	0,01052000	0,00684211
Alcalinidade Total, mg/L CaCO3			CONTRACTOR OF THE PARTY OF	THE RESIDENCE	STATE OF THE PARTY				THE REAL PROPERTY.				THE REPORT OF THE PARTY OF	THE RESERVE AND ADDRESS OF THE PERSON NAMED IN		Market Telephone				
Sulfato, mg/L SO4	0,00364654	0,00364654	0,00375793	0,00327595	0,00386931	0,00386931	0,00550156	0,00550156	0,00457405	0,00227349	0,00249626	0,00572433	0,00628126	0,00283042	0,00368402	0,00342377	0,00323848	0,00323848	0,00275651	0,00387315
Cloreto, mg/L CI	0,19325750	0,19325750	0,18975424	0,18775157	0,17923882	0,17923882	0,18624816	0,18624816	0,18304389	0,19025349	0,19225616	0,19616277	0,17873956	0,19025349	0,18524682	0,18424549	0,16952729	0,17182894	0,22530019	0,18746594
Nitrato, mg/L NO3	0,00000000	0,00000000	0,00000000	0,00000065	0,00000000	0,00000000	0,00000290	0,00000290	0,00000290	0,00000000	0,00000145	0,00000355	0,00000290	0,00000000	0,00000065	0,00000065	0,00000000	0,00000000	0,00000065	0,00000101
litrito, mg/L NO2	0,00000065	0,00000065	0,00000043	0,00000065	0,00000043	0,00000043	0,00000087	0,00000087	0,00000087	0,00000022	0,00000022	0,00000065	0,00000087	0,00000043	0,00000000	0,00000043	0,00000043	0,00000022	0,00000022	0,00000050
mónia, mg/L NH3	0,00001703	0,00001703	0,00001762	0,00001879	0,00020375	0,00020375	0,00020493	0,00020493	0,00020669	0,00020610	0,00020434	0,00018790	0,00018203	0,00017028	0,00019377	0,00019964	0,00018790	0,00020434	0,00020551	0,00015981
Silica, mg/L SiO2	0,00097197	0,00097197	0,00094867	0,00091205	0,00104853	0,00104853	0,00099860	0,00099860	0,00101524	0,00096531	0,00095865	0,00096531	0,00103188	0,00098195	0,00093202	0,00094867	0,00091871	0,00091538	0,00098195	0,00097442
	0,36	0,36	0,37	0,35	0,33	0.33	0,35	0.35	0,34	0.36	0,36	0,36	0,34	0,36	0,35	0,34	0,32	0,32	0,40	0,35

	Fração molar x	Fração molar x	Fração molar x	Fração molar	Fração molar x	Fração molar	Fração mola	Fração molar x	Fração molar x	Fração molar x	Fração molar	Fração molar :	Fração molar x	Fração molar x	Fração molar x	Fração molar x	Fração molar x	Fração molar a	x Fração molar x	Fração molar x
												- 1							-	
Dureza em Cáldo, mg/L Ca	0,0533591	0,0533591	0,0474710	0,0518271	0,0511170	0,0511170	0,0481945	0,0481945	0,0491180	0,0509653	0,0481816	0,0469485	0,0520396	0,0514587	0,0466013	0,0530167	0,0557957	0,0512093	0,0502164	0,0504878
Dureza em Magnésio, mg/L Mg	0,0966366	0,0966366	0,1289114	0,0888559	0,0902311	0,0902311	0,0863230	0,0863230	0,0876325	0,1027103	0,1046558	0,0829411	0,0845701	0,0871439	0,1081723	0,0970031	0,0862352	0,0897038	0,1030460	0,0949288
Dureza Total, mg/L CaCO3	I TO A SHIP OF	THE STREET STREET		I COMPANY IN STREET	SOLD BOOK OF	TATION DESIGNATION	PROPERTY AND LOCAL	PARTY OF THE PARTY		ALCOHOLD SERVICE	NAME OF TAXABLE PARTY.	Transfer Manual		THE REST OF THE PARTY.	CONTRACTOR OF SET	THE STOR			12 元 日 元	温温温温
Sódio, mg/L Na	0,2695175	0,2695175	0,2818930	0,2888231	0,2795845	0,2795845	0,2948574	0,2948574	0,2885934	0,2826597	0,2838451	0,2894628	0,2982801	0,2909296	0,2649171	0,2719162	0,2873817	0,2875733	0,2475711	0,2813473
Potássio, mg/L K	0,0025173	0,0025173	0,0025047	0,0026708	0,0013465	0,0013465	0,0006148	0,0006148	0.0004502	0,0009648	0,0010427	0,0017314	0,0014393	0,0013951	0,0008745	0,0005286	0,0005736	0,0007579	0,0004512	0,0012902
Aluminio, mg/L Al	THE PARTY OF THE P	18 12 W H	J. S		AND THE PARTY	HE THE	ALCOHOL: SERVICE	THE RESERVE		STEEL SHOWING	Distribution of	DESCRIPTION OF THE PERSON NAMED IN	AUTO SELLE	SELECTION	\$18 M. S.	The state of the s				
Ferro Total, mg/L Fe							LEUR DAN SER MUSIC	Company of the	THE REAL PROPERTY.	OFFICE STREET		THE RESERVE		AR IN THE	CATHOLICAN POR		HINDS STATE OF		Her STATES	
Alcalinidade em Hidróxidos,mg/L CaCO3		MUNICIPAL STREET	THE RESERVE								TOTAL SECTION		NAME OF STREET		医数量验证	THE RESERVE				
Alcalinidade em Carbonatos.mg/L CaCO3	0,0036804	0,0036804	0,0036290	0,0034144	0,0039710	0,0039710	0,0040061	0,0040061	0,0032858	0,0046943	0,0038565	0,0023209	0,0024366	0,0030366	0,0000000	0,0000000	0,0089700	0,0062382	0,0029816	0,0035481
Alcalinidade em Bicarbonatos, mg/L CaCO3	0,0225284	0,0225284	0,0166506	0,0182104	0,0191329	0,0191329	0,0138499	0,0138499	0,0168984	0,0167654	0,0187317	0,0155833	0,0210015	0,0199066	0,0333310	0,0279426	0,0118758	0,0149717	0,0261386	0,0195118
Alcalinidade Total, mg/L CaCO3	ISSUE AND DESCRIPTION OF THE PERSON OF THE P	COPPOSITO STATE		BETTERN CHISSEN		Mario Maria	TOO SHIP OF	DESCRIPTION OF THE PERSON NAMED IN	CHARLES MARKET	DISTRESS ON	DESCRIPTION OF	MARIN MICH							THE PARTY OF	THE RESERVE
Sulfato, mg/L SO4	0,0101672	0,0101672	0,0100275	0,0093213	0,0116401	0,0116401	0,0157429	0,0157429	0,0134192	0,0063527	0,0068764	0,0158163	0,0182204	0,0079582	0,0105855	0,0099655	0,0102286	0,0101011	0,0068490	0,0110452
Cloreto, mg/LCI	0,5388343	0,5388343	0,5063333	0,5342245	0,5392083	0,5392083	0,5329566	0,5329566	0,5370066	0,5316137	0,5296019	0,5419976	0,5184801	0,5349304	0,5322816	0,5362817	0,5354430	0,5359516	0,5597936	0,5346019
Nitrato, mg/L NO3	0,0000000	0,0000000	0,0000000	0,0000018	0,0000000	0,0000000	0,0000083	0,0000083	0,0000085	0,0000000	0,0000040	0,0000098	0,0000084	0,0000000	0,0000019	0,0000019	0,0000000	0,0000000	0,0000016	0,0000029
Nitrito, mg/L NO2	0,0000018	0,0000018	0,0000012	0,0000019	0,0000013	0,0000013	0,0000025	0,0000025	0,0000026	0,0000006	0,0000006	0,0000018	0,0000025	0,0000012	0,0000000	0,0000013	0,0000014	0,0000007	0,0000005	0,0000014
Amônia, mg/L NH3	0,0000475	0,0000475	0,0000470	0,0000535	0,0006129	0,0006129	0,0005864	0,0005864	0,0006064	0,0005759	0,0005629	0,0005192	0,0005280	0,0004788	0,0005568	0,0005811	0,0005935	0,0006374	0,0005106	0,0004557
Silica, mg/L SiO2	0,0027100	0,0027100	0,0025314	0,0025951	0,0031543	0,0031543	0,0028575	0,0028575	0,0029785	0,0026973	0,0026408	0,0026672	0,0029932	0,0027609	0,0026780	0,0027613	0,0029017	0,0028552	0,0024398	0,0027788
	1.00	1,00	1,00	1,00	1.00	1.00	1,00	1.00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00

	MOL/LITRO	MOL/LITRO	MOL/LITRO	MOL/LITRO	MOL/LITRO	MOL/LITRO	MOL/LITRO	MOL/LITRO	MOL/LITRO	MOL/LITRO	MOL/LITRO	MOL/LITRO	MOL/LITRO	MOL/LITRO	MOL/LITRO	MOL/LITRO	MOL/LITRO	MOL/LITRO	MOL/LITRO	MOL/LITRO
Dureza em Cáldo, mg/L Ca	0,019137682	0,019137682	0,017790309	0.018214482	0,016991866	0,016991866	0,016842158	0,016842158	0.01674235	0.018239433	0,017490893	0,016991866	0.017940017	0.018301811	0,016218374	0,018214482	0,017665552	0,016417985	0.020210589	0,017704292
Dureza em Magnésio, mg/L Mg	0,034659535	0.034659535	0,048311047	0.031228142			0,030166632				0.037992183	0,030018518	0.029154495	0.030993623	0,037646575	0,033326476	0,027303024	0.028759515	0,041472948	0,033288147
Dureza Total, mg/L CaCO3					A CHARLES TO A										57 P. C. C.					
Sódio, mg/L Na	0,096664734	0,096664734	0,10564264	0,101506018	0.092936989	0,092936989	0.103041483	0,103041483	0.09836984	0,101158037	0,103041483	0,104763989	0,102828345	0,10347211	0,09219753	0,093419812	0,090988296	0,09219753	0,09963997	0,098658527
Potássio, mg/L K	0,000902853	0.000902853	0,00093866	0.00093866	0.00044759	0.00044759	0.000214843	0.000214843	0,00015346	0,000345284	0.000378533	0,000626626	0,000496185	0.000496185	0,000304361	0,000181594	0,000181594	0.000242977	0.000181594	0,000452436
Aluminio, mg/L Al		WE HAVE	Name and Address of the				ENGINEED.				DESCRIPTION			I SELLIFE THE					A STATE OF THE PARTY OF THE PAR	
Ferro Total, mg/L Fe		THE PERSON NAMED IN					THE PARTY OF STREET			Senior I	The second of			THE RESERVE	Marie Carrie			No.		
Alcalinidade em Hidróxidos.mg/L CaCO3		ALC: UNKNOWN	Contract to the		NAME OF TAXABLE				Contract of the last of the la	THE OWNER OF THE PARTY.				The state of the state of	Control of the last			Section 1		
Alcalinidade em Carbonatos.mg/L CaCO3	0,001319998	0.001319998	0,001359998	0,001199998	0,001319998	0.001319998	0,001399998	0,001399998	0,00112	0.001679997	0,001399998	0,000839999	0,000839999	0.001079998	0	0	0,002839995	0,001999997	0.001199998	0,001244208
Alcalinidade em Bicarbonatos, mg/L CaCO3	0,00808	0,00808	0,00624	0,0064	0,00636	0,00636	0,00484	0,00484	0,00576	0,006	0,0068	0,00564	0,00724	0,00708	0,0116	0,0096	0.00376	0,0048	0,01052	0,006842105
Alcalinidade Total, mg/L CaCO3	A THE PARTY								Table In the			STATE OF THE PARTY OF		THE RESERVE						
Sulfato, mg/L SO4	0,003646542	0.003646542	0,003757927	0.003275955	0,003869312	0.003869312	0,005501564	0,005501564	0.00457405	0.002273494	0.002496263	0.005724333	0,006281255	0.002830417	0.003684018	0,003423773	0,00323848	0,00323848	0,002756507	0,003873147
Cloreto, mg/L, Cl	0,193257495	0.193257495	0,189754236	0.187751568	0.179238817	0,179238817	0,186248156	0,186248156	0.18304389	0,190253493	0.192256161	0,196162775	0.17873956	0.190253493	0.185246822	0,184245488	0.169527286	0,171828944	0,225300189	0,187465939
Nitrato, mg/L NO3	0	0	0	6,4511E-07	0	0	2,90299E-06	2,90299E-06	2,903E-06	0	1,4515E-06	3,5481E-06	2,90299E-06	0	6,4511E-07	6,4511E-07	0	0	6,4511E-07	1,01011E-06
Nitrito, mg/L NO2	6,52095E-07	6,52095E-07	4,3473E-07	6,52095E-07	4,3473E-07	4.3473E-07	8,6946E-07	8,6946E-07	8,6946E-07	2,17365E-07	2,17365E-07	6,52095E-07	8,6946E-07	4,3473E-07	0	4,3473E-07	4,3473E-07	2,17365E-07	2,17365E-07	5,03372E-07
Amônia, mg/L NH3	1,70282E-05	1,70282E-05	1,76154E-05	1,87897E-05	0,000203751	0,000203751	0.000204926	0,000204926	0.00020669	0,0002061	0,000204338	0,000187897	0,000182026	0.000170282	0.000193769	0.000199641	0,000187897	0,000204338	0,000205513	0,000159806
Silica, mg/L Si02	0,000971968	0,000971968	0.000948667	0.000912052	0.001048527	0,001048527	0,000998597	0,000998597	0.00101524	0.00096531	0,000958653	0,00096531	0,001031884	0.000981954	0,000932024	0.000948667	0,000918709	0,000915381	0.000981954	0,00097442
Somatório da Concentração Moloar =	0.4	0.4	0.4	0.4	0.3	0.3	0.3	0.3	0.3	0.4	0.4	0.4	0.3	0.4	0.3	0.3	0,3	0,3	0.4	0.4

	CÁLCUL	DA FORCA	ÓNICA DO PE	RMFADO	TEMPERA	TURA ("C) =	25					1/6								
					CALCULO	DE "A" =	0.551773217													
	FORÇA	FORÇA	FORÇA	FORÇA	FORÇA	FORÇA	FORÇA	FORÇA	FORÇA	FORÇA	FORÇA	FORÇA	FORÇA	FORÇA	FORÇA	FORÇA	FORÇA	FORÇA	FORÇA	FORÇA
		_																		
Dureza em Cálgo, mg/L Ca	0.076550726	0.076550726	0.071161236	0.072857927	0.067967463	0.067967463	0.067368631	0,067368631	0.06696941	0.072957732	0.069963571	0.067967463	0,071760068	0.073207246	0.064873497	0.072857927	0.070662209	0.06567194	0.080842357	0.07081717
Dureza em Magnésio, mg/L Mg	0.13863814			0.124912569				0.12066653		0.147031475		0,120074059	0.11661798	0.123974491	0.150586299	0.133305904	0.109212096	0.115038058	0.165891792	0.133152589
Dureza Total, mg/L CaCO3					and the second second						241.32.32.42.33.3								- CONTROL CONT	
Sódio, mg/L Na	0.096664734	0.096664734	0.10564264	0.101506018	0.092936989	0.092936989	0.103041483	0.103041483	0.09836984	0.101158037	0.103041483	0.104763989	0.102828345	0.10347211	0.09219753	0.093419812	0.090988296	0.09219753	0.09963997	0,098658527
Potássio, mg/L K	0.000902853	0,000902853		0.00093866	0.00044759	0.00044759	0.000214843	0,000214843			0.000378533	0.000626626	0.000496185	0.000496185	0.000304361	0,000181594	0.000181594	0.000242977	0.000181594	0,000452436
Aluminio, mg/L Al												010000000000000000000000000000000000000								
Ferro Total, mg/L Fe																				
Alcalinidade em Hidróxidos,mg/L CaCO3																				
Alcalinidade em Carbonatos mg/L CaCO3	0.00528	0.00528	0.00544	0.00480	0.00528	0.00528	0.00560	0.00560	0.00448	0.00672	0.00560	0.00336	0.00336	0.00432	0.00000	0.00000	0.01136	0,00800	0.00480	0.00498
Alcalinidade em Bicarbonatos, mg/L CaCO3	0,00808	80800,0	0,00624	0.0064	0,00636	0,00636	0,00484	0.00484	0,00576	0,006	0,0068	0,00664	0,00724	0.00708	0,0116	0,0096	0.00376	0,0048	0,01052	0,006842105
Alcalinidade Total, mg/L CaCO3									_											
Sulfato, mg/L SO4	0.01458617	0.01458617	0.015031708	0.013103819	0.015477246	0.015477246	0.022006254	0.022006254	0.01829621	0.009093975	0.009985052	0,022897331	0.025125021	0.011321666	0.014736071	0.013695094	0.012953918	0.012953918	0.011026029	0.015492587
Cloreto, mg/L Cl	0.193257495						0.186248156	0.186248156			0.192256161	0.196162775	0.17873956	0.190253493	0.185246822	0.184245488	0.169527286	0,171828944		0.187465939
Nitrato, mg/L NO3	0	0	0	6.4511E-07	0	0	2 90299E-06	2 90299E-06	2.903E-06	0	1.4515E-06	3.5481E-06	2.90299E-06	0,100200400	6.4511E-07	6.4511E-07	0,103027200	0	6.4511E-07	1.01011E-06
Nitrito, mg/L N02	6.52095E-07	6,52095E-07	4.3473F-07	6.52095E-07	4,3473E-07	4,3473E-07	8.6946E-07	8.6946E-07		2 17365F-07	2,17365E-07	6,52095E-07	8.6946E-07	4.3473E-07	0.40712-01	4.3473E-07	4.3473E-07	2.17365E-07	2.17365E-07	5.03372E-07
Amónia, mg/L NH3	1.70282E-05	1.70282E-05				0.000203751		0.000204926	0.00020669		0.000204338		0.000182026	0.000170282	0.000193769	0.000199641	0.000187897	0.000204338	0.000205513	0.000159806
Silica, mg/L Si02	THE COLUMN	1.102020-00	1,101046-00	1,010012-00	0,000200701	0,000200101	0.000204020	0,000204020	0,00020003	0,0002.001	0,000204000	0,000 101 001	0,000 102020	0,000110202	0,000100100	0,000100011	0,000 (0,00)	0.000201000	0.000,000	0,000,000
ALIMENTCAO												100								
Soma da força iônica	0.266988895	0.266988895	0.293735355	0.25614532	0.243943798	0.243943798	0.255097293	0.255097293	0.24838242	0.266883151	0.270099764	0.260842167	0.253176476	0.25714795	0.259869497	0.25375327	0.234416856	0.235468955	0.299204149	0.259009753
		0,200,000,00	9.2507.000007	0,20014002	0.27037070	1 0,210310730	0,200001200	0,20007200	10,24000242	0.200000101	0,270000704	0,200012101	0,230170170	0,20111100	D.200000437	1 4,200,202,	1 0,50,11,000	_		
pH da solução	6,50	6.50	7.40	7.40	7,50	7,50	7.50	7,50	7.20	6.70	6.70	7.70	8.10	8.00	7,50	7.50	7.30	7.20	7.10	7,31
og 10 da concentração de Ca (mol/L)	1,72	1,72	1,75	1.74	1.77	1,77	1.77	1.77	1.78	1,74	1.76	1.77	1.75	1.74	1.79	1,74	1,75	1,78	1,69	1,75
alcalinidade total como CaCO3(mol/L)	0,01	0.01	0.00	0.00	0.00	0,00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0,00	0.00	0.01	0,00
Log 10 da alcalinidade total como CaCO3(mol/) 2,27	2.27	2.35	2.36	2.35	2.35	2.42	2.42	2.40	2.33	2,32	2.44	2.35	2.34	2.24	2,32	2,33	2,36	2,19	2,33
< (depende de T("C=28) e da força iónica	2,70	2,70	2.70	2,70	2.70	2.70	2.70	2.70	2.70	2.70	2.70	2.70	2.70	2.70	2.70	2,70	2,70	2,70	2,70	2,70
Força iônica	0,27	0.27	0.29	0.26	0.24	0.24	0.26	0.26	0.25	0.27	0.27	0.26	0.25	0.26	0.26	0.25	0.23	0.24	0.30	0,26
oHs	6,69	6,69	6.80	6.80	6,82	6,82	6.89	6,89	6.87	6,77	6,78	6,91	6.80	6.77	6.73	6,76	6,78	6.84	6,58	6,78
Stiff8Davis	-0,19	-0.19	0.60	0,60	0.68	0.68	0.61	0.61	0.33	-0.07	-0.08	0.79	1,30	1,23	0.77	0.74	0,52	0,36	0,52	0,52
ISL	0.43	0.43	1.99	0.02	1.32	1.32	1.23	1.23	0.91	0.59	0.51	139	1.88	1.81	1.35	1.35	1.16	1,02	1,18	1.11

CONCENTRADO	136	139	171	20	54 AL	55 DL	57	58	72	76	79	90	91	101AL	102DL	105	108	112	137	MÉDIA
Data	22/8/2007	11/9/2007	10/10/2007	16/1/2008	21/2/2008	21/2/2008	28/2/2008	5/3/2008	13/3/2008	18/3/2008	25/3/2008	3/4/2008	10/4/2008	18/4/2008	18/4/2008	8/5/2008	16/5/2008	4/6/2008	10/6/2008	CONCENTRADO
Parâmetros	Resultados																			
Condutividade elétrica, µmho/cm a 25°C	22,700.00	22.600.00	19.500.00	21,600.00	26.000.00	24.900.00	25.800.00	26.100.00	25.300.00	26.300.00	25,000.00	24.000,00	25.000,00	24,600,00	24.000,00	22.900,00	24.800,00	25.100,00	24.200,00	24.231,58
Potencial Hidrogeniónico, pH	7.2	7.8	8.1	7.6	7.6	7.5	7.6	7.6	7,2	7.2	7.1	7,8	7,2	7,5	7,5	7,8	7,5	7,3	7,2	7,49
Turbidez, (uT)	0.2	0.2	0	0,1	0,2	0	0,2	0,2	0	0,1	0,2	0	0,2	0	0,1	0,2	0,6	0,2	0,5	0,17
Cor, Unidade Hazen (mg Pt-Co/L).	8	5	6	0	5	0	3	4	0	0	0	0	1	5	0	0	0	0	0	1,95
Dureza em Cálcio, mg/L Ca	1.205,00	1.157,00	1,120,00	1,113,00	1.070.00	1.070,00	1.055,00	1.070,00	1.048,00	1.132,00	1.111,00	954	1.310,00	1.170.00	1.050,00	1.010,00	1.025,00	1.006,00	900	1.082,95
Dureza em Magnésio, mg/L Mg	1.309.20	1.164.60	1.818.00	1,179,60	1.176,00	1.192,80	1.153,20	1.174,20	1.177,20	1.128,00	1,193,40	1.141,20	937,2	1.128.00	1.149,00	1.044,00	986,4	1.004.40	1.404,00	1.182,13
Dureza Total, mg/L CaCO3	8.467,50	7.745,00	7.600,00	7.697,50	7.575,00	7.645,00	7.442,50	7.567,50	7.525,00	7.530,00	7.750,00	7.140,00	7.180,00	7.625,00	7.412,50	6.875,00	6.672,50	6.700,00	8.100,00	7.486,84
Sódio, mg/L Na	3.612,90	3.294,20	3.982,40	3.666,70	3.427,20	3.760,30	3.355,50	3.180,10	3.703,50	3.914,00	3.573,00	3.593,30	3.803,10	3.750,10	3.541,70	3.750,10	3.439,60	3,910,00	3.593,30	3.623,74
Potássio, mg/L K	87.9	87.9	67.8	175.8	27.1	29,7	27.1	27.3	28.4	27,6	27,3	54,1	43,8	9,4	18,9	18,9	9,4	18.9	9,4	41,93
Aluminio, mg/L Al	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,00
Ferro Total, mg/L Fe	0.02	0.04	0.03	0.03	0.02	0.01	0.02	0.03	0.01	0.02	0.02	0,02	0.01	0,02	0,01	0,01	0,02	0,02	0,02	0,02
Alcalinidade em Hidróxidos,mg/L CaCO3	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,00
Alcalinidade em Carbonatos,mg/L CaCO3	164	244	172	168	176	180	220	192	280	252	248	112	216	560	140	220	332	344	0	222,11
Alcalinidade em Bicarbonatos. mg/L CaCO3	592	446	520	514	514	560	456	488	442	464	418	468	450	200	580	420	292	286	834	470,74
Alcalinidade Total, mg/L CaCO3	756	690	692	682	690	740	676	680	722	716	666	580	666	760	720	640	624	630	834	692,84
Sulfato, mg/L SO4	733.2	519.4	581.7	305.5	581.7	626.3	590,6	661.9	359	376,8	385,7	813,4	813,4	483,7	421,3	457	448,1	448,1	430,3	528,27
Cloreto, mg/L Cl	10.855.90	10.209,80	10.703,30	10,596,80	10,366,00	10,493,80	10,199,20	9.904,50	10.831,10	10.912,70	10.685,50	10.053,60	10.295,00	9.762,50	10.348,30	10.295,00	9.727,00	10.429,90	11.715,00	10.441,31
Nitrato, mg/L NO3	0.18	0	0.13	0	0.04	0.13	0.04	0.04	0.04	0.09	0,31	0.27	0,27	0,04	0,04	0,04	0,04	0	0	0,09
Nitrito, mg/L NO2	0.09	0.04	0.07	0.02	0.02	0.03	0,03	0.04	0.02	0.03	0.09	0.06	0,06	0.02	0	0	0,02	0,02	0,01	0,04
Amónia, mg/L NH3	0.63	0.63	0.52	0.56	6,12	6,52	6,15	6,32	6,29	6,79	6,42	7,05	6,07	6,75	7,11	6,71	7,17	7,28	7,09	5,38
Silica, mg/L SiO2	92.8	90	88	89.2	108	98	106	108	91	95	82	85	85	86	90	90	95	89	89	92,47
ILS (Índice de Saturação de Langelier)	1.43	1.95	0.26	0.5	1.75	1.7	1.77	1.81	1.36	1.45	1.24	1,8	1.44	1.74	1.65	1,9	1,55	1,4	1,35	1,48
Sólidos Totais Dissolvidos, mg/L	18,718.5	18.584.0	17,278,0	18,680.0	18.172.0	18.326.0	17.910,0	17,842.0	18,042,0	18,505,0	17.876,0	17.876,0	18.513,0	17.437,0	17.318,0	16.210,0	19.948,0	19.222,0	17.551,0	18.105,71

	nº moles	n° moles	n° moles	nº moles	n° moles	n° moles	n° moles	n° moles	n° moles	n° moles	n° moles	n° moles	n° moles	n° moles	n° moles	n° moles	n° moles	n° moles	n° moles	n° moles
												127								
Dureza em Cáldo, mg/L Ca	0,03006637	0,02886871	0,02794551	0,02777085	0,02669794	0,02669794	0,02632367	0,02669794	0,02614901	0,02824492	0,02772094	0,02380358	0,03268626	0,02919307	0,02619891	0,02520086	0,02557513	0,02510105	0,02245621	0,02702099
Dureza em Magnésio, mg/L Mg	0,05386546	0,04791607	0,07479942	0,04853322	0,04838511	0,04907632	0,04744703		0,04843448	0,04641020	0,04910101	0,04695330	0,03855997	0,04641020	0,04727422	0,04295412	0,04058424	0,04132483	0,05776589	0,04863717
Dureza Total, mg/L CaCO3	SECTION AND DESIGNATION			SERVICE TANK				STREET,			TW 3 11 35			THE RESERVE	(CONT. 100)	The section is the sec		《 		
Sódio, mg/L Na	0,15715251	0,14328982	0,17322487	0,15949268	0,14907500	0,16356405	0,14595622	0,13832674	0,16109339	0,17024964	0,15541695	0,15629995	0,16542575	0,16312038	0,15405548	0,16312038	0,14961437	0,17007565	0,15629995	0,15762388
Potássio, mg/L K	0,00224818	0,00224818	0,00173409	0,00449636	0,00069312	0,00075962	0,00069312	0,00069824	0,00072637	0,00070591	0,00069824	0,00138369	0,00112025	0,00024042	0,00048340	0,00048340	0,00024042	0,00048340	0,00024042	0,00107247
Alumínio, mg/L Al				Street Street	SHARING THE				STORES IN	STATE OF STATE			BENEFA JUSTICES	NEW YORK BEING	de la companya dela companya dela companya dela companya de la com	Wernstein der de				
Ferro Total, mg/L Fe	SAISSE HAS T					Name of Street	CONTRACTOR					NEW THE RES								SAY KING AND SA
Alcalinidade em Hidróxidos,mg/L CaCO3	SHIP TO VERNING SHIP		THE RESERVE	NAME OF TAXABLE PARTY.			CONTROL OF					第二十二十十十二十十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二	Market Town From						E TOP OF SHEET	
Alcalinidade em Carbonatos,mg/L CaCO3	0,00164000	0,00244000	0,00172000	0,00168000	0,00176000	0,00180000	0,00220000	0,00192000	0,00280000	0,00252000	0,00248000	0,00112000	0,00216000	0,00559999	0,00140000	0,00220000	0,00331999	0,00343999	0,00000000	0,00222105
Alcalinidade em Bicarbonatos, mg/L CaCO3	0,01184000	0,00892000	0,01040000	0,01028000	0,01028000	0,01120000	0,00912000	0,00976000	0,00884000	0,00928000	0,00836000	0,00936000	0,00900000	0,00400000	0,01160000	0,00840000	0,00584000	0,00572000	0,01668000	0,00941474
Alcalinidade Total, mg/L CaCO3	SERVICE STATE OF THE SERVICE STATE STATE OF THE SERVICE STATE OF THE SERVICE STATE STATE OF THE SERVICE STATE OF THE SERVICE STATE STATE OF THE SERVICE STAT	THE RESIDENCE OF THE PARTY OF T					TOTAL STREET		OR MENT AND THE	TOTAL PROPERTY	THE RESIDENCE OF	THE RESERVE AND THE								MANUAL PROPERTY.
Sulfato, mg/L SO4	0,00763244	0,00540683	0,00605536	0,00318018	0,00605536	0,00651964	0,00614801	0,00689023	0,00373711	0,00392240	0,00401505	0,00846731	0,00846731	0,00503521	0,00438564	0,00475726	0,00466462	0,00466462	0,00447932	0,00549915
Cloreto, mg/L, Cl	0,30620799	0,28798371	0,30190366	0,29889966	0,29238958	0,29599438	0,28768472	0,27937223	0,30550847	0,30781012	0,30140159	0,28357784	0,29038691	0,27536690	0,29189032	0,29038691	0,27436556	0,29419198	0,33044028	0,29451383
Nitrato, mg/L NO3	0,00000290	0,00000000	0,00000210	0,00000000	0,00000065	0,00000210	0,00000065	0,00000065	0,00000065	0,00000145	0,00000500	0,00000435	0,00000435	0,00000065	0,00000065	0,00000065	0,00000065	0,00000000	0,00000000	0,00000144
Nitrito, mg/L NO2	0,00000196	0,00000087	0,00000152	0,00000043	0,00000043	0,00000065	0,00000065	0,00000087	0,00000043	0,00000065	0,00000196	0,00000130	0,00000130	0,00000043	0,00000000	0,00000000	0,00000043	0,00000043	0,00000022	0,00000077
Amônia, mg/L NH3	0,00003699	0,00003699	0,00003053	0,00003288	0,00035935	0,00038284	0,00036112	0,00037110	0,00036934	0,00039869	0,00037697	0,00041396	0,00035642	0,00039635	0,00041748	0,00039400	0,00042101	0,00042747	0,00041631	0,00031578
Silica, mg/L Si02	0,00154450	0,00149790	0,00146461	0,00148458	0,00179747	0,00163104	0,00176419	0,00179747	0,00151454	0,00158111	0,00136475	0,00141468	0,00141468	0,00143132	0,00149790	0,00149790	0,00158111	0,00148125	0,00148125	0,00153907
	0,57	0,53	0,60	0,56	0,54	0,56	0,53	0,51	0,56	0,57	0,55	0,53	0,55	0,53	0,54	0,54	0,51	0,55	0,59	0,55

	Fração molar x	Fração molar x	Fração molar x	Fração molar	Fração molar x	Fração molar x	Fração molar x	Fração molar x	Fração molar x	Fração molar x	Fração mola x	Fração molar	x Fração molar x	Fração molar	x Fração molar x	Fração molar x				
A													-							
Dureza em Cáldo, mg/L Ca	0,0525416	0.0546126	0,0466317	0,0499610	0,0496711	0,0478776	0,0498838	0,0519267	0,0467637	0,0494549	0,0503155	0,0446764	0,0594746	0,0549988	0,0485881	0,0467206	0,0505230	0,0458961	0,0380446	0,0493210
Dureza em Magnésio, mg/L Mg	0,0941310	0,0906456	0,1248151	0,0873134	0,0900198	0,0880090	0,0899130	0,0939636	0,0866179	0,0812610	0,0891218	0,0881256	0,0701622	0,0874353	0,0876741	0,0796338	0,0801731	0,0755605	0,0978652	0,0887766
Dureza Total, mg/L CaCO3	THE RESERVED		A SECTION AND ADDRESS	SECTION AND	Maria de la Casa	TAKE A CHIEF						ALL TANKS		L. State Allen						
Sódio, mg/L Na	0,2746273	0,2710695	0,2890542	0,2869343	0,2773519	0,2933208	0,2765897	0,2690415	0,2880918	0,2980952	0,2820929	0,2933558	0,3010022	0,3073134	0,2857091	0,3024133	0,2955594	0,3109752	0,2647986	0,2877082
Potássio, mg/L K	0,0039287	0,0042530	0,0028936	0,0080891	0,0012895	0,0013622	0,0013135	0,0013581	0,0012990	0,0012360	0,0012674	0,0025970	0,0020384	0,0004529	0,0008965	0,0008962	0,0004749	0,0008839	0,0004073	0,0019576
Aluminio, mg/L Al	STATE OF THE PARTY OF							SECOND RESERVE									FOREST SERVICE			
Ferro Total, mg/L Fe			PARTY IN		ER NEW PROPERTY.		10 to 10 to 10 to	Manager by			BEEN TEXTRE	CONTROL OF THE PARTY OF THE PAR								
Alcalinidade em Hidróxidos.mg/L CaCO3	and the test to the last	With the same	Espiration (建一起草油油				Rate State State				在第二次的				
Alcalinidade em Carbonatos,mg/L CaCO3	0,0028659	0,0046159	0,0028701	0,0030224	0,0032744	0,0032279	0,0041690	0,0037343	0,0050074	0,0044123	0,0045014	0,0021021	0,0039302	0,0105502	0,0025964	0,0040786	0,0065586	0,0062899	0,0000000	0,0040540
Alcalinidade em Bicarbonatos, mg/L CaCO3	0,0206906	0,0168745	0,0173541	0,0184942	0,0191258	0,0200851	0,0172826	0,0189829	0,0158090	0,0162486	0,0151740	0,0175676	0,0163760	0,0075359	0,0215132	0,0155730	0,0115368	0,0104587	0,0282587	0,0171846
Alcalinidade Total, mg/L CaCO3			ENERGE CONTRACTOR																	
Sulfato, mg/L SO4	0,0133379	0,0102284	0,0101044	0,0057213	0,0112659	0,0116917	0,0116506	0,0134013	0,0066833	0,0068678	0,0072876	0,0158921	0,0154068	0,0094862	0,0081335	0,0088196	0,0092148	0,0085290	0,0075887	0,0100375
Cloreto, mg/L Cl	0,5351048	0,5447952	0,5037759	0,5377336	0,5439867	0,5308092	0,5451678	0,5433709	0,5463569	0,5389539	0,5470655	0,5322407	0,5283766	0,5187821	0,5413356	0,5383562	0,5420021	0,5379160	0,5598217	0,5375710
Nitrato, mg/L NO3	0,0000051	0,0000000	0,0000035	0,0000000	0,0000012	0,0000038	0,0000012	0,0000013	0,0000012	0,0000025	0,0000091	0,0000082	0,0000079	0,0000012	0,0000012	0,0000012	0,0000013	0,0000000	0,0000000	0,0000026
Vitrito, mg/L NO2	0,0000034	0,0000016	0,0000025	0,0000008	0,0000008	0,0000012	0,0000012	0,0000017	0,0000008	0,0000011	0,0000036	0,0000024	0,0000024	0,0000008	0,0000000	0,0000000	0,0000009	0,0000008	0,0000004	0,0000014
Amonia, mg/L NH3	0,0000646	0,0000700	0,0000509	0,0000592	0,0006686	0,0006866	0,0006843	0,0007218	0,0006605	0,0006981	0,0006842	0,0007770	0,0006485	0,0007467	0,0007743	0,0007304	0,0008317	0,0007816	0,0007053	0,0005764
Silica, mg/L Si 02	0,0026990	0,0028337	0,0024439	0,0026708	0,0033442	0,0029250	0,0033432	0,0034960	0,0027085	0,0027684	0,0024771	0,0026552	0,0025741	0,0026966	0,0027780	0,0027770	0,0031234	0,0027084	0,0025095	0,0028092
	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00

	MOL/LITRO	MOL/LITRO	MOL/LITRO	MOL/LITRO	MOL/LITRO	MOL/LITRO	MOL/LITRO	MOL/LITRO	MOL/LITRO	MOL/LITRO	MOL/LITRO	MOL/LITRO	MOL/LITRO	MOL/LITRO	MOL/LITRO	MOL/LITRO	MOL/LITRO	MOL/LITRO	MOL/LITRO	MOL/LITRO
			Name of	Since the	Part Control															
4																		ner de la company		
													Respectively.					2.005404050	0.00045004	A 007400000
Dureza em Cáldo, mg/L Ca		0,028868706					0,026323669					0,023803\$83			0,026198912	0,025200858	0,025575128	0.025101053	0.02245621	0,027020993
Dureza em Magnésio, mg/L Mg	0,05386546	0.047916067	0,074799424	0,048533224	0,048385106	0,049076322	0,047447027	0.048311047	0.04843448	0,046410204	0,049101008	0,046953802	0,038559967	0.046410204	0.047274223	0,042954125	0,040584242	0.04132483	0,057765892	0,048637166
Dureza Total, mg/L CaCO3																				
Sódio, mg/L Na	0,157152507	0,14328982	0.173224873	0,159492679	0,149075002	0,163564055	0,145956223	0.138326743	0.16109339	0,170249637	0,155416953	0,156299954	0.165425752	0,163120379	0,154055478	0,163120379	0,149614372	0,170075647	0.156299954	0,157623884
