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trajetória acadêmica desde o ińıcio da minha graduação. Sou profundamente grato por todas as

suas ajudas.
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“Não há um único cent́ımetro quadrado, em todos os

domı́nios de nossa existência, sobre os quais Cristo,
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Resumo

Esta tese apresenta o estudo de hipersuperf́ıcies imersas em ambientes Lorentzianos e produ-

tos warped Riemannianos. Na primeira parte, analisamos as hipersuperf́ıcies que satisfazem

condições sobre a curvatura média, obtendo resultados de rigidez e não existência para solitons

do fluxo da curvatura média em espaços-tempo GRW e espaços estáticos padrão. Demon-

stramos aplicações desses resultados em ambientes como Einstein-de Sitter Spacetime, Steady

State Type Spacetimes, Lorentz-Minkowski space, etc. Obtendo resultados tipo Calabi-Bernstein

e destacando resultados de estabilidade de hipersuperf́ıcies. Na segunda parte, estudamos hiper-

superf́ıcies two-sided imersas em produtos warped Riemannianos, estabelecendo resultados de

existência, rigidez e não existência de solitons do fluxo da curvatura média, sujeitos a condições

sobre a curvatura média e a função warping do ambiente. Demonstramos aplicações desses resul-

tados em ambientes como Real projective space, pseudo-hyperbolic spaces, Schwarzchild space

e Reissner-Nordstrõm spcace. Também dedicamos parte do estudo às subvariedades imersas em

ambiente ponderados.

Palavras-chave: Espaço-tempo de Robertson-Walker generalizado; Solitons do Fluxo da cur-

vatura média; subvariedade riemanianas; Espaços estaticos padrão.
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Abstract

This thesis presents the study of hypersurfaces immersed in Lorentzian and warped Riemannian

products ambient. In the first part, we analyze hypersurfaces that satisfy conditions on the

mean curvature, obtaining rigidity and non-existence results for solitons of the mean curvature

flow in GRW spacetimes and standard static spaces. We demonstrate applications of these

results in ambient such as Einstein-de Sitter Spacetime, Steady State Type Spacetimes, Lorentz-

Minkowski space, and more. We obtain Calabi-Bernstein type results and highlight stability

results of hypersurfaces. In the second part, we study two-sided hypersurfaces immersed in

warped Riemannian products, establishing results on existence, rigidity, and non-existence of

solitons of the mean curvature flow, subject to conditions on the mean curvature and warping

function of the ambient. We demonstrate applications of these results in ambient such as Real

projective space, pseudo-hyperbolic spaces, Schwarzchild space, and Reissner-Nordström space.

We also dedicate part of the study to submanifolds immersed in weighted ambient.

Keywords: Generalized Robertson-Walker spacetimes; mean curvature flow solitons; Rieman-

nian submanifolds; Standard static spacetimes.
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Introdução

Esta tese está dividida em duas partes independentes, como se segue:

Parte I: Unicidade e não existencia de hipersuperficies

completas tipo-espaço

A teoria das imersões isométricas fornece as ferramentas adequadas para abordar alguns

problemas importantes que envolvem singularidades e colapso gravitacional em espaços-tempo.

Os teoremas da singularidade provados na década de 1960 por Penrose [126] e Hawking [96]

afirmam que a formação de singularidades é inevitável, caso assumirmos condições razoáveis

sobre a curvatura do espaço tempo, e sobre a geometria extŕınseca de certas hipersuperf́ıcies e

sobre a estrutura causal do colector Lorentziano. A existência de hipersuperf́ıcies espaciais(ou

seja, hipersuperf́ıcies cuja métrica induzida é uma métrica Riemanniana) no espaço-tempo, em

particular, é um requisito fundamental na formulação original dos teoremas de singularidade,

bem como nas suas generalizações mais recentes (para mais detalhes, ver [136,139] e respectivas

referências).

Neste contexto, podeŕıamos fazer a seguinte pergunta:

Questionamento 1: Do ponto de vista matemático, existe alguma relevância para a

investigação de hipersuperf́ıcies espaciais em uma variedade lorentziana?

Para responder a esta pergunta, assumimos um ambiente que até certo ponto modela locais

com singularidades e colapsos gravitacionais, desse modo investigamos a geometria de hipersu-

perf́ıcies espaciais completas num espaço-tempo de Robertson-Walker (GRW) generalizado. Por

espaço-tempo GRW, entendemos um produto lorentziano com deformação −I ×ρ M
n cuja fibra

Riemanniana Mn e função warping ρ ∈ C∞(I), onde I ⊂ R é um intervalo aberto.

Neste contexto, diante de várias caracteŕısticas geométricas que poderiam ser trabalhadas,

em particular sobre a curvatura média, podeŕıamos levantar uma segunda questão:

Questionamento 2: Quais são as restrições ideais na curvatura média de uma hipersuperf́ıcie

completa tipo-espaço num espaço-tempo GRW, para obter resultados de singularidade e

inexistência?

Recentemente, Aledo, Rubio e Salamanca [18] estudaram superf́ıcies espaciais completas com

curvatura média limitada nos espaços-tempo GRW −I ×ρ M
n, cuja fibra Riemanniana Mn é

1



assumida como sendo completa não compacta e com recobrimento universal parabólico. Como

segue o enunciado abaixo:

Theorem (Theorem 3.1 of [18]). Seja M = −I ×ρ M
n um produto warped lorentiziano que

possui recobrimento espacialmente parabólico cuja função warping não é globalmente constante

e satisfaz (logρ)” ≤ α(logρ)′2 para alguma constante real α ≥ 0. Seja ψ : M −→ M uma

hipersuperficie completa com ângulo hiperbólico limitado e tal que sup ρ(τ) < ∞ e inf ρ(τ) > 0.

Se

H2 ≤
ρ′(τ)

ρ2(τ)
cosh2 φ,

então M é um slice.

Neste cenário, os autores supracitados utilizaram uma métrica adequada numa hipersuperf́ıcie

tipo-espaço para fornecer resultados de rigidez. Como aplicação, obtiveram novos resultados do

tipo Calabi-Bernstein relativos a gráficos espaciais definidos na fibra Riemanniana Mn.

Prosseguindo, lidamos com hipersuperf́ıcies espaciais completas num espaço-tempo GRW

−I ×ρ M
n. Sob restrições adequadas sobre a curvatura seccional da fibra Riemanniana Mn, so-

bre a função de deformação ρ e sobre a curvatura média futura (isto é, a função curvatura média

em relação ao mapa de Gauss da hipersuperf́ıcie tipo-espaço), trabalhamos com uma mudança

conforme da métrica induzida (já utilizada por Aledo, Rubio e Salamanca in [18])) para provar

que uma tal hipersuperf́ıcie tipo-espaço deve ser uma slice {t}×Mn do espaço-tempo ambiente.

Também obtivemos resultados de não-existência e tipo Calabi-Bernstein relativos a gráficos espa-

ciais inteiros definidos sobre a fibra Riemanniana Mn, bem como são dadas aplicações quando o

ambiente é Einstein-de Sitter e ao steady state type espaço-tempo. A nossa abordagem se baseia

no prinćıpio do máximo generalizado de Omori-Yau e em certas propriedades de integrabilidade

devidas ao Yau.

É claro que podemos expandir um pouco o nosso universo de elementos para trabalhar com

uma classe maior de objetos geométricos. Isto pode ser feito da seguinte forma: tome R
n+1

1 um

espaço de Minkowski (n+ 1)-dimensional (Rn+1

1 , ḡ) com a sua métrica Lorentziana padrão

ḡ = −dx21 +
n+1
∑

i=2

dx2i .

Seja ψ : Σn → R
n+1

1 uma imersão espacial (o que significa que tem uma métrica Riemanniana

induzida) no espaço Minkowski. O fluxo de curvatura média do espaço-tempo associado a ψ é

uma famı́lia de imersões espaciais suaves Ψt = Ψ(t, ·) : Σn → R
n+1

1 com imagens correspondentes

Σn
t = Ψt(Σ

n) satisfazendo a seguinte equação de evolução







∂Ψ

∂t
= H⃗

Ψ(0, x) = ψ(x)

em algum intervalo de tempo, onde H⃗ representa o vector de curvatura média (não-normalizado)

da subvariedade espacial Σn
t em R

n+1

1 . As soluções da equação de evolução anterior são chamados

2



de sólitons.

Mais uma vez, chegamos à seguinte questão:

Questionamento 3: Qual é a relevância de estudar os sólitons do fluxo de curvatura média

nos espações-tempo GRW?

O fluxo da curvatura média no espaço de Minkowski e, mais geralmente, em uma variedade

Lorentziana tem sido estudado extensivamente por vários autores (ver, por exemplo, [1,80–83,85,

86,102,103,105,106,108,141]) e, segundo [81], uma justificação importante para este interesse é o

fato de que os sólitons de translação tipo-espaço podem ser considerados como uma forma natural

de folhear o espaço-tempo por hipersuperf́ıcies. Exemplos particulares podem dar uma visão da

estrutura de certos espaços-tempo no infinito nulo e ter posśıveis aplicações na Relatividade

Geral (para mais detalhes, ver [81]).

Mais recentemente, Lambert e Lotay [111] provaram uma existência para tempos longos e

resultados de convergência para soluções espaciais que são fluxo da curvatura média no espaço

pseudo-euclidiano n-dimensional Rn
m de ı́ndice m, que são inteiros ou definidos em domı́nios

delimitados e satisfazem as condições de fronteira do tipo Neumann ou Dirichlet. Em [94],

Guilfoyle e Klingenberg provaram a existência para tempos longos de um fluxo da curvatura

média de uma subvariedade tipo-espaço m + n-dimensional cuja métrica satisfaz a chamada

condição de curvatura temporal.

Em [69], Colombo, Mari e Rigoli também estudaram algumas propriedades dos sólitons do

fluxo curvatura média em geral, nas variedades Riemannianas e em produtos warped, concentrando-

se nos resultados de classificação e rigidez sob várias condições geométricas, desde a estabilidade

do sólitons até ao fato da imagem do mapa Gauss estar contida em regiões adequadas da esfera.

Além disso, investigaram também o caso de gráficos inteiros do fluxo da curvatura média, como

podemos verificar no seguinte enunciado:

Theorem (Theorem 3.4 of [69]). Seja ψ : Σn −→ M
n+1

= −I ×ρ M
n um sóliton do fluxo da

curvatura média com respeito K = ρ(t)∂ t conexo, completo e estável e seja c a constante de

sóliton1. Assumindo que M é completo e que a curvatura seccional k, satisfaz

cρ′(πI ◦ ψ) ≤ nk on Σ. (1)

Seja Ψ = II − ⟨ , ⟩Σ ⊗H o tensor de umbilicidade de ψ e suponha que

|Ψ| ∈ L2(Σ, ecη) (2)

com η = |Ψ|2

2
. Então ocorre um dos seguintes casos:

(i) ψ é totalmente geodésico (e se c ̸= 0 então ψ(Σ) é invariante pelo fluxo de K), ou

1Uma hipersuperficie tipo-espaço ψ : Σn → M
n+1

imersa em um GRW espaço-tempo M
n+1

= −I ×ρ M
n é

dita ser sóliton do fluxo da curvatura média com respeito a K = ρ(t)∂t e tem constante de sóliton c ∈ R se, e
somente se, a função curvatura média(não normalizada) futura satisfaz H = cρ(h)Θ.

3



(ii) I = R, ρ é constante em R, Σ é isométrico ao produto R × M com M uma variedade

flat completa e Σ é também flat. Introduzindo os recobrimentos universais πΣ : Rn −→ Σ,

πM : Rn −→ M e πM = idR × πM : Rn+1 −→ M , o mapa ψ passa a ser uma imersão

ψ : Rn −→ R × R
n satisfazendo πM ◦ ψ = ψ ◦ πΣ, que é uma isometria de R

n e uma

translação ao longo do fator R de R
n+1 é dada por

ψ : Rn −→ R× R
n, (x1, x2, . . . , xn) 7→ (σ1(x

1), σ2(x
1)x2, . . . , xn)

onde γ = (σ1, σ2) : R −→ R
2 é a curva do coletor com imagem

σ(R) =

{

(x, y) ∈ R
2 : x = −

1

cρ0
log(cos(cρ0y)), |y| <

2

π|c|ρ0

}

e ρ0 é o valor constante de ρ on R. Além disso, existe uma submersão Riemanniana

πΩ : Σ −→ Ω numa variedade flat e compacta Ω com fibras geodésicas não compactas e

unidimensionais do tipo πM(R × {(x2, . . . , xn)}), para constante (x2, . . . , xn) ∈ R
n−1. Tal

fibra é mapeada por ψ na curva πM(σ(R)× {(x2, . . . , xn)}).

Além disso, qualquer um dos sólitons em (ii) é estável, enquanto um sóliton em (i) é estável se

e só se L = ∆−cη + (nk − cρ′) é não negativo.

Quando o espaço ambiente é um produto Lorentziano, Batista e de Lima [40] estabeleceram

resultados de não-existência para sólitons de translação completos tipo-espaço sob restrições de

curvatura adequadas sobre as curvaturas da base. Em particular, obtiveram resultados do tipo

Calabi-Bernstein para gráficos completos constrúıdos sobre esta base Riemanniana. Para tal,

provaram uma versão do prinćıpio do máximo de Omori-Yau para sólitons. Além disso, também

constrúıram novos exemplos de sólitons de translação tipo-espaço rotacionalmente simétricos

embutidos num espaço ambiente deste tipo.

Prosseguindo, no Caṕıtulo 3, estendemos as técnicas desenvolvidas em [18, 27, 31, 40, 69]

para estudar sólitons do fluxo da curvatura média completos imersos num espaço-tempo gener-

alizado Robertson-Walker (GRW), ou seja, um produto warped lorentziano −I ×ρM
n com uma

base 1-dimensional negativa definida I e fibra n-dimensional Riemanniana Mn. Sob restrições

adequadas sobre a função warping ρ e sobre a curvatura de Mn, aplicamos alguns prinćıpios

do máximos adequados a fim de obter resultados de inexistência e rigidez relativamente a estes

sólitons. São dadas aplicações no espaço-tempo padrão GRW como, por exemplo, os espaços-

tempo do tipo Einstein-de Sitter e steady state type espaço-tempo. Além disso, estabelecemos

novos resultados do tipo Calabi-Bernstein relacionados com os gráficos do fluxo da curvatura

média de todo o espaço-tempo, constrúıdos sobre a fibra Riemanniana.

Também no Caṕıtulo 3, destacaremos alguns resultados obtidos na área da estabilidade das

hipersuperf́ıcies espaciais. Recordemos que a noção de estabilidade relativa a hipersuperf́ıcies

de curvatura média constante dos espaços ambientais Riemannianos foi estudada pela primeira

vez por Barbosa e do Carmo in [36], e por Barbosa, do Carmo e Eschenburg in [37], onde

provaram que as esferas são os únicos pontos cŕıticos estáveis do funcional área para variações que

4



preservam o volume. Posteriormente, trabalhando no contexto Lorentziano, Barbosa e Oliker [38]

obtiveram um resultado análogo provando que as hipersuperf́ıcies de curvatura média constante

nas variedades Lorentzianos são também pontos cŕıticos do funcional área para variações que

mantêm o volume constante. Mais tarde, Barros, Brasil e Caminha [39] estudaram o problema

de estabilidade forte(ou seja, estabilidade em relação a variações mas que não possuem volume

preservados necessariamente) das hipersuperf́ıcies com curvatura média constante num espaço-

tempo Robertson-Walker (GRW) generalizado com curvatura seccional constante, dando uma

caracterização para as hipersuperf́ıcies máxima e slices tipo-espaço de tal espaço ambiente.

Nesta altura, o leitor pode pensar:

Questionamento 4: Em qual classe de espaços-tempo podemos ainda obter resultados

semelhantes aos dos exemplos do Caṕıtulo 2 e 3?

Para esta última questão desta primeira parte da tese, trabalhamos com o objectivo de

investigar a rigidez e a inexistência de sólitons do fluxo de curvatura média do espaço em relação

ao campo vetorial Killing temporal K de um espaço-tempo estático padrão, que (de acordo com a

Definição 12.36 of [123]) pode ser considerado como um produto deformado Mn×ρR1 cuja base

Riemanniana Mn é uma folha arbitrariamente fixa da distribuição ortogonal a K e com função

warping ρ ∈ C∞(M) dado por ρ = |K|. A importância do espaço-tempo estático padrão provém

do fato de inclúırem alguns espaços-tempo clássicos, como o espaço-tempo Lorentz-Minkowski,

o universo estático de Einstein, bem como modelos que descrevem um universo onde existe

apenas uma massa esférica simétrica não rotativa, como uma estrela ou um buraco negro, como

o espaço-tempo exterior de Schwarzschild (ver os exemplos citados na subseção 1.3).

Esta parte da tese é dedicada a generalizar e melhorar alguns dos resultados acima citados.

Parte II: Rigidez de hipersuperf́ıcies em certos produtos

warped e resultados para subvariedades em produtos pon-

derados

Na segunda parte desta tese, dedicamo-nos a expor os resultados em variedades Riemanni-

anas. Embora exista certa similaridade com a primeira parte, onde foram obtidos resultados

semelhantes em ambientes Lorentzianos, também abordamos temas distintos que contribúıram

para a literatura acadêmica em outras frentes. Ao trabalhar com variedades Riemannianas, é

posśıvel explorar propriedades geométricas e métricas das variedades sem a restrição do caráter

Lorentziano. Isso permite investigar questões espećıficas relacionadas à curvatura, geodésicas,

volume, entre outras caracteŕısticas intŕınsecas das variedades Riemannianas.

Embora os resultados possam ser semelhantes aos encontrados para ambientes Lorentzianos

em termos de técnicas e métodos utilizados, os contextos diferem e podem levar a conclusões

distintas. Além disso, ao abordar temas diferentes na segunda parte da tese, contribui-se para

a diversificação do conhecimento na literatura acadêmica. Essa abordagem complementar entre
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a primeira e segunda parte da tese, explorando ambientes Lorentzianos e Riemannianos, pode

enriquecer a compreensão das propriedades das variedades e fornecer uma visão mais abrangente

sobre o assunto estudado.

A investigação sobre a rigidez de hipersuperf́ıcies imersas num espaço Riemanniano é cer-

tamente um tópico relevante em análise geométrica, e podemos afirmar que este ramo de in-

vestigação teve ińıcio com o teorema clássico de Bernstein [50] (depois emendado por Hopf

em [99]), no qual afirma que os únicos gráficos inteiros mı́nimos em R
3 são os planos. O teorema

de Bernstein foi estendido a R
n, para n ≤ 7, com os trabalhos de Fleming [88], de Giorgi [90]

e Simons [137]. Mas Bombieri, de Giorgi e Giusti [51] inferiram que o teorema de Bernstein

não é válido para n ≥ 8. Por outro lado, Moser [120] mostrou que os hiperplanos são os únicos

gráficos mı́nimos inteiros de funções u ∈ C2(Rn) cujo gradiente Du tem norma limitada em R
n,

para todos os valores de n. Já em 2015, Lima e Oliveira [121] obteve novos resultados do tipo

Moser relacionados com grafos inteiros de curvatura média constante constrúıdos sobre a fibra

Mn de um espaço produto R×Mn.

Quando o espaço ambiente é um produto warped do tipo I ×ρ M
n, onde I ⊂ R representa

um intervalo aberto e ρ é uma função suave positiva definida em I, Montiel [115] estudou a

rigidez de hipersuperf́ıcies compactas de curvatura média constante. Neste contexto mais geral,

usou o fato de um tal produto warped ser dotado de um campo de vetores Killing globalmente

conforme definido dado por ρ∂t (onde ∂t representa o campo de vectores unitário tangente a

I ⊂ R) para provar que estas hipersuperf́ıcies devem ser fatias {t} ×Mn, sob a hipótese de que

são localmente grafos na fibra Mn.

Mais tarde, Aĺıas e Dajczer [25] obtiveram os resultados de Montiel [115] considerando hiper-

superf́ıcies completas, não necessariamente compactas, imersas em R ×ρ M
n. Posteriormente,

de Lima juntamente com Aquino [20] e Caminha [62], obtiveram resultados de rigidez para

gráficos verticais completos com curvatura média constante em I ×ρ M
n, assumindo restrições

apropriadas sobre os valores da curvatura média e da norma do gradiente da função altura h.

Em seguida, supondo que o gradiente de h é integrável e que a função curvatura média toma

valores no intervalo (0, 1], o segundo autor em conjunto com Camargo e Caminha [61] aplicou

uma técnica de Yau [148] para provar que hipersuperf́ıcies completas situadas em uma faixa de

um espaço pseudo-hiperbólico R×et M
n devem ser slices.

Motivados por estes trabalhos, tratamos no Caṕıtulo 6 de hipersuperf́ıcies completas two-

sided (isto é, hipersuperf́ıcies completas com fibrado normal trivial) imersas num produto warped

do tipo I ×ρM
n. Sob restrições adequadas na função warping ρ, na curvatura seccional da fibra

Mn e na curvatura média de uma tal hipersuperf́ıcie Σn, aplicamos alguns prinćıpios de máximo

para mostrar que Σn tem de ser uma slice de I ×ρ M
n. É também feito um estudo de grafos

inteiros constrúıdos sobre Mn, bem como são dadas aplicações a espaços pseudo-hiperbólicos

I ×et M
n.

Por outro lado, Aĺıas, de Lira e Rigoli [27] introduziram a definição geral de soluções auto-

similares do fluxo da curvatura média numa variedade Riemanniana M
n+1

dotada de um campo

vetorial K e estabeleceram a correspondente noção de soliton do fluxo da curvatura média. Em

6



particular, quando M
n+1

é um produto warped Riemanniano do tipo I ×ρ M
n e K = ρ(t)∂t,

aplicaram prinćıpios de máximos fracos para garantir que um sóliton do fluxo da curvatura média

completo é uma slice deM
n+1

. De modo similar ao realizado no Caṕıtulo 3, obtivemos resultados

de rigidez e não existência de sólitons do fluxo da curvatura média em modelos Riemannianos

warped.

Em alguns dos resultados obtidos no Caṕıtulo 3, utilizamos o operador Laplaciano ponder-

ado como um mecanismo anaĺıtico para obter os resultados desejados, independentemente da

presença de uma função ponderadora no ambiente. No entanto, na última seção desta tese,

dedicamos-nos a apresentar resultados obtidos em ambientes ponderados por uma função φ

positiva e integrável.

No ramo da análise geométrica, muitos problemas levam-nos a considerar variedades Rie-

mannianas dotadas de uma medida que tem uma densidade positiva suave em relação à medida

Riemanniana. Isto acaba por ser compat́ıvel com a estrutura métrica da variedade e os espaços

resultantes são variedades weighted, que também são chamadas variedades com densidade ou

espaços de medida métrica suave na literatura atual. Mais precisamente, dada uma variedade

Riemanniana completa n-dimensional (Mn, g) e uma função suave φ : Mn → R, a variedade

ponderada Mn
ϕ associada a Mn e φ é a tripla (Mn, g, dµ = e−ϕdM), onde dM denota o elemento

de volume padrão de Mn.

Aparecendo naturalmente no estudo de self-shrinkers, sólitons de Ricci, fluxos do calor

harmónicos e muitos outros, as variedades ponderadas provaram ser importantes generalizações

das variedades Riemannianas e, hoje em dia, há várias investigações geométricas a seu respeito.

Para um breve panorâmica dos resultados neste domı́nio, remetemos para os artigos de Mor-

gan [119] e Wei-Wylie [146].

Salientamos que uma teoria da curvatura de Ricci para variedades ponderadas remonta a

Lichnerowicz [112, 113] e foi posteriormente desenvolvida por Bakry e Émery no seu trabalho

seminal [45]. Neste contexto, como ingrediente crucial para compreender a geometria de uma

variedade ponderada Mn
ϕ , introduzimos o chamado Bakry-Émery-Ricci tensor Ricϕ como sendo

a seguinte extensão do tensor de Ricci padrão Ric de Mn:

Ricϕ = Ric + Hessφ. (3)

Consequentemente, é natural estender os resultados enunciados em termos da curvatura de Ricci

a resultados análogos para o tensor de Bakry-Émery-Ricci.

Por outro lado, sabe-se que os campos vetoriais Killing conformes são objetos importantes

que têm sido amplamente utilizados para compreender a geometria de subvariedades imersas

em espaços Riemannianos. Neste contexto, Montiel [115] estudou hipersuperf́ıcies compactas de

curvatura média constante imersas em produtos warped do tipo R×ρM
n e S1×ρM

n. Observamos

que esta classe de produtos warped é dotada de um campo vetorial Killing globalmente conforme

definido por ρ∂t, onde ∂t representa o campo vectorial unitário tangente a R ou S
1. Supondo que

tais hipersuperf́ıcies são localmente grafos em Mn, Montiel provou que (até casos excepcionais

bem compreendidos) têm de ser slices {t} ×Mn.
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Mais tarde, este tema foi revisitado em [25] por Aĺıas e Dajczer, onde generalizaram os re-

sultados de Montiel considerando hipersuperf́ıcies completas, não necessariamente compactas,

imersas em R ×ρ M
n. Posteriormente, Henrique de Lima juntamente com Caminha [62] e pos-

teriormente com Aquino [20], investigaram a unicidade de gráficos verticais completos com cur-

vatura média constante num produto deformado I ×ρM
n. Sob restrições adequadas aos valores

da curvatura média e à norma do gradiente da função altura, obtiveram teoremas de unicidade

relativos a tais gráficos. Em seguida, Rosenberg, Schulze e Spruck [134] mostraram que um

grafo inteiro mı́nimo com função altura não negativa num espaço produto R ×Mn, cuja fibra

Mn é completa com curvatura de Ricci não negativa e curvatura seccional limitada por baixo,

tem de ser um slice. Posteriormente, Henrique de Lima et al. [19,74] obtiveram algumas outras

condições suficientes que asseguram que uma hipersuperf́ıcie completa de two-sided imersa num

espaço produto R×Mn, cuja fibra Mn tem curvatura seccional limitada por baixo, é uma slice

do espaço ambiente, desde que a sua função angular tenha algum comportamento adequado.

Mais recentemente, Araujo, de Lima e Velasquez em [29] investigaram subvariedades n-

dimensionais imersas em I×ρM
n+p, cuja função de deformação ρ tem logaritmo convexo. Assu-

mindo que uma tal subvariedade ψ : Σn → I ×ρ M
n+p é fechada, estocasticamente completa ou

completa com curvatura de Ricci não negativa, e que a sua função suporte ⟨H⃗, ∂t⟩ é constante

(onde H⃗ representa o campo vetorial de curvatura média de ψ), provaram que ψ(Σ) tem de

estar contido numa fatia do espaço ambiente. Como consequência dos seus resultados de rigidez,

quando p = 1 obtiveram resultados de não existência relativos a subvariedades mı́nimas imersas

num tal espaço ambiente.

Finalizamos esta tese dedicando-nos ao estudo de subvariedades completas imersas em um

produto warped ponderado do tipo I ×ρ M
n+p
ϕ , onde a função de warping ρ é logaritmicamente

convexa e a função de peso φ não depende do parâmetro real t ∈ I. Ao assumir a constância de

uma função de suporte apropriada que envolve o campo vetorial de curvatura média φ de uma

subvariedade Σn, juntamente com restrições adequadas sobre o tensor de Bakry-Émery-Ricci

de Σn, provamos que ela deve estar contida em um slice do espaço ambiente. Como resultado,

obtivemos reduções de codimensão e resultados do tipo Bernstein para multigrafos completos

φ-minimal bounded constrúıdos sobre o espaço Gaussiano n-dimensional. Nossa abordagem

baseia-se no prinćıpio do máximo fraco generalizado de Omori-Yau e em resultados do tipo

Liouville para o drift Laplaciano.

No decorrer desta tese, serão apresentados todos os resultados obtidos, os quais foram detal-

hados em um total de 11 artigos cient́ıficos:

[1] J.G. Araújo, de Lima, H.F., W.F. Gomes and M.A.L. Velásquez, Submanifolds immersed in

a warped product with density. Bull. Belg. Math. Soc. Simon Stevin 27 (2020) 683-696.

https://doi.org/10.36045/j.bbms.200126

[2] J.G. Araújo, de Lima, H.F. and W.F. Gomes, Uniqueness and nonexistence of complete spacelike hypersur-

faces, Calabi-Bernstein type results and applications to Einstein-de Sitter and steady state type spacetimes,

Rev. Mat. Complut. 34 (2021), 653–673. https://doi.org/10.1007/s13163-020-00375-7

[3] J.G. Araújo, H.F. de Lima and W.F. Gomes, Rigidity of hypersurfaces and Moser?Bernstein type results in

8



certain warped products, with applications to pseudo-hyperbolic spaces. Aequat. Math. 96, (2022), 1159-1177.

https://doi.org/10.1007/s00010-022-00914-1

[4] J.G. Araújo, H.F. de Lima and W.F. Gomes, On the rigidity of mean curvature flow solitons in certain

semi-riemannian warped products, Kodai Math. J. 46 (2023), 62-74. https://doi.org/10.2996/kmj46105

[5] J.G. Araújo, H.F. de Lima and W.F. Gomes, Spacelike mean curvature flow solitons in standard static

spacetimes and new calabi-bernstein type results, Ricerche mat. (2023). 10.1007/s11587-023-00775-z
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Introduction

This thesis is divided into two independent parts as follows:

Part I: Uniqueness and nonexistence of complete spacelike

hypersurfaces

The theory of isometric immersions provides the adequate tools to approach some important

problems involving spacetime singularities and gravitational collapse.

The singularity theorems proved in the 1960s by Penrose [126] and Hawking [96] state that the

formation of singularities is unavoidable, if one assumes reasonable conditions on the curvature of

the spacetime, on the extrinsic geometry of certain hypersurfaces and on the causal structure of

the Lorentzian manifold. The existence of spacelike hypersurfaces (that is, hypersurfaces whose

induced metric is a Riemannian metric) in the spacetime, in particular, is a key requirement in

the original formulation of the singularity theorems as well as in their more recent generalizations

(for more details, see [136,139] and references therein).

In this context we could ask the following question:

Question 1:From a mathematical point of view, is there any relevance of the investigation of

spacelike hypersurfaces in a Lorentzian manifold?

To answer this question, we assume an environment that to some extent locales models with

singularities and gravitational collapses, so that we have investigate the geometry of complete

spacelike hypersurfaces in a generalized Robertson-Walker (GRW) spacetime. By a GRW space-

time, we mean a Lorentzian warped product −I ×ρ M
n with Riemannian fiber Mn and warping

function ρ ∈ C∞(I), where I ⊂ R is an open interval.

In this context, in view of several geometrical features that could be worked on, in particular

about mean curvature, we could ask a second question:

Question 2: What are the optimal constraints on the average curvatures of a complete

hypersurfaces spacelike in a GRW spacetime, to obtain singularity and nonexistence results?

Recently, Aledo, Rubio and Salamanca [18] studied complete spacelike hypersurfaces with

functionally bounded mean curvature in GRW spacetime −I ×ρ M
n, whose Riemannian fiber

Mn is assumed to be complete noncompact and with parabolic universal covering. As follows

the statement below:
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Theorem (Theorem 3.1 of [18]). Let M = −I×ρM
n be a spatially parabolic covered Lorentzian

warped product whose warping function is not globally constant and satisfies (logρ)” ≤ α(logρ)′2

for a certain real constant α ≥ 0. Let ψ : M −→ M be a complete hypersurface with bounded

hyperbolic angle and such that sup ρ(τ) <∞ and inf ρ(τ) > 0. If

H2 ≤
ρ′(τ)

ρ2(τ)
cosh2 φ,

then M is a spacelike slice.

In this setting, the previous authors they used a suitable metric conformal to that induced on

a spacelike hypersurface to provide rigidity results. As application, they obtained new Calabi-

Bernstein type results concerning spacelike graphs defined on the Riemannian fiber Mn.

Proceeding with this picture, we deal with complete spacelike hypersurfaces in a GRW space-

time −I ×ρ M
n. Under suitable constraints on the sectional curvature of the Riemannian fiber

Mn, on the warping function ρ and on the future mean curvature (that is, the mean curvature

function with respect to the future-pointing Gauss map of the spacelike hypersurface), we work

with a conformal change of the induced metric (already used by Aledo, Rubio and Salamanca

in [18]) to prove that such a spacelike hypersurface must be a slice {t} ×Mn of the ambient

spacetime. Nonexistence and Calabi-Bernstein type results concerning entire spacelike graphs

constructed over the Riemannian fiber Mn we have obtained, as well as applications to the

Einstein-de Sitter and steady state type spacetimes are given. Our approach is based on the

so-called Omori-Yau’s generalized maximum principle and on certain integrability properties due

to Yau.

Of course we can expand our universe of elements a bit to work with a larger class of geometric

objects. This can be done as follows: with R
n+1

1 be the (n + 1)-dimensional Minkowski space

(Rn+1

1 , ḡ) with its standard Lorentzian metric

ḡ = −dx21 +
n+1
∑

i=2

dx2i .

Let ψ : Σn → R
n+1

1 be a spacelike immersion (which means that it has a Riemannian induced

metric) in the Minkowski space. The spacelike mean curvature flow associated to ψ is a family of

smooth spacelike immersions Ψt = Ψ(t, ·) : Σn → R
n+1

1 with corresponding images Σn
t = Ψt(Σ

n)

satisfying the following evolution equation







∂Ψ

∂t
= H⃗

Ψ(0, x) = ψ(x)

on some time interval, where H⃗ stands for the (non-normalized) mean curvature vector of the

spacelike submanifold Σn
t in R

n+1

1 . The solutions of the previous evolution equation are called

solitons.

Again we come to the following question:
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Question 3: What is the relevance of studying mean curvature flow solitons in GRW?

Mean curvature flow in the Minkowski space and, more generally, in a Lorentzian manifold

has been extensively studied by several authors (see, for instance, [1, 80–83, 85, 86, 102, 103, 105,

106, 108, 141]) and, according to [81], an important justification for this interest is the fact

that spacelike translating solitons can be regarded as a natural way of foliating spacetimes by

almost null like hypersurfaces. Particular examples may give insight into the structure of certain

spacetimes at null infinity and have possible applications in General Relativity (for more details,

see [81]).

More recently, Lambert and Lotay [111] proved long-time existence and convergence results

for spacelike solutions to mean curvature flow in the n-dimensional pseudo-Euclidean space R
n
m

of index m, which are entire or defined on bounded domains and satisfying Neumann or Dirichlet

boundary conditions. In [94], Guilfoyle and Klingenberg proved the longtime existence for mean

curvature flow of a smooth n-dimensional spacelike submanifold of an (n + m)-dimensional

manifold whose metric satisfies the so-called timelike curvature condition. Meanwhile, Aĺıas, de

Lira and Rigoli [27] introduced the general definition of self-similar mean curvature flow in a

Riemannian manifold M
n+1

endowed with a vector field K and establishing the corresponding

notion of mean curvature flow soliton.

In [69], Colombo, Mari and Rigoli also studied some properties of mean curvature flow

solitons in general Riemannian manifolds and in warped products, focusing on splitting and

rigidity results under various geometric conditions, ranging from the stability of the soliton to

the fact that the image of its Gauss map be contained in suitable regions of the sphere, as we

can see from the following statement:

Theorem (Theorem 3.4 of [69]). Let ψ : Σn −→ M
n+1

= −I ×ρ M
n be a connected, complete,

stable mean curvature flow soliton with respect to K = ρ(t)∂ t with soliton constant c2. Assume

that M is complete and has constant sectional curvature k, with

cρ′(πI ◦ ψ) ≤ nk on Σ. (4)

Let Ψ = II − ⟨ , ⟩Σ ⊗H be the umbilicity tensor of ψ and suppose that

|Ψ| ∈ L2(Σ, ecη) (5)

with η = |Ψ|2

2
. Then one of the following cases occurs:

(i) ψ is totally geodesic (and if c ̸= 0 then ψ(Σ) is invariant by the flow of X), or

(ii) I = R, ρ is constant on R, Σ is isometric to the product R × M with M a complete

flat manifold and Σ is also flat. By introducing the universal coverings πΣ : Rn −→ Σ,

πM : R −→ M and πM = idR × πM : Rn+1 −→ M , the map ψ lifts to an immersion

2a spacelike hypersurface ψ : Σn →M
n+1

immersed in a GRW spacetimeM
n+1

= −I×ρM
n is said a spacelike

mean curvature flow soliton with respect to K = ρ(t)∂t and with soliton constant c ∈ R if its (non-normalized)
future mean curvature function satisfies H = cρ(h)Θ.
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ψ : Rn −→ R × R
n satisfying πM ◦ ψ = ψ ◦ πΣ, which up to an isometry of Rn and a

translation along the R factor of Rn+1 is given by

ψ : Rn −→ R× R
n, (x1, x2, . . . , xn) 7→ (σ1(x

1), σ2(x
1)x2, . . . , xn)

where γ = (σ1, σ2) : R −→ R
2 is the grim reaper curve with image

σ(R) =

{

(x, y) ∈ R
2 : x = −

1

cρ0
log(cos(cρ0y)), |y| <

2

π|c|ρ0

}

and ρ0.is the constant value of ρ on R. Furthermore, there exists a Riemannian submersion

πΩ : Σ −→ Ω onto a compact, flat manifold Ω with 1-dimensional, noncompact geodesic

fibers of the type πM(R × {(x2, . . . , xn)}), for constant (x2, . . . , xn) ∈ R
n−1. Such fiber is

mapped by ψ into the grim reaper curve πM(σ(R)× {(x2, . . . , xn)}).

Furthermore, any of the solitons in (ii) is stable, while a soliton in (i) is stable if and only if

L = ∆−cη + (nk − cρ′) is non-negative.

Moreover, they also investigated the case of entire mean curvature flow graphs. When the

ambient space is a Lorentzian product space, the Batista and de Lima [40] established nonex-

istence results for complete spacelike translating solitons under suitable curvature constraints

on the curvatures of the Riemannian base of the ambient space. In particular, they obtained

Calabi-Bernstein type results for entire translating graphs constructed over this Riemannian

base. For this, they proved a version of the Omori-Yau’s maximum principle for complete space-

like translating solitons. Besides, they also constructed new examples of rotationally symmetric

spacelike translating solitons embedded in such an ambient space.

Proceeding with this retrospective commentary, in Chapter 3, extend the techniques devel-

oped in [18, 27, 31, 40, 69] to study complete spacelike mean curvature flow solitons immersed

in a generalized Robertson-Walker (GRW) spacetime, that is, a Lorentzian warped product

−I ×ρM
n with 1-dimensional negative definite base I and n-dimensional Riemannian fiber Mn.

Under suitable constraints on the warping function ρ and on the curvatures ofMn, we apply suit-

able maximum principles in order to obtain nonexistence and uniqueness results concerning these

solitons. Applications to standard GRW spacetimes as, for instance, the Einstein-de Sitter and

steady state type spacetimes, are given. Furthermore, we establish new Calabi-Bernstein type

results related to entire spacelike mean curvature flow graphs constructed over the Riemannian

fiber of the ambient spacetime.

Also in Chapter 3, we will highlight some results obtained in the area of stability of hyper-

surfaces spacelike. Recall that the notion of stability concerning hypersurfaces of constant mean

curvature of Riemannian ambient spaces was first studied by Barbosa and do Carmo in [36],

and by Barbosa, do Carmo and Eschenburg in [37], where they proved that spheres are the

only stable critical points of the area functional for volume-preserving variations. Afterwards,

working in the Lorentzian context, Barbosa and Oliker [38] obtained an analogous result proving

that constant mean curvature spacelike hypersurfaces in Lorentzian manifolds are also critical
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points of the area functional for variations that keep the volume constant. Later on, Barros,

Brasil and Caminha [39] studied the problem of strong stability (that is, stability with respect

to not necessarily volume-preserving variations) for spacelike hypersurfaces with constant mean

curvature in a generalized Robertson-Walker (GRW) spacetime of constant sectional curvature,

giving a characterization for the maximal spacelike hypersurfaces and spacelike slices of such an

ambient space.

At this point, the reader might think:

Question 4: Anyorder class of spacetimes that we can obtain similar results those examples in

Chapter 2 and 3?

For this last question of this first part of the thesis, we work with the objective our purpose

is to investigate the uniqueness and nonexistence of solitons of the spacelike mean curvature

flow with respect to the timelike Killing vector field K of a standard static spacetime, which

(according to Definition 12.36 of [123]) can be regarded as a warped product Mn ×ρ R1 whose

Riemannian base Mn is an arbitrarily fixed spacelike integral leaf of the distribution orthogonal

toK and with warping function ρ ∈ C∞(M) given by ρ = |K|. The importance of standard static

spacetimes comes from the fact that they include some classical spacetimes, such as Lorentz-

Minkowski spacetime, Einstein static universe as well as models that describe an universe where

there is only a spherically symmetric non-rotating mass, as a star or a black hole, like exterior

Schwarzschild spacetime (see the examples quoted in Subsection 1.3).

This part of the thesis is devoted to generalize and improve some of the above cited notorious

results.

Part II: Rigidity of hypersurfaces in certain warped prod-

ucts and results for submanifolds in weighted productss

In the second part of this thesis, we devoted ourselves to presenting the results in Riemannian

manifolds. Although there is some similarity with the first part, where similar results were ob-

tained in Lorentzian settings, we also addressed distinct topics that contributed to the academic

literature in other directions. Working with Riemannian manifolds allows us to explore their

geometric and metric properties without the restriction of Lorentzian character. This enables

the investigation of specific issues related to curvature, geodesics, volume, and other intrinsic

characteristics of Riemannian manifolds.

While the results may be similar to those found in Lorentzian settings in terms of techniques

and methods used, the contexts differ and can lead to distinct conclusions. Furthermore, by

addressing different topics in the second part of the thesis, we contribute to the diversification

of knowledge in the academic literature. This complementary approach between the first and

second parts of the thesis, exploring Lorentzian and Riemannian settings, can enhance the

understanding of manifold properties and provide a more comprehensive view of the studied

subject
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The investigation concerning the rigidity of hypersurfaces immersed in a Riemannian space

is certainly a relevant topic in geometric analysis, and we can affirm that this research branch

started with Bernstein’s classical theorem [50] (after amended by Hopf in [99]), which says that

the only entire minimal graphs in R
3 are the planes. Bernstein’s theorem was extended to R

n,

for n ≤ 7, with the works of Fleming [88], de Giorgi [90] and Simons [137]. But, Bombieri, de

Giorgi and Giusti [51] inferred that Bernstein’s theorem does not hold for n ≥ 8. On the other

hand, Moser [120] showed that the hyperplanes are the only entire minimal graphs of functions

u ∈ C2(Rn) whose gradient Du has bounded norm on R
n, for all values of n. In 2015, Lima and

Oliveira [121] obtained new Moser-type results related to entire constant mean curvature graphs

constructed over the fiber Mn of a product space R×Mn.

When the ambient space is a warped product of the type I×ρM
n, where I ⊂ R stands for an

open interval and ρ is a positive smooth function defined on I, Montiel [115] studied the rigidity

of constant mean curvature compact hypersurfaces. In this more general context, he used the

fact that such a warped product is endowed with a globally defined conformal Killing vector

field given by ρ∂t (where ∂t stands for the unit vector field tangent to I ⊂ R) to prove that these

hypersurfaces must be slices {t} × Mn, under the assumption that they are locally graphs on

the fiber Mn.

Later on, Aĺıas and Dajczer [25] reobtained Montiel’s results [115] considering complete,

not necessarily compact, hypersurfaces immersed in R ×ρ Mn. Afterwards, de Lima jointly

with Aquino [20] and Caminha [62] obtained rigidity results for complete vertical graphs with

constant mean curvature in I ×ρ M
n, assuming appropriate restrictions on the values of the

mean curvature and the norm of the gradient of the height function h. Next, supposing that the

gradient of h is Lebesgue integrable and that the mean curvature function takes values in the

interval (0, 1], the second author jointly with Camargo and Caminha [61] applied a technique

of Yau [148] to prove that complete hypersurfaces lying in a slab of a pseudo-hyperbolic space

R×et M
n must be slices.

Motivated by these works, here we deal in Chapter 6 with complete two-sided hypersurfaces

(that is, complete hypersurfaces having trivial normal bundle) immersed in a warped product

of the type I ×ρ M
n. Under suitable constraints on the warping function ρ, on the sectional

curvature of the fiber Mn and on the mean curvature of such a hypersurface Σn, we apply some

maximum principles in order to show that Σn must be a slice of I ×ρ M
n. A study of entire

graphs constructed over Mn is also made, as well as applications to pseudo-hyperbolic spaces

I ×et M
n are given.

On the other hand, Aĺıas, de Lira and Rigoli [27] introduced the general definition of self-

similar mean curvature flow in a Riemannian manifold M
n+1

endowed with a vector field K

and establishing the corresponding notion of mean curvature flow soliton. In particular, when

M
n+1

is a Riemannian warped product of the type I ×ρ M
n and K = ρ(t)∂t, they applied weak

maximum principles to guarantee that a complete n-dimensional mean curvature flow soliton is

a slice of M
n+1

. Similar to what was done in Chapter 3, we have obtained results regarding

rigidity and the non-existence of solitons for the mean curvature flow in warped Riemannian
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models.

In some of the results obtained in Chapter 3, we used the weighted Laplacian operator as

an analytical mechanism to achieve the desired outcomes, regardless of the presence of a weight

function in the environment. However, in the last section of this thesis, we focused on presenting

results obtained in environments weighted by a positive and integrable function φ.

Into the branch of the geometric analysis, many problems lead us to consider Riemannian

manifolds endowed with a measure that has a smooth positive density with respect to the

Riemannian one. This turns out to be compatible with the metric structure of the manifold and

the resulting spaces are the weighted manifolds, which are also called manifolds with density

or smooth metric measure spaces in the current literature. More precisely, given a complete

n-dimensional Riemannian manifold (Mn, g) and a smooth function φ : Mn → R, the weighted

manifold Mn
ϕ associated to Mn and φ is the triple (Mn, g, dµ = e−ϕdM), where dM denotes the

standard volume element of Mn.

Appearing naturally in the study of self-shrinkers, Ricci solitons, harmonic heat flows and

many others, weighted manifolds are proved to be important nontrivial generalizations of Rie-

mannian manifolds and, nowadays, there are several geometric investigations concerning them.

For a brief overview of results in this scope, we refer the articles of Morgan [119] and Wei-

Wylie [146].

We point out that a theory of Ricci curvature for weighted manifolds goes back to Lich-

nerowicz [112, 113] and it was later developed by Bakry and Émery in their seminal work [45].

In this setting, as a crucial ingredient to understand the geometry of a weighted manifold Mn
ϕ ,

they introduced the so-called Bakry-Émery-Ricci tensor Ricϕ as being the following extension

of the standard Ricci tensor Ric of Mn:

Ricϕ = Ric + Hessφ. (6)

Consequently, it is natural to try to extend results stated in terms of the Ricci curvature to

analogous results for the Bakry-Émery-Ricci tensor.

On the other hand, it is well known that conformal Killing vector fields are important objects

which have been widely used in order to understand the geometry of submanifolds immersed

in Riemannian spaces. In this setting, Montiel [115] studied constant mean curvature compact

hypersurfaces immersed in warped products of the type R×ρM
n and S

1×ρM
n. We observe that

such class of warped products are endowed with a globally defined conformal Killing vector field

given by ρ∂t, where ∂t stands for the unit vector field tangent to either R or S1. By supposing

that such hypersurfaces are locally graphs on Mn, Montiel proved that (up to exceptional well-

understood cases) they must be slices {t} ×Mn.

Later on, this thematic was revisited in [25] by Aĺıas and Dajczer, where they general-

ized Montiel’s results considering complete, not necessarily compact, hypersurfaces immersed in

R×ρ M
n. Afterwards, Henrique de Lima together with Caminha [62] and later Aquino [20] in-

vestigated the uniqueness of complete vertical graphs with constant mean curvature in a warped

product I ×ρ Mn. Under suitable restrictions on the values of the mean curvature and the
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norm of the gradient of the height function, they obtained uniqueness theorems concerning to

such graphs. Next, Rosenberg, Schulze and Spruck [134] showed that an entire minimal graph

with nonnegative height function in a product space R×Mn, whose fiber Mn is complete with

nonnegative Ricci curvature and sectional curvature bounded from below, must be a slice. Af-

terwards, the Henrique de Lima et al. [19, 74] obtained some other sufficient conditions which

assure that a complete two-side hypersurface immersed in a product space R×Mn, whose fiber

Mn has sectional curvature bounded from below, is a slice of the ambient space, provided that

its angle function has some suitable behavior.

More recently, Araujo, de Lima and Velasquez in [29] investigated n-dimensional submani-

folds immersed in I ×ρ M
n+p, whose warping function ρ has convex logarithm. Assuming that

such a submanifold ψ : Σn → I ×ρ M
n+p is either closed, stochastically complete or complete

with nonnegative Ricci curvature, and that its support function ⟨H⃗, ∂t⟩ is constant (where H⃗

stands for the mean curvature vector field of ψ), they proved that ψ(Σ) must be contained in a

slice of the ambient space. As a consequence of their rigidity results, when p = 1 they obtained

nonexistence results concerning minimal submanifolds immersed in such an ambient space.

We conclude this thesis by dedicating ourselves to the study of complete n-dimensional

submanifolds immersed in a weighted warped product of the form I×ρM
n+p
ϕ , where the warping

function ρ is logarithmically convex and the weight function φ does not depend on the real

parameter t ∈ I. Assuming the constancy of an appropriate support function involving the mean

curvature vector field φ of such a submanifold Σn, along with suitable constraints on the Bakry-

Émery-Ricci tensor of Σn, we prove that it must be contained in a slice of the ambient space.

As applications, we obtain codimension reductions and Bernstein-type results for complete φ-

minimal bounded multigraphs constructed on the n-dimensional Gaussian space. Our approach

relies on the generalized weak maximum principle of Omori-Yau and Liouville-type results for

the drift Laplacian.
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[2] J.G. Araújo, de Lima, H.F. and W.F. Gomes, Uniqueness and nonexistence of complete spacelike hypersur-

faces, Calabi-Bernstein type results and applications to Einstein-de Sitter and steady state type spacetimes,

Rev. Mat. Complut. 34 (2021), 653–673. https://doi.org/10.1007/s13163-020-00375-7
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complete spacelike hypersurfaces
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Chapter 1

Preliminaries for Part I

The Generalized Robertson-Walker (GRW) spacetime is one of the simplest and most impor-

tant models in modern cosmology. It is a generalization of the Robertson-Walker (RW) model,

which describes a homogeneous and isotropic universe on a large scale. The GRW model in-

troduces a warping function, which describes the spatial curvature of the universe on a smaller

scale than the cosmological scale. This warping function is responsible for describing the warped

product structures present in the GRW model.

Since its introduction, the GRW model has been widely studied in cosmology and general

relativity theory. In this section, we will present some of the basic concepts of the GRW space-

time, with an emphasis on its warped product structure. The main theoretical results will be

discussed, including exact solutions for the GRW model, as well as a detailed analysis of its

geometric and physical properties. In this chapter, for the sake of clarity we shall introduce

several useful the nitions and notations that will appear throughout Part I of this thesis.

1.1 Generalized Robertson Walker spacetimes

In this setting, we beginning by establishing the notations which will appear in forthcomings

Chapters 2, 3 and 4. Let (Mn, gM) be a connected, n-dimensional, oriented Riemannian man-

ifold, I ⊂ R an open interval and ρ : I → R a positive smooth function. Also, in the product

manifold M
n+1

= I ×Mn furnished with the Lorentzian metric

g = −π∗

I (dt
2) + ρ2(πI)π

∗

M(gM),

where πI and πM are the projections onto the factors I and Mn, respectively, is a Lorentzian

warped product with warping function ρ and fiber M . Along this work, we will simply write

M
n+1

= −I ×ρ M
n. (1.1)
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Figure 1.1: Representation of the Lorentzian warped product

A standard computation shows that K = ρ(t)∂t, where πI(p) = t, is a conformal closed vector

field globally defined on M , where ∂t stands for the coordinate timelike vector field tangent to

I (see [123] for details).

According to the nomenclature established in [9], we say thatM
n+1

is a generalized Robertson

Walker (GRW) spacetime with warping function ρ and Riemannian fiber Mn. When Mn has

constant sectional curvature, (1.1) has been known in the mathematical literature as a Robertson-

Walker (RW) spacetime, an allusion to the fact that, for n = 3 and certain cases of warping

functions ρ, it is an exact solution of Einstein’s field equations (see, for instance, [53, Corollary

9.107] or [123, Chapter 12]).

Let Σn be an n-dimensional connected manifold. A smooth immersion ψ : Σn → M
n+1

is

said to be a spacelike hypersurface if Σn, furnished with the metric g induced from g via ψ,

is a Riemannian manifold. We will denote by ∇ the Levi-Civita connection of g. Since M is

time-orientable, it follows from the connectedness of Σn that one can uniquely choose a globally

defined timelike unit vector field N is normal, having the same time-orientation of ∂t, that is,

such that g(N, ∂t) < 0. In this case, one says that N is the future-pointing Gauss map of Σn

and will always assume such a timelike orientation for Σn. From the inverse Cauchy-Schwarz

inequality (see [123, Proposition 5.30]), we have that g(N, ∂t) ≤ −1, with the equality holding

at a point p ∈ Σn if, and only if, N = ∂t at p. From the relationship between the Levi-Civita

connections of M and those of I and Mn (see [123, Proposition 7.35]), it follows that

∇VK = ρ′(πI)V, (1.2)

for all V ∈ X(M), where ∇ is the Levi-Civita connection of g defined in (1.1).

Throughout this paper, given a spacelike hypersurface ψ : Σn →M
n+1

and its future-pointing

Gauss map N , we will consider the Weingarten operator A : X(Σ) → X(Σ), which is defined
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by AX = −∇XN , and the mean curvature function H = − 1
n
trace(A), which will be called the

future mean curvature of Σn.

Remark 1.1.1. For a fixed t0 ∈ I, we orient the slice Σn
t0
= {t0}×Mn using the field of normal

vectors ∂t. According to Example 5.6 in [10] we have that the slice has constant future mean

curvature H = ρ′(t0)
ρ(t0)

with respect to N = ∂t.

Now, we consider two particular functions naturally attached to a spacelike hypersurface Σn

into a GRW spacetime M
n+1

= −I ×ρ M
n, namely, the height function denoted by h, is the

restriction of the projection πI(t, y) = t to Σn, that is, h : Σn → I is given by

h = πI |Σn = πI ◦ ψ. (1.3)

Thus, the hyperbolic angle Θ of Σn verifies

Θ = ⟨N, ∂ t⟩ ≤ −1, (1.4)

where N denotes the future-pointing Gauss map of Σn.

Figure 1.2: GRW representation with angle and height functions

Moreover, the equality Θ = −1 holds if and only if N = ∂t, that is, Σ
n is an open portion of

a slice. A simple computation shows that

∇πI = −g(∇πI , ∂t)∂t = −∂t. (1.5)

So, from (1.5) we have

∇h = (∇πI)
⊤ = −∂⊤t = −∂t −ΘN. (1.6)
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Thus, (1.6) gives the following relation

|∇h|2 = Θ2 − 1, (1.7)

where | . | stands for the norm of a tangent vector field on Σn in the metric g. Concerning

relation (1.7), we have that h is constant if and only if Σn is an open portion of a slice.

On the other hand, from (1.2) we have that

∇V ∂t =
ρ′(πI)

ρ(πI)
{V + ḡ(V, ∂t)∂t}. (1.8)

Hence, from (1.6) and (1.8) we deduce that, for any X ∈ X(Σ), the Hessian of h in the metric

g is given by

∇2h(X,X) = g(∇X∇h,X) (1.9)

= −
ρ′(h)

ρ(h)
{|X|2 + g(X,∇h)2}+ g(AX,X)Θ.

Hence, from (1.9) we obtain that the Laplacian of h in the metric g is (see, for instance, [12,

Lemma 4.1] or [62, Proposition 3.2])

∆h = −
ρ′(h)

ρ(h)
{n+ |∇h|2} − nHΘ. (1.10)

We conclude this section by recalling the convergence condition of a GRW spacetime which

was introduced by Aĺıas and Colares [12]. We say that a GRW spacetime M
n

obeys the strong

null convergence condition (SNCC) if the sectional curvature KM of the Riemannian fiber Mn

obeys the relation

KM ≥ sup
I

(ρρ′′ − ρ′2). (1.11)

1.2 Spacelike mean curvature flow solitons in GRW space-

times and examples

Spacelike mean curvature flow solitons are solutions to the mean curvature flow equation,

which describes the evolution of a hypersurface in spacetime under its mean curvature. In GRW

spacetimes, which are a class of spacetimes with a warped product structure, there exist certain

spacelike hypersurfaces that are invariant under the flow and are known as solitons.

These solitons have been studied in the context of cosmology and general relativity, and their

properties have been investigated in terms of their geometry and physical significance. They are

important because they provide insight into the dynamics of spacetime in the presence of matter

and energy, and their study can lead to a better understanding of the nature of the universe.

Overall, the study of Spacelike mean curvature flow solitons in GRW spacetimes is an active

area of research in cosmology and general relativity.
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We recall that the spacelike mean curvature flow Ψ : [0, T ) × Σn → M
n+1

of a spacelike

hypersurface ψ : Σn → M
n+1

in a (n + 1)-dimensional Lorentzian manifold M
n+1

, satisfying

Ψ(0, ·) = ψ(·), looks for solutions of the equation

∂Ψ

∂t
= nH⃗,

where H⃗(t, ·) is the (non-normalized) mean curvature vector of Σn
t = Ψ(t,Σn) (see, for in-

stance, [111]). In our context, according to [27, Definition 1.1] and [69, Definition 1.1], a space-

like hypersurface ψ : Σn → M
n+1

immersed in a GRW spacetime M
n+1

= −I ×ρ M
n is said a

spacelike mean curvature flow soliton with respect to K = ρ(t)∂t and with soliton constant c ∈ R

if its (non-normalized) future mean curvature function satisfies

H = cρ(h)Θ. (1.12)

In fact, considering that Ψ is a self-similar mean curvature flow with respect to some vector

fieldX, we can reason as in [27, Proposition 2.1] to deduce that the corresponding mean curvature

vector satisfies

H⃗ = cX⊥,

for some constant c ∈ R. In our setting, X is equal to K = ρ(t)∂t and, hence, assuming that

ψ : Σn → M
n+1

satisfies equation (1.12) means that it is a solution of the mean curvature flow

evolution equation.

Adopting the terminology introduced in [27] and [69], we will also consider the soliton function

ζc(t) = nρ′(t) + cρ2(t). (1.13)

So, each slice Mt∗ = {t∗} × Mn is a spacelike mean curvature flow soliton with respect to

K = ρ(t)∂t and with soliton constant c given by

c = −n
ρ′(t∗)

ρ(t∗)2
. (1.14)

Moreover, t∗ is implicitly given by the condition ζc(t∗) = 0.

We finished this section quoting important examples which will be addressed along the next

sections.

Example 1.2.1. In a similar way of [79], for the Lorentzian product space −I×Mn, from (1.14)

we get that the slices {t}×Mn are spacelike mean curvature flow solitons with soliton constant

c = 0 with respect to vector field K = ∂ t. Similarly to what happens in the Minkowski space

R
n+1

1 = −R× R
n, such solitons are called spacelike translating solitons.

Example 1.2.2. As in [13, Section 4], the future temporal cone Λ+ of the Minkowski space Rn+1

1
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is defined as being the following set

Λ+ = {x ∈ R
n+1
1 : ⟨x, x⟩ < 0 and ⟨x, e1⟩ < 0},

where e1 = (1, 0, · · · , 0). We observe that Λ+ can be regarded as the following GRW spacetime

−R
+ ×t H

n,

where H
n = {x ∈ R

n+1
1 : ⟨x, x⟩ = −1, x1 > 0} denotes the n-dimensional hyperbolic space.

Indeed, it is not difficult to verify that the map Φ : −R
+ ×t H

n → Λ+, given by Φ(t, x) = tx, is

an isometry. In this setting, we have that the slices {
√

−n

c
} ×H

n are spacelike mean curvature

flow solitons with soliton constant c < 0 with respect to vector field K = t∂ t.

Example 1.2.3. The 4-dimensional Einstein-de Sitter spacetime −R
+ ×

t
2

3
R

3, where R
3 stands

for the 3-dimensional Euclidean space endowed with its canonical metric, is a classical exact

solution to the Einstein field equation without cosmological constant. It is an open Friedmann-

Robertson-Walker model, which incorporates homogeneity and isotropy (the cosmological princi-

ple) and permitted expansion (for more details, see [123, Chapter 12]). Here, we consider the

(n+1)-dimensional Einstein-de Sitter spacetime −R
+×

t
2

3
R

n. From (1.14) we conclude that the

slice {(−2n

3c
)
3

5} × R
n is the only one that is a spacelike mean curvature flow soliton with respect

to K = t
2

3∂t and with soliton constant c < 0.

Example 1.2.4. According to the terminology introduced by Albujer and Aĺıas [4], a GRW

spacetime −R ×et M
n is called a steady state type spacetime. This terminology is due to the

fact that the steady state model of the universe H4, proposed by Bondi-Gold [54] and Hoyle [100]

when looking for a model of the universe which looks the same not only at all points and in all

directions (that is, spatially isotropic and homogeneous) but also at all times, is isometric to the

RW spacetime −R ×et R
3 (for more details, see [96]). From (1.14) we conclude that the slice

{log(−n

c
)} ×Mn is the only one that is a spacelike mean curvature flow soliton with respect to

K = et∂t and with soliton constant c < 0.

Example 1.2.5. From [115, Example 4.2], the (n + 1)-dimensional de Sitter space S
n+1
1 is

isometric to the RW spacetime −R×cosh t S
n, where S

n denotes the n-dimensional unit Euclidean

sphere endowed with its standard metric. Taking into account the terminology introduced in [17],

the open half-space R
+ × S

n ⊂ S
n+1
1 (respect. R− × S

n ⊂ S
n+1
1 ) is called the chronological future

(respect. past) of Sn+1
1 with respect to the totally geodesic equator {0} × S

n. From (1.14) we

see that the equator is a spacelike mean curvature flow soliton with respect to K = cosh t ∂t and

constant soliton c = 0 and the slices {sinh−1(−n±
√
n2−4c2

2c
)} × S

n are spacelike mean curvature

flow soliton with respect to K = cosh t ∂t and with soliton constant 0 < |c| ≤ n

2
.

Example 1.2.6. Taking into account once more [115, Example 4.2], we consider the open re-

gion of S
n+1
1 which is isometric to the RW spacetime −R

+ ×sinh t H
n, where H

n denotes the

n-dimensional hyperbolic space endowed with its standard metric. From (1.14) we have that
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the slices {cosh−1(−n−
√
n2+4c2

2c
)} × H

n are spacelike mean curvature flow soliton with respect to

K = sinh t ∂t and with soliton constant c < 0.

Example 1.2.7. Motivated by [115, Example 4.3], we will consider the open subset of the (n+1)-

dimensional anti-de Sitter space Hn+1

1 which is isometric to the RW spacetime −(−π
2
, π
2
)×cos tH

n.

In analogy with the nomenclature of the de Sitter space, the open half-space (0, π
2
)×H

n ⊂ H
n+1

1

(respect. (−π
2
, 0) × H

n ⊂ H
n+1

1 ) will be called the chronological future (respect. past) of Hn+1

1

with respect to the totally geodesic equator {0} × H
n. From (1.14) we see that the equator is

a spacelike mean curvature flow soliton with respect to K = cos t ∂t and constant soliton c = 0

and the slices {sin−1(−n±
√
n2+4c2

2c
)} × H

n are spacelike mean curvature flow soliton with respect

to K = cos t ∂t and with soliton constant c ̸= 0.

1.3 Standard static spacetimes

When we set out to describe a generic spacetime, the Alice in Wonderland quality of the

experience is partly because coordinate invariance allows our time and distance scales to be

arbitrarily rescaled, but also partly because the landscape can change from one moment to the

next. The situation is drastically simplified when the spacetime has a timelike Killing vector.

Such a spacetime is said to be stationary. Two examples are flat spacetime and the spacetime

surrounding the rotating earth (in which there is a frame-dragging effect). Non-examples include

the solar system, cosmological models, gravitational waves, and a cloud of matter undergoing

gravitational collapse.

Although the standard static space is an environment whose metric has Lorentzian properties,

we prefer to introduce the reader to the correct preliminaries only now, in the next section,

instead of reporting on them together in section 1.1.

In this context, we cite some basic concepts, properties and examples concerning standard

static spacetimes, which will be used and addressed in the next sections.

Let M
n+1

be an (n+1)-dimensional Lorentz manifold endowed with a timelike Killing vector

field K. Suppose that the distribution D orthogonal to K has constant rank and it is integrable.

We denote by Ψ : Mn × I → M
n+1

the flow generated by K, where Mn is an arbitrarily fixed

spacelike integral leaf of D labeled as t = 0, which we will suppose to be connected, and I is the

maximal interval of definition. Without lost of generality, in what follows we will also consider

I = R.

In this setting, M
n+1

can be regard as the standard static spacetime Mn ×ρ R1, that is, the

product manifold Mn × R endowed with the standard static metric

g = π⋆
M(gM)− (ρ ◦ πM)2π⋆

R
(dt2), (1.15)

where πM and πR denote the canonical projections from Mn × R onto each factor, gM is the

induced Riemannian metric on the Riemannian base Mn, R1 is the manifold R endowed with the

metric −dt2 and ρ ∈ C∞(M) is the warping function, which is given by ρ = |K| =
√

−g(K,K),
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where | | denotes the norm of a vector field on M
n+1

. In particular, when ρ ≡ 1, the resulting

standard static spacetime (M
n+1

, g) is just a Lorentzian product space with factors (Mn, gM)

and (R,−dt2).

In what follows, we quote some classical examples of standard static spacetimes, where our

results obtained in the next sections can be applied.

Example 1.3.1. Our first example is given by the Lorentz-Minkowski spacetime L
n+1, which

is isometric to the warped product (Rn × R1 , π
∗

Rn(gRn) + π∗

R
(−dt2) ).

Example 1.3.2. The Einstein static universe ( Sn × R1 , π
∗

Sn
(gSn) + π∗

R
(−dt2) ) is also a standard

static space (see Example 5.11 of [48]).

Example 1.3.3. The exterior Schwarzschild spacetime is defined as follows: Let R
4 be given

coordinates (t, r, θ, φ), where (r, θ, φ) are the usual spherical coordinates on R
3. Given a positive

constant m, the exterior Schwarzschild spacetime is defined on the subset r > 2m of R4, a

subset which is topologically R
2 × S

2. The Schwarzschild metric for the region r > 2m is given

in (t, r, θ, φ) coordinates by

ds2 = −

(

1−
2m

r

)

dt2 +

(

1−
2m

r

)−1

dr2 + r2
(

dθ2 + sin2 θdφ2
)

.

Since the metric for this spacetime is invariant under time translations t → t+a, the coordinate

vector field ∂/∂t is a (globally defined) timelike Killing vector field (see Section 5.2 of [48] and

Chapter 13 of [123]). Consequently, the exterior Schwarzschild spacetime is a standard static

spacetime.

Example 1.3.4. A model that also presents static regions (which appeared shortly after the

Schwarzschild spacetime) is the Reissner-Nordström spacetime, whose metric in (t, r, θ, φ) coor-

dinates admits the representation

ds2 = −

(

1−
2m

r
+

e2

r2

)

dt2 +

(

1−
2m

r
+

e2

r2

)−1

dr2 + r2
(

dθ2 + sin2 θdφ2
)

.

This metric has singularities in r = 0, r = r+ and r = r−, where r± = m± (m2 − e2)1/2, and in

regions corresponding to +∞ > r > r+ and r− > r > 0 we have that the Reissner-Nordström

spacetime is static (see Section 5.5 of [95]).

1.4 Entire spacelike graphs

Before we start on the results properly, we need to recall some basic facts related to these

spacelike graphs.

Let Ω ⊆ Mn be a connected domain and let u ∈ C∞(Ω) be a smooth function such that

u(Ω) ⊆ I, then Σn(u) will denote the (vertical) graph over Ω determined by u, that is,

Σ(u) = {(u(p), p) : p ∈ Ω} ⊂ M
n+1

= −I ×ρ M
n.

27



The graph is said to be entire if Ω = Mn. Observe that h(u(p), p) = u(p), p ∈ Ω. Hence, h and

u can be identified in a natural way. The metric induced on Ω from the Lorentzian metric g

defined in (1.1) via Σ(u) is

gu = −du2 + ρ2(u)gM . (1.16)

It can be easily seen that a graph Σ(u) is a spacelike hypersurface if and only if |Du|M < ρ(u),

where Du stands for the gradient of u inM and |Du|M its norm, both with respect to the metric

gM . On the other hand, in the case where Mn is a simply connected manifold, from [9, Lemma

3.1] we have that every complete spacelike hypersurface ψ : Σn → −I ×ρ M
n such that the

warping function ρ is bounded on Σn is an entire spacelike graph over Mn. In particular, this

happens for complete spacelike hypersurfaces lying in a closed solid cylinder over Mn.

Remark 1.4.1. Also pointing out that, in contrast to the case of graphs into a Riemannian space,

an entire spacelike graph Σ(u) in a GRW spacetime is not necessarily complete, in the sense that

the induced Riemannian metric (1.16) is not necessarily complete on Mn. For instance, Albujer

constructed explicit examples of noncomplete entire maximal spacelike graphs (that is, whose

mean curvature is identically zero) in the Lorentzian product space −R×H
2 (see [3, Section 3]).

The future-pointing Gauss map of a spacelike graph Σ(u) over Ω is given by the vector field

N(p) =
ρ(u(p))

√

ρ2(u(p))− |Du(p)|2M

(

∂t|(u(p),p) +
Du(p)

ρ2(u(p))

)

, p ∈ Ω. (1.17)

The Weingarten operator related to the future-pointing Gauss map (1.17) is given by

AX =−
1

ρ(u)
√

ρ2(u)− |Du|2M
DXDu−

ρ′(u)
√

ρ2(u)− |Du|2M
X

+

(

−gM(DXDu,Du)

ρ(u) (ρ2(u)− |Du|2M)
3/2

+
ρ′(u)gM(Du,X)

(ρ2(u)− |Du|2M)
3/2

)

Du,

(1.18)

for any vector field X tangent to Ω, where D denotes the Levi-Civita connection of (Mn, gM).

Consequently, if Σ(u) is a spacelike graph defined over a domain Ω ⊆ Mn, it is not difficult to

verify from (1.18) that the future mean curvature function H(u) of Σ(u) is given by the following

nonlinear differential equation:

H(u) = divM

(

Du

nρ(u)
√

ρ2(u)− |Du|2M

)

+
ρ′(u)

n
√

ρ2(u)− |Du|2M

(

n+
|Du|2M
ρ2(u)

)

, (1.19)

where divM stands for the divergence operator computed in the metric gM .
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1.5 Omori-Yau maximum principle, Liouville type results

and maximum principle for complete non compact

manifolds

We initiate quoting the generalized maximum principle of Omori [122] and Yau [147] (see

also [16] for a modern and accessible reference to the generalized maximum principle of Omori-

Yau).

Lemma 1.5.1. Let Σn be an n-dimensional complete Riemannian manifold whose Ricci curva-

ture is bounded from below and let u ∈ C∞(Σ) be a smooth function which is bounded from above

on Σn. Then there exists a sequence of points {pk}k≥1 in Σn such that

lim
k

u(pk) = sup
Σ

u, lim
k

|∇u(pk)| = 0 and lim sup
k

∆u(pk) ≤ 0.

It is not difficult to see that Lemma 1.5.1 is equivalent to the following one.

Lemma 1.5.2. Let Σn be an n-dimensional complete Riemannian manifold whose Ricci curva-

ture is bounded from below and let u ∈ C∞(Σ) be a smooth function which is bounded from below

on Σn. Then there exists a sequence of points {pk}k≥1 in Σn such that

lim
k

u(pk) = inf
Σ

u, lim
k

|∇u(pk)| = 0 and lim inf
k

∆u(pk) ≥ 0.

We will continue this subsection by citing an extension of Hopf’s theorem on a complete

Riemannian manifold (Σn, g) due to Yau in [148]. For this, we will adopt the following notation

Lp
g(Σ) := {u : Σn → R :

∫
Σ

|u|pdΣ < +∞},

where dΣ stands for the measure defined from the metric g.

Lemma 1.5.3. Let u be a smooth function defined on a complete Riemannian manifold (Σn, g),

such that ∆u does not change sign on Σn. If |∇u| ∈ L1
g(Σ), then ∆u vanishes identically on Σn.

Lemma 1.5.4. If u is a nonnegative smooth subharmonic function defined on (Σn, g), with

u ∈ Lp
g(Σ) for some p > 1, then u must be constant.

Lemma 1.5.5. All complete noncompact Riemannian manifolds with nonnegative Ricci curva-

ture have at least linear volume growth.

Next we shall devote ourselves to presenting the analytical tool that will be used to establish

our rigidity results in the next ones. For this, let (Σn, g) be a complete noncompact Riemannian

manifold and let d( · , o) : Σn → [0,+∞) denote the Riemannian distance of (Σn, g), measured

from a fixed point o ∈ Σn. We say that a smooth function u ∈ C∞(Σ) converges to zero at

infinity when it satisfies the following condition

lim
d(x,o)→+∞

u(x) = 0. (1.20)
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Keeping in mind this concept, the following lemma corresponds to item (a) of [21, Theorem 2.2].

We also need the following definition which is inspired in (1.20): Given a complete noncom-

pact Riemannian immersion ψ : Σn
↬ −I ×ρ M

n and t∗ ∈ I, we say that a function u defined

on Σn converges from below (above) to t∗ at infinity when u ≤ t∗ (u ≥ t∗) and the function

ũ := u− t∗ converges to zero at infinity.

Lemma 1.5.6. Let (Σn, g) be a complete noncompact Riemannian manifold and let X ∈ X(Σ) be

a vector field on Σn. Assume that there exists a nonnegative, non-identically vanishing function

u ∈ C∞(Σ) which converges to zero at infinity and such that g(∇u,X) ≥ 0. If divgX ≥ 0 on

Σn, then g(∇u,X) ≡ 0 on Σn.

For our purpose, we will also need to quote a suitable maximum principle that will be

used to prove our nonexistence results. For this, let (Σn, g) be a connected, oriented, complete

noncompact Riemannian manifold. We denote by B(p, t) the geodesic ball centered at p and with

radius t. Given a polynomial function σ : (0,+∞) → (0,+∞), we say that Σn has polynomial

volume growth like σ(t) if there exists p ∈ Σn such that

vol(B(p, t)) = O(σ(t)),

as t → +∞, where vol denotes the standard Riemannian volume related to the metric g. As it

was already observed in the beginning of Section 2 in [11], if p, q ∈ Σn are at distance d from

each other, we can verify that

vol(B(p, t))

σ(t)
≥

vol(B(q, t− d))

σ(t− d)
.
σ(t− d)

σ(t)
.

So, the choice of p in the notion of volume growth is immaterial. For this reason, we will just

say that Σn has polynomial volume growth.

Keeping in mind this previous digression, we close this section quoting the following key

lemma which corresponds to a particular case of a new maximum principle due to Aĺıas, Caminha

and do Nascimento (see [11, Theorem 2.1]).

Lemma 1.5.7. Let (Σn, g) be a connected, oriented, complete noncompact Riemannian manifold,

and let u ∈ C∞(Σ) be a nonnegative smooth function such that ∆u ≥ au on Σn, for some positive

constant a ∈ R. If Σn has polynomial volume growth and |∇u| is bounded on Σn, then u vanishes

identically on Σn.
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Chapter 2

Uniqueness and nonexistence results in

GRW spacetimes

In this chapter, we obtain a apply the generalized maximum principle of Omori-Yau [122,147],

as well as other maximum principles due to Yau in [148], in order to obtain new uniqueness and

nonexistence results concerning complete spacelike hypersurfaces in a GRW spacetime. This is

made through the assumption of the strong null convergence condition (SNCC) and appropri-

ate constraints on the warping function ρ and on the future mean curvature of the spacelike

hypersurface. The results presented in this chapter make part of [31].

2.1 A computational lemma

Considering a spacelike hypersurface Σn in a GRW spacetime M
n+1

= −I ×ρ M
n obey-

ing (1.11), the next lemma gives sufficient conditions to the Ricci curvature of Σn with respect

to the conformal metric ĝ = 1
ρ(h)2

g be bounded from below. Besides technical reasons to use this

conformal metric ĝ, we point out the following geometric meaning of ĝ: We can write g∗ = 1
ρ(t)2

g,

where g∗ = − 1
ρ(t)2

dt2 + gM is the product Lorentzian metric −ds2 + gM in J ×Mn, being J the

open interval obtained from the change ds = 1
ρ(t)

dt, and considering the Riemannian metric on

Σn induced from g∗.

In what follows, we will suppose that Σn is contained in a timelike bounded region Mn, that

is,

Bt1,t2 := {(t, p) ∈ −I ×ρ M
n : t1 ≤ t ≤ t2 and p ∈ Mn}.

We also recall that a spacelike hypersurface has bounded second fundamental form when the

Hilbert-Schmidt norm of its Weingarten operator is bounded.
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Figure 2.1: Representation of the timelike bounded region

Lemma 2.1.1. Let M
n+1

= −I ×ρ M
n be a GRW spacetime satisfying the SNCC (1.11) and

let ψ : Σn → M
n+1

be a spacelike hypersurface contained in Bt1,t2 ⊂ M
n+1

. If the second

fundamental form and the angle function Θ are bounded, then the Ricci curvature R̂ic of Σn with

respect to the conformal metric ĝ :=
1

ρ2(h)
g is bounded from below.

Proof. We recall that the curvature tensor R of Σn can be described in terms of its Weingarten

operator A : X(Σ) → X(Σ) and the curvature tensor R of the ambient −I×ρM
n by the so-called

Gauss’ equation given by

g(R(X, Y )Z,W ) = ḡ(R(X, Y )Z,W )− g(AX,Z)g(AY,W ) + g(AX,W )g(AY,Z), (2.1)

for every tangent vector fields X, Y, Z ∈ X(Σ). Here, as in [123], the curvature tensor R is given

by

R(X, Y )Z = ∇[X,Y ]Z − [∇X ,∇Y ]Z,

where [ , ] denotes the Lie blanket and X, Y, Z ∈ X(Σ).

Let us consider X ∈ X(Σ) and take a (local) orthonormal frame {E1, · · · , En}. It follows

from Gauss equation (2.1) that the Ricci curvature Ric of Σn with respect to the induced metric

g satisfies

Ric(X,X) ≥
∑

i

ḡ(R(X,Ei)X,Ei)−
n2H2

4
|X|2. (2.2)

To estimate the first summand on the right-hand side of (2.2), let us consider X∗ = (πM)∗(X)
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and E∗

i
= (πM)∗(Ei). So, from [123, Proposition 7.42] and (1.6) we have

∑

i

ḡ(R(X,Ei)X,Ei) =
∑

i

g(RM(X∗, E∗

i
)X∗, E∗

i
) + (n− 1)((log ρ)′(h))2|X|2 (2.3)

−(n− 2)(log ρ)′′(h)g(X,∇h)2 − (log ρ)′′(h)|∇h|2|X|2,

where RM denotes the curvature tensor of Mn. By writing X∗ = X + ḡ(X, ∂t)∂t , we can easily

estimate the first summand on the right-hand side of (2.3) to get

∑

i

g(RM(X∗, E∗

i
)X∗, E∗

i
) = ρ2(h)(|X∗|2

M
|E∗|2

M
− g(X∗, E∗)2

M
)KM(X∗, E∗)

≥
1

ρ2(h)
((n− 1)|X|2 + |∇h2||X|2 (2.4)

+(n− 2)g(X,∇h)2)min
i

KM(X∗, E∗

i
).

Consequently, since our ambient space obeys (1.11), from (2.4) we have that

∑

i

g(RM(X∗, E∗

i
)X∗, E∗

i
) ≥ ((n− 1)|X|2 + |∇h|2 (2.5)

+(n− 2)g(X,∇h)2)(log ρ)′′(h)

Substituting (2.5) into (2.3), we get

∑

i

ḡ(R(X,Ei)X,Ei) ≥ ((n− 1)|X|2 + |∇h|2 + (n− 2)g(X,∇h)2)(log ρ)′′(h)

+(n− 1)((log ρ)′(h))2|X|2 (2.6)

−(n− 2)(log ρ)′′(h)g(X,∇h)2 − (log ρ)′′(h)|∇h|2|X|2

= (n− 1)
ρ′′(h)

ρ(h)
|X|2.

Then, taking into account that |A|2 ≥ nH2, from (2.2) and (2.6) we reach at

Ric(X,X) ≥ −

(
(n− 1)

|ρ′′(h)|

ρ(h)
+

n|A|2

4

)
|X|2. (2.7)

On the other hand, we have the following equation (see, for instance, [53, Section 1J], [110,

Section A] or [140, page 168])

R̂ic(X,X) = Ric(X,X) +
1

ρ(h)2

{
(n− 2)ρ(h)∇2ρ(h)(X,X) (2.8)

+(ρ(h)∆ρ(h)− (n− 1)|∇ρ(h)|2)|X|2
}
.
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Consequently, from equation (2.8) we get

R̂ic(X,X) = Ric(X,X) +
1

ρ2(h)

{
(n− 2)ρ(h)(ρ′′(h)g(∇h,X)2 + ρ′(h)∇2h(X,X)) (2.9)

+(ρ(h)(ρ′′(h)|∇h|2 + ρ′(h)∆h)− (n− 1)(ρ′(h))2|∇h|2)|X|2
}
.

Hence, considering (1.7), (1.9), (1.10) and (2.7) into (2.9), we obtain after a straightforward

computation the following lower estimate

R̂ic(X,X) ≥
{
(n− 1)

(ρ′(h))2

ρ(h)
− (n− 1)

( |ρ′′(h)|
ρ(h)

+ (n+ 1)
(ρ′(h))2

ρ2(h)

)
Θ2 (2.10)

−(n−
√
n− 2)

|ρ′(h)|
ρ(h)

|A||Θ| − n|A|2
4

}
|X|2.

Therefore, taking into account that |A| and |Θ| are bounded and that Σn lies in Bt1,t2 , from

(2.10) we conclude that R̂ic is bounded from below.

Remark 2.1.2. We note that if we change the assumption SNCC to the NCC in Lemma 2.1.1,

then the conclusion on ĝ does not remain true.

2.2 Statements and proofs of the main results

2.2.1 Uniqueness under Omori-Yau’s generalized maximum principle

So, we are in position to present our first uniqueness result.

Theorem 2.2.1. Let M
n+1

= −I ×ρ M
n be a GRW spacetime satisfying the SNCC (1.11) and

let ψ : Σn → M
n+1

be a complete spacelike hypersurface lying in Bt1,t2 ⊂ M
n+1

, with ρ′(t) > 0

for all t1 ≤ t ≤ t2. Suppose that the second fundamental form is bounded, and that the future

mean curvature H and the angle function Θ satisfy

H ≤ −ρ
′(h)

ρ(h)
Θ. (2.11)

If the height function h is such that

|∇h| ≤ inf
Σ

∣∣∣∣
ρ′(h)

ρ(h)
−H

∣∣∣∣ , (2.12)

then Σn is a slice of M
n+1

.

Proof. As before, let us consider on Σn the metric ĝ =
1

ρ2(h)
g, which is conformal to its induced

metric g. Denoting by ∆̂ the Laplacian with respect to the metric ĝ, from (1.7) and (1.10) we

have

∆̂h = −ρ(h)ρ′(h){n+ (n− 1)|∇h|2} − nHρ(h)2Θ. (2.13)
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Thus, from (2.13) we get

∆̂ρ(h) = −nρ(h)(ρ′(h))2 − nHρ′(h)ρ2(h)Θ

+ρ3(h){(log ρ)′′(h)− (n− 2)
(ρ′(h))2

ρ2(h)
}|∇h|2. (2.14)

For any positive real number α, with a straightforward computation from (2.14) we get

obtain

∆̂ρ−α(h) = −αρ−α−1(h)
{

− nρ(h)(ρ′(h))2 − nHρ′(h)ρ2(h)Θ

+ρ3(h)

(

(log ρ)′′(h)− (n+ α− 3)
(ρ′(h))2

ρ2(h)

)

|∇h|2
}

(2.15)

= −αρ−α−1(h)
{

− nρ(h)(ρ′(h))2Θ2 − nHρ′(h)ρ2(h)Θ

+ρ3(h)

(

(log ρ)′′(h)− (α− 3)
(ρ′(h))2

ρ2(h)

)

|∇h|2
}

.

On the other hand, since we are assuming that |A| is bounded (which implies that H is

also bounded), and that Σn ⊂ Bt1,t2 , from (1.7) and (2.12) we get that Θ is bounded. So,

Lemmas 1.5.1 and 2.1.1 guarantee the existence of a sequence of points {pk}k≥1 in Σn such that

lim
k

ρ−α(h)(pk) = sup
Σ

ρ−α(h), lim
k

|∇̂ρ−α(h)(pk)|ĝ = 0 and lim sup
k

∆̂ρ−α(h)(pk) ≤ 0,

(2.16)

where | · |ĝ and ∇̂ denote, respectively, the norm and gradient with respect to the metric ĝ.

But, it is not difficult to verify that

|∇̂ρ−α(h)|ĝ = αρ−α(h)|ρ′(h)||∇h|. (2.17)

So, since Σn ⊂ Bt1,t2 , with ρ′(t) > 0 for all t1 ≤ t ≤ t2, from (2.16) and (2.17) we get that

lim
k

|∇h(pk)| = 0. (2.18)

Consequently, from (1.7) and (2.18) we have that

lim
k

Θ(pk) = −1. (2.19)

Moreover, from (2.11), (2.15) and (2.18) we obtain

0 ≥ lim sup
k

∆̂ρ−α(h)(pk) ≥ nα lim sup
k

{

ρ−α−1(h)
(

ρ(h)(ρ′(h))2Θ2 +Hρ′(h)ρ2(h)Θ
)}

(pk)

−α lim sup
k

{

ρ2−α(h)

∣

∣

∣

∣

(log ρ)′′(h)− (α− 3)
(ρ′(h))2

ρ2(h)

∣

∣

∣

∣

|∇h|2
}

(pk)

= nα sup
Σ

ρ1−α(h) lim sup
k

{

ρ′(h)|Θ|
(

−
ρ′(h)

ρ(h)
Θ−H

)}

(pk).

≥ 0. (2.20)
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Thus, from (2.20) and (2.19) we infer that

lim
k

(

ρ′(h)

ρ(h)
−H

)

(pk) = 0. (2.21)

Consequently, from (2.21) we get

inf
Σ

∣

∣

∣

∣

ρ′(h)

ρ(h)
−H

∣

∣

∣

∣

= 0. (2.22)

Therefore, from (2.12) and (2.22) we conclude that Σn must be a slice of M
n+1

.

Remark 2.2.2. Related to the assumptions made in Theorem 2.2.1, we point out the following:

(a) As it was observed in [18, Subsection 3.1], the assumption ρ′(t) > 0 in t1 ≤ t ≤ t2 has a

physical interpretation: If for each p ∈Mn we parameterize I ×{p} by ξp(t) = (t, p), since

∂t is the velocity of each galaxy ξp, they are its integral curves. In particular, the function

t is the common proper time of all the galaxies. By taking t constant, we get the slice

Mt = {t} ×Mn. Then, the distance between two galaxies ξp and ξq in Mt is ρ(t)dM(p, q),

where dM is the Riemannian distance in (Mn, gM). In particular, when ρ has positive

derivative in t1 ≤ t ≤ t2, we conclude that the universe is expanding in t1 ≤ t ≤ t2 for the

comoving observers in Mn.

(b) The differential inequality (2.11) and others similar to it have been used before in several

other papers to get nonexistence and rigidity results concerning complete spacelike hyper-

surfaces (see, for instance, [5, 13, 15, 18,28,58–60,72, 132]).

(c) Hypothesis (2.12) can be regarded as a control on the growth of the height function of the

spacelike hypersurface through the difference between the mean curvature of the spacelike

hypersurface and the mean curvature of the slices which are contained in Bt1,t2 and intersect

the spacelike hypersurface.

From the proof of Theorem 2.2.1 we obtain a nonexistence result concerning complete space-

like hypersurfaces with nonpositive future mean curvature.

Corollary 2.2.3. Let M
n+1

= −I ×ρ M
n be a GRW spacetime satisfying the SNCC (1.11).

There does not exist a complete spacelike hypersurface ψ : Σn → M
n+1

lying in Bt1,t2 ⊂ M
n+1

,

with ρ′(t) > 0 for all t1 ≤ t ≤ t2, having nonpositive future mean curvature and such its second

fundamental form and angle function are bounded.

Proof. Indeed, if such a complete spacelike hypersurface Σn existed, then (2.22) resulted in the

following absurd

0 < min
t1≤t≤t2

ρ′(t)

ρ(t)
≤ inf

Σ

ρ′(h)

ρ(h)
≤ inf

Σ

(

ρ′(h)

ρ(h)
−H

)

= 0.
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2.2.2 Uniqueness under integrability properties

In what follows, we will assume that the warping function f of the ambient GRW spacetime

M
n+1

= −I ×ρ M
n satisfies the following inequality

(log ρ)′′ ≤ γ((log ρ)′)2, (2.23)

for some nonnegative constant γ. Moreover, in the results that follow, inequality (2.23) is only

needed at the points of a spacelike hypersurface.

As it was observed in [18], the inequality (2.23) is a mild hypothesis due to the fact that,

for instance, when M
n+1

obeys the SNCC (respect. NCC) and its Riemannian fiber Mn is flat

(respect. Ricci-flat), we have that (2.23) is automatically satisfied.

In this setting, we obtain the following result.

Theorem 2.2.4. Let M
n+1

= −I ×ρ M
n be a GRW spacetime satisfying (2.23), occurring the

equality only at isolated points of Iand let ψ : Σn → M
n+1

be a complete spacelike hypersurface

lying in Bt1,t2 ⊂ M
n+1

, with ρ′(t) ≥ 0 for all t1 ≤ t ≤ t2. If the future mean curvature function

H and the angle function Θ satisfy (2.11), and the height function h is such that |∇h| ∈ L1
g(Σ),

then Σn is a slice of M
n+1

.

Proof. We will consider again the conformal metric ĝ :=
1

ρ2(h)
g and we will take α = γ + 3.

Since we are assuming that Σn lies in Bt1,t2 and that |∇h| ∈ L1
g(Σ), from (2.17) we get that

|∇̂ρ−α(h)|ĝ ∈ L1
ĝ(Σ).

Moreover, since H satisfies (2.11) and ρ′(t) ≥ 0 for all t1 ≤ t ≤ t2, from (2.15) and (2.23) we

obtain that ∆̂ρ−α(h) ≥ 0. Consequently, we can apply Lemma 1.5.3 to infer that ∆̂ρ−α(h) = 0

on Σn.

Therefore, since we are also assuming that the equality occurs in (2.23) just only at isolated

points of I, returning to (2.15) we conclude that |∇h| must vanishes identically on Σn and,

hence, Σn must be a slice of M
n+1

.

We also get a slight different version of Theorem 2.2.4.

Theorem 2.2.5. Let M
n+1

= −I ×ρ M
n be a GRW spacetime satisfying (2.23) and let ψ :

Σn → M
n+1

be a complete spacelike hypersurface lying in Bt1,t2 ⊂ M
n+1

, with ρ′(t) > 0 for all

t1 ≤ t ≤ t2. If the future mean curvature function H and the angle function Θ satisfy (2.11),

and the height function h is such that |∇h| ∈ L1
g(Σ), then Σn is a slice of M

n+1
.

Proof. As in the proof of Theorem 2.2.4, we get that ∆̂ρ−α(h) = 0 on Σn, for α = γ + 3.

Moreover, since Σn lies in Bt1,t2 , we can also verify that |∇̂ρ−2α(h)|ĝ ∈ L1
ĝ(Σ). But, we note that

∆̂ρ−2α(h) = 2ρ−α(h)∆̂ρ−α(h) + 2|∇̂ρ−α(h)|2ĝ = 2|∇̂ρ−α(h)|2ĝ ≥ 0. (2.24)

Thus, we can apply again Lemma 1.5.3 to obtain that ∆̂ρ−2α(h) = 0 on Σn. Hence, since we are

assuming that ρ′(t) > 0 for t1 ≤ t ≤ t2, from (2.17) and (2.24) we obtain that |∇h| = 0 on Σn.

Therefore, Σn must be a slice of M
n+1

.
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These previous lemmas 1.5.4 and 1.5.5 us to prove the following nonexistence result.

Theorem 2.2.6. Let M
n+1

= −I ×ρ M
n be a GRW spacetime satisfying (2.23), occurring the

equality only at isolated points of I, and whose fiberMn is complete noncompact with nonnegative

Ricci curvature. There does not exist a complete spacelike hypersurface ψ : Σn →M
n+1

lying in

Bt1,t2 ⊂ M
n+1

, with ρ′(t) ≥ 0 for all t1 ≤ t ≤ t2, having the future mean curvature function H

and angle function Θ satisfying (2.11), and the height function h is such that (ρ(h))−1 ∈ Lq
g(Σ)

for some q with q > γ + 3.

Proof. Supposing by contradiction the existence of such a spacelike hypersurface Σn and taking

once more α = γ +3, from (2.15) and (2.23) we get that ∆̂ρ−γ−3(h) ≥ 0 on Σn. Moreover, since

we are assuming that Σn ⊂ Bt1,t2 , with ρ
′(t) ≥ 0 for all t1 ≤ t ≤ t2, and that (ρ(h))−1 ∈ Lq

g(Σ)

for some q with q > γ + 3, it is not difficult to verify that ρ−γ−3(h) ∈ Lp

ĝ(Σ) for p = q

γ+3
> 1.

Thus, we can apply Lemma 1.5.4 to get that ρ(h) is constant on Σn. Hence, since we are also

supposing that the equality occurs in (2.23) just only at isolated points of I, returning to (2.15)

we conclude that |∇h| must vanishes identically on Σn. Consequently, Σn is isometric (up to

scaling) to Mn. So, since ρ(h) is a positive constant, our assumption that ρ(h) ∈ Lq
g(Σ) also

implies that Mn has finite volume. But, since Mn is assumed to be complete noncompact with

nonnegative Ricci curvature, Lemma 1.5.5 leads us to a contradiction.

2.2.3 Applications to Einstein-de Sitter spacetimes

The 4-dimensional Einstein-de Sitter spacetime −R
+ ×

t
2

3
R

3 is a classical exact solution to

the Einstein field equation without cosmological constant. It is an open Friedmann-Robertson-

Walker model, which incorporates spatial homogeneity and isotropy (the cosmological principle)

and permitted expansion (for more details, see [123, Chapter 12]). In [135], Rubio showed

that the only complete constant mean curvature spacelike hypersurfaces in the 4-dimensional

Einstein-de Sitter spacetime lying in a closed solid cylinder are spacelike slices and, in particular,

there is no complete maximal hypersurface in such a region.

Here, observing that the (n+ 1)-dimensional Einstein-de Sitter spacetime

−R
+ ×

t
2

3
R

n

satisfies (1.11), from Theorem 2.2.1 we obtain the following consequence.

Corollary 2.2.7. Let ψ : Σn → M
n+1

be a complete spacelike hypersurface lying in a closed

solid cylinder of the (n + 1)-dimensional Einstein-de Sitter spacetime M
n+1

= −R
+ ×

t
2

3
R

n,

such that its second fundamental form is bounded. If the future mean curvature H and the angle

function Θ satisfy H ≤ − 2

3t
Θ, and the height function h is such that |∇h| ≤ infΣ

∣

∣

2

3t
−H

∣

∣, then

Σn is a slice of M
n+1

.

When the ambient spacetime is the Einstein-de Sitter spacetime, Theorem 2.2.5 reads as

follows.
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Corollary 2.2.8. Let ψ : Σn →M
n+1

be a complete spacelike hypersurface lying in a closed solid

cylinder of the (n + 1)-dimensional Einstein-de Sitter spacetime M
n+1

= −R
+ ×

t
2

3
R

n. If the

future mean curvature H and the angle function Θ satisfy H ≤ − 2

3t
Θ, and the height function h

is such that |∇h| ∈ L1
g(Σ), then Σn is a slice of M

n+1
.

From Theorem 2.2.6 we obtain the following consequences.

Corollary 2.2.9. There does not exist a complete spacelike hypersurface ψ : Σn →M
n+1

lying in

a timelike bounded of the (n+1)-dimensional Einstein-de Sitter spacetime M
n+1

= −R
+×

t
2

3
R

n,

having future mean curvature H and the angle function Θ satisfying H ≤ − 2

3t
Θ and the height

function is such that h−
2

3 ∈ Lq
g(Σ) for some q with q > 3.

2.2.4 Applications to steady state type spacetimes

According to the terminology introduced by Albujer and Aĺıas [4], a GRW spacetime −I ×ρ

Mn such that I = R and whose warping function is just the exponential function ρ(t) = et is

called a steady state type spacetime. This terminology is due to the fact that the steady state

model of the universe H4, proposed by Bondi-Gold [54] and Hoyle [100] when looking for a model

of the universe which looks the same not only at all points and in all directions (that is, spatially

isotropic and homogeneous) but also at all times, is isometric to the GRW spacetime −R×et R
3

(for more details, see [96]).

Taking into account that a steady state type spacetime whose Riemannian fiber has nonnega-

tive sectional curvature satisfies (1.11), from Theorem 2.2.1 we obtain the following application.

Corollary 2.2.10. Let ψ : Σn → M
n+1

be a complete spacelike hypersurface lying in a closed

solid cylinder of a steady state type spacetime M
n+1

= −R×et M
n whose Riemannian fiber Mn

has nonnegative sectional curvature, such that its second fundamental form is bounded. If the

future mean curvature H and the angle function Θ satisfy H ≤ −Θ, and the height function h

is such that |∇h| ≤ infΣ (1−H), then Σn is a slice of M
n+1

.

When the ambient spacetime is the steady state type spacetime, Theorem 2.2.5 reads as

follows.

Corollary 2.2.11. Let ψ : Σn → M
n+1

be a complete spacelike hypersurface lying in a closed

solid cylinder of a steady state type spacetime M
n+1

= −R×et M
n. If the future mean curvature

H and the angle function Θ satisfy H ≤ −Θ, and the height function h is such that |∇h| ∈ L1
g(Σ),

then Σn is a slice of M
n+1

.

From Theorem 2.2.6 we obtain the following consequences.

Corollary 2.2.12. Let M
n+1

= −I ×et M
n be a steady state type spacetime, whose Riemannian

fiber Mn is complete noncompact with nonnegative Ricci curvature. There does not exist a

complete spacelike hypersurface ψ : Σn → M
n+1

lying in a timelike bounded of M
n+1

, having

future mean curvature H and the angle function Θ satisfying H ≤ −Θ and the height function

is such that e−h ∈ Lq
g(Σ) for some q with q > 3.
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2.3 Calabi-Bernstein type results

Using the context developed in Section 1.4, we obtain a non-parametric version of Theo-

rem 2.2.1.

Theorem 2.3.1. Let M
n+1

= −I ×ρ M
n be a GRW spacetime satisfying the SNCC (1.11) and

let Σ(u) ⊂ M
n+1

be an entire spacelike graph determined by a function u ∈ C∞(M) with finite

C2 norm and whose future mean curvature satisfies

H(u) ≤ ρ′(u)
√

ρ2(u)− |Du|2M
. (2.25)

If, for some constant 0 < β < 1,

|Du|M ≤ min
{

βρ(u), inf
M

∣

∣

∣

ρ′(u)

ρ(u)
−H(u)

∣

∣

∣

}

, (2.26)

then u ≡ t0 for some t0 ∈ I.

Proof. Observe first that, under the assumptions of the theorem, Σ(u) is a complete spacelike

hypersurface. Indeed, from (1.16) and the Cauchy-Schwarz inequality we get

gu(X,X) = −gM(Du,X∗)2 + ρ2(u)gM(X∗, X∗) ≥ (ρ2(u)− |Du|2M)gM(X∗, X∗), (2.27)

for every tangent vector field X on Σ(u), where (as before) X∗ denotes the projection of X onto

the Riemannian fiber Mn. Hence, from (2.26) and (2.27) we get, in particular, that

gu(X,X) ≥ δgM(X∗, X∗), (2.28)

where δ = (1− β2) infM ρ2(u). So, (2.28) implies that L =
√
δLM , where L and LM denote the

length of a curve on Σ(u) with respect to the Riemannian metrics gu and gM , respectively. As

a consequence, since we are always assuming that Mn is complete, the induced metric gu must

be also complete.

Moreover, from (1.18) we conclude that (2.25) implies (2.11). Moreover, since we have that

N = N∗ −Θ∂t, from (1.6) we get

|∇h|2 = ρ2(u)|N∗|2M . (2.29)

Thus, from (1.17) and (2.29) we obtain

|∇h|2 = |Du|2M
ρ2(u)− |Du|2M

. (2.30)

Hence, from (2.30) we can also verify that (2.26) implies (2.12). Therefore, the result follows by

applying Theorem 2.2.1.

Remark 2.3.2. We observe that through hypothesis (2.26) we are guaranteeing that the entire
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spacelike graph Σ(u) is, indeed, complete, as well as, we are controlling the growth of the function

u by a measure of how far H(u) is different of the mean curvature of each slice that intersects

Σ(u).

Remark 2.3.3. According to [76, Example 4.4], we consider the following entire spacelike graph

Σ(u) = {(a ln y, x, y) : y > 0} ⊂ −R×H
2,

where 0 < |a| < 1. With a straightforward computation we can check that |Du(x, y)|H2 = |a|,

|A| = |a|√
1−a2

and H(u) = − a

2
√
1−a2

. Taking for instance a =
√
3

2
, we see that hypotheses (2.25)

and (2.26) are satisfied by Σ(u). Consequently, we conclude that the SNCC (1.11) is really

necessary to get the desired conclusion in Theorem 2.3.1.

On the other hand, following [57, Example 6.1], let us consider the quadric model of H2 into

the 3-dimensional Lorentz-Minkowski space L
3 = (R3, dx2 + dy2 − dz2) and let ρ : R+ → R be

the function defined by ρ(t) = t. If Ω = {(x, y, z) ∈ L
3 : x2 + y2 − z2 < 0, z > 0}, then it is

not difficult to check that the map ϕ : R+ ×ρ H
2 → Ω, given by ϕ(t, (x, y, z)) = (tx, ty, tz), is an

isometry. Hence, for each z0 > 0,

Σz0 := ϕ−1(Ω ∩ {z = z0}) ⊂ R
+ ×ρ H

2

is a maximal surface (that is, its mean curvature is identically zero), which is just the entire

spacelike graph of the function uz0 : H2 → R
+, defined by uz0(x, y, z) = z0

z
. Besides, we have

that R+ ×f H
2 satisfies the SNCC (1.11). Thus, since Σz0 = Σ(uz0) verifies (2.25), we conclude

that the hypothesis (2.26) in Theorem 2.3.1 is necessary to infer that the function u is constant.

Furthermore, from [118, Theorem 11 and Corollary 12] we obtain the existence of a nontrivial

entire spacelike graph Σ(u) ⊂ −R×et R
n = Hn+1, with u ∈ C∞(Rn) being nonnegative and such

that the mean curvature H(u) is constant satisfying H2(u) ≥ 1

1−|Du|2
Rn

. Hence, we see that

hypothesis (2.25) in Theorem 2.3.1 is also necessary to conclude the constancy of the function

u.

Reasoning as in the proof of Theorem 2.3.1, from Corollary 2.2.3 and the future mean cur-

vature equation (1.19) we obtain the following nonexistence result.

Corollary 2.3.4. Let Mn be a complete Riemannian manifold and ρ : I → R a positive smooth

function satisfying the SNCC (1.11) and such that ρ′ is also positive on the open interval I ⊂ R.

For any constant 0 < β < 1, there does not exist a smooth function u : Mn → I with finite C2

norm, which is a solution of the following system of differential inequalities























divM

(

Du

nρ(u)
√

ρ2(u)− |Du|2M

)

+
ρ′(u)

n
√

ρ2(u)− |Du|2M

(

n+
|Du|2M
ρ2(u)

)

≤ 0

|Du|M ≤ βρ(u)
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Theorem 2.3.1 gives us the following applications in the context of the Einstein-de Sitter and

steady state type spacetimes.

Corollary 2.3.5. Let M
n+1

= −R
+×

t
2
3
R

n be the (n+1)-dimensional Einstein-de Sitter space-

time and let Σ(u) ⊂ M
n+1

be an entire spacelike graph determined by a function u ∈ C∞(Rn)

with finite C2 norm and whose future mean curvature satisfies H(u) ≤
2

3u
1

3

√

u
4

3 − |Du|2
Rn

. If,

for some constant 0 < β < 1, |Du|Rn ≤ min{βu
2

3 , infRn

∣

∣

2
3u

−H(u)
∣

∣}, then u ≡ t0 for some

t0 > 0.

Corollary 2.3.6. Let M
n+1

= −I ×et M
n be a steady state type spacetime whose Rieman-

nian fiber Mn has nonnegative sectional curvature and let Σ(u) ⊂ M
n+1

be an entire space-

like graph determined by a function u ∈ C∞(M) with finite C2 norm and whose future mean

curvature satisfies H(u) ≤
eu

√

e2u − |Du|2M
. If, for some constant 0 < β < 1, |Du|M ≤

min{βeu, infM |1−H(u)|}, then u ≡ t0 for some t0 ∈ I.

Proceeding, from Theorem 2.2.4 we obtain the following Calabi-Bernstein type result.

Theorem 2.3.7. Let M
n+1

= −I ×ρ M
n be a GRW spacetime satisfying (2.23), occurring the

equality only at isolated points of I, and with ρ′(t) ≥ 0 for all t ∈ I. Let Σ(u) ⊂ M
n+1

be an

entire spacelike graph determined by a bounded function u ∈ C∞(M) whose future mean curvature

satisfies (2.25). If, for some constant 0 < β < 1, |Du|M ≤ βρ(u) and |Du|M ∈ L1
gM

(M), then

u ≡ t0 for some t0 ∈ I.

Proof. Since we are supposing that |Du|M ≤ βρ(u), for some constant 0 < β < 1, it follows from

the proof of Theorem 2.3.1 that Σ(u) is a complete spacelike hypersurface.

On the other hand, it follows from (1.16) that dΣ =
√

|G|dM , where dM and dΣ stand

for the Riemannian volume elements of (Mn, gM) and (Σ(u), gu), respectively, and G = det(gij)

with

gij = gu(Ei, Ej) = ρ2(u)δij − Ei(u)Ej(u).

Here, {E1, . . . , E
n} denotes a local orthonormal frame with respect to the metric gM . So, it is

not difficult to verify that

|G| = ρ2(n−1)(u)(ρ2(u)− |Du|2M).

Consequently,

dΣ = ρn−1(u)
√

ρ2(u)− |Du|2MdM. (2.31)

Thus, from (2.30) and (2.31) we get

|∇h|dΣ = ρn−1(u)|Du|MdM. (2.32)

Hence, since we are assuming that u is bounded with |Du|M ∈ L1
gM

(M), relation (2.32) guaran-

tees that |∇h| ∈ L1
g(Σ(u)). Therefore, the result follows by applying Theorem 2.2.4.
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It is not difficult to see that from Theorem 2.2.5 we also get the following result.

Theorem 2.3.8. Let M
n+1

= −I×ρM
n be a GRW spacetime satisfying (2.23) and with ρ′(t) > 0

for all t ∈ I. Let Σ(u) ⊂ M
n+1

be an entire spacelike graph determined by a bounded function

u ∈ C∞(M) whose future mean curvature satisfies (2.25). If, for some constant 0 < β < 1,

|Du|M ≤ βρ(u) and |Du|M ∈ L1
gM

(M), then u ≡ t0 for some t0 ∈ I.

When the ambient space is either the Einstein-de Sitter spacetime or a steady state type

spacetime, Theorem 2.3.8 reads as follows.

Corollary 2.3.9. Let M
n+1

= −R
+×

t
2
3
R

n be the (n+1)-dimensional Einstein-de Sitter space-

time and let Σ(u) ⊂ M
n+1

be an entire spacelike graph determined by a bounded function

u ∈ C∞(Rn) and whose future mean curvature satisfies H(u) ≤
2

3u
1

3

√

u
4

3 − |Du|2
Rn

. If, for

some constant 0 < β < 1, |Du|Rn ≤ βu
2

3 and |Du|Rn ∈ L1
gRn

(Rn), then u ≡ t0 for some t0 > 0.

Corollary 2.3.10. Let M
n+1

= −I ×et M
n be a steady state type spacetime and let Σ(u) be

an entire spacelike graph determined by a bounded function u ∈ C∞(M) and whose future mean

curvature satisfies H(u) ≤
eu

√

e2u − |Du|2M
. If, for some constant 0 < β < 1, |Du|M ≤ βeu and

|Du|M ∈ L1
gM

(M), then u ≡ t0 for some t0 ∈ I.

Taking into account once more relation (2.31), it is not difficult to see that from Theorem 2.2.6

we obtain the following nonexistence result.

Theorem 2.3.11. Let M
n+1

= −I ×ρ M
n be a GRW spacetime satisfying (2.23), occurring the

equality only at isolated points of I, and whose Riemannian fiber Mn is complete noncompact

with nonnegative Ricci curvature. There does not exist a bounded entire solution u ∈ C∞(M)

of the future mean curvature equation (1.19), satisfying (2.25), with |Du|M ≤ βρ(u), for some

constant 0 < β < 1, and such that (ρ(u))−1 ∈ Lq
gM

(M) for some q with q > γ + 3.

We close this paper quoting the following applications of Theorem 2.3.11.

Corollary 2.3.12. For any constant 0 < β < 1, there does not exist a bounded smooth function

u : Rn → R
+ such that u−

2

3 ∈ Lq
gRn

(Rn), for some q > 3, and which is a solution of the following

system of differential inequalities



























divRn





Du

nu
2

3

√

u
4

3 − |Du|2
Rn



+
2|Du|2

Rn

3nu
5

3

√

u
4

3 − |Du|2
Rn

≤ 0

|Du|Rn ≤ βu
2

3

Corollary 2.3.13. Let Mn be a complete noncompact Riemannian manifold with nonnegative

Ricci curvature. For any constant 0 < β < 1, there does not exist a bounded smooth function
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u : Mn → I such that e−u ∈ Lq
gM

(M), for some q > 3, and which is a solution of the following

system of differential inequalities























divM

(

Du

neu
√

e2u − |Du|2M

)

+
|Du|2M

neu
√

e2u − |Du|2M
≤ 0

|Du|M ≤ βeu
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Chapter 3

Solitons of the spacelike mean

curvature flow in GRW spacetimes

In the following results, we extend the techniques developed in [18, 27, 31, 40, 69] to study

complete spacelike mean curvature flow solitons immersed in a generalized Robertson-Walker

(GRW) spacetime, that is, a Lorentzian warped product −I ×ρ M
n with 1-dimensional negative

definite base I and n-dimensional Riemannian fiber Mn. Under suitable constraints on the

warping function ρ and on the curvatures of Mn, we apply suitable maximum principles in

order to obtain nonexistence and uniqueness results concerning these solitons. we investigate

geometric aspects of complete spacelike mean curvature flow solitons of codimension 1 in a

generalized Robertson-Walker (GRW) spacetime −I ×ρ Mn, with base I ⊂ R, Riemannian

fiber Mn and warping function ρ ∈ C∞(I). For this, we apply suitable maximum principles to

guarantee that such a mean curvature flow soliton is a slice of the ambient space, as well as to

obtain nonexistence results concerning these solitons. In particular, we deal with entire graphs

constructed over the Riemannian fiber Mn which are spacelike mean curvature flow solitons and

we also explore the geometry of a conformal vector field in order to establish topological and

further rigidity results for compact (without boundary) mean curvature flow solitons in a GRW

spacetime. Applications to standard GRW spacetimes as, for instance, the Einstein-de Sitter and

steady state type spacetimes, are given. Furthermore, we establish new Calabi-Bernstein type

results related to entire spacelike mean curvature flow graphs constructed over the Riemannian

fiber of the ambient spacetime. The results presented in this chapter make part of [41–43,78].

3.1 Statements and proofs of the main results

Aiming to simplify the notation, along our main results we will consider the modified soliton

function as being the function

ζ̄c(t) := ρ′(t)ζc(t), (3.1)

where ζc is the soliton function defined in (1.13). So, we are in a position to state and prove our

first nonexistence result concerning spacelike mean curvature flow solitons immersed in a GRW

spacetime.
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3.1.1 Nonexistence of spacelike mean curvature flow solitons in GRW

spacetimes

Theorem 3.1.1. Let M
n+1

= −I ×ρ M
n be a GRW spacetime satisfying (1.11). There does

not exist a complete spacelike mean curvature flow soliton ψ : Σn → M
n+1

with respect to

K = ρ(t)∂t with soliton constant c, whose second fundamental form and hyperbolic angle function

are bounded, and lying in a timelike bounded region Bt1,t2 ⊂M
n+1

such that ζ̄c(t) has strict sign

for all t ∈ [t1, t2].

Proof. By contradiction, let us assume the existence of a complete spacelike mean curvature flow

soliton ψ satisfying the assumptions of Theorem 3.1.1. As before, consider on Σn the metric

ĝ =
1

ρ2(h)
g, which is conformal to its induced metric g. Denoting by ∆̂ the Laplacian with

respect to the metric ĝ, from (1.7) and (1.10) we have

∆̂h = −ρ(h)ρ′(h){n+ (n− 1)|∇h|2} −Hρ2(h)Θ. (3.2)

Thus, from (2.13) we get

∆̂ρ(h) = −nρ(h)(ρ′(h))2 −Hρ′(h)ρ2(h)Θ

+ρ3(h){(log ρ)′′(h)− (n− 2)((log ρ)′(h))2}|∇h|2. (3.3)

For any positive real number α, with a straightforward computation from (3.3) we get

∆̂ρ−α(h) = −αρ−α−1(h)
{

− nρ(h)(ρ′(h))2 −Hρ′(h)ρ2(h)Θ

+ρ3(h)
(

(log ρ)′′(h)− (n+ α− 3)((log ρ)′(h))2
)

|∇h|2
}

(3.4)

= −αρ−α−1(h)
{

− nρ(h)(ρ′(h))2Θ2 −Hρ′(h)ρ2(h)Θ

+ρ3(h)
(

(log ρ)′′(h)− (α− 3)((log ρ)′(h))2
)

|∇h|2
}

.

Hence, from (1.12), (3.1) and (3.15) we obtain

∆̂ρ−α(h) = αρ−α(h)Θ2ζ̄c(h)− αρ2−α(h)
{

(log ρ)′′(h)− (α− 3)((log ρ)′(h))2
}

|∇h|2. (3.5)

At this point, let us assume that ζ̄c(t) > 0 for all t1 ≤ t ≤ t2. Since we are assuming that

|A| and Θ are bounded, we can apply Lemmas 1.5.1 and 2.1.1 to guarantee the existence of a

sequence of points {pk}k≥1 in Σn such that

lim
k
ρ−α(h)(pk) = sup

Σ

ρ−α(h), lim
k

|∇̂ρ−α(h)(pk)|ĝ = 0 and lim sup
k

∆̂ρ−α(h)(pk) ≤ 0, (3.6)

where | · |ĝ and ∇̂ denote, respectively, the norm and gradient with respect to the metric ĝ.

46



But, it is not difficult to verify that

|∇̂ρ−α(h)|ĝ = αρ−α(h)|ρ′(h)||∇h|. (3.7)

So, since Σn ⊂ Bt1,t2 , with |ρ′(t)| > 0 for all t1 ≤ t ≤ t2, from (3.6) and (3.7) we get that

lim
k

|∇h(pk)| = 0. (3.8)

Consequently, from (1.7) and (3.8) we have that

lim
k

Θ2(pk) = 1. (3.9)

Moreover, from (3.16), (3.8) and (3.9) we obtain

0≥ lim sup
k

∆̂ρ−α(h)(pk)≥α lim sup
k

{

ρ−α(h)Θ2ζ̄c(h)
}

(pk)

−α lim sup
k

{

ρ2−α(h)
∣

∣(log ρ)′′(h)− (α− 3)((log ρ)′(h))2
∣

∣|∇h|2
}

(pk)

=α sup
Σ

ρ−α(h) lim sup
k

ζ̄c(pk) ≥ 0. (3.10)

Hence, since supΣ ρ−α(h) > 0 and ζ̄c(t) > 0 for all t1 ≤ t ≤ t2, (3.10) gives us a contradiction.

Finally, in the case ζ̄c(t) < 0 for all t1 ≤ t ≤ t2, using Lemma 1.5.2 instead of Lemma 1.5.1

we get

0 ≤ lim inf
k

∆̂ρ−α(h)(pk)≤α lim inf
k

{

ρ−α(h)Θ2ζ̄c(h)
}

(pk)

+α lim inf
k

{

ρ2−α(h)
∣

∣(log ρ)′′(h)− (α− 3)((log ρ)′(h))2
∣

∣ |∇h|2
}

(pk)

=α inf
Σ

ρ−α(h) lim inf
k

ζ̄c(pk) ≤ 0. (3.11)

Therefore, since infΣ ρ−α(h) > 0 and ζ̄c(t) < 0 for all t1 ≤ t ≤ t2, (3.11) also leads us to a

contradiction.

In what follows, we will assume that the warping function ρ of the ambient GRW spacetime

M
n+1

= −I ×ρ M
n satisfies the following inequality

(log ρ)′′ ≤ γ((log ρ)′)2, (3.12)

for some nonnegative constant γ. As it was observed in [18], the inequality (3.12) is a mild

hypothesis due to the fact that, for instance, when M
n+1

obeys the SNCC (respect. NCC)

and its Riemannian fiber Mn is flat (respect. Ricci-flat), we have that (3.12) is automatically

satisfied.

In the scenario that was discussed at the end of section 1.5 on the maximum principle for

complete noncompact Riemannian manifolds, we will obtain some results in the following.
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Theorem 3.1.2. Let M
n+1

= −I ×ρ M
n be a GRW spacetime whose warping function ρ satis-

fies inequality (3.12). There does not exist complete noncompact spacelike mean curvature flow

soliton ψ : Σn → M
n+1

with respect to K = ρ(t)∂t with soliton constant c ̸= 0, bounded mean

curvature and polynomial volume growth, lying in a timelike bounded region Bt1,t2 ⊂M
n+1

, with

ζ̄c(t) > 0 for all t ∈ [t1, t2].

Proof. As in the proof of Theorem 3.1.2, let us consider on Σn the conformal metric ĝ =
1

ρ2(h)
g.

Denoting by ∆̂ the Laplacian with respect to the metric ĝ, from (1.7) and (1.10) we have

∆̂h = −ρ(h)ρ′(h){n+ (n− 1)|∇h|2} −Hρ2(h)Θ. (3.13)

Thus, from (3.13) we get

∆̂ρ(h) = −nρ(h)(ρ′(h))2 −Hρ′(h)ρ2(h)Θ

+ρ3(h){(log ρ)′′(h)− (n− 2)((log ρ)′(h))2}|∇h|2. (3.14)

For any positive real number α, with a straightforward computation from (3.14) we get

∆̂ρ−α(h) = −αρ−α−1(h)
{

− nρ(h)(ρ′(h))2 −Hρ′(h)ρ2(h)Θ

+ρ3(h)
(

(log ρ)′′(h)− (n+ α− 3)((log ρ)′(h))2
)

|∇h|2
}

(3.15)

= −αρ−α−1(h)
{

− nρ(h)(ρ′(h))2Θ2 −Hρ′(h)ρ2(h)Θ

+ρ3(h)
(

(log ρ)′′(h)− (α− 3)((log ρ)′(h))2
)

|∇h|2
}

.

Hence, from (1.12), (3.1) and (3.15) we reach at

∆̂ρ−α(h) = αρ−α(h)Θ2ζ̄c(h)− αρ2−α(h)
{

(log ρ)′′(h)− (α− 3)((log ρ)′(h))2
}

|∇h|2. (3.16)

So, observing that Θ2 ≥ 1 and choosing α = 3 + γ, we can use (3.12) and the assumption

that ζ̄c(h) > 0 on Σn to obtain from (3.16) the following estimate

∆̂ρ(h)−α ≥ αζ̄c(h)ρ(h)
−α. (3.17)

Consequently, since we are assuming that Σn ⊂ [t1, t2]×Mn, from (3.17) we get

∆̂ρ(h)−α ≥ aρ(h)−α, (3.18)

where a = α infΣ ζ̄c(h) > 0.

Moreover, we have that

|∇̂ρ(h)−α|ĝ = αρ(h)−α|ρ′(h)||∇h| ≤ αρ(h)−α|ρ′(h)||Θ| = |c−1|αρ(h)−α−1|ρ′(h)||H|. (3.19)

So, since Σn ⊂ [t1, t2]×Mn and H is bounded on Σn, from (3.19) we conclude that |∇̂ρ(h)−α|ĝ
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is also bounded on Σn.

On the other hand, considering the coefficients of conformal metric ĝij =
1

ρ(h)2
gij, where gij

stands for the coefficients of the induced metric g, we have that

Ĝ =
√

det(ĝij) =
√

ρ(h)−2n det(gij) = ρ(h)−nG. (3.20)

In particular, using once more that Σn ⊂ [t1, t2] ×Mn, from (3.20) jointly with the hypothesis

that Σn has polynomial volume growth with respect to g, we guarantee that the same holds with

respect to the conformal metric ĝ.

Therefore, we are in position to apply Lemma 1.5.7 to infer that ρ(h)−α vanishes identically

on Σn, which contradicts the fact that ρ is a positive function.

3.1.2 Uniqueness and nonexistence results under integrability prop-

erties

Returning to the study of spacelike mean curvature flow solitons, we get the following result.

Theorem 3.1.3. Let M
n+1

= −I ×ρ M
n be a GRW spacetime satisfying (3.12), occurring

the equality only at isolated points of I, and whose Riemannian fiber Mn is complete. Let

ψ : Σn → M
n+1

be a complete spacelike mean curvature flow soliton with respect to K = ρ(t)∂t

and with soliton constant c, lying in a timelike bounded region Bt1,t2 ⊂M
n+1

such that ζ̄c(t) ≥ 0

for all t1 ≤ t ≤ t2. If the height function h is such that |∇h| ∈ L1
g(Σ), then Σn is a slice Mt∗ for

some t∗ ∈ [t1, t2] which is implicitly given by the condition ζc(t∗) = 0.

Proof. We will consider again the conformal metric ĝ :=
1

ρ2(h)
g and we will take α = γ + 3.

Since we are assuming that Σn lies in Bt1,t2 and that |∇h| ∈ L1
g(Σ), from (3.7) we get that

|∇̂ρ−α(h)|ĝ ∈ L1
ĝ(Σ).

Moreover, since ζ̄c(t) ≥ 0 for all t1 ≤ t ≤ t2, from (3.16) and (3.12) we obtain that ∆̂ρ−α(h) ≥

0. Consequently, we can apply Lemma 1.5.3 to infer that ∆̂ρ−α(h) = 0 on Σn.

Therefore, since we are assuming that the equality occurs in (3.12) just only at isolated points

of I, returning to (3.16) we conclude that |∇h| must vanishes identically on Σn. Therefore, Σn

must be a sliceMt∗ for some t∗ ∈ [t1, t2] which is implicitly given by the condition ζc(t∗) = 0.

From Theorem 3.1.3 we also get the following nonexistence result.

Corollary 3.1.4. Let M
n+1

= −I ×ρ M
n be a GRW spacetime satisfying (3.12), occurring the

equality only at isolated points of I, and whose Riemannian fiber Mn is complete. There does not

exist a complete spacelike mean curvature flow soliton ψ : Σn →M
n+1

with respect to K = ρ(t)∂t

and with soliton constant c, lying in a timelike bounded region Bt1,t2 ⊂ M
n+1

with ζ̄c(t) > 0 for

all t1 ≤ t ≤ t2, and such that its height function h satisfies |∇h| ∈ L1
g(Σ).

We are also able to present a slight different version of Theorem 3.1.3.
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Theorem 3.1.5. Let M
n+1

= −I ×ρ M
n be a GRW spacetime satisfying (3.12) whose Rie-

mannian fiber Mn is complete. Let ψ : Σn → M
n+1

be a complete spacelike mean curvature

flow soliton with respect to K = ρ(t)∂t with soliton constant c, lying in a timelike bounded

region Bt1,t2 ⊂ M
n+1

with ζ̄c(t) ≥ 0 and ρ′(t) vanishing only in isolated points of [t1, t2]. If

|∇h| ∈ L1
g(Σ), then Σn is a slice Mt∗ for some t∗ ∈ [t1, t2] which is implicitly given by the

condition ζc(t∗) = 0.

Proof. As in the proof of Theorem 3.1.3, we get that ∆̂ρ−α(h) = 0 on Σn, for α = γ + 3.

Moreover, since Σn lies in Bt1,t2 , we can also verify that |∇̂ρ−2α(h)|ĝ ∈ L1
ĝ(Σ). But, we note that

∆̂ρ−2α(h) = 2ρ−α(h)∆̂ρ−α(h) + 2|∇̂ρ−α(h)|2ĝ = 2|∇̂ρ−α(h)|2ĝ ≥ 0. (3.21)

Thus, we can apply again Lemma 1.5.3 to obtain that ∆̂ρ−2α(h) = 0 on Σn. Hence, since we are

assuming that ρ′(t) > 0 for t1 ≤ t ≤ t2, from (3.7) and (3.21) we obtain that |∇h| = 0 on Σn.

Therefore, Σn must be a slice Mt∗ for some t∗ ∈ [t1, t2] which is implicitly given by the condition

ζc(t∗) = 0.

These previous lemmas enable us to prove the following nonexistence result.

Theorem 3.1.6. Let M
n+1

= −I ×ρ M
n be a GRW spacetime satisfying (3.12), occurring the

equality only at isolated points of I, and whose Riemannian fiber Mn is complete noncompact

with nonnegative Ricci curvature. There does not exist a complete spacelike mean curvature flow

soliton ψ : Σn → M
n+1

with respect to K = ρ(t)∂t and soliton constant c, lying in a timelike

bounded region Bt1,t2 ⊂ M
n+1

, with ζ̄c(t) ≥ 0 for all t1 ≤ t ≤ t2, and whose height function h is

such that (ρ(h))−1 ∈ Lq
g(Σ) for some q with q > γ + 3.

Proof. Supposing by contradiction the existence of such a spacelike mean curvature flow soliton

ψ : Σn → M
n+1

and taking once more α = γ + 3, from (3.16) we obtain that ∆̂ρ−α(h) ≥ 0

on Σn. Moreover, since Σn is contained in a timelike bounded region and (ρ(h))−1 ∈ Lq
g(Σ) for

some q with q > α, it is not difficult to verify that ρ−α(h) ∈ Lp

ĝ(Σ) for p =
q

α
> 1. Thus, we can

apply Lemma 1.5.4 to get that ρ(h) is constant on Σn. Hence, since we are also supposing that

the equality occurs in (3.12) just only at isolated points of I, returning to (3.16) we conclude

that |∇h| must vanish identically on Σn. Consequently, Σn is isometric (up to scaling) to Mn.

So, since f(h) is a positive constant, our assumption that ρ(h) ∈ Lq
g(Σ) also implies that Mn

has finite volume. But, since Mn is a complete non-compact with nonnegative Ricci curvature,

Lemma 1.5.5 leads us to a contradiction.

In the results that follow in this section, we use a different analytical technique to that used

at the beginning of this section: instead of making a conformal change in the metric, we decide

to make a perturbation in the Laplacian.

In what follows, we will also consider the function

u = g(h) ∈ C∞(Σn), (3.22)
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where g : I → R is an arbitrary primitive of ρ. Since g′ = ρ > 0, then u = g(h) can be thought

as a reparametrization of the height function. In particular, from (1.6) we have that the gradient

of u on Σn is given by

∇u = ρ(h)∇h = − ρ(h)∂⊤t = −K⊤, (3.23)

where K⊤ denotes the tangential component of the closed conformal vector field K = ρ(t)∂ t.

Taking into account this previous digression, we obtain the following auxiliary result.

Lemma 3.1.7. Let ψ : Σn
↬ −I ×ρM

n be a spacelike mean curvature flow soliton with respect

to K = ρ(t)∂ t and with soliton constant c ̸= 0. Then,

H⟨AX, Y ⟩ − c∇2u(X, Y ) = cρ′(h)⟨X, Y ⟩, (3.24)

for all X, Y ∈ X(Σ). Furthermore,

∇H = cA(∇u).

Proof. Firstly, we note that:

∇2u(X,X) = ⟨∇X∇u,X⟩

= ⟨∇X(ρ(h)∇h), X⟩

= ρ(h)⟨∇X∇h,X⟩+ ⟨∇Xρ(h)∇h,X⟩

= ρ(h)∇2h(X,X) + ρ′(h)⟨X,∇h⟩2. (3.25)

Thus, from (1.9) we get that

∇2u(X,X) = ρ(h)

(

−
ρ′(h)

ρ(h)
{|X|2 + ⟨X,∇h⟩2}+ ⟨AX,X⟩Θ

)

+ ρ′(h)⟨X,∇h⟩2

= −ρ′(h)|X|2 − ρ′(h)⟨X,∇h⟩2 + ρ(h)⟨AX,X⟩Θ+ ρ′(h)⟨X,∇h⟩2

= −ρ′(h)|X|2 + ρ(h)⟨AX,X⟩Θ.

On the other hand,

1

c
⟨∇H,X⟩ = ⟨∇XK, N⟩+ ⟨K,∇XN⟩

= −⟨A(X),K⟩ = ⟨X,A(∇u)⟩, (3.26)

for every vector field X ∈ X(Σn), so that from (3.23) we conclude the desired result.

Remark 3.1.8. We point out that (3.24) is close to the that defining Ricci solitons and, there-

fore, it is interesting to make a study of mean curvature flow soliton under this point of view.

Naturally attached to ψ : Σn
↬ −I ×ρ M

n we can consider the support function

φK : Σn → R

q 7→ φK(q)= ⟨K(q), N(q)⟩.
(3.27)

51



Hence, from (1.4) we have that

φK = ρ(h)⟨N, ∂ t⟩ = ρ(h)Θ ≤ −ρ(h) < 0. (3.28)

Furthermore, from [62, Proposition 2.1] and (1.7) we have

∆(φK) = {Ric(N,N) + |A|2}φK − {nN(ρ′)−Hρ′}+ ⟨K,∇H⟩, (3.29)

where ∇H is the gradient of H in the metric of Σn, Ric is the Ricci tensor of M
n+1

and |A| is

the Hilbert-Schmidt norm of A.

Besides, we get that

N(ρ′) = −ρ′′Θ = −
ρ′′

ρ
φK. (3.30)

On the other hand, since N = N∗ − Θ∂ t, where N∗ = πM(N) is the orthogonal projection

of N onto Mn, it follows from [123, Corollary 7.43] that

Ric(N,N) = Ric(N∗, N∗) + Θ2Ric(∂ t, ∂ t)

= RicM(N∗, N∗) + ⟨N∗, N∗⟩

{

ρ′′

ρ
+ (n− 1)

(ρ′)2

ρ2

}

−
nρ′′

ρ
Θ2 (3.31)

= RicM(N∗, N∗)−

{

ρ′′

ρ
+ (n− 1)

(ρ′)2

ρ2

}

− (n− 1)

(

ρ′

ρ

)′

Θ2,

where RicM denotes the Ricci tensor of Mn. We note that it was used the relation ⟨N∗, N∗⟩ =

Θ2 − 1 in the last equality above.

Thus, inserting (3.30) and (3.31) into (3.29), we obtain

∆(φK) =

{

RicM(N∗, N∗) + |A|2 −

{

ρ′′

ρ
+ (n− 1)

(ρ′)2

ρ2

}

− (n− 1)

(

ρ′

ρ

)′

Θ2

}

φK

+

{

n
ρ′′

ρ
φK +Hρ′

}

+ ⟨K,∇H⟩ (3.32)

=

{

RicM(N∗, N∗) + |A|2 +
ρ′′ρ− (ρ′)2

f 2
− (n− 1)

(

ρ′

ρ

)′

Θ2

}

φK +Hρ′ + ⟨K,∇H⟩

= {RicM(N∗, N∗) + (n− 1)(ln ρ)′′(1−Θ2) + |A|2}φK +Hρ′ + ⟨K,∇H⟩

= {RicM(N∗, N∗)− (n− 1)(ln ρ)′′|∇h|2 + |A|2}φK +Hρ′ + ⟨K,∇H⟩.

From equations (1.12) and (3.27), we have thatH = c φK, and from (3.23) we get∇u = −K⊤,

where u is the reparametrization of the height function h given in (3.22). Consequently, we can

rewrite (3.32) in the following way

∆(φK) = {cρ′(h) +RicM(N∗, N∗)− (n− 1)(ln ρ)′′(h)|∇h|2 + |A|2}φK + ⟨∇(cu),∇(φK)⟩. (3.33)
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We recall that the drift Laplacian on Σn is defined by

∆cu(φ) = ∆(φ)− ⟨∇(cu),∇φ ⟩ (3.34)

for all φ ∈ C∞(Σn). So, from (3.33) and (3.34), we conclude that the drift Laplacian ∆cu acting

on φK is given by

∆cu(φK) = {ζ̃c + RicM(N∗, N∗)− (n− 1)(ln ρ)′′(h)|∇h|2}φK, (3.35)

where ζ̃c ∈ C∞(Σn) is the function defined by

ζ̃c(q) = cρ′(h(q)) + |A(q)|2, (3.36)

for every q ∈ Σn, which will be called the second soliton function associated to the spacelike

mean curvature flow soliton ψ : Σn
↬ −I ×ρ M

n. Such nomenclature for ζ̃c is motivated by

[27, Equation (6.11)].

In what follows, we will assume that the GRW spacetime −I ×ρ M
n satisfies the null con-

vergence condition (NCC)

RicM ≥ (n− 1)(ρρ′′ − ρ′2)⟨ , ⟩M , (3.37)

which was originally established by Montiel [115], where RicM denotes the Ricci tensor of the

Riemannian fiber Mn. It is not difficult to verify that all the GRW spacetimes described in

Subsection 1.2 satisfy the NCC. For this, in the case of a steady state type spacetime (see Ex-

ample 1.2.4), it is necessary to assume that its Riemannian fiber has nonnegative Ricci curvature.

Before we prove the first result, we will start by quoting an extension of Hopf’s theorem on

a complete Riemannian manifold Σn due to Yau in [148]. For this, we will adopt the following

notation

L1(Σn) =

{

φ ∈ C∞(Σn) :

∫

Σn

|φ| dΣ < +∞

}

be the space of Lebesgue integrable functions on Σn, where dΣ stands for the volume element

induced by the metric of Σn and denote by L1
cu(Σ

n) the set of Lebesgue integrable functions on

Σn with respect to the modified volume element

dµ = ecudΣ. (3.38)

We also recall that a smooth function φ on Σn is said to be (cu)-subharmonic (respectively,

(cu)-superharmonic) if ∆cu(φ) ≥ 0 (respectively, ∆cu(φ) ≤ 0) on Σn. So, it is not difficult to

verify that from [63, Proposition 2.1] we obtain the following auxiliary lemma.

Lemma 3.1.9. Let Σn be an n-dimensional complete oriented Riemannian manifold. If φ ∈

C∞(Σn) is a (cu)-subharmonic function (or a (cu)-superharmonic function) on Σn and |∇φ| ∈

L1
cu(Σ

n), then ∆cu(φ) = 0 on Σn.

Given a GRW spacetime M
n+1

= −I ×ρ M
n obeying the NCC (3.37), we will require a
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suitable behavior of the second soliton function associated to a spacelike mean curvature flow

soliton ψ : Σn
↬ M

n+1
and on the norm of the gradient of the its mean curvature function, in

order to establish our first uniqueness result. For this, we will consider a timelike bounded region

of M
n+1

defined by

Bt1,t2 := {(t, p) ∈ −I ×ρ M
n : t1 ≤ t ≤ t2 and p ∈Mn}.

Taking into account that all spacelike mean curvature solitons which appear in this paper

are considered with respect to the closed conformal vector field K = ρ(t)∂ t, we are in position

to present our first main result.

Theorem 3.1.10. Let M
n+1

= −I ×ρ M
n be a GRW spacetime which obeys the NCC (3.37),

with equality holding only in isolated points of I. Let ψ : Σn
↬ M

n+1
be a complete spacelike

mean curvature flow soliton with soliton constant c ̸= 0 and lying in a timelike bounded region

Bt1,t2. If its second soliton function ζ̃c = |A|2 + cρ′(h) is nonnegative and |∇H| ∈ L1(Σn), then

Σn is a slice of M
n+1

.

Proof. From (3.37), we obtain that

RicM(N∗, N∗)− (n− 1)(ln ρ)′′(h)|∇h|2 ≥ (3.39)

≥ (n− 1)(ρ(h)ρ′′(h)− ρ′(h)2)|N∗|2M − (n− 1)(ln ρ)′′(h)|∇h|2

= (n− 1)(ρ(h)ρ′′(h)− ρ′(h)2)|N +Θ∂ t|
2

M − (n− 1)

(

ρ′

ρ

)′

(h)|∇h|2

= (n− 1)

{

(

ρ(h)ρ′′(h)− ρ′(h)2
) |∇h|2

ρ(h)2
−

(

ρ(h)ρ′′(h)− ρ′(h)2

ρ(h)2

)

|∇h|2
}

= 0.

Thus, since ζ̃c ≥ 0 on Σn, from (3.35) and (3.39) we get that the support function φK defined

in (3.27) satisfies

∆cu(φK) ≤ ρ(h)ζ̃cΘ ≤ 0. (3.40)

On the other hand, since ψ : Σn
↬ −I×ρM

n is contained in a timelike bounded region Bt1,t2

of −I ×ρ M
n, h is bounded on Σn and, consequently, the same happens with u = g(h) and ecu.

So, since c ̸= 0, from (3.38), (1.12), (3.27) and |∇H| ∈ L1(Σn) we get |∇(φK)| ∈ L1
cu(Σ

n). Next,

from Lemma 3.1.9 we obtain ∆cu(φK) = 0 on Σn. Since ρ(h) > 0 and Θ < 0 on Σn, from (3.39)

and (3.40) we must have on Σn that

ζ̃c = 0 and RicM(N∗, N∗)− (n− 1)(ln ρ)′′(h)|∇h|2 = 0.

But, taking into account that the equality in (3.37) occurs only in isolated points of I, we can

conclude that |∇h| = 0 on Σn and, consequently, h is constant on Σn. Therefore, ψ(Σn) is a

slice.

Remark 3.1.11. From (1.8) we have that the slice Mn
t is a spacelike hypersurface whose shape
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operator (with respect to the orientation ∂ t) At is given by

At∗ : X(Mn
t∗
) → X(Mn

t∗
)

V 7→ At∗(V ) = −∇V (∂ t∗) = −
ρ′(t∗)

ρ(t∗)
V.

(3.41)

Thus from (3.41) we obtain that the principal curvatures κt∗i of the shape operator At∗ of a slice

Mn
t∗

= {t∗} × Mn, t∗ ∈ I, are given by κt∗i = −ρ′(t∗)
ρ(t∗)

for all i ∈ {1, . . . , n}. So, from (1.14)

and (3.36) we have

ζ̃c = c ρ′(t∗) + |At∗ |
2 =

n∑

i=1

(
κt∗i

)2
+

(
−
n ρ′(t∗)

ρ2(t∗)

)
ρ′(t∗) = 0

on Mn
t∗
. Hence, our restriction on the values of the second soliton function ζ̃c in Theorem 3.1.10

constitutes a mild hypothesis in the sense that it is natural to detect slices of −I ×ρ M
n.

From Theorem 3.1.10 we also get the following nonexistence results.

Corollary 3.1.12. There is no complete spacelike translating soliton lying in a timelike bounded

region of a Lorentzian product space −I ×Mn, whose Riemannian fiber Mn has positive Ricci

curvature, having soliton constant c ̸= 0 and such that |∇H| ∈ L1(Σn).

According to the classical terminology in linear potential theory, a Riemannian manifold

Σn is called (cu)-parabolic if the constant functions are the only functions φ ∈ C2(Σ) which are

bounded from below and satisfying ∆cu(φ) ≤ 0. Inspired by the ideas of Romero et al. [130,131],

Albujer et al. established in [7, Theorem 1] the following parabolicity criterion which provides

conditions for a complete spacelike hypersurface immersed in GRW spacetime −I ×ρ M
n to be

(cu)-parabolic. For this, we will consider the function ũ := g(πI) ◦ π̃, where π̃ : M̃n → Mn is

the universal covering map of the Riemannian fiber Mn.

Lemma 3.1.13. Let ψ : Σn
↬ −I ×ρ M

n be a complete spacelike hypersurface immersed in a

GRW spacetime −I×ρM
n, whose Riemannian fiberMn has (cũ)-parabolic universal Riemannian

covering for some constant c ̸= 0. If the hyperbolic angle Θ is bounded from below and the warping

function f and the height function h are such that supΣn ρ(h) < +∞ and infΣn ρ(h) > 0, then

Σn is (cu)-parabolic.

We can state the following rigidity result for spacelike mean curvature flow solitons in GRW

spacetimes.

Theorem 3.1.14. Let M
n+1

= −I ×ρ M
n be a GRW spacetime obeying the NCC (3.37), with

equality holding only in isolated points of I, and such that the Riemannian fiber Mn has (cũ)-

parabolic universal Riemannian covering for some constant c ̸= 0. Let ψ : Σn
↬ M

n+1
be a

complete spacelike mean curvature flow soliton with soliton constant c, lying in a timelike bounded

region Bt1,t2. If the hyperbolic angle Θ is bounded from below and the second soliton function

ζ̃c = |A|2 + cρ′(h) is nonnegative, then Σn is a slice of M
n+1

.
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Proof. From (3.40) we get ∆cu(φK) ≤ 0 on Σn. Thus, since we are assuming that ψ : Σn
↬

−I ×ρ M
n is contained in a timelike bounded region, Lemma 3.1.13 guarantees that Σn is (cu)-

parabolic and consequently φK is constant on Σn. At this point, we can reason as in the last

part of the proof of Theorem 3.1.10 to conclude that there is t ∈ I such that Σn is a slice of

M
n+1

.

From Theorem 3.1.14 we also get the following nonexistence results.

Corollary 3.1.15. Let M
n+1

= −I ×Mn be a Lorentzian product space, whose Riemannian

fiber Mn has positive Ricci curvature and (cũ)-parabolic universal Riemannian covering for some

constant c ̸= 0. There is no complete spacelike translating soliton in M
n+1

, having soliton

constant c and such that Θ is bounded from below.

Considering the strong null convergence condition (SNCC)

KM ≥ sup
I

(ρρ′′ − ρ′2), (3.42)

which was introduced by Aĺıas and Colares [12], where KM denotes the sectional curvature of the

Riemannian fiberMn and adding a suitable control to the growing of the height function through

the second soliton function of a spacelike mean curvature flow soliton, we get the following version

of the Omori-Yau’s maximum principle:

Proposition 3.1.16. Let M
n+1

= −I ×ρ M
n be a GRW spacetime obeying the SNCC (3.42),

and let ψ : Σn
↬ −I ×ρ M

n be a complete spacelike mean curvature flow soliton having soliton

constant c ̸= 0. If the function
(n−1)ρ′′(h)+cρ(h)ρ′(h)

ρ(h)
is bounded from below on Σn, then the Omori-

Yau’s maximum principle holds for the drift Laplacian ∆cu, that is, for φ ∈ C2(Σn) with supΣ φ <

+∞, there exists a sequence of points {pk}k≥1 in Σn, such that

lim
k
φ(pk) = sup

Σ
φ, lim

k
|∇φ(pk)| = 0 and lim

k
∆cuφ(pk) ≤ 0.

Proof. We recall that the curvature tensor R of Σn can be described in terms of its Weingarten

operator A and the curvature tensor R of the ambient −I×ρM
n by the so-called Gauss equation,

which is given by

⟨R(X, Y )Z,W ⟩ = ⟨R(X, Y )Z,W ⟩ − ⟨AX,Z⟩⟨AY,W ⟩+ ⟨AX,W ⟩⟨AY,Z⟩, (3.43)

for every tangent vector fields X, Y, Z ∈ X(Σn). Here, as in [123], the curvature tensor R is given

by

R(X, Y )Z = ∇[X,Y ]Z − [∇X ,∇Y ]Z,

where [ , ] denotes the Lie bracket and X, Y, Z ∈ X(Σn).

Let us consider X ∈ X(Σn) and take a (local) orthonormal frame {E1, · · · , En}. It follows
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from Gauss equation (3.43) that the Ricci curvature Ric of Σn satisfies

Ric(X,X) =
∑

i

⟨R(X,Ei)X,Ei⟩+ |AX|2 +H⟨AX,X⟩. (3.44)

Thus, from (3.24) and (3.44) we get

Ric(X,X)− c∇2u(X,X) ≥
∑

i

⟨R(X,Ei)X,Ei⟩+ cρ′(h)|X|2. (3.45)

To estimate the first summand on the right-hand side of inequality (3.45), let us consider

X∗ = (πM)∗(X) and E∗

i
= (πM)∗(Ei). So, from [123, Proposition 7.42] and (1.6) we have

∑

i

⟨R(X,Ei)X,Ei⟩ =
∑

i

⟨RM(X∗, E∗

i
)X∗, E∗

i
⟩+ (n− 1)((ln ρ)′(h))2|X|2 (3.46)

−(n− 2)(ln ρ)′′(h)⟨X,∇h⟩2 − (ln ρ)′′(h)|∇h|2|X|2,

where RM denotes the curvature tensor of the Riemannian fiber Mn. By writing X∗ = X +

⟨X, ∂t⟩∂t , we can estimate the first summand on the right-hand side of (3.46) to get

∑

i

⟨RM(X∗, E∗

i
)X∗, E∗

i
⟩ = ρ2(h)(|X∗|2

M
|E∗|2

M
− ⟨X∗, E∗)2

M
⟩KM(X∗, E∗)

≥
1

ρ2(h)
((n− 1)|X|2 + |∇h2||X|2 (3.47)

+(n− 2)⟨X,∇h⟩2)min
i

KM(X∗, E∗

i
).

Consequently, since our ambient space obeys (3.42), from (3.47) we have that

∑

i

⟨RM(X∗, E∗

i
)X∗, E∗

i
⟩ ≥ ((n− 1)|X|2 + |∇h|2|X|2 + (n− 2)⟨X,∇h⟩2)(ln ρ)′′(h). (3.48)

Substituting (3.48) into (3.46), we get

∑

i

⟨R(X,Ei)X,Ei⟩≥ ((n− 1)|X|2+|∇h|2|X|2+(n− 2)⟨X,∇h⟩2)(ln ρ)′′(h)

+(n− 1)((ln ρ)′(h))2|X|2 − (n− 2)(ln ρ)′′(h)⟨X,∇h⟩2 (3.49)

−(ln ρ)′′(h)|∇h|2|X|2

= (n− 1)
ρ′′(h)

ρ(h)
|X|2.

Hence, from (3.45) and (3.49) we obtain

Ric− c∇2u ≥ ((n− 1)
ρ′′(h)

ρ(h)
+ cρ′(h))⟨ , ⟩.

Therefore, since the right-hand side of the above inequality is bounded from bellow, we conclude

our proof by applying [68, Theorem 1].
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Proceeding, we use Proposition 3.1.16 to establish the following result.

Theorem 3.1.17. Let M
n+1

= −I ×ρ M
n be a GRW spacetime obeying the SNCC (3.42), and

let ψ : Σn
↬ −I×ρM

n be a complete spacelike mean curvature flow soliton with soliton constant

c ̸= 0, such that
(n−1)ρ′′(h)+cρ(h)ρ′(h)

ρ(h)
is bounded from below. If infΣ ρ(h) > 0, the second soliton

function ζ̃c = |A|2 + cρ′(h) is nonnegative and the height function h satisfies

|∇h| ≤ inf
Σn

ζ̃c on Σn, (3.50)

then Σn is a slice of M
n+1

.

Proof. Since φK < 0 on Σn, Proposition 3.1.16 assures the existence of a sequence of points

{pk}k∈N ⊂ Σn such that

lim
k→+∞

φK(pj) = sup
Σn

φK and lim
k→+∞

∆cu φK(pk) ≤ 0.

Hence, from (3.40) we get

0 ≥ lim
k→+∞

∆cu(φK)(pj) = sup
Σn

φK lim
k→+∞

ζ̃c(pk) ≥ 0. (3.51)

But, since we are assuming that infΣ ρ(h) > 0, we have that sup
Σn

φK < 0. Consequently,

from (3.51) we must have lim
j→+∞

ζ̃c(pk) = 0 and, hence, inf
Σn

ζ̃c = 0. Therefore, the result follows

from hypothesis (3.50).

Remark 3.1.18. We note that in Theorem 3.1.17 the hypotheses that
(n−1)ρ′′(h)+cρ(h)ρ′(h)

ρ(h)
is

bounded from below and infΣ ρ(h) > 0 are automatically satisfied if we assume that the spacelike

mean curvature flow soliton lies in a timelike bounded region of the ambient spacetime.

Our next result can be regarded as a sort of extension of [68, Theorem 3].

Theorem 3.1.19. Let M
n+1

= −I ×ρ M
n be a GRW spacetime satisfying the SNCC (3.42).

There is no complete spacelike mean curvature flow soliton immersed in M
n+1

, with soliton

constant c ̸= 0 such that cρ′(h) ≥ 0 and
(n−1)ρ′′(h)+cρ(h)ρ′(h)

ρ(h)
is bounded from below.

Proof. Let us suppose by contradiction the existence of such a complete spacelike mean curvature

flow soliton Σn immersed in M
n+1

. Since we are supposing that cρ′(h) ≥ 0 and that M
n+1

satisfies the SNCC (3.42), we conclude from (3.35) and (3.39) that

∆cuφK ≤ |A|2φK.

From above equation, we get

∆cuφ
2
K ≥ 2φK∆cuφK ≥ 2|A|2φ2

K.
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Since φK = H
c
we have

∆cuH
2 ≥ 2H2|A|2 ≥ 2

H4

n
. (3.52)

With a straightforward computation, we can verify that

∆cu

( −1√
1 +H2

)

=
∆cuH

2

2(1 +H2)3/2
− 3

4

|∇H2|2
(1 +H2)5/2

. (3.53)

Hence, from (3.52) and (3.53) we obtain

∆cu

( −1√
1 +H2

)

≥ H4

n(1 +H2)3/2
− 3

4

|∇H2|2
(1 +H2)5/2

.

Therefore, since (n−1)ρ′′(h)+cρ(h)ρ′(h)
ρ(h)

is bounded from below, from Proposition 3.1.16 we can

apply the Omori-Yau’s maximum principle and reason as in the proof of [68, Theorem 3] to

conclude that H ≡ 0, which corresponds to an absurd.

From Theorem 3.1.19 we get the following nonexistence results.

Corollary 3.1.20. There is no complete spacelike translating soliton with soliton constant c ̸= 0

immersed in −I ×Mn, whose Riemannian fiber Mn has nonnegative sectional curvature.

Remark 3.1.21. Fixing a constant c ∈ R with 0 < |c| < 1, from [73, Example 4.4] we have that

Σn = {(c ln xn, x1, . . . , xn) : xn > 0} ⊂ −R×H
n

is a complete spacelike translating soliton of the mean curvature flow with respect to ∂t, having

soliton constant c and constant future mean curvature

H =
c√

1− c2
= cΘ.

Moreover, we also get that

|∇h| = |c|√
1− c2

= |A|.

Hence, since the static GRW spacetime −R×H
n obeys neither the NCC (3.37) nor the SNCC

(3.42), we can verify that it works as a counterexample related to our previous theorems. Con-

sequently, we conclude that their hypothesis are, indeed, necessary.

Now, we deal with compact (without boundary) mean curvature flow solitons.

Theorem 3.1.22. Let M
n+1

= −I ×ρ M
n be a GRW spacetime and let ψ : Σn

↬ M
n+1

be a

compact mean curvature flow soliton with soliton constant c ̸= 0. If c > 0, then

min
Σ
H2 ≤ −cnρ′(h∗) and max

Σ
H2 ≥ −cnρ′(h∗),
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where h∗ and h∗ are the minimum and maximum of the height function on Σn. Similarly, if

c < 0, then

min
Σ
H2 ≤ −cnρ′(h∗) and max

Σ
H2 ≥ −cnρ′(h∗).

Proof. From (3.24) we have that

c∆u = −ncρ′(h)−H2. (3.54)

Let us consider c > 0 and let p0 be a point of minimum of the height function h. Since a

primitive g of ρ is a increasing function, we have that h(p0) = h∗ is minimum point of the

function u = g(h) and, hence, ∆u(p0) ≥ 0. Thus, from (3.54) we get that

min
Σ
H2 ≤ H2(p0) ≤ −ncρ′(h∗).

Analogously, taking a point of maximum of h, we are able to conclude that

max
Σ

H2 ≥ −cnρ′(h∗).

The proof of the case c < 0 follows the same steps of the case c > 0.

From above result we conclude directly the following nonexistence result.

Corollary 3.1.23. There exist no compact spacelike translating soliton with soliton constant

c ̸= 0 immersed in −I ×Mn.

We finish this subsection establishing a rigidity result derived from Theorem 3.1.22.

Corollary 3.1.24. Let M
n+1

= −I ×ρ M
n be a GRW spacetime and let ψ : Σn

↬ M
n+1

be

a compact mean curvature flow soliton with soliton constant c ̸= 0. Assume that ρ′′(t) ≤ 0 for

h∗ ≤ t ≤ h∗, where h∗ and h∗ are the minimum and maximum on Σn of its height function h. If

H is constant, then Σn is a slice of M
n+1

.

Proof. Indeed, since ρ′′(t) ≤ 0, we have that ρ′ is non-decreasing. Besides, since H is constant,

from Theorem 3.1.22 we conclude that

−ncρ′(t) = H2,

for h∗ ≤ t ≤ h∗. Thus, from above equation jointly with (3.54), we have that ∆u = 0. Therefore,

since Σn is compact, we conclude that u is constant, which means that Σn is a slice ofM
n+1

.

3.1.3 Uniqueness under a parabolicity criterion

According to [133], a GRW spacetime M
n+1

= I×ρM
n is said to be spatially parabolic when

its Riemannian fiber Mn is parabolic, that is, (Mn, gM) is a noncompact complete Rieman-

nian manifold such that the only superharmonic functions on it that are bounded from below

60



are the constants. Analogously, M
n+1

is said to be spatially parabolic covered when its univer-

sal Lorentzian covering is spatially parabolic. For our next uniqueness result, we need of the

following parabolicity criterion due to Aledo, Rubio and Salamanca (see [18, Theorem 2.2])

Lemma 3.1.25. Let ψ : Σn →M
n+1

be a complete spacelike hypersurface immersed in a spatially

parabolic covered GRW spacetime M
n+1

= I×ρM
n. If supΣ ρ(h) < +∞ and the hyperbolic angle

function Θ is bounded, then (Σn, ĝ), endowed with the conformal metric ĝ = 1
ρ2(h)

g, is parabolic.

Using Lemma 3.1.25 we obtain the following result.

Theorem 3.1.26. LetM
n+1

= I×ρM
n be a spatially parabolic covered GRW spacetime satisfying

(3.12), holding the equality only at isolated points of I. Let ψ : Σn → M
n+1

be a complete

spacelike mean curvature flow soliton with respect to K = ρ(t)∂t with soliton constant c, lying

in a timelike bounded region Bt1,t2 ⊂ M
n+1

, with ζ̄c(t) ≥ 0 for all t1 ≤ t ≤ t2. If the hyperbolic

angle function Θ is bounded, then Σn is a slice Mt∗ for some t∗ ∈ [t1, t2] which is implicitly given

by the condition ζc(t∗) = 0.

Proof. First, we note that Lemma 3.1.25 guarantees that (Σn, ĝ) is parabolic. Moreover, it

follows from (3.16) that ρ(h)−α (where α = γ + 3) is subharmonic on Σn. Thus, since the

hypothesis that Σn ⊂ Bt1,t2 implies in particular that ρ(h)−α is bounded from above, it follows

from the parabolicity of (Σn, ĝ) that ρ(h) is constant on Σn. Consequently, since we are assuming

that the equality holds in (3.12) only at isolated points of I, returning to (3.16) we conclude

that |∇h| = 0 on Σn, which means that Σn is a slice.

3.1.4 Rigidity of mean curvature flow solitons

Using the concepts reported in equations 3.1 and 3.12 above, we will now obtain the results

for the stiffness in the GRW spacetimes.

Theorem 3.1.27. Let M
n+1

= −I ×ρ M
n be a GRW spacetime with complete noncompact

Riemannian fiberMn and whose warping function ρ satisfies inequality (3.12). The only complete

noncompact spacelike mean curvature flow soliton ψ : Σn → M
n+1

with respect to K = ρ(t)∂t

with soliton constant c such that ζ̄c(h) ≥ 0, ρ(h) is increasing (decreasing) and, for some t∗ ∈ I,

h converges from below (above) to t∗ at infinity, is the slice Mt∗.

Proof. As in the proof of Theorem 3.1.3, let us suppose by contradiction that such a mean

curvature flow soliton ψ : Σn → M
n+1

is not the slice Mt∗ and let us consider on Σn the

conformal metric ĝ =
1

ρ2(h)
g. Denoting by ∆̂ the Laplacian with respect to the metric ĝ,

from (1.7), (1.10) and (2.13) we get

∆̂ρ(h) = −nρ(h)(ρ′(h))2 −Hρ′(h)ρ2(h)Θ

+ρ3(h){(log ρ)′′(h)− (n− 2)((log ρ)′(h))2}|∇h|2. (3.55)
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For any positive real number α, with a straightforward computation from (3.55), (1.12), (3.1)

and (3.15), observing that Θ2 ≥ 1 and choosing α = 3+γ, we can use (3.12) and the assumption

that ζ̄c(h) ≥ 0 on Σn to obtain from (3.16) the following estimate

∆̂ρ(h)−α ≥ αζ̄c(h)ρ(h)
−α ≥ 0. (3.56)

Moreover, we have that

|∇̂ρ(h)−α|ĝ = αρ(h)−α|ρ′(h)||∇h|. (3.57)

At this point, taking into account (3.56) and (3.57), we can apply Lemma 1.5.6 the same

choices of the smooth function u = ρ(h)−α − ρ(t∗)
−α and the vector field X = ∇̂u to get that

ĝ(∇̂u,X) is identically zero on Σn. Thus, returning to (3.57) we conclude that ∇h vanishes

identically on Σn, which means that h is constant and (since it converges to t∗ at infinity) Σn

must be the slice Mt∗ . Therefore, we reach at a contradiction.

3.1.5 Applications to Einstein-de Sitter spacetimes

Observing that the (n + 1)-dimensional Einstein-de Sitter spacetime −R
+ ×

t
2

3
R

n (see Ex-

ample 5.2.1) satisfies (1.11), from Theorem 3.1.1 we obtain the following consequence.

Corollary 3.1.28. Let M
n+1

= −R
+ ×

t
2

3
R

n be the (n + 1)-dimensional Einstein-de Sitter

spacetime. There does not exist a complete spacelike mean curvature flow soliton ψ : Σn →M
n+1

with respect to K = t
2

3∂t with soliton constant c ≥ 0, whose second fundamental form and

hyperbolic angle function are bounded, and lying in a timelike bounded region of M
n+1

.

Applying Theorem 3.1.3 to the Einstein-de Sitter spacetime, we obtain the following result.

Corollary 3.1.29. Let M
n+1

= −R
+ ×

t
2

3
R

n be the (n + 1)-dimensional Einstein-de Sitter

spacetime. The only complete spacelike mean curvature flow soliton ψ : Σn → M
n+1

with

respect to K = t
2

3∂t with soliton constant c < 0, lying in a timelike bounded region Bt1,t2 ⊂

M
n+1

with t2 = (−2n

3c
)
3

5 , and such that its height function h satisfies |∇h| ∈ L1
g(Σ), is the slice

{(−2n

3c
)
3

5} × R
n.

When the ambient spacetime is the Einstein-de Sitter spacetime, Corollary 3.1.4 reads as

follows.

Corollary 3.1.30. Let M
n+1

= −R
+ ×

t
2

3
R

n be the (n + 1)-dimensional Einstein-de Sitter

spacetime. There does not exist a complete spacelike mean curvature flow soliton ψ : Σn →M
n+1

with respect to K = t
2

3∂t with soliton constant c ≥ 0, lying in a timelike bounded region of M
n+1

and such that its height function h satisfies |∇h| ∈ L1
g(Σ).

From Theorem 3.1.6 we obtain the following consequences.
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Corollary 3.1.31. Let M
n+1

= −R
+ ×

t
2

3
R

n be the (n + 1)-dimensional Einstein-de Sitter

spacetime. There does not exist a complete spacelike mean curvature flow soliton ψ : Σn →M
n+1

with respect to K = t
2

3∂t with soliton constant c ≥ 0, lying in a timelike bounded region of M
n+1

and such that its height function h satisfies h−
2

3 ∈ Lq
g(Σ) for some q with q > 3.

We close this section quoting the following applications of Theorem 3.1.26.

Corollary 3.1.32. Let M
3
= −R

+ ×
t
2

3
R

2 be the 3-dimensional Einstein-de Sitter spacetime.

The only complete spacelike mean curvature flow soliton ψ : Σ2 → M
3
with respect to K = t

2

3∂t

with soliton constant c < 0, lying in a timelike bounded region Bt1,t2 ⊂ M
3
with t2 = (− 4

3c
)
3

5 ,

and such that its hyperbolic angle function Θ is bounded, is the slice {(− 4

3c
)
3

5} × R
n.

From Theorem 3.1.2 we obtain the following consequence.

Corollary 3.1.33. Let M
n+1

= −R
+ ×

t
2

3
R

n be the (n + 1)-dimensional Einstein-de Sitter

spacetime. There does not exist a complete noncompact spacelike mean curvature flow soliton

ψ : Σn → M
n+1

with respect to K = t
2

3∂t with soliton constant c ≥ 0, whose mean curvature is

bounded bounded, having polynomial volume growth and lying in a slab of M
n+1

.

From Theorem 3.1.10 we derive the following consequence.

Corollary 3.1.34. Let ψ : Σn
↬ −R

+ ×
t
2

3
R

n be a complete spacelike mean curvature flow

soliton with soliton constant c < 0, lying in a timelike bounded region of the Einstein-de Sitter

spacetime −R
+ ×

t
2

3
R

n. If |A| does not vanish and h ≥ − 8c3

27|A|6
and |∇H| ∈ L1(Σn), then Σn is

the slice {(−2n
3c
)
3

5} × R
n.

From Theorem 3.1.19 we get the following nonexistence result.

Corollary 3.1.35. There is no complete spacelike mean curvature flow soliton with soliton

constant c > 0, lying in a timelike bounded region of the Einstein-de Sitter spacetime −R
+×

t
2

3
R

n.

3.1.6 Applications to steady state type spacetimes

Since a steady state type spacetime (see Example 1.2.4) whose Riemannian fiber has nonneg-

ative sectional curvature satisfies (1.11), from Theorem 3.1.1 we obtain the following application.

Corollary 3.1.36. Let M
n+1

= −R×et M
n be a steady state type spacetime whose Riemannian

fiber Mn has nonnegative sectional curvature. There does not exist a complete spacelike mean

curvature flow soliton ψ : Σn → M
n+1

with respect to K = et∂t with soliton constant c ≥ 0,

whose second fundamental form and hyperbolic angle function are bounded, and lying in a timelike

bounded region of M
n+1

.

When the ambient space is a steady state type spacetime, Theorem 3.1.3 gives us the following

consequence.
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Corollary 3.1.37. Let M
n+1

= −R×et M
n be a steady state type spacetime whose Riemannian

fiber Mn is complete. The only complete spacelike mean curvature flow soliton ψ : Σn → M
n+1

with respect to K = et∂t with soliton constant c < 0, lying in a timelike bounded region Bt1,t2 ⊂

M
n+1

with t2 = log(−n
c
), and such that its height function h satisfies |∇h| ∈ L1

g(Σ), is the slice

{log(−n
c
)} ×Mn.

When the ambient spacetime is the steady state type spacetime, Corollary ?? reads as follows.

Corollary 3.1.38. Let M
n+1

= −R×et M
n be a steady state type spacetime whose Riemannian

fiber Mn is complete. There does not exist a complete spacelike mean curvature flow soliton

ψ : Σn →M
n+1

with respect to K = et∂t with soliton constant c ≥ 0, lying in a timelike bounded

region of M
n+1

and such that its height function h satisfies |∇h| ∈ L1
g(Σ).

From Theorem 3.1.6 we obtain the following consequences.

Corollary 3.1.39. Let M
n+1

= −R×et M
n be a steady state type spacetime whose Riemannian

fiber Mn is complete noncompact with nonnegative Ricci curvature. There does not exist a

complete spacelike mean curvature flow soliton ψ : Σn → M
n+1

with respect to K = et∂t with

soliton constant c ≥ 0, lying in a timelike bounded region of M
n+1

and such that its height

function h satisfies e−h ∈ Lq
g(Σ) for some q with q > 3.

We close this section quoting the following applications of Theorem 3.1.26.

Corollary 3.1.40. Let M
n+1

= −R ×et M
n be a spatially parabolic covered steady state type

spacetime. The only complete spacelike mean curvature flow soliton ψ : Σn →M
n+1

with respect

to K = et∂t with soliton constant c < 0, lying in a timelike bounded region Bt1,t2 ⊂M
n+1

with t2 =

log(−n
c
), and such that its hyperbolic angle function Θ is bounded, is the slice {log(−n

c
)} ×Mn.

Remark 3.1.41. Related to Corollary 3.1.40 in the case n = 2, when the Riemannian fiber M2

is a complete Riemannian surface having nonnegative Gaussian curvature, a classical result due

to Ahlfors [2] and Blanc-Fiala-Huber [101] guarantees that M2 has parabolic universal covering.

In this context, Theorem 3.1.2 gives the following:

Corollary 3.1.42. Let M
n+1

= −R ×et M
n be a steady state type spacetime. There does not

exist a complete noncompact spacelike mean curvature flow soliton ψ : Σn → M
n+1

with respect

to K = et∂t with soliton constant c ≥ 0, whose mean curvature is bounded, having polynomial

volume growth and lying in a slab of M
n+1

.

When the ambient space is a steady state type spacetime, Theorem 3.1.10 gives us the

following rigidity result.

Corollary 3.1.43. Let M
n+1

= −I ×et M
n be a steady state type spacetime whose Riemannian

fiberMn has positive Ricci curvature. Let ψ : Σn
↬M

n+1
be a complete spacelike mean curvature

flow soliton with soliton constant c < 0 and lying in a timelike bounded region. If |A| does not

vanish and h ≥ ln
(

− |A|2

c

)

and |∇H| ∈ L1(Σn), then Σn is the slice {ln(−n
c
)} ×Mn.
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Corollary 3.1.44. There is no complete spacelike mean curvature flow soliton lying in a timelike

bounded region of a steady state type spacetime −I ×et M
n, whose Riemannian fiber Mn has

positive Ricci curvature, having soliton constant c > 0 and such that |∇H| ∈ L1(Σn).

From Theorem 3.1.14 we obtain the following applications.

Corollary 3.1.45. Let M
n+1

= −I ×et M
n be a steady state type spacetime whose Riemannian

fiber Mn has positive Ricci curvature and (cũ)-parabolic universal Riemannian covering for some

constant c < 0. Let ψ : Σn
↬ M

n+1
be a complete spacelike mean curvature flow soliton with

soliton constant c and lying in a timelike bounded region Bt1,t2. If Θ is bounded from below and

h ≥ ln
(

− |A|2
c

)

, then Σn is the slice {ln(−n
c
)} ×Mn.

Corollary 3.1.46. Let M
n+1

= −I ×et M
n be a steady state type spacetime whose Riemannian

fiber Mn has positive Ricci curvature and (cũ)-parabolic universal Riemannian covering for some

constant c > 0. There is no complete spacelike mean curvature flow soliton lying in a timelike

bounded region of M
n+1

, having soliton constant c and such that Θ is bounded from below.

From Theorem 3.1.19 we get the following nonexistence result.

Corollary 3.1.47. There is no complete mean curvature flow soliton with soliton constant c >

0, lying in a timelike bounded region of the steady state type spacetime −R ×et M
n, whose

Riemannian fiber Mn has nonnegative sectional curvature.

3.1.7 Applications to de Sitter spaces

From [117, Example 4.2], the (n+1)-dimensional de Sitter space Sn+1
1 is isometric to the RW

spacetime −R×cosh tS
n, where Sn denotes the n-dimensional unit Euclidean sphere endowed with

its standard metric. Taking into account the terminology introduced in [17], the open half-space

R
+ × S

n ⊂ S
n+1
1 (respect. R

− × S
n ⊂ S

n+1
1 ) is called the chronological future (respect. past) of

S
n+1
1 with respect to the totally geodesic equator {0} × S

n. From (1.14) we see that the equator

is a spacelike mean curvature flow soliton with respect to K = cosh t ∂t and constant soliton

c = 0 and the slices {sinh−1(−n±
√
n2−4c2

2c
)} × S

n are spacelike mean curvature flow soliton with

respect to K = cosh t ∂t and with soliton constant 0 < |c| ≤ n
2
.

Considering the context of Example 1.2.5, from Theorem 3.1.1 we also get.

Corollary 3.1.48. There does not exist a complete spacelike mean curvature flow soliton ψ :

Σn → S
n+1
1 with respect to K = cosh t ∂t having soliton constant c ≥ 0 (respect. c ≤ 0), whose

second fundamental form and hyperbolic angle function are bounded, and lying in a timelike

bounded region contained in the chronological future (respect. past) of Sn+1
1 with respect to the

equator {0} × S
n.

From Example 1.2.6 and Theorem 3.1.1 we obtain.

Corollary 3.1.49. There does not exist a complete spacelike mean curvature flow soliton ψ :

Σn → −R
+ ×sinh t H

n ⊂ S
n+1
1 with respect to K = sinh t ∂t having soliton constant c ≥ 0, whose
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second fundamental form and hyperbolic angle function are bounded, and lying in a timelike

bounded region of −R
+ ×sinh t H

n ⊂ S
n+1
1 .

Finally, in the setting of Example 1.2.7, Theorem 3.1.1 reads as follows.

Corollary 3.1.50. There does not exist a complete spacelike mean curvature flow soliton ψ :

Σn → −(−π

2
, π
2
) ×cos t H

n ⊂ H
n+1
1 with respect to K = cos t ∂t having soliton constant c ≤ 0

(respect. c ≥ 0), whose second fundamental form and hyperbolic angle function are bounded, and

lying in a timelike bounded region contained in the chronological future (respect. past) of Hn+1
1

with respect to the equator {0} ×H
n.

We close this section with the following consequence of Theorem 3.1.2:

Corollary 3.1.51. There does not exist a complete noncompact spacelike mean curvature flow

soliton ψ : Σn → S
n+1
1 with respect to K = cosh t ∂t having soliton constant c ≥ 0 (respect.

c ≤ 0), whose mean curvature is bounded, having polynomial volume growth and lying in a slab

contained in the chronological future (respect. past) of Sn+1
1 with respect to the equator {0}×S

n.

3.1.8 Applications to the Lorentz-Minkowski space

From Theorem 3.1.17 we obtain the following applications.

Corollary 3.1.52. Let ψ : Σn
↬ −R

+×tH
n be a complete spacelike mean curvature flow soliton

with soliton constant c < 0. If infΣ h > 0, the second soliton function ζ̃c = |A|2+c is nonnegative

and |∇h| ≤ infΣn ζ̃c, then Σn is a slice {
√

−n

c
} ×H

n.

Corollary 3.1.53. There is no complete spacelike mean curvature flow soliton ψ : Σn
↬ −R

+×t

H
n with soliton constant c > 0, such that infΣ h > 0 and |∇h| ≤ infΣn |A|2 + c.

3.1.9 Application to the anti-de Sitter space

From Theorem 3.1.19 we get the following nonexistence result.

Corollary 3.1.54. There is no complete mean curvature flow soliton with soliton constant c ̸= 0

immersed in −(−π

2
, π
2
)×cos t H

n ⊂ H
n+1
1 , such that c sin(h) ≤ 0.

3.2 Entire spacelike mean curvature flow graphs

In this last section this chapter, we will use the theorems of the previous sections in order to

establish new Calabi-Bernstein type results concerning entire spacelike graphs constructed over

the Riemannian fiber of a GRW spacetime. If the reader needs a refresher on the preliminary

concepts of entire graphs, we recommend a re-reading of Section 1.4.

Hence, from (1.12) and (1.19) we have that Σn(u) is a spacelike mean curvature flow soliton

with respect to K = ρ(t)∂t and with soliton constant c if, and only if, |Du|M < ρ(u) and u is a
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solution of the following nonlinear differential equation:

divM

(

Du

ρ(u)
√

ρ(u)2 − |Du|2M

)

= − 1
√

ρ(u)2 − |Du|2M

{

cf(u)2 + ρ′(u)

(

n+
|Du|2M
ρ(u)2

)}

. (3.58)

We say that u ∈ C∞(M) has finite C2 norm when

||u||C2(M) := sup
|k|≤2

|Dku|L∞(M) < +∞.

When an entire spacelike graph Σ(u) is such that u has finite C2 norm, it follows from (1.18)

that |A| is bounded and, consequently, Σ(u) has bounded second fundamental form. We also

note that the finiteness of the C2 norm of u implies, in particular, that u is bounded, which, in

turn, guarantees that 0 < infM ρ(u) ≤ supM ρ(u) < +∞.

In this setting, we obtain a nonparametric version of Theorem 3.1.1.

Theorem 3.2.1. Let M
n+1

= −I ×ρ Mn be a GRW spacetime satisfying (1.11) and whose

Riemannian fiber Mn is complete. Suppose that c is a constant such that the modified soliton

function ζ̄c(t) has strict sign in I. There does not exist a smooth function u : Mn → I with finite

C2 norm which is solution of the spacelike mean curvature flow soliton equation (3.58) and such

that |Du|M ≤ βρ(u), for some constant 0 < β < 1.

Proof. Let us assume the existence of such a smooth function u : Mn → I. It follows from

(1.18) that the shape operator A of an entire spacelike graph Σ(u) is bounded provided that u

has finite C2 norm. Note also that the finiteness of the C2 norm of u implies, in particular, that

u is bounded, which, in turn, guarantees that Σ(u) is contained in a bounded timelike region of

M
n+1

.

On the other hand, under the assumptions of the theorem, Σ(u) is a complete spacelike

hypersurface. Indeed, proceeding as in [13, Corollary 5.1], from (1.16) and the Cauchy-Schwarz

inequality we get

gu(X,X) = −gM(Du,X∗)2 + ρ2(u)gM(X∗, X∗) ≥ (ρ2(u)− |Du|2M)gM(X∗, X∗), (3.59)

for every tangent vector field X on Σ(u), where (as before) X∗ denotes the projection of X onto

the Riemannian fiber Mn. Thus, since |Du|M ≤ βρ(u), for some constant 0 < β < 1, from (3.59)

we get that

gu(X,X) ≥ δgM(X∗, X∗), (3.60)

where δ = (1− β2) infM ρ2(u). So, (3.60) implies that L =
√
δLM , where L and LM denote the

length of a curve on Σ(u) with respect to the Riemannian metrics gu and gM , respectively. As

a consequence, since we are always assuming that Mn is complete, the induced metric gu must

be also complete.
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Moreover, from (1.17) we obtain that the hyperbolic angle function Θ of Σ(u) is given by

Θ = −
ρ(u)

√

ρ2(u)− |Du|2M
. (3.61)

Hence, using once more that hypothesis that |Du|M ≤ βρ(u), for some constant 0 < β < 1,

from (3.61) we get that Θ is bounded. But, by applying Theorem 3.1.1 we have that Σ(u)

cannot exist.

From Theorem 3.2.1 we obtain the following applications.

Corollary 3.2.2. For any constants c ≥ 0 and 0 < β < 1, there does not exist a smooth function

u : Rn → R
+ with finite C2 norm which is a solution of the following system



























divRn





Du

u
2

3

√

u
4

3 − |Du|2
Rn



 = −
1

√

u
4

3 − |Du|2
Rn

(

cu
4

3 + 2n

3u
1
3

+
2|Du|2

Rn

3u
5

3

)

|Du|Rn ≤ βu
2

3

(3.62)

Corollary 3.2.3. Let Mn be a complete Riemannian manifold with nonnegative sectional curva-

ture. For any constants c ≥ 0 and 0 < β < 1, there does not exist a smooth function u : Mn → I

with finite C2 norm which is a solution of the following system























divM

(

Du

eu
√

e2u − |Du|2M

)

= −
1

√

e2u − |Du|2M

(

ce2u + neu +
|Du|2M
eu

)

|Du|M ≤ βeu

(3.63)

Remark 3.2.4. From Examples 1.2.5, 1.2.6 and 1.2.7, it is not difficult to see that we can

also obtain applications of Theorem 3.2.1 to the de Sitter and anti-de Sitter spaces similar to

Corollaries 3.2.2 and 3.2.3.

Proceeding, from Theorem 3.1.3 we obtain the following Calabi-Bernstein type result.

Theorem 3.2.5. Let M
n+1

= −I ×ρ M
n be a GRW spacetime satisfying (3.12), occurring the

equality only at isolated points of I, and whose Riemannian fiber Mn is complete. Suppose

that c is a constant such that ζ̄c(t) ≥ 0 for all t ∈ I. If Σ(u) ⊂ M
n+1

is an entire spacelike

graph determined by a bounded function u ∈ C∞(M) which is solution of the spacelike mean

curvature flow soliton equation (3.58) with |Du|M ≤ βρ(u), for some constant 0 < β < 1,

and |Du|M ∈ L1
gM

(M), then u ≡ t∗ for some t∗ ∈ I which is implicitly given by the condition

ζc(t∗) = 0.

Proof. Since we are supposing that |Du|M ≤ βρ(u), for some constant 0 < β < 1, it follows from

the proof of Theorem 3.2.1 that Σ(u) is a complete spacelike hypersurface.
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On the other hand, reasoning once more as in [13, Corollary 5.1], we deduce from the induced

metric (1.16) that dΣ =
√

|G|dM , where dM and dΣ stand for the Riemannian volume elements

of (Mn, gM) and (Σ(u), gu), respectively, and G = det(gij) with

gij = gu(Ei, Ej) = ρ2(u)δij − Ei(u)Ej(u). (3.64)

Here, {E1, . . . , E
n} denotes a local orthonormal frame with respect to the metric gM . So, it is

not difficult to verify that

|G| = ρ2(n−1)(u)(ρ2(u)− |Du|2M). (3.65)

Hence, from (3.64) and (3.65) we obtain

dΣ = ρn−1(u)
√

ρ2(u)− |Du|2MdM. (3.66)

Moreover, since we have that N = N∗ −Θ∂t, from (5.3) we get

|∇h|2 = ρ2(u)|N∗|2M . (3.67)

Thus, from (5.25) and (3.67) we obtain

|∇h|2 =
|Du|2M

ρ2(u)− |Du|2M
. (3.68)

Consequently, from (3.68) and (3.66) we get

|∇h|dΣ = ρn−1(u)|Du|MdM. (3.69)

Hence, since we are assuming that u is bounded with |Du|M ∈ L1
gM

(M), relation (3.69) guaran-

tees that |∇h| ∈ L1
g(Σ(u)). Therefore, the result follows by applying Theorem 3.1.3.

From Theorem 3.2.5 we obtain the following applications.

Corollary 3.2.6. For any constants c < 0 and 0 < β < 1, the only bounded smooth function

u : Rn → R
+, with u(x) ≤ (−2n

3c
)
3

5 for all x ∈ R
n, |Du|Rn ∈ L1

gRn
(Rn) and which is solution of

the system (3.62), is the constant u = (−2n
3c
)
3

5 .

Corollary 3.2.7. Let Mn be a complete Riemannian manifold. For any constants c < 0 and

0 < β < 1, the only bounded smooth function u : Mn → R, with u(x) ≤ log(−n
c
) for all x ∈ Mn,

|Du|M ∈ L1
gM

(M) and which is solution of the system (3.63), is the constant u = log(−n
c
).

Taking into account once more relation (3.66), it is not difficult to see that from Theorem 3.1.6

we obtain the following nonexistence result.

Theorem 3.2.8. Let M
n+1

= −I ×ρ M
n be a GRW spacetime satisfying (3.12), occurring the

equality only at isolated points of I, and whose Riemannian fiber Mn is complete noncompact

with nonnegative Ricci curvature. Suppose that c is a constant such that ζ̄c(t) ≥ 0 for all t ∈ I.
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There does not exist a bounded entire solution u ∈ C∞(M) of the spacelike mean curvature flow

soliton equation (3.58), with |Du|M ≤ βρ(u), for some constant 0 < β < 1, and such that

(ρ(u))−1 ∈ Lq
gM

(M) for some q with q > γ + 3.

We have the following applications of Theorem 3.2.8.

Corollary 3.2.9. For any constants c ≥ 0 and 0 < β < 1, there does not exist a bounded smooth

function u : Rn → R
+ such that u−

2

3 ∈ Lq
gRn

(Rn), for some q > 3, and which is a solution of the

system (3.62).

Corollary 3.2.10. Let Mn be a complete noncompact Riemannian manifold with nonnegative

Ricci curvature. For any constants c ≥ 0 and 0 < β < 1, there does not exist a bounded smooth

function u : Mn → I such that e−u ∈ Lq
gM

(M), for some q > 3, and which is a solution of the

system (3.63).

Observing once more that the assumption |Du|M ≤ βρ(u), for some constant 0 < β < 1,

implies that the hyperbolic angle function Θ given by (3.61) is bounded, Theorem 3.1.26 allows

us to obtain the following result.

Theorem 3.2.11. Let M
n+1

= −I ×ρ Mn be a spatially parabolic covered GRW spacetime

satisfying (3.12), holding the equality only at isolated points of I. Suppose that c is a constant

such that ζ̄c(t) ≥ 0 for all t ∈ I. If Σ(u) ⊂ M
n+1

is an entire spacelike graph determined by

a bounded function u ∈ C∞(M) which is solution of the spacelike mean curvature flow soliton

equation (3.58) with |Du|M ≤ βρ(u), for some constant 0 < β < 1, then u ≡ t∗ for some t∗ ∈ I

which is implicitly given by the condition ζc(t∗) = 0.

We finish this manuscript with the following applications of Theorem 3.2.11.

Corollary 3.2.12. For any constants c < 0 and 0 < β < 1, the only bounded smooth function

u : R2 → R
+, with u(x) ≤ (− 4

3c
)
3

5 for all x ∈ R
2, and which is solution of the system (3.62) for

n = 2, is the constant u = (− 4

3c
)
3

5 .

Corollary 3.2.13. Let Mn be a complete Riemannian manifold with parabolic universal cover-

ing. For any constants c < 0 and 0 < β < 1, the only bounded smooth function u : Mn → R,

with u(x) ≤ log(−n
c
) for all x ∈ Mn, and which is solution of the system (3.63), is the constant

u = log(−n
c
).

Taking into account [8, Lemma 17], it is not difficult to see that we can reason to get the

following nonparametric version of Theorem 3.1.27.

Corollary 3.2.14. Let M
n+1

= −I ×ρ M
n be a GRW spacetime with complete noncompact

Riemannian fiber Mn and whose warping function ρ is increasing (decreasing) and satisfies

inequality (3.12). Suppose in addition that c is a constant such that the modified soliton function

ζ̄c(t) ≥ 0 for all t ∈ I. The only smooth function u : Mn → I which is solution of the mean

curvature flow soliton equation (3.58), with |Du|M ≤ βρ(u), for some constant 0 < β < 1, and

such that u converges from below (above) to some t∗ ∈ I at infinity is the constant function

u ≡ t∗.
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Proof. Let u ∈ C∞(M) be such a solution of equation (3.58). We start observing that, since Mn

is complete and |Du|M ≤ βρ(u) (due to the boundedness of u), from (5.24) we conclude that

the entire graph Σ(u) must be complete. Therefore, we are in position to apply Theorem 3.1.27

to conclude that u ≡ t∗.

Taking into account [8, Lemma 17] jointly with equation (5.9) in the proof of [13, Corollary

5.1], it is not difficult to see that we can reason to get the following nonparametric version of

Theorem 3.1.2.

Theorem 3.2.15. Let M
n+1

= −I ×ρ M
n be a GRW spacetime whose Riemannian fiber Mn

is complete noncompact, having polynomial volume growth and with its warping function ρ sat-

isfying inequality (3.12). Suppose in addition that c ̸= 0 is a constant such that the modi-

fied soliton function ζ̄c(t) > 0 for all t ∈ I. There does not exist a bounded smooth function

u : Mn → I which is solution of the mean curvature flow soliton equation (3.58) and such that

|Du|M ≤ βρ(u), for some constant 0 < β < 1.

Proof. Let u ∈ C∞(M) be such a solution of equation (3.58). From (5.25) we get

Θ(u) =
ρ(u)

√

ρ(u)2 − |Du|2M
.

Thus, since we are assuming that u and |Du|M are bounded, from (1.12) and (3.61) we get that

H(u) is bounded away from zero.

On the other hand, reasoning as in the proof of [14, Theorem 1], we deduce from the induced

metric (1.16) that dΣ =
√

|G|dM , where dM and dΣ stand for the Riemannian volume elements

of (Mn, gM) and (Σ(u), gu), respectively, and (as in the proof of Theorem 3.1.2) G = det(gij)

with

gij = gu(Ei, Ej) = ρ2(u)δij − Ei(u)Ej(u). (3.70)

Here, {E1, . . . , E
n} denotes a local orthonormal frame with respect to the metric gM . So, it is

not difficult to verify that

|G| = ρ2(n−1)(u)(ρ2(u)− |Du|2M). (3.71)

Then, from (3.70) and (3.71) we obtain

dΣ = ρn−1(u)
√

ρ2(u)− |Du|2MdM. (3.72)

Hence, since we are supposing that (Mn, gM) has polynomial volume growth, we can use once

more the hypotheses that u and |Du|M are bounded jointly with relation (3.72) to get that

(Σ(u), gu) also has polynomial volume growth. Therefore, we are in position to apply Theo-

rem 3.1.2 and conclude that Σ(u) cannot exist.

Theorem 3.2.16. Let M
n+1

= −I ×ρ M
n be a GRW spacetime obeying the SNCC (3.37), with

equality occurring only in isolated points of I, and whose Riemannian fiber Mn is complete.

Let u ∈ C∞(M) be an entire solution of equation (3.58) for c ̸= 0, with finite C2 norm, such
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that |Du|M ≤ αρ(u), for some constant 0 < α < 1, and the second soliton function ζ̃c(u) =

|A|2+ cρ′(u) is nonnegative. If |Du|M ∈ L1(M), then u ≡ t∗ for some t∗ ∈ I, which is implicitly

given by the condition ζ(t∗) = 0.

Proof. Let z ∈ C∞(M) be such a solution of equation (3.58). It follows from (1.18) that the

shape operator A of Σn(z) is bounded, provided that u has finite C2. We note also that the

finiteness of the C2 norm of u implies, in particular, that u is bounded, which, in turn, guarantees

that Σn(u) is contained in a bounded timelike region of M
n+1

. Consequently, since we are also

assuming that |Du|M ≤ αρ(u), for some constant 0 < α < 1, we get that

|Du|2M ≤ ρ2(u)− β,

for β = (1 − α2) infΣ(u) ρ
2(u). Thus, we can apply [6, Proposition 1] to conclude that Σn(u) is

complete.

We also have that N = N∗ −Θ∂t, where N∗ denotes the projection of N onto the fiber Mn.

Consequently, from (1.17), we get

|∇u|2 = ⟨N∗, N∗⟩ = ρ2(u)⟨N∗, N∗⟩M . (3.73)

Thus, from (1.17) and (3.73) we obtain

|∇u|2 =
|Du|2M

ρ2(u)− |Du|2M
. (3.74)

On the other hand, it follows from (1.16) that dΣ =
√

|G|dM , where dM and dΣn stand for

the Riemannian volume elements of (Mn, gM) and (Σn(u), gu), respectively, and G = det(gij)

with

gij = gz(Ei, Ej) = ρ2(u)δij − Ei(u)Ej(u).

Here, {E1, . . . , E
n} denotes a local orthonormal frame with respect to the metric gM . So, it is

not difficult to verify that

|G| = ρ2(n−1)(u)(ρ2(u)− |Du|2M).

Consequently,

dΣ = ρn−1(u)
√

ρ2(u)− |Du|2MdM. (3.75)

Thus, from (3.74) and (3.75) we get

|∇u|dΣ = ρ(u)n−1|Du|MdM. (3.76)

Hence, since z is bounded and |Du|M ∈ L1(M), from relation (3.76) we conclude that

|∇u| ∈ L1(Σn(u)). Consequently, from (3.26) we get that |∇(φK)| ∈ L1
cu(Σ

n(u)). Therefore, we

can reason as in the last part of the proof of Theorem 3.1.10 to conclude the result.
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From Theorem 3.1.14 we obtain the following consequence

Theorem 3.2.17. Let M
n+1

= −I ×ρM
n be a GRW spacetime obeying the SNCC (3.37), with

equality occurring only in isolated points of I, and whose Riemannian fiber Mn is complete with

(cũ)-parabolic universal Riemannian covering for some constant c ̸= 0. If u ∈ C∞(M) is an

entire solution of equation (3.58) for c, with finite C1 norm, such that |Du|M ≤ αρ(u), for some

constant 0 < α < 1, and the second soliton function ζ̃c(u) = |A|2 + cρ′(u) is nonnegative, then

u ≡ t∗ for some t∗ ∈ I, which is implicitly given by the condition ζ(t∗) = 0.

Proof. Observing that h satisfies (1.4) and (3.73), from (1.18) we obtain

|∇h|2 =
|Du|2M

ρ(u)2 − |Du|2M
. (3.77)

Hence, since we are assuming that z has finite C1 norm and taking into account once more that

Θ2 = |∇h|2 + 1, with aid of (3.77) we conclude that Θ is bounded. Therefore, the result follows

by applying Theorem 3.1.14.

From Theorem 3.1.17 we also obtain the following result

Theorem 3.2.18. Let M
n+1

= −I ×ρ M
n be a GRW spacetime obeying the SNCC (3.37) and

whose Riemannian fiberMn is complete. Let u ∈ C∞(M) be a bounded entire solution of equation

(3.58) for some constant c ̸= 0, such that |Du|M ≤ αρ(u), for some constant 0 < α < 1, and the

second soliton function ζ̃c(u) = |A|2 + cρ′(u) is nonnegative. If

|Du|M ≤ inf
M
ζ̃c, (3.78)

then u ≡ t∗ for some t∗ ∈ I, which is implicitly given by the condition ζ(t∗) = 0.

Proof. From (3.77) and (3.78), we see that hypothesis (3.50) is satisfied. Therefore, the result

follows applying Theorem 3.1.17.

We close this subsection with the following application of Theorem 3.1.19

Theorem 3.2.19. Let M
n+1

= −I ×ρ M
n be a GRW spacetime obeying the SNCC (3.42) and

whose Riemannian fiber Mn is complete. For any constant c ̸= 0, there is no bounded entire

solution u ∈ C∞(M) of equation (3.58), such that |Du|M ≤ αρ(u), for some constant 0 < α < 1,

and cρ′(u) ≥ 0.

3.3 Stability of spacelike mean curvature flow solitons in

GRW spacetimes

Let ψ : Σn
↬ −I ×ρ M

n be a complete spacelike mean curvature flow soliton with with

soliton constant c. We recall that a variation with compact support and fixed boundary of ψ :
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Σn
↬ −I ×ρ M

n is a smooth mapping

F : (−ϵ, ϵ)× Σn → −I ×ρ M
n (3.79)

such that

(i) for s ∈ (−ϵ, ϵ), the map Fs : Σn
↬ −I ×ρ M

n given by Fs(q) = F (s, q) is an spacelike

immersion with F0 = x;

(ii) Fs|∂Σ = ψ|∂Σ for all s ∈ (−ϵ, ϵ).

In all that follows, we let dMs denote the volume element of the metric induced on Σn by

Fs and Ns the unit normal vector field along Fs. Moreover, we also consider in Σn the weighted

volume form given by dµs = e−ρdMs. When s = 0 all these objects coincide with the ones

defined in Σn, respectively.

