UNIVERSIDADE FEDERAL DA PARAÍBA PRÓ-REITORIA PARA ASSUNTOS DO INTERIOR CENTRO DE CIÊNCIAS E TECNOLOGIA CURSO DE PÓS-GRADUAÇÃO EM ENGENHARIA QUÍMICA

SIMULAÇÃO DO PROCESSO DE DESTILAÇÃO COM RECOMPRESSÃO MECÂNICA DE VAPOR PARA PRODUÇÃO DE ACETONA

MARIA DO SOCORRO AVELINO MARTINS

CAMPINA GRANDE - PARAÍBA 1994

MARIA DO SOCORRO AVELINO MARTINS

SIMULAÇÃO DO PROCESSO DE DESTILAÇÃO COM RECOMPRESSÃO MECÂNICA DE VAPOR PARA PRODUÇÃO DE ACETONA

Dissertação apresentada ao Curso de Mestrado em Engenharia Química da Universidade Federal da Paraíba, em cumprimento às exigências para obtenção do Grau de Mestre.

ÁREA DE CONCENTRAÇÃO: OPERAÇÕES E PROCESSOS

ORIENTADOR : PROF. Dr. MICHEL FRANÇOIS FOSSY

CO-ORIENTADOR : PROF. NAGEL ALVES COSTA (M.Sc.)

CAMPINA GRANDE - PARAÍBA

M386s Martins, Maria do Socorro Avelino. Simulação do processo de destilação com recompressão mecânica de vapor para produção de acetona / Maria do Socorro Avelino Martins. - Campina Grande, 1994. 72 f. Dissertação (Mestrado em Engenharia Química) -Universidade Federal da Paraíba, Centro de Ciências e Tecnologia,1994. Referências. "Orientação : Prof. Dr. Michel François Fossy, Prof. M.Sc. Nagel Alves Costa". 1. Acetona. 2. Acetona - Produção. 3. Redução do Consumo Energético. 4. Dissertação - Engenharia Química. I. Fossy, Michel François. II. Costa, Nagel Alves. III. Universidade Federal da Paraíba - Campina Grande (PB). IV. Título CDU 661.727.4(043)

SIMULAÇÃO DO PROCESSO DE DESTILAÇÃO COM RECOMPRESSÃO MECÂNICA DE VAPOR PARA PRODUÇÃO DE ACETONA

DISSERTAÇÃO APROVADA EM: 28 / Dezembro/ 1994

MICHEL FRANCOIS FOSSY Professor Orientador

NAGEL ALVES COSTA

Professor Co-Orientador

KEPLER BORGES FRANÇA Examinador FLÁVIO LUIZ H. SILVA

Examinador

DEDICATÓRIA

A DEUS, por sua grandeza e sapiência.

A MANOEL MARTINS DE OLIVEIRA (IN MEMORIAN) e

ANA AVELINