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Resumo

O controle de atitude em quadricópteros usualmente não considera a possibilidade de

perda de effetividade no atuator, tornando-se ineficiente para operar em certas condições. os

algoritmos de Detecção e Diagnóstico de Falhas (FDD) disponíveis na literatura não levam

em consideração a presença de efeitos aerodinâmicos como batimento das pás das hélices

(blade flapping) e a força de arrasto induzida (induced drag), que prejudicam o desempenho

de voo. A atenuação na velocidade de rotação dos motores causada por estes efeitos pode

inclusive ser confundida por uma falha de perda de efetividade. Assim, é oportuno ter um

FDD que é capaz de considerar esses efeitos.

Sistemas de controle de quadricópteros como um todo tendem a negligenciar a presenca

desses efeitos aerodinâmicos. Esta tese propõe, primeiramente, que estes efeitos podem ser

compensados na alocação de controle, usando uma function-fitting neural network como

uma ferramenta que substitui uma matriz de alocação clássica. O treino da rede é feito

offline, economizando poder computacional. O sistema alvo é um drone PARROT Mambo.

Este quadricóptero é particularmente susceptível aos efeitos aerodinâmicos de interesse desta

tese, dado o seu tamanho reduzido. Neste sentido, quando comparam-se os comandos envia-

dos pelo controlador, que devem ser seguidos pelos atuadores, com os conjugados mecânicos

gerados por eles, o uso da rede neural proposta torna possível diminuir o erro de alocação.

Ou seja, os atuadores executam o esforço de controle apropriado pedido pelo controlador,

enquanto a matriz de alocação clássica não consegue atingir o mesmo desempenho. Além

disso, o comportamento de malha fechada também foi melhorado com o uso da nova alo-

cação de controle (NNCA), bem como a qualidade dos sinais de torque e empuxo, nos quais

perceberam-se comportamentos mais suaves e menos ruidosos.

A fim de manter a coerência com a inclusão da modelagem dos efeitos aerodinâmicos no

sistema por meio da NNCA, estas equações também foram incluídas da formulação do FDD.

O novo sistema de detecção de falhas é baseado em um EKF de ordem reduzida tolerante

a efeitos aerodinâmicos (ROEKF-TAE), capaz de detectar falhas de perda de efetividade

(LOE) em mais de um atuador simultaneamente. Com este objetivo, introduziu-se na

formulação do estimador de falhas um modelo do quadricóptero que inclui as equações
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dos efeitos aerodinâmicos pertinentes. A NNCA previamente desenvolvida também foi

utilizada em todas as simulações computacionais e experimentos de voo do FDD. Os testes

de voo para esta nova abordagem de FDD foram realizados utilizando o mesmo mini drone

PARROT mambo. Compararam-se os resultados do ROEKF-TAE proposto com os do EKF

tradicional e com os de uma solução do estado da arte que utiliza um filtro de Kalman

adaptativo. O ROEKF-TAE foi capaz de distinguir melhor entre os efeitos da falha de

fato e aqueles que era interferência do blade flapping. Ainda, ele tem melhor precisão ao

diferenciar os atuadores defeituosos dos saudáveis.

Palavras-chave: quadricóptero, VANT, batimento das pás das hélices, rede neural,

detecção e diagnóstico de falhas
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Abstract

Attitude control in quadrotors usually does not consider the possibility of actuator loss-

of-effectiveness, becoming then inefficient at certain operating conditions. Fault-Detection

and Diagnosis (FDD) algorithms available in the literature do not take into consideration

the presence of aerodynamic effects such as blade flapping and induced drag, which hinders

flight performance. The attenuation these effects cause on actuator speed could even be

mistaken for a loss-of-effectiveness fault, so an FDD system capable of identifying them

could be opportune.

Typical quadrotor control systems as a whole tend to neglect the presence of such aerody-

namic effects. As a primary effort, this thesis proposes that these effects can be compensated

in the control allocation step, using a function-fitting neural network as a tool to replace the

classic allocation matrix, without using the aerodynamic inflow equations directly. The net-

work training is performed offline, saving on computational power. The target system is a

PARROT Mambo drone. This specific quadrotor is particularly susceptible to the aerody-

namic effects of interest to this thesis, given its small size. In this sense, when comparing

the commands sent by the controller that must be achieved by the actuators, to the mechan-

ical torques generated by them, the usage of the proposed neural network control allocation

(NNCA) makes it possible to achieve a close match, meaning the actuators execute the appro-

priate control effort demanded by the controller, while the classic allocation matrix cannot

perform the same way. Furthermore, the closed-loop performance was also improved with

the use of the new control allocation, as well as the quality of the thrust and torque signals,

in which a much less noisy behavior was perceived.

In order to be coherent with the inclusion of the aerodynamic effects modeling into

the system through the control allocation, these equations are also included in the FDD

formulation. The new fault detection scheme is based on a Reduced Order EKF Tolerant

to Aerodynamic Effects (ROEKF-TAE) capable of detecting loss-of-effectiveness (LOE)

faults in more than one actuator at the same time. With this goal, a more complete model

of the quadrotor system including the pertinent aerodynamic effects equations is introduced

in the filter’s development. Moreover, the previously developed NNCA was applied in all

iv



the new FDD scheme simulations and experiments. The experimental flights for the new

FDD approach were performed using the same PARROT Mambo micro drone. They were

compared to those of a traditional EKF, as well as to those of a state-of-the-art adaptive

Kalman Filter available in the literature. The ROEKF-TAE is able to better distinguish

between the effects of the actual fault and those of the blade-flapping disturbance. Also, it

has better accuracy in identifying which actuators are truly defective and which are not.

Keywords: quadrotor, UAV, blade flapping, control allocation, neural network, fault

detection and diagnosis
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“You don’t need sleep. I don’t need sleep. Evil never sleeps, and Virtue is
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Chapter 1

Introduction

In this introductory chapter, we discuss the current scenario that harbors the motivations

for this research. We present our hypothesis based on the state-of-the-art literature that is in-

vestigated in-depth in Chapter 2, as well as the research goals, main contributions, published

results and the document structure.

1.1 Motivation

The usage of Multi-Rotor Unmanned Aerial Vehicles (UAV) has had substantial growth

in a series of applications in the last fifteen years. Such drones are powered by multiple

rotors (motor and propeller) to generate lift and control torques, which likely operate in

considerable speed conditions, making aerodynamic effects more relevant [Sun et al. 2018].

As a consequence, the research of modeling and control techniques for this type of vehicle,

especially the quadrotors, has also grown considerably [Nascimento & Saska 2019].

A quadrotor is a classically unstable and under-actuated nonlinear dynamical system

[Bouktir, Haddad & Chettibi 2008], [Hussein & Nemah 2015], making the study of suit-

able algorithms to improve stability and reduce the influence of disturbances indispensable.

Furthermore, since a minimum of four fixed-pitch actuators is required to achieve complete

attitude control, the quadrotor UAV types suffer most from rotor failures, because there is no

actuator redundancy. Hence, the failure of rotors severely threatens flight safety.

In this regard, we can highlight that many approaches have been proposed as Fault De-

tection and Diagnostics (FDD) solutions, but only with simulation results, as in [Ma, Xu &
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Yang 2021], [Rot, Hasan & Manoonpong 2020], [Zhao, Liu & Lewis 2021]. Works which

explore the aircraft behavior through real robot experiments, i.e. flight tests, are still a minor-

ity in the literature. Especially if we search for flight tests with maneuvers other than hover,

where the influence of aerodynamic effects is significant. In other words, there is a shortage

of existing literature regarding the application of FDD techniques in real systems operating

under realistic conditions [Nascimento & Saska 2019], that is, outside hover behavior.

The presence of aerodynamic effects such as blade flapping and induced drag generates

restrictions that lead to actuator saturation [Alves 2019]. These effects are especially rele-

vant, because they induce forces in the xy-plane of the rotor, precisely the under-actuated

directions of the flight dynamics which cannot be easily managed by high gain control [Ma-

hony, Kumar & Corke 2012]. An FDD system that does not take into consideration aero-

dynamic effects might be subject to mistake a loss-of-effectiveness actuator fault for the

attenuation of actuator speed caused by these disturbances [Okada et al. 2021].

In the context of considering the presence of aerodynamic effects in the system, the use

of control allocation offers the advantage of a modular design where the motion control al-

gorithm can be designed without detailed knowledge about the actuators (here, meaning the

motor and propeller set). Several issues such as input saturation, rate constraints, actuator

fault tolerance, power efficiency etc., could be managed within the control allocation algo-

rithm [Johansen & Fossen 2013]. What we know as control laws specify which total control

effect to produce but not how the actuators should produce it; hence, the need for control

allocation arises [Härkegård 2003]. This research will contribute to managing aerodynamic

effects in a quadrotor system by considering them in the control allocation step.

Conventional multirotor UAVs have rotors in parallel directions to collectively counteract

gravity and optimize flight time. This structure induces an under-actuated dynamics due to

the coupling between the horizontal translational and rotational dynamics [Rashad et al.

2020], as aforementioned. As a result, the control of a quadrotor tends to present a high

sensibility when subjected to an input constraint [Alves 2019]. Therefore, control allocation

is necessary for setting suitable commands for each rotor, so that it generates the desired

control effect, that is, the forces and torques, while presenting an acceptable performance

and respecting the constraints imposed by the minimal and maximal angular velocities and

hence the maximum and minimum forces and torques [Alves 2019].
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In the classic quadcopter model used in most applications, the control allocation is often

performed through the control effectiveness matrix, usually named mixing matrix or alloca-

tion matrix. It provides an invertible matricial relation between mechanical conjugates and

motor rotation speeds. This matrix results from a model simplification that neglects the aero-

dynamic effects that influence thrust forces and torque behavior, especially regarding small

aircraft or aggressive maneuvering [Huang et al. 2009]. As a matter of fact, this negligence

leaves the quadcopter subject to saturation, and the torque and thrust commands sent by the

controller are not properly generated by the actuators, because the motors cannot achieve the

necessary rotation speed.

While it is true that there are several results regarding UAV control in the literature, this

research did not find works approaching the problem of the error inserted by the disregard

of aerodynamic effects in the control allocation. Even the robust controllers available in the

literature mentioned in Chapter 2 still use the classic mixing matrix, forcibly inserting an

error in the rotation speeds established at the motors and hence in the control performance.

In fact, even with many proposed techniques for quadrotor UAV control, there is still a need

for contributions regarding the compensation of small disturbances that affect the system

overall [Nascimento & Saska 2019]. Though one must make it clear to the reader that the

focus of this thesis is on the control allocation step and fault detection and diagnosis in the

presence of aerodynamic effects. The main contribution of this work does not rely on the

controller algorithm itself.

For the sake of coherence, the aerodynamic effects must also be included within the FDD

system formulation. The proposed fault detection scheme is based on an Extended Kalman

Filter state estimator, however with reduced order, called Reduced Order Extended Kalman

Filter Tolerant to Aerodynamic Effects (ROEKF-TAE), focused on detecting, estimating and

locating detecting loss-of-effectiveness (LOE) faults in more than one actuator at the same

time.

We reiterate once more that the majority of solutions available in the literature for quadro-

tor UAVs do not take into account aerodynamic disturbances such as blade-flapping. If an

actuator fault occurs, for instance, during high-speed flights, such as the cruising phase of a

delivery drone, air inflow with respect to rotors and the airframe brings significant aerody-

namic disturbances [Sun et al. 2018], which can greatly deteriorate the performance of the
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FDD and of the system overall [Madruga et al. 2022]. Also, in the case of a system with

multiple actuators, for instance, a multi-rotor aircraft, not all results available in the literature

allow the identification of faults in multiple actuators simultaneously.

Figure 1.1 is a simplified diagram of the quadrotor control system, highlighting the points

where this research’s contribution lies. Focusing on the actuator commands and command

generation, the modifications we made in the control allocation block ensure that the Ac-

tuator Velocities will generate the correct Thrust and Torques. Meanwhile, the Fault De-

tection and Diagnosis System detects that the command generation is disturbed by loss-of-

effectiveness faults.

Figure 1.1: Research focus.

1.2 Methodology and Objectives

As a solution for the research problem defined in the previous Section, the first goal of

this thesis is to propose a new control allocation method to take into account the aerody-

namic effects, most notably those regarding blade flapping and inflow effects as described

in [Riether 2016], based on a function fitting neural network to replace the classic mixing

matrix. This method allows us to improve the controller performance without the need for

directly using aerodynamic effects equations in the control algorithm or the allocation prob-

lem. Furthermore, network training is performed offline, and the in-flight control allocation
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depends only on the virtual control inputs and some state-space variables, which will be

detailed further in this thesis.

Further, in the second part of this research, we finally deal with the problem of fault

detection and diagnosis in the presence of aerodynamic effects. Similarly as stated above,

when dealing with FDD, the methods available in the state-of-the-art literature still neglect

said effects, either in the modeling or in the experiments [Zhong et al. 2018], [Fourlas &

Karras 2021]. The lack of a proper representation of such effects leads to errors in motor

fault estimation. Thus, an estimation method will be proposed in this thesis to consider aero-

dynamic effects when detecting faults in UAV actuators. The fault detection and diagnosis

(FDD) scheme is based on a Reduced Order Extended Kalman Filter Tolerant to Aerody-

namic Effects, capable of detecting loss-of-effectiveness faults in more than one actuator at

the same time. This FDD will then be combined with the Neural Network Control Allocation

in the final system.

The main platform used in this research was the PARROT Mambo mini-drone. MAT-

LAB/Simulink provides a hardware support package for this equipment, with a simulation

environment and Bluetooth connection for flight tests. The quadrotor is represented in Figure

3.1.

As will be detailed further in Chapter 4 and 5, the mini-drone is equipped with a

downward-facing camera for positioning using optical-flow odometry, an ultrasonic sensor,

a barometric sensor, and an inertial measurement unit (IMU). All these sensors are used for

stabilization purposes. Its dimensions are 180 mm × 180 mm × 40 mm, weighting 70 g.

Power is provided by a GiFi Power 3.7 V, 600 mAh, 2.2 Wh, 15c Li-Po battery, enabling

a flight time of 7-10 minutes, depending on the nature of the task to be performed and the

accessories (i.e. the load) implemented.

We can then summarize the main objectives of this research and the respective Chapters

where they are dealt with:

• Characterize the effects of the blade flapping on the thrust force rotation (Chapter 3).

• Develop a new control allocation approach that is able to compensate for aerodynamic

effects such as blade flapping and induced drag (Chapter 4).

• This new control allocation will be based on a function-fitting neural network with
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offline training so as not to be computationally demanding during flight.

• Improve the flight performance with the proposed technique (Chapter 4).

• Develop an actuator fault detection and diagnosis system that is able to distinguish

small faults from the aforementioned aerodynamic disturbances (Chapter 5).

• The FDD must be able to detect faults in more than one actuator simultaneously (Chap-

ter 5).

Our results have shown that neglecting the presence of aerodynamic effects in the quadro-

tor system hinders flight performance, especially, but not limited to, in the case of small

aircraft and aggressive maneuvers. The proposed neural network is successfully applied in

the control allocation. Afterward, the new FDD system is developed, and we show through

comparison that considering the aerodynamic effects improves the detection quality.

Each final contribution of this work is enumerated in Chapter 6, as well as the two sci-

entific papers that resulted from the contributions in Chapters 3, 4 e 5, following the list of

objectives above.

1.3 Dissertation Structure

Previously this Chapter has presented the motivations that drove this research, the main

objectives of this work and the methodology used throughout the thesis. The leading con-

tributions have also been introduced. Now, we list the structure in which this document is

organized so that it may facilitate comprehension.

In Chapter 2, we discuss the related works and the state-of-the-art literature, comparing

our contributions to what has already been published and studied in the literature in recent

years.

Chapter 3 presents the basic concepts for understanding the quadrotor mathematical

model, as well as the state variables and observability and controllability analysis. This

Chapter also discusses the aerodynamic effects equations and how they modify the classic

model, along with one of the theoretical contributions of this work, regarding an analysis of

the thrust force rotation around the rotor plane when flying under blade flapping effects.
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Chapter 4 deals with the neural network control allocation contribution. It starts by ap-

proaching the basic control structure that is used in the system during simulations and real

flight. The control allocation concept is discussed, and the results of simulation and flight

experiments are shown and analyzed.

In Chapter 5, we present the details about the fault detection and diagnosis system, ca-

pable of detecting, estimating and locating actuator faults in more than one rotor at the same

time while taking into consideration the aerodynamic effects. The results of the simulation

and flight experiments of this contribution are discussed in the end.

Finally, Chapter 6 concludes this dissertation, recapitulating the whole discussion and

listing the contributions, as well as suggesting possible future works that might derive from

this research.
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Chapter 2

Related Works

In this Chapter, related works in the form of scientific papers, theses, or dissertations

regarding the relevant themes for this research are analyzed, in an effort to compare contri-

butions and evaluate where the current state-of-the-art lands.

Given the lack of works approaching the subjects in the ways proposed in this thesis,

that is, modification of the control allocation step to take into account aerodynamic effects

by means of a neural network, followed by a fault detection and diagnosis scheme that also

considers said effects, and also performing real flight experiments with trajectories other than

hover to validate the results, this bibliographic review is to be divided into the four parts that

build the main focus of this research.

First, the discussion will concentrate on analyzing the works that address aerodynamic

effects in its scope, be it as a modeling effort (which is the majority of cases mentioned here),

or in the control. Next, works that study control allocation within the UAV context will be

presented, especially those that mention the compensation of aerodynamic effects. Some

applications of neural networks in UAV control systems were also collected here, as well as

a brief revision of available fault detection and diagnosis system in the literature.

Applications for quadrotor UAVs is a theme with quite literally thousands of available

references, and one needs to select those more relevant adjacent to one’s research. Even if

some of the references cited here may have more than one decade from the date of publica-

tion, the selection criteria laid in the neighboring research themes or pertinent contributions.

This review has also given priority to those works with strong results backed by real flight

experiments and/or the inclusion of aerodynamic effects modeling in a step of the system.
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Most of the available relevant applications fall within the control algorithm spectrum, so

some works regarding the control are to be discussed here, since many times they are the

closest possible comparison to what is being proposed in this research.

2.1 Aerodynamic Effects

Dynamic models with minimum complexity for quadrotors are well documented in the

literature [Cai et al. 2017]. These models generally use six-degree-of-freedom (6-DOF)

rigid-body equations and highly simplified rotor dynamics as a function of the square of

motor speed. There are several aerodynamic effects that can modify the classic model, but

specifically from the rotors’ point of view, the most significant are blade-flapping and in-

duced drag [Riether 2016]. In this bibliographic review, works dealing with other types of

aerodynamic effects will also be mentioned, given the gap in the literature for taking into

account aerodynamic effects in general when dealing with quadrotors.

The treatment of quadcopter dynamics around steady-state conditions has often ignored

rotorcraft aerodynamic effects due to its complex physical modeling [Kantue & Pedro 2018].

In certain circumstances similar to hover flight, these effects could be neglected. Neverthe-

less, they can prove to be very relevant during agile maneuvers [Huang et al. 2009] or in the

case of small aircraft [Davis & Pounds 2017], [Ning, Wlezien & Hu 2017]. As modeling

efforts, one can cite, for example, [Davis & Pounds 2017] which sought to understand and

exploit the aerodynamic effects acting on a small-scale quadrotor to regulate relative posi-

tion, attitude, and velocity without extrinsic sensors. Also, [Ning, Wlezien & Hu 2017] have

investigated the aerodynamics and aeroacoustics of propellers for small unmanned aerial ve-

hicles, while [Powers et al. 2013] demonstrated that the dynamic response and performance

of a micro UAV are greatly influenced by its aerodynamics, and the introduction of these

effects into controllers is also discussed. They suggest that the controller performance can

be improved when considering aerodynamic effects in the model.

The works of [Pounds et al. 2004] [Pounds 2007], [Pounds, Mahony & Corke 2010],

[Pounds, Mahony & Corke 2006] have included some aerodynamic effects modeling in the

rotor dynamics equations in order to enhance model accuracy. The authors adopted a gener-

alized flapping dynamics structure, based on helicopter theories, to model the rotor flapping
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phenomenon. [Bristeau et al. 2009] studied the aerodynamic role of the propellers, while

[Hoffmann et al. 2007] and [Huang et al. 2009] modeled aerodynamic effects associated

with blade flapping, airflow distribution, and thrust generation, to derive a model that can

cover extreme maneuvers.

In [Cai et al. 2017], the authors introduced a frequency-domain modeling methodology

that can be applied to various multi-rotor aerial vehicles. [Niemiec & Gandhi 2016] created

a dynamic simulation for a 2 kg quadcopter, where several inflow models were used to ana-

lyze the behavior of the aircraft in trim, hover, and forward flight. [Kantue & Pedro 2018],

[Kantue & Pedro 2018] used a Radial Basis Functions Neural Network (RBF-NN) for model

identification of an unmanned quadcopter in accelerated flight to estimate rotor dynamics

parameters from an unknown flapping dynamics model.

The authors in [Omari et al. 2013] present the design and evaluation of a nonlinear

control scheme for a six-rotor helicopter that takes the first-order drag effects into account

explicitly, and a hierarchical nonlinear controller is designed to actively compensate for the

nonlinear effects caused by these drag forces. Note that, even though a dynamic model in-

cluding the blade flapping and induced drag forces is included in the controller algorithm

in this paper, the corresponding classic mixing matrix for a six-rotor helicopter is still em-

ployed by the authors. Even if the controller takes into account the drag forces, the control

allocation completely neglects their existence, jeopardizing some of the controller’s perfor-

mance because the conversion of controller commands to the actuators’ rotation speeds will

be inaccurate.

This thesis does not aim to modify the controller algorithm in order to consider blade-

flapping effects in the system. The approach proposed by this research performs modifica-

tions in the control allocation algorithm, that is, in the step that transforms the control input

into actuator commands.

In [Chebbi et al. 2020], polynomial regression is used to obtain the control allocation

of a coaxial multirotor. However, the problem the authors are trying to solve in this work

differs from the one we attack in our paper. They try to estimate a model that will solve the

interference between the propellers in a pair of coaxial motors. Once more, even though they

estimate a thorough model of the actuators’ nonlinear effects, they neglect them in the main

control allocation step when converting the commands to the actuators.
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The works presented above mainly focus on modeling several types of aerodynamic ef-

fects that impact multirotor aircraft systems. Literature is still lacking in regards to tech-

niques to actually take these effects into account in the quadrotor system, especially when it

comes to the control allocation, which even papers proposing robust controllers seem to ne-

glect, maintaining the use of the classic allocation matrix, resulting in an inevitable accuracy

error when sending commands to the actuators.

2.2 Control Allocation

Control allocation is the step in a control system where the control inputs, i.e. the com-

mands sent by the controller, are converted into actuator commands so that the plant can

behave accordingly [Johansen & Fossen 2013]. A control allocation algorithm is designed

in order to map the vector of commanded virtual input forces and moments required by

the controller into individual forces and moments generated by the actuators such that they

amount to the commanded virtual input. In other words, the control allocation coordinates

the different actuators such that they together produce the desired control efforts.

The fundamentals of control allocation theory are presented in [Härkegård 2003], [Jo-

hansen & Fossen 2013] and [Alves 2019]. They will also be detailed in Chapter 4. Most

specifically, we find a least squares control allocation combined with backstepping tech-

niques applied to aerospace control [Härkegård 2003]; a survey regarding different control

allocation algorithms and applications to aerospace, maritime, automotive, and other appli-

cation areas is presented in [Johansen & Fossen 2013], while the applications of several

methods of control allocation to an experiment with a differential-drive mobile robot and

simulations of a quadrotor UAV and a Remotely Operated Underwater Vehicle are presented

in [Alves 2019].

Most recently, the interest in control allocation applied to multirotor vehicles has in-

creased, given the rise in the usage of this type of aircraft. [Kirchengast, Steinberger & Horn

2018] showed the comparison of different control allocation techniques, as well as [Alves

2019], but this time they are applied to a laboratory setup that emulates the rotational dy-

namics of a quadrotor, though not to a real quadcopter. [Monteiro, Lizarralde & Liu Hsu

2016] and [Monteiro, Lizarralde & Liu Hsu 2016] also analyzed control allocation algo-
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rithms to countermeasure saturation in the actuators, however, they generalized the classic

direct control allocation (DCA), which is optimization-based and computationally demand-

ing, to suggest new methods, called partial control allocation (PCA) [Monteiro, Lizarralde

& Liu Hsu 2016] and sub-optimal partial control allocation (S-PCA) [Monteiro, Lizarralde

& Liu Hsu 2016].

In [Doman & Oppenheimer 2002], it is stated that forces and moments produced by the

vehicle’s aerodynamic control surface are often nonlinear functions and that this limits most

control allocation algorithms applications, since they are based on the assumption that the

control variable rates are linear functions. The authors then presented a mixed optimization

control allocation scheme that minimizes the norm of the error and the deviation of the

control input from a preferred value, to attack the inaccuracies introduced by these linear

assumptions.

Since then, other authors have tried to address the problem of nonlinear input dynamics

in control allocation, as [Johansen 2004], who developed an optimizing control allocation al-

gorithm in the form of a dynamic update law, for a general class of nonlinear systems, using

a control-Lyapunov approach. [Stolk 2017] proposed an incremental control allocation tech-

nique that calculates the input increments based on the control demand increment, instead

of the total inputs to achieve the total control demand. [Waters et al. 2013] aimed to test

the linearity assumption in the control allocation matrix by measuring the aerodynamic per-

formance of several control allocation algorithms in a wind tunnel experiment for a blended

wing body aircraft model, and the effect of different variables on nonlinearities in the control

moment curves was also investigated.

Many works state that aerodynamic effects, such as wind disturbances, can lead to satu-

ration [Smeur, Höppener & Wagter 2017], [Alves 2019]. Since these effects are nonlinear,

[Waters et al. 2013] showed that some linear control allocation algorithms achieved only

50% of the requested moment in a wind tunnel. [Stolk 2017] used control allocation to

achieve minimum drag, but the authors linearized the nonlinear control input dynamics in

order to use linear methods. In addition, [Smeur, Höppener & Wagter 2017] and [Smeur,

Höppener & Wagter 2017] dealt with the problem of actuator saturation for controlled flying

vehicles. The authors integrated the Weighted Least Squares optimization-based control al-

location algorithm into the controller algorithm, which allows for prioritization among roll,
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pitch, yaw, and thrust.

The conventional application area for control allocation algorithms is over-actuated me-

chanical systems, however, the principles of control allocation are general [Johansen & Fos-

sen 2013] and can be applied to under-actuated systems subject to saturation and nonlinear

effects, such as quadrotors [Smeur, Höppener & Wagter 2017], [Alves 2019], as seen in

many of mentioned works above. [Oppenheimer, Doman & Sigthorsson 2010] and [Do-

man, Oppenheimer & Sigthorsson 2010] described a control allocation method to control

five degrees of freedom using two physical actuators that drive flapping wings.

The main technique most available control allocation algorithms have in common is solv-

ing a constrained optimization problem [Ducard & Hua 2011], and this process is usually

performed online [Härkegård 2004], requiring computational resources from embedded sys-

tems [Johansen & Fossen 2013]. Even though their computational complexity is mostly

within the capabilities of today’s computer technology, some works highlight the advantages

of requiring a low computational power online [Schneider et al. 2012], such as the method

we propose in this thesis. [Ducard & Hua 2011] presented an approach based on a weighted

pseudo-inverse matrix method capable of exploiting a much larger domain of virtual control

inputs for a hexacopter. The proposed control allocation algorithm is designed with explicit

laws for fast operation and low computational load, suitable for a small microcontroller with

limited floating-point operation capability. Finally, [Schneider et al. 2012] formulated the

control allocation problem for a hexacopter as a parametric program and solved it for an

explicit solution, which is stored in lookup tables. The authors emphasize that their con-

trol allocator requires very low computational power and immediately provides an optimal

solution to the torque commands issued by the flight controller.

The control allocation theory establishes that it can be used to treat actuator saturation

problems or other disturbances which may affect their optimal functioning [Johansen & Fos-

sen 2013]. However, as of the moment of this research, to the best of the author’s knowledge,

there are no works proposing to specifically compensate aerodynamic effects that affect the

actuators (blade-flapping and induced drag) inside the control allocation, replacing the tradi-

tional control effectiveness matrix and thus mitigating the allocation error.
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2.3 Neural Networks Applications in Quadrotors

Neural networks can have several applications in a quadrotor UAV system. Mostly they

are used for building a specific system model or identifying disturbance behavior through

data analysis so that an inaccurate model is improved. The applications range from the

controller algorithm to the sensing system, fault detection, and beyond.

Even though the focus of this thesis does not rely on the controller algorithm, which will

be left unchanged here as a PD-PID cascade, the need to cite related works that deal with

the controller rises, with the purpose of showing the adjacent literature contributions. How-

ever, we remind the reader that this thesis is proposing to use a neural network as a control

allocation method to convert control inputs into actuator commands, without modifying the

controller itself.

Neural networks have been receiving wide attention in the control field, being proposed

especially for the identification and control of nonlinear dynamic plants [Wang, Zhang &

Han 2016]. A common application of neural networks to controllers is as an adaptive element

to controllers, as stated [Cao et al. 2019], [Jiang, Pourpanah & Hao 2020], and [Wang,

Zhang & Han 2016]. Likewise, [Ansari, Bajodah & Hamayun 2019] and [Ansari & Bajodah

2019] employed a baseline controller with a dynamic inversion in the inner loop for attitude

tracking and body rates stabilization, with the addition of a Radial Basis Function Neural

Network to estimate the unknown attitude dynamics of the quadrotor.

In [Dierks & Jagannathan 2010] and [Dierks & Jagannathan 2008], a new nonlinear con-

troller for a quadrotor is proposed using neural networks and output feedback. In these, the

authors acknowledge that certain assumptions about UAV dynamics are not always practi-

cal, so the NN is introduced to learn the complete dynamics of the UAV online, including

blade flapping. Nonetheless, the results of [Dierks & Jagannathan 2010] and [Dierks & Ja-

gannathan 2008] are still shown only in simulation, with no real flight experiment. Besides,

using a neural network to modify the whole control algorithm may be considered a solu-

tion of much more difficult implementation than the one in this thesis, which only alters the

control allocation step for any type of quadrotor controller.

According to [Achermann et al. 2019], small UAVs are particularly susceptible to wind

drag because of their relatively low mass and their operation at low altitudes where the wind
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environment can be more complex. The authors there proposed an approach for predicting

high-resolution wind fields using a deep convolutional neural network to generate 3D wind

estimates. In a similar topic, [Shi et al. 2019] presented a deep-learning-based robust nonlin-

ear controller called Neural-Lander that improves the controller performance of a quadcopter

during landing, since near-ground trajectory control is difficult for multi-rotor drones, due to

the aerodynamic effects caused by interactions between multi-rotor airflow and the environ-

ment. [Verberne & Moncayo 2019] described the design of a controller architecture for wind

disturbance rejection in quadrotor UAVs, followed by the application of adaptive artificial

neural networks to correct inversion errors caused by wind disturbance.

Finally, [Reddinger & Gandhi 2017] trained a predictive neural network to estimate

power as a function of the redundant control settings for a range of flight speeds for a com-

pound helicopter. This neural network is used as a surrogate model for a gradient-based

optimization to allocate the redundant control settings with a minimized power requirement.

Note that even though neural networks are used to identify aerodynamic models, or even

in the controller itself, the application of a neural network to perform the control allocation

of a quadrotor control system is still uncommon in the literature, especially considering

aerodynamic effects, which is an application our research did not find in the most relevant

works in this area of study.

2.4 Fault Detection and Diagnosis in Quadrotors

The FDD methods consist of two primary steps: the detection is responsible for identi-

fying the presence of a problem, whereas the diagnosis incorporates the isolation (locating

where it occurred) and identification/estimation (type and/or magnitude/intensity of the fault)

of a fault.

Although many approaches can be found in the literature [Veras et al. 2019; Karlina &

Indriawati 2020; Alex, Daniel & Jayanand 2016; Zhong et al. 2018], such as signal analysis,

model-based, and data-driven [Okada et al. 2021], research shows that not all techniques

will necessarily be capable of performing all steps involving FDD. It is not only possible,

but common, that within a proposed technique only the fault detection is achievable, but not

the isolation and estimation, while other approaches can perform detection, isolation, and
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identification [Avram, Zhang & Muse 2017; Zhao, Liu & Lewis 2021].

In the case of a system with multiple actuators, such as a multi-rotor aircraft, it is also

worth noting that not all results available in the literature allow the identification of faults in

multiple actuators at the same time. Evidently, faults arise the possibility of critical problems

in the system if they are poorly diagnosed or if they remain undetected. Therefore, there

is a necessity for FDD methods that can correctly estimate the magnitude of a fault with

robustness to the natural system disturbances, e.g. the aerodynamic effects on a quadrotor

[Sun et al. 2018], [Okada et al. 2021].

For instance, recently [Ma, Xu & Yang 2021] suggested a data-driven reinforcement

learning approach for a fault detection scheme working with a fault-tolerant controller. This

scheme is capable of detecting, estimating, and locating faults. However, it falls into another

problem from the literature as of this moment: the lack of experimental flight results to so-

lidify the method, since the results are tested only with a simulation example of a quadrotor.

[Zhang et al. 2021] and [Iannace, Ciaburro & Trematerra 2019] proposed data-driven and

neural network-based approaches, respectively, on the diagnosis of blade damage on UAVs.

[Zhang et al. 2021] perform time-domain frequency estimation, where the verification of the

results is made offline, after the quadcopter flight. [Iannace, Ciaburro & Trematerra 2019]

analyze the acoustics of the noise emitted by the UAV to detect unbalanced blades, but the

diagnosis is performed off-board and is proposed as part of a pre-flight checklist.

In the case of inaccurate process models, data-driven methods can emerge as an alterna-

tive, since they rely on available information on the system’s behavior and historical process

data [Okada et al. 2021]. Still, a large amount of information would be required depending

on the complexity of the system, leading to significant data processing time [Okada et al.

2021] and computation power, which can be a limiting factor in small aircraft for civilian

use.

One should also mention [Rudin, Ducard & Siegwart 2020], where the authors propose

a robust Fault-Tolerant Control with an alarm FDD system, but the modeling and flight tests

are applied to a fixed-wing aircraft. Furthermore, this FDD is not capable of estimating

the magnitude of the fault. Another application to a fixed-wing aircraft was presented by

[Freeman et al. 2013], where a model-based residual generation is combined with data-

driven anomaly detection, however, this work deals with other types of fault pertinent to the
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type of aircraft they are studying, being outside of the scope of this thesis, which deals with

loss-of effectiveness actuator faults in quadrotors.

There is some research being conducted directly on DC motors which are employed on

multi-rotor aircraft, as in [Veras et al. 2019] and [Karlina & Indriawati 2020]. [Veras et

al. 2019] perform an analysis of sound signals from the motor for fault detection based on

density of maxima, and bench test experiments are executed directly on a single DC motor,

while [Karlina & Indriawati 2020] use a linear state observer for fault tolerant control of a DC

motor and test their approach in simulation models. Alex et al. [Alex, Daniel & Jayanand

2016] applied a reduced order EKF for state estimation of a brushless DC motor, but this

paper does not apply the technique to fault detection, nor it considers aerodynamic effects or

real flight experiments.

However, research suggests that, for the case of multiplicative faults, as in the scope of

this thesis, the use of parameter estimation techniques stands out [Okada et al. 2021]. It is

also highlighted in [Okada et al. 2021] that Kalman Filters provide a low false alarm rate, a

short delay in detecting the fault, robustness with respect to model uncertainties, isolation of

simultaneous faults, and the possibility of fault estimation.

For example, [Zhong et al. 2018] developed an Adaptive Augmented Three-Stage

Kalman Filter for the detection of LOE actuator faults in the presence of external distur-

bances. The technique is applied to the linearized system, and once more the results are

tested only in a simulation environment with a quadcopter in hover state. [Zhang et al.

2021], [Avram, Zhang & Muse 2017] and [Lee et al. 2020] use nonlinear adaptive estima-

tors to identify and isolate single actuator LOE faults, and [Baldini et al. 2020] use a custom

observer to estimate actuator faults.

As aforementioned, only few previous works in the literature have performed real flight

experiments for the application of fault detection and diagnosis in quadrotors, especially

with maneuvers or trajectories beyond hover state. [Avram, Zhang & Muse 2017] use non-

linear adaptive estimators to identify and isolate single actuator LOE faults. This approach

was indeed applied to a flight test consisting of a circular maneuver, however, the proposed

modeling does not allow the detection of faults in multiple actuators concurrently. Further-

more, the consideration of aerodynamic effects is neglected, contrary to the proposal of this

thesis. Similar remarks can be made about the work of Lee et al. [Lee et al. 2020], with
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the addition that here the experiments were executed in hover state on a hexacopter, which

has rotor redundancy, contrary to a quadcopter. [Baldini et al. 2020] use a custom observer

to estimate actuator faults. The flight experiment involved a square-like trajectory, again

only for a single-actuator fault. The fault estimation was also very affected by noise and

other disturbances which were not taken into account, such as the airflow around the vehicle,

according to the authors.

In [Sun et al. 2021] and [Nan et al. 2022], real-flight experiments on a faulty quadro-

tor are performed. These works, however, are on a different scope than the one proposed

here. The first work [Sun et al. 2021] approaches the problem of onboard vision-based state

estimation with the complete loss of one rotor, which yields high-speed yaw rotation. The

second [Nan et al. 2022] develops a nonlinear MPC for fault-tolerant control of quadrotors.

Both works deal with the complete loss of an actuator, which is on a different scope from

the LOE faults here analyzed. Most importantly, none of these contain a fault-detection and

diagnosis system. Hence the FDD system to be presented by this thesis can be a way of

improving some of the state-of-the-art results found in the literature at the moment.

The work of [Harshavarthini et al. 2020] uses a robust residual nonlinear observer for

a fault alarm-based hybrid controller, but without fault estimation and with results tested

only on simulation models. [Xu et al. 2018] propose the use of set-theoretic unknown input

observers for robust fault detection and isolation that can be applied to detect LOE faults in

multiple actuators. Their results are however only tested in simulation, without aerodynamic

effects and with a linearized system around hover conditions.

In [Madruga et al. 2022], this research has shown the relevance of the inclusion of aero-

dynamic effects in the system and, to the best of our knowledge, there has been no devel-

opment yet of an FDD system that explicitly takes into account blade-flapping aerodynamic

effects, especially with real-flight experiments and the capability of isolating faults in more

than one actuator. In [Guo, Jiang & Zhang 2018], one sees the development of an extended

state observer for the fault-tolerant control of a quadrotor subjected to wind gusts, which are

an external perturbation different from blade-flapping aerodynamic effects. Besides that, the

fault occurs in only a single actuator, and the results are only demonstrated in simulation.

Furthermore, there is no fault isolation (localization) in this system.

Certainly, it is possible to conclude that a major contribution to the current state-of-the-art
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is to design and validate FDD and fault-tolerant control methods reliable under the distur-

bance of significant aerodynamic effects for real-time implementations [Sun 2020]. Table

2.1 summarizes the main results found in our literature research for fault detection and di-

agnosis in the relevant context for this work, highlighting their differences and contributions

when compared to this research. Notice that a contribution for quadrotors that ticks all the

boxes is being proposed in this thesis.

Reference Method Nonlinear Real Flight Experiment Target Platform Aerodynamic Effects Simultaneous Actuator Faults Type of Fault

[Guo, Jiang & Zhang 2018] Extended state observer X × quadrotor X × LOE

[Rudin, Ducard & Siegwart 2020] Alarm (no diagnosis) + robust fault tolerant control × X fixed-wing × X LOE

[Veras et al. 2019] Density of maxima + sound - × motor × × -

[Karlina & Indriawati 2020] Linear state observer × × motor × × -

[Xulin & Yuying 2018] Linear state observer × × quadrotor × × LOE

[Xu et al. 2018] Set-theoretic unknown input observer × × quadrotor × × LOE

[Freeman et al. 2013] Data-driven anomaly detection X X fixed-wing × X -

[Ma, Xu & Yang 2021] Reinforcement learning X × quadrotor × × -

[Harshavarthini et al. 2020] Robust residual linear observer × × quadrotor × ? -

[Avram, Zhang & Muse 2017] Nonlinear adaptive estimators X X quadrotor × × LOE

[Wang et al. 2020] Deep learning X X fixed-wing × X -

[Park et al. 2020] Data-driven + comparison of statistical analysis techniques × bancada quadrotor × × Float

[Zhang et al. 2021] Time-domain frequency estimator X bancada blade damage × × LOE (blade damage)

[Moghadam & Caliskan 2015] Two-stage Kalman Filter × × quadrotor × X LOE + sensor

[Aishwarya & Jayanand 2016] Extended Kalman Filter X × motor × × -

[Schijndel, Sun & Visser 2021] Sensors + Kalman Filter × X quadrotor × X LOE

[Alex, Daniel & Jayanand 2016] Reduced order Extended Kalman Filter X × motor × - -

[Zhong et al. 2018] Adaptive Augmented 3-stage Kalman Filter × × quadrotor × X LOE

[Wang & Puig 2016] Zonotopic Extended Kalman Filter (no fault-isolation) X × quadrotor × X -

[Madruga et al. 2023] ROEKF-TEA (contribution of this research) X X quadrotor X X LOE

Table 2.1: Recollection of the main results found in the literature that are pertinent to this

thesis. The characterization of the types of faults mentioned in the last column will be

detailed in Chapter 5.

2.5 Final Considerations

In this Chapter, the foundations of the current state-of-the-art have been set, by briefly

analyzing some works related to the object of study, helping to build a knowledge base for

this research. We sought to establish the relevance of the study of aerodynamic effects, as

well as their consideration into quadrotor systems. In here, in the control allocation by means

of a neural network and in a fault detection and diagnosis scheme by introducing said effects

modeling into the filter’s formulation.

Many of the mentioned alternatives deal with the study of modeling techniques for aero-

dynamic effects, but few still apply them to UAV systems. This thesis differs where it consid-

ers these effects in the control allocation without the need of using their equations directly,
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because of the function fitting neural network, and without the need of modifying the con-

troller algorithm. It also does not demand high computational capacity from the system like

traditional control allocation methods.

The next contribution relies on a fault detection and diagnosis system for loss-of-

effectiveness actuator faults, capable of taking into account aerodynamic effects and de-

tecting faults in more than one actuator simultaneously. It has been made clear that a major

contribution to the current literature is the design and validation of FDD methods reliable un-

der the disturbances, and the encountered methods were summarized in a descriptive Table

at the end.

Evidently, it is not possible to completely investigate all the available literature on a

specific topic, especially one as vast as quadrotor UAV systems. Therefore, a selection of

what is most relevant to the research had to be made in order to move forward.
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Chapter 3

Mathematical Modeling for a Quadrotor

This chapter presents the mathematical modeling of a quadrotor UAV, highlighting the

main theoretical concepts regarding the quadrotor movement and its nomenclature in Section

3.1. In Section 3.2, we identify the state variables for this system, as well as the matrix

which performs the conversion between the inertial and local coordinate frames. With these

concepts, Section 3.3 shows the kinematic and dynamic equations for a quadrotor aircraft.

In Section 3.4, we evaluate the main aerodynamic effects which affect the quadrotor and

how they affect the aforementioned physical model. This research then contributes mathe-

matically with a modeling of the thrust force rotation around the z-axis in the local coordinate

frame in Section 3.4.1. Finally, in Section 3.5, the classic quadrotor model is linearized via

Taylor Series, in order to evaluate its behavior around one or more equilibrium points.

3.1 Basic Concepts

The traditional quadrotor model assumes that the aircraft is built as a rigid structure,

usually in form of X, with four arms, as shown in Fig. 3.1, where the axis convention used

in this thesis is presented. Note also that opposite motors rotate in the same sense, which

is opposite to the other pair. This balances the system torques and eliminates the need for a

back rotor, as in a traditional helicopter [Bresciani 2008].

We use the Tait-Bryan convention for the angles, where the movement of rotation around

the x-axis is called roll and is represented here by the angle φ. The roll motion induces a

linear displacement of the aircraft to the sides.
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The rotation around the y-axis is called pitch, represented by the angle θ, and causes a

linear displacement in the forward or backward direction.

The rotation around the z-axis is called yaw, represented by the angle ψ. The torques

that induce each one of these motions are here called τφ, τθ, τψ, respectively.

The force that enables the drone to move upwards is the thrust T . Ideally, it would only

have one vertical component in the z-axis. Aerodynamic effects however rotate the thrust

around the z-axis, as will be shown further in this Chapter.

Figure 3.1: In the front, we show the axis configuration in the local frame, as well as the rota-

tion sense for each rotor and the roll (φ), pitch (θ), yaw (ψ) notations used in the quadcopter

model. In the back, there is the axis configuration in the inertial frame.

Table 3.1 shows the influence of the angular velocities of the actuators in the resulting

motion of the aircraft. Here, ωi, i = 1, 2, 3, 4, is the angular velocity of each rotor. An

upward arrow means an increase in the velocity of a specific motor, while a downward arrow

corresponds to a decrease in velocity. Note that the arrows can be inverted for a change of

direction of motion.
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Type of motion ω1 ω2 ω3 ω4

Thrust (Tz) ↑ ↑ ↑ ↑

Roll (φ) ↓ ↑ ↑ ↓

Pitch (θ) ↓ ↓ ↑ ↑

Yaw (ψ) ↓ ↑ ↓ ↑

Table 3.1: Rotor speed influence on quadcopter motion.

3.2 State Variables

The system state variables can be defined as:

• The linear position vector r(t) =
[

x(t) y(t) z(t)
]T

∈ R
3, in [m];

• The angular position vector Ψ(t) =
[

φ(t) θ(t) ψ(t)
]T

∈ R
3, in [rad];

• The linear velocity vector v(t) =
[

vx(t) vy(t) vz(t)
]T

∈ R
3, in [m/s];

• The angular velocity vector in the body-frame Ω(t) =
[

P (t) Q(t) R(t)
]T

∈ R
3, in

[rad/s].

Note that the linear position r, the angular position Ψ, and the velocity of the center

of mass v are represented in the inertial frame, while the vehicle’s angular velocity Ω is

represented in the local frame.

The angles which constitute the Ψ(t) vector are those of the Tait-Bryan convention, as

aforementioned, which are here notated as roll, pitch, e yaw. The positive orientation of these

variables in a generic coordinate frame is indicated in Figure 3.2. Throughout this thesis, a

counter-clockwise rotation will be considered positive, while a clockwise rotation will be

negative.

For a quadcopter, one needs to deal with the difference in the values of the state variables

when taken in the inertial or body-frame, which is part of the localization problem when

dealing with mobile robotics. In Figure 3.3, the characteristics of this problem are presented,

for simplicity’s sake, for the bi-dimensional case, whose properties may be extended for the

three-dimensional movement. The inertial and body-frame for the case of the quadrotor used

in this thesis are shown in Figure 3.1.
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Figure 3.2: Coordinate frame with the positive orientation for φ, θ, and ψ.

In Figure 3.3 one can see a body (represented in black) moving through the plane, and

its respective coordinates for the beginning and end of the movement, for the inertial-frame

(in blue) and body-frame (in red). Generally, one wants to know the position of the object

in the inertial frame, hence it is necessary to establish what is called a rotation matrix that is

able to convert coordinates from one frame to the other. Such a process is only necessary for

position variables and their derivatives, since the resulting displacement will be the same in

both frames, even if the coordinates throughout the movement are different, as seen in Figure

3.3.

Figure 3.3: Diagram showing the difference between local and inertial coordinates of a body

dislocating in the xy-plane.
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In this manner, the conversion of vectors from the body frame to the inertial frame can

be derived from the rotation matrix Ril ∈ R
3×3, shown in (3.3).

The matrix Ril is obtained by means of z, y e x rotations, respectively, as shown in (3.1).

Notice that the inverse matrix of a rotation matrix equals its transpose, that is Ril
−1 = Ril

T .

Ril = Rz Ry Rx (3.1)

Ril =











cosψ − sinψ 0

sinψ cosψ 0

0 0 1





















cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ





















1 0 0

0 cosφ − sinφ

0 sinφ cosφ











(3.2)

Ril =











cosψ cos θ cosψ sin θ sinφ− sinψ cosφ cosψ sin θ cosφ+ sinψ sinφ

sinψ cos θ sinψ sin θ sinφ+ cosψ cosφ sinψ sin θ cosφ− cosψ sinφ

− sin θ cos θ sinφ cos θ cosφ











(3.3)

It is also necessary to use a coupling matrix, which expresses the relation between the

angular velocity vectors in both coordinate frames. This matrix is shown in (3.4).

S(Ψ) =











1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ sec θ cosφ sec θ











(3.4)

3.3 Kinematic and Dynamic Equations

A quadrotor’s physical behavior can be described by the following equations [Sabatino

2015]:

ṙ = v (3.5)

v̇ =
1

m
RilT

B +











0

0

g











+
1

m
RilFd, (3.6)
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Ψ̇ = S(Ψ)Ω (3.7)

Ω̇ = J
−1(−Ω× JΩ+M) (3.8)

• The gravitational acceleration g, in [m/s2].

• The total mass of the vehicle m, in [kg].

• The total thrust force T
B acting over the center of mass, in [N].

• The matrix of moments of inertia J =











Jx 0 0

0 Jy 0

0 0 Jz











, each in [kg.m2].

• The vector of torques in the quadrotor body M =
[

τφ τθ τψ

]T

, in [N.m].

• The disturbance caused by drag forces, in [N], detailed in (3.9), where αT is a constant

called thrust coefficient.

Fd = αT (ω1 + ω2 + ω3 + ω4)











0

0

1











(3.9)

Once more we reiterate that the linear position vector r and the linear velocity of the

center of mass v are given in the inertial frame, while the angular velocity vector Ω is given

in the body frame.

In the quadrotor model, the vector of torques M and total thrust T are the system inputs,

through which the angular and linear velocities are modified, allowing thus the attitude Ψ

control and subsequently the position r control. However, in most quadrotor control archi-

tectures, the control commands are given as rotational velocity commands to each actuator

(i.e. the motor). This means it is necessary to establish a conversion between these two sets

of values.
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This transformation is performed in a step called Control Allocation and, in the classic

quadrotor model, it is given by:

















T

τφ

τθ

τψ

















= Bm

















ω2

1

ω2

2

ω2

3

ω2

4

















, (3.10)

where Bm is an invertible matrix, called mixing matrix, allocation matrix, or control effec-

tiveness matrix, and will be detailed further in Section 3.4.

The actuator velocities ωi would then be determined by:

















ω2

1

ω2

2

ω2

3

ω2
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= Bm

−1

















T

τφ

τθ

τψ

















, (3.11)

Still, the expressions shown in (3.10) and (3.11) come from a simplification of the

quadrotor model which neglects important aerodynamic effects that influence flight behav-

ior. As will be shown further, disregarding them hinders flight performance and may cause

actuator saturation. In the next Section, the main aerodynamic effects that affect the rela-

tion between mechanical conjugates (torques M and thrust T ) and actuator velocities will be

addressed.

3.4 Aerodynamic Effects

There are several aerodynamic and gyroscopic effects that can modify the force model

introduced in equations (3.5) to (3.8), the most important of them being the ones called blade

flapping and induced drag, which are of significant importance in understanding the natural

stability of quadrotors. These effects are particularly relevant because they induce forces in

the x-y rotor plane of the quadrotor, precisely the under-actuated directions in the dynamics

that cannot be easily dominated by high gain control [Mahony, Kumar & Corke 2012].
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While disturbances caused by drag forces are already included in the basic model in

(3.6) as an additive term, the inclusion of blade flapping equations is not so straightforward.

This phenomenon is caused by the flapping effect generated in the blades of the propellers

by the horizontal translation of the rotor in the air. During the translation of the rotor, one

blade (called the advancing blade) will move in the direction of translation, while the other

(the retreating blade) will move opposite to the direction of motion. The net velocity of

the advancing blade will increase, and that of the retreating blade will decrease with respect

to the air. This creates a disparity of lift between the advancing side of the rotor and the

retreating side of the rotor (see Fig. 3.4) [Pounds, Mahony & Corke 2010].

Figure 3.4: Perspective views of a rotor during flight. Longitudinal and lateral blade flapping

angles are a1,s and b1,s, respectively, and Ψ here is the blade rotation azimuth angle.

According to [Pounds, Mahony & Corke 2010], a rotor blade balances the lift imbalance

(aerodynamic drag force), centripetal force, and blade weight force by allowing free rotation

around a hinge or flexure, and this is known as rotor or blade flapping. The advancing blade

will rise, the retreating blade will fall, as in Fig. 3.4, and therefore the rotor plane will tilt in
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an effort to meet a new equilibrium. Increasing translational velocity leads to increasing rotor

tilt. When the rotor plane tilts, the thrust force generated by the blades is correspondingly

tilted, resulting in a horizontal component that opposes the direction of translation.

Allowing the rotor blade to bend is very important in the mechanical design of the quad-

copter. A rotor that is too rigid can cause transmission of these aerodynamic forces directly

through to the rotor hub and may result in a mechanical failure of the motor mounting or the

airframe itself [Mahony, Kumar & Corke 2012]. [Leishman 2006] also states that if the rotor

disc is perfectly rigid, the helicopter will flip, as was the case in early experiments.

As aforementioned, rotor flapping causes the rotor plane to tilt and hence the thrust force

will also be tilted and will have a horizontal component. The total thrust TB that appears

in (3.6) results from the sum of the thrusts T
B,i produced by each of the four propellers

i = 1, 2, 3, 4 [Riether 2016]:

T
B =

4
∑

i=1

T
B,i, (3.12)

T
B,i = T i











− cos(b1,s,i) sin(a1,s,i)

sin(b1,s,i)

− cos(a1,s,i) cos(b1,s,i)











B

, (3.13)

with Ti = αTω
2

i , where αT is called the thrust coefficient, b1,s,i and a1,s,i are shown in Figure

3.4 and detailed in Table 3.2, as described by [Riether 2016].

In this Table, rBprop,i refers to the propeller i’s position with respect to the center of mass,

θb0 is the equivalent blade pitch at the rotor axis, and θb1 is the washout of a linear twist blade

[Pounds, Mahony & Corke 2010].

The constant γaero =
ρa0cR

Ib
is the non-dimensional Lock Number [Hoffmann et al. 2007],

[Leishman 2006], which can be viewed as a measure of the ratio of aerodynamic forces

to inertial forces. Here, Ib is the moment of inertia of the blade about the hinge, c is the

chord of the blade, R = d
2

is the rotor radius, ρ is the density of air, and a0 represents the

slope of the lift curve per radian [Hoffmann et al. 2007], [Pounds, Mahony & Corke 2010].

For a typical helicopter rotor, the value of the Lock Number varies from 5 to 10 [Leishman

2006]. In the case of our mini-drone, it is 0.6051, as detailed in Table 3.3. The values
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Relative air speed at propeller i: vBra,i Ω× r
B
prop,i +R

−1

li v

Planar components: µi

√

vBx,ra,i
2
+ vBy,ra,i

2
/
∣

∣ωi
d
2

∣

∣

Non-dimensionalized normal inflow: li |vBz,ra,i|/
∣

∣ωi
d
2

∣

∣

Sideslip azimuth relative to x-axis x: ji arctan
vBx,ra,i

vBy,ra,i

Sideslip rotation matrix: Jss,i





cos(ji) − sin(ji)

sin(ji) cos(ji)





Longitudinal flapping: βlf,i J
T
ss,i





((8
3
θb0 + 2θb1)− 2li)/(1/µi − µi/2)

0





a1,s,i βx,lf,i − 16Q/(γaero|ωi|)

b1,s,i βy,lf,i − 16P/(γaero|ωi|)

Table 3.2: Aerodynamic effects on total thrust TB
i .

shown in Table 3.3 correspond to the PARROT Mambo mini-drone and were provided by

the MATLAB Support Package [Inc. 2021].

Propeller i’s positions: rBprop,i

[

±0.0441 ±0.0441 −0.0159
]T

Rotor radius: d/2 0.0330

Lock number: γaero 0.6051

Blade root angle: θb0 0.2548

Blade twist angle: θb1 −0.1361

Table 3.3: Constants shown in Table 3.2.

Finally, the vector of torques τ =
[

τφ τθ τψ

]T

acting on the body-frame of the drone

can be calculated as:

τ =
4

∑

i=1













r
B
prop,i ×T

B,i +Qi











0

0

1











B












, (3.14)

where Qi = αQωi|ωi| is the propeller-drag-induced torque [Riether 2016], and αQ is called
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the torque coefficient. Note that, in (3.14), TB
i is as in (3.13) and is dependent on aerody-

namic effects, since all the terms multiplied by the Lock Number γaero come from aerody-

namics [Leishman 2006], as is the case with b1,s,i and a1,s,i. Hence, the vector of torques τ

will likewise be influenced by the aerodynamic effects. Section 3.4.1 details the thrust rota-

tion caused by aerodynamic effects thoroughly, which also provides an alternative manner to

visualize the thrust equation.

These aerodynamic effects are neglected in most models, assuming a1,s,i = b1,s,i = 0

and ignoring the ratio of aerodynamic forces to inertial forces. Therefore, in those cases, the

thrust vectors are supposed to be fully aligned with the body-frame z-axis and do not have

horizontal components caused by blade flapping. The angles a1,s,i and b1,s,i cannot be zero in

realistic conditions, as explained above, after all the rotor bend is essential to the quadrotor

design. Since increasing translational velocities increase rotor tilt, aggressive maneuvering

is specifically subject to the consequences of ignoring rotor flapping, as well as small aircraft

[Achermann et al. 2019], [Huang et al. 2009].

One of the contributions of this thesis is the compensation of the described aerodynamic

effects using control allocation, without the need to include them in the control algorithm

itself in this work, as will be shown in Chapter 4.

As addressed in Chapter 2, most works currently available in literature neglect these ef-

fects, especially in the control allocation itself. This is the case because, if one makes this

approximation, an analytical simplification of the mathematical expressions involved will re-

sult in an invertible matricial relation, which is very convenient in terms of system modeling.

However, this negligence leaves the quadrotor subject to saturation, and the torque and thrust

commands generated by any controller will not be correctly achieved by the actuators.

Most specifically, overlooking these effects results in T
B,i

≈

[

0 0 Ti

]T

and

T
B
≈

[

0 0 T

]T

, (3.15)

where T ≈

∑

Ti. With these assumptions, the plant input is then simplified from six di-

mensions
[

T
B
c τφc τθc τψc

]T

to four dimensions
[

Tc τφc τθc τψc

]T

. Hence the above
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mentioned equations (3.13) and (3.14) can be simplified as:

















T

τφ

τθ

τψ

















≈ αT

















1 1 1 1

ry,1 ry,2 ry,3 ry,4

rx,1 rx,2 rx,3 rx,4

αQ

αT
−
αQ

αT

αQ

αT
−
αQ

αT

































ω2

1

ω2

2

ω2

3

ω2

4

















. (3.16)

Note that (3.16) shows the aforementioned approximate matricial relation between the

motor’s velocities squared and the plant input u =

[

T τφ τθ τψ

]T

, given that the matrix

is non-singular and that the velocities ωi do not saturate (which we cannot assume in this

case [Alves 2019]).

Definition 1 (Mixing Matrix Control Allocation (MMCA)). The control allocation per-

formed by means of a matrix that provides an invertible relation between squared motor

speeds and the plant input
[

Tc τφc τθc τψc

]T

, as in (3.16), provided that the matrix is

non-singular and the angular velocities ωi are not saturated.

If we write (3.16) as

















Tc

τφc

τθc

τψc

















= Bm

















ω2

1

ω2

2

ω2

3

ω2

4

















, (3.17)

the angular velocities would then be determined as

















ω2

1

ω2

2

ω2

3

ω2

4

















= Bm

−1

















Tc

τφc

τθc

τψc

















, (3.18)

where Bm is the aforementioned control effectiveness matrix, mixing matrix, or allocation

matrix.
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In (3.14), the analytical inversion to obtain the actuator’s velocities (ωi) from the com-

manded thrust and torques (T and τφ,θ,ψ) would be much more complex than in (3.18). That

is the reason why this simplification disregarding aerodynamic effects is prevailing in control

models found in the state-of-the-art literature.

Additionally, expanding (3.14), we obtain the following:











τφ

τθ

τψ











=
4

∑

i=1























Tziryi − Tyirzi

Txirzi − Tzirxi

Tyirxi − Txiryi











+Qi











0

0

1











B












, (3.19)

which gives us, for each actuator i:

τφ =
4

∑

i=1

(Tziryi − Tyirzi), (3.20)

τθ =
4

∑

i=1

(Txirzi − Tzirxi), (3.21)

τψ =
4

∑

i=1

(Tyirxi − Txiryi +Qi). (3.22)

In (3.20), (3.21) and (3.22), we make explicit the influence of the thrust components

on x and y-axes on the torques that perform the roll, pitch and yaw movements, τφ, τθ

and τψ, respectively. These components are neglected when using the traditional Mixing

Matrix Control Allocation, which considers that the thrust only has the z-axis component.

We state once more that, due to aerodynamic effects such as blade flapping, however, thrust

and moments are not necessarily orthogonal to the body axis [Hoffmann et al. 2007], so these

x-axis and y-axis components do exist. Moreover, in Chapter 4, we show through real robot

experiments that these components Tx and Ty are not of negligible order when compared to

the order of the system torques they have an influence on.

3.4.1 Thrust Rotation

In this Section, we present a vectorial analysis of the thrust vector rotation when subjected

to blade flapping, this being one of the contributions of this thesis. In addition, this approach
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also provides an alternative way of visualizing the thrust equation with the aerodynamic

effects as seen in (3.13).