The variational field associated to the variation F is the vector field ∂F
∂s
|s=0. Letting

us = −⟨
∂F

∂s
,Ns⟩, (3.80)

we get
∂F

∂s
|s=0 = u0N + (

∂F

∂s
|s=0)

⊤,

where (·)⊤ stands for tangential components.

Denoting the set of all smooth functions on Σn with compact support by C∞

0
(Σn), according

to [46, Lemma 2.1] and [47, Lemma 2.1], every function φ ∈ C∞

0
(Σn) with

∫
Σn

φdΣ = 0 (3.81)

induces a variation of ψ : Σn
↬ −I ×ρ M

n of the type (3.79), with variational normal field
∂F
∂s
|s=0 = φN , and with first variation δϕA of the area functional

A : (−ϵ, ϵ) → R

s 7→ A(s) = Area(Fs(Σ
n)) =

∫
Σn

dΣs,

given by

δϕ A =
dA

ds
(0) =

∫
Σn

φH dΣ. (3.82)

Here, N stands for a normal unit vector field globally defined on Σn, dΣs denotes the volume

element of Σn with respect to the metric induced by Fs : Σ
n
↬ −I ×ρ M

n and H is the mean

curvature function of ψ : Σn
↬ −I ×ρ M

n with respect to N .

As a consequence of (3.82), maximal compact spacelike mean curvature flow solitons of −I×ρ

Mn (that is, with mean curvature identically zero) are characterized as critical points of the area

functional A whereas any compact spacelike mean curvature flow soliton ψ : Σn
↬ −I ×ρ M

n

with constant mean curvatureH is a critical point of A restricted to functions φ ∈ C∞(Σn) which
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satisfy the condition (3.81). Geometrically, this additional condition means that the variations

under consideration preserve a certain volume functional (for more details, see [47]).

For these critical points, [46, Proposition 2.3] asserts that the stability of the corresponding

variational problem is given by the second variation of the area functional A, which is given by

δ 2

ϕ A =
d 2

A

ds2
(0)(φ) =

∫

Σn

{

∆(φ)− {Ric(N,N) + |A|2}φ
}

φdΣ,

where ∆ stands for the Laplacian operator on Σn, Ric is the Ricci tensor of the GRW spacetime

−I ×ρ M
n and |A| denotes the length of the shape operator A of ψ : Σn

↬ −I ×ρ M
n with

respect to N . In this setting, we establish the following

Definition 3.3.1. A compact spacelike mean curvature flow soliton ψ : Σn
↬ −I ×ρ M

n with

constant mean curvature H is said strongly stable if δ 2

ϕ A ≤ 0, for every φ ∈ C∞(Σn).

In our next result, we impose a suitable behavior on the warping function ρ to obtain a

nonexistent result of strongly stable spacelike mean curvature flow solitons immersed in −I ×ρ

Mn.

Theorem 3.3.2. There is no strongly stable compact spacelike mean curvature flow soliton

ψ : Σn
↬ −I ×ρ M

n with soliton constant c ̸= 0, whose mean curvature H is constant and such

that its height function h satisfies cρ′(h)ρ(h) + nρ′′(h) > 0 on Σn.

Proof. By contradiction, let us suppose the existence of such a soliton ψ : Σn
↬ −I ×ρ M

n.

From the first equation in the proof of [62, Proposition 2.1] we have

∆(φK) = {Ric(N,N) + |A|2}φK − {nN(ρ′(h))−Hρ′(h)}+ ⟨K,∇H⟩

= {Ric(N,N) + |A|2}φK + c φKρ
′(h)− nN(ρ′(h)), (3.83)

where φK ∈ C∞(Σn) is the support function defined in (3.27).

On the other hand, we also have

N(ρ′(h)) = −⟨ρ′′(h)∂ t, N⟩ = −
ρ′′(h)

ρ(h)
φK. (3.84)

Thus, from (3.83) and (3.84) we get

∆(φK) = {Ric(N,N) + |A|2}φK + c φKρ
′(h)− nN(ρ′(h))

= {Ric(N,N) + |A|2}φK +
{

c ρ′(h) + n
ρ′′(h)

ρ(h)

}

φK. (3.85)

Moreover, since H = c φK is constant and c ̸= 0, we have that φK is also constat on Σn.

Hence, form (3.85), we obtain

−{Ric(N,N) + |A|2}φK =
{

c ρ′(h) + n
ρ′′(h)

ρ(h)

}

φK. (3.86)
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Now, from our hypothesis of strong stability and taking into account Definition 3.3.1, we

currently have

δ 2

ϕ A =

∫

Σn

{

∆(φ)− {Ric(N,N) + |A|2}φ
}

φdΣ ≤ 0

for every φ ∈ C∞(Σn).

Thus, making φ = φK < 0 (see (3.28)), from hypothesis cρ′(h)ρ(h) + nρ′′(h) > 0 jointly

with (3.86) we get

0 <

∫

Σn

{

c ρ′(h) + n
ρ′′(h)

ρ(h)

}

φ2

K
=

∫

Σn

{

∆(φK)
︸ ︷︷ ︸

0

−{Ric(N,N) + |A|2}φK

}

φK dΣ ≤ 0,

and we reach at an absurd.

From Theorem 3.3.2 we get the following application.

Corollary 3.3.3. There is no strongly stable compact spacelike mean curvature flow soliton in a

steady state type spacetime −I ×et M
n with soliton constant c > 0 and constant mean curvature.

In what follows, we consider the function

u = −g(πI) ∈ C∞(−I ×ρ M
n),

where g : I → R is a primitive of the warping function f which was used for define the

reparametrization u = −g(h) of the height function h of the spacelike mean curvature flow

soliton ψ : Σn
↬ −I ×ρM

n (see (3.22)). From (1.3) we observe that u = u on Σn and, hence, ū

is a smooth extension of u. According to [45], we consider the Bakry-Émery-Ricci tensor tensor

Riccū of −I ×ρ M
n, which is given by

Riccū = Ric + c∇
2

ū = Ric− cρ′(h)⟨ , ⟩, (3.87)

where Ric and ∇
2

are the standard Ricci tensor and the Hessian in −I ×ρM
n, respectively. We

will also consider the modified volume element

dµ̄ = ecūdV, (3.88)

where dV denotes the standard volume element of −I ×ρM
n. We note that on Σn, dµ̄ coincides

with the modified volume element dµ previously defined in (3.38).

With all these considerations, we have that any function φ ∈ C∞

0
(Σn) with

∫

Σn

φdµ = 0

induces a variation with compact support and fixed boundary of ψ : Σn
↬ −I ×ρ M

n with

variational normal field ∂F
∂s
|s=0 = φN and with first variation δϕ (Acu) of the modified area
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functional

A cu : (−ϵ, ϵ) → R

s 7→ Acu(s) =

∫
Σn

dµ

given by

δϕ (A cu) =
dA cu

ds
(0) =

∫
Σn

φHcū dµ (3.89)

(see, for instance, [66, Lemma 3.2]), where Hcū is the modified mean curvature of ψ : Σn
↬

−I ×ρ M
n defined by

Hcū = H − c⟨∇(ū), N⟩.

But, since ψ : Σn
↬ −I ×ρ M

n is a spacelike mean curvature flow soliton with respect to the

closed conformal vector field K = ρ(t)∂ t and with soliton constant c ̸= 0, from (1.12) and (3.23)

we get that

Hcu = cρ(h)Θ− c⟨∇(ū), N⟩ = cρ(h)Θ− c⟨(∇(ū)⊤ +∇(ū)⊥), N⟩

= cρ(h)Θ− c⟨∇(ū)⊥ , N⟩ = cρ(h)Θ− c⟨(−g′(h)∇πI))
⊥ , N⟩.

= cρ(h)Θ− cρ(h)⟨∂ t , N⟩ = 0 (3.90)

Therefore, from (3.89) and (3.90) we obtain that any spacelike mean curvature flow soliton

ψ : Σn
↬ −I ×ρ M

n with respect to the closed conformal vector field K = ρ(t)∂ t and with

soliton constant c ̸= 0, is a critical point of the modified area functional Acu.

Furthermore, the stability operator Lcu : C∞

0
(Σn) → C∞

0
(Σn) for this variational problem is

given by the second variation formula δ2ϕ (Acu) of Acu, which in our case is written as follows

(see, for instance, [66, Proposition 3.5] for the case Hcū = 0):

δ2ϕ (Acu) =
d 2

Acu

ds2
(0)(φ) =

∫
Σn

φLcu(φ) dµ,

with

Lcu = ∆cu − {Riccū(N,N) + |A|2},

where ∆cu is the drift Laplacian operator on Σn given in (3.34). So, using (3.87) we can rewrite

the stability operator Lcu as

Lcu = ∆cu − {Ric(N,N)− cf ′(h) + |A|2}. (3.91)

The following notion of stability concerning spacelike mean curvature flow solitons in GRW

spacetime now makes sense.

Definition 3.3.4. Let ψ : Σn
↬ −I ×ρ M

n be a spacelike mean curvature flow soliton with

soliton constant c ̸= 0. We say that ψ : Σn
↬ −I ×ρ M

n is Lcu-stable if δ2ϕ (Acu) ≤ 0, for all

φ ∈ C∞

0
(Σn).

The next auxiliary result gives a sufficient condition to guarantee that a spacelike mean
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curvature flow soliton must be Lcu-stable (for its proof, see [70, Lemma 3.2]).

Lemma 3.3.5. Let ψ : Σn
↬ −I ×ρ M

n be a spacelike mean curvature flow soliton with soliton

constant c ̸= 0. If there exists a positive smooth function φ ∈ C∞(Σn) such that Lcu(φ) ≤ 0,

then Σn is Lcu-stable.

Now, we analyze the behavior of the warping function ρ along a spacelike mean curvature

flow soliton in order to infer its Lcu-stability.

Theorem 3.3.6. Let ψ : Σn
↬ −I×ρM

n be a spacelike mean curvature flow soliton with soliton

constant c ̸= 0.

(a) If ζ ′
c
(t) ≤ 0 on Σn, then ψ : Σn

↬ −I ×ρ M
n is Lcu-stable.

(b) If Σn is compact and ζ ′
c
(t) ≥ 0 on it, then ψ : Σn

↬ −I ×ρ M
n is Lcu-stable if and only if

ζc(t) is constant on Σn.

(c) If Σn is compact and ζ ′
c
(t) > 0 on it, then ψ : Σn

↬ −I ×ρ M
n cannot be Lcu-stable.

Proof. From (3.85) we have

∆(φK) = {Ric(N,N) + |A|2}φK +
{

c ρ′(h) + n
ρ′′(h)

ρ(h)

}

φK,

where φK ∈ C∞(Σn) is support function defined in (3.27). So, by applying φK to the stability

operator Lcu and using the last equation we get

Lcu(φK) = ∆cu(φK)− {Ric(N,N)− cρ′(h) + |A|2}φK =

{

2cρ′(h) + n
ρ′′(h)

ρ(h)

}

φK.

Hence,

Lcu(−φK) = {2cρ′(h)ρ(h) + nρ′′(h)} (−φK), (3.92)

with −φK being a positive smooth function on Σn and, with a direct application of Lemma 3.3.5,

the result of item (a) is obtained directly.

Now, let us consider item (b). Note that in this case C∞

0 (Σn) = C∞(Σn). So, if ψ : Σn
↬

−I ×ρ M
n is Lcu-stable, from Definition 3.3.4 and equation (3.92) we get

0 ≥ δ 2
(−ϕK) (Acu) =

∫

Σn

(−φK)Lcu(−φK) dµ (3.93)

=

∫

Σn

{2cρ′(h)f(h) + nρ′′(h)}(−φK)
2 dµ ≥ 0,

which guarantees us ζc(t) is constant on Σn. The converse follows from item (a).

Finally, we prove item (c). Assuming the opposite, if we have ψ : Σn
↬ −I ×ρ M

n is

Lcu-stable then, from the analysis of signs studied in (3.93),

0 ≥

∫

Σn

{2cρ′(h)ρ(h) + nρ′′(h)}(−φK)
2 dµ > 0,
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which constitutes a absurd.

From Theorem 3.3.6 we obtain the following applications:

Corollary 3.3.7. Every spacelike translating soliton immersed in the Lorentzian product space

−I ×M
n, with soliton constant c ̸= 0, is Lcu-stable.

Corollary 3.3.8. Every spacelike mean curvature flow soliton immersed in the future temporal

cone −R
+ ×t H

n, with soliton constant c < 0 and such that h ≥
√

−n

c
, is Lcu-stable.

Corollary 3.3.9. There is no Lcu-stable compact spacelike mean curvature flow soliton immersed

in a steady state type spacetime −I ×et M
n with soliton constant c > 0.
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Chapter 4

Rigidity of mean curvature flow solitons

in standard static spacetime

In this chapter, we obtain rigidity results concerning complete noncompact solitons of the

mean curvature flow related to a nonsingular Killing vector field K globally defined in standard

static spacetime, which can be modeled as a warped product whose base corresponds to a fixed

integral leaf of the distribution orthogonal to K and the warping function is equal to |K|. Our

approach is based on a suitable maximum principle dealing with a notion of convergence to zero

at infinity. As application, we study the uniqueness of solutions for the mean curvature flow

soliton equation in these ambient spaces. The results presented in this chapter make part of

[33, 34].

4.1 Spacelike hypersurfaces in a standard static space-

time

Let us consider a connected spacelike hypersurface ψ : Σn → M
n+1

immersed in M
n+1

=

Mn×ρR1, which means that the induced metric g on Σn via ψ is a Riemannian metric. Since K

is a globally defined timelike vector field on M
n+1

, it follows that there exists a unique unitary

timelike normal vector field N globally defined on Σn which is in same time-orientation as K.

By using the inverse Cauchy-Schwarz inequality, we get

g(N,K) ≤ −ρ < 0 on Σn. (4.1)

We will refer to that normal vector field N as to the future-pointing Gauss map of Σn. Through-

out this work, N will always denote the future-pointing Gauss map of a spacelike hypersurface

ψ : Σn → M
n+1

. We also note that in a standard static spacetime M
n+1

= Mn ×ρ R1 there

exists a distinguished foliation whose leaves are given by the totally geodesic level hypersurfaces

of the function πR. They are just the spacelike slices Mn × {t∗}, t∗ ∈ R, whose future-pointing

Gauss map N is given by the unit timelike vector field 1

ρ
K restricted to Mn × {t∗}.

The (vertical) height function of a spacelike hypersurface ψ : Σn → M
n+1

is defined by
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h = πR ◦ ψ and its angle function is given by Θ = g(N,K), where we recall that N denotes the

future-pointing Gauss map of Σn. From (4.1), we note that Θ will be always a negative function.

Moreover, from the decomposition K = K⊤−ΘN , where ( )⊤ denotes the tangential component

of a vector field in X(M) along Σn, we obtain

∇h = −
1

ρ2
K⊤ and |∇h|2 =

Θ2 − ρ2

ρ4
. (4.2)

Here, for simplicity of notation, we are considering ρ = ρ ◦ πM ◦ ψ along Σn.

Let ∇, ∇ and D denote the Levi-Civita connections inM
n+1

, Σn andMn, respectively. Then

the Gauss and Weingarten formulas for the spacelike hypersurface ψ : Σn → M
n+1

are given,

respectively, by

∇XY = ∇XY − g(AX, Y )N (4.3)

and

AX = −∇XN, (4.4)

for all tangent vector fields X, Y ∈ X(Σ), where A stands for the Weingarten endomorphism of

Σn with respect to its future-pointing Gauss map N .

Using once more the decomposition K = K⊤ −ΘN , from (4.3) and (4.4) we see that

∇XK
⊤ = (∇XK)⊤ −ΘAX. (4.5)

Consequently, from (4.2) and (4.5) we get the Hessian of the height function as follows

∇X∇h = ∇X

(

−
1

ρ2
K⊤

)

(4.6)

=
2

ρ3
g(∇ρ,X)K⊤ −

1

ρ2
(∇XK)⊤ +

1

ρ2
ΘAX.

So, taking a local orthonormal tangent frame {e1, e2, . . . , en} on Σn, from (4.6) we obtain

∆h =
n

∑

i=1

g

(

2

ρ3
g(∇ρ, ei)K

⊤ −
1

ρ2
(∇ei

K)⊤ +
1

ρ2
ΘAei, ei

)

(4.7)

= −
2

ρ
g(∇ρ,∇h)−

n
∑

i=1

1

ρ2
g(∇ei

K, ei)−
1

ρ2
ΘH,

where H stands for the mean curvature function of Σn related to N . But, since K is a Killing

vector field on M
n+1

, it satisfies the following Killing equation

g(∇XK, Y ) + g(X,∇YK) = 0, (4.8)

for every X, Y ∈ X(M). Hence, from (4.7) and (4.8) we reach at the following suitable formula

∆h = −
2

ρ
g(∇ρ,∇h)−

1

ρ2
ΘH. (4.9)
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4.2 Rigidity of mean curvature flow solitons

Before we proceed an important observation for this section:

Remark 4.2.1. When the ambient space M
n+1

is a standard static spacetime of the type Mn×ρ

R1, according to [79, Definition 2] (see also [27, Definition 1.1] and [69, Definition 1.1]), a

Riemannian immersion

ψ : Σn
↬M

n+1

is called a mean curvature flow soliton with respect to K and with soliton constant c ∈ R if its

(non-normalized) mean curvature function satisfies

H = cΘ. (4.10)

In the Lorentzian case, we will use the nomenclature spacelike mean curvature flow soliton. We

also observe that each slice Mn × {t} of M
n+1

is a mean curvature flow soliton with respect to

K and with soliton constant c = 0.

Concerning the following rigidity result for spacelike mean curvature flow solitons in a stan-

dard static spacetime.

Theorem 4.2.2. LetM
n+1

=Mn×ρR1 be a standard static spacetime with complete noncompact

Riemannian base Mn. The only complete noncompact spacelike mean curvature flow soliton

ψ : Σn
↬ M

n+1
with respect to K and with soliton constant c ≥ 0 (resp. c ≤ 0), such that ρ is

bounded on Σn and h converges from below (resp. above) to t∗ at infinity, is the slice Mt∗.

Proof. Let ψ : Σn
↬ M

n+1
be such a mean curvature flow soliton. Let us consider on Σn the

metric ĝ = ρ
4

n−2 g, which is conformal to its induced metric g.

It is well known that, in local coordinates (x1, · · · , xn) of Σn, the Laplacian of its height

function on a metric ĝ is given by

∆̂h =
1

Ĝ

n
∑

k,l=1

∂k

(

ĝklĜ∂l(h)
)

, (4.11)

where ĝkl = ĝ(∂k, ∂l), Ĝ =
√

det
(

ĝkl
)

and
(

ĝkl
)

=
(

ĝkl
)

−1
.

Taking the conformal metric ĝ = ρ
4

n−2 g, we have that ĝkl = ρ
4

n−2 gkl, ĝ
kl = 1

ρ
4

n−2

gkl and

Ĝ =
√

det(ĝkl) =

√

ρ
4n

n−2 det(gkl) = ρ
2n

n−2G. (4.12)
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Thus, from (4.17) and (4.18) we obtain

∆̂h =
1

ρ
2n

n−2G

n
∑

k,l=1

∂k

(

1

ρ
4

n−2

gklρ
2n

n−2G∂l(h)

)

=
ρ

2n−4

n−2

ρ
2n

n−2

n
∑

k=1

gkl∂k(∂l(h)) +
1

ρ
2n

n−2

2n− 4

n− 2
ρ

2n−4

n−2
−1

n
∑

k=1

gkl∂k(ρ)∂l(h) (4.13)

=
1

ρ
4

n−2

∆h+
2n− 4

(n− 2)ρ
n+2

n−2

g(∇ρ,∇h).

Considering (4.9) and (4.10) into (4.19), we get

∆̂h =
1

ρ
4

n−2

(

−2

ρ
g(∇ρ,∇h)−

c

ρ2
Θ2

)

+
2n− 4

(n− 2)ρ
n+2

n−2

g(∇ρ,∇h)

=

(

−4

2ρ
n+2

n−2

+
2n− 4

(n− 2)ρ
n+2

n−2

)

g(∇ρ,∇h)−
c

ρ
2n

n−2

Θ2 (4.14)

= −
c

ρ
2n

n−2

Θ2.

At this point, taking into account (4.14), we define the smooth function u over Mn by

u =







t∗ − h (when c ≥ 0)

h− t∗ (when c ≤ 0)
,

and the vector field X = ∇̂u, from (4.14) we get that

divĝX ≥ 0. (4.15)

Moreover, we have

ĝ(∇̂u,X) = |∇̂u|2ĝ ≥ 0. (4.16)

In addition, since h converges to t∗ at infinity, we have that u is a nonnegative non-identically

vanishing function which converges to zero (also related to the metric ĝ, since ρ is bounded on

Σn). Thus, from (4.15) and (4.16) we can apply Lemma 1.5.6 to get that ĝ(∇̂u,X) is identically

zero on Σn. Hence, returning to (4.16) we conclude that ∇̂h vanishes identically on Σn, which

means that h is constant and (since it converges to t∗ at infinity) Σn must be the slice Mt∗ .

4.3 Uniqueness and nonexistence results under integra-

bility properties

Now, we are in position to present our first uniqueness result concerning spacelike mean

curvature flow solitons in a standard static spacetime.
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Theorem 4.3.1. LetM
n+1

=Mn×ρR1 be a standard static spacetime with complete Riemannian

base Mn and let ψ : Σn →M
n+1

be a complete spacelike mean curvature flow soliton with respect

to K, with soliton constant c ≤ 0 (resp. c ≥ 0). Suppose that h ≥ 0 (resp. h ≤ 0) and that ρ is

bounded along Σn. If h ∈ Lp
g(Σ) for some p > 1, then Σn is a slice of M

n+1
.

Proof. In local coordinates (x1, · · · , xn) of Σ
n, the Laplacian of its height function on the metric

ĝ is given by

∆̂h =
1

Ĝ

n∑

k,l=1

∂k

(
ĝklĜ∂l(h)

)
, (4.17)

where ĝkl = ĝ(∂k, ∂l), Ĝ =
√
det
(
ĝkl
)
and

(
ĝkl
)
=
(
ĝkl
)
−1
.

But, since ĝ = ρ
4

n−2 g, we have that ĝkl = ρ
4

n−2 gkl, ĝ
kl = 1

ρ
4

n−2

gkl and

Ĝ =
√
det(ĝkl) =

√
ρ

4n

n−2 det(gkl) = ρ
2n

n−2G. (4.18)

Thus, from (4.17) and (4.18) we obtain

∆̂h =
1

ρ
2n

n−2G

n∑

k,l=1

∂k

(
1

ρ
4

n−2

gklρ
2n

n−2G∂l(h)

)

=
ρ

2n−4

n−2

ρ
2n

n−2

n∑

k=1

∂k(∂k(h)) +
1

ρ
2n

n−2

2n− 4

n− 2
ρ

2n−4

n−2
−1

n∑

k=1

∂k(ρ)∂k(h) (4.19)

=
1

ρ
4

n−2

∆h+
2

ρ
n+2

n−2

g(∇ρ,∇h).

Inserting (4.9) and (4.10) into (4.19), we get

∆̂h =
1

ρ
4

n−2

(
−
2

ρ
g(∇ρ,∇h)−

c

ρ2
Θ2

)
+

2

ρ
n+2

n−2

g(∇ρ,∇h). (4.20)

Hence, (4.20) allows us to the following formula

∆̂h = −
c

ρ
2n

n−2

Θ2. (4.21)

Consequently, since we are assuming that h ≥ 0 (resp. h ≤ 0) and c ≤ 0 (resp. c ≥ 0),

from (4.21) we conclude that h (resp. −h) is a subharmonic function with respect to the metric

ĝ. Furthermore, since we are also supposing that ρ is bounded along Σn, from (4.18) we have

that our hypothesis h ∈ Lp
g(Σ) implies that h ∈ L

p
ĝ(Σ). Therefore, we can apply Lemma 1.5.4

to guarantee that h is constant on Σn, that is, Σn must be a slice of M
n+1

.

Theorem 4.3.1 jointly with Lemma 1.5.5 lead us to establish the following nonexistence result.

Theorem 4.3.2. Let M
n+1

= Mn ×ρ R1 be a standard static spacetime whose Riemannian

base Mn is complete noncompact with nonnegative Ricci curvature, and having bounded warping
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function ρ. There is no complete spacelike mean curvature flow soliton with respect to K, with

soliton constant c ≤ 0 (resp. c ≥ 0) and positive (resp. negative) height function satisfying

h ∈ Lp
g(Σ) for some p > 1.

Proof. Let us suppose the existence of such a spacelike mean curvature flow soliton, namely

ψ : Σn →M
n+1

. From Theorem 4.3.1, we get that Σn is a slice ofM
n+1

. Consequently, |h| must

be equal to a positive constant α and, since we are assuming that h ∈ Lp
g(Σ), we obtain

volgM (M) = volg(Σ) =
1

αp

∫

Σ

|h|pdgΣ < +∞. (4.22)

On the other hand, taking into account thatMn is complete noncompact with nonnegative Ricci

curvature, Lemma 1.5.5 assures that Mn has at least linear volume growth, which corresponds

to a contradiction with (4.22).

According to Definition 1 of [52], we say that a smooth Riemannian manifold (Σn, g) satisfies

the L1
g-Liouville property, when every nonnegative superharmonic function u ∈ L1

g(Σ) must be

constant. Corollary 3 of [52] ensures that a stochastically complete manifold (and, in particular,

a parabolic manifold) always satisfies the L1
g-Liouville property. However, in Section 2 of [52]

the authors constructed nontrivial examples of stochastically incomplete (and, in particular,

nonparabolic) manifolds satisfying the L1
g-Liouville property.

Motivated by these observations, it is not difficult to see that we can reason in a similar way

as in the proof of Theorem 4.3.1 to get the following result

Theorem 4.3.3. Let M
n+1

=Mn ×ρ R1 be a standard static spacetime and let ψ : Σn →M
n+1

be a spacelike mean curvature flow soliton with respect to K, with soliton constant c ≥ 0 (resp.

c ≤ 0). Suppose that h ≥ 0 (resp. h ≤ 0) and that ρ is bounded along Σn. If Σn satisfies the

L1
g-Liouville property and h ∈ L1

g(Σ), then Σn is a slice of M
n+1

.

In what follows, recall that a timelike bounded region Bt1,t2 of M
n+1

which is defined by

Bt1,t2 := {(p, t) ∈Mn ×ρ R1 : t1 ≤ t ≤ t2 and p ∈Mn}.

We close this section presenting our second uniqueness result concerning spacelike mean

curvature flow solitons.

Theorem 4.3.4. LetM
n+1

=Mn×ρR1 be a standard static spacetime with complete Riemannian

base Mn and let ψ : Σn →M
n+1

be a complete spacelike mean curvature flow soliton with respect

to K, with soliton constant c and lying in a timelike bounded region Bt1,t2 of M
n+1

. Suppose in

addition that ρ is bounded along Σn. If |∇h| ∈ L1
g(Σ), then Σn is a slice of M

n+1
.

Proof. Taking local coordinates (x1, · · · , xn) in Σn and using that ĝkl = 1

ρ
4

n−2

gkl, we get

∇̂h =
n∑

k,l=1

ĝkl∂l(h)∂k =
1

ρ
4

n−2

∇h. (4.23)
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Consequently, since ρ is bounded along Σn, from (4.18) and (4.23) we obtain

∫

Σ

|∇̂h|ĝdĝΣ =

∫

Σ

ρ
2(n−1)
n−2 |∇h|dgΣ ≤

(
sup
Σ

ρ
2(n−1)
n−2

)∫

Σ

|∇h|dgΣ. (4.24)

Thus, since we are supposing that |∇h| ∈ L1
g(Σ), from (4.24) we conclude that |∇̂h|ĝ ∈ L1

ĝ(Σ).

So, taking into account (4.21), we can apply Lemma 1.5.3 to get that ∆̂h vanishes identically

on Σn.

On the other hand, we have that |∇̂h2|ĝ = 2|h||∇̂h|ĝ. Thus, assuming that Σn lies in Bt1,t2 ,

we also obtain that |∇̂h2|ĝ ∈ L1
ĝ(Σ). Moreover, we have that

∆̂h2 = 2h∆̂h+ 2|∇̂h|2ĝ = 2|∇̂h|2ĝ ≥ 0. (4.25)

Hence, we can apply once more Lemma 1.5.3 to infer that ∆̂h2 = 0 on Σn and, returning to

(4.25), conclude that |∇̂h|ĝ is identically zero on Σn. Therefore, Σn must be a slice of M
n+1

.

We recall that a spacetime is called spatially closed when it admits a closed (that is, compact

without boundary) spacelike hypersurface. In this context, from Theorem 4.3.4 we get the

following rigidity result

Corollary 4.3.5. The only closed spacelike mean curvature flow soliton with respect to the

timelike Killing vector field of a spatially closed standard static spacetime are the totally geodesic

slices.

4.4 New Calabi-Bernstein type results

In this last section of chapter we will use the theorems of the previous section in order

to establish new Calabi-Bernstein type results concerning entire graphs constructed over the

Riemannian base of a standard static spacetimeMn×ρR1 and which are spacelike mean curvature

flow solitons with respect to K. For this, we need to recall some basic facts related to these

graphs.

According to [71], we define the entire graph Σ(u) associated to a smooth function u ∈

C∞(M) as the hypersurface given by

Σ(u) = {Ψ(x, u(x)) : x ∈ Mn} ⊂ Mn ×ρ R1,

where Ψ : Mn × I → M
n+1

is the flow generated by the timelike Killing vector field K. The

metric induced on Mn from the Lorentzian metric (1.15) via Σ(u) is given by

gu = gM − ρ2du2. (4.26)

Remark 4.4.1. The entire graph Σ(u) is spacelike if, and only if, ρ2|Du|2M < 1, where Du

denotes the gradient of a function u with respect to the metric gM of Mn. Indeed, if Σ(u) is
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spacelike, then from (4.26) we have

0 < gu(Du,Du) = gM(Du,Du)− ρ2gM(Du,Du)2.

Hence, we conclude that ρ2|Du|2M < 1. Conversely, if ρ2|Du|2M < 1 and X is a vector field

tangent to Σ(u), from (4.26) jointly with Cauchy-Schwarz inequality we obtain

gu(X,X) = gM(X∗, X∗)− ρ2gM(Du,X∗)2 ≥ gM(X∗, X∗)(1− ρ2|Du|2M), (4.27)

whereX∗ is the orthogonal projection ofX onto TM . Thus from (4.27) we get that gu(X,X) ≥ 0

and gu(X,X) = 0 if, and only if, X = 0.

Now, let us consider the function F : M
n+1

→ R given by F (x, t) = u(x)− t. We have that

Σ(u) = Ψ(F−1(0)). Thus, for all vector field X tangent to M
n+1

, we get

X(F ) = X∗(F )−
1

ρ2
ḡ(X, ∂t)∂t(F ) = ḡ(

1

ρ2
∂t +Du,X).

Then

∇F =
1

ρ2
∂t +Du

is a normal vector field on F−1(0). So, we claim that

N0 = Ψ∗(∇F ) =
1

ρ2
K +Ψ∗(Du) (4.28)

is a normal vector field on Σ(u). To show our claim, we define the map Ψu : Mn → M
n+1

by

Ψu(x) = (x, u(x)).

For υ ∈ TM , we have that Ψu
∗
(υ) is tangent to Σ(u) and, consequently,

Ψu
∗
(υ) = Ψ∗(υ) + υ(u)∂t. (4.29)

Now, we must verify that ḡ(N0,Ψ
u
∗
(υ)) = 0. Indeed, taking into account that ḡ(Ψ∗(Du), ∂t) = 0,

from (4.28) and (4.29) we get

ḡ(N0,Ψ
u
∗
(υ)) =

υ(u)

ρ2
ḡ(∂t, ∂t) + ḡ(Ψ∗(Du),Ψ∗(υ))

= υ(u)− υ(u) = 0.

Hence, since

|N0| =
(1− ρ2|Du|2M)1/2

ρ
, (4.30)
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it follows from (4.28) and (4.30) that the unit vector field

N =
1

ρ(1− ρ2|Du|2M)1/2
(K + ρ2Ψ∗(Du)) (4.31)

defines the future-pointing Gauss map of Σ(u) and its corresponding angle function is given by

Θ = g(N,K) = −
ρ

(1− ρ2|Du|2M)1/2
. (4.32)

Moreover, for all vector field X tangent to Mn, the Weingarten endomorphism A of Σ(u)

with respect to N is given by

AX = −
ρ

(1− ρ2|Du|2M)1/2
DXDu−

ρ3g(DXDu,Du)

(1− ρ2|Du|2M)3/2
Du−

ρ2g(Dρ,X)|Du|2M
(1− ρ2|Du|2M)3/2

Du

−
g(Dρ,X)

(1− ρ2|Du|2M)1/2
Du−

g(Du,X)

(1− ρ2|Du|2M)1/2
Dρ. (4.33)

So, it follows from (4.33) that the mean curvature Hu of a spacelike entire graph Σ(u) is given

by

Hu = DivM

(

ρDu

(1− ρ2|Du|2M)1/2

)

+
g(Du,Dρ)

(1− ρ2|Du|2M)1/2
, (4.34)

where DivM stands for the divergence operator on Mn with respect to its metric gM .

Hence, from (4.10) and (4.34) we have that Σ(u) is a SMCFS with respect to K with soliton

constant c if, and only if, ρ|Du|M < 1 and u is a solution of the following nonlinear differential

equation:

DivM

(

ρDu

(1− ρ2|Du|2M)1/2

)

= −
1

(1− ρ2|Du|2M)1/2
(

cρ+ g(Du,Dρ)
)

. (4.35)

Our next result corresponds to a nonparametric version of Theorem 4.2.2.

Corollary 4.4.2. Let M
n+1

= Mn ×ρ R1 be a standard static spacetime with complete noncom-

pact Riemannian base Mn and whose warping function ρ is bounded. The only smooth function

u : Mn → I which is solution of the mean curvature flow soliton equation (4.35) for some c ≥ 0

(resp. c ≤ 0) with ρ|Du|M ≤ λ, for some constant 0 < λ < 1, and such that u converges from

below (resp. above) to some t∗ ∈ I at infinity is the constant function u ≡ t∗.

Proof. Since we are supposing that ρ|Du|M ≤ λ for some constant 0 < λ < 1, from (4.32) we

get that Θ is bounded. Thus, [125, Lemma 19] assures that the entire spacelike graph Σ(u) is,

in fact, complete with respect to its induced metric from M
n+1

. Therefore, the result follows by

applying Theorem 4.2.2 to conclude that u ≡ t∗.

Remark 4.4.3. Consider the spacelike surface

Σ(u) = {(x, y, u(x, y)) : y > 0} ⊂ H
2 × R1,

where u(x, y) = c ln y, c ∈ R is a constant such that 0 < |c| < 1, H2 denotes the two-dimensional

hyperbolic space equipped with its standard metric. From [76, Example 4.4], we have that Σ(u)
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is a complete spacelike translating soliton with |Du|H2 = |c| and constant mean curvature H =
c√
1−c

2
= cΘ, with respect to orientation (4.31). Hence, we also conclude that in Corollary 6.5.2

the hypothesis that the function u converges to some t∗ ∈ I at infinity is necessary to infer that

u must be constant.
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Part II

Rigidity of hypersurfaces in certain

warped products and results for

submanifolds in weighted products
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Chapter 5

Preliminaries for Part II

In this chapter we shall briefly introduce some basic facts and notations that will appear

along Part II of this thesis.

5.1 Two-sided hypersurfaces in a warped product

Let (M, gM) be an n-dimensional (n ≥ 2) connected Riemannian manifold and let I ⊂ R

be an open interval in R endowed with the metric dt2. The product manifold M
n+1

= I ×Mn

endowed with the Riemannian metric

g = π∗

I (dt
2) + ρ(πI)

2π∗

M(gM), (5.1)

where ρ is a positive smooth function on I, the applications πI and πM denote the projections

onto I and M , respectively, is called a warped product with fiber (M, gM), base (I, dt2) and

warping function ρ. In such a case, we simply write M
n+1

= I ×ρ M
n.

In this setting, we will consider the conformal closed vector field K = ρ(πI)∂t globally

defined on M , where ∂t =
∂
∂t

stands for the unit coordinate vector field tangent to I. From the

relationship between the Levi-Civita connections of M and those of the base and the fiber (see

Proposition 7.35 of [123]) , it follows that

∇XK = ρ′(πI)X, (5.2)

for any X ∈ X(M), where ∇ is the Levi-Civita connection of g.

Throughout this work, we will deal with connected two-sided hypersurfaces ψ : Σn →M
n+1

immersed in M
n+1

= I ×ρ M
n, which means that its normal bundle is trivial, that is, there

is a globally defined unit normal vector field N ∈ TΣ⊥ on it. We will also assume that Σn is

transversal to K at every point and we will denote by g its induced metric. In this setting, we

will consider the shape operator (or Weingarten endomorphism) of Σn, A : X(Σ) → X(Σ), which

is given by A(X) = −∇XN , and its mean curvature function H = 1

n
tr(A).

In the warped product M
n+1

= I ×ρ M
n there exists a remarkable family of two-sided

hypersurfaces: its slices Mt0 = {t0} × M , with t0 ∈ I. The shape operator and the mean
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curvature of Mt0 with respect to N = −∂t are, respectively, At0 = ρ′(t0)
ρ(t0)

I, where I denotes the

identity operator, and Ht0 =
ρ′(t0)
ρ(t0)

.

We will deal with two particular functions naturally attached to a two-sided hypersurface

ψ : Σn → M
n+1

, namely, the (vertical) height function h = πI ◦ ψ and the angle function

Θ = g(N, ∂t). The transversality condition above, together with the connectedness of Σn, gives

that Θ does not change sign on Σn.

Let us denote by ∇ and ∇ the gradients with respect to the metrics g and g, respectively.

Then, a simple computation shows that the gradient of πI on Mn is given by

∇πI = g(∇πI , ∂t)∂t = ∂t

so that the gradient of h on Σn is

∇h = (∇πI)
⊤ = ∂⊤t , (5.3)

where ∂⊤t = ∂t −ΘN is the tangential component of ∂t along Σn. From (5.3) we deduce that

|∇h|2 +Θ2 = 1, (5.4)

where ∇h is the gradient of h in the metric g and |X|2 = g(X,X) for any X ∈ X(Σ). Moreover,

from (5.2) and (5.3) we deduce that the Hessian of h in the metric g is given by

∇2h(X,X) = g(∇X∂
⊤

t , X)

= ḡ(∇X(∂t −ΘN), X) (5.5)

=
ρ′(h)

ρ(h)
(|X|2 − g(∇h,X)2) + g(AX,X)Θ,

for any X ∈ X(Σ). Hence, from (5.5) we obtain that the Laplacian of h in the metric g is

∆h =
ρ′(h)

ρ(h)

(

n− |∇h|2
)

+ nHΘ. (5.6)

5.2 Mean curvature flow solitons

We recall that the mean curvature flow Ψ : [0, T ) × Σn → M
n+1

of an immersion ψ : Σn →

M
n+1

in a (n + 1)-dimensional Riemannian manifold M
n+1

, satisfying Ψ(0, ·) = ψ(·), looks for

solutions of the equation
∂Ψ

∂t
= H⃗,

where H⃗(t, ·) is the (non-normalized) mean curvature vector of Σn
t = Ψ(t,Σn). In our context,

according to [27, Definition (1.1)], a two-sided hypersurface ψ : Σn → M
n+1

immersed in a

warped productM
n+1

= I×ρM
n is said amean curvature flow soliton with respect toK = ρ(t)∂t
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with soliton constant c ∈ R if its (non-normalized) mean curvature function satisfies

H = cρ(h)Θ. (5.7)

Adopting the terminology introduced in [27], we will also consider the soliton function

ζc(t) = nρ′(t) + cρ(t)2. (5.8)

As it was observed in [27], a slice Mt∗
= {t∗}×Mn is a mean curvature flow soliton with respect

to K = f(t)∂t and with soliton constant c given by

c = −n
ρ′(t∗)

ρ(t∗)2
. (5.9)

Moreover, t∗ is implicitly given by the condition ζc(t∗) = 0.

The following cites important examples which will be addressed along the next two sections.

In the first one, we consider a suitable warped product model for the Euclidean space minus a

point.

Example 5.2.1. Let o = (0, . . . , 0) be the origin of the (n + 1)-dimensional Euclidean space

R
n+1. We have that Rn+1 \{o} is isometric to R+×t S

n (see [115, Section 4, Example 1]), whose

slices {t} × S
n are isometric to n-dimensional Euclidean spheres Sn(t) of radius t ∈ R+. In this

setting, the mean curvature flow solitons with respect to K = t∂t with soliton constant c = −1

are just the self-shrinkers. So, from (5.9) we conclude that Sn(
√
n) ≡ {√n} × S

n is the only

slice which is a self-shrinker.

In our next example, we consider a suitable warped product model for the real projective

space.

Example 5.2.2. We recall that the (n + 1)-dimensional real projective space is given by the

quotient RPn+1 = S
n+1/{±1}, where {±1} is the group of diffeomorphisms of (n+1)-dimensional

unit Euclidean sphere S
n+1 consisting of the identity map q 7→ q and the antipodal map q 7→ −q.

We consider the Riemannian metric in RP
n+1 in such a way that the natural projection π :

S
n+1 → RP

n+1 becomes a local isometry. If P stands for the north pole of Sn+1, then we denote

by CutP the cut locus of π(P ) ∈ RP
n+1. We have that CutP is the image of the equator of

S
n+1 orthogonal to P via the natural projection, namely, CutP = π(Sn) = RP

n . Moreover, as

it was proved in [53, Section 9.111], RPn+1 \ {π(P ) ∪ CutP} is isometric to the warped product
(

0, π
2

)

×sin t S
n. From (5.9) we conclude that the slice {cos−1(

√
4c2+n2−n

2|c| )} × S
n is the only one

that is a mean curvature flow soliton with respect to K = sin t∂t with soliton constant c < 0.

Proceeding, we consider the so-called pseudo-hyperbolic spaces.

Example 5.2.3. According to [144], warped products of the type I ×et M
n are called pseudo-

hyperbolic spaces. This terminology is due to the fact that the (n + 1)-dimensional hyperbolic

space H
n+1 is isometric to the warped product R ×et R

n, where the slices constitute a family of
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horospheres sharing a same fixed point in the asymptotic boundary ∂∞H
n+1 and giving a complete

foliation of Hn+1 (for more details about pseudo-hyperbolic spaces see, for instance, [24,115,144]).

From (5.9) we conclude that the slice {log(−n
c
)} ×Mn is the only one that is a mean curvature

flow soliton with respect to K = et∂t with soliton constant c < 0.

In our last examples, we deal with the Schwarzschild and Reissner-Nordström spaces.

Example 5.2.4. Given a mass parameter m > 0, the Schwarzschild space is defined to be the

product M
n+1

= (r0(m),+∞) × S
n furnished with the metric ḡ = Vm(r)

−1dr2 + r2gSn, where

gSn is the standard metric of S
n, Vm(r) = 1 − 2mr1−n stands for its potential function and

r0(m) = (2m)1/(n−1) is the unique positive root of Vm(r) = 0. Its importance lies in the fact that

the manifold R ×M
n+1

equipped with the Lorentzian static metric −Vm(r)dt
2 + ḡ is a solution

of the Einstein field equation in vacuum with zero cosmological constant (see, for instance, [123,

Chapter 13] for more details concerning Schwarzschild geometry).

As it was observed in [69, Example 1.3], M
n+1

can be reduced in the form I×f S
n with metric

(5.1) via the following change of variables:

t =

∫ r

r0(m)

dσ
√

Vm(σ)
, f(t) = r(t), I = R+. (5.10)

As it was noted in [69, Example 4.1], since Vm(r) is strictly increasing on (r0(m),+∞), it follows

from (5.10) that the warping function f satisfies:

f ′(t) =
dr

dt
=

√

Vm(r(t)) > 0 and f ′′(t) =
1

2

dVm

dr
(r(t)) > 0. (5.11)

Thus, from (5.9) and (5.11) we can verify that a slice {t∗}×S
n is a mean curvature flow soliton

with respect to f(t)∂t = r
√

Vm(r)∂r with soliton constant c < 0 when t∗ = t(r∗) with r∗ > r0(m)

solving the following equation

Vm(r) =
c2

n2
r4. (5.12)

We note that such a solution exists if and only if the function φm(t) =
c2

n2 t
4 + 2m

tn−1 − 1 has a zero

on (r0(m),+∞). Notice that φm is a convex function which goes to infinity if t goes to 0 or +∞

and so φm has a unique minimal point in (0,∞). Such value r̂ is given implicitly by φ′

m
(r̂) = 0,

that is,
4c2

n2
r̂3 −

2m(n− 1)

r̂n
= 0.

Therefore, the equation (5.12) has a solution if and only if r̂ > r0(m) and φm(r̂) ≤ 0. The last

condition can be rewritten in the following way:

r̂ =

(

m(n− 1)n2

2c2

)1/(n+3)

≥

(

m(n+ 3)

2

)1/(n−1)

. (5.13)

In particular, there are two solutions r0(m) < r∗,− < r̂ < r∗,+ if the strict inequality holds in

(5.13), and a unique solution r∗ = r̂ if equality holds.
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Example 5.2.5. Given a mass parameter m > 0 and an electric charge q ∈ R, with |q| ≤ m,

the Reissner-Nordström space is defined to be the product M
n+1

= (r0(m, q),+∞)× S
n endowed

with the metric ḡ = Vm,q(r)
−1dr2 + r2gSn, where gSn is the standard metric of S

n, Vm,q(r) =

1− 2mr1−n + q
2r2−2n stands for its potential function and r0(m, q) =

(

q
2

m−

√
m2

−q2

)1/(n−1)

is the

largest positive zero of Vm,q(r). The importance of this model lies in the fact that the manifold

R × M
n+1

equipped with the Lorentzian static metric −Vm,q(r)dt
2 + ḡ is a charged black-hole

solution of the Einstein field equation in vacuum with zero cosmological constant.

As in the previous example, M
n+1

can be reduced in the form I ×f S
n with metric (5.1) via

the same change of variables as in (5.10). Furthermore, following the same previous steps, the

warping function f has positive first and second derivatives. Moreover, we can verify that a slice

{t∗} × S
n is a mean curvature flow soliton with respect to f(t)∂t = r

√

Vm,q(r)∂r with soliton

constant c < 0 when t∗ = t(r∗) with r∗ > r0(m, q) solving the following equation

Vm,q(r) =
c2

n2
r4. (5.14)

We observe that such a case is more complicated to explicit all the values, but qualitatively we can

say that such a solution of (5.14) exists if and only if the function φm,q(x) =
c2

n2x
4+ 2m

xn−1− q
2

x2n−2−1

has a zero on (r0(m),+∞). Note that φm,q goes to positive infinity if x goes to positive infinity

and φm,q goes to negative infinity if x goes to zero. So, φm,q has at least one root in (0,+∞) and

if such roots are greater than r0(m, q) we get the desired solutions r∗.

5.3 Hypersurfaces immersed in Riemannian manifold en-

dowed with a Killing vector field

Let M
n+1

be an (n + 1)-dimensional Riemannian manifold endowed with a nowhere zero

Killing vector field K. Suppose that the distribution D orthogonal to K is integrable. We

denote by Ψ : Mn × I → M
n+1

the flow generated by K, where Mn is an arbitrarily fixed

integral leaf of D labeled as t = 0, which we will suppose to be connected, and I is the maximal

interval of definition. Without lost of generality, in what follows we will consider I = R.

In this setting, M
n+1

can be regard as the warped product Mn ×ρ R, that is, the product

manifold Mn × R endowed with the warping metric

g = π⋆
M(gM) + (ρ ◦ πM)2π⋆

R
(dt2). (5.15)

Here, πM and πR denote the canonical projections from Mn × R onto each factor, gM is the

induced Riemannian metric on the Riemannian baseMn, R is endowed with its usual metric dt2

and the warping function ρ ∈ C∞(M) is given by ρ = |K| > 0, where | | denotes the norm of a

vector field on M
n+1

.