Potássio, mg/L K	0,00224818	0,00224818	0.001734091	0.004496359	0.000693125	0.000759624	0,000693125	0,00069824	0.00072637	0,000705913	0.00069824	0.001383692	0.001120253	0.00024042	0.000483397	0,000483397	0,00024042	0,000483397	0.00024042	0.001072466
Alumínio, mg/L Al	CONTRACTOR OF THE OWNER, THE OWNE		N			A TOTAL STREET			The state of the state of		DESCRIPTION OF THE PERSON NAMED IN	No. of the last	The state of the state of		STATE OF STATE		STATE OF THE PARTY		EDM LINE	
Ferro Total, mg/L Fe			THE REAL PROPERTY.		THE CHARLES					STATE OF THE PARTY		THE RESERVE OF			COLUMN TO LINE OF THE PERSON.	PRODUCTION OF THE		THE RESERVE		
Alcalinidade em Hidróxidos.mg/L CaCO3		Department of	Maria Maria		NAME OF TAXABLE PARTY.	A SCHOOL STATE	MINORSON PROS			Editoria I Facilia		EXPERIENCE PROPERTY.		DESCRIPTION OF THE PARTY OF THE		880 miles	INDIFFERENCES			
Alcalinidade em Carbonatos.mg/L CaCO3	0,001639997	0.002439996	0.001719997	0.001679997	0,001759997	0.001799997	0,002199996	0,001919997	0,0028	0,002519996	0,002479996	0,001119998	0.002159996	0.005599991	0,001399998	0.002199996	0.003319994	0,003439994	0	0,002221049
Alcalinidade em Bicarbonatos, mg/L CaCO3	0.01184	0.00892	0,0104	0,01028	0,01028	0.0112	0,00912	0,00976	0,00884	0,00928	0.00836	0,00936	0,009	0,004	0,0116	0,0084	0,00584	0,00572	0,01668	0,009414737
Alcalinidade Total, mg/L CaCO3	THE REPORT OF THE PARTY OF THE		I STATE OF THE PARTY OF THE PAR	DUNCTON L. THE ST	BUILDING TO STATE				DE LA COLONIA					and the second second						
Sulfato, mg/L SO4	0,007632444	0.005406835	0.006055363	0,003180185	0,006055363	0,006519639	0.00614801	0,006890227	0.00373711	0,003922401	0,004015048	0,008467307	0,008467307	0,005035206	0,004385636	0,004757265	0.004664618	0.004664618	0.004479324	0.005499153
Cloreto, mg/L Cl	0,30620799	0,287983708	0,301903663	0,298899661	0,292389578	0.295994381	0.287684718	0,279372234	0,30550847	0,307810124	0,301401586	0.283577838	0.29038691	0.275366897	0,291890321	0,29038691	0,274365563	0,29419198	0.330440277	0,294513832
Nitrato, mg/L NO3	2.90299E-06	0	2.09661E-06	0	6.4511E-07	2.09661E-06	6,4511E-07	6.4511E-07	6.4511E-07		4.9996E-06	4.35449E-06	4.35449E-06	6.4511E-07	6,4511E-07	6,4511E-07	6,4511E-07	0	0	1,44301E-06
Nitrito, mg/L NO2	1.95629E-06	8.6946E-07	1.52156E-06	4.3473E-07	4.3473E-07	6.52095E-07	6,52095E-07	8.6946E-07	4,3473E-07		1.95629E-06	1,30419E+06	1.30419E-06	4.3473E-07	0	0	4.3473E-07	4.3473E-07	2.17365E-07	7.66498E-07
Amônia, mg/L NH3	3,69923E-05	3.69923E-05	3.05333E-05	3.2882E-05	0.000359354	0.000382841		0.000371097		0.000398695		0,000413961	0.000356418	0.000396346	0,000417485	0.000393997	0,000421008	0.000427467	0.00041631	0.000315779
Silica, mg/L SiO2		0.001497895						0.001797475				0,001414679	0.001414679	0.001431322	0.001497895	0.001497895	0.001581112	0,001481252	0.001481252	0.001539066
Somatório da Concentração Moloar =	0.6	0,5	0.6	0.6	0.5	0.6	0.5	0.5	0.6	0.6	0.6	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.6	0,5

	CALCIII	O DA FORÇA IÔ	ÓNICA DO D	EDMEADO	TEMPERA	TURA (*C) =	25													
7	CALCOLO	DATORÇATO	NICA DO PE	RINEADO	CÁLCULO	DE "A" =	0.567389407					113								
	FORÇA	FORÇA	FORÇA	FORÇA	FORÇA	FORÇA	FORÇA	FORÇA	FORÇA	FORÇA	FORÇA	FORÇA	FORÇA	FORÇA	FORÇA	FORÇA	FORÇA	FORÇA	FORÇA	FORÇA
				/	/															
Oureza em Cálcio, mg/L Ca	D 100005 100	0.115474004	0.41470000	6 0 444003307	0.100701750	0.106701766	0.405204675	0.100701750	0.10450004	0.11007000	0.440003777	0.005044922	0.130745047	0.116772294	0.104795648	0.100803433	0.102300514	0.100404212	0.089824842	0.108083973
					0.106791756			0,106791756		0,11297969		0.095214332	0.154239868		0.189096894	0.171816499		0.165299321	0.231063567	0.194548663
Dureza em Magnésio, mg/L Mg	0,210401839	0,191004207	0,299197696	0,1941326941	0,193540424	0,196305267	0,189788109	0,193244188	0,19373791	0,180640610	0,196404032	0,187813207	0,154239866	0,185640815	0,189090894	0,1/1610499	0,102330000	0,100289321	0,231063567	0,18454666
Dureza Total, mg/L CaCO3	0.157152507	0.14328982	0.47000407	2.450400020	0.440075000	0.460564066	0.145050000	0.4000000740	2 404000000	0.1700.40007	0.155446050	2.45000000	0.405405750	0.100100000	0.154055478	0.163120379	0.149614372	0.170075647	0.156299954	0.157623884
Sódio, mg/L. Na					0,149075002			0,138326743	0,16109339		0,155416953	0,156299954	0.165425752	0.163120379						0,157623884
Potássio, mg/L K	0.00224818	0.00224818	0,001/34091	0,0044963591	0,000693125	0,000759624	0,000693125	0.00069824	0,000726371	0,000705913	0,00069824	0,001383692	0,001120253	0,00024042	0,000483397	0,000483397	0,00024042	0.000483397	0.00024042	0.00107246
Aluminio, mg/L Al	/	4	·	1	·'															
Ferro Total, mg/L Fe		4	· '	, , , , , , , , , , , , , , , , , , ,	'														-	
Alcalinidade em Hidròxidos,mg/L CaCO3	· '				· ·															
Alcalinidade em Carbonatos mg/L CaCO3	0,00656	0,00976	0,00688	0,00672	0.00704	0,00720	0.00880	0,00768	0,01120	0,01008	0,00992	0,00448	0,00864	0,02240	0,00560	0.00880	0.01328	0,01376	0,00000	0,00888
Alcalinidade em Bicarbonatos, mg/L CaCO3	0,01184	0,00892	0,0104	0,01028	0,01028	0,0112	0,00912	0,00976	0,00884	0,00928	0,00836	0,00936	0,009	0.004	0,0116	0,0084	0.00584	0,00572	0,01668	0,00941473
Alcalinidade Total, mg/L CaCO3																				
Sulfato, mg/L SO4	0.030529774	0.021627339	0.024221457	3 0.012720739	0.024221453	0.026078556	0.024592041	0.027560908	0.01494843	0.015689606	0.016060193	0.033869228	0.033869228	0.020140823	0.017542545	0.01902906	0.018658472	0.018658472	0.017917296	0,02199661
Cloreto, mg/L Cl		0.287983708				0.295994381	0.287684718	0.279372234		0.307810124		0.283577838	0.29038691	0.275366897	0.291890321	0,29038691	0.274365563	0.29419198	0.330440277	0,29451383
Nitrato, mg/L NO3	2.90299E-06		2.09661E-06			2.09661E-06		6.4511E-07		1.4515E-06	4,9996E-06	4.35449E-06	4.35449E-06	6.4511E-07	6.4511E-07	6.4511E-07	6,4511E-07	0	0	1,44301E-0
Nitrito, mg/L NO2	1.95629E-06			6 4,3473E-07		6.52095E-07		8.6946E-07	4.3473E-07		1,95629E-06	1,30419E-06	1.30419E-06	4.3473E-07	0	0	4.3473E-07	4.3473E-07	2.17365E-07	7.66498E-0
Amônia, mg/L NH3					0.000359354			0.000371097			0.000376969	0.000413961	0.000356418		0.000417485	0.000393997	0.000421008	0.000427467	0.00041631	0.0003157
Silica, mg/L SiO2	- Contract of the contract of	01100000	2.00	1 0,222	0,000	0.000	0,000	0,000	10,000	10,000	0,4222	4,444	VI-	W.(5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-		W.C.				