Assumption 1. The thrust TB
i produced by each of the four propellers i = 1, 2, 3, 4 is

equal to the vector αTω
2

i

[

0 0 −1
]T

rotated around the Y and X axes, respectively, by

the longitudinal and lateral flapping angles a1,s,i and b1,s,i, as shown below.

T
B
i = Ry(a1,s,i)Rx(b1,s,i)αTω

2

i











0

0

−1











(3.23)

Where

Ry(a1,s)Rx(b1,s) =











cos(a1,s) 0 sin(a1,s)

0 1 0

− sin(a1,s) 0 cos(a1,s)





















1 0 0

0 cos(b1,s) − sin(b1,s)

0 sin(b1,s) cos(b1,s)











, (3.24)

Ry(a1,s)Rx(b1,s) =











cos(a1,s) sin(a1,s) sin(b1,s) sin(a1,s) cos(b1,s)

0 cos(b1,s) − sin(b1,s)

− sin(a1,s) cos(a1,s) sin(b1,s) cos(a1,s) cos(b1,s)











, (3.25)

Ry(a1,s)Rx(b1,s)











0

0

−1











=











sin(a1,s) cos(b1,s)

sin(b1,s)

− cos(a1,s) cos(b1,s)











. (3.26)

Note that, with this development, we can actually rewrite (3.13), shown in [Riether 2016],

using (3.26), as a function of the rotation of the flapping angles, as in (3.23) shown in Propo-

sition 1.

Lemma 1. The longitudinal and lateral flapping angles a1,s,i and b1,s,i are

a1,s,i =
exvra,i

|Pxyvra,i|





|ωir|Θ− 2|Pzvra,i|
|ωir|2

|Pxyvra,i|
−

|Pxyvra,i|

2



−
16q

γaero|ωi|
(3.27)
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and

b1,s,i = −
eyvra,i

|Pxyvra,i|





|ωir|Θ− 2|Pzvra,i|
|ωir|2

|Pxyvra,i|
−

|Pxyvra,i|

2



−
16p

γaero|ωi|
, (3.28)

where ez =
[

0 0 1
]T

, ey =
[

0 1 0
]T

and ex =
[

1 0 0
]T

∈ R
3; Pxy and Pz repre-

sent the projections on the xy-plane and z-axis respectively; and Θ = 8

3
θb0 + 2θb1.

Proof. Now, analyzing the other terms on Table 3.2, let us start with the sideslip rotation

matrix Jss,i. It can be interpreted as the rotation of ji, defined in Table 3.2 and in Fig. 3.5,

along the z axis, as in (3.29) below:

Figure 3.5: vra,i projection on the xy-plane.

Jss,i = Rz(ji), (3.29)

J
T
ss,i = R

T
z (ji) =











cos(ji) sin(ji) 0

− sin(ji) cos(ji) 0

0 0 1











, (3.30)

J
T
ss,i = Rz(−ji) =











cos(−ji) − sin(−ji) 0

sin(−ji) cos(−ji) 0

0 0 1











. (3.31)
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It is important to remember that (3.30) and (3.31) are equivalent because the inverse of a

rotation matrix is equal to its transpose. Therefore, we can rewrite the longitudinal flapping

βlf,i, also on Table 3.2, as:

βlf,i = Rz(−ji)











( 8
3
θb0+2θb1)−2li
1/µi−µi/2

0

0











. (3.32)

Now for the planar components µi and the non-dimensionalized normal inflow li, from

Table 3.2, we know that

µi =

√

vB
x,ra,i

2
+ vB

y,ra,i
2

∣

∣ωi
d
2

∣

∣

, (3.33)

therefore,

µi =
|vB

xy,ra,i|
∣

∣ωi
d
2

∣

∣

. (3.34)

Also,

li =
|vB

z,ra,i|
∣

∣ωi
d
2

∣

∣

. (3.35)

Hence, if Pxy and Pz represent the projections on the xy-plane and z-axis respectively,

we can write

vra,i = vxy,ra,i + vz,ra,i = Pxyvra,i +Pzvra,i, (3.36)

and, from (3.34) and (3.35),

|vra,i| =
√

|vxy,ra,i|2 + |vz,ra,i|2, (3.37)

|vra,i| =
√

µi|ωir||vxy,ra,i|+ li|ωir||vz,ra,i|, (3.38)

where r = d
2
.
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Now, taking cos(ji)) and sin(ji)) as in Fig. 3.5:

cos(ji) =

vxy,ra,i











1

0

0











|vxy,ra,i|

∣

∣

∣

∣

∣

∣

∣

∣

∣











1

0

0











∣

∣

∣

∣

∣

∣

∣

∣

∣

=
vx,ra,i

|vxy,ra,i|
, (3.39)

sin(ji) =
vy,ra,i

|vxy,ra,i|
, (3.40)

we can rewrite the rotation matrix Rz(−ji), shown in (3.31), as

Rz(−ji) =
1

|vxy,ra,i|











vx,ra,i vy,ra,i 0

−vy,ra,i vx,ra,i 0

0 0 1











. (3.41)

If we consider ez =
[

0 0 1
]T

, ey =
[

0 1 0
]T

and ex =
[

1 0 0
]T

∈ R
3, we have:

Rz(−ji) =
1

|Pxyvra,i|











ex · vra,i ey · vra,i 0

−ey · vra,i ex · vra,i 0

0 0 1











. (3.42)

Using Pxy, Pz and (3.34) and (3.35), we have

µi =
|Pxyvra,i|

ωir
, (3.43)

li =
|Pzvra,i|

|ωir|
, (3.44)
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and a1,s,i and b1,s,i can be expressed as:











a1,s,i

b1,s,i

0











= βlf,i −











16q/γaero|ωi|

16p/γaero|ωi|

0











, (3.45)











a1,s,i

b1,s,i

0











=
1

|Pxyvra,i|











ex · vra,i ey · vra,i 0

−ey · vra,i ex · vra,i 0

0 0 1











·











( 8
3
θb0+2θb1)−2li
1/µi−µi/2

0

0











−











16q/γaero|ωi|

16p/γaero|ωi|

0











(3.46)

Corollary 1. Finally, from Assumption 1 and Lemma 1, it is possible to write an expression

for TB
i as:

T
B
i = Ry





exvra,i

|Pxyvra,i|





|ωir|Θ− 2|Pzvra,i|
|ωir|2

|Pxyvra,i|
−

|Pxyvra,i|

2



−
16q

γaero|ωi|



 ·

Rx



−
eyvra,i

|Pxyvra,i|





|ωir|Θ− 2|Pzvra,i|
|ωir|2

|Pxyvra,i|
−

|Pxyvra,i|

2



−
16p

γaero|ωi|



 ·

αTω
2
i











0

0

−1











,

(3.47)

where Θ =
8
3
θb0 + 2θb1.

Therefore, the thrust T
B
i produced by the propeller i is equal to the thrust Ti =

αTω
2
i

[

0 0 −1

]T

rotated around the y and x axes, because of the longitudinal and lat-

eral flapping angles. Such rotations not only depend on the rotational and translational

states Ω and v but also depend on the angular velocities of the propellers ωi. Thus, both the

intensity and the rotation of the thrust TB
i are functions of ωi.
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3.5 Classic Model Linearization and Analysis

In this Section, we will continue our analysis of the presented quadrotor model, ex-

panding all the state equations and then performing a Taylor Series linearization in order to

evaluate the behavior around one or more equilibrium points, as well as observability and

controllability.

Recalling the mathematical model equations presented in Section 3.3, this time consid-

ering the three components of the thrust force caused by aerodynamic effects as in (3.13):

ṙ = v (3.48)

v̇ =
1

m
Ril











Tx

Ty

Tz











+











0

0

g











+
1

m
RilFd (3.49)

Ψ̇ = S(Ψ)Ω (3.50)

Ω̇ = J
−1(−Ω× JΩ+M) (3.51)

Expanding the equations (3.48) to (3.51), we obtain (3.52) to (3.55), respectively. Note

that some state variables are converted from inertial to local frame and vice-versa, in the

following equations.











ẋ

ẏ

ż











= Ril











U

V

W











(3.52)











U̇

V̇

Ẇ











=











U

V

W











×











P

Q

R











+
1

m











Tx

Ty

Tz











+R
T

il











0

0

g











+
1

m











Fdx

Fdy

Fdz











(3.53)











φ̇

θ̇

ψ̇











= S(Ψ)











P

Q

R











(3.54)
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Ṗ

Q̇

Ṙ











= J
−1











−











P

Q

R











× J











P

Q

R











+











τφ

τθ

τψ





















(3.55)

The state variables vector x ∈ R
12 is then defined as:

x =
[

φ θ ψ P Q R U V W x y z
]T

(3.56)

The equations above can be manipulated to represent the quadrotor dynamics in the state-

space form, so one can obtain φ̇, θ̇, ψ̇, Ṗ , Q̇, Ṙ, U̇ , V̇ , Ẇ , ẋ, ẏ, ż.

From (3.52), we have:











ẋ

ẏ

ż











=











cψcθ cψsθsφ− sψcφ cψsθcφ+ sψsφ

sψcθ sψsθsφ+ cψcφ sψsθcφ− cψsφ

−sθ cθsφ cθcφ





















U

V

W











(3.57)



























ẋ = U(cosψ cos θ) + V (cosψ sin θ sinφ− sinψ cosφ) +W (cosψ sin θ cosφ+ sinψ sinφ)

ẏ = U(sinψ cos θ) + V (sinψ sin θ sinφ+ cosψ cosφ) +W (sinψ sin θ cosφ− cosψ sinφ)

ż = U(− sin θ) + V (cos θ sinφ) +W (cos θ cosφ)

(3.58)

Likewise, from (3.53):











U̇

V̇

Ẇ











=











U

V

W











×











P

Q

R











+











Tx/m

Ty/m

Tz/m











+











cψcθ sψcθ −sθ

cψsθsφ− sψcφ sψsθsφ+ cψcφ cθsφ

cψsθcφ+ sψsφ sψsθcφ− cψsφ cθcφ





















0

0

g











+











Fdx/m

Fdy/m

Fdz/m











(3.59)











U̇

V̇

Ẇ











=











V R−WQ

WP − UR

UQ− V P











+











Tx/m

Ty/m

Tz/m











+











(− sin θ)g

(cos θ sinφ)g

(cos θ cosφ)g











+











Fdx/m

Fdy/m

Fdz/m











(3.60)
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U̇ = V R−WQ− g(sin θ) + Fdx+Tx
m

V̇ = WP − UR + g(cos θ sinφ) +
Fdy+Ty

m

Ẇ = UQ− V P + g(cos θ cosφ) + Fdz+Tz
m

(3.61)

From (3.54):











φ̇

θ̇

ψ̇











=











1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ sec θ cosφ sec θ





















P

Q

R











(3.62)



























φ̇ = P +Q(sinφ tan θ) +R(cosφ tan θ)

θ̇ = Q(cosφ) +R(− sinφ)

ψ̇ = Q(sinφ sec θ) +R(cosφ sec θ)

(3.63)

From (3.55):











Ṗ

Q̇

Ṙ











=











1/Jx 0 0

0 1/Jy 0

0 0 1/Jz





















−











P

Q

R











×











Jx 0 0

0 Jy 0

0 0 Jz





















P

Q

R











+











τφ

τθ

τψ





















(3.64)

If we define the skew-symmetric matrix of Ω =
[

P Q R
]T

:

Sk(Ω) =











0 −R Q

R 0 −P

−Q P 0











(3.65)

We can use the property Sk(Ω) · JΩ = Ω× JΩ. Thus:











Ṗ

Q̇

Ṙ











=











1/Jx 0 0

0 1/Jy 0

0 0 1/Jz































RQ(Jy − Jz)

RP (Jz − Jx)

QP (Jx − Jy)











+











τφ

τθ

τψ





















(3.66)
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Ṗ = Jy−Jz
Jx

RQ+
τφ
Jx

Q̇ = Jz−Jx
Jy

RP + τθ
Jy

Ṙ = Jx−Jy
Jz

QP +
τψ
Jz

(3.67)

With the systems of equation (3.58), (3.61), (3.63), (3.67), we have the state equations:



























































































































































φ̇ = P +Q(sinφ tan θ) +R(cosφ tan θ)

θ̇ = Q(cosφ) +R(− sinφ)

ψ̇ = Q(sinφ sec θ) +R(cosφ sec θ)

Ṗ = Jy−Jz
Jx

RQ+
τφ
Jx

Q̇ = Jz−Jx
Jy

RP + τθ
Jy

Ṙ = Jx−Jy
Jz

QP +
τψ
Jz

U̇ = V R−WQ− g(sin θ) + Fdx+Tx
m

V̇ = WP − UR + g(cos θ sinφ) +
Fdy+Ty

m

Ẇ = UQ− V P + g(cos θ cosφ) + Fdz+Tz
m

ẋ = U(cosψ cos θ) + V (cosψ sin θ sinφ− sinψ cosφ) +W (cosψ sin θ cosφ+ sinψ sinφ)

ẏ = U(sinψ cos θ) + V (sinψ sin θ sinφ+ cosψ cosφ) +W (sinψ sin θ cosφ− cosψ sinφ)

ż = U(− sin θ) + V (cos θ sinφ) +W (cos θ cosφ)

(3.68)

The state equations may be written in the form ẋ = f(x,u). Considering an equilibrium

point x̄ ∈ R
12:

x̄ =
[

0 0 0 0 0 0 0 0 0 x̄ ȳ z̄

]T

(3.69)

When applying x̄ to the state equations, the reciprocal input u =
[

Tz τφ τθ τψ

]T

will be ū =
[

−mg 0 0 0
]T

∈ R
4. This operation point would correspond to a hover

state. Note that this particular value of ū represents the necessary force to compensate for

the weight acting over the drone [Sabatino 2015].
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Linearizing by Taylor Series approximation:

A =
∂f(x,u)

∂x

∣

∣

∣

∣

x=x̄

u=ū

=

































































0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 −g 0 0 0 0 0 0 0 0 0 0

g 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

































































(3.70)

B =
∂f(x,u)

∂u

∣

∣

∣

∣

x=x̄

u=ū

=
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0 0 0 0

0 0 0 0
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∂τφ

∂Tz

1

Jx
0 0

1

Jy

∂τθ

∂Tz
0 1

Jy
0

1

Jz

∂τψ

∂Tz
0 0 1

Jz

0 0 0 0

0 0 0 0

1/m 0 0 0
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0 0 0 0

































































(3.71)

Considering possible additive disturbances caused by, for example, drag forces d =
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[

Fdx Fdy Fdz

]T

∈ R
3:

D =
∂f(x,u)

∂d

∣

∣

∣

∣

x=x̄

u=ū

=

































































0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

1/m 0 0

0 1/m 0

0 0 1/m

0 0 0

0 0 0

0 0 0

































































(3.72)

We have then the linear model ẋ = Ax+Bu+Dd, which results in:



























































































































































φ̇ = P

θ̇ = Q

ψ̇ = R

Ṗ = Tz
Jx

∂τφ
∂Tz

+
τφ
Jx

Q̇ = Tz
Jy

∂τθ
∂Tz

+ τθ
Jy

Ṙ = Tz
Jz

∂τψ
∂Tz

+
τψ
Jz

U̇ = −gθ + Fdx
m

V̇ = gφ+
Fdy
m

Ẇ = Fdz−T

m

ẋ = U

ẏ = V

ż = W

(3.73)
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With Tx, Ty, Tz, τφ, τθ e τψ defined by (3.13) and (3.14).

A second possibility for this analysis would be to consider the inputs as u =
[

ω1 ω2 ω3 ω4

]T

, where ωi represents the actuators rotation speed. If we use the mix-

ing matrix in (3.16) to obtain the conversion from mechanical conjugates to ωi, we would

obtain a different B matrix, given by:

B =
∂f(x,u)

∂u

∣

∣

∣

∣

x=x̄

u=ū

=

































































0 0 0 0

0 0 0 0

0 0 0 0

−αT dx
Jx

2ω1
−αT dx
Jx

2ω2
αT dx
Jx

2ω3
−αT dx
Jx

2ω4

−αT dx
Jy

2ω1
−αT dx
Jy

2ω2
αT dx
Jy

2ω3
αT dx
Jy

2ω4

−αQ

Jz
2ω1

αQ

Jz
2ω2

−αQ

Jz
2ω3

αQ

Jz
2ω4

0 0 0 0

0 0 0 0

2αTω1

m

2αTω2

m

2αTω3

m

2αTω4

m

0 0 0 0

0 0 0 0

0 0 0 0

































































(3.74)

In order to approach the conversion from mechanical conjugates into actuator commands

through 3.13 and 3.14, without approximations, considering aerodynamic effects, the calcu-

lation turns analytically complex very quickly. Hence, in this thesis, we proposed a neural

network to perform this step in the control allocation, which will be detailed with simulation

and experimental results in Chapter 4.

3.5.1 Stability, Observability and Controllability Analysis

Stability

Classically, a system is considered stable if the eigenvalues of the matrix A have a neg-

ative real part. It will be considered marginally stable if the eigenvalues have a null real

part.
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Thus, it is necessary to solve the equation:

|λI − A| = 0 (3.75)

Given the dimension of our matrix A shown previously in (3.70), the calculation was

made using MATLAB and resulted in λ = 0 for all states, that is, the system is marginally

stable.

Observability

In general terms, in order to know what happens inside a given system, it must be ob-

servable.

Consider the system:

ẋ = Ax (3.76)

where A is given by (3.70), and

y = Cx (3.77)

with dimensions x ∈ R
12, y ∈ R

12, A ∈ R
12×12, C ∈ R

12×12. The observability matrix is

given by:

O =























C

CA

CA2

...

CA11























(3.78)

The system will be observable if, and only if, the observability matrix O ∈ R
144×12 has

full rank. Once more, the computation on MATLAB showed that all states of the system are

observable.
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Controllability

Similarly, if one needs to modify a system by means of a control input, this system must

be controllable.

A system will be controllable if, and only if, the controllability matrix has full rank. This

matrix is given by Co ∈ R
12×48:

Co =

[

B AB A2B · · · A11B

]

(3.79)

Where B is given by (3.71). The results after computation on MATLAB showed that all

the system states are controllable.

3.6 Final Considerations

In this chapter, the fundamental concepts of the quadrotor mathematical model were

presented. These concepts will be needed for further comprehension of the contributions

and experiments performed for this thesis. We have shown the equations that constitute the

quadrotor model, highlighting the state variables which will be used in Chapter 4.

We have also presented the modeling of the main aerodynamic effects that have an in-

fluence on the quadrotor flight and how they modify the classic dynamic model. It has been

shown that the previously neglected components of the thrust force appear in the force model

and have influence in the roll, pitch and yaw torques.

Furthermore, we have made explicit the simplification made by the classic mixing matrix,

which disregards blade flapping effects that lead to a thrust force rotation, which has also

been modeled in this chapter, as one of the contributions of this research.

Finally, the presented model was linearized by Taylor Series approximation, analyzed

around an equilibrium point and verified for stability, observability and controllability.
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Chapter 4

Control Allocation with Aerodynamic

Effects

In this Chapter, the basic cascade control structure for a quadrotor will be presented in

Section 4.1. This structure is used for position and attitude control. Even if the controller

algorithm is not the focus of this research, it is necessary to understand its principles since it

is an important tool used in the system. This knowledge will also assist in the comprehension

of where the control allocation contribution will operate.

In Section 4.2, we define some mathematical notation used throughout the Chapter as

well as some concepts that were adopted in this research. In Section 4.3, we discuss control

allocation and its role in control systems, and we also present the project and training of

the neural network we used for our control allocation considering aerodynamic effects, the

NNCA.

Finally, Sections 4.4.1 and 4.4.2 discuss simulation and real flight experiments results

that compare the classic mixing matrix control allocation (MMCA) with the proposed neural

network control allocation (NNCA) approach.

The contributions of this Chapter were published in [Madruga et al. 2022].

4.1 Basic Quadrotor Control Structure

Although the quadrotor control algorithm is not the main focus of this research, one

needs to understand its principles in order to comprehend the operation of the aircraft and,
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consequently, the role of this thesis’ contributions, especially in the control allocation step

(which we consider to be separate from the controller itself, as shown in Figure 4.1).

The quadcopter usually works with a cascade control structure, where with the output of

the first controller provides the set point for the second controller, In this case, the outer loop

consists of the Position Controller, while the Attitude Controller forms the inner loop.

The path commands (x, y) are generated in the Trajectory Generator, which sends them

to the Position Controller. This controller in turn outputs the roll (φ) and pitch (θ) commands

to the Attitude Controller. The altitude (z) command comes directly from the Trajectory

Generator, and the yaw (ψ) controller is independent. The respective adjustments in the

angular velocities of the motors to achieve the desired behavior in φ, θ, ψ and z will then be

sent to the quadcopter through the Control Allocation. The sensing system must be adequate

for good state feedback and, thereafter, an accurate calculation of the error.

Figure 4.1: Block diagram for the quadrotor control strategy.

We have the following expressions for the attitude PID controller, where eφ and eθ repre-

sent the roll and pitch errors, respectively; P is the angular velocity around the x-axis in the

body-frame, and Q is the angular velocity around the y-axis in the body-frame:

τφc
= Kpeφ +Ki

∫
eφ dt+Kdėφ (4.1)

τθc = Kpeθ +Ki

∫
eθ dt+Kdėθ (4.2)

As aforementioned, the attitude controller commands are generated by the PD trajectory

controller, shown in (4.3) and (4.4). Note that we need to perform a rotation around the z-

axis (ψ) during the error calculation because the body and inertial frames are not necessarily

aligned in the same direction.

θcmd = Kp(cos(ψ)ex + sin(ψ)ey) +Kdvx (4.3)
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φcmd = Kp(− sin(ψ)ex + cos(ψ)ey) +Kdvy (4.4)

The yaw control is made separately, as in (4.5), where eψ represents the yaw error and R

is the angular velocity around the z-axis in the body-frame:

τψc
= Kpeψ +Kdėψ (4.5)

Finally, the height control is performed through a PID, as shown below. Table 4.1 shows

the control gains used in the experiments throughout this thesis.

Tzc = Kpez +Ki

∫
ez dt+Kdėz (4.6)

Controller Gains Position PD [Kx Ky] Attitude PID [Kθ Kφ] Altitude/Height PID [Kz] Yaw PD [Kψ]

Proportional (Kp) [−0.24 0.24] [0.013 0.01] [0.8] [0.004]

Integral (Ki) - [0.01 0.01] [0.24] -

Derivative (Kd) [0.1 −0.1] [0.002 0.003] [0.5] [0.0012]

Table 4.1: Controller gains used in the experiments throughout this thesis.

Since we aim to compare two different control allocation methods in this chapter, the

following assumption is naturally required:

Assumption 2. For the same controller design, simply replacing the traditional mixing ma-

trix control allocation with the neural network control allocation here proposed does not

harm the control project.

In order to verify this assumption, we designed a simple controller for the quadrotor

system with the mixing matrix and tested it to see if the project criteria were maintained

when replacing it with the novel neural network control allocation we propose further ahead.

We set the project criteria of 1s rising time (tr), which is the time where the output first

reaches the reference, and 3s settling time (ts), defined as the time where the output is within

a 1% error when compared to the steady state. With this, we specified the corresponding

proportional (Kp), integral (Ki) and derivative (Kd) attitude controller gains, shown in Table

4.2.
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The controllers were implemented in discrete-time, with the Bogacki-Shampine method,

which is a requirement for it to be deployed to the hardware for real flight experiments

afterward. The step size was 5 ms, which was chosen to match the sampling time of the

quadrotor during flight experiments. Other parameters necessary for the simulation, such

as constants that model the aircraft, were obtained from the documentation provided by the

manufacturer.

The obtained step response behaviors are presented in Fig. 4.2 and detailed in Table

4.2, for the traditional mixing matrix control allocation and the novel neural network control

allocation. We can infer, comparing both step responses, that Assumption 2 is in fact true,

as the difference between them is negligible. Therefore, it is possible to use the new control

allocation approach and apply it to more elaborate maneuvers to observe the results. Once

again, we reiterate that the PD-PID controllers are used here merely as a tool to perform the

experiments and simulations, and are not the focus of the contributions of this work.

Figure 4.2: Roll step responses for the control system using the traditional mixing matrix

(MMCA), on the top, and the proposed network control allocation (NNCA), on the bottom.

51



Rise time (tr) Settling time (ts) Overshoot

Mixing Matrix 0.605 s 3 s 14.9%

Neural Network 0.6 s 3 s 14.6%

Kp 0.0092

Ki 0.0097

Kd 0.003

Table 4.2: Step response characteristics.

4.2 Method Overview and Notation

In our control allocation, the objective is to produce actuator commands that will generate

resultant torques and thrusts on the UAV body as close as possible to the requested control

signals, also called virtual control inputs. In this sense, we provide here an overview of the

notations used throughout this thesis, for a better understanding of the upcoming Sections.

Definition 2. The virtual control inputs [Tc, τc] =
[

Tc τφc τθc τψc

]T

∈ R
4 are the com-

manded signals at the output of the controller, where T represents the thrust force, and τ ,

the torques.

Remark 1. In each of the four actuators i, i = 1, 2, 3, 4, there are the body-frame thrusts,

T
B
i ∈ R

3, and torques, τi ∈ R
3, as well as their components

[

Txi Tyi Tzi

]T

and
[

τφi τθi τψi

]T

, respectively.

Definition 3. u =
[

ω1 ω2 ω3 ω4

]T

∈ R
4 is the vector of angular velocities sent as

actuator commands by the control allocator. These velocities should produce the desired

resultant thrust and torques.

Definition 4. The vector [T, τ ] =
[

T τφ τθ τψ

]T

∈ R
4 represents the real resultant

mechanical conjugates established at the UAV body. In this thesis, they were calculated by

means of experimental data and dynamic model equations. Again, T represents the thrust

force, and τ , the torques.
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Assumption 3. If F is a virtual function that describes the transformation of the actuator

commands ωi to real thrust and torques, and F̃ is its model, we have:


T

τ


 = F̃ (u) (4.7)

Hence, the desired control allocation must perform the inverse operation, using the vir-

tual control inputs:

u = F̃ ∗(Tc, τc), (4.8)

where F̃ ∗ represents the function which performs the inverse operation of F̃ .

Using this notation, the control allocation algorithm goal is to achieve T = Tc and

τ = τc. Having


T

τ


 = F (F̃ ∗(Tc, τc)), the composition of the inverse mappings with the

real system behavior functions must be equal to identity [Chebbi et al. 2020]. See Fig. 4.3.

Figure 4.3: Data flow from the virtual control inputs Tc, τc to the real mechanical conjugates

applied on the UAV body T, τ . F̃ ∗ can represent the control allocation block.

Remark 2. F̃ ∗ can be interpreted as the control allocator. In this thesis, it can refer to the

classic mixing matrix or the proposed neural network, and we will compare the performance

of both methods.

Remark 3. F̃ represents the quadcopter dynamic model considering aerodynamic effects

such as blade flapping that were detailed in Chapter 3.
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As has been stated in Chapter 3, when adding the aerodynamic consideration to the clas-

sic quadrotor model, the previously invertible relation provided by the classic allocation

matrix is lost. That is, F̃ ∗ is not simply the matrix F
−1 anymore. Several control alloca-

tion methods, as will be detailed below, use optimization methods in order to allocate the

control effort or, in this case, perform the inverse operation of F . Throughout the process

of this research, many numeric methods have been tested in an effort to find F̃
∗, since the

analytical inversion was not trivial, even using tools such as MATLAB’s symbolic math tool-

box. These methods included interior point, trust-region, active-set and sequential quadratic

programming, but none achieved the desired result.

That motivated the research to move towards the usage of a function-fitting neural net-

work as a tool to provide us with the necessary inverse operation of F . Note that the artificial

neural network (ANN) in this work is merely a tool to reach a goal. This thesis does not in-

tend to contribute to the state-of-the-art of ANN architectures, so once a function-fitting

feed-forward neural network fit our objectives, it was used as part of the solution, and the

research moved forward with it, not finding the need to pursue other neural network config-

urations such as recurrent or convolutional ANNs, though that could be addressed in future

works. It is also worth mentioning that a necessary constraint for this thesis was that the

neural network configuration was kept relatively simple because of platform restrictions re-

garding computational capacity.

That being said, the contribution at this point of the research lies in a new control allo-

cation approach with a well-established method in the literature, and a solution to the main

problem of how to include aerodynamic effects into the control system, following a more

faithful model for the quadrotor and guaranteeing a more trustworthy setting of the com-

manded control effort, without the need of modifying the controller algorithm itself or even

the controller tuning.

4.3 Neural Network Control Allocation

Generally speaking, a control allocation solves an undetermined, typically constrained,

system of equations [Härkegård 2004]. The input to the control allocation block is the total

control effect to be produced, or the virtual control input τc(t) ∈ R
k. Its output, on the other
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hand, is the achieved actuator command u(t) ∈ R
m, where m > k if the system is over-

actuated, or m < k if the system is under-actuated. That is, with a given τc(t), we search

u(t) such that:

g(u(t)) = τc(t), (4.9)

where g : Rm
→ R

k is the mapping from the achieved actuator commands to the virtual

control inputs in the system to be controlled [Härkegård 2003]. In the control allocation

literature, (4.9) usually becomes:

Bmu(t) = τc(t), (4.10)

with Bm being called the control effectiveness matrix of dimensions k × m and rank k.

Fig. 4.4 illustrates the control allocation process. It must transform the virtual inputs τc into

commands u sent to the actuators such that they generate the allocated inputs τ = τc.

It is important to stress that, when it comes to the process of control allocation, the

terminology used depends on the application in mind, so the control allocator can also be

known as control mixer, control blender, control selector, or control distributor [Härkegård

2003]. Therefore, the control effectiveness matrix can be referenced by several notations.

In quadcopter applications, it is usually called mixing matrix, referencing the control mixer;

the control inputs are the thrusts and torques, and the actuator commands are the angular

velocities ωi for each rotor.

The traditional formulation of the linear control allocation problem is the system (4.11),

which consists of (4.9) with the application of the actuator constraints [Johansen & Fossen

2013], [Härkegård 2003].











Bmu = τc,

umin < u < umax.

(4.11)

There are three possible outcomes when solving (4.11):

1. There is an infinite number of solutions;

2. There is one unique solution;
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Figure 4.4: Control system structure including control allocation. The motion control spec-

ifies a virtual control effort τc that must be produced, based on the reference signal r and the

state feedback x. The control allocation distributes this control demand among the actua-

tors, which generate the actual allocated control effort τ . If the allocation is successful, then

τc = τ .

3. No solution exists.

Many proposed control allocation methods correspond to different ways of computing

the solution for a specific allocation objective, which most of the time is to avoid actuator

saturation, rather than other objectives. The majority of well-established control allocation

algorithms depend on numerical optimization to solve the control allocation problem.

Next, we briefly mention and describe the main classic allocation methods according to

[Härkegård 2003]. All of these alternatives can be solved using numerical algorithms:

• Optimization-based Control Allocation methods rely on a pragmatic interpretation of

the control allocation problem, which states: for the system (4.11), determine a feasi-

ble control input so that this system is satisfied. If there are several solutions, pick the

optimal one.

• In Direct Control Allocation, the choice of control input is made unique by geometric

reasoning.

• In Daisy Chain control allocation, the allocation suite is divided into groups, which are

successively employed to generate the total control effort.

The main problem approached when using control allocation in the literature is the satu-

ration of actuators in over-actuated systems. The principles of control allocation are however
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general and can be used to optimize other disturbances in the systems, from power or fuel

consumption to aerodynamic effects [Johansen & Fossen 2013], which is the case of this

research.

4.3.1 Neural Network Project and Training

The problem of allocating the proper angular velocities to the rotors, which will generate

the commanded virtual thrust and torques, is solved with an analytical inversion of (3.12)

and (3.14), which transforms the angular velocities into thrust and torques, ωi → [T, τ ].

We need therefore a solution to perform the opposite operation, F̃ ∗ (as described in

Section 4.2), from the virtual control inputs to the rotor velocities, [Tc, τc] → ωi, considering

the aerodynamic effects introduced in Chapter 3. This inverse transformation would derail

the invertible relation of the classic mixing matrix and hinder its usage. In this work, we

propose the use of a neural network to perform the function fitting for finding F̃ ∗, and use it

as the control allocation.

Definition 5 (Neural Network Control Allocation (NNCA)). The control allocation per-

formed by means of a function fitting neural network that provides a transformation F̃ ∗

from the plant input [Tc, τc] =
[
Tzc τφc τθc τψc

]T
to the actuator commands u =

[
ω1 ω2 ω3 ω4

]T
, taking into account aerodynamic effects as described in equations

(3.12) and (3.14).

That is, as in Section 4.2:

u = F̃ ∗(Tc, τc), (4.12)

In our specific case, the equations also depend on some system states, namely v and Ω,

so we have:

u = F̃ ∗(Tc, τc,x), (4.13)

Remark 4. The control allocation step in a system may or may not need state feedback

to perform the conversion from virtual controller commands to actuator commands. In the

quadrotor’s case, there are states in the aerodynamic effects equations, so state feedback is
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needed to perform the inverse operation, as shown in Figure 4.5. The system states used here

will be detailed further in this Chapter.

Figure 4.5: Control allocation with state feedback.

Function fitting is the process of training a neural network on a set of inputs with the aim

of producing an associated set of target outputs. After the network has been created with the

desired hidden layers and the training algorithm, the neural network must be trained using a

set of training data. Once the neural network has fitted the data, it forms a generalization of

the input-output relationship. The trained network can therefore be used to generate outputs

for a new set of inputs that were not used in training if the training set was appropriate. Neural

networks are good at fitting functions. There is proof that a fairly simple neural network can

fit any practical function [Hornik, Stinchcombe & White 1989], [Gorban & Wunsch 1998].

The proposed function fitting neural network is composed of a two-layer feed-forward

network with sigmoid hidden neurons and linear output neurons. This structure was chosen

since it can fit multi-dimensional mapping problems arbitrarily well, provided consistent data

and enough neurons in its hidden layer are given. In this case, 20 neurons were used for the

first step of the training, and 10 neurons for the second one, as described below. The diagram

for this neural network can be seen in Figure 4.6.

The neural network control allocation approach has a two-step training process in order

to take into account the aerodynamic effects, as well as achieving desirable training per-

formance and mean squared error (MSE) order. The second step of the training process is

independent of the mixing matrix.

In the mathematical model presented in Chapter 3, we do not represent uncertainties

caused by nonlinear terms. Nonetheless, the curve fitting provided by the neural network
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Figure 4.6: Neural network diagram showing the hidden layer with sigmoid neurons and the

output layer with linear neurons. W and b represent the weights and biases, respectively. The

network has 10 inputs, which are the mechanical conjugates and some of the plant states, and

4 outputs, which correspond to the actuators’ velocities.

imposes an approximation error influenced by uncertain nonlinear terms.

With the purpose of minimizing the effect of these uncertainties, we aimed for a cer-

tain MSE order based on recent works in the literature regarding curve-fitting using neural

networks [Gonzalez-Diaz et al. 2020], [Li, Wibowo & Guo 2019], [El-Melegy 2013]. To

achieve this goal, we used our two-step training process, as will be described next. The refer-

ences found in the literature used radial basis function (RBF) networks for the curve-fitting.

Considering that, we first trained RBF neural networks using the same mentioned two-step

training method. Our objective was to compare the MSE of these RBF results to the MSE

of the network structure we are using and see if they agree with the results found in the

literature [Gonzalez-Diaz et al. 2020], [Li, Wibowo & Guo 2019], [El-Melegy 2013].

For the RBF networks, the training process was the same as below, creating a two-layer

network with radial basis neurons in the first layer and linear neurons in the second. In the

first training, the RBF network obtained an MSE of 4.2× 10
−2. In the second training,

the RBF network achieved an MSE of 6.0297× 10
−4. These error orders are expected,

according to the literature [Gonzalez-Diaz et al. 2020], [Li, Wibowo & Guo 2019], [El-

Melegy 2013]. If we compare these results with the ones of our proposed network, detailed

in Table 4.3, it is possible to conclude that not only are they within the expected MSE order

of previous works, but our results are slightly better than the MSE obtained with the RBF

networks and the same training data.
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The complete training for our NNCA is described next and summarized in Table 4.3.

1st training: Bayesian-regularization (20 neurons, 64004 samples) 2nd training: Levenberg-Marquadt (10 neurons, 34136 samples)

Sample division Dataset Mean-squared error Mean-squared error

70% Train 3.28812× 10−2 4.4857× 10−4

15% Validation - 5.98463× 10−4

15% Test 4.09559× 10−2 4.50975× 10−4

Table 4.3: MSE for the neural network control allocation training process.

• First Training

1. An open-loop simulation of the quadrotor system without any controller was per-

formed, using pseudo-random binary sequence (PRBS) pulses with amplitude

0.2 as mechanical conjugates (Tc, τc) to collect the corresponding angular veloc-

ities outputs (ωi). Other variables (v and Ω) were also collected for training, as

detailed in Fig. 4.9.

2. The collected angular velocities data were applied to the aerodynamic effects

equations (3.12) and (3.14) aiming to collect the real mechanical conjugates

(T, τ ) established at the aircraft.

3. The input-output data (T, τ ,Ω,v → ω1, ω2, ω3, ω4) were then used for the first

training step, with the Bayesian-regularization algorithm to update weight and

bias values.

With the first training, we obtained a mean squared error of the order 10−2, as detailed

in Table 4.3. The performance of this first training using Bayesian Regularization is shown

in Figure 4.7. To refine the network and obtain an MSE order of at least 10−3 as in the

mentioned recent works found in the literature [Gonzalez-Diaz et al. 2020], [Li, Wibowo &

Guo 2019], [El-Melegy 2013], the second training was performed, using the results of the

first one.
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Figure 4.7: Performance of the first training step, made in open-loop, using the Bayesian

Regularization method.

• Second Training

1. A new set of input-output data were collected from a closed-loop simulation with

the first trained network as the control allocation method and a PD-PID error

controller.

2. 3-2-1-1 maneuvers were used as attitude commands, and the network obtained in

the first step converted the virtual control commands (Tc, τc) into angular veloc-

ities (ωi).

3. Once more, the collected angular velocities data were applied to the aerodynamic

effects equations (3.12) and (3.14) aiming to collect the real mechanical conju-

gates (T, τ ) established at the aircraft.

4. The input-output data (T, τ ,Ω,v → ω1, ω2, ω3, ω4) were then used for the sec-

ond neural network training, with the Levenberg-Marquadt algorithm to update

weight and bias values. This time, we obtained the MSE of the order 10−4.
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Figure 4.8: Performance of the second training step, made in closed-loop, using the

Levenberg-Marquadt algorithm.

The performance of the second training using the Levenberg-Marquadt algorithm is

shown in Figure 4.8. Bayesian Regularization also updates the weight and bias values ac-

cording to Levenberg-Marquardt optimization. However, it then minimizes a combination of

squared errors and weights to determine the correct combination so as to produce a network

that generalizes well.

The primary application of the Levenberg–Marquardt algorithm is in the least-squares

curve fitting problem. That is, given a set of m empirical pairs (xi, yi) of independent and

dependent variables, find the parameters β of the model curve f(x, β) so that the sum of the

squares of the deviations S(β) is minimized:

β̂ ∈ argmin
β

S(β) ≡
m∑

i=1

[yi − f(xi, β)]
2 (4.14)

In this case, the empyrical pairs consisted of the vectors of the input elements xi =

(Tzi, τφi, τθi, τψi,Ωφi
,Ωθi,Ωψi

, vxi, vyi, vzi), and the vectors of the output elements yi =

(ω1i, ω2i, ω3i, ω4i), as detailed further.

Both training steps were carried out for a maximum of 1000 epochs or until the validation
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error failed to decrease for 6 iterations, and we obtained Regression values of R = 0.99999

for the two steps. Regression values measure the correlation between outputs and targets. An

R value near 1 means that the variables are strongly related, while an R-value near 0 means

that they have little to no impact on each other.

The whole training process was performed offline, meaning that during the flight this

allocation method requires low computational power, because the network is already trained

and no update is made online. The classic mixing matrix was only used in the first step of

the training to collect data.

While the mixing matrix control allocation uses only the thrust and torques to per-

form the matrix inversion and obtain the squared angular velocities, more variables were

added to the neural network training process for the purpose of obtaining a better fit, ac-

cording to the aerodynamic effects modeled in Chapter 3. See Fig. 4.9, which details

the input and output variables used in training. Therefore we used 10 input elements

(Tz, τφ, τθ, τψ,Ωφ,Ωθ,Ωψ, vx, vy, vz), with Tz as the z-axis component of the trust T , which

comes from the height controller, to obtain 4 output elements (ω1, ω2, ω3, ω4). During the

UAV flight, these additional state variables (v and Ω) are obtained from sensing.

Figure 4.9: Block diagrams representing the variables used for neural network training and

therefore for neural network control allocation.
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4.4 Results

In order to validate the proposed approaches, we performed simulations and experimental

tests with the mini-drone PARROT Mambo, which has a hardware support package from

MATLAB/Simulink. This quadrotor is represented in Figure 3.1. It is equipped with a

downward-facing camera for positioning using optical-flow odometry, an ultrasonic sensor,

a barometric sensor, and an inertial measurement unit (IMU). All these sensors are used

for stabilization purposes. The mini-drone dimensions are 180 mm × 180 mm × 40 mm,

weighting 70 g. Power is provided by a GiFi Power 3.7 V, 600 mAh, 2.2 Wh, 15c Li-Po

battery, enabling a flight time of 7-10 minutes, depending on the nature of the task to be

performed and the accessories (load) implemented.

The applied control strategy for the quadcopter operation consisted of the PD-PID con-

troller mentioned in Section 4.1, implemented in discrete-time, with the Bogacki-Shampine

method and a step size of 5 ms. In Fig. 4.1, the actuators (rotors) and quadrotor dy-

namics blocks represent the mini-drone, while the other blocks correspond to the algorithm

embedded in the aircraft.

A scheme illustrating the interaction between the user, quadrotor and MAT-

LAB/Simulink support package (which contains the simulator) is shown in Figure 4.10,

while the main Simulink environment interface is shown in Figure 4.11. The PARROT

Mambo can receive commands either via computer or joystick. If any algorithm modifi-

cation is done in MATLAB/Simulink, the firmware in the drone needs to be updated in order

to deploy the modifications made by the user to the hardware. For the experiments performed

throughout this research, we have used MATLAB/Simulink to generate flight commands and

fly the drone. Our aircraft was autonomous, that is, it did not have a pilot commanding via

joystick.

We have evaluated the proposed method by comparing the mechanical conjugates at the

output of the controller (the virtual control commands Tc, τc) to those established at the

aircraft (T, τ ), which were calculated using the inflow and blade flapping equations. We

also analyzed changes in the controller performance. The neural network was able to closely

match T, τ and Tc, τc, while the classic control allocation with the mixing matrix could not

achieve the same performance. The error between the two mechanical conjugates (τ − τc
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Figure 4.10: Scheme for user-drone-simulator connection.

Figure 4.11: Simulink environment interface for the PARROT Mambo support package.
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and T − Tc), called allocation error, was also determined in both cases. We were able to

enhance the performance of the PD-PID controller with the new control allocation, without

altering the controller gains, that is, the tuning was the same for both the traditional mixing

matrix and our proposed neural network control allocations.

4.4.1 In Silico Simulation Tests

The simulation environment has the advantage of making possible tests that would not be

trivial to perform in a real flight experiment, for several reasons: the size of the room, walls

as obstacles, dangerous maneuvers, damaging equipment etc.

The following test consisted of an attitude maneuver called 3-2-1-1, where opposing step

commands are sent to one of the attitude axes of the quadrotor for 3 s, 2 s, 1 s e 1 s again.

It is a mildly aggressive maneuver, depending on the attitude angle command, naturally,

and, because of the lack of position commands, can culminate with the drone hitting the

surrounding walls. Hence, we took advantage of the simulation environment to perform this

test preliminarily, while ultimately using a proper trajectory in the real flight experiment in

Section 4.4.2.

The simulation was performed applying a roll 3-2-1-1 maneuver, with an 11° command.

The control technique used here is as described in Section 4.1 for the attitude, that is, a PID

controller. Since there is no position command in this test, there is also no position controller,

i.e. the user sends the angle commands directly to the attitude controller.

The flight performance results for the classic mixing matrix and the proposed neural

network can be seen in Figures 4.12 to 4.16. With the same PID gains in both flights, the

controller working with the mixing matrix cannot follow the reference for the roll maneuver

in Figure 4.12, showing a great steady-state error. In Figure 4.13, we can see that the perfor-

mance is greatly improved with the new control allocation that considers the aerodynamic

effects.

Likewise, Figures 4.14 and 4.15 show the pitch commands performance, for the mixing

matrix and the neural network respectively. In Figures 4.16 and 4.17, the same is shown for

the yaw commands. Even though in the pitch case the results seem marginally worse for

the neural network, the yaw angle gives us a better behavior for the new proposed control

allocation once more, and since the improvement was very significant in the maneuver axis
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(i.e. roll), we consider the data to be favorable to the neural network control allocation.

Furthermore, Figures 4.18 and 4.19 show the comparison between the virtual torque

commands and the established roll torque in the quadrotor, for both control allocations. One

can see, in figure 4.18, that the actuators cannot generate the torque commands that the

controller is demanding for a reasonable amount of time. This is what we call an allocation

error. On the other hand, in Figure 4.19, it is shown that the new control allocation sends

commands to the actuators that are possible to achieve, so the controller commands are better

established. This means that with the consideration of the aerodynamic effects in the control

allocation, the controller is capable of providing commands more suitable to the actuators’

capabilities, resulting in a more suitable control effort.

The mean squared error (MSE) calculations for the attitude angles are shown in Table

4.4. As the graphics already indicated, the error for the neural network control allocation

was significantly smaller for the roll angle. The null MSE for the yaw angle should be taken

carefully, since this result is from a simulated environment.

MSE Roll MSE Pitch MSE Yaw

Mixing Matrix 21.0879 3.0465× 10
−4

2.0663

Neural Network 15.1296 1.4× 10
−3

0

Table 4.4: Attitude mean squared errors for the NNCA simulation results. The smallest

errors are highlighted.

Finally, one could argue that it would be possible to improve the mixing matrix system

performance by adjusting the controller gains. However, even if an improvement is possible

by drastically increasing the controller gains, we were not able to eliminate the steady-state

error completely for the mixing matrix case, because of the allocation error. Also, since we

are comparing two control allocation algorithms, and not controller algorithms, we judged it

to be relevant that the same controller was used with the same tuning in both cases, to make

explicit the benefits brought by the newly proposed method.
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Figure 4.12: Roll performance for the classic mixing matrix control allocation (MMCA).
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Figure 4.13: Roll performance for the neural network control allocation (NNCA).
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Figure 4.14: Pitch performance for the classic mixing matrix control allocation (MMCA).
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Figure 4.15: Pitch performance for the neural network control allocation (NNCA).
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Figure 4.16: Yaw performance for the classic mixing matrix control allocation (MMCA).
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Figure 4.17: Yaw performance for the neural network control allocation (NNCA).
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Figure 4.18: Comparison between virtual commanded torque and achieved torque for the

classic mixing matrix control allocation (MMCA).
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Figure 4.19: Comparison between virtual commanded torque and achieved torque for the

neural network control allocation (NNCA).
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4.4.2 UAV Experimental Tests

For the real flight test scenario, our position reference consisted of a set of waypoints

for the quadrotor to follow. They formed a square with a 1.5 m side and a transition radius

of 0.3 m to maneuver through the corners, as well as take-off and landing commands. The

experiment consisted of the mini-drone taking-off in the bottom-left corner of the square.

Then the UAV performs a pitch forward movement until it reaches the next corner, then a

roll lateral movement, a pitch backward movement, and then again a roll lateral movement.

This path is repeated once more, and then the mini-drone lands, resulting in a total of 9

waypoints [0 0 1; 1.5 0 1; 1.5 1.5 1; 0 1.5 1; 0 0 1; 1.5 0 1; 1.5 1.5 1; 0 1.5 1; 0 0 1].

Here the z-axis value 1 represents the height (1 m) at which the drone navigates along the

square path. Fig. 4.20 shows the trajectory reference and output for the complete path of the

waypoint following, with take-off and landing, highlighting the aircraft positioning in black,

for clarity’s sake. The yaw orientation reference of the quadrotor was fixed throughout the

experiment.

The test scenario was planned for a mini-drone, which is a type of aircraft especially

susceptible to aerodynamic effects influence, as aforementioned. The path was designed

to induce mildly abrupt roll and pitch maneuvers (the corners of the square, that is, the

waypoints) that would also allow an adequate observation of said effects. The behavior

of the quadrotor throughout the trajectory however was not intended to be as aggressive as

mentioned in previous works in the literature, because we wanted to highlight the importance

of the consideration of aerodynamic effects in the control allocation even without aggressive

maneuvers. Note the trajectory used in this experiment differs from the maneuvers used for

the neural network training explained in Section 4.3.1, hence the training does not need to be

repeated for each specific maneuver. Furthermore, Table 3.3 shows some constants relative

to the quadcopter in use, which were obtained from the documentation made available by the

manufacturer. These constants are used in the aerodynamic effects modeling in Table 3.2.

Fig. 4.20 shows the three-dimensional representation of the commanded and followed

trajectory, with take-off and landing, for the mixing matrix and neural network control allo-

cations. Fig. 4.21 and Fig. 4.22 show the trajectory projection in the xy-plane of the first

loop for the same respective cases. We omit the aircraft’s second loop through the square in

Fig. 4.21 and Fig. 4.22 to facilitate visualization. We set a transition radius as 0.3m, shown

72



Figure 4.20: Trajectory reference and output for both loops of the waypoint following, with

take-off and landing, highlighting the aircraft positioning, for the sake of clarity.

as the red circle in the figures. It means that when the drone is approaching a waypoint,

this value is used as the radius around the waypoint where the drone starts moving toward

the next point. If the transition radius is set as 0.3m, and the drone is 0.3m away from the

waypoint, the drone starts moving towards the next waypoint. The accuracy of reaching a

specified waypoint increases with a decrease in the value of the transition radius. Notice
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that the path following is more smoothly achieved with the neural network control alloca-

tion approach, while with the mixing matrix some stuttering is present when pursuing the

commanded trajectory. This is emphasized in Fig. 4.23, where some parts of the trajectory

are highlighted to show the difference in path following for the mixing matrix and neural

network control allocations.
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Figure 4.21: Projection (x, y) of trajectory reference and output when using the mixing

matrix control allocation.

The respective mean squared error (MSE) calculations for each axis are shown in Table

4.5, for angular and linear positions. For every case except the yaw angle and position z, the

MSE is smaller when using the neural network, especially in the case of the roll angle, where

we had the most improvement when using the new control allocation. This could be due to

the fact that the yaw and z rate were limited in the considered experiment. Also, the yaw

state feedback is not as accurate as the others, because it is done using only the gyroscope, in

contrast with the other angles which can rely on sensor fusion for a more precise estimation

(i.e. gyroscope and accelerometer data).

Yaw control performance could be further investigated by applying more aggressive ma-

neuvers in this axis in future work. The performed maneuvers were chosen based on what is

most used in typical quadrotor flights, where yaw and height are mostly kept constant after

reaching steady-state flight.

74



0 0.5 1 1.5

Position, x (m)

0

0.5

1

1.5

2

P
o

s
it
io

n
, 

y
 (

m
)

Trajectory output

Trajectory reference

Waypoint transition radius

Figure 4.22: Projection (x, y) of trajectory reference and output when using the neural net-

work control allocation.
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Figure 4.23: Augmented parts of the trajectory to show the difference in path following

behavior for the mixing matrix (MMCA) and neural network (NNCA) control allocations.

The performance of the UAV during the roll angle maneuver of the squared path can be

seen in Fig. 4.24, for the mixing matrix, and in Fig. 4.25, for the neural network control
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MSE Roll MSE Pitch MSE Yaw

Mixing Matrix 7.3017× 10
−4

4.7728× 10
−4

3.2070× 10
−6

Neural Network 1.4444× 10
−4

4.2851× 10
−4

7.2123× 10
−5

MSE x MSE y MSE z

Mixing Matrix 0.0372 0.0347 0.0163

Neural Network 0.0300 0.0300 0.0176

Table 4.5: Mean squared errors for the angular and linear positions for both mixing matrix

and neural network control allocations. The smallest errors are highlighted.

allocation. The mixing matrix approach shows a much noisier behavior and a higher ampli-

tude variation when compared to the neural network control allocation approach, where the

adherence of the output to the commands is much more reliable, stable, and therefore prefer-

able for the quadcopter flight. The difference between the reference signals in both cases is

due to the consideration of the aerodynamic effects in the control allocation algorithm.
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Figure 4.24: Roll commands and output when using the mixing matrix control allocation.

Fig. 4.26 and Fig. 4.27 show the comparison between the commanded virtual roll

torques, which are commanded at the output of the controller. These figures also show

the achieved roll torques at the aircraft, which were calculated using (3.14) with experimen-
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Figure 4.25: Roll commands and output when using the neural network control allocation.

tal flight data. Fig. 4.26 refers to the experiment with the mixing matrix, while Fig. 4.27

uses the neural network control allocation. The amplitude of the roll torques when using

the neural network is smaller, requiring less effort from the quadrotor. Also, a comparison

between the allocation errors for both cases is shown in Figures 4.28, 4.29 and 4.30 proving

that the neural network allocation considering aerodynamic effects significantly reduces the

allocation error.

Likewise, Fig. 4.31 and Fig. 4.32 present the corresponding comparison for commanded

virtual thrusts and achieved thrusts, for mixing matrix and neural network control allocations,

respectively. We note a similar behavior as the roll torque case mentioned above. There are

fewer noisy oscillations when using the neural network, as well as smaller amplitudes. Fig.

4.33 shows the allocation errors for the two methods, where the error when applying the

neural network control allocation is several times smaller (in the order of 10
−1) than the

traditional alternative with the mixing matrix.

Finally, Fig. 4.34 and Fig. 4.35 show the thrust TB components on the x and y axes,

Tx and Ty, during the quadrotor flight when using the mixing matrix, which considers these

components to be zero or negligible. Not only these components do exist, but they are not

of negligible order when compared to the order of the system torques they have an influence

on. For instance, Fig. 4.35 shows Ty which has an influence on the roll torque, as in (3.20).
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Figure 4.26: Comparison between commanded roll torques at the control output and those

achieved at the plant for the mixing matrix control allocation.
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Figure 4.27: Comparison between commanded roll torques at the control output and those

achieved at the plant for the neural network control allocation.

Note that the behavior of the roll torques seen in Fig. 4.26 greatly resembles that of Ty in

Fig. 4.35.

Measures were also taken during the flight experiments to minimize the error due to
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Figure 4.28: Comparison between the allocation errors for the achieved roll torques (τφ) at

the plant for both the mixing matrix (in blue) and neural network (in red) control allocations.
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Figure 4.29: Comparison between the allocation errors for the achieved pitch torques (τθ) at

the plant for both the mixing matrix (in blue) and neural network (in red) control allocations.

nonlinear uncertainties, since they were performed in a controlled indoor environment. The

uncertain nonlinear terms were not directly treated in the modeling presented in this paper,

as it was not the focus of this work. However, the practical results discussed here already
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Figure 4.30: Comparison between the allocation errors for the achieved yaw torques (τψ) at

the plant for both the mixing matrix (in blue) and neural network (in red) control allocations.
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Figure 4.31: Comparison between the commanded thrust at the control output and that

achieved at the plant for the mixing matrix control allocation.

show the advantages of the proposed method. In future work, an approach considering these

uncertainties could be included.
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Figure 4.32: Comparison between the commanded thrust at the control output and that

achieved at the plant for the neural network control allocation.
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Figure 4.33: Comparison between the allocation errors for thrusts, in the z-axis (Tz),

achieved at the plant for both the mixing matrix (in blue) and neural network (in red) control

allocations.
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Figure 4.34: Thrust component in the x-axis, Tx, when using the mixing matrix control

allocation.
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Figure 4.35: Thrust component in the y-axis, Ty, when using the mixing matrix control

allocation.

4.5 Final Considerations

In this Chapter, the basic cascade control structure for a quadrotor UAV has been pre-

sented, and the necessity of the control allocation step has been shown. In order to take into
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consideration the aerodynamic effects, it has been concluded that the classic mixing matrix

is not accurate, since it carries an allocation error. In this sense, we proposed that the aero-

dynamic effects could be taken into account by applying a more refined control allocation

process that used a function-fitting neural network to transform virtual control inputs into

actuator commands.

The network training was performed offline, requiring very low computational power

when compared to other optimization-based control allocation algorithms. The neural net-

work required a two-step training process that was independent of the classic simplified al-

location method on its second step. The first training was performed in an open-loop system,

via PRBS pulses. A second training was executed with the purpose of refining the network

in an equivalent closed-loop system, and in this case, the allocation was implemented using

the open-loop trained neural network alongside the PD-PID error controller.

The real flight results showed that the aircraft behavior was smoother when using the

neural network control allocation approach, the allocation error was smaller and the signals

were less noisy, that is, the consideration of aerodynamic effects in the system interfered

directly and positively with the quadrotor performance. Finally, the performance of the con-

troller also improved with the use of the neural network control allocation, as well as the

quality of the thrust and torque signals.
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Chapter 5

Fault Detection and Diagnosis

In this chapter, we propose an approach for estimating the loss of effectiveness of UAV

actuators while also considering the presence of the previously discussed aerodynamic ef-

fects.

In Sections 5.1 and 5.1.1, some basic concepts for the subject will be presented, including

definitions and the main types of fault that can affect a quadrotor. Section 5.2 will address

how the modeling of the loss-of-effectiveness (LOE) actuator faults is done throughout this

thesis. In Section 5.3, we present the developed fault detection and diagnosis scheme based

on a Reduced Order Extended Kalman Filter Tolerant to Aerodynamic Effects (ROEKF-

TAE) capable of detecting LOE faults in more than one actuator at the same time.

Simulation and experimental results are shown in Sections 5.4.1 and 5.4.2, where the

same simulation tool as mentioned earlier was used, as well as the PARROT Mambo micro

drone platform for flight tests. The results are compared to those of a traditional EKF, as

well as to those of a state-of-the-art adaptive Kalman Filter available in the literature. Final

considerations are discussed in Section 5.5.

The scientific paper that gathered the contributions of this Chapter can be found in

[Madruga et al. 2023].

5.1 Basic Concepts

When dealing with UAVs, safety should be a major concern, since crashing a drone can

endanger infrastructure or harm people, which is important in the case of missions such as
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package delivery or image capturing [Sun 2020]. Therefore, it is important to know when

a fault occurs in the system, even if it is not major yet, since it could lead to a total failure.

There are several types of faults that will be described later on, but we highlight beforehand

the fact that the failure of the rotor system is a fundamental problem to address [Sun 2020].

UAVs with vertical take-off and landing are designed with several rotors with fixed-

pitch blades as actuators of the system. The rotor system generates thrust lift and control

torques. In this sense, rotor failures threaten the flight because they can highly change the

flight dynamics. The most popular type of multi-rotor drone is especially vulnerable to rotor

(or actuator) failures because it does not have rotor redundancy since a minimum of four

actuators is required to maintain full control authority of thrust and three-axis attitude of

a multi-rotor drone [Sun 2020]. Besides, adding more rotors implies higher costs, more

complexity, lower energy efficiency, and more potential failure modes.

To clarify the proper definitions [Ducard 2009]:

• A Fault is defined as a deviation of one or more characteristics of the system from its

usual standard condition. It is an abnormal behavior of the system, even if apparently

it does not affect the overall functioning, but it may eventually lead to complete failure.

A fault may be small and hidden, hard to detect and estimate.

• A Failure is the permanent interruption of the system’s ability to perform a required

task. It may result from one or more faults, it terminates the operation of a unit in the

system. For example, an actuator is considered failed if it can no longer be used in a

controlled manner.

When dealing with faults in a system, there is usually a module called FDI (Fault De-

tection and Isolation/Identification) or FDD (Fault Detection and Diagnosis) to monitor the

aircraft components’ status. The FDI/FDD system informs another supervision module of

the existence or severity of the fault and then the supervisor can decide which action to take

regarding it. In this Chapter, we focus on developing an FDD system capable of detecting,

estimating, and locating an actuator fault, meaning it can detect its occurrence, estimate

its intensity and locate the faulty actuator(s). In order to avoid possible performance issues

and misidentification of faults for other disturbances, the aerodynamic effects modeling will

be included in the FDD system formulation.
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5.1.1 Fault Types

There are several places where a fault can affect the aircraft, from structural to sensing

damage. Here we define the three main types of fault:

• Sensor fault: a multi-rotor UAV depends on several sensors in order to fly. accelerom-

eters, barometers, gyroscopes for odometry, as well as cameras and/or GPS for loca-

tion. A faulty sensor leads to errors either by sending false information or no infor-

mation at all. One may deal with this kind of fault by having a redundant sensor or

by reconstructing the absent measurement with knowledge of the plant and data of the

remaining sensors.

• Actuator fault: we call actuator, in the case of multi-rotor aircraft, the motor + pro-

peller set, also called the rotor. An actuator fault can be caused by propeller damage,

electric failure, or mechanical disturbances. The flight performance is instantaneously

affected, and immediate actions must be taken in order to maintain vehicle and flight

integrity.

• Structural damage: any other structural damage that is not covered by actuator faults,

though not all structural damage is as critical. The same observations made for actuator

faults are valid here.

5.1.2 Types of Actuator Faults

Given that in this work we focus specifically on actuator faults, here are the main forms

in which an actuator might be compromised in a multirotor UAV:

• Lock-in-place: during a Lock-in-place fault, the actuator "freezes" at a certain condi-

tion and does not respond anymore to control commands.

• Hard-over: the Hard-over fault is characterized by the actuator only assuming its

maximum and minimum position (in our case, velocities), regardless of the subsequent

commands. The response is only limited by motor saturation.
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• Float: a Float fault occurs when the actuator has a change of moment (δτ or δ T)

equal to zero and does not contribute to achieving the controller commands, that is, it

"floats" permanently in the state it was when the fault happened.

• Loss-of-effectiveness/Loss-in-effectiveness (LOE/LIE): a Loss-of-effectiveness

fault is characterized by a reduction in the actuator gain when compared to its nominal

value. In our case, i.e. multi-rotor UAVs, that means a decrease in the effectiveness of

generating the thrust and torque mechanical conjugates.

The different types of actuator faults mentioned are shown in Figure 5.1. We assume, for

the sake of simplicity, that the transfer functions of the actuators are equal to one.

In Table 5.1 below, tFi represents the instant in time when the fault occurs; αi
∈ [αi, 1] is

the effectiveness factor, or fault factor; and αi > 0 denotes the minimum effectiveness that

maintains the flight possible.

Figure 5.1: Fault types. [Bošković & Mehra 2003].
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uc(t) α
i(t) = 1 for all t ≥ 0 NO FAILURE

α
i(t)uc(t) 0 < α

i ≤ α
i(t) < 1 for all t ≥ tFi Loss-of-effectiveness

ui(t) = 0 α
i(t) = 0 for all t ≥ tFi Float

uci(tFi) α
i(t) = 0 for all t ≥ tFi Lock-in-place

(uiMIN
) or (uiMAX

) α
i(t) = 0 for all t ≥ tFi Hard-over

Table 5.1: Mathematical characterization of possible fault types.

The fault detection system must be robust against other external disturbances, model

uncertainties and sensing noise. Namely, it should not provide false alarms while still being

sufficiently sensitive to detect small faults before they lead to failure.

The flight in certain conditions might affect the detection of loss-of-effectiveness faults

as a result of the presence of aerodynamic effects, since they naturally attenuate thrust and

torque generation by the rotors, even if no fault has occurred. As previously stated in this

research, this happens mostly in high-speed conditions and with small aircraft. A challenge

of the current state-of-the-art is to validate fault detection schemes that are efficient under

these conditions [Sun et al. 2018].

5.2 Modeling of LOE Actuator Faults

In this thesis, the actuator consists of the motor and propeller set, as shown in Figure

3.1. If the propeller is damaged, or if the motor is prevented from spinning as expected, the

actuator may not reach the desired rotation speed. Consequently, the desired thrust cannot

be generated [Madruga et al. 2022]. From now on, we will focus on characterizing and

modeling loss-of-effectiveness faults.

As established, this section will deal with the modeling of loss of effectiveness actuator

faults which are recognized as the most common type of fault [Zhong et al. 2018]. The

modeling of this type of fault is made with the inclusion of a proportional fault factor to the

actuator’s rotation speed, and this factor is treated as a stochastic process to be estimated

by the FDD. This approach is similar to what can be found in the state-of-the-art literature,

as in [Avram, Zhang & Muse 2017], [Baldini et al. 2020], [Moghadam & Caliskan 2015],

[Schijndel, Sun & Visser 2021], [Zhong et al. 2018]. Here this model will be used in the
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FDD estimator, along with the consideration of the relevant aerodynamic effects in order to

detect, localize and estimate the fault intensity.

It is reasonable to assume that the vehicle takes off with "healthy" actuators since tests

can easily be performed before a mission to guarantee so. A loss of effectiveness fault can

be caused by propeller damage, rust, minor electrical faults, lack of lubrication etc. All of

these result in the expected thrust being attenuated because the actuator can’t achieve the

proper rotation speed. However, coming from different sources, it is difficult to predict the

appropriate behavior of this fault factor. This motivates the stochastic nature of the LOE

fault factor modeling.

Definition 6. u =

[

ω1 ω2 ω3 ω4

]T

∈ R
4 is the vector of actuator velocities sent as ac-

tuator commands. These velocities should produce the desired resultant thrust and torques.

Definition 7. Let αi, i = 1, 2, 3, 4, represent the loss of control effectiveness factor or, for

the sake of simplicity, the fault factor. If a fault occurs in the ith actuator, the ith control

input can be represented as:

ω
f
i = αiωi, (5.1)

where ωi represents the expected rotation speed for the actuator, and ω
f
i is the achieved

velocity due to the occurrence of a fault.

These types of faults are defined as partial loss of control effectiveness and are recognized

as the most common type of actuator fault [Zhong et al. 2018].

Remark 5. αi is bounded as 0 < αi ≤ αi ≤ 1, where αi represents the lower bound that

keeps the quadrotor controllable. If αi < αi, the aircraft will become uncontrollable and it

may result in a flight crash [Zhong et al. 2018].

Here, αi
= 1 represents the normal expected behavior of the actuator, and αi < 1 means

that there is a loss-of-effectiveness fault in the ith actuator. αi
= 0 represents the extreme

case where the ith actuator stops completely, which is out of the scope of this thesis. That is

because when a single rotor fails completely on a quadrotor UAV, the whole physics of the

flight changes, and the controller needs to be altered in order to maintain flight, due to the
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lack of rotor redundancy. There is a limit to the fault factor value that keeps the drone in flight

without changing the controller technique to a fault-tolerant one, which in turn changes the

scope of the problem completely. Since in this work we focus only on fault detection, not on

the controller, we chose αi values that could represent a significant fault without jeopardizing

the flight of the UAV. Nevertheless, we can indeed use our approach to fault detection when

a single rotor completely fails, provided that we have a fault-tolerant controller to maintain

flight. Furthermore, the dynamics of actuator faults are typically unknown, but they can be

modeled as stochastic processes:

αi
k+1 = αi

k + wα
k (5.2)

where wα
k is a zero-mean white noise sequence satisfying the condition that will be shown in

(5.5a).

Remark 6. One could argue that, since a change in the velocity ωi of the actuators results in

a correspondent change in the final thrust and torques that ultimately make the quadrotor fly,

the fault modeling shown in (5.1) could be made in terms of the aforementioned mechanical

torques instead of ωi. However, associating an individual fault factor to each ωi and therefore

to each motor allows us to locate the faulty actuator using the changes in its correspondent

fault factor αi.

Remark 7. Take-off and landing are omitted from the figures of the simulation and real

UAV flight experiment results since they consist of transient behavior that might make the

readability of the graphs difficult. Furthermore, the FDD method here proposed is designed

to work in steady state which comprises most of the flight.

With the LOE fault modeling in mind, one might need to revisit the quadrotor model

from Chapter 3, where all actuator velocities will be attenuated by the fault factor, so Table

3.2 is modified and rewritten as Table 5.2 below. Note that this implies changes in the thrusts

T
B,i and torques Qi.

Once more, rB
p,i refers to the ith propeller position with respect to the center of mass of

the UAV, θb0 is the equivalent blade pitch at the rotor axis, and θb1 is the washout of a linear

twist blade [Pounds, Mahony & Corke 2010]. The constant γaero is the non-dimensional
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Relative air speed at propeller i: vB
ra,i Ω× r

B
p,i +R

−1

li v

Planar components: µi

√

vB
x,ra,i

2
+ vB

y,ra,i

2
/
∣

∣αiωi
d
2

∣

∣

Non-dimensionalized normal inflow: li |vB
z,ra,i|/

∣

∣αiωi
d
2

∣

∣

Sideslip azimuth relative to x-axis x: ji arctan
vB
x,ra,i

vB
y,ra,i

Sideslip rotation matrix: Jss,i





cos(ji) − sin(ji)

sin(ji) cos(ji)





Longitudinal flapping: βlf,i J
T
ss,i





((8
3
θb0 + 2θb1)− 2li)/(1/µi − µi/2)

0





a1,s,i βx,lf,i − 16Q/(γaero|α
iωi|)

b1,s,i βy,lf,i − 16P/(γaero|α
iωi|)

Table 5.2: Aerodynamic effects on total thrust TB
i considering the possibility of LOE actuator

faults.

Lock Number [Leishman 2006]. Here, αi, i = 1, 2, 3, 4, is the fault factor applied to ωi with

the goal of modeling LOE actuator faults. If αi = 1, the actuator is healthy and the Table 5.2

is again reduced to Table 3.2.

As mentioned in Chapter 2, to the extent of this research, there has been no solution to

fault detection and diagnosis taking aerodynamic effects into account, especially with real

flight experiment validation. These available solutions could then be subject to false positives

in the fault detection system, since the disturbance of a fault, depending on its intensity, might

be confused with aerodynamic effects and vice-versa. This can happen because, as seen in

Chapter 3, the blade flapping tilts the thrust force, making available to the quadrotor upwards

movement only a component of that original vector. That is, it attenuates the thrust force,

which is also what an LOE fault does. So it is important not to mistake a real fault for a

natural aerodynamic behavior in a healthy motor.

5.3 Fault Detection and Diagnosis Estimator

As previously stated, our estimator is based on an Extended Kalman Filter. Once more,

according to [Okada et al. 2021], Kalman filter-based techniques provide a low false alarm
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rate, a short delay in detecting the fault, robustness with respect to model uncertainties,

isolation of simultaneous faults, and the possibility of fault estimation. Besides, for the

case of multiplicative faults, as in the scope of this thesis, the use of parameter estimation

techniques stands out. In Chapter 2, Table 2.1 makes a summary of the comparison between

other types of solutions and the one here proposed.

Let us first consider the quadrotor model described in equations (3.5) to (3.8) and (3.12)

to (3.14). If we allow for it to be affected by actuator faults as modeled in Section 5.2, we will

have αi 6= 1. In order to detect and estimate the faults (i.e. the fault factors αi), we propose

a Reduced Order Extended Kalman Filter Tolerant to Aerodynamic Effects (ROEKF-TAE),

where the fault factors αi are considered as augmented states of the system, so that they can

be estimated. A fault in the ith actuator can be detected and located by monitoring changes in

its αi, while the estimation of αi’s value indicates the intensity of that loss-of-effectiveness.

The ROEKF-TAE main contribution is its capability of detecting, localizing and estimating

simultaneous LOE actuator faults while considering the presence of aerodynamic effects and

consequently not mistaking them for LOE faults, as will be verified by real flight experiments

in Section 5.4.2.

In this context, the augmented system state vector to be estimated is given by

x =
[

P Q R U V W α1 α2 α3 α4

]T

,

and thus, from (3.6) and (3.8) and considering the fault factors αi as in Section 5.2, we derive

the following nonlinear model for designing the ROEKF-TAE estimation:

ẋ = f(x,u, t),y = Cx, (5.3)
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.

Remark 8. Note that the terms related to θ and φ in this model are treated as time-varying

quantities, measured by sensors, while the fault factors αi, i = 1, 2, 3, 4 and u are embedded

as parts of the mechanical torques τφ, τθ, τψ, Tx, Ty, Tz which are calculated by means of

(3.12), (3.13) and (3.14), and thus are omitted here for the sake of readability.

Furthermore, the ROEKF-TAE only uses the state equations for P , Q, R, U , V , W , and

αi shown in (5.3) and does not require all the twelve states in (3.5) to (3.8) to estimate the

fault factors αi.

5.3.1 Filter Equations

For the sake of simplicity, let the aforementioned system be written as:

xk+1 = F(xk,uk) +wk, (5.4a)

yk = Cxk + νk. (5.4b)

where F(xk,uk) is the discrete-time approximation of the continuous-time equations given

in (5.3), and wk =
[

wx
k wα

k

]T

and νk are uncorrelated zero-mean white Gaussian noise
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sequences with covariances Qk and Rk, respectively. The noise sequences wx

k
, wα

k
and νk

satisfy the following [Zhong et al. 2018]:

E
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k

wα

k

νk





















wx

l

wα

l

νl











T

















=





















Qx

k
0 0

0 Qα

k
0

0 0 Rk





















, (5.5a)

Qk =





Qx

k
(·) 06×4

04×6 Qα

k
(·)



 , (5.5b)

where E is the expectation function.

The ROEKF-TAE equations are shown below. They can be used for state estimation of

discrete-time nonlinear systems in this form. For the filter implementation, the aforemen-

tioned equations (5.3) were discretized using the Forward Euler method.

x̂k+1|k = F(xk|k,uk) (5.6a)

Pk+1|k = AkPk|kA
T
k
+Qk (5.6b)

ŷk+1|k = Cx̂k+1|k (5.6c)

Kk+1 = Pk+1|kC
T(CPk+1|kC

T +Rk+1)
−1 (5.6d)

x̂k+1|k+1 = x̂k+1|k +Kk+1(yk+1 − ŷk+1|k) (5.6e)

Pk+1|k+1 = (I−Kk+1C)Pk+1|k (5.6f)

yk+1|k+1 = Cx̂k+1|k+1, (5.6g)

where Ak is the Jacobian given by Ak =
∂F

∂x

∣

∣

∣

∣

x̂k|k

, which is updated at every time-step.

Furthermore, here P is the state covariance, K is the Kalman gain, I is the identity matrix,

Qk is the process covariance matrix, Rk is the measurement covariance matrix, x̂ and ŷ are

the estimated values of x and y.

Remark 9. The system given in (5.4a)-(5.4b) is observable since the observability matrices

are of full rank.
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Furthermore, if only parts of a quadrotor system are observable, and since we use a

Reduced Order EKF, we do not need to use all of the systems states to estimate and detect

the faults, so it is still possible to use our FDD if the states used for the estimation are

available (P, Q, R, U, V, W). And they usually are, because a controller would need feedback

on these states (and others) in order to make the quadrotor fly.

5.3.2 Determining Qk and Rk covariance matrices

The identification of covariances Qk and Rk is not usually straightforward, this being

known as one of the limitations of using Kalman filter-based strategies. However, there are

several optimization methods available in the literature that propose a solution to this issue.

Assumption 4. The covariance matrices Qk and Rk are constant, that is, they do not change

during flight and satisfy (5.5a) and (5.5b).

For the implementation of the proposed technique, we used the method derived in

[Bavdekar, Deshpande & Patwardhan 2011], and applied in [Fang C. C. de Visser &

Holzapfel 2022], in order to find adequate covariance values for our system beforehand.

The optimization was performed offline, before the system operation, and the values of Qk

and Rk remain constant during the whole flight. The approach is based on the maximum-

likelihood principle and consists of minimizing the equation (27) present in the cited ref-

erence [Bavdekar, Deshpande & Patwardhan 2011]. Here, the optimization problem was

solved using a sequential quadratic programming strategy.

If we define, from Equations (5.6e) and (5.6d), respectively, the innovation sequence

ek+1 as a zero mean Gaussian white noise sequence:

ek+1 = yk+1 − ŷk+1|k (5.7)

and its covariance Σk+1 given by:

Σk+1 = CPk+1|kC
T
+Rk+1 (5.8)
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Assumption 5. One can assume that the individual elements of wk and νk are uncorrelated

with each other. It is reasonable to assume this when the noise sources are arising from

independent physical variables [Bavdekar, Deshpande & Patwardhan 2011]. As a conse-

quence, the decision variables, Qk and Rk can be considered diagonal matrices. Moreover,

one imposes the positivity constraint on the covariance matrices Qk and Rk.

Assumptions 4 and 5 are necessary due to this system having a considerable order, and the

resulting optimization problem would become complex in terms of computations [Bavdekar,

Deshpande & Patwardhan 2011]. A large number of decision variables would also imply

that a data set with a large N is necessary to reduce the variance errors in the estimates.

According to [Fang C. C. de Visser & Holzapfel 2022], from the several studies that

have attempted to estimate the noise covariances in a Kalman Filter framework, one can

mention the Myers and Tapley (MT) approach [Myers & Tapley 1976], which estimates the

covariance matrices Qk and Rk with a covariance matching technique using the innova-

tion in the EKF. [Mendonça & Góes 2007] applied the MT approach, designing two paral-

lel Kalman filters to estimate the Qk and Rk covariances, improving the main filter’s per-

formance. [Bavdekar, Deshpande & Patwardhan 2011] proposed an extended expectation-

maximization (EM) method, based on the maximum-likelihood principle, to identify Qk and

Rk. In [Myers & Tapley 1976] and [Mendonça & Góes 2007], the covariances are estimated

online, dynamically, while [Bavdekar, Deshpande & Patwardhan 2011] tunes them for the

filter offline, before the flight.

A comparison of different adaptive filter tuning methods for the noise covariances in a

Kalman Filter is made in [M.R. Mohan M.S. 2016], having concluded that the extended EM

method is a better option for estimating them than the MT approach. Finally, a dynamic co-

variance matrix would imply a high computational demand during flight, which our current

platform does not provide, so the technique developed in [Bavdekar, Deshpande & Patward-

han 2011] was considered the most adequate for this research.

This results in the following optimization problem:

(Q̂, R̂) = argmin
(Q,R)

[

N
∑

i=1

log(det(Σi)) + eTi Σ
−1
i ei

]

(5.9)

Subject to:
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Model equations (5.4a)-(5.4b),

Filter equations (5.6a)-(5.6g),

and

Q = diag
[

δ1 δ2 ... δnw

]

R = diag
[

γ1 γ2 ... γr

]

0 < aL ≤ δi ≤ aH , for i = 1, 2, 3..., nw

0 < bL ≤ γi ≤ bH , for i = 1, 2, 3..., r

(5.10)

Upper and lower bounds must be imposed ensuring that the optimization problem does

not become numerically ill-conditioned during the iterations and the positive definiteness of

the matrices is maintained. These bounds can be empirically found by taking into consid-

eration the nature of the physical variable involved [Bavdekar, Deshpande & Patwardhan

2011].

Following the notation on (5.5b), we have obtained, for simulation data:

Qx

k
=





























0.5 0 0 0 0 0

0 0.5 0 0 0 0

0 0 0.5 0 0 0

0 0 0 5 0 0

0 0 0 0 5 0

0 0 0 0 0 5





























(5.11)

Qα

k
=

















8.8× 10
−7

0 0 0

0 8.8× 10
−7

0 0

0 0 8.8× 10
−7

0

0 0 0 8.8× 10
−7

















(5.12)
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and

R =





























0.01 0 0 0 0 0

0 0.01 0 0 0 0

0 0 0.01 0 0 0

0 0 0 0.09 0 0

0 0 0 0 0.09 0

0 0 0 0 0 0.09





























(5.13)

And for real flight data:

Qx

k
=





























0.5 0 0 0 0 0

0 0.5 0 0 0 0

0 0 0.5 0 0 0

0 0 0 5 0 0

0 0 0 0 5 0

0 0 0 0 0 5





























(5.14)

Qα

k
=

















5.075× 10
−7

0 0 0

0 5.075× 10
−7

0 0

0 0 5.075× 10
−7

0

0 0 0 5.075× 10
−7

















(5.15)

and

R =





























0.01 0 0 0 0 0

0 0.01 0 0 0 0

0 0 0.01 0 0 0

0 0 0 0.09 0 0

0 0 0 0 0.09 0

0 0 0 0 0 0.09





























(5.16)

Since this method was merely an available tool used in this research, we encourage the

reader to check the reference [Bavdekar, Deshpande & Patwardhan 2011] if they wish further

details on this step.
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5.4 Results

In this Section, we present the simulation and real flight experiment results for the pro-

posed ROEKF-TAE used as the FDD system tolerant to aerodynamic effects. We continue

to use the same micro quadrotor detailed in Chapter 4, the PARROT Mambo, along with the

MATLAB/Simulink support package. For these tests, we have collected the mini drone’s

mean velocities in the inertial frame both in simulation and real robot results. They were

approximately vx = 0.15 m/s; vy = 0.18 m/s; vz = 0.07 m/s, while the maximum velocities

were approximately vx = 0.32 m/s; vy = 0.38 m/s; vz = 0.62 m/s. The power is provided

by a GiFi Power 3.7 V, 600 mAh, 2.2 Wh, 15c Li-Po battery.

In the experiments and simulations results shown below for this Chapter’s contributions,

the proposed FDD was implemented within the control architecture presented in Fig. 5.2.

This is the same control architecture as seen in Chapter 4, already with the new control

allocation approach and the aforementioned PID controllers.

Figure 5.2: Block diagram for the quadrotor system. The blue blocks are the PARROT

Mambo micro-drone controllers and path generators. The yellow blocks represent the NNCA

and aerodynamic effects detailed in Chapter 4. The red blocks are the UAV dynamics and

the green block is our proposed FDD approach. The blue dashed line may be considered in

future work, where the PID Attitude controller can be replaced by a fault-tolerant approach.

Note that the FDD Estimator block, which is the main proposed approach in this work,

takes as inputs the state feedback from the states it needs to estimate the fault factors, as well

as the commanded actuator velocities ωi. Here it is assumed that the actuator dynamics is

fast enough to consider that the commanded ωic equals the established ωi.