Let us consider a connected two-sided hypersurface ψ : Σn
↬ M

n+1
immersed into such a

warped product M
n+1

=Mn×ρR, which means that there exists a globally defined unit normal
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vector field N on Σn. In particular, for each t ∈ R, the two-side hypersurface Mn ×{t} oriented

by N = K
ρ
is called a slice of M

n+1
, which is a totally geodesic.

Let ∇ and ∇ denote the Levi-Civita connections in M
n+1

and Σn, respectively. Thus,

also denoting by g the induced metric of Σn, its Gauss and Weingarten formulas are given,

respectively, by

∇XY = ∇XY + g(AX, Y )N (5.16)

and

AX = −∇XN, (5.17)

for every tangent vector fields X, Y ∈ X(Σn). Here A : X(Σn) → X(Σn) stands for the shape

operator (or Weingarten endomorphism) of Σn with respect to N .

For our purposes, we will consider two particular smooth functions on Σn, namely, the (ver-

tical) height function h = πR ◦ ψ and the angle function Θ = g(N,K). From the decomposition

K = K⊤+ΘN , where ( )⊤ denotes the tangential component of a vector field in X(M
n+1

) along

ψ, we obtain

∇h =
1

ρ2
K⊤ and |∇h|2 =

ρ2 −Θ2

ρ4
. (5.18)

Using once more the decomposition K = K⊤ +ΘN , from (5.16) and (5.17) we get that

∇XK
⊤ = (∇XK)⊤ +ΘAX. (5.19)

Consequently, from (5.18) and (5.16) we have that the Hessian of h is given by

∇X∇h = ∇X

(

1

ρ2
K⊤

)

(5.20)

= −
2

ρ3
g(∇ρ,X)K⊤ +

1

ρ2
(∇XK)⊤ +

1

ρ2
ΘAX.

So, taking a local orthonormal tangent frame {e1, . . . , en} on Σn, from (5.20) we obtain

∆h =
n

∑

i=1

g

(

−
2

ρ3
g(∇ρ, ei)K

⊤ +
1

ρ2
(∇eiK)⊤ +

1

ρ2
ΘAei, ei

)

(5.21)

= −
2

ρ
g(∇ρ,∇h) +

n
∑

i=1

1

ρ2
g(∇eiK, ei) +

1

ρ2
ΘH,

where H = tr(A) is the non-normalized mean curvature of Σn with respect to N .

But, since K is a Killing vector field on M
n+1

, it satisfies the following Killing equation

g(∇XK, Y ) + g(X,∇YK) = 0, (5.22)

for every X, Y ∈ X(M). Hence, from (5.21) and (5.22) we reach at the following suitable formula
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for the Laplacian of h

∆h = −
2

ρ
g(∇ρ,∇h) +

1

ρ2
ΘH. (5.23)

5.4 Entire graphs

In the section of our paper, we will establish the basic foundations to later establish Moser-

Bernstein type results concerning integer graphs constructed on the fibre of a deformed product.

First of all, we need to recall some basic facts related to these graphs.

Let Ω ⊆ Mn be a domain. Then, each function u ∈ C∞(Ω) such that u(Ω) ⊆ I defines a

vertical graph in the Riemannian warped product M
n+1

= I ×ρ M
n. In such a case, Σ(u) will

denote the graph over Ω determined by u, that is,

Σ(u) = {(u(p), p) : p ∈ Ω} ⊂ M
n+1

.

The graph is said to be entire if Ω = Mn. Observe that h(u(p), p) = u(p), p ∈ Ω. Hence, h and

u can be identified in a natural way. The metric induced on Ω from the Riemannian metric of

the ambient space via Σ(u) is

gu = du2 + ρ(u)2gM . (5.24)

If Mn is complete and infM ρ(u) > 0, then Σ(u) furnished with the metric gu is also complete.

The unit vector field

N(p) = −
ρ(u(p))

√

ρ(u(p))2 + |Du(p)|2M

(

∂t|(u(p),p) −
Du(p)

ρ(u(p))2

)

, p ∈ Ω, (5.25)

where Du stands for the gradient of u in M and |Du|M = gM(Du,Du)1/2, gives an orientation of

Σ(u) with respect to which we have Θ = g(N, ∂t) < 0, so that the assumption of transversality

to the vector field K = ρ(t)∂t is not necessary here. The corresponding shape operator is given

by

AX =−
1

ρ(u)
√

ρ(u)2 + |Du|2M
DXDu+

ρ′(u)
√

ρ(u)2 + |Du|2M
X

−

(

−gM(DXDu,Du)

ρ(u) (ρ(u)2 + |Du|2M)
3/2

−
ρ′(u)gM(Du,X)

(ρ(u)2 + |Du|2M)
3/2

)

Du,

(5.26)

for any vector field X tangent to Ω, where D denotes the Levi-Civita connection in Mn. Conse-

quently, if Σ(u) is a vertical graph over a domain Ω ⊆ Mn, it is not difficult to verify from (5.26)

that the mean curvature function H(u) of Σ(u) is given by the following nonlinear differential

equation:

nH(u) = −divM

(

Du

ρ(u)
√

ρ(u)2 + |Du|2M

)

+
ρ′(u)

√

ρ(u)2 + |Du|2M

(

n−
|Du|2M
ρ(u)2

)

, (5.27)
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where divM stands for the divergence operator computed in the metric gM .

5.5 Omori-Yau maximum principle and futter results

In order to obtain our main result, we initiate this section quoting the generalized maximum

principle of Omori [122] and Yau [147] (see [16] for a modern and accessible reference to the

generalized maximum principle of Omori-Yau).

Lemma 5.5.1. Let Σn be an n-dimensional complete Riemannian manifold whose Ricci curva-

ture is bounded from below and let u ∈ C∞(Σ) be a smooth function which is bounded from above

on Σn. Then there exists a sequence (pk)k≥1 in Σn such that

lim
k

u(pk) = sup
Σ

u, lim
k

|∇u(pk)| = 0 and lim sup
k

∆u(pk) ≤ 0.

In our main result, we focus on Riemannian warped product spaces I ×ρ M
n satisfying the

convergence condition

KM ≥ sup
I

(ρ′2 − ρρ′′), (5.28)

where KM stands for the sectional curvature of the fiber Mn. Warped products satisfying (5.28)

have been studied, for instance, in [26, 75, 91]. The fact that this condition holds for the Ricci

curvature instead of the sectional curvature is also well known (see, for instance, [23, 25, 115]).

we initiate this subsection considering an extension of Hopf’s theorem on a complete Rie-

mannian manifold (Σn, g) due to Yau in [148]. For this, let us also take

Lp
g(Σ) := {u : Σn → R :

∫
Σ

|u|pdΣ < +∞}, (5.29)

where dΣ stands for the measure related to the metric g.

Lemma 5.5.2. Let u be a smooth function defined on a complete Riemannian manifold (Σn, g),

such that ∆u does not change sign on Σn. If |∇u| ∈ L1

g(Σ), then ∆u vanishes identically on Σn.

Next, we quote two other auxiliary results also due to Yau in [148].

Lemma 5.5.3. If u is a nonnegative smooth subharmonic function defined on (Σn, g), with

u ∈ Lp
g(Σ) for some p > 1, then u must be constant.

Lemma 5.5.4. All noncompact complete Riemannian manifolds with nonnegative Ricci curva-

ture have at least linear volume growth.

Next we shall devote ourselves to presenting the analytical tool that will be used to establish

our rigidity results in the next ones. For this, let (Σn, g) be a complete noncompact Riemannian

manifold and let d( · , o) : Σn → [0,+∞) denote the Riemannian distance of (Σn, g), measured

from a fixed point o ∈ Σn. We say that a smooth function u ∈ C∞(Σ) converges to zero at
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infinity when it satisfies the following condition

lim
d(x,o)→+∞

u(x) = 0. (5.30)

Keeping in mind this concept, the following lemma corresponds to item (a) of [21, Theorem 2.2].

Lemma 5.5.5. Let (Σn, g) be a complete noncompact Riemannian manifold and let X ∈ X(Σ) be

a vector field on Σn. Assume that there exists a nonnegative, non-identically vanishing function

u ∈ C∞(Σ) which converges to zero at infinity and such that g(∇u,X) ≥ 0. If divgX ≥ 0 on

Σn, then g(∇u,X) ≡ 0 on Σn.

We also need the following definition which is inspired in (5.30): Given a complete noncom-

pact Riemannian immersion ψ : Σn
↬ I ×ρ M

n and t∗ ∈ I, we say that a function u defined

on Σn converges from below (above) to t∗ at infinity when u ≤ t∗ (u ≥ t∗) and the function

ũ := u− t∗ converges to zero at infinity.

For our purpose, we will also need to quote a suitable maximum principle that will be

used to prove our nonexistence results. For this, let (Σn, g) be a connected, oriented, complete

noncompact Riemannian manifold. We denote by B(p, t) the geodesic ball centered at p and with

radius t. Given a polynomial function σ : (0,+∞) → (0,+∞), we say that Σn has polynomial

volume growth like σ(t) if there exists p ∈ Σn such that

vol(B(p, t)) = O(σ(t)),

as t → +∞, where vol denotes the standard Riemannian volume related to the metric g. As it

was already observed in the beginning of Section 2 in [22], if p, q ∈ Σn are at distance d from

each other, we can verify that

vol(B(p, t))

σ(t)
≥

vol(B(q, t− d))

σ(t− d)
.
σ(t− d)

σ(t)
.

So, the choice of p in the notion of volume growth is immaterial. For this reason, we will just

say that Σn has polynomial volume growth.

Keeping in mind this previous digression, we close this section quoting the following key

lemma which corresponds to a particular case of a new maximum principle due to Aĺıas, Caminha

and do Nascimento (see [22, Theorem 2.1]).

Lemma 5.5.6. Let (Σn, g) be a connected, oriented, complete noncompact Riemannian manifold,

and let u ∈ C∞(Σ) be a nonnegative smooth function such that ∆u ≥ au on Σn, for some positive

constant a ∈ R. If Σn has polynomial volume growth and |∇u| is bounded on Σn, then u vanishes

identically on Σn.
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Chapter 6

Rigidity of hypersurfaces and

Moser-Bernstein type results in certain

warped products, with applications to

pseudo-hyperbolic spaces

In this chapter we deal with complete two-sided hypersurfaces immersed in a warped product

space of the type I×ρM
n. Under suitable constraints on the warping function ρ, on the sectional

curvature of the fiber Mn and on the mean curvature of such a hypersurface Σn, we apply some

maximum principles in order to show that Σn must be a slice of I ×ρM
n. New Moser-Bernstein

type results concerning entire graphs constructed over Mn are obtained, and applications to

pseudo-hyperbolic spaces I ×et M
n are given. Here we present results of [32].

6.1 A computational lemma

Considering an immersed hypersurface Σn in a warped product space I ×ρ M
n satisfying

(5.28), the next lemma gives sufficient conditions to its Ricci curvature with respect to the

conformal metric ĝ :=
1

ρ(h)2
g. For this, we will suppose that Σn lies in a slab of I ×ρM

n, which

means that Σn is contained in a bounded region of the type

[t1, t2]×Mn = {(t, p) ∈ I ×ρ M
n : t1 ≤ t ≤ t2 and p ∈Mn}.

Lemma 6.1.1. Let M
n+1

= I ×ρ M
n be a warped product which satisfies the convergence con-

dition (5.28) and let ψ : Σn → M
n+1

be a hypersurface with bounded second fundamental form

and lying in a slab of M
n+1

. Then, the Ricci curvature R̂ic of Σn with respect to the conformal

metric ĝ :=
1

ρ(h)2
g is bounded from below.

Proof. First, we recall that the curvature tensor R of Σn can be described in terms of its Wein-

garten operator A and the curvature tensor R of the ambient I ×f M
n by the so-called Gauss’
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equation given by1

g(R(X, Y )Z,W ) = ḡ(R(X, Y )Z,W ) + g(A(X,Z), A(Y,W ))− g(A(X,W ), A(Y, Z)), (6.1)

for all tangent vector fields X, Y, Z ∈ X(Σ).

Let us consider X ∈ X(Σ) and take a local orthonormal frame {E1, · · · , En} of X(Σ). Then,

it follows from Gauss’ equation (6.1) that the Ricci curvature Ric of Σn with respect to the

induced metric g is given by

Ric(X,X) ≥
∑

i

ḡ(R(X,Ei)X,Ei)− (n|H||A|+ |A|2)|X|2

≥
∑

i

ḡ(R(X,Ei)X,Ei)− (
√
n+ 1)|A|2|X|2. (6.2)

Moreover, with a straightforward computation, we get

R(X,Ei)X = R(X∗, E∗

i
)X∗ + ḡ(X, ∂t)R(X∗, E∗

i
)∂t + ḡ(X, ∂t)ḡ(Ei, ∂t)R(X∗, ∂t)∂t

+ḡ(Ei, ∂t)R(X∗, ∂t)X
∗ + ḡ(X, ∂t)R(∂t, E

∗

i
)X∗ + ḡ(X, ∂t)

2R(∂t, E
∗

i
)∂t,(6.3)

where X∗ = X − ḡ(X, ∂t)∂t and E∗

i
= Ei − ḡ(Ei, ∂t)∂t are the projections of the tangent vector

fields X and Ei onto the fiber Mn, respectively. By repeated use of the formulas of Proposition

7.42 of [123] and using equation (5.3), from (6.3) we get

∑

i

ḡ(R(X,Ei)X,Ei) =
∑

i

ḡ(RM(X∗, E∗

i
)X∗, E∗

i
)− ρ(h)ρ′′(h)

ρ(h)2
|X|2

+
ρ′(h)2

ρ(h)2
(

|∇h|2 − (n− 1)
)

|X|2 (6.4)

+(n− 2)

(

ρ′(h)2 − ρ(h)ρ′′(h)

ρ(h)2

)

g(X,∇h)2,

where RM denotes the curvature tensor of the fiber Mn. But, it is not difficult to verify that

∑

i

ḡ(RM(X∗, E∗

i
)X∗, E∗

i
) =

1

ρ2

∑

i

KM(X∗, E∗

i
)(|X|2 − g(∇h,Ei)

2|X|2

−g(X,∇h)2 − g(X,Ei)
2 + 2g(X,∇h)g(X,Ei)g(∇h,Ei)).

Thus, by using the convergence condition (5.28) and with another straightforward computation,

1As in [123], the curvature tensor R of the hypersurface Σn is given by

R(X,Y )Z = ∇[X,Y ]Z − [∇X ,∇Y ]Z,

where [ ] denotes the Lie bracket and X,Y, Z ∈ X(Σ).
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from (6.4) we obtain

∑

i

ḡ(R(X,Ei)X,Ei) ≥ −ρ
′′(h)

ρ(h)

(
n− |∇h|2

)
|X|2 ≥ −n |ρ

′′(h)|
ρ(h)

|X|2. (6.5)

On the other hand, we have the following equation (see, for instance, Section 1J of [53],

Section A of [110] or page 168 of [140])

R̂ic(X,X) = Ric(X,X) +
1

ρ(h)2
{
(n− 2)ρ(h)∇2ρ(h)(X,X)

+(ρ(h)∆ρ(h)− (n− 1)|∇ρ(h)|2)|X|2
}
. (6.6)

So, inserting (5.4), (5.5) and (5.6) into (6.6) we get:

R̂ic(X,X) = Ric(X,X) +
1

ρ(h)2
{
(n− 2)ρ(h)(ρ′′(h)g(∇h,X)2 + ρ′(h)∇2h(X,X))

+(ρ(h)(ρ′′(h)|∇h|2 + ρ′(h)∆h)− (n− 1)ρ′(h)2|∇h|2)|X|2
}
. (6.7)

Hence, considering (6.2) and (6.5), from (6.7) we obtain the following lower estimate:

R̂ic(X,X) ≥ − 1

ρ(h)

{
(2n− 1)|ρ′′(h)|+ (n+

√
n− 2)|ρ′(h)||A|+ (

√
n+ 1)ρ(h)|A|2

}
|X|2. (6.8)

Therefore, taking into account once more that |A| is bounded and that Σn lies in a slab of

the ambient space, from (6.8) we conclude that R̂ic is bounded from below.

6.2 Rigidity of two-sided hypersurfaces via Omori-Yau’s

maximum principle

From now on, we will orient the two-sided hypersurfaces in such a way that Θ ≤ 0. In this

setting, extending the ideas of [18, 20, 62], we obtain the following result:

Theorem 6.2.1. Let M
n+1

= I ×ρ M
n be a warped product whose fiber Mn is complete with

sectional curvature obeying the convergence condition (5.28). Let ψ : Σn →M
n+1

be a complete

two-sided hypersurface with bounded second fundamental form and lying in a slab [t1, t2]×Mn,

with ρ′(t) > 0 for t ∈ [t1, t2]. If the height function h and the mean curvature function H satisfy

0 < −ρ
′(h)

ρ(h)
Θ ≤ H (6.9)

and

|∇h| ≤ inf
Σ

∣∣∣∣H − ρ′(h)

ρ(h)

∣∣∣∣ , (6.10)

then Σn is a slice.
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Proof. As before, let us consider on Σn the metric ĝ = 1
ρ(h)2

g, which is conformal to its induced

metric g. If we denote by ∆̂ the Laplacian with respect to the metric ĝ, from (5.4) and (5.6) we

get

∆̂h = ρ(h)2∆h− (n− 2)ρ(h)ρ′(h)|∇h|2

= nρ(h)ρ′(h)Θ2 + ρ(h)ρ′(h)|∇h|2 + nHρ(h)2Θ. (6.11)

With a straightforward computation, from (6.11) we obtain

∆̂ρ(h) = ρ′′(h)ĝ(∇̂h, ∇̂h) + ρ′(h)∆̂h

= ρ′′(h)ρ(h)2|∇h|2 + ρ′(h)
(
nρ(h)ρ′(h)Θ2 + ρ(h)ρ′(h)|∇h|2 + nHρ(h)Θ

)
(6.12)

= nρ(h)ρ′(h)2 + nHρ′(h)ρ(h)2Θ+ ρ(h)3
(
(log ρ)′′(h)− (n− 2)

ρ′(h)2

ρ(h)2

)
|∇h|2.

Given a positive real number α, we have that

∆̂ρ(h)−α = α(α + 1)ρ(h)−α−2ĝ(∇̂ρ(h), ∇̂ρ(h))− αρ(h)−α−1∆̂ρ(h). (6.13)

Using (6.12) in (6.13) we get

∆̂ρ(h)−α = −αnρ(h)−αρ′(h)2 − αnHρ′(h)ρ(h)−α+1Θ+ α(α + 1)ρ(h)−αρ′(h)2|∇h|2

− αρ(h)−α+2

(
(log ρ)′′(h)− (n− 2)

ρ′(h)2

ρ(h)2

)
|∇h|2. (6.14)

But, from (5.4) we have

−αnρ(h)−αρ′(h)2 = −αnρ(h)−αρ′(h)2|∇h|2 − αnρ(h)−αρ′(h)2Θ2. (6.15)

Thus, from (6.14) and (6.15) we obtain

∆̂ρ(h)−α = −nαρ(h)−α{ρ′(h)2Θ2 +Hρ(h)ρ′(h)Θ}

−αρ(h)−α+2

[
(log ρ)′′(h)− (α− 1)

ρ′(h)2

ρ(h)2

]
|∇h|2. (6.16)

On the other hand, since we assume that |A| is bounded and that Σn lies in a slab of the

ambient space (which obeys the convergence condition 5.28), Lemmas ?? and 6.1.1 guarantee

the existence of a sequence of points (pk)k≥1 in Σn such that

lim
k

ρ(h)−α(pk) = sup
Σ

ρ(h)−α lim
k

|∇̂ρ(h)−α(pk)| = 0 and lim sup
k

∆̂ρ(h)−α(pk) ≤ 0.

Since ∇̂ρ(h)−α = −αρ(h)1−αρ′(h)∇h and taking into account once more that Σn lies in a

slab and that ρ′(h) > 0 in this slab, we get that

lim
k

|∇h(pk)| = 0. (6.17)
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Moreover, from (5.4) we also have that

lim
k

Θ(pk) = −1. (6.18)

So, using (6.9), (6.16), (6.17) and (6.18), it is not difficult to verify that

0 ≥ lim sup
k

∆̂ρ(h)−α(pk) ≥ nα sup
Σ

ρ(h)−α lim sup
k

−{ρ′(h)2 −Hf(h)ρ′(h)}(pk) ≥ 0. (6.19)

Thus, from (6.19) we infer that

lim
k

(

H −
ρ′(h)

ρ(h)

)

(pk) = 0.

Hence,

inf
Σ

∣

∣

∣

∣

H −
ρ′(h)

ρ(h)

∣

∣

∣

∣

= 0.

Therefore, from our hypothesis (6.10) we conclude that Σn must be a slice of I ×ρ M
n.

6.3 Rigidity of two-sided hypersurfaces via integrability

properties

In what follows, we will assume that the warping function ρ of the ambient space M
n+1

=

I ×ρ M
n satisfies the following inequality

(log ρ)′′ ≤ γ[(log ρ)′]2, (6.20)

for some constant γ > −1.

In order to obtain our next result, using the previous lemma 5.5.2, we get the following result:

Theorem 6.3.1. Let M
n+1

= I ×ρ M
n be a warped product whose warping function satisfies

(6.20), holding the equality only at isolated points of I, and with complete fiberMn. Let ψ : Σn →

M be a complete two-sided hypersurface which lies in a slab of M
n+1

. If the height function h

and the mean curvature function H satisfy (6.9) and |∇h| ∈ L1
g(Σ), then Σn is a slice.

Proof. Considering again the conformal metric ĝ :=
1

ρ(h)2
g, it is not difficult to verify that

|∇̂ρ(h)−α|ĝ = αρ(h)−α|ρ′(h)||∇h|, (6.21)

for any positive constant α. Consequently, since we assume that Σn lies in a slab of M
n+1

and

|∇h| ∈ L1
g(Σ), from (6.21) we get that |∇̂ρ(h)−α|ĝ ∈ L1

ĝ(Σ).

Moreover, taking α = 1 + γ, from (6.16) we also have that ∆̂ρ−α ≥ 0. Thus, we can apply

Lemma 1.5.3 to infer that ∆̂ρ−α = 0 on Σn. Hence, since we are assuming that equality occurs
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in (6.20) only at isolated points of I, returning to (6.16) we conclude that |∇h| must vanish

identically on Σn. Therefore, Σn is a slice.

We also get a slightly different version of Theorem 6.3.1:

Theorem 6.3.2. Let M
n+1

= I ×ρ M
n be a warped product whose warping function satisfies

(6.20), and has complete fiber Mn. Let ψ : Σn →M be a complete two-sided hypersurface which

lies in a slab [t1, t2] ×Mn, with ρ′(t) > 0 for t ∈ [t1, t2]. If the height function h and the mean

curvature function H satisfy (6.9) and |∇h| ∈ L1
g
(Σ), then Σn is a slice.

Proof. As in the proof of Theorem 6.3.1, taking α = 1 + γ, we get that ∆̂ρ−α = 0 on Σn.

Moreover, since Σn lies in a slab of I ×ρM
n, we can also verify that |∇̂ρ−2α|ĝ ∈ L1

ĝ
(Σ). But, we

note that

∆̂ρ−2α = 2ρ−α∆̂ρ−α + 2|∇̂ρ−α|2
ĝ
= 2|∇̂ρ−α|2

ĝ
≥ 0.

Thus, we can apply Lemma 5.5.2 again to obtain that ∆̂ρ−2α = 0. Hence, since we assume that

ρ′(t) > 0 for t ∈ [t1, t2], from (6.21) we obtain that |∇h| = 0 on Σn. Therefore, Σn must be a

slice.

The next result we will expound will make use of lemma 5.5.4 from section 5.5, also due to

Yau in [148].

These previous lemmas enable us to prove the following nonexistence result.

Theorem 6.3.3. Let M
n+1

= I ×ρ M
n be a warped product satisfying (6.20), holding equality

only at isolated points of I, and whose fiber Mn is noncompact complete with nonnegative Ricci

curvature. There do not exist complete two-sided hypersurfaces ψ : Σn → M
n+1

lying in a slab

of M
n+1

, satisfying (6.9) and such that f(h) ∈ Lq

g
(Σ) for some q with q + γ < −1.

Proof. Supposing for contradiction the existence of such a hypersurface Σn, we get from (6.16)

that ∆̂ρ−1−γ(h) ≥ 0 on Σn. Moreover, since we assume that Σn lies in a slab of M
n+1

and

ρ(h) ∈ Lq

g
(Σ) for some q with 1+γ+ q < 0, it is not difficult to verify that ρ(h)−1−γ ∈ Lp

ĝ
(Σ) for

p = − q

1+γ
> 1. Thus, we can apply Lemma 5.5.3 to get that f(h) is constant on Σn. Hence, since

we assume that the equality occurs in (6.20) only at isolated points of I, returning to (6.16) we

conclude that |∇h| must vanish identically on Σn. Consequently, Σn is isometric (up to scaling)

to Mn. So, since ρ(h) is a positive constant, our assumption that ρ(h) ∈ Lq

g
(Σ) also implies that

Mn has finite volume. But, since Mn is assumed to be noncompact complete with nonnegative

Ricci curvature, Lemma 5.5.4 leads us to a contradiction.

6.4 Rigidity of two-sided hypersurfaces via a parabolicity

criterion

We recall that a noncompact Riemannian manifold is said to be parabolic if the only sub-

harmonic functions on it that are bounded from above are the constants. On the other hand,
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given two Riemannian manifolds (Σ, g) and (Σ
′

, g
′

), a diffeomorphism ϕ from Σ onto Σ
′

is called

a quasi-isometry if there exists a constant c ≥ 1 such that

c−1|v|g ≤ |dϕ(v)|g′ ≤ c|v|g,

for all v ∈ TpΣ, p ∈ Σ. From Theorem 1 of [109] (see also Corollary 5.3 of [92]) we have the

following:

Lemma 6.4.1. Let (Σ, g) and (Σ
′

, g
′

) be two complete Riemannian manifolds. If Σ and Σ
′

are

quasi-isometric, then Σ and Σ
′

are either both parabolic or neither is parabolic.

We can use the previous lemma to get the following parabolicity criterion:

Lemma 6.4.2. Let ψ : Σn → M
n+1

be a complete noncompact hypersurface immersed in a

warped product M
n+1

= I ×ρ M
n, whose fiber (Mn, gM) has parabolic universal covering. If

Θ is bounded away from zero, then (Σn, ĝ), endowed with the conformal metric ĝ = 1
ρ(h)2

g, is

parabolic.

Proof. Given p ∈ Σn and v ∈ TpΣ
n, from (5.1) and (5.4) we have

g(v, v) = g(v,∇h)2 + ρ(h)2gM(dπ(v), dπ(v)). (6.22)

Thus, from (6.22) we get

ĝ(v, v) =
1

ρ(h)2
g(v, v) ≥ gM(dπ(v), dπ(v)). (6.23)

On the other hand, using (5.4) and the Cauchy-Schwarz inequality in (6.22) we also have

Θ2g(v, v) ≤ ρ(h)2gM(dπ(v), dπ(v)). (6.24)

Since Θ is bounded away from zero, there exists a positive constant β such that Θ2 ≥ β2.

Consequently, from (6.24) we get

β2g(v, v) ≤ Θ2g(v, v) ≤ ρ(h)2gM(dπ(v), dπ(v)). (6.25)

Thus, from (6.25) we have

ĝ(v, v) ≤
1

β2
gM(dπ(v), dπ(v)). (6.26)

Hence, using inequalities (6.23) and (6.26) we get

gM(dπ(v), dπ(v)) ≤ ĝ(v, v) ≤
1

β2
gM(dπ(v), dπ(v)). (6.27)
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So, taking c = 1

β2 ≥ 1, from (6.27) we obtain

1

c
gM(dπ(v), dπ(v)) ≤ ĝ(v, v) ≤ cgM(dπ(v), dπ(v)), (6.28)

which means that π is a quasi-isometry between Σ and M .

Let Σ
′

be the universal Riemannian covering of Σ with projection πΣ : Σ
′

→ Σ. Then, the

map π0 = π ◦ πΣ : Σ
′

→ M is a covering map. If M
′

is the universal Riemannian covering

of M with projection π
′

: M
′

→ M , then there exists a diffeomorphism ϕ : Σ
′

→ M
′

such

that π
′

◦ ϕ = π0. Moreover, from (6.28) it is not difficult to verify that ϕ is also a quasi-

isometry. Therefore, since the universal Riemannian covering of M is parabolic, it follows from

Lemma 6.4.1 that the universal Riemannian covering of Σ is parabolic and, hence, Σ must also

be parabolic with respect to the metric ĝ.

In order to state our next result, we recall that a function ρ : I → (0,+∞) is said to be

globally constant if I = R and ρ is constant.

Theorem 6.4.3. Let M
n+1

= I ×ρ M
n be a warped product whose fiber Mn is complete with

parabolic universal covering and such that its warping function ρ is not globally constant and

satisfies (6.20). Let ψ : Σn →M
n+1

be a complete two-sided hypersurface with Θ ≤ −β < 0, for

some positive constant β, and such that infΣ ρ(h) > 0. If ρ′(h)H ≥ 0 and
ρ′(h)2

ρ(h)2
Θ2 ≤ H2, then

Σn is a slice.

Proof. First, we note that Lemma 6.4.2 guarantees that (Σn, ĝ) is parabolic. Moreover, it follows

from (6.16) that ρ−α(h) (where α = 1 + γ) is subharmonic on Σn. Thus, since the hypothesis

infΣ ρ(h) > 0 implies that ρ(h)−α is bounded from above, it follows from the parabolicity of

(Σn, ĝ) that ρ(h) is constant on Σn. Consequently, returning to (6.16) we get that

H2 =
ρ′(h)2

ρ(h)2
Θ2. (6.29)

Let us suppose that h is not constant. So, J = Imh is a subinterval of I and ρ|J is constant,

which implies that ρ′(t) = 0 for all t ∈ J . Hence, ρ′(h) vanishes identically and, from (??)

we conclude that Σn is minimal. Thus, from (6.11) it follows that h is a harmonic function

on the parabolic Riemannian manifold (Σn, ĝ). Finally, since ρ(h) is constant and taking into

account that we assume that f is not globally constant, it is not difficult to see that h must be

bounded either from below or from above. Consequently, h is constant on Σn, leading us to a

contradiction. Therefore, Σn must be a slice.

6.5 Applications to pseudo-hyperbolic spaces

According to the terminology introduced by Tashiro [144], when the warping function is

exponential the corresponding warped product I ×et M
n is referred to as a pseudo-hyperbolic

space. Tashiro’s terminology is due to the fact that the (n+1)-dimensional hyperbolic space Hn+1
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is isometric to the warped product R×et R
n, where the slices constitute a family of horospheres

sharing a fixed point in the asymptotic boundary ∂∞H
n+1 and giving a complete foliation of

H
n+1. For more details about these spaces see, for instance, [24, 25, 91,115].

We observe that a pseudo-hyperbolic space I ×et M
n, whose fiber Mn has nonnegative sec-

tional curvature, satisfies (5.28). So, from Theorem 6.2.1 we obtain the following consequence:

Corollary 6.5.1. Let ψ : Σn →M
n+1

be a complete two-sided hypersurface immersed in a slab of

a pseudo-hyperbolic spaceM
n+1

= I×etM
n whose fiberMn is complete with nonnegative sectional

curvature, and has bounded second fundamental form. If H ≥ 1 and |∇h| ≤ infΣ (H − 1), then

Σn is a slice.

Taking into account that a pseudo-hyperbolic space satisfies (6.20) for γ = 0, in this case

Theorem 6.3.2 reads as follows:

Corollary 6.5.2. Let ψ : Σn → M
n+1

be a complete two-sided hypersurface immersed in a

slab of a pseudo-hyperbolic space M
n+1

= I ×et M
n with complete fiber Mn. If H ≥ 1 and

|∇h| ∈ L1
g(Σ), then Σn is a slice.

From Theorem 6.3.3 we obtain the following consequence:

Corollary 6.5.3. Let M
n+1

= I ×et M
n be a pseudo-hyperbolic space, whose fiber Mn is non-

compact complete with nonnegative Ricci curvature. There do not exist complete two-sided hy-

persurfaces ψ : Σn → M
n+1

lying in a slab of M
n+1

, with H ≥ 1 and such that eh ∈ Lq
g(Σ) for

some q with q < −1.

From Theorem 6.4.3 we get the following result:

Corollary 6.5.4. Let M
n+1

= I ×et M
n be a warped product whose fiber Mn is complete with

parabolic universal covering. Let ψ : Σn → M
n+1

be a complete two-sided hypersurface with

Θ ≤ −β < 0, for some positive constant β, and such that infΣ h > −∞. If H ≥ 1, then Σn is a

slice.

6.6 Moser-Bernstein type results for entire graphs

We say that u ∈ C∞(M) has finite Ck norm, for some k ∈ N, when

||u||Ck(M) := sup
|γ|≤k

|Dγu|L∞(M) < +∞.

It follows from (5.26) that the shape operator A of an entire graph Σ(u) is bounded provided

that u has finite C2. Note also that the finiteness of the C2 norm of u implies, in particular,

that u is bounded, which, in turn, guarantees that infM ρ(u) > 0.

In this context, we obtain a nonparametric version of Theorem 6.2.1.
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Theorem 6.6.1. Let M
n+1

= I ×ρ M
n be a warped product whose fiber Mn is complete with

sectional curvature obeying the convergence condition (5.28). Let Σ(u) be an entire graph deter-

mined by a function u ∈ C∞(M) with finite C2 norm and satisfying

0 <
ρ′(u)

√

ρ(u)2 + |Du|2M
≤ H(u). (6.30)

If

|Du|M ≤ inf
M

∣

∣

∣

∣

H(u)−
ρ′(u)

ρ(u)

∣

∣

∣

∣

, (6.31)

then u ≡ t0 for some t0 ∈ I.

Proof. From (5.26), we conclude that (6.30) implies (6.9). Moreover, since we have that N =

N∗ + Θ∂t, where (as before) N∗ denotes the projection of N onto the fiber Mn, from (5.3) we

get

|∇h|2 = ρ(u)2|N∗|2M . (6.32)

Thus, from (5.26) and (6.32) we obtain

|∇h|2 =
|Du|2M

ρ(u)2 + |Du|2M
. (6.33)

Hence, from (6.33) we can also verify that (6.31) implies (6.10). Therefore, the result follows by

applying Theorem 6.2.1.

Theorem 6.6.1 gives us the following application in the context of pseudo-hyperbolic spaces:

Corollary 6.6.2. Let M
n+1

= I ×et M
n be a pseudo-hyperbolic space such that its fiber Mn

is complete with nonnegative sectional curvature. Let Σ(u) be an entire graph determined by a

function u ∈ C∞(M) with finite C2 norm and satisfying eu ≤ H(u). If |Du|M ≤ infM |H(u)− 1|,

then u ≡ t0 for some t0 ∈ I.

From Theorem 6.3.1 we obtain the following Moser-Bernstein type result:

Theorem 6.6.3. Let M
n+1

= I ×ρ Mn be a warped product whose warping function satis-

fies (6.20), holding equality only at isolated points of I, and with complete fiber Mn. Let

Σ(u) be an entire graph determined by a bounded function u ∈ C∞(M) satisfying (6.30). If

|Du|M ∈ L1
gM

(M), then u ≡ t0 for some t0 ∈ I.

Proof. Reasoning as in the proof of Theorem 1 of [23], from (5.24) we infer that dΣ =
√

|G|dM ,

where dM and dΣ stand for the Riemannian volume elements of (Mn, gM) and (Σ(u), gu), re-

spectively, and G = det(gij) with

gij = gu(Ei, Ej) = Ei(u)Ej(u) + ρ(u)2δij.
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Here, {E1, . . . , E
n} denotes a local orthonormal frame with respect to the metric gM . So, it is

not difficult to verify that

|G| = ρ(u)2(n−1)(ρ(u)2 + |Du|2M).

Consequently,

dΣ = ρ(u)n−1
√

ρ(u)2 + |Du|2MdM. (6.34)

Thus, from (6.33) and (6.34) we get

|∇h|dΣ = ρ(u)n−1|Du|MdM. (6.35)

Hence, since we assume that u is bounded with |Du|M ∈ L1
gM

(M), relation (6.35) guarantees

that |∇h| ∈ L1
g(Σ(u)). Therefore, the result follows by applying Theorem 6.3.1.

When the ambient space is a pseudo-hyperbolic space, Theorem 6.6.3 reads as follows:

Corollary 6.6.4. Let M
n+1

= I ×et M
n be a pseudo-hyperbolic space such that its fiber Mn is

complete. Let Σ(u) be an entire graph determined by a bounded function u ∈ C∞(M) satisfying

eu ≤ H(u). If |Du|M ∈ L1
gM

(M), then u ≡ t0 for some t0 ∈ I.

Taking relation (6.34) into account once more, it is not difficult to see that from Theorem 6.3.3

we obtain the following nonexistence result:

Theorem 6.6.5. Let M
n+1

= I ×ρ M
n be a warped product satisfying (6.20), holding equality

only at isolated points of I, and whose fiber Mn is noncompact complete with nonnegative Ricci

curvature. There do not exist entire solutions u ∈ C∞(M) of the mean curvature equation (5.27)

with finite C1 norm, satisfying (6.30) and such that ρ(u) ∈ Lq
gM

(M) for some q with q+γ < −1.

From Theorem 6.6.5 we get the following application:

Corollary 6.6.6. Let M
n+1

= I×etM
n be a pseudo-hyperbolic space whose fiber Mn is noncom-

pact complete with nonnegative Ricci curvature. There do not exist entire solutions u ∈ C∞(M)

of the mean curvature equation

nH(u) = −divM

(

Du

eu
√

e2u + |Du|2M

)

+
eu

√

e2u + |Du|2M

(

n−
|Du|2M
e2u

)

,

with finite C1 norm, satisfying eu ≤ H(u) and such that eu ∈ Lq
gM

(M) for some q with q < −1.

We can verify from (5.25) that the condition Θ bounded away from zero is equivalent to

|Du|M ≤ αf(u) for some positive constant α. Using this fact, Theorem 6.4.3 allows us to obtain

the last result of this paper:

Theorem 6.6.7. Let M
n+1

= I ×ρ M
n be a warped product whose fiber Mn has parabolic uni-

versal covering and such that its warping function ρ is not globally constant and satisfies (6.20).
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Let Σ(u) be an entire graph determined by a bounded function u ∈ C∞(M) with |Du|M ≤ αρ(u)

for some positive constant α. If ρ′(u)H(u) ≥ 0 and
ρ′(u)2

ρ(u)2 + |Du|2
M

≤ H(u)2, then u ≡ t0 for

some t0 ∈ I.

We close our paper with applications of Theorem 6.6.7.

Corollary 6.6.8. Let M
n+1

= I ×et M
n be a pseudo-hyperbolic space whose fiber Mn has

parabolic universal covering. Let Σ(u) be an entire graph determined by a bounded function

u ∈ C∞(M) with |Du|M ≤ αeu for some positive constant α. If H(u) ≥ 1, then u ≡ t0 for some

t0 ∈ I.

In [24], Aĺıas and Dajczer proved that the horospheres are the only complete surfaces properly

immersed in H
3 with constant mean curvature −1 ≤ H ≤ 1 and which are contained in a region

between two horospheres which share a fixed point in ∂∞H
3. Modelling H

3 through the warped

product space R×et R
2, we recall that these horospheres are just isometric to the slices {t}×R

2.

So, from Corollary 6.6.8 we get our last result:

Corollary 6.6.9. The only 2-dimensional entire graphs Σ(u) lying between two horospheres

{t1}×R
2 and {t2}×R

2 (t1 < t2) of H
3 = R×et R

2, with |Du|M ≤ αeu for some positive constant

α and such that H(u) ≥ 1, are the horospheres {t} × R
2, with t1 ≤ t ≤ t2.

Remark 6.6.10. It is worth mentioning that López recently obtained in [114] gradient estimates

for solutions to the Dirichlet problem for the constant mean curvature equation on a domain

of a horosphere in three-dimensional hyperbolic spaces and, under suitable boundary conditions,

he employed these estimates to solve the Dirichlet problem when the mean curvature H satisfies

H < 1.
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Chapter 7

Mean curvature flow solitons in certain

warped products: Nonexistence,

rigidity and Moser-Bernstein type

results

In the following results, our purpose is to apply suitable maximum principles in order to

obtain nonexistence and rigidity results concerning complete n-dimensional mean curvature flow

solitons with respect to the conformal vector field K = ρ(t)∂t of a warped product space of the

type I×ρM
n. Applications to self-shrinkers in the Euclidean space, as well as to mean curvature

flow solitons in the real projective, pseudo-hyperbolic, Schwarzschild and Reissner-Nordström

spaces are also given. Furthermore, we study entire graphs constructed over the fiber Mn and

which are mean curvature flow solitons with respect to K, obtaining new Moser-Bernstein type

results (see Section 7.3) The results presented in this chapter make part of [42–44].

7.1 Auxiliary results

In order to investigate the nonexistence of complete mean curvature flow solitons, initially

we introduce the following definition:

Definition 7.1.1. The Laplacian operator ∆ on a Riemannian manifold (Σ, g) satisfies the

Omori-Yau maximum principle if for any u ∈ C2 bounded from above, there exists a sequence

(pk)k≥1 in Σn such that

lim
k

u(pk) = sup
Σ

u = u∗, lim
k

|∇u(pk)| = 0 and lim sup
k

∆u(pk) ≤ 0.

Now we recall the maximum principle due to Omori [122] and Yau [147]. Such concept

gives us conditions to the validity of a maximum principle for the hessian or the Laplacian on a

Riemannian manifold. Specifically, we quote the following result for the Laplacian:
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Lemma 7.1.2 (Yau, [147]). Let Σn be an n-dimensional complete Riemannian manifold whose

Ricci curvature is bounded from below and let u ∈ C∞(Σ) be a smooth function which is bounded

from above on Σn. Then the Laplacian ∆ satisfies the Omori-Yau maximum principle on Σ.

Denoting by KM the sectional curvature of the fiber Mn, we will consider warped product

spaces I ×ρ M
n satisfying the convergence condition

KM ≥ sup
I
(ρ′2 − ρρ′′). (7.1)

Warped products satisfying (7.1) have been studying, for instance, in [26, 27, 75, 91]. The

case that this condition holds for the Ricci curvature instead of the sectional curvature is also

well known (see, for instance, [23, 25, 115]). Furthermore, it is not difficult to verify that there

exists a wide class of warped product satisfying (7.1), including, for instance, the Euclidean

space minus a point R
n+1 \ {o} = R+ ×t S

n, the real projective space (minus a suitable point

and its cut locus)
(

0, π
2

)

×sin t S
n, the pseudo-hyperbolic spaces I ×et M

n with fiber having

nonnegative sectional curvature and the Schwarzschild and Reissner-Nordström spaces I ×ρ S
n

(see Examples 5.2.1, 5.2.2, 5.2.3, 5.2.4 and 5.2.5).

Indeed, this verification for the Euclidean, the real projective, the pseudo-hyperbolic and

the Schwarzschild spaces is quite simple. In the case of the Reissner-Nordström space, with a

straightforward computation we get that

ρ′(t)2 − ρ(t)ρ′′(t) = 1−mr(t)1−n − n
{

m− q
2r(t)1−n

}

r(t)1−n. (7.2)

But, since r(t) > r0(m, q) =

(

q
2

m−

√
m2

−q2

)1/(n−1)

, it is not difficult to verify that we must have

q
2r(t)1−n < m. (7.3)

Consequently, from (7.2) and (7.3) we conclude that the convergence condition (7.1) is also

satisfied in the Reissner-Nordström space.

We recall that a hypersurface Σn lies in a slab of a warped product I ×ρ M
n when Σn is

contained in a region of the type

[t1, t2]×Mn = {(t, p) ∈ I ×ρ M
n : t1 ≤ t ≤ t2 and p ∈Mn}.

Next, considering an immersed hypersurface Σn in a slab of a warped product space I ×ρ M
n

satisfying (7.1), we will verify that the Omori-Yau maximum principle is satisfied.

Lemma 7.1.3. Let M
n+1

= I ×ρ M
n be a warped product which satisfying the convergence

condition (7.1) and let ψ : Σn →M
n+1

be a hypersurface with bounded second fundamental form

and lying in a slab of M
n+1

. Then, the Laplacian on Σn satisfies the Omori-Yau maximum

principle.

Proof. First, we recall that the curvature tensor R of Σn can be described in terms of its Wein-
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garten operator A and the curvature tensor R of the ambient I ×ρ M
n by the so-called Gauss’

equation given by1

g(R(X, Y )Z,W ) = ḡ(R(X, Y )Z,W ) + g(A(X,Z), A(Y,W ))− g(A(X,W ), A(Y, Z)),

for every tangent vector fields X, Y, Z,W ∈ X(Σ).

Let us consider X ∈ X(Σ) and take a local orthonormal frame {E1, · · · , En} of X(Σ). Then,

it follows from Gauss equation (6.1) that the Ricci curvature Ric of Σn with respect to the

induced metric g is given by

Ric(X,X) ≥
∑

i

ḡ(R(X,Ei)X,Ei)− (|H||A|+ |A|2)|X|2

≥
∑

i

ḡ(R(X,Ei)X,Ei)− (
√
n+ 1)|A|2|X|2. (7.4)

Moreover, with a straightforward computation, we get

R(X,Ei)X = R(X∗, E∗

i )X
∗ + ḡ(X, ∂t)R(X∗, E∗

i )∂t + ḡ(X, ∂t)ḡ(Ei, ∂t)R(X∗, ∂t)∂t

+ḡ(Ei, ∂t)R(X∗, ∂t)X
∗ + ḡ(X, ∂t)R(∂t, E

∗

i )X
∗ + ḡ(X, ∂t)

2R(∂t, E
∗

i )∂t,(7.5)

where X∗ = X − ḡ(X, ∂t)∂t and E∗

i = Ei − ḡ(Ei, ∂t)∂t are the projections of the tangent vector

fields X and Ei onto the fiber Mn, respectively.

Thus, by repeated use of the formulas of [123, Proposition 7.42] and using equation (5.3),

from (7.20) we get

∑

i

ḡ(R(X,Ei)X,Ei) =
∑

i

ḡ(RM(X∗, E∗

i )X
∗, E∗

i )−
ρ(h)ρ′′(h)

ρ(h)2
|X|2 (7.6)

+
ρ′(h)2

ρ(h)2
(

|∇h|2 − (n− 1)
)

|X|2 + (n− 2)

(

ρ′(h)2 − ρ(h)ρ′′(h)

ρ(h)2

)

g(X,∇h)2,

where RM denotes the curvature tensor of the fiber Mn. But, it is not difficult to verify that

∑

i

ḡ(RM(X∗, E∗

i )X
∗, E∗

i ) =
1

ρ2

∑

i

KM(X∗, E∗

i )(|X|2 − g(∇h,Ei)
2|X|2

−g(X,∇h)2 − g(X,Ei)
2 + 2g(X,∇h)g(X,Ei)g(∇h,Ei)).

Thus, by using the convergence condition (7.1) and with another straightforward computation,

from (7.6) we obtain

∑

i

ḡ(R(X,Ei)X,Ei) ≥ −ρ′′(h)

ρ(h)

(

n− |∇h|2
)

|X|2 ≥ −n
|ρ′′(h)|
ρ(h)

|X|2. (7.7)

1As in [123], the curvature tensor R of the hypersurface Σn is given by

R(X,Y )Z = ∇[X,Y ]Z − [∇X ,∇Y ]Z,

where [ ] denotes the Lie bracket and X,Y, Z ∈ X(Σ).
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On the other hand, we have the following equation (see, for instance, [53, Section 1J], [110,

Section A] or [140, page 168])

R̂ic(X,X) = Ric(X,X)+
1

ρ(h)2
{
(n− 2)ρ(h)∇2ρ(h)(X,X) + (ρ(h)∆ρ(h)− (n− 1)|∇ρ(h)|2)|X|2

}
.