CONCENTRADO																				
Soma da força iônica	0,425153806	0.390502991	0.464688971	0,398929513	0,39219588	0,404139618	0,386145645	0.381903334	0,4005105	0,406418283	0,399764345	0,386208932	0,396894561	0,394039508	0.387741202	0,381617153	0,363529187	0.384510453	0.421441442	0.39822817
pH da solução	7,20	7,80	8,10	7,60	7,60	7,50	7,60	7,60	7,20	7,20	7,10	7,80	7,20	7,50	7,50	7,80	7,50	7,30	7.20	7,49
log 10 da concentração de Ca (mol/L)	1,52	1,54	1,55	1,56	1,57	1,57	1,58	1,57	1,58	1,55	1.56	1,62	1,49	1,53	1,58	1,60	1,59	1,60	1,65	1,57
alcalinidade total como CaCO3(mol/L)	0.01	0.01	0,01	0.01	0,01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0,01	0,01	0,01	0.01	0.01
Log 10 da alcalinidade total como CaCO3(mol/L	3 2.12	2.16	2.16	2.17	2.16	2.13	2.17	2.17	2.14	2.15	2.18	2.24	2.18	2.12	2.14	2.19	2.21	2,20	2.08	2,16
k (depende de T(*C=28) e da força iónica	2.90	2.90	2.90	2.90	2.90	2.90	2.90	2.90	2.90	2.90	2.90	2.90	2.90	2.90	2.90	2.90	2.90	2.90	2.90	2,90
Força iónica	0.43	0.39	0.46	0.40	0.39	0.40	0.39	0.38	0.40	0.41	0.40	0.39	0.40	0.39	0.39	0.38	0.36	0.38	0.42	0.40
pHs	6.54	6.60	6.61	6.62	6.64	6.60	6.65	6.64	6,62	6.59	6.63	6.76	6.56	6.55	6.62	6.69	6.70	6.70	6.63	6.63
Stiff&Devis	0.66	1.20	1,49	0.98	0.96	0.90	0.95	0.96	0.58	0.61	0.47	1.04	0,64	0.95	0.88	1.11	0.80	0.60	0.57	0.86
- California de la cali	1.43	1.95	0.28	0.50	1.75	1.70	1.77	1.81	1.36	1.45	1.24	1.80	1.44	1.74	1.65	1.90	1.55	1.40	135	1.48

PERMEADO	136	139	171	20	54 AL	55 DL	57	58	72	76	79	90	91	101AL	102DL	105	108	112	137	MÉDIA
Data	22/8/2007	11/9/2007	10/10/2007	16/1/2008	21/2/2008	21/2/2008	28/2/2008	5/3/2008	13/3/2008	18/3/2008	25/3/2008	3/4/2008	10/4/2008	18/4/2008	18/4/2008	8/5/2008	16/5/2008	4/6/2008	10/6/2008	
Parâmetros	Resultados		Resultados	PERMEADO																
Condutividade elétrica, µmho/cm a 25°C	440	394	424	485	413	410	385	415	408	413	347	441	377	445	380	461	384	440	347	411,00
Potencial Hidrogeniónico, pH	5,7	5,9	7.5	6	6,1	6.8	6.1	6	5.5	5.5	5.6	6.8	5.9	6,1	6.1	6.7	6,3	5,6	5,5	6,09
Turbidez, (uT)	0,1	0,2	0	0,1	0.3	0	0	0.2	0	0	0	0,1	0.1	0	0	0,1	0,7	0,5	0,5	0,15
Cor, Unidade Hazen (mg Pt-Co/L).	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,00
Dureza em Cáldo, mg/L Ca	2.2	2,6	1,4	2,2	2,4	2	1,6	1,8	1,8	3,8	3,6	4,8	2,2	4	2,6	3,4	1,2	2,8	4,2	2,66
Dureza em Magnésio, mg/L Mg	4.2	1,4	4	2,8	2,3	2,6	2,4	2	2	3,5	3	4.4	2,3	4,3	4	7.2	3,2	4,1	1,1	3,20
Dureza Total, mg/L CaCO3	23	12.5	20	17	15,5	16	14	13	13	24	21,5	30,5	15	28	23	38,5	16,5	24	15	20,00
Sódio, mg/L Na	67,1	65,6	69.7	74,2	75,8	79,9	78,7	75,2	78,1	80,6	74,6	84,9	76.4	80,5	72,3	84,2	61,1	66,3	61,1	74,02
Potássio, m g/L. K	1.4	1,3	1,6	1,6	0,4	0,3	0.2	0,3	0,2	0,2	0,2	0,8	0,3	0,2	0,2	0,3	0,2	0,2	0,2	0,53
Aluminio, mg/L Al	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,00
Ferro Total, mg/L Fe	0,01	0,01	0	0.01	0.02	0.01	0.01	0.02	0.01	0,01	0,02	0,03	0.01	0,02	0,01	0	0,02	0.01	0,03	0,01
Alcalinidade em Hidróxidos.mg/L CaCO3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,00 0,76
Alcalinidade em Carbonatos.mg/L CaCO3	0	0	0	0	0	0	0	0	4,8	4,8	4,8	0	0	0	0	0	0	0	0	0,76
Alcalinidade em Bicarbonatos, mg/L CaCO3	16	9.2	2	1.6	18	16	14	9.2	10.4	9.2	10	4.4	11.2	20.8	14.4	13.2	11,2	12,4	8,4	11,14
Alcalinidade Total, mg/L CaCO3	16	9,2	2	1.6	18	16	14	9.2	15.2	14	14.8	4.4	11,2	20.8	14.4	13,2	11,2	12,4	8,4	11,89
Sulfato, mg/L SO4	5,6	5,4	3,5	1,5	4.7	7.4	6.1	4.7	4	4	4.7	2.4	0.6	1,2	0.9	2.7	0.6	0,9	0,3	3,22
Cloreto, mg/L Cl	109,3	105,1	117,2	126,4	107.9	111.5	110.1	110.8	112.2	134.9	112.9	131,4	115.7	123,5	111.5	133,5	95,9	103,7	91,6	113,95
Nitrato, mg/L NO3	1.99	0.08	1.68	1.33	0.53	2.57	2.21	1.55	0.44	1,51	0.97	1,33	1.51	0.58	0.89	1,55	1,28	2,26	0,97	1,33
Nitrito, mg/L NO2	0.01	0,01	0.03	0	0.01	0,01	0.02	0.01	0.01	0,01	0.01	0.01	0.01	0.01	0.01	0	0,01	0,01	0,01	0,01
Amónia, mg/L NH3	0,13	0.14	0.01	0.01	0.09	0.24	0.28	0.02	0.24	0.34	0.44	0.04	0	0.34	0.37	0.3	0,35	0,41	0,36	0,22
Silica, mg/L SiO2	0.4	0.2	0.4	0.3	0.5	0.6	0.5	0.9	0.6	0.6	0.3	0.8	0.3	0.4	0.4	0.6	0.4	0,3	0,3	0,46
ILS (Îndice de Saturação de Langelier)	-4,3	-4.16	-3.54	-4.92	-3.77	-3.17	-4.04	-4.3	-4.53	-4.25	-4.21	-3.46	-4.19	-3.53	-3.87	-3,16	-4,04	-4,34	-4,46	-4,01
Sólidos Totais Dissolvidos, mg/L	254.0	193,1	202.5	213,0	216.6	226.6	219.2	208.5	215,2	243.6	215.8	236.2	211	240.5	210.7	249.8	177.8	196	170,3	215,81

	n° moles	n° moles	n° moles	n° moles	n° moles	n° moles	n° moles	n° moles	n° moles	n° moles	n° moles	nº moles	n° moles	n° moles	n° moles	n° moles	nº moles	n° moles	n° moles	n° moles
						La caracteria						- 8								
Dureza em Cálcio, mg/L Ca	0,00005489	0,00006487	0,00003493	0,00005489	0,00005988	0,00004990	0,00003992	0,00004491	0,00004491	0,00009482	0,00008982	0,00011977	0,00005489	0,00009981	0,00006487	0,00008483	0,00002994	0,00006986	0,00010480	0,00006645
Dureza em Magnésio, mg/L Mg	0,00017280	0,00005760	0,00016458	0,00011520	0,00009463	0,00010697	0,00009875	0,00008229	0,00008229	0,00014400	0,00012343	0,00018103	0,00009463	0,00017692	0,00016458	0,00029624	0,00013166	0,00016869	0,00004526	0,00013166
Dureza Total, mg/L CaCO3	这一块 是是被称为		SIGNAL COMPANY			华世界	医性性 医线性	STATE OF STATE	PARTY NAMED IN	Privil All India	建工程下200万型州 200	OF STREET		11日末日本日本日本	山地區大海田利島福岡					
Sódio, mg/L. Na	0,00291869	0,00285344	0,00303178	0,00322752	0,00329712	0,00347546	0,00342326	0,00327102	0,00339716	0,00350591	0,00324492	0,00369295	0,00332322	0,00350156	0,00314488	0,00366250	0,00265770	0,00288389	0,00265770	0,00321951
Potássio, mg/L K	0,00003581	0,00003325	0,00004092	0,00004092	0,00001023	0,00000767	0,00000512	0,00000767	0,00000512	0,00000512	0,00000512	0,00002046	0,00000767	0,00000512	0,00000512	0,00000767	0,00000512	0,00000512	0,00000512	0,00001360
Aluminio, mg/L Al		DATE OF THE PARTY OF			CONTRACTOR OF STREET		THE RESERVE			1	DESCRIPTION OF STREET		Control of the last		SPECIAL PROPERTY AND	REAL PROPERTY AND ADDRESS OF THE PERSON NAMED IN		TOTAL CONTRACT	Section 1	
Ferro Total, mg/L Fe	Ambitania in the	The state of					Section Services	Barani	CONTRACTOR OF			STREET, STREET	192010000000000000000000000000000000000		Composition and the second			The state of the s		Note that the least the le
Alcalinidade em Hidróxidos.mg/L CaCO3		San Marie Control						A CONTRACTOR OF THE PARTY OF TH					CAST COLUMN	Charles Street	State of the last	建筑 有物料	A REPORT OF	全国的	以外的企业企业企业	
Alcalinidade em Carbonatos,mg/L CaCO3	0,00000000	0,00000000	0,00000000	0,00000000	0,00000000	0,00000000	0,00000000	0,00000000	0,00004800	0,00004800	0,00004800	0,00000000	0,00000000	0,00000000	0,00000000	0,00000000	0,00000000	0,00000000	0,00000000	0,00000758
Alcalinidade em Bicarbonatos, mg/L CaCO3	0,00032000	0,00018400	0,00004000	0,00003200	0,00036000	0,00032000	0,00028000	0,00018400	0,00020800	0,00018400	0,00020000	0,00008800	0,00022400	0,00041600	0,00028800	0,00026400	0,00022400	0,00024800	0,00016800	0,00022274
Alcalinidade Total, mg/L CaCO3				表现是多数的	ARE STREET			CONTRACTOR OF STREET				CONTRACTOR OF STREET	AND THE RESERVE	STATE OF THE PARTY		STATE OF THE STATE OF	医动作 医细胞 50%			Parket Line