Finally, it is important to mention that the feedback loop from the FDD Estimator block

output to the controller may be considered as a follow-up work with the proposal of a fault-
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tolerant controller. The goal of this research so far is to detect, estimate and locate LOE

faults. The focus is not on the controller algorithm itself.

5.4.1 In Silico Simulation Tests

For Simulation tests, the PARROT Mambo Support package for Simulink was used, since

this is the same quadrotor used in flight experiments. Also, unlike most simulation models

used in the literature, the one used here has aerodynamic effects implemented as in Table 3.2

and 5.2. The necessary control strategy was implemented in discrete time, with the Bogacki-

Shampine method, which is a requirement for it to be deployed to the PARROT Mambo

hardware, and a step size of 5ms, chosen to match the sampling time of the quadrotor during

flight experiments.

The test consisted of a 60 second flight, with take-off and landing. The drone takes off,

follows a 0.5m radius circular trajectory, and lands. The loss-of-effectiveness faults were

artificially introduced in the actuators through attenuation of the motor commands, inserted

with gains that represent the fault factors αi

k
, ranging between 0 and 1, as previously stated.

In this trial, all motors start the flight in a healthy state (αi

k
= 1, i = 1, 2, 3, 4) up to

20 s, k ∈ [1, 4000), of the operation time, when motors 1 and 4 are simultaneously atten-

uated to work at 95% of the commanded velocity (α1

k
= α4

k
= 0.95, k ∈ [4000, 8000)).

Furthermore, at 40 s of the operation time, the fault is increased to 80% (α1

k
= α4

k
= 0.8,

k ∈ [8000, 10400]), as can be seen in the black dashed lines in Figure 5.3 and 5.6. These

values were chosen based on empirical tests that showed the acceptable LOE range that still

allowed the drone to fly, since the scope of this work does not propose to compensate for the

faults, only to detect, estimate and locate them.

Note that, even if we have assumed the fault factors αi to be constant in (5.3), their

value is changed twice mid-flight, in both simulation and experimental tests, to show that

our method can still detect and estimate the fault with some degree of a time-varying loss-

of-effectiveness.

The comparison between four different estimators is shown in Figures 5.3 to 5.6. In

green, a traditionally implemented EKF without tolerance to aerodynamic effects; in red, an

adaptive state-of-the-art EKF [Zhong et al. 2018]; in blue, the ROEKF-TAE (reduced order

EKF tolerant to aerodynamic effects) proposed in this thesis; and in pink, the adaptive factor
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Figure 5.3: Fault factor and estimation for motor 1, which starts working at 95% capacity at

20s, along with motor 4, and then both at 80% capacity at 40s, while the other motors stay

healthy.

from [Zhong et al. 2018] added to our proposed filter.

Considering quantitative and qualitative analysis, the traditional EKF (green line) might

be considered the one with the worst performance in general, due to the fact it has no modi-

fications in order to improve performance in this system. The signals in this case are visibly

noisier than their other counterparts, with the worst transient behavior and overshoot when

the fault value changes. In Table 5.3 it is also shown that it has the worst mean absolute

error (MAE) for motors 1 and 3 when compared to the reference. Here, αi

k
is the induced

loss-of-effectiveness in the motor i, α̂i

k
is the estimated fault factor, i.e., α̂i

k
= x̂k|k(6 + i),

i = 1, 2, 3, 4, and n = 10400 is the number of samples in our case, for both simulation (Table

5.3) and experimental results (Table 5.4).

However, contrary to what one might have predicted, the Adaptive EKF introduced in

[Zhong et al. 2018] actually worsened the mean value of the estimation in many parts, even

if its signal is smoother. Most notably, in motors 2 and 3 (Figs. 5.4 and 5.5), which were

not affected by the faults introduced in this simulation, we can see that the results from the

AEKF (red line) deviate the most from the adopted healthy value of 1. In fact, the AEKF

estimation is the farthest one from the reference for the first fault, that is, between the 20s
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Figure 5.4: Fault factor and estimation for motor 2, which stays healthy through the flight,

along with motor 3, while motors 1 and 4 fail.
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Figure 5.5: Fault factor and estimation for motor 3, which stays healthy through the flight,

along with motor 2, while motors 1 and 4 fail.

and 40s, for all motors. After the second fault occurs at the 40s, it has the worst estimation

for the faulty motor 4 and for the healthy motor 2. This behavior culminated in this filter

having the worst average MAE on Table 5.3.
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Figure 5.6: Fault factor and estimation for motor 4, which starts working at 95% capacity at

20s, along with motor 1, and then both at 80% capacity at 40s, while the other motors stay

healthy.

MAE = 1

n
Σ

n

k=1
|αi

k
− α̂

i

k
| Motor 1 Motor 2 Motor 3 Motor 4 Average

Classic EKF 2.5% 1.84% 3.18% 2.36% 2.47%

ROEKF-TAE 0.76% 0.65% 0.67% 0.73% 0.7%

Adaptative EKF 1.73% 2.98% 2.29% 3.48% 2.62%

Adaptative ROEKF-TAE 0.83% 0.71% 0.74% 0.78% 0.76%

Table 5.3: Normalized Mean Absolute Errors for Simulation Results. The smallest errors are

highlighted.

It is worth noting that the results for the AEKF presented here deviate from the ones

shown in [Zhong et al. 2018]. This is due to the presence of aerodynamic effects modeling

in our simulator, which was lacking in the simulator used by the authors in [Zhong et al.

2018], as it is in most of the available literature. Hence the influence of such effects is not

evident in their results as it is in the ones presented here using a more realistic simulator.

The FDD system proposed here consists of the ROEKF-TAE represented with a blue line

in Figures 5.3 to 5.6. One can see it has the best estimation overall, with the smallest MAEs

in Table 5.3. The average MAE for our proposed filter is more than three times smaller
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than those for the traditional EKF and the state-of-the-art AEKF. Moreover, its estimation

is barely affected by the faults in the other motors, contrary to the AEKF, as can be seen in

Figure 5.4 and 5.5. After the 40s mark, when the fault increases to 80%, the estimation is not

as precise as in the first fault before. However, the estimated value is still within acceptable

thresholds so as to not detect a fault that never occurred (in this work, we adopted a threshold

of 5%, but that can change from platform to platform and has to be determined empirically).

This has happened with the AEKF or the traditional EKF in some moments. See Figure 5.4

and 5.5, detecting a loss in effectiveness of more than 5% in a healthy motor, and Figure

5.6 with the estimation of a larger fault than it was in reality. The results demonstrate that

our approach is more precise and it converges faster (i.e., it detects the fault faster) than the

compared approaches.

The adaptive factor from [Zhong et al. 2018] was also applied to the ROEKF-TAE pro-

posed in this thesis. It is represented with a pink line in the Figures. However, the presence

of this adaptive factor has shown no improvements in the results when added to our ROEKF-

TAE approach. On the contrary, in some cases (Figure 5.5) it is possible to see that our

proposed ROEKF-TAE was slightly worsened by the addition of the adaptive factor.

Remark 10. The four filters were separately "tuned" for their respective covariance values

using the method cited in 5.3.2. That said, only the traditional EKF had a different set of

covariances.

Remark 11. The same NNCA as in Chapter 5 is used in the real flight experiments and

simulations from this Chapter. The network did not need to be retrained for the case of the

actuator faults.

5.4.2 UAV Experimental Tests

The design of the flight experiment was similar to the simulation. As such, it consisted

of a 60 second flight with a 0.5m radius orbital trajectory and 1.5m height. The LOE faults

were also introduced in the same manner as in the simulation, that is, artificially attenuating

the motor commands, inserting gains that represent the fault factors αi

k
, ranging between 0

and 1. A video of this flight experiment can be seen in https://youtu.be/9Msirpfe-SE and is

illustrated in Figure 5.7. We encourage the reader to refer to the video, and to the graphs to
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be shown next for better visualization.

Figure 5.7: Flight experiment for the ROEKF-TAE.

For the real flight, the motors start in a healthy state (αi

k
= 1) until 20 s (i.e. k = 4000)

of the operation time, when motors 1 and 4 are simultaneously attenuated to work at 95% of

the commanded velocity (α1

k
= α

4

k
= 0.95). Here, at 40 s (i.e. k = 8000) of operation time,

the fault is increased to 85% (α1

k
= α

4

k
= 0.85). In real flight conditions, the drone could not

recover from an 80% LOE fault as in simulation, so a fault of 85% was used for the flight

experiments, since the objective of this research is not for the system to recover from faults,

but to detect and locate them, as previously stated.

During the flight, the input data for the FDD Estimator were collected and saved in the

flight log. They were provided to the Estimator for analysis post-flight, due to the memory

limitations of our flight platform. The proposed algorithm is not computationally demanding

since it consists of an EKF-based approach, but the processing capabilities of our available

platform, the Parrot Mambo mini quadrotor, were insufficient.

The fact that the analysis is made a posteriori does not have any influence on the conclu-

sions about the performance of the FDD System, since this analysis is made using exactly

the same data that would be provided to the estimator online, with all the noises and natural

real-flight disturbances. On account of the previously mentioned physical limitations, the

data were simply stored for post-processing allowing the evaluation of the technique with
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Figure 5.8: Fault factor and estimation for motor 1, for real flight experiments, which starts

working at 95% capacity at 20s, along with motor 4, and then both at 85% capacity at 40s,

while the other motors stay healthy.

real flight data.

Moreover, the a posteriori analysis of the data allowed us to apply a set of covariances

better suited to the filter in real flights. We applied real-flight data to the optimization algo-

rithm shown in Section5.3.2. That way we were not limited to simulation data and were able

to achieve a more realistic estimator. We performed additional flights in order to collect real-

flight data for optimization. Naturally, this tuning was achieved using data from a different

flight than the one shown here to analyze the results.

Figures 5.8 to 5.11 depict the results of the fault factors estimation for the flight experi-

ments. Once more, we compare the four estimators that were shown in the simulation results

in Section 5.4.1, with the Mean Absolute Errors presented in Table 5.4. The color scheme

remains the same as previously stated in Section 5.4.1.

Qualitatively speaking, one can note that the traditional EKF (green line) does not con-

vert well its behavior from simulation to experimental tests, being too disturbed by the noise

and vibrations from the real world and thus not estimating the fault factors correctly. Quan-

titatively, it shows an average MAE of 16.39% in Table 5.4, which is high above the other

estimators tested here.
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Figure 5.9: Fault factor and estimation for motor 2, for the real flight experiments. This

motor stays healthy through the flight, along with motor 3, while motors 1 and 4 fail.
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Figure 5.10: Fault factor and estimation for motor 3, for the real flight experiments. This

motor stays healthy through the flight, along with motor 2, while motors 1 and 4 fail.

Regarding the adaptive filter from [Zhong et al. 2018], in a real experiment, we can per-

ceive that its adaptive factor greatly improved the behavior when compared to the traditional

EKF, providing a more reliable detection when compared to the reference, contrary to its
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Figure 5.11: Fault factor and estimation for motor 4, for real flight experiments, which starts

working at 95% capacity at 20s, along with motor 1, and then both at 85% capacity at 40s,

while the other motors stay healthy.

simulation behavior.

Still, the ROEKF Tolerant to Aerodynamic Effects (in blue, under the pink curve) is the

one closest to the LOE value, allowing a smaller threshold for fault detection. Table 5.4

shows it has the smallest MAE. It is worth noting that here in the flight experiments the EKF

tolerant to aerodynamic effects with and without adaptive factors were practically identical

in behavior, showing once more that the consideration of said effects makes the adaptive

factor unnecessary, and thus saving computational costs.

MAE = 1

n
Σ

n

k=1
|αi

k
− α̂

i

k
| Motor 1 Motor 2 Motor 3 Motor 4 Average

Classic EKF 16.28% 17.24% 17.24% 14.80% 16.39%

ROEKF-TAE 1.08% 1.25% 0.9% 2.08% 1.33%

Adaptative EKF 1.28% 1.99% 1.67% 1.89% 1.71%

Adaptative ROEKF-TAE 1.08% 1.25% 0.9% 2.08% 1.33%

Table 5.4: Normalized Mean Absolute Errors for Experimental Results. The smallest errors

are highlighted.
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5.5 Final Considerations

In this Chapter, the fault detection problem and its main characteristics were presented,

with the main focus on the detection of loss-of-effectiveness actuator faults. The formulation

of the actuator fault problem was shown while including them in the aerodynamic effects

modeling previously described.

A Fault Detection and Diagnosis system tolerant to aerodynamic effects for quadro-

tors based on a Reduced Order Extended Kalman Filter Tolerant to Aerodynamic Effects

(ROEKF-TAE) has been proposed. The appropriate covariance matrices for the filter were

chosen according to an optimization algorithm using a sequential quadratic programming

strategy.

By estimating the fault factors corresponding to each actuator, the FDD was capable to

detect, isolate and identify simultaneous loss-of-effectiveness faults, while taking into ac-

count aerodynamic effects such as blade-flapping. Simulation and real experimental results

were presented, as well as comparisons with a state-of-the-art solution. Our proposed ap-

proach had a smaller mean absolute error when compared to the reference and a higher

capability of identifying with precision the faulty actuator(s).
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Chapter 6

Conclusion and Future Work

This research has proposed to develop a new fault detection and diagnosis scheme while

contributing to the compensation of aerodynamic effects disturbances in quadrotor UAV sys-

tems. The contributions were made through the control allocation step and a fault detection

and diagnosis scheme, both modified from their classic implementations in order to be tol-

erant to aerodynamic effects such as blade flapping and induced drag. The motivations,

methods, goals and contributions behind this research were shown in Chapter 1, while the

related works were discussed in Chapter 2, highlighting what is lacking in the current state-

of-the-art literature in which we hope to have filled a gap with this thesis contributions.

For the comprehension of the basic concepts, the quadrotor mathematical modeling was

presented in Chapter 3, as well as the aerodynamic effects that modify the classic model. It

was shown analytically in Chapter 3 and experimentally through the results in later Chapters

that the blade flapping effects cannot be neglected in the flight control system of a quadrotor,

as is usually done in current literature, as discussed in Chapter 2. Chapter 3 also provided an

analysis of the thrust force rotation around the rotor axis while under aerodynamic effects,

which is a theoretical contribution of this thesis. Matters of system stability, observability

and controllability were also discussed in this chapter.

In Chapter 4, we proposed the first modification of the quadrotor system in order to take

into account the aerodynamic effects: a new control allocation, which consists of replacing

the classic allocation matrix (or mixing matrix) by a fitting function neural network which

converts the mechanical conjugates from the control input into actuator commands. After

performing flight experiments to validate this technique, the control input has been compared
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to the thrust and torques generated by the actuators and established at the aircraft, in the

NNCA case and in the classic allocation matrix case. The allocation error was much smaller

for the NNCA, meaning the actuators execute the appropriate control effort demanded by the

controller, while that was not possible for the mixing matrix.

The same NNCA was then applied to the flight tests and simulations in Chapter 5, in

which we have developed a fault detection and diagnosis scheme for loss-of-effectiveness

actuator faults, based on a ROEKF-TAE. The experiments and simulations for the proposed

FDD consisted of failing two actuators at the same time, while following a circular trajec-

tory. This is already a step forward from the current literature (besides the consideration of

aerodynamic effects in the fault estimator) which usually only performs simulations or flight

experiments for FDDs in hover state. The novel technique performed better when compared

to other options in classic and state-of-the-art literature, as we have shown by means of

graphical analysis and error calculation. The ROEKF-TAE had more precision when distin-

guishing between LOE faults effects and aerodynamic disturbances, when compared to the

other estimators. It also identified with a greater level of confidence which actuators were

truly defective and which were not.

This research has then concluded that the consideration of aerodynamic effects through-

out the development of a quadrotor system is not negligible. Aerodynamic effects such as

blade flapping and induced drag naturally hinder actuator performance, and their influence

might even be mistaken for an actuator fault. Although here we have considered the control

allocation and the FDD, other parts of the system might benefit from the consideration of

those disturbances. The focus of this thesis did not rely on the controller algorithm but on

the control allocation step and the fault detection and diagnosis application. Besides that,

the inclusion of the NNCA into any other quadrotor’s allocation step should significantly

improve its flight performance. Figure 6.1 makes a synthesis of the logical steps that guided

this research.

6.1 Contributions

The main contribution from an academic point of view is the compilation of the research

results into scientific papers to be published in relevant journals in this area of knowledge.
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Figure 6.1: Research steps.
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A first paper with the contributions from Section 3.4.1 and Chapter 4, regarding the thrust

force rotation and the compensation of aerodynamic effects by means of the neural network

control allocation (NNCA) has been published as:

• S. P. Madruga, A. H. B. M. Tavares, S. O. D. Luiz, T. P. do Nascimento and A. M. N.

Lima, "Aerodynamic Effects Compensation on Multi-Rotor UAVs Based on a Neural

Network Control Allocation Approach," in IEEE/CAA Journal of Automatica Sinica,

vol. 9, no. 2, pp. 295-312, February 2022, doi: 10.1109/JAS.2021.1004266. [Madruga

et al. 2022]

The main contributions of this paper were:

1. We proposed the use of a classic neural network as a novel control allocation ap-

proach that takes into account the aerodynamic effects.

2. The proposed method can be used to improve the performance of quadrotor con-

trollers in general, since it removes the error introduced by the classic allocation

matrix.

3. Our experimental results verified that neglecting aerodynamic effects in the control

allocation has a direct negative impact in the flight performance.

4. Several aspects of the system were improved with the new control allocation, in-

cluding the decrease in the allocation error, the increase in the controller performance,

and better overall signal quality.

A second paper regarding the fault detection and diagnosis contributions from Chapter

5 has been accepted for publication in the IEEE Robotics and Automation Letters. This

paper was partly produced in partnership with Technische Universität München during the 6

months of the sandwich period of this doctorate research, financed by CAPES.

• S. P. Madruga, T. P. Nascimento, F. Holzapfel and A. M. N. Lima, "Estimating the

Loss of Effectiveness of UAV Actuators in the Presence of Aerodynamic Effects,"

in IEEE Robotics and Automation Letters, vol. 8, no. 3, pp. 1335-1342, March

2023, doi: 10.1109/LRA.2023.3238184. [Madruga et al. 2023] Video available at:

https://youtu.be/9Msirpfe-SE.
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As for the main contributions of this second paper, we can cite:

1. The proposed FDD scheme from Chapter 5 is able to correctly identify faults in more

than one actuator concurrently in the presence of aerodynamic disturbances.

2. Real flight experiments were conducted with a more complex maneuver/trajec-

tory instead of simply hover as has been seen in most of the examples available in the

literature.

3. The consideration of the aerodynamic effects in the estimator eliminated the need to

use an adaptive factor as in [Zhong et al. 2018].

4. The new filter has reduced order, that is, it does not need all state measurements to

successfully estimate the fault factor.

6.2 Future work

The proposed Fault Detection and Diagnosis system was not integrated into the controller

algorithm of the quadrotor. It is effective for detecting, estimating and isolating the fault, but

the next direct step for the research would be its integration with the control system, either

by means of a fault-tolerant controller approach to be used together with our ROEKF-TAE

fault detector, or an alarm system algorithm to warn the user of the fault. That would solve

the main limitation of this work, which is the mitigation of the detected faults.

This fault detection algorithm focused on loss-of-effectiveness actuator faults. The inclu-

sion of other fault-detection techniques in the system in order to detect the other mentioned

types of actuator faults could be an improvement brought by further research in future work.

Besides that, a more in-depth study of the LOE fault factor characterization could also be

performed in terms of electrical motor modeling, considering DC motors, which are used in

multi-rotor UAVs.

The same can be said about the aerodynamic effects considered in the mathematical

formulation of this thesis. The main focus was on blade-flapping and induced drag, which

affect the actuator’s air inflow during flight. However, there are several other aerodynamic

disturbances in any flight system. So the inclusion of further aerodynamic consideration,
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especially in the Control Allocation step, is a way to further deepen the contributions. Other

types of neural network architectures could also be implemented for the NNCA, investigating

if there are any gains in performance that can be achieved with their use.

Real flight experiments with a wind tunnel could also help in the better characterization

of the aerodynamic effects that affect flight behavior. In which conditions they are more

relevant, and what is an exact size or speed threshold to better observe or not these effects.

Finally, one could point out that all the experiments here were performed with a platform

built for indoor flight, which is in fact a valid and common application for quadrotor UAVs.

Nonetheless, outdoor flights might expose an aircraft to other types of disturbances, espe-

cially aerodynamic ones, when we take into consideration wind, landing etc. So as a way to

further expand the results here obtained, the developed techniques could be applied, adapted

and tested with a drone suited for outdoor flight and the most relevant observed aerodynamic

disturbances.
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