Consequently, from this previous equation we get

R̂ic(X,X) = Ric(X,X) +
1

ρ(h)2
{
(n− 2)ρ(h)(ρ′′(h)g(∇h,X)2 + ρ′(h)∇2h(X,X))

+(ρ(h)(ρ′′(h)|∇h|2 + ρ′(h)∆h)− (n− 1)ρ′(h)2|∇h|2)|X|2
}
. (7.8)

Hence, considering (5.4), (5.5), (5.6), (7.4) and (7.7) into (7.8), we obtain the following lower

estimate:

R̂ic(X,X) ≥ − 1

ρ(h)

{
(2n− 1)|ρ′′(h)|+ (n+

√
n− 2)|ρ′(h)||A|+ (

√
n+ 1)ρ(h)|A|2

}
|X|2. (7.9)

Therefore, taking into account that |A| is bounded and that Σn lies in a slab of the ambient

space, from (7.4) and (7.7) we conclude that the Ricci curvature is bounded from below and by

Lemma 7.1.2 the Laplacian satisfies the desired property.

7.2 Statements and proofs of the main results

7.2.1 Nonexistence results via Omori-Yau maximum principle

Into the scope of a warped product I ×ρ M
n we are in position to state and prove our first

nonexistence result concerning mean curvature flow solitons immersed in a slab of a warped

product.

Theorem 7.2.1. Let M
n+1

= I ×ρ M
n be a warped product whose fiber Mn satisfies hypothesis

(7.1). There exists no complete mean curvature flow soliton ψ : Σn → M
n+1

with respect to

K = ρ(t)∂t with soliton constant c ̸= 0, having bounded second fundamental form, lying in a slab

[t1, t2]×Mn and ζc(t) having a strict sign on [t1, t2].

Proof. Let us suppose by contradiction the existence of such a mean curvature flow soliton

ψ : Σn →M
n+1

. From (5.6) we have

∆h = n
ρ′(h)

ρ(h)
− ρ′(h)

ρ(h)
|∇h|2 + cρ(h)Θ2 (7.10)

= n
ρ′(h)

ρ(h)
Θ2 + n

ρ′(h)

ρ(h)
|∇h|2 + cρΘ2

= (n− 1)
ρ′(h)

ρ(h)
|∇h|2 + nρ′(h) + cρ2(h)

ρ
Θ2

= (n− 1)
ρ′(h)

ρ(h)
|∇h|2 + ζc(h)

ρ(h)
Θ2,
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where we used (5.4) in the second equality. Since the second fundamental form has bounded

norm and the hypersurface is contained in a slab, from Lemma 6.1.1 we are able to apply the

Omori-Yau maximum principle. Indeed, there are sequences {xk} and {pk} such that

lim
k

h(pk) = sup
Σ

h = h∗, lim
k

|∇h(pk)| = 0 and lim sup
k

∆h(pk) ≤ 0,

and

lim
k

h(xk) = inf
Σ

h = h∗, lim
k

|∇h(xk)| = 0 and lim inf
k

∆h(xk) ≥ 0,

and thus, using that Θ goes to 1 along the sequences {pk} and {xk}, we deduce from equation

(7.10) that

ζc(h
∗) ≤ 0 ≤ ζc(h∗),

which contradict our hypothesis on the function ζc.

Remark 7.2.2. It is worth to point out that complete mean curvature flow solitons immersed

in a slab of a warped product I×ρM
n and having bounded second fundamental form constitute

natural generalizations of the compact ones, and they have already been studied by Aĺıas, de

Lira and Rigoli in [27].

Taking into account Example 5.2.1, it is not difficult to verify that we get from the proof of

Theorem 7.2.1 the following result concerning the nonexistence of complete self-shrinkers:

Corollary 7.2.3. There exists no complete n-dimensional self-shrinker of Rn+1 with bounded

second fundamental form and lying in the closure of an n-dimensional annulus with either inner

radius rir >
√
n or outer radius ror <

√
n .

Remark 7.2.4. We point out that the sphere of radius
√
n satisfies all the hypotheses if we allow

the inner radius rir (or outer radius ror) equal to
√
n. We also notice that the self-shrinkers

S
k(
√
k)× R

n−k, for 1 ≤ k ≤ n− 1, of Rn+1 have bounded second fundamental form but they do

not belong to any n-dimensional annuli.

Remark 7.2.5. In Corollaries 7.2.17, 7.2.20, 7.2.25 and 7.2.29, if we assume c > 0 the condi-

tion ζc positive is immediate and so the nonexistence results follows directly.

We will now present a non-existence result, whose fundamental technique for construction is

the assumption of having polynomial volume growth. For the next result, let us establish one

notation. Consider the modified soliton function as been the function

ζ̄c(t) := ρ′(t)ζc(t). (7.11)

Theorem 7.2.6. Let M
n+1

= I ×ρ M
n be a warped product whose warping function ρ satisfies

inequality

(log ρ)′′ ≤ γ[(log ρ)′]2. (7.12)
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There does not exist complete noncompact mean curvature flow solitons ψ : Σn → M
n+1

with

respect to K = ρ(t)∂t with soliton constant c ̸= 0 and mean curvature bounded away from zero,

having polynomial volume growth and lying in a slab [t1, t2]×M
n with ζ̄c(t) < 0 for all t ∈ [t1, t2].

Proof. Let us suppose by contradiction the existence of such a mean curvature flow soliton

ψ : Σn → M
n+1

and let us consider on Σn the metric ĝ = 1
ρ(h)2

g, which is conformal to its

induced metric g. If we denote by ∆̂ the Laplacian with respect to the metric ĝ, from (5.4)

and (5.6) we get

∆̂h = ρ(h)2∆h− (n− 2)ρ(h)ρ′(h)|∇h|2

= nρ(h)ρ′(h)Θ2 + ρ(h)ρ′(h)|∇h|2 +Hρ(h)2Θ. (7.13)

With a straightforward computation, from (7.13) we obtain

∆̂ρ(h) = ρ′′(h)ĝ(∇̂h, ∇̂h) + ρ′(h)∆̂h

= ρ′′(h)f(h)2|∇h|2 + ρ′(h)
(
nρ(h)ρ′(h)Θ2 + ρ(h)ρ′(h)|∇h|2 +Hρ(h)Θ

)
(7.14)

= nρ(h)ρ′(h)2 +Hρ′(h)ρ(h)2Θ+ ρ(h)3
(
(log ρ)′′(h)− (n− 2)

ρ′(h)2

ρ(h)2

)
|∇h|2.

Given a positive real number α, we have that

∆̂ρ(h)−α = α(α + 1)ρ(h)−α−2ĝ(∇̂ρ(h), ∇̂ρ(h))− αρ(h)−α−1∆̂ρ(h). (7.15)

Using (7.14) in (7.15) we get

∆̂ρ(h)−α = −αnρ(h)−αρ′(h)2 − αHρ′(h)ρ(h)−α+1Θ+ α(α + 1)ρ(h)−αρ′(h)2|∇h|2

− αρ(h)−α+2

(
(log ρ)′′(h)− (n− 2)

ρ′(h)2

ρ(h)2

)
|∇h|2. (7.16)

But, from (5.4) we have

−αnρ(h)−αρ′(h)2 = −αnρ(h)−αρ′(h)2|∇h|2 − αnρ(h)−αρ′(h)2Θ2. (7.17)

Thus, from (7.26), (7.44), (5.7) and (7.11) we obtain

∆̂ρ(h)−α = −αρ(h)−αζ̄c(h)Θ
2

−αρ(h)−α+2
{
(log ρ)′′(h)− (α− 1)[(log ρ)′(h)]2

}
|∇h|2. (7.18)

Now, taking into account hypothesis (7.12) and choosing α = 1 + γ > 0, from (7.45) we get

∆̂ρ(h)−α ≥ −ζ̄c(h)αρ(h)
−αΘ2. (7.19)

At this point we observe that, since c ̸= 0, Σn ⊂ [t1, t2]×Mn and H is bounded away from

zero, from (5.7) we see that Θ2 is also bounded away from zero. So, since we are also assuming
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that ζ̄c(t) < 0 for all t ∈ [t1, t2], from (7.19) we reach at the following inequality

∆̂ρ(h)−α ≥ aρ(h)−α,

where a = α infΣ |ζ̄c(h)|.
Moreover, it is not difficult to verify that

|∇̂ρ(h)−α|ĝ = αρ(h)−α|ρ′(h)||∇h| ≤ αρ(h)−α|ρ′(h)|. (7.20)

So, since Σn ⊂ [t1, t2]×Mn, from (7.20) we conclude that |∇̂ρ(h)−α|ĝ is bounded on Σn.

On the other hand, considering the coefficients of conformal metric ĝij =
1

ρ(h)2
gij, where gij

stands for the coefficients of the induced metric g, we have that

Ĝ =
√

det(ĝij) =
√

ρ(h)−2n det(gij) = ρ(h)−nG. (7.21)

In particular, using once more that Σn ⊂ [t1, t2] ×Mn, from (7.21) jointly with the hypothesis

that Σn has polynomial volume growth with respect to g, we guarantee that the same holds with

respect to the conformal metric ĝ.

Therefore, we are in position to apply Lemma 5.5.6 to infer that ρ(h)−α vanishes identically

on Σn, which contradicts the fact that ρ is a positive function.

Let o = (0, . . . , 0) be the origin of the (n + 1)-dimensional Euclidean space R
n+1. We have

that Rn+1 \ {o} is isometric to R+ ×t S
n (see [116, Section 4, Example 1]), whose slides {t}× S

n

are isometric to n-dimensional Euclidean spheres S
n(t) of radius t ∈ R+. In this setting, the

mean curvature flow solitons with respect to K = t∂t with soliton constant c = −1 are just the

self-shrinkers. So, from (5.9) we conclude that Sn(
√
n) ≡ {√n} × S

n is the only slice which is a

self-shrinker.

It is not difficult to verify that we get from Theorem 7.2.6 the following result concerning

the nonexistence of complete self-shrinkers:

Corollary 7.2.7. There does not exist complete noncompact n-dimensional self-shrinker im-

mersed in R
n+1 with mean curvature bounded away from zero, having polynomial volume growth

and lying in the closure of an n-dimensional annulus with with inner radius rir >
√
n.

Remark 7.2.8. We note that, for each 1 ≤ m ≤ n − 1, the cylinder S
m(

√
m) × R

n−m is a

self-shrinker immersed in R
n+1 with mean curvature |H| =

√
m

n
and having polynomial volume

growth, however it does not belong to any n-dimensional annuli. It is also worth to point out

that Cao and Li [64] proved that an n-dimensional complete self-shrinker immersed in R
n+p,

with polynomial volume growth and whose second fundamental form satisfies |A|2 ≤ 1, must be

isometric to one of the followings: a round sphere S
n(
√
n), a cylinder S

m(
√
m) × R

n−m, with

1 ≤ m ≤ n− 1, or a hyperplane R
n, all of them immersed in R

n+1.
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7.2.2 Rigidity results via an extension of Hopf’s maximum principle

We initiate this section regarding an extension of Hopf’s theorem on a complete Riemannian

manifold (Σn, g) due to Yau in [148]. For this, let us also consider L1
g(Σ) := {u : Σn → R :

∫
Σ
|u|dΣ < +∞}, where dΣ is the measure related to the metric g.

Using the previous lemma, we have the following result:

Theorem 7.2.9. Let M
n+1

= I ×ρ M
n be a warped product. Let ψ : Σn → M be a complete

mean curvature flow soliton with respect to K = ρ(t)∂t with soliton constant c ̸= 0, lying in a

slab [t1, t2]×Mn, with ζc(t) does not changing the sign. If |∇h| ∈ L1
g(Σ), then Σn is a slice Mt∗

for some t∗ ∈ [t1, t2] which is implicitly given by the condition ζc(t∗) = 0.

Proof. Considering F (t) =
∫ t

t0
ρ(v)1−ndv and compute the Laplacian of F (h) as follows:

∆F (h) = F ′(h)∆h+ F ′′(h)|∇h|2 (7.22)

=
1

ρ(h)n−1
∆h+ (1− n)ρ(h)−nρ′(h)|∇h|2

=
ζc(h)

ρ(h)n
Θ2 + (n− 1)

ρ′(h)

ρ(h)n
|∇h|2 + (1− n)ρ(h)−nρ′(h)|∇h|2

= ρ(h)−nζc(h)Θ
2,

where we used equation (5.6) in the third equality. Thus F (h) is either subharmonic or super-

harmonic. Since Σ is contained is a slab and |∇h| ∈ L1(Σ), we have that |∇F (h)| = ρ(h)1−n|∇h|
belongs to the 1-Lebesgue space too.

Applying Lemma 5.5.2 we deduce that ∆F (h) = 0 and thus ζc(h)Θ
2 = 0 along Σ. Next,

note that

∆F (h)2 = 2F (h)∆F (h) + 2|∇F (h)|2 = 2ρ(h)1−n|∇h|2 ≥ 0.

Applying Lemma 5.5.2 again, we deduce that ∇h = 0 on Σ and from (5.4) we have Θ = 1. Thus,

ζc(h) vanishes on Σ, as we claimed.

From Theorem 7.2.9 we get the following rigidity result:

Corollary 7.2.10. The only complete n-dimensional self-shrinker of Rn+1, lying in the closure

of an n-dimensional annulus with either inner radius rir ≥ √
n or outer radius ror ≤ √

n and

such that |∇h| ∈ L1
g(Σ) is S

n(
√
n).

Remark 7.2.11. Related to Corollary 7.2.10, it is worth to mention that Pigola and Rimoldi [128]

studied geometric properties of complete non-compact bounded self-shrinkers obtaining natural

restrictions that force these hypersurfaces to be compact. In particular, they proved that the

only complete bounded self-shrinker of R
3 with |A| ≤ 1 is S

2(
√
2). Afterwards, Cavalcante

and Espinar [67] showed that the only complete self-shrinker of Rn+1 properly immersed in a

closed cylinder Bk+1(r) × R
n−k, for some k ∈ {1, · · · , n} and radius r ≤

√
k, is the cylinder

S
k(
√
k)× R

n−k.
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Next we will display some results from technique results using lemmas 5.5.5 and 5.5.6 as the

main source.

Theorem 7.2.12. Let M
n+1

= I ×ρ M
n be a warped product with complete noncompact fiber

Mn and whose warping function ρ satisfies inequality (7.12). The only complete noncompact

mean curvature flow soliton ψ : Σn → M
n+1

with respect to K = ρ(t)∂t with soliton constant c

such that ζ̄c(h) ≤ 0, ρ(h) is increasing (decreasing) and, for some t∗ ∈ I, h converges from below

(above) to t∗ at infinity, is the slice Mt∗.

Proof. Let us suppose by contradiction that such a mean curvature flow soliton ψ : Σn →M
n+1

is not the slice Mt∗ and let us consider on Σn the metric ĝ = 1
ρ(h)2

g, which is conformal to its

induced metric g. If we denote by ∆̂ the Laplacian with respect to the metric ĝ, from (5.4)

and (5.6) we get

∆̂h = ρ(h)2∆h− (n− 2)ρ(h)ρ′(h)|∇h|2

= nρ(h)ρ′(h)Θ2 + ρ(h)ρ′(h)|∇h|2 +Hρ(h)2Θ. (7.23)

With a straightforward computation, from (7.23) we obtain

∆̂ρ(h) = ρ′′(h)ĝ(∇̂h, ∇̂h) + ρ′(h)∆̂h

= ρ′′(h)f(h)2|∇h|2 + ρ′(h)
(
nρ(h)ρ′(h)Θ2 + ρ(h)ρ′(h)|∇h|2 +Hρ(h)Θ

)
(7.24)

= nρ(h)ρ′(h)2 +Hρ′(h)ρ(h)2Θ+ ρ(h)3
(
(log ρ)′′(h)− (n− 2)

ρ′(h)2

ρ(h)2

)
|∇h|2.

Given a positive real number α, we have that

∆̂ρ(h)−α = α(α + 1)ρ(h)−α−2ĝ(∇̂ρ(h), ∇̂ρ(h))− αρ(h)−α−1∆̂ρ(h). (7.25)

Using (7.24) in (7.25) we get

∆̂ρ(h)−α = −αnρ(h)−αρ′(h)2 − αHρ′(h)ρ(h)−α+1Θ+ α(α + 1)ρ(h)−αρ′(h)2|∇h|2

− αρ(h)−α+2

(
(log ρ)′′(h)− (n− 2)

ρ′(h)2

ρ(h)2

)
|∇h|2. (7.26)

But, from (5.4) we have

−αnρ(h)−αρ′(h)2 = −αnρ(h)−αρ′(h)2|∇h|2 − αnρ(h)−αρ′(h)2Θ2. (7.27)

Thus, from (7.26), (7.44), (5.7) and (7.11) we obtain

∆̂ρ(h)−α = −αρ(h)−αζ̄c(h)Θ
2

−αρ(h)−α+2
{
(log ρ)′′(h)− (α− 1)[(log ρ)′(h)]2

}
|∇h|2. (7.28)
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Now, taking into account hypothesis (7.12) and choosing α = 1 + γ > 0, from (7.45) we get

∆̂ρ(h)−α ≥ −ζ̄c(h)αρ(h)
−αΘ2. (7.29)

Since we are also assuming that ζ̄c(h) ≤ 0, choosing the smooth function u = ρ(h)−α−ρ(t∗)
−α

and the vector field X = ∇̂u, from (7.29) we get that

divĝX = ∆̂ρ(h)−α ≥ 0. (7.30)

Moreover,

ĝ(∇̂u,X) = |∇̂ρ(h)−α|2ĝ = αρ(h)−α|ρ′(h)||∇h| ≥ 0. (7.31)

But, since we are supposing that ρ(h) is increasing (decreasing) and that h converges from below

(above) to t∗ at infinity, we have that u is a nonnegative non-identically vanishing function which

converges to zero at infinity (also related to the metric ĝ, since h is bounded).

Hence, we can apply Lemma 5.5.5 to get that ĝ(∇̂u,X) is identically zero on Σn. Thus,

returning to (7.31) we conclude that ∇h vanishes identically on Σn, which means that h is

constant and (since it converges to t∗ at infinity) Σn must be the slice M∗. Therefore, we reach

at a contradiction.

7.2.3 Rigidity results via a parabolicity criterion

We recall that a Riemannian manifold is said to be parabolic if the only subharmonic functions

on it that are bounded from above are the constants. On the other hand, given two Riemannian

manifolds (Σ, g) and (Σ
′

, g
′

), a diffeomorphism ϕ from Σ onto Σ
′

is called a quasi-isometry if

there exists a constant κ ≥ 1 such that

κ−1|v|g ≤ |dϕ(v)|g′ ≤ κ|v|g,

for all v ∈ TpΣ, p ∈ Σ. From [109, Theorem 1] (see also [92, Corollary 5.3]) we have the following:

Lemma 7.2.13. Let (Σ, g) and (Σ
′

, g
′

) be two complete Riemannian manifolds. If Σ and Σ
′

are

quasi-isometric, then Σ and Σ
′

are both parabolic or neither is parabolic.

We can use the previous lemma to get the following parabolicity criterion:

Lemma 7.2.14. Let ψ : Σn →M
n+1

be a complete hypersurface immersed in a warped product

M
n+1

= I ×ρ M
n, whose fiber (Mn, gM) is complete with parabolic universal covering. If Θ is

bounded away from zero, then (Σn, ĝ), endowed with the conformal metric ĝ = 1
ρ(h)2

g, is parabolic.

Proof. Given p ∈ Σn and v ∈ TpΣ
n, from (5.1) and (5.4) we have

g(v, v) = g(v,∇h)2 + ρ(h)2gM(dπ(v), dπ(v)). (7.32)
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Thus, from (7.32) we get

ĝ(v, v) =
1

ρ(h)2
g(v, v) ≥ gM(dπ(v), dπ(v)). (7.33)

On the other hand, using (5.4) and the Cauchy-Schwarz inequality in (7.32) we also have

Θ2g(v, v) ≤ ρ(h)2gM(dπ(v), dπ(v)). (7.34)

Since Θ is bounded away from zero, there exists a positive constant β such that Θ2 ≥ β2.

Consequently, from (7.34) we get

β2g(v, v) ≤ Θ2g(v, v) ≤ ρ(h)2gM(dπ(v), dπ(v)). (7.35)

Thus, from (7.35) we have

ĝ(v, v) ≤
1

β2
gM(dπ(v), dπ(v)). (7.36)

Hence, using inequalities (7.33) and (7.36) we get

gM(dπ(v), dπ(v)) ≤ ĝ(v, v) ≤
1

β2
gM(dπ(v), dπ(v)). (7.37)

So, taking the constant κ = 1

β2 ≥ 1, from (7.37) we obtain

κ−1gM(dπ(v), dπ(v)) ≤ ĝ(v, v) ≤ κgM(dπ(v), dπ(v)), (7.38)

which means that π is a quasi-isometry between Σ and M .

Let Σ
′

be the universal Riemannian covering of Σ with projection πΣ : Σ
′

→ Σ. Then, the

map π0 = π ◦ πΣ : Σ
′

→ M is a covering map. If M
′

is the universal Riemannian covering

of M with projection π
′

: M
′

→ M , then there exists a diffeomorphism ϕ : Σ
′

→ M
′

such

that π
′

◦ ϕ = π0. Moreover, from (7.38) it is not difficult to verify that ϕ is also a quasi-

isometry. Therefore, since the universal Riemannian covering of M is parabolic, it follows from

Lemma 6.4.1 that the universal Riemannian covering of Σ is parabolic and, hence, Σ must be

also parabolic with respect to the metric ĝ.

Using Lemma 6.4.2 we obtain the following result:

Theorem 7.2.15. Let M
n+1

= I ×ρ M
n be a warped product whose fiber Mn is complete with

parabolic universal covering and such that its warping function f satisfies

(log ρ)′′ ≤ γ[(log ρ)′]2, (7.39)

for some constant γ > −1, holding the equality only at isolated points of I. Let ψ : Σn →M
n+1

be a complete mean curvature flow soliton with respect to K = ρ(t)∂t with soliton constant c ̸= 0,
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such that Θ is bounded away from zero and infΣ ρ(h) > 0. If ζ̄c(h) ≤ 0, then Σn is a slice Mt∗

for some t∗ ∈ [t1, t2] which is implicitly given by the condition ζc(t∗) = 0.

Proof. Let us consider on Σn the metric ĝ = 1
ρ(h)2

g, which is conformal to its induced metric g.

If we denote by ∆̂ the Laplacian with respect to the metric ĝ, from (5.4) and (5.6) we get

∆̂h = ρ(h)2∆h− (n− 2)ρ(h)ρ′(h)|∇h|2

= nρ(h)ρ′(h)Θ2 + ρ(h)ρ′(h)|∇h|2 +Hρ(h)2Θ. (7.40)

With a straightforward computation, from (7.40) we obtain

∆̂ρ(h) = ρ′′(h)ĝ(∇̂h, ∇̂h) + ρ′(h)∆̂h

= ρ′′(h)ρ(h)2|∇h|2 + ρ′(h)
(
nρ(h)ρ′(h)Θ2 + ρ(h)ρ′(h)|∇h|2 +Hρ(h)Θ

)
(7.41)

= nρ(h)ρ′(h)2 +Hρ′(h)ρ(h)2Θ+ ρ(h)3
(
(log ρ)′′(h)− (n− 2)

ρ′(h)2

ρ(h)2

)
|∇h|2.

Given a positive real number α, we have that

∆̂ρ(h)−α = α(α + 1)ρ(h)−α−2ĝ(∇̂ρ(h), ∇̂ρ(h))− αρ(h)−α−1∆̂ρ(h). (7.42)

Using (7.41) in (7.42) we get

∆̂ρ(h)−α = −αnρ(h)−αρ′(h)2 − αHρ′(h)ρ(h)−α+1Θ+ α(α + 1)ρ(h)−αρ′(h)2|∇h|2

− αρ(h)−α+2

(
(log ρ)′′(h)− (n− 2)

ρ′(h)2

ρ(h)2

)
|∇h|2. (7.43)

But, from (5.4) we have

−αnρ(h)−αρ′(h)2 = −αnρ(h)−αρ′(h)2|∇h|2 − αnρ(h)−αρ′(h)2Θ2. (7.44)

Thus, from (7.43), (7.44), (5.7) and (7.11) we obtain

∆̂ρ(h)−α = −αρ(h)−αζ̄c(h)Θ
2

−αρ(h)−α+2
{
(log ρ)′′(h)− (α− 1)[(log ρ)′(h)]2

}
|∇h|2. (7.45)

First, we note that Lemma 6.4.2 guarantees that (Σn, ĝ) is parabolic. Moreover, it follows

from (7.45) that ρ(h)−α (where α = 1 + γ) is subharmonic on Σn. Thus, since the hypothesis

infΣ ρ(h) > 0 implies that ρ(h)−α is bounded from above, it follows from the parabolicity of

(Σn, ĝ) that ρ(h) is constant on Σn. Consequently, since we are assuming that the equality holds

in (7.12) only at isolated points of I, returning to (7.45) we conclude that |∇h| = 0 on Σn, which

means that Σn is a slice.

In the context of self-shrinkers, Theorem 7.2.15 reads as follows:
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Corollary 7.2.16. The only complete n-dimensional self-shrinker of Rn+1, lying in the closure

of the unbounded domain determined by S
n(
√
n) ⊂ R

n+1 and such that Θ is bounded away from

zero, is S
n(
√
n).

7.2.4 Applications to real projective space

Considering the discussion made in Example 5.2.2, from Theorem 7.2.1 we have:

Corollary 7.2.17. LetM
n+1

=
(

0, π
2

)

×sin tS
n be the warped product model of RPn+1\{π(P ) ∪ CutP}.

There exists no complete mean curvature flow soliton ψ : Σn →M
n+1

with respect to K = sin t∂t

with soliton constant c < 0, having bounded second fundamental form and lying in a slab

[t1, t2]×Mn, with either cos−1(
√
4c2+n2−n

2|c| ) < t1 <
π

2
or 0 < t2 < cos−1(

√
4c2+n2−n

2|c| ).

Considering the setting of Example 5.2.2, from Theorem 7.2.9 we have:

Corollary 7.2.18. LetM
n+1

=
(

0, π
2

)

×sin tS
n be the warped product model of RPn+1\{π(P ) ∪ CutP}.

Let ψ : Σn → M
n+1

be a complete mean curvature flow soliton with respect to K = sin t∂t with

soliton constant c < 0, lying in a slab [t1, t2] × S
n, with either cos−1(

√
4c2+n2−n

2|c| ) ≤ t1 <
π

2
or

0 < t2 ≤ cos−1(
√
4c2+n2−n

2|c| ). If |∇h| ∈ L1
g(Σ), then Σn is the slice {cos−1(

√
4c2+n2−n

2|c| )} × S
n.

Taking into account once more Example 5.2.2, from Theorem 7.2.1 we get:

Corollary 7.2.19. LetM
n+1

=
(

0, π
2

)

×sin tS
n be the warped product model of RPn+1\{π(P ) ∪ CutP}.

Let ψ : Σn → M
n+1

be a complete mean curvature flow soliton with respect to K = sin t∂t with

soliton constant c < 0, such that Θ is bounded away from zero. If cos−1(
√
4c2+n2−n

2|c| ) ≤ h < π

2
,

then Σn is the slice {cos−1(
√
4c2+n2−n

2|c| )} × S
n.

7.2.5 Applications to pseudo-hyperbolic spaces

When the ambient space is a pseudo-hyperbolic space (see Example 5.2.3), from Theo-

rem 7.2.1 we also obtain the following consequence:

Corollary 7.2.20. Let M
n+1

= I ×et M
n be a pseudo-hyperbolic space whose fiber Mn has

nonnegative sectional curvature. There exists no complete mean curvature flow soliton ψ : Σn →
M

n+1
with respect to K = et∂t with soliton constant c < 0, having bounded second fundamental

form and lying in a slab [t1, t2]×Mn, with either t1 > log
(

−n

c

)

or t2 < log
(

−n

c

)

.

From Theorem 7.2.6 we also obtain the following consequence:

Corollary 7.2.21. Let M
n+1

= I ×et M
n be a pseudo-hyperbolic space. There does not exist

complete noncompact mean curvature flow soliton ψ : Σn →M
n+1

with respect to K = et∂t with

soliton constant c < 0 and mean curvature bounded away from zero, having polynomial volume

growth and lying in a slab [t1, t2]×Mn with t1 > log
(

−n

c

)

.

When the ambient space is a pseudo-hyperbolic space, Theorem 7.2.9 reads as follows:
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Corollary 7.2.22. Let M
n+1

= I ×et M
n be a pseudo-hyperbolic space whose fiber Mn is com-

plete. Let ψ : Σn → M
n+1

be a complete mean curvature flow soliton with respect to K = et∂t

with soliton constant c < 0, lying in a slab [t1, t2] ×Mn, with t1 ≥ log
(

−n
c

)

. If |∇h| ∈ L1
g(Σ),

then Σn is the slice {log
(

−n
c

)

} ×Mn.

From Theorem 7.2.15 we obtain the following result:

Corollary 7.2.23. LetM
n+1

= I×etM
n be a pseudo-hyperbolic space whose fiberMn is complete

with parabolic universal covering. Let ψ : Σn →M
n+1

be a complete mean curvature flow soliton

with respect to K = et∂t with soliton constant c < 0, such that Θ is bounded away from zero. If

h ≥ log(−n
c
), then Σn is the slice {log

(

−n
c

)

} ×Mn.

7.2.6 Applications to Schwarzschild space

Given a mass parameter m > 0, the Schwarzschild space is defined to be the product

M
n+1

= (r0(m),+∞)× S
n

furnished with the metric ḡ = Vm(r)
−1dr2 + r2gSn , where gSn is the standard metric of S

n,

Vm(r) = 1 − 2mr1−n stands for its potential function and r0(m) = (2m)1/(n−1) is the unique

positive root of Vm(r) = 0. Its importance lies in the fact that the manifold R×M
n+1

equipped

with the Lorentzian static metric −Vm(r)dt
2 + ḡ is a solution of the Einstein field equation in

vacuum with zero cosmological constant (see, for instance, [123, Chapter 13] for more details

concerning Schwarzschild geometry).

As it was observed in [69, Example 1.3],M
n+1

can be reduced in the form I×ρS
n with metric

(5.1) via the following change of variables:

t =

∫ r

r0(m)

dσ
√

Vm(σ)
, ρ(t) = r(t), I = R+. (7.46)

As it was noted in [69, Example 4.1], since Vm(r) is strictly increasing on (r0(m),+∞), it follows

from (7.46) that the warping function ρ satisfies:

ρ′(t) =
dr

dt
=

√

Vm(r(t)) > 0 and ρ′′(t) =
1

2

dVm

dr
(r(t)) > 0. (7.47)

Thus, from (5.9) and (7.47) we can verify that a slice {t∗}× S
n is a mean curvature flow soliton

with respect to ρ(t)∂t = r
√

Vm(r)∂r with soliton constant c < 0 when t∗ = t(r∗) with r∗ > r0(m)

solving the following equation

Vm(r) =
c2

n2
r4. (7.48)

We note that such a solution exists if and only if the function φm(t) =
c2

n2 t
4 + 2m

tn−1 − 1 has a zero

on (r0(m),+∞). Notice that φm is a convex function which goes to infinity if t goes to 0 or +∞

and so φm has a unique minimal point in (0,∞). Such value r̂ is given implicitly by φ′

m
(r̂) = 0,
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that is,
4c2

n2
r̂3 −

2m(n− 1)

r̂n
= 0.

Therefore, the equation (7.48) has a solution if and only if r̂ > r0(m) and φm(r̂) ≤ 0. The last

condition can be rewritten in the following way:

r̂ =

(

m(n− 1)n2

2c2

)1/(n+3)

≥

(

m(n+ 3)

2

)1/(n−1)

. (7.49)

Taking into account the previous setting, from Theorem 7.2.6 we get:

Corollary 7.2.24. LetM
n+1

= I×ρS
n be the Schwarzschild space, where the warping function ρ

is obtained from (7.46). There does not exist complete noncompact mean curvature flow soliton

ψ : Σn → M
n+1

with respect to K = ρ(t)∂t with soliton constant c < 0 and mean curvature

bounded away from zero, having polynomial volume growth and lying in a slab [t1, t2] × S
n with

ρ(t1) ≥
√

−
n
c
.

Proof. First, using (7.47) and taking the positive constant γ = n−1
2Vm(r(t1))

, we can verify that

inequality (7.12) is satisfied. Moreover, since Vm(r(t)) < 1 for all t ∈ I, r(t1) = ρ(t1) ≥
√

−
n
c

implies

Vm(r(t)) < 1 ≤
c2

n2
r(t)4

and, consequently, we have that

ζ̄c(t) = nVm(r(t)) + cr(t)2
√

Vm(r(t)) < 0

for all t ≥ t1. Therefore, we can apply Theorem 7.2.6 to conclude our result.

In particular, there are two solutions r0(m) < r∗,− < r̂ < r∗,+ if the strict inequality holds in

(7.49), and a unique solution r∗ = r̂ if equality holds.

Considering the context of Example 5.2.4, from Theorem 7.2.1 we get:

Corollary 7.2.25. Let M
n+1

= I ×ρ S
n be the Schwarzschild space. There exists no complete

mean curvature flow soliton ψ : Σn →M
n+1

with respect to K = ρ(t)∂t with soliton constant c <

0, having bounded second fundamental form and lying in a slab [t1, t2]× S
n, with ρ(t2) ≥

√

−
n
c
.

Proof. Using (7.47) and definition of ζc we have

n
√

Vm(r(t1)) + cr(t1)
2
≤ ζc(t) ≤ n

√

Vm(r(t2)) + cr(t2)
2.

Since Vm(r(t)) < 1 for all t ∈ I, r(t2) = ρ(t2) ≥
√

−
n
c
implies

ζc(t) = n
√

Vm(r(t)) + cr(t)2 < 0,

for all t ≥ t1.Moreover, since Vm(r(t)) < 1 for all t ∈ I, r(t1) = ρ(t1) ≥
√

−
n
c
implies

Vm(r(t)) < 1 ≤
c2

n2
r(t)4
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and, consequently, we have that

ζ̄c(t) = nVm(r(t)) + cr(t)2
√

Vm(r(t)) < 0

for all t ≥ t1. Therefore, we can apply Theorem 7.2.1 to conclude our result.

Taking into account again the context of Example 5.2.4, from Theorem 7.2.9 we also obtain:

Corollary 7.2.26. Let M
n+1

= I ×ρ S
n be the Schwarzschild space and suppose that inequality

(7.49) is satisfied. Let ψ : Σn → M
n+1

be a complete mean curvature flow soliton with respect

to K = ρ(t)∂t with soliton constant c < 0, lying in a slab [t1, t2] × S
n, with Vm(r(t)) ≤ c2

n2 r(t)
4

for all t ∈ [t1, t2]. If |∇h| ∈ L1
g(Σ), then Σn is a slice {t∗} × S

n, where t∗ = t(r∗) is such that

r∗ > r0(m) solves equation (7.48).

In the setting of Example 5.2.4, we also have the following consequence of Theorem 7.2.15:

Corollary 7.2.27. Let M
n+1

= I ×ρ S
n be the Schwarzschild space and suppose that inequality

(7.49) is satisfied. Let ψ : Σn →M
n+1

be a complete mean curvature flow soliton with respect to

K = ρ(t)∂t with soliton constant c < 0, such that Θ is bounded away from zero. If Vm(r(h)) ≤
c2

n2 r(h)
4 on Σn, then Σn is a slice {t∗} × S

n, where t∗ = t(r∗) is such that r∗ > r0(m) solves

equation (7.48).

7.2.7 Applications to Reissner-Nordström space

Given a mass parameter m > 0 and an electric charge q ∈ R, with |q| ≤ m, the Reissner-

Nordström space is defined to be the product

M
n+1

= (r0(m, q),+∞)× S
n

endowed with the metric ḡ = Vm,q(r)
−1dr2 + r2gSn , where gSn is the standard metric of S

n,

Vm,q(r) = 1−2mr1−n+q
2r2−2n stands for its potential function and r0(m, q)=

(

q
2

m−

√
m2

−q2

)1/(n−1)

is the largest positive zero of Vm,q(r). The importance of this model lies in the fact that the

manifold R × M
n+1

equipped with the Lorentzian static metric −Vm,q(r)dt
2 + ḡ is a charged

black-hole solution of the Einstein field equation in vacuum with zero cosmological constant.

As in the case of the Schwarzschild space,M
n+1

can be reduced in the form I×ρS
n with metric

(??) via the same change of variables as in (7.46). Furthermore, following the same previous

steps, the warping function ρ has positive first and second derivatives. Moreover, we can verify

that a slice {t∗}×S
n is a mean curvature flow soliton with respect to ρ(t)∂t = r

√

Vm,q(r)∂r with

soliton constant c < 0 when t∗ = t(r∗) with r∗ > r0(m, q) solving the following equation

Vm,q(r) =
c2

n2
r4. (7.50)
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We observe that such a case is more complicated to explicit all the values, but qualitatively we

can say that such a solution of (7.50) exists if and only if the function

φm,q(x) =
c2

n2
x4 +

2m

xn−1
−

q
2

x2n−2
− 1

has a zero on (r0(m),+∞). Note that φm,q goes to positive infinity if x goes to positive infinity

and φm,q goes to negative infinity if x goes to zero. So, φm,q has at least one root in (0,+∞) and

if such roots are greater than r0(m, q) we get the desired solutions r∗.

We can reason as in the proof of Corollary 7.2.24 to obtain the following nonexistence result:

Corollary 7.2.28. Let M
n+1

= I ×ρ S
n be the Reissner-Nordström space, where the warping

function ρ is obtained from (7.46). There does not exist complete noncompact mean curvature

flow soliton ψ : Σn → M
n+1

with respect to K = ρ(t)∂t with soliton constant c < 0 and

mean curvature bounded away from zero, having polynomial volume growth and lying in a slab

[t1, t2]× S
n with Vm,q(r(t)) <

c2

n2 r(t)
4 for all t ∈ [t1, t2].

In the setting of Example 5.2.5, we can reason as in the proof of Corollary 7.2.25 to obtain

the following nonexistence result:

Corollary 7.2.29. Let M
n+1

= I ×ρ S
n be the Reissner-Nordström space. There exists no

complete mean curvature flow soliton ψ : Σn → M
n+1

with respect to K = ρ(t)∂t with soliton

constant c < 0, having bounded second fundamental form and lying in a slab [t1, t2] × S
n, with

Vm,q(r(t)) <
c2

n2 r(t)
4 for all t ∈ [t1, t2].

Taking into account again the context of Example 5.2.5, from Theorem 7.2.9 we also obtain:

Corollary 7.2.30. Let M
n+1

= I×ρ S
n be the Reissner-Nordström space and suppose that there

is r∗ > r0(m, q). Let ψ : Σn → M
n+1

be a complete mean curvature flow soliton with respect

to K = ρ(t)∂t with soliton constant c < 0, lying in a slab [t1, t2] × S
n, with Vm,q(r(t)) ≤

c2

n2 r(t)
4

for all t ∈ [t1, t2]. If |∇h| ∈ L1
g(Σ), then Σn is a slice {t∗} × S

n, where t∗ = t(r∗) is such that

r∗ > r0(m, q) solves equation (7.50).

In the setting of Example 5.2.5, we also have the following consequence of Theorem 7.2.15:

Corollary 7.2.31. Let M
n+1

= I ×ρ S
n be the Reissner-Nordström space and suppose that

there is r∗ > r0(m, q). Let ψ : Σn → M
n+1

be a complete mean curvature flow soliton with

respect to K = ρ(t)∂t with soliton constant c < 0, such that Θ is bounded away from zero.

If Vm,q(r(h)) ≤ c2

n2 r(h)
4 on Σn, then Σn is a slice {t∗} × S

n, where t∗ = t(r∗) is such that

r∗ > r0(m, q) solves equation (7.50).

7.3 Entire mean curvature flow graphs

Ecker and Huisken [84] proved that if an entire graph with polynomial volume growth is a

self-shrinker, then it is necessarily a hyperplane. Later on, Wang [145] removed the condition
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of polynomial volume growth in Ecker-Huisken’s Theorem. More recently, Colombo, Mari and

Rigoli [69] extended this study for the context of entire mean curvature flow graphs in warped

products. Motivated by these works, the last section of this paper is devoted to establish new

Moser-Bernstein type results concerning entire graphs constructed over the fiber Mn of a warped

product M
n+1

= I ×ρ M
n, which are mean curvature flow solitons with respect to K = ρ(t)∂t

with soliton constant c ̸= 0.

Hence, from (5.7) and (5.27) we have that Σ(u) is a mean curvature flow soliton with respect

to K = f(t)∂t with soliton constant c if, and only if, u is a solution of the following nonlinear

differential equation:

divM

(

Du

ρ(u)
√

ρ(u)2 + |Du|2M

)

=
1

√

ρ(u)2 + |Du|2M

{

cρ(u)2 + ρ′(u)

(

n−
|Du|2M
ρ(u)2

)}

. (7.51)

We say that u ∈ C∞(M) has finite C2 norm when

||u||C2(M) := sup
|γ|≤2

|Dγu|L∞(M) < +∞.

In this context, we establish our first Moser-Bernstein type result:

Theorem 7.3.1. Let M
n+1

= I ×ρ M
n be a warped product whose fiber Mn is complete with

sectional curvature obeying the convergence condition (5.28). Suppose in addition that c ̸= 0 and

ζc(t) ≥ 0 . If u ∈ C∞(M) is an entire solution of equation (7.51), with finite C2 norm and such

that |Du|M ≤ C infM |ζc(u)| for some positive constant C, then u ≡ t∗ for some t∗ ∈ I which is

implicitly given by the condition ζc(t∗) = 0.

Proof. Let u ∈ C∞(M) be such a solution of equation (7.51). It follows from (5.26) that the

shape operator A of Σ(u) is bounded, provided that u has finite C2 norm. We note also that

the finiteness of the C2 norm of u implies, in particular, that u is bounded, which, in turn,

guarantees that infM ρ(u) > 0. Hence, since we are assuming that Mn is complete, we get that

(Σ(u), gu) must be also complete.

Therefore, we can reason as in the proof of Theorem 7.2.1 obtaining that infM |ζc(u)| = 0

and, hence, the result follows from our constraint on |Du|M .

From the proof of Theorem 7.3.1 we also get the following nonexistence result:

Corollary 7.3.2. Let M
n+1

= I ×f M
n be a warped product whose fiber Mn is complete with

sectional curvature obeying the convergence condition (5.28). Suppose in addition that c ̸= 0 and

infI ζc(t) > 0. There exists no entire solution with finite C2 norm of the equation (7.51).

Proceeding, Theorem 7.2.9 allows us to obtain our next result.

Theorem 7.3.3. Let M
n+1

= I×ρM
n be a warped product whose fiber Mn is complete. Suppose

in addition that c ̸= 0 and ζc(t) does not changing the sign. If u ∈ C∞(M) is a bounded entire

solution of equation (7.51) such that |Du|M ∈ L1
gM

(M), then u ≡ t∗ for some t∗ ∈ I which is

implicitly given by the condition ζc(t∗) = 0.
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Proof. Let u ∈ C∞(M) be such a bounded entire solution of equation (7.51). Denoting by dM

and dΣ the Riemannian volume elements of (Mn, gM) and (Σ(u), gu), respectively, from [23,

Equation (3.7)] we have that

|∇h|dΣ = ρ(u)n−1|Du|MdM. (7.52)

Hence, since we are assuming that u is bounded with |Du|M ∈ L1
gM

(M), from relation (7.52) we

conclude that |∇h| ∈ L1
g(Σ(u)). Therefore, the result follows by applying Theorem 7.2.9.

From (5.25) we see that the assumption Θ bounded away from zero is equivalent to |Du|M ≤

Cρ(u) for some positive constant C. So, Theorem 4.3.4 allows us to obtain our last Moser-

Bernstein type result:

Theorem 7.3.4. Let M
n+1

= I ×ρ M
n be a warped product whose fiber Mn is complete with

parabolic universal covering and such that its warping function f satisfies (7.12), holding the

equality only at isolated points of I. Suppose in addition that c ̸= 0 and ζ̄c(t) ≤ 0. If u ∈ C∞(M)

is a bounded entire solution of equation (7.51) such that |Du|M ≤ Cρ(u) for some positive

constant C, then u ≡ t∗ for some t∗ ∈ I which is implicitly given by the condition ζc(t∗) = 0.

Our next result corresponds to a nonparametric version of Theorem 4.3.1.

Corollary 7.3.5. Let M
n+1

= I×ρM
n be a warped product with complete noncompact fiber Mn

and whose warping function ρ is increasing (decreasing) and satisfies inequality (7.12). Suppose

in addition that c is a constant such that the modified soliton function ζ̄c(t) ≤ 0 for all t ∈ I. The

only smooth function u : Mn → I which is solution of the mean curvature flow soliton equation

(7.51), with |Du|M bounded on Mn and such that u converges from below (above) to some t∗ ∈ I

at infinity is the constant function u ≡ t∗.

Proof. Let u ∈ C∞(M) be such a solution of equation (7.51). We start observing that, since

Mn is complete and infM ρ(u) > 0 (due to the boundedness of u), from (5.24) we conclude that

the entire graph Σ(u) must be complete. Therefore, we are in position to apply Theorem 4.3.1

to conclude that u ≡ t∗.

130



Chapter 8

Hypersurface in Riemannian manifold

endowed with a Killing vector field

In the following results, we study the uniqueness and nonexistence of mean curvature flow

solitons (MCFS) with respect to a nowhere zero Killing vector field K globally defined in a

Riemannian space, via suitable Liouville type results. For this, we consider the ambient space as

been a warped product of the typeMn×ρR, where the baseM
n is an arbitrarily fixed integral leaf

of the distribution orthogonal to K and the warping function ρ ∈ C∞(M) is given by ρ = |K|.

In particular, assuming that Mn is closed (that is, compact without boundary), we conclude

that the only closed MCFS with respect to K are the totally geodesic slices. Furthermore, we

establish new Moser-Bernstein type results concerning entire Killing graphs constructed through

the flow of K and which are complete MCFS with respect to it. The results presented in this

chapter make part of [33, 35].

8.1 Main results

Remark 8.1.1. In a similar way of the Euclidean context, when the ambient space Mn ×ρ R,

according to Definition 2 of [79] (see also Definition 1.1 of [27] and Definition 1.1 of [69]), a

two-sided hypersurface ψ : Σn
↬M

n+1
immersed in a warped product M

n+1
=Mn×ρR is called

a mean curvature flow soliton (MCFS) with respect to K and with soliton constant c ∈ R if its

mean curvature function H satisfies

H = cΘ. (8.1)

In particular, we observed that each slice Mn × {t} of M
n+1

is a MCFS with respect to K with

soliton constant c = 0.

Now, we are in position to present our first uniqueness result concerning MCFS in a warped

product Mn ×ρ R.

Theorem 8.1.2. Let M
n+1

= Mn ×ρ R be a warped product with complete base Mn and let

ψ : Σn
↬ M

n+1
be a complete MCFS with respect to K and with soliton constant c ≥ 0 (resp.
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c ≤ 0). Suppose that h ≥ 0 (resp. h ≤ 0) and that ρ is bounded along Σn. If h ∈ Lp
g(Σ) for some

p > 1, then Σn is a slice of M
n+1

.

Proof. It is well known that, in local coordinates (x1, · · · , xn) of Σ
n, the Laplacian of its height

function on a metric ĝ is given by

∆̂h =
1

Ĝ

n∑

k,l=1

∂k

(
ĝklĜ∂l(h)

)
, (8.2)

where ĝkl = ĝ(∂k, ∂l), Ĝ =
√

det
(
ĝkl
)
and

(
ĝkl
)
=
(
ĝkl
)
−1
.

Taking the conformal metric ĝ = ρ
4

n−2 g, we have that ĝkl = ρ
4

n−2 gkl, ĝ
kl = 1

ρ
4

n−2

gkl and

Ĝ =
√
det(ĝkl) =

√
ρ

4n

n−2 det(gkl) = ρ
2n

n−2G. (8.3)

Thus, from (8.2) and (8.3) we obtain

∆̂h =
1

ρ
2n

n−2G

n∑

k,l=1

∂k

(
1

ρ
4

n−2

gklρ
2n

n−2G∂l(h)

)

=
ρ

2n−4

n−2

ρ
2n

n−2

n∑

k=1

∂k(∂k(h)) +
1

ρ
2n

n−2

2n− 4

n− 2
ρ

2n−4

n−2
−1

n∑

k=1

∂k(ρ)∂k(h) (8.4)

=
1

ρ
4

n−2

∆h+
2n− 4

(n− 2)ρ
n+2

n−2

g(∇ρ,∇h).