Sulfato, mg/L SO4	0,00005829	0,00005621	0,00003643	0,00001561	0.00004893	0,00007703	0,00006350	0,00004893	0,00004164	0,00004164	0,00004893	0,00002498	0,00000625	0,00001249	0,00000937	0,00002811	0,00000625	0,00000937	0,00000312	0,00003353
Cloreto, mg/L Cl	0,00308298	0,00296451	0,00330581	0,00356531	0,00304349	0,00314504	0,00310555	0,00312529	0,00316478	0,00380507	0,00318452	0,00370635	0,00326350	0,00348351	0,00314504	0,00376558	0,00270501	0,00292502	0,00258372	0,00321422
Nitrato, mg/L NO3	0,00003209	0,00000129	0,00002709	0,00002145	0,00000855	0,00004145	0,00003564	0,00002500	0,00000710	0.00002435	0,00001564	0,00002145	0,00002435	0,00000935	0,00001435	0,00002500	0,00002064	0,00003645	0,00001564	0,00002142
Nitrito, mg/L NO2	0,00000022	0,00000022	0,00000065	0,00000000	0,00000022	0,00000022	0,00000043	0.00000022			0,00000022	0,00000022	0,00000022	0,00000022	0,00000022	0,00000000	0,00000022	0,00000022	0,00000022	0,00000023
Amônia, mg/L NH3	0,00000763	0,00000822	0,00000059	0,00000059	0,00000528	0,00001409	0,00001644	0,00000117	0,00001409		0,00002584	0,00000235	0,00000000	0,00001996	0,00002173	0,00001762	0,00002055	0,00002407	0,00002114	0,00001270
Silica, mg/L SiO2	0,00000666	0,00000333	0,00000666	0,00000499	0,00000832	0,00000999	0,00000832	0,00001498	0,00000999	0,00000999	0,00000499	0,00001331	0,00000499	0,00000666	0,00000666	0,00000999	0,00000666	0,00000499	0,00000499	0,00000771
	0.01	0,01	0,01	0.01	0.01	0.01	0.01	0.01	0,01	0.01	0.01	0.01	0.01	0.01	0.01	0,01	0,01	0,01	0,01	0,01

	Fração molar x	Fração molar x	Fração molar x	Fração molar x	Fração molar x	Fração molar x	Fração molar x	Fração molar x	Fração molar x	Fração molar x	Fração molar x	Fração molar x	Fração molar)	Fração molar x	Fração molar	Fração molar x	Fração molar x	Fração molar x	Fração molar x	Fração molar x
										-	-									
Dureza em Cálcio, mg/L Ca	0,0082051	0,0104182	0,0052219	0,0077549	0,0086329	0,0068852	0,0056412	0,0065995	0,0063948	0,0120277	0,0128478	0,0152164	0,0078377	0,0129088	0,0094502	0,0103944	0,0051555	0,0109578	0,0186811	0,0095592
Dureza em Magnésio, mg/L Mg	0,0258299	0,0092503	0,0246022	0,0162750	0,0136421	0,0147595	0,0139531	0,0120914	0,0117164	0,0182674	0,0176547	0,0230003	0,0135115	0,0228825	0,0239738	0,0362966	0,0226697	0,0264583	0,0080678	0,0189403
Dureza Total, mg/L CaCO3				THE RESERVE OF THE PERSON NAMED IN			ISSERBIL NAVI VA		APPENDICE SON					I BERTHAMAN						
Sódio, mg/L Na	0,4362718	0,4582409	0,4532185	0,4559614	0,4753184	0,4795178	0,4837213	0,4806451	0,4836997	0,4447388	0,4641282	0,4691918	0,4744927	0,4528894	0,4581164	0,4487516	0,4576134	0,4523264	0,4737682	0,4631500
Potássio, mg/L K	0,0053523	0,0053396	0,0061175	0,0057812	0,0014749	0,0010587	0,0007228	0,0011275	0,0007283	0,0006489	0,0007317	0,0025996	0,0010956	0,0006616	0,0007452	0,0009401	0,0008808	0,0008023	0,0009119	0,0019559
Aluminio, mg/L Al		Association (Control	A LILE OF		Sales and the sales						Service Service		No. of the last of	Water Branch			CONTRACTOR		The March Street	
Ferro Total, mg/L Fe		ALC: NO		Brain Hills				ALLENG LICENSE		ALC: LINE		SE MANUEL BUILD		BULL BUILDING					THE REPORT OF THE	
Alcalinidade em Hidróxidos.mg/L CaCO3	BEEN ROSE NO PER SE	MODELLE PROPERTY		AVIS DE LOS		Section 1				All the Court	RESTRICTED IN			SUPERVIEW SERVE			DESCRIPTION OF THE PARTY OF THE	APPROPRIEST NA		
Alcalinidade em Carbonatos,mg/L CaCO3	0,0000000	0,0000000	0,0000000	0,0000000	0,0000000	0,0000000	0,0000000	0,0000000	0,0068344	0,0060890	0,0068655	0,0000000	0,0000000	0,0000000	0,0000000	0,0000000	0,0000000	0,0000000	0,0000000	0,0010903
Alcalinidade em Bicarbonatos, mg/L CaCO3	0,0478321	0,0295490	0,0059796	0,0045207	0,0518982	0,0441512	0,0395652	0,0270370	0,0296158	0,0233412	0,0286064	0,0111805	0,0319830	0,0538052	0,0419532	0,0323469	0,0385692	0,0388978	0,0299481	0,0320423
Alcalinidade Total, mg/L CaCO3	SERVICE MANUAL SERVICE	CONTRACTOR OF THE PARTY.	CHANGE ST			DAMESTIN DESCRIPTION	SEARCH WELLS	OF THESE PROPERTY.	Caroli Royale		ALIEN STREET	University delign		A COST WALL	REAL PROPERTY.					
Sulfato, mg/L SO4	0,0087136	0,0090273	0,0054465	0,0022059	0,0070532	0,0106283	0,0089728	0,0071892	0,0059287	0,0052821	0,0069980	0,0031742	0,0008918	0,0016157	0,0013648	0,0034438	0,0010754	0,0014695	0,0005567	0,0048236
Cloreto, mg/L Cl	0,4608293	0,4760779	0,4941830	0,5036822	0,4387551	0,4339285	0,4388268	0,4592316	0,4506122	0,4826888	0,4554895	0,4708943	0,4659667	0,4505557	0,4581395	0,4613818	0,4657592	0,4587779	0,4605805	0,4623885
Nitrato, mg/L NO3	0,0047973	0,0002072	0,0040503	0,0030303	0,0012323	0,0057187	0,0050364	0,0036732	0,0010104	0,0030893	0,0022376	0,0027252	0,0034771	0,0012099	0,0020909	0,0030629	0,0035545	0,0057168	0,0027887	0,0030808
Nitrito, mg/L NO2	0,0000325	0,0000349	0,0000975	0,0000000	0,0000313	0,0000300	0,0000614	0,0000319	0,0000309	0,0000276	0,0000311	0,0000276	0,0000310	0,0000281	0,0000317	0,0000000	0,0000374	0,0000341	0,0000387	0,0000329
Amônia, mg/L NH3	0,0011410	0,0013202	0,0000878	0,0000830	0,0007618	0,0019444	0,0023232	0,0001726	0,0020065	0,0025325	0,0036954	0,0002984	0,0000000	0,0025821	0,0031648	0,0021583	0,0035386	0,0037760	0,0037682	0,0018272
Silica, mg/L SiO2	0,0009951	0,0005346	0,0009952	0,0007054	0,0011997	0,0013778	0,0011759	0,0022010	0,0014218	0,0012668	0,0007142	0,0016916	0,0007129	0,0008611	0,0009698	0,0012235	0,0011463	0,0007831	0,0008901	0,0011089
	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

	MOL/LITRO	MOL/LITRO	MOL/LITRO	MOL/LITRO	MOL/LITRO	MOL/LITRO	MOL/LITRO	MOL/LITRO	MOL/LITRO	MOL/LITRO	MOL/LITRO	MOL/LITRO	MOL/LITRO	MOL/LITRO	MOL/LITRO	MOL/LITRO	MOL/LITRO	MOL/LITRO	MOL/LITRO	MOL/LITRO
Dureza em Cáldo, mg/L Ca	5,4893E-05	6,48735E-05	3,49319E-05	5.4893E-05	5,98832E-05	4,99027E-05	3.99222E-05	4,49124E-05	4.4912E-05	9,48151E-05	8,98248E-05	0.000119766	5,4893E-05	9.98054E-05	6,48735E-05	8,48346E-05	2,99416E-05	6,98638E-05	0.000104796	6,64494E-05
Dureza em Magnésio, mg/L Mg	0,000172804								8.2288E-05	0.000144003	0.000123431	0.000181033	9,46307E-05	0.000176918	0,000164575	0.000296235	0.00013166	0,00016869	4,52582E-05	0,00013166
Dureza Total, mg/L CaCO3			Contract to the Contract of the	SERVICE SERVICE	ALCOHOLD .		THE REAL PROPERTY.	STATE OF THE PARTY.			CONTRACTOR OF STREET	No.	The second second						Control of the last	
Sódio, mg/L. Na	0,002918689	0.002853443	0,003031783	0.003227523	0,003297119	0.003475459	0.003423262	0.00327102	0,00339716	0.003505907	0.003244922	0.003692947	0,003323217	0.003501557	0,003144877	0,003662499	0,002657704	0.002883891	0,002657704	0,00321951
Potássio, mg/L K	3,58072E-05				1,02306E-05								7,67297E-06	5.11531E-06	5,11531E-06	7,67297E-06	5,11531E-06	5,11531E-06	5.11531E-06	1,3596E-05
Alumínio, mg/L Al		The same of the same of																		
Ferro Total, mg/L Fe		Part of the last	THE RESIDENCE					CONTRACTOR OF STREET				STATE OF THE PARTY.					A CANADA			
Alcalinidade em Hidróxidos,mg/L CaCO3					A CONTRACTOR									ALCO MANAGEMENT		SECTION AND ADDRESS.		DAME DE LOS		
Alcalinidade em Carbonatos,mg/L CaCO3	0	0	0	0	0	0	0	0	4,8E-05	4,79999E-05	4,79999E-05	0	0	0	0	0	0	0	0	7.57893E-06