Considering (5.23) and (5.7) into (8.4), we get

∆̂h =
1

ρ
4

n−2

(
−2

ρ
g(∇ρ,∇h) +

c

ρ2
Θ2

)
+

2n− 4

(n− 2)ρ
n+2

n−2

g(∇ρ,∇h)

=

(
−4

2ρ
n+2

n−2

+
2n− 4

(n− 2)ρ
n+2

n−2

)
g(∇ρ,∇h) +

c

ρ
2n

n−2

Θ2 (8.5)

=

(
(−4n+ 8)ρ

n+2

n−2 + (4n− 8)ρ
n+2

n−2

2(n− 2)ρ
2n+4

n−2

)
g(∇ρ,∇h) +

c

ρ
2n

n−2

Θ2.

Hence, (8.5) allows us to the following formula

∆̂h =
c

ρ
2n

n−2

Θ2. (8.6)

Consequently, since we are assuming that h ≥ 0 (resp. h ≤ 0) and c ≥ 0 (resp. c ≤ 0),

from (8.6) we conclude that h (resp. −h) is a subharmonic function with respect to the metric

ĝ. On the other hand, since we are also supposing that ρ is bounded along Σn, from (8.3) we

have that our hypothesis h ∈ Lp
g(Σ) implies that h ∈ L

p
ĝ(Σ). Therefore, we can apply Lemma

5.5.2 to guarantee that h is constant on Σn, that is, Σn must be a slice of M
n+1

.
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From Theorem 8.1.2 we get a rigidity result related to closed (compact without boundary)

MCFS.

Corollary 8.1.3. The only closed MCFS with respect to the Killing vector field K of a warped

product Mn ×ρ R whose base Mn is closed, are the totally geodesic slices.

Theorem 8.1.2 jointly with Lemma 5.5.3 lead us to get the following nonexistence result.

Theorem 8.1.4. Let M
n+1

= Mn ×ρ R be a warped product whose base Mn is complete non-

compact with nonnegative Ricci curvature, and having bounded warping function ρ. There is no

complete MCFS with respect to K, with soliton constant c ≥ 0 (resp. c ≤ 0) and positive (resp.

negative) height function satisfying h ∈ Lp

g
(Σ) for some p > 1.

Proof. Let us suppose the existence of such a MCFS, namely ψ : Σn
↬ M

n+1
. From Theorem

8.1.2, we get that Σn is a slice of M
n+1

. Consequently, |h| must be equal to a positive constant

α and, since we are assuming that h ∈ Lp

g
(Σ), we obtain

volgM (M) = volg(Σ) =
1

αp

∫
Σ

|h|pdgΣ < +∞. (8.7)

On the other hand, taking into account thatMn is complete noncompact with nonnegative Ricci

curvature, Lemma 5.5.3 assures that Mn has at least linear volume growth, which corresponds

to a contradiction with (8.7).

According to Definition 1 of [52], we say that a smooth Riemannian manifold (Σn, g) satisfies

the L1
g
-Liouville property, when every nonnegative superharmonic function u ∈ L1

g
(Σ) must be

constant. Corollary 3 of [52] ensures that a stochastically complete manifold (and, in particular,

a parabolic manifold) always satisfies the L1
g
-Liouville property. However, in Section 2 of [52]

the authors constructed examples of stochastically incomplete (and, in particular, nonparabolic)

manifolds satisfying the L1
g
-Liouville property.

It is not difficult to verify that we can reason as in the proof of Theorem 8.1.2 to obtain the

following uniqueness result concerning MCFS satisfying the L1
g
-Liouville property.

Theorem 8.1.5. LetM
n+1

=Mn×ρR be a warped product with baseMn and let ψ : Σn
↬M

n+1

be a MCFS with respect to K and with soliton constant c ≥ 0 (resp. c ≤ 0). Suppose that h ≥ 0

(resp. h ≤ 0) and that ρ is bounded along Σn. If Σn satisfies the L1
g
-Liouville property and

h ∈ L1
g
(Σ), then Σn is contained into a slice of M

n+1
.

In our next uniqueness result, we will suppose that the MCFS Σn lies in slab of M
n+1

, which

means that Σn is contained in a bounded region of the type

Mn × [t1, t2] = {(p, t) ∈Mn ×ρ R : t1 ≤ t ≤ t2 and p ∈Mn}.

Theorem 8.1.6. Let M
n+1

= Mn ×ρ R be a warped product with complete base Mn and let

ψ : Σn
↬ M

n+1
be a MCFS with respect to K and with soliton constant c, lying in a slab of

M
n+1

. Suppose in addition that ρ is bounded along Σn. If |∇h| ∈ L1
g
(Σ), then Σn is a slice of

M
n+1

.
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Proof. Considering once more the conformal metric ĝ = ρ
4

n−2 g, since ĝkl = 1

ρ
4

n−2
gkl, we get

∇̂h =
n∑

k,l=1

ĝkl∂l(h)∂k =
1

ρ
4

n−2

∇h. (8.8)

Thus, assuming that ρ is bounded along Σn, from (8.3) and (8.8) we obtain

∫

Σ

|∇̂h|ĝdĝΣ =

∫

Σ

ρ
2(n−1)
n−2 |∇h|dgΣ ≤

(
sup
Σ

ρ
2(n−1)
n−2

)∫

Σ

|∇h|dgΣ. (8.9)

Consequently, since we are supposing that |∇h| ∈ L1
g(Σ), from (8.9) we have that |∇̂h|ĝ ∈

L1
ĝ(Σ). So, taking into account (8.6), we can apply Lemma 5.5.4 to conclude that ∆̂h vanishes

identically on Σn.

On the other hand, we have that |∇̂h2|ĝ = 2|h||∇̂h|ĝ. Thus, assuming that Σn lies in slab of

M
n+1

, we also get that |∇̂h2|ĝ ∈ L1
ĝ(Σ). Moreover, we have that

∆̂h2 = 2h∆̂h+ 2|∇̂h|2ĝ = 2|∇̂h|2ĝ ≥ 0. (8.10)

Hence, we can apply once more Lemma 5.5.4 to infer that ∆̂h2 = 0 on Σn and, returning

to (8.10), we conclude that |∇̂h|ĝ is identically zero on Σn. Therefore, Σn must be a slice of

M
n+1

.

Now, we are in position to present our first rigidity result concerning mean curvature flow

solitons in a Riemannian warped product.

Theorem 8.1.7. Let M
n+1

= Mn ×ρ R be a warped product with complete noncompact base

Mn. The only complete noncompact mean curvature flow soliton ψ : Σn
↬M

n+1
with respect to

K and with soliton constant c ≥ 0 (resp. c ≤ 0), such that ρ is bounded on Σn and h converges

from above (resp. below) to t∗ at infinity, is the slice Mt∗.

Proof. Let ψ : Σn
↬ M

n+1
be such a mean curvature flow soliton. Let us consider on Σn the

metric ĝ = ρ
4

n−2 g, which is conformal to its induced metric g.

It is well known that, in local coordinates (x1, · · · , xn) of Σn, the Laplacian of its height

function on a metric ĝ is given by

∆̂h =
1

Ĝ

n∑

k,l=1

∂k

(
ĝklĜ∂l(h)

)
, (8.11)

where ĝkl = ĝ(∂k, ∂l), Ĝ =
√
det

(
ĝkl

)
and

(
ĝkl

)
=

(
ĝkl

)
−1
.

Taking the conformal metric ĝ = ρ
4

n−2 g, we have that ĝkl = ρ
4

n−2 gkl, ĝ
kl = 1

ρ
4

n−2
gkl and

Ĝ =
√
det(ĝkl) =

√
ρ

4n
n−2 det(gkl) = ρ

2n
n−2G. (8.12)
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Thus, from (8.11) and (8.12) we obtain

∆̂h =
1

ρ
2n

n−2G

n
∑

k,l=1

∂k

(

1

ρ
4

n−2

gklρ
2n

n−2G∂l(h)

)

=
ρ

2n−4

n−2

ρ
2n

n−2

n
∑

k=1

gkl∂k(∂l(h)) +
1

ρ
2n

n−2

2n− 4

n− 2
ρ

2n−4

n−2
−1

n
∑

k=1

gkl∂k(ρ)∂l(h) (8.13)

=
1

ρ
4

n−2

∆h+
2n− 4

(n− 2)ρ
n+2

n−2

g(∇ρ,∇h).

Considering (5.23) and (5.7) into (8.13), we get

∆̂h =
1

ρ
4

n−2

(

−2

ρ
g(∇ρ,∇h) +

c

ρ2
Θ2

)

+
2n− 4

(n− 2)ρ
n+2

n−2

g(∇ρ,∇h)

=

(

−4

2ρ
n+2

n−2

+
2n− 4

(n− 2)ρ
n+2

n−2

)

g(∇ρ,∇h) +
c

ρ
2n

n−2

Θ2 (8.14)

=
c

ρ
2n

n−2

Θ2.

Since we are also assuming that h converges from above (resp. below) to t∗ and c ≥ 0 (resp.

c ≤ 0), choosing the smooth function u = h− t∗ (resp. u = t∗−h) and the vector field X = ∇̂u,

from (8.14) we get that

divĝX ≥ 0. (8.15)

Moreover, we have

ĝ(∇̂u,X) = |∇̂u|2ĝ ≥ 0. (8.16)

In addition, since h converges to t∗ at infinity, we have that u is a nonnegative non-identically

vanishing function which converges to zero (also related to the metric ĝ, since ρ is bounded on

Σn). Thus, from (8.15) and (8.16) we can apply Lemma 5.5.5 to get that ĝ(∇̂u,X) is identically

zero on Σn. Hence, returning to (8.16) we conclude that ∇̂h vanishes identically on Σn, which

means that h is constant and (since it converges to t∗ at infinity) Σn must be the slice Mt∗ .

8.2 Moser-Bernstein type results for MCFS

In this last section, to establish new Moser-Bernstein type results concerning entire graphs

constructed over the base Mn of a warped product Mn ×ρ R, which are MCFS. Before, we need

to recall some basic facts related to these graphs.

According to [71], we define the entire Killing graph Σ(u) associated to a smooth function

u ∈ C∞(M) as been the hypersurface given by

Σ(u) = {Ψ(x, u(x)) : x ∈ Mn} ⊂ Mn ×ρ R,

where Ψ : Mn × I → M
n+1

is the flow generated by the Killing vector field K. The metric
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induced on Mn from (5.15) via Σ(u) is given by

gu = gM + ρ2du2. (8.17)

From (8.17) and by a straightforward computation we can verify that

N =
1

ρ(1 + ρ2|Du|2M)1/2
(K − ρ2Ψ∗(Du))

describes an unit normal vector field over Σ(u) such that its angle function Θ is given by

Θ = g(N,K) =
ρ

(1 + ρ2|Du|2M)1/2
> 0. (8.18)

Moreover, for all vector field X tangent to Mn, the Weingarten endomorphism A of Σ(u)

with respect to N is given by

AX =
ρ

(1 + ρ2|Du|2M)1/2
DXDu−

ρ3g(DXDu,Du)

(1 + ρ2|Du|2M)3/2
Du−

ρ2g(Dρ,X)|Du|2M
(1 + ρ2|Du|2M)3/2

Du (8.19)

+
g(Dρ,X)

(1 + ρ2|Du|2M)1/2
Du+

g(Du,X)

(1 + ρ2|Du|2M)1/2
Dρ.

So, it follows from (8.19) that the mean curvature Hu of an entire graph Σ(u) is given by

Hu = DivM

(

ρDu

(1 + ρ2|Du|2M)1/2

)

+
g(Du,Dρ)

(1 + ρ2|Du|2M)1/2
, (8.20)

where DivM stands for the divergence operator on Mn with respect to its metric gM .

Hence, from (5.7) and (8.20) we have that an entire graph Σ(u) is a MCFS with respect to

K and with soliton constant c if, and only if, u is a solution of the following elliptic non-linear

partial differential equation

DivM

(

ρDu

(1 + ρ2|Du|2M)1/2

)

=
1

(1 + ρ2|Du|2M)1/2
(

cρ− g(Du,Dρ)
)

. (8.21)

Now, we are in position to state and prove our first Moser-Bernstein type result.

Theorem 8.2.1. Let M
n+1

= Mn×ρR be a warped product with complete base Mn and bounded

warping function ρ. Let Σ(u) be an entire Killing graph determined by a smooth function u ∈

C∞(M), which is nonnegative (resp. nonpositive) solution of equation (8.21) with c ≥ 0 (resp.

c ≤ 0). Suppose in addition that |Du|M is bounded on Mn. If u ∈ Lp
gM

(M) for some p > 1, then

u ≡ t0 for some nonnegative (resp. nonpositive) t0 ∈ R.

Proof. For any vector field X tangent to Σ(u), from (8.17) we get

gu(X,X) = gM(X∗, X∗) + ρ2gM(Du,X∗)2 ≥ gM(X∗, X∗). (8.22)
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Thus, (8.22) implies that

Lu(γ) ≥ LM(γ∗), (8.23)

where Lu(γ) stands for the length of a curve γ on Σ(u) with respect to the induced metric (8.17)

and LM(γ∗) denotes the length of the projection γ∗ of γ onto Mn with respect to its metric gM .

Consequently, since projections onto Mn of divergent curves on Σ(u) give divergent curves on

Mn and as we are assuming that the metric gM is complete, we can apply Hopf-Rinow Theorem

to conclude that the induced metric (8.17) is also complete.

Moreover, it follows from (8.17) that dgΣ =
√

|G|dgMM , where dgMM and dgΣ stand for the

volume elements of (Mn, gM) and (Σ(u), gu), respectively, and G = det(gij) with

gij = gu(Ei, Ej) = ρ2EiEj + δij, (8.24)

for each i, j ∈ {1, . . . , n}. Here, {E1, . . . , En} denotes a local orthonormal frame with respect to

the metric gM .

Using the definition of determinant for a squared matrix, we obtain

det(gij) =
∑

σ∈Sn

(signσ)g1σ(1)g2σ(2) . . . gnσ(n), (8.25)

where Sn is the set of bijective functions σ : {1, . . . , n} → {1, . . . , n} and signσ is the sign of the

permutation σ. Considering (8.24) into (8.25), we get

det(gij)=
∑

σ

(signσ)(ρ2E1Eσ(1)+δ1σ(1))(ρ
2E2Eσ(2)+δ2σ(2)) . . . (ρ

2EnEσ(n)+δnσ(n)). (8.26)

With a straightforward computation, from (8.26) we obtain

det(gij) =
∑

σ,k

(signσ)ρ2Ei1Eσ(i1) · ρ
2Ei2Eσ(i2) . . . ρ

2EikEσ(ik)δik+1σ(ik+1) . . . δinσ(in)

+
∑

σ

(signσ)ρ2nE1Eσ(1) . . . EnEσ(n) +
∑

σ

(sign(σ))δ1σ(1) . . . δnσ(n). (8.27)

On the other hand, we note that

∑

σ

(signσ)ρ2nE1Eσ(1) . . . EnEσ(n) = 0 and
∑

σ

(sign(σ))δ1σ(1) . . . δnσ(n) = 1.

Thus,

det(gij) =
∑

σ,k

(signσ)ρ2Ei1Eσ(i1) · ρ
2Ei2Eσ(i2) . . . ρ

2EikEσ(ik)δik+1σ(ik+1) . . . δinσ(in)

=
∑

σ

(signσ)ρ2Ei1Eσ(i1)δi2σ(i2) . . . δinσ(in) (8.28)

+
∑

σ,k≥2

(signσ)ρ2kEi1Eσ(i1) · Ei2Eσ(i2) . . . EikEσ(ik)δik+1σ(ik+1) . . . δinσ(in).
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If σ is different from the identity, then

ρ2Ei1Eσ(i1)δi2σ(i2) . . . δinσ(in) = 0.

Otherwise, we have

∑

σ

(signσ)ρ2Ei1Eσ(i1)δi2σ(i2) . . . δinσ(in) = ρ2(E2
1 + E2

2 + . . . E2
n).

Now, considering

∑

σ,k≥2

(signσ)ρ2kEi1Eσ(i1) · Ei2Eσ(i2) . . . EikEσ(ik)δik+1σ(ik+1) . . . δinσ(in),

for each fixed k ≥ 2 and each fixed index i1, i2, . . . , in, we have

∑

σ,k≥2

(signσ)ρ2kE2
i1
E2

i2
. . . E2

ik
= 0, (8.29)

for signσ = 1 if the permutation in σ is even and signσ = −1 if the permutation in σ is odd.

Thus,

∑

σ,k≥2

(signσ)ρ2kEi1Eσ(i1) · Ei2Eσ(i2) . . . EikEσ(ik)δik+1σ(ik+1) . . . δinσ(in) = 0.

So, using expressions (8.28) and (8.29), we obtain

|G| = 1 + ρ2|Du|2.

Consequently, we reach at the following relation

dgΣ = (1 + ρ2|Du|2M)1/2dgMM. (8.30)

Hence, since we are assuming that u ∈ Lp
gM

(M) for some p > 1 and that ρ and |Du|M are

bounded, relation (8.30) guarantees that h ∈ Lp
g(Σ) for some p > 1. Therefore, since the metric

(8.17) is complete, the result follows by applying Theorem 8.1.2.

Proceeding, from Theorem 8.1.4 we establish the following nonexistence result concerning

equation (8.21).

Theorem 8.2.2. Let M
n+1

= Mn×ρR be a warped product with complete noncompact base Mn

having nonnegative Ricci curvature and with bounded warping function ρ. There is no entire

Killing graph Σ(u) determined by a positive (resp. negative) smooth function u ∈ C∞(M), which

is solution of equation (8.21) with c ≥ 0 (resp. c ≤ 0), such that |Du|M is bounded on Mn and

u ∈ Lp
gM

(M) for some p > 1.

Proof. Let us suppose the existence of such an entire Killing graph Σ(u), determined by a positive
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(resp. negative) smooth function u ∈ C∞(M). From Theorem 8.2.1, we get that u ≡ t0 for some

positive (resp. negative) t0 ∈ R. Since we are assuming that u ∈ Lp
gM

(M) for some p > 1, we

obtain

volgM (M) =
1

|t0|p

∫
M

|u|pdgMM < +∞. (8.31)

But, taking into account that Mn is complete noncompact with nonnegative Ricci curvature,

Lemma 5.5.3 assures that Mn has at least linear volume growth, which corresponds to a contra-

diction with (8.31).

Taking into account once more relation (8.30), it is not difficult to verify that we can also

obtain the following nonparametric version of Theorem 8.1.5.

Theorem 8.2.3. Let M
n+1

= Mn ×ρ R be a warped product with base Mn satisfying the L1
gM

-

Liouville property and with bounded warping function ρ. Let Σ(u) be an entire Killing graph

determined by a smooth function u ∈ C∞(M), which is nonnegative (resp. nonpositive) solution

of equation (8.21) with c ≥ 0 (resp. c ≤ 0). Suppose in addition that |Du|M is bounded on Mn.

If u ∈ L1
gM

(M), then u ≡ t0 for some nonnegative (resp. nonpositive) t0 ∈ R.

We close our paper stating and proving other Moser-Bernstein type result, which is derived

from Theorem 8.1.6.

Theorem 8.2.4. Let M
n+1

= Mn ×ρ R be a warped product with complete base Mn and with

bounded warping function ρ. Let Σ(u) be an entire Killing graph determined by a bounded smooth

function u ∈ C∞(M), which is solution of equation (8.21). If |Du|M ∈ L1
gM

(M), then u ≡ t0 for

some t0 ∈ R.

Proof. As in the beginning of the proof of Theorem 8.2.1, we get that the entire graph Σ(u) is

complete with respect to its induced metric (8.17).

On the other hand, since

N∗ = N −N⊥ =
ρΨ∗(Du)

(1 + ρ2|Du|2M)1/2
,

we have that

|N∗|2M =
ρ2|Du|2M

1 + ρ2|Du|2M
. (8.32)

Thus, from (8.32) we get

|∇h|2 =
1

ρ2
|N∗|2M =

|Du|2M
1 + ρ2|Du|2M

. (8.33)

Hence, from (8.30) and (8.33) we reach at the following relation

|∇h|dgΣ = |Du|MdgMM. (8.34)

Consequently, since we are supposing that |Du|M ∈ L1
gM

(M), relation (8.34) assures that

|∇h| ∈ L1
g(Σ). Therefore, we can apply Theorem 8.1.6 to conclude the proof.
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Our next result corresponds to a nonparametric version of Theorem 8.1.7.

Corollary 8.2.5. Let M
n+1

= Mn ×ρ R be a warped product with complete noncompact base

Mn and whose warping function ρ is bounded. The only smooth function u : Mn → I which is

solution of the mean curvature flow soliton equation (8.21) for some c ≥ 0 (resp. c ≤ 0) and

such that u converges from above (resp. below) to some t∗ ∈ I at infinity is the constant function

u ≡ t∗.

Proof. For any vector field X tangent to Σ(u), from (8.17) we get

gu(X,X) = gM(X∗, X∗) + ρ2gM(Du,X∗)2 ≥ gM(X∗, X∗). (8.35)

Thus, (8.35) implies that

Lu(γ) ≥ LM(γ∗), (8.36)

where Lu(γ) stands for the length of a curve γ on Σ(u) with respect to the induced metric (8.17)

and LM(γ∗) denotes the length of the projection γ∗ of γ onto Mn with respect to its metric gM .

Consequently, since projections onto Mn of divergent curves on Σ(u) give divergent curves on

Mn and as we are assuming that the metric gM is complete, we can apply Hopf-Rinow Theorem

to conclude that the induced metric (8.17) is also complete.

Hence, since we are u ∈ C∞(M) be such a solution of equation (8.21), we are in position to

apply Theorem 8.1.7 to conclude that u ≡ t∗.

Remark 8.2.6. According to [77, Example 10], we have that

Σ(u) = {(x, y, c ln y) : y > 0} ⊂ H
2 × R,

where u(x, y) = c ln y, c ∈ R is a constant and H
2 = {(x, y) ∈ R

2 : y > 0} stands for the

two-dimensional hyperbolic space endowed with the complete metric ⟨, ⟩H2 = 1

y2
(dx2 + dy2), is

an entire translating graph having constant mean curvature H = c√
1+c2

= cΘ with respect to

the orientation (5.25). Therefore, we conclude that in Corollary 8.2.5 the hypothesis that the

function u converges to some t∗ ∈ I at infinity is necessary to guarantee that u is constant.
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Chapter 9

Rigidity and nonexistence of

submanifolds in weighted warped

products

The weighted warped products are an extension of warped products in differential geometry. In

this construction, a manifold is deformed or twisted through a function called ” warping function.

The difference in weighted warped products lies in the inclusion of a weight or measure in the

warping function. These weights or measures can be used to model and capture additional

effects in the geometry and physics of spacetime. The introduction of weights allows for greater

flexibility in constructing spaces with interesting geometric properties.

In this chapter of the thesis, we will explore the fundamental concepts of weighted warped

products. We will discuss the definitions and properties of these products, as well as their appli-

cations in various areas of mathematics and physics, such as general relativity, cosmology, string

theory, and other related fields. We will investigate the geometric and physical properties of the

base spaces and weighted warping functions, examine concrete examples of these constructions,

and discuss the implications of these weighted warped products for understanding the structure

of spacetime and their applications to specific problems.

It is expected that this chapter will provide a solid foundation for understanding weighted

warped products and serve as a starting point for further advanced investigations in this fasci-

nating area of differential geometry. The results presented in this chapter make part of [30].

9.1 Submanifolds in weighted warped products

Throughout this last part of the thesis, we will pay attention to then (n + p)-dimensional

Riemannian manifold (Mn+p, ⟨, ⟩M), our ambient space I×ρM
n+p is the (n+ p+1)-dimensional

product manifold I × Mn+p, where I is an open interval of R, endowed with the Riemmanian

warped metric

⟨, ⟩ = dt2 + ρ(t)2⟨, ⟩M , (9.1)
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where ρ : I → R is a positive smooth function on I. In other words, I ×ρ M
n+p is nothing but

a Riemannian warped product with Riemannian base (I, dt2), Riemannian fiber (Mn+p, ⟨, ⟩M)

and warping function ρ.

Let Σn be a codimension p+1 submanifold immersed into a I ×ρM
n+p. That is, Σn is an n-

dimensional connected manifold for which there exists a smooth immersion ψ : Σn → I×ρM
n+p.

As usual, we will denote this induced metric also by ⟨, ⟩.

In this setting, we denote by ∇ and ∇ the Levi-Civita connections of I ×ρ M
n+p and Σn,

respectively. The Gauss formula of Σn in I ×ρ M
n+p is given by

∇XY = ∇XY + α(X, Y ), (9.2)

for every tangent vector fields X, Y ∈ X(Σ). Here α : X(Σ) × X(Σ) → X
⊥(Σ) stands for the

vector valued second fundamental form of Σn, which is defined by

α(X, Y ) = (∇XY )⊥, (9.3)

where (∇XY )⊥ denotes the normal component of ∇XY along Σn. Moreover, the Weingarten

formula is given by

∇Xη = −AηX +∇⊥

Xη, (9.4)

for every tangent vector field X ∈ X(Σ) and normal vector field η ∈ X
⊥(Σ), where ∇⊥ is just

the normal connection of Σn and Aη : X(Σ) → X(Σ) denotes the shape operator with respect to

η; that is, the self-adjoint operator on X(Σ) defined by

⟨AηX, Y ⟩ = ⟨α(X, Y ), η⟩, ∀X, Y ∈ X(Σ).

The mean curvature vector field H⃗ of Σn is defined by

H⃗ =
1

n
tr(α) =

1

n

n∑

i=1

α(Ei, Ei), (9.5)

where {E1, . . . , En} is a local orthonormal frame on Σn.

Now, let φ be a weight function defined in I ×ρ M
n+p. The φ-divergence operator on Σn is

defined by

divϕ(X) = eϕdiv(e−ϕX), (9.6)

where X is a tangent vector field on Σn. From this, we define the drift Laplacian by

∆ϕu = divϕ(∇u) = ∆u− ⟨∇u,∇φ⟩, (9.7)

where u is a smooth function on Σn. We will also refer to such an operator as the φ-Laplacian

of Σn.
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According to Gromov [93], the weighted mean curvature vector field, or simply φ-mean cur-

vature vector field, H⃗φ of Σn is defined by

H⃗φ = H⃗ +
1

n
(∇φ)⊥, (9.8)

where H⃗ denotes the standard mean curvature vector field of Σn defined in (9.5) and (∇φ)⊥ ∈

X
⊥(Σ) stands for the normal component of ∇φ along Σn.

At this point, we observe that a splitting theorem due to Fang, Li and Zhang (see Theorem 1.1

of [87]) guarantees that if a weighted warped product manifold (I×ρM
n+p)φ with bounded weight

function φ is such that Ricφ is nonnegative, then φ must be constant along I. So, motivated

by this result, along this work we will consider weighted warped products (I ×ρ M
n+p)φ whose

weight function φ does not depend on the parameter t ∈ I, that is ⟨∇φ, ∂t⟩ = 0 and, for sake of

simplicity, we will denote them by I ×ρ M
n+p
φ .

In particular,

∇v∂t =
ρ′(τ)

ρ(τ)
v,

for every tangent vector v ∈ T(τ,x)Mτ . This means that Mτ is a totally umbilical hypersurface

in I ×ρ M
n+p with shape operator (with respect to the orientation ∂t) given by

Aτv = −∇v∂t = −
ρ′(τ)

ρ(τ)
v,

for every v ∈ T(τ,x)Mτ . Therefore, τ ∈ I →Mτ ⊂ I×ρM
n+p determines a foliation of I×ρM

n+p

by totally umbilical hypersurface with constant mean curvature given by

H(τ) =
1

n+ p
tr(Aτ ) = −

ρ′(τ)

ρ(τ)
. (9.9)

In this setting, we have that the φ-mean curvature of a slice Mτ is just equal to its standard

mean curvature. Indeed, from (9.9) and (9.8) we obtain

Hφ(τ) = H(τ) +
1

n
⟨∇φ, ∂t⟩ = −

ρ′(τ)

ρ(τ)
.

9.2 Statement and proof of the main results

Let ψ : Σn → I ×ρ M
n+p be an immersed submanifold of codimension p + 1. The height

function of Σn, denoted by h, is the restriction of the projection πI(t, x) = t to Σn, that is,

h : Σn → I is given by h = πI |Σ = πI ◦ ψ. From (5.3), we have that the gradient of πI on

I ×ρ M
n+p is given by ∇πI = ∂t. Then, the gradient of h on Σn is given by

∇h = (∇πI)
⊤ = ∂⊤t ,
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where ∂t = ∂⊤

t + ∂⊥

t . Here ∂⊤

t ∈ X(Σ) and ∂⊥

t ∈ X
⊥(Σ) denote, respectively, the tangential and

normal components of ∂t.

In what follows, we will also consider the function u = g(h), where g : I → R is an arbitrary

primitive of ρ. Since g′ = ρ > 0, then u = g(h) can be thought as a reparametrization of the

height function. In particular, the gradient of u on Σn is given by

∇u = ρ(h)∇h = ρ(h)∇∂⊤

t = K⊤, (9.10)

where K⊤ denotes the tangential component of the closed conformal vector field K defined

K(t, x) = ρ(t)∂t|(t,x), (t, x) ∈ I ×ρ M
n+p. (9.11)

In fact,

∇VK = ρ′(t)V (9.12)

for every vector field V on I×ρM
n+p, where ∇ denotes the Levi-Civita connection of I×ρM

n+p.

Using (9.2), (9.4) and taking into account that K = K⊤ +K⊥, we obtain

∇XK = ∇XK
⊤ + α(X,K⊤)− AK⊥X +∇⊥

XK
⊥

for every X ∈ X(Σ). Hence,

(∇XK)⊤ = ∇XK
⊤ − AK⊥X (9.13)

and

(∇XK)⊥ = α(X,K⊤) +∇⊥

XK
⊥.

On the other hand, equation (9.12) implies ∇XK = f ′(h)X, so that

(∇XK)⊤ = f ′(h)X (9.14)

and

(∇XK)⊥ = 0.

Thus, from (9.13) and (9.14), we see that

∇XK
⊤ = ρ′(h)X + AK⊥X. (9.15)

From (9.10) and (9.15) we get

∇X∇u = ∇XK
⊤ = ρ′(h)X + AK⊥X,
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and tracing this expression we have that

∆u = nρ′(h) + tr(AK⊥)

= n(ρ′(h) + ⟨H⃗,K⟩) (9.16)

= n(ρ′(h) + ρ(h)⟨H⃗, ∂t⟩).

Since we are considering Σn immersed in I ×ρ M
n+p
φ , from (9.7), (9.10) and (9.16) we get

∆φu = ∆u− ⟨∇u,∇φ⟩

= n(ρ′(h) + ρ(h)⟨H⃗, ∂t⟩)− ρ(h)⟨∂⊤t ,∇φ⟩ (9.17)

= n(ρ′(h) + ρ(h)⟨H⃗, ∂t⟩)− ρ(h)⟨∂t − ∂⊥t ,∇φ⟩

= n(ρ′(h) + ρ(h)⟨H⃗, ∂t⟩) + ρ(h)⟨∂⊥t , (∇φ)
⊥⟩.

Thus, from (9.8) and (9.17) we obtain

∆φu = n(ρ′(h) + ρ(h)⟨H⃗ +
1

n
(∇φ)⊥, ∂t⟩) (9.18)

= n(ρ′(h) + ρ(h)⟨H⃗φ, ∂t⟩).

Consequently, from (9.18) we have the following lemma:

Lemma 9.2.1. Let Σn be a submanifold immersed in I ×ρ M
n+p
φ . If u = g(h), where g : I → R

is an arbitrary primitive of ρ and h is the height function of Σn, then

∆φu = n(ρ′(h) + ρ(h)⟨H⃗φ, ∂t⟩).

Taking into account Lemma 9.2.1, we can reason as in the proof of Lemma 1 of [29] in order

to obtain the following result:

Lemma 9.2.2. Let Σn be a closed submanifold immersed in I ×ρ M
n+p
φ . Then

(i) minΣ⟨H⃗φ, ∂t⟩ ≤ Hφ(h
∗), where h∗ = maxΣ h, and

(ii) maxΣ⟨H⃗φ, ∂t⟩ ≥ Hφ(h∗), where h∗ = minΣ h.

Now, we are in a position to present our first rigidity result.

Theorem 9.2.3. Let I ×ρ M
n+p
φ be a weighted warped product such that (log ρ)′′ ≥ 0, and let

ψ : Σn → I ×ρ M
n+p
φ be a closed submanifold with φ-mean curvature vector field H⃗φ such that

the support function ⟨H⃗φ, ∂t⟩ is constant. Then, ψ(Σ) is contained in a slice {τ} ×Mn+p, for

some τ ∈ I. Moreover, when p = 1, ϕ := πM ◦ ψ : Σn → Mn+1 is a hypersurface with φ-mean

curvature Hϕ,φ satisfying

|H⃗φ|
2 =

H2
ϕ,φ + ρ′(τ)2

ρ(τ)2
. (9.19)
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Proof. We will proceed based on the proof of Theorem 1 of [29]. From Lemma 9.2.2 and using

the fact that (log ρ)′′ ≥ 0 we have

min
Σ

⟨H⃗φ, ∂t⟩ ≤ Hφ(h
∗) ≤ Hφ(h∗) ≤ max

Σ
⟨H⃗φ, ∂t⟩. (9.20)

Thus, since we are assuming that ⟨H⃗φ, ∂t⟩ is constant, from (9.20) we get

Hφ(h∗) = Hφ(h
∗) = ⟨H⃗φ, ∂t⟩ = constant. (9.21)

Using once more that (log ρ)′′ ≥ 0 , it follows from (9.21) that Hφ(t) = ⟨H⃗φ, ∂t⟩ = constant on

[h∗, h
∗]. That is, Hφ(h) = ⟨H⃗φ, ∂t⟩ on Σn.

So, Hφ(h) = −ρ′(h)
ρ(h)

= ⟨H⃗φ, ∂t⟩ implies ρ′(h) + ρ(h)⟨H⃗φ, ∂t⟩ = 0 on Σn, which by (9.17)

allows us to conclude that ∆φu = 0 on Σn. That is, u is a φ-harmonic function on Σn, which

is a closed manifold. Hence, from (9.6) and (9.7), we can apply the divergence theorem to infer

that u = g(h) is constant on Σn, and since g(t) is an increasing function this means that h is

itself constant on Σn. Hence, ψ(Σ) is contained in a slice Mτ .

When p = 1, as in the proof of Theorem 1 of [29], we can consider the (locally defined) unit

normal vector field N of the hypersurface ϕ : Σn →Mn+1, with ⟨N,N⟩M = 1. Thus, from (9.8)

jointly with equation (4.18) of [29] and using again the assumption that φ does not depend on

the parameter t ∈ I, it is not difficult to verify that holds the following equation

H⃗φ =
Hϕ,φ

ρ(τ)2
N +

ρ′(τ)

ρ(τ)
∂t. (9.22)

It is worth to note that, since ∇φ = 1
ρ(τ)2

∇φ and ⟨N,N⟩ = ρ(τ)2⟨N,N⟩M = ρ(τ)2, it was used

the relation

Hϕ +
1

n
⟨∇φ,N⟩ = Hϕ +

1

n
⟨∇φ,N⟩M = Hϕ,φ

to get (9.22). Therefore, from (9.22) we deduce relation (9.19).

When the ambient space is a weighted product space of the form R
p ×Mn+1

φ , we can apply

p times Theorem 9.2.3 in order to get the following codimension reduction result:

Corollary 9.2.4. The only n-dimensional closed φ-minimal submanifolds immersed in a weighted

product space R
p ×Mn+1

φ are the closed φ-minimal hypersurfaces immersed in Mn+1
φ .

From relation (9.19) in Theorem 9.2.3 we also obtain the following nonexistence result:

Corollary 9.2.5. There do not exist closed φ-minimal submanifolds Σn immersed in a weighted

warped product I ×ρ M
n+1
φ such that (log ρ)′′ ≥ 0 and ρ′ does not vanish on I.

The following key lemma is a weak Omori-Yau’s generalized maximum principle for the drift

Laplacian. A proof of it can be found in [129].
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Lemma 9.2.6. Let Σn
φ be a complete weighted manifold whose Bakry-Émery-Ricci curvature

tensor is bounded from below and let u : Σn → R be a smooth function satisfying supΣ u < +∞.

Then, there exists a sequence of points {pk}k∈N ⊂ Σn such that

lim
k
u(pk) = sup

Σ
u and lim sup

k

∆φu(pk) ≤ 0.

The previous lemma jointly with Lemma 9.2.1 enable us to obtain an extension of Lemma 9.2.2.

For this, we just proceed in a similar way of the proof of Lemma 2 of [29].

Lemma 9.2.7. Let Σn be a complete submanifold immersed in I ×ρM
n+p
φ , such that its Bakry-

Émery-Ricci tensor is bounded from below.

(i) If Σn lies above a slice of I ×ρ M
n+p
φ , then supΣ⟨H⃗φ, ∂t⟩ ≥ Hφ(h∗), where h∗ = infΣ h ∈ I;

(ii) If Σn lies below a slice of I ×ρ M
n+p
φ , then infΣ⟨H⃗φ, ∂t⟩ ≤ Hφ(h

∗), where h∗ = supΣ h ∈ I.

In our next result, we will assume that the ambient space obeys a convergence condition

which was established by Montiel [115]. Before, we recall that a slab of a weighted warped

product I ×ρ M
n+p
φ is just a region between two slices Mτ1 and Mτ2 , for some τ1 < τ2.

Theorem 9.2.8. Let I ×ρ M
n+p
φ be a weighted warped product such that (log ρ)′′ ≥ 0, with

the equality (log ρ)′′ = 0 holding only at isolated points of I, and which obeys the following

convergence condition

KM ≥ sup
I

(ρ′2 − ρρ′′), (9.23)

where KM stands for the sectional curvature of Mn+p. Suppose in addition that the Hessian of

the weight function φ is bounded from below. Let ψ : Σn → I×ρM
n+p
φ be a complete submanifold

which lies in a slab of I ×ρ M
n+p
φ , with bounded second fundamental form and such that the

support function ⟨H⃗φ, ∂t⟩ is constant. Then, ψ(Σ) is contained in a slice {τ} ×Mn+p, for some

τ ∈ I. Moreover, when p = 1, ϕ := πM ◦ ψ : Σn → Mn+1 is a hypersurface with φ-mean

curvature Hϕ,φ satisfying (9.19).

Proof. We start showing that the Bakry-Émery-Ricci tensor of Σn is bounded from below. For

this, we recall that the curvature tensor R of Σn can be described in terms of its second fun-

damental form α and the curvature tensor R of the ambient I ×ρ M
n+p
φ by the so-called Gauss

equation given by

⟨R(X, Y )Z,W ⟩ = ⟨R(X, Y )Z,W ⟩+ ⟨α(X,Z), α(Y,W )⟩ − ⟨α(X,W ), α(Y, Z)⟩,

for every tangent vector fields X, Y, Z ∈ X(Σ). As in [123], here we are considering that the

curvature tensor is given by

R(X, Y )Z = ∇[X,Y ]Z − [∇X ,∇Y ]Z,

where [ ] denotes the Lie bracket.
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Taking X ∈ X(Σ) and a local orthonormal frame {E1, · · · , En} of X(Σ), it follows from this

previous Gauss equation that the Ricci curvature tensor of Σn is given by

Ric(X,X) =
n

∑

i=1

⟨R(X,Ei)X,Ei⟩+ n⟨α(X,X), H⃗⟩ −

n
∑

i=1

|α(X,Ei)|
2

=
n

∑

i=1

⟨R(X,Ei)X,Ei⟩+ n⟨

p+1
∑

k=1

AkX,X⟩Hk −

n
∑

i=1

∣

∣

∣

∣

∣

p+1
∑

k=1

⟨AkX,Ei⟩ηk

∣

∣

∣

∣

∣

2

, (9.24)

where α(X, Y ) =
∑p+1

i=1
⟨AiX, Y ⟩ηi and {η1, · · · , ηp+1} is a local orthonomal frame of X⊥(Σ).

Consequently, taking account that H⃗ can be expressed in the following way

H⃗ =

p+1
∑

i=1

Hiηi, (9.25)

for some smooth functions H1, H2, . . . , Hp+1 defined on Σn, from (9.24) and (9.25) we get

Ric(X,X) =
n

∑

i=1

⟨R(X,Ei)X,Ei⟩ −

p+1
∑

i=1

∣

∣

∣

∣

AiX −
nHi

2
X

∣

∣

∣

∣

2

+
n2|H⃗|2

4
|X|2. (9.26)

Moreover, since we are assuming that holds the convergence condition (9.23), from inequality

(4.17) of [19] we have that

∑

i

⟨R(X,Ei)X,Ei⟩ ≥ −n
|ρ′′(h)|

ρ(h)
|X|2. (9.27)

Thus, inserting (9.27) into (9.26) and considering again (9.25), we obtain

Ric(X,X) ≥ −n
|ρ′′(h)|

ρ(h)
|X|2 −

p+1
∑

i=1

∣

∣

∣

∣

AiX −
nHi

2
X

∣

∣

∣

∣

2

+
n2|H⃗|2

4
|X|2

≥ −

(

n
|ρ′′(h)|

ρ(h)
+ |α|2

)

|X|2. (9.28)

Hence, since we are assuming that Σn lies in a slab of I ×ρ M
n+p
ϕ , |α| is bounded and Hessφ is

bounded from below, from (6) and (9.28) we get that the Bakry-Émery-Ricci tensor1 of Σn is

bounded from below.

Consequently, we can reason as in the proof of Theorem 9.2.3 (but using now Lemma 9.2.7

instead of Lemma 9.2.2) in order to show that

Hϕ(h
∗) = Hϕ(h∗) = ⟨H⃗ϕ, ∂t⟩ = constant. (9.29)

1Bakry-Émery-Ricci tensor Ricϕ as being the following extension of the standard Ricci tensor Ric of Mn:

Ricϕ = Ric + Hessϕ.
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Our constraint on log f implies that the function Hφ(t) is strictly decreasing on I. Hence, from

(9.29) we get that h∗ = h∗ and, consequently, h is constant on Σn. Therefore, ψ(Σ) must be

contained in a slice {τ} ×Mn+p.

From Theorem 9.2.8 we obtain the next nonexistence result:

Corollary 9.2.9. Let I ×ρ M
n+1
φ be a weighted warped product such that (log ρ)′′ ≥ 0, with

the equality (log ρ)′′ = 0 holding only at isolated points of I, and which obeys the convergence

condition (9.23). Suppose in addition that ρ′ does not vanish on I and Hessφ is bounded from

below. There do not exist complete φ-minimal submanifolds ψ : Σn → I ×ρM
n+1
φ lying in a slab

of I ×ρ M
n+1
φ and with bounded second fundamental form.

9.3 Further results

The next key lemma is just an extension of a Liouville-type result due to Yau in [147], and

its proof can be found in [56].

Lemma 9.3.1. The only φ-harmonic bounded functions defined on an n-dimensional complete

weighted Riemannian manifold Σn
φ, whose Bakry-Émery-Ricci tensor is nonnegative, are the

constant ones.

Using this previous lemma we can prove the following result:

Theorem 9.3.2. Let I ×ρ M
n+p
φ be a weighted warped product such that (log ρ)′′ ≥ 0 and let

ψ : Σn → I ×ρ M
n+p
φ be a complete submanifold which lies in a slab of I ×ρ M

n+p
φ , having

nonnegative Bakry-Émery-Ricci tensor and such that the support function ⟨H⃗φ, ∂t⟩ is constant.

Then, ψ(Σ) is contained in a slice {τ} × Mn+p, for some τ ∈ I. Moreover, when p = 1,

ϕ := πM ◦ ψ : Σn →Mn+1 is a hypersurface with φ-mean curvature Hϕ,φ satisfying (9.19).

Proof. We can proceed as in the proof of Theorem 9.2.8 to infer that the function u = g(h)

is a φ-harmonic function on Σn. Hence, since ψ(Σ) lies in a slab of I ×ρ M
n+p
φ , we can apply

Lemma 9.3.1 to conclude that u is constant and, consequently, h is constant on Σn. Therefore,

ψ(Σ) must be contained in a slice {τ} ×Mn+p.

Considering once more the ambient space being a weighted product space of the form R
p ×

Mn+1
φ , we obtain our second codimension reduction result by applying recursively Theorem 9.3.2.

More precisely,

Corollary 9.3.3. The only n-dimensional complete φ-minimal submanifolds having nonnegative

Bakry-Émery-Ricci tensor and lying in a slab of a weighted product space R
p ×Mn+1

φ are the

complete φ-minimal hypersurfaces immersed in Mn+1
φ .

From Theorem 9.3.2 we also get the following nonexistence result:
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Corollary 9.3.4. There do not exist complete φ-minimal submanifolds ψ : Σn → I ×ρ M
n+1
ϕ

having nonnegative Bakry-Émery-Ricci tensor and lying in a slab of a weighted warped product

I ×ρ M
n+1
ϕ such that (log ρ)′′ ≥ 0 and ρ′ does not vanish on I.

An important example of weighted manifold is the so-called Gaussian space G
n, which cor-

responds to the Euclidean space R
n endowed with the Gaussian probability measure dµ =

(2π)−
n

2 e−
|x|2

2 dx2. Concerned with the weighted product space R×G
n, Hieu and Nam extended

the classical Bernstein’s theorem [49] showing that the only weighted minimal graphs Σn(u)

of functions u(x2, · · · , xn+1) = x1 over G
n are the hyperplanes x1 = constant (see Theorem 4

of [97]).

Taking into account Corollary 9.3.3, we can use Theorem 4 of [97] to obtain a new Bernstein-

type result. In what follows a (p+1)-graph in R
p+1×G

n defined overGn is a graph u : Gn → R
p+1,

with (u(x), x) ∈ R
p+1 ×G

n.

Theorem 9.3.5. The only complete φ-minimal bounded (p+1)-graphs in R
p+1×G

n defined over

G
n, having nonnegative Bakry-Émery-Ricci tensor, are the n-dimensional hyperplanes {q}×G

n

with q ∈ R
p+1.

Taking into account

Ricϕ = Ric + Hessφ, (9.30)

and (9.28), from Theorem 9.3.5 we obtain the following:

Corollary 9.3.6. The only complete φ-minimal bounded (p + 1)-graphs in R
p+1 × G

n defined

over Gn, with the second fundamental form satisfying |α| ≤ 1, are the n-dimensional hyperplanes

{q} ×G
n with q ∈ R

p+1.

In order to establish our last results, let us consider

Lk
ϕ(Σ) := {u : Σn → R :

∫
Σ

|u|k(x)e−ϕ(x)dΣ < +∞}.

While Lebesgue integrable spaces (see equation (5.29)) are associated with the standard

Lebesgue measure, weighted Lebesgue integrable spaces incorporate an additional weight mea-

sure to model specific effects. This difference in the definition of the spaces results in different

properties and applications, allowing for a more refined and adaptable analysis of functions.

The following result is a consequence of Theorem 1.1 of [127].

Lemma 9.3.7. Let u be a nonnegative smooth φ-subharmonic function on a complete Rieman-

nian manifold Σn. If u ∈ Lk
ϕ(Σ), for some k > 1, then u is constant.

It is not difficult verify that we can apply Lemmas 9.2.1 and 9.3.7 to obtain our last result:

Theorem 9.3.8. Let I ×ρ M
n+p
ϕ be a weighted warped product and let ψ : Σn → I ×ρ M

n+p
ϕ be

a complete φ-minimal submanifold with ρ′(h) ≥ 0. If u = g(h) ∈ Lk
ϕ(Σ), for some k > 1, then

ψ(Σ) is contained in a slice {τ} ×Mn+p, for some τ ∈ I. Moreover, when p = 1, ϕ := πM ◦ ψ :

Σn →Mn+1 is a φ-minimal hypersurface.
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Remark 9.3.9. According to a result due to Wei and Wylie [146], all noncompact complete

Riemannian manifolds with nonnegative Bakry-Émery-Ricci tensor for some bounded weight

function φ have at least linear φ-volume growth (i.e., for any x ∈ Σn, volϕ(B(x,R)) has at

least linear growth on R, where B(x,R) is the geodesic ball in Σn centered at x with radius

R). Consequently, if we assume in Theorem 9.3.8 that Σn has nonnegative Bakry-Émery-Ricci

tensor and that φ(h) is bounded, we also conclude that Σn must be compact.
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