Alcalinidade em Bicarbonatos, mg/L CaCO3	0,00032	0,000184	0,00004	0,000032	0,00036	0,00032	0,00028	0,000184	0,000208	0,000184	0,0002	0,000088	0,000224	0,000416	0,000288	0,000264	0,000224	0,000248	0,000168	0,000222737
Alcalinidade Total, mg/L CaCO3	Charles of the	DESCRIPTION OF REAL PROPERTY.		NAME OF THE OWNER, OWNE		BOTH STATE						AND REAL PROPERTY.	STATE OF LINE		THE REAL PROPERTY.			Street, Square,	San Maria	
Sulfato, mg/L SO4	5,82947E-05	5,62128E-05	3,64342E-05	1,56147E-05	4,89259E-05	7,70323E-05	6,34996E-05	4,89259E-05	4,1639E-05	4,16391E-05	4,89259E-05	2,49834E-05	6,24586E-06	1,24917E-05	9,36879E-06	2.81064E-05	6,24586E-06	9,36879E-06	3,12293E-06	3,35304E-05
Cloreto, mg/L Cl	0,003082981	0.002964513	0.003305813	0.003565314	0.003043492	0.003145035	0.003105546	0,003125291	0,00316478	0.00380507	0.003184525	0,003706347	0,003263503	0.003483515	0.003145035	0,003765581	0,002705013	0,002925024	0.002583724	0,003214216
Nitrato, mg/L NO3	3,20942E-05		2.70946E-05			4,14483E-05	3,56423E-05	2.4998E-05		2,43529E-05		2.14499E-05	2,43529E-05	9.35409E-06	1,43537E-05	2.4998E-05	2,06435E-05	3,64487E-05	1,56439E-05	2,14159E-05
Nitrito, mg/L NO2	2,17365E-07	2,17365E-07	6,52095E-07	0	2,17365E-07	2,17365E-07	4,3473E-07	2.17365E-07	2.1737E-07	2,17365E-07	2.17365E-07	2,17365E-07	2,17365E-07	2.17365E-07	2,17365E-07	0	2,17365E-07	2,17365E-07	2,17365E-07	2.28805E-07
Amônia, mg/L NH3	7.63333E-06				5,28461E-06		1,6441E-05	1,17436E-06		1,99641E-05	2,58359E-05	2,34872E-06	0	1,99641E-05	2,17256E-05	1.76154E-05	2,05513E-05	2,40744E-05	2,11385E-05	1,27016E-05
Silica, mg/L SiO2	6,65731E-06	3,32866E-06	6,65731E-06	4,99298E-06	8.32164E-06		8,32164E-06	1.4979E-05	9.986E-06	9,98597E-06	4,99298E-06	1,33146E-05	4,99298E-06	6,65731E-06	6,65731E-06	9,98597E-06	6,65731E-06	4,99298E-06	4,99298E-06	7,70847E-06
Somatório da Concentração Moloar =	0,0066901	0.0062270	0.0066895	0.0070785	0,0069367	0.0072478	0,0070769	0.0068055	0,0070233	0.0078831	0.0069914	0,0078709	0.0070037	0.0077316	0,0068648	0,0081615	0,0058077	0,0063757	0,0056097	0,0069513

	CÁLCULO DA FORÇA IÔNICA DO PERMEADO				TEMPERATURA ("C) = CÁLCULO DE "A" =		28													
							0.512422093													
	FORÇA	FORÇA	FORÇA	FORÇA	FORÇA	FORÇA	FORÇA	FORÇA	FORÇA	FORÇA	FORÇA	FORÇA	FORÇA	FORÇA	FORÇA	FORÇA	FORÇA	FORÇA	FORÇA	FORÇA
												79								
										-										
		-						-												
oureza em Cáldo, mg/L Ca	0.000219572	0.000259494	0.000139728	0.000219572	0.000239533	0.000199611	0.000159689	0,00017965	0.00017965	0.00037926	0.000359299	0.000479066	0.000219572	0.000399222	0.000259494	0.000339338	0.000119766	0,000279455	0.000419183	0,000265797
Oureza em Magnésio, mg/L Mg	0.000691216											0,000724131		0.000707673		0.001184941	0.000526641	0.000674758	0.000181033	0,000526641
ureza Total, mg/L CaCO3	0,000000	0.000220	0.000000	0,000 100011	0,000070020	0,000 12.000	0,00000100	0,00000	0,000000									THE REAL PROPERTY.		
ódio, mg/L Na	0.002918689	0.002853443	0.003031783	0.003227523	0.003297119	0.003475459	0.003423262	0.00327102	0.00339716	0.003505907	0.003244922	0.003692947	0.003323217	0.003501557	0.003144877	0.003662499	0,002657704	0,002883891	0.002657704	0,00321951
otássio, mg/L K		3.32495E-05					5,11531E-06						7.67297E-06	5,11531E-06	5,11531E-06	7,67297E-06	5,11531E-06	5,11531E-06	5,11531E-06	1,3596E-05
Juminio, mg/L Al	Section 201	Sandal Law					ALC: U.S. W. Sales			STATE OF THE REAL PROPERTY.	HELDINGS	THE PERSON NAMED IN		ALCOHOL: NAME	April agent de		LUCKE DIE			
erro Total, mg/L Fe										USIGNESS								CONTRACTOR OF STREET		
Icalinidade em Hidróxidos.mg/L CaCO3					STATE OF THE PARTY OF															
Icalinidade em Carbonatos,mg/L CaCO3	0,00000	0.00000	0,00000	0.00000	0.00000	0.00000	0,00000	0,00000	0.00019	0,00019	0,00019	0,00000	0,00000	0,00000	0.00000	0,00000	0,00000	0,00000	0,00000	0,00003
Icalinidade em Bicarbonatos, mg/L CaCO3	0,00032	0,000184	0,00004	0,000032	0,00036	0,00032	0,00028	0,000184	0,000208	0,000184	0,0002	0,000088	0,000224	0,000416	0,000288	0.000264	0,000224	0,000248	0,000168	0,000222737
Vicalinidade Total, mg/L CaCO3		THE RESIDENCE				The State of the Land						THE PERSON NAMED IN	Mary Street	TO SERVICE OF		HE HE CAN				
Sulfato, mg/L SO4	0,000233179	0.000224851	0,000145737	6,24586E-05	0,000195704	0.000308129	0.000253998	0.000195704	0.00016656	0,000166556	0.000195704	9,99338E-05	2,49834E-05	4,99669E-05	3,74752E-05	0,000112426	2,49834E-05	3,74752E-05	1,24917E-05	0,000134122
Cloreto, mg/L Cl	0.003082981	0.002964513	0.003305813	0.003565314	0,003043492	0.003145035	0.003105546	0.003125291	0.00316478	0.00380507	0,003184525	0,003706347	0.003263503	0,003483515	0,003145035	0,003765581	0,002705013	0.002925024	0.002583724	0,003214216
itrato, mg/L NO3	3,20942E-05	1,29022E-06	2.70946E-05	2,14499E-05	8,54771E-06	4,14483E-05	3,56423E-05	2,4998E-05	7.0962E-06	2,43529E-05	1,56439E-05	2,14499E-05	2,43529E-05	9,35409E-06	1,43537E-05	2,4998E-05	2,06435E-05	3,64487E-05		2,14159E-05
itrito, mg/L NO2	2,17365E-07	2.17365E-07	6,52095E-07	0	2,17365E-07	2,17365E-07	4,3473E-07	2,17365E-07	2,1737E-07	2,17365E-07	2.17365E-07	2.17365E-07	2,17365E-07	2,17365E-07	2,17365E-07	0	2,17365E-07	2,17365E-07	2,17365E-07	2,28805E-07
mônia, mg/L NH3	7,63333E-06	8.22051E-06	5,87179E-07	5,87179E-07	5,28461E-06	1,40923E-05	1,6441E-05	1,17436E-06	1,4092E-05	1,99641E-05	2,58359E-05	2,34872E-06	0	1.99641E-05	2,17256E-05	1,76154E-05	2,05513E-05	2,40744E-05		1,27016E-05
llica, mg/L SiO2	6,65731E-06	3,32866E-06	6,65731E-06	4,99298E-06	8,32164E-06	9,98597E-06	8,32164E-06	1,4979E-05	9,986E-06	9,98597E-06	4,99298E-06	1,33146E-05	4,99298E-06	6,65731E-06	6,65731E-06	9.98597E-06	6,65731E-06	4,99298E-06	4,99298E-06	7,70847E-06
ERMEADO		HOLLY E	No. of the last of								HOLD THE PARTY					P. P. L.	THE PER ST. LEW			
Soma da força iônica	0.003774023	0,003381506	0.003698638	0.003817815	0.003773486	0,003974773	0.003841715	0.003666928	0.0038369	0,004434221	0,00396099	0,004424108	0,003735517	0,004299621	0,003790626	0,004694528	0,003155646	0,003559726	0.003034622	0,003834494
da solução	5.70	5.90	7,50	6.00	6.10	6.80	6.10	6.00	5.50	5,50	5,60	6.80	5.90	6.10	6.10	6.70	6.30	5.60	5,50	6,09
g10 da concentração de Ca (mol/L)	4.26	4.19	4.46	4.26	4.22	4,30	4.40	4.35	4.35	4.02	4.05	3,92	4.26	4.00	4.19	4.07	4,52	4,16	3,98	4.18
alinidade total como CaCO3(mol/L)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0,00	0,00	0.00	0,00	0,00	0,00	0,00	0.00
g 10 da alcalinidade total como CaCO3(mol/L	3,80	4,04	4,70	4,80	3.75	3.80	3,85	4.04	3.82	3.85	3,83	4,36	3,95	3,68	3,84	3,88	3,95	3,91	4,08	3,93
depende de T(°C=28) e da força iónica	2.40	2.40	2.40	2.40	2.40	2.40	2.40	2.40	2.40	2.40	2.40	2,40	2.40	2,40	2.40	2.40	2,40	2,40	2,40	2.40
orça iónica	0,00	0,00	0,00	0.00	0,00	0,00	0,00	0.00	0.00	0,00	0.00	0.00	0,00	0,00	0,00	0,00	0.00	0,00	0,00	0,00
ts	10.46	10.62	11.56	11.46	10.37	10.50	10.65	10,78	10.57	10.28	10.28	10.68	10,61	10,08	10,43	10,35	10,87	10,46	10,46	10,50
Stiff&Davis	-4,78	-4,72	-4,06	-5,46	-4,27	-3,70	-4.55	-4,78	-5,07	-4,78	-4,68	-3,88	-4,71	-3,98	-4,33	-3,65	-4.57	-4,88	-4,96	-4,41
ISL	-4.30	-4.16	-3.54	-4.92	-3.77	-3.17	-4.04	-4.30	-4.53	-4.25	-4.21	-3.46	-4.19	-3.53	-3.87	-3.16	-4.04	-4.34	-4.46	-4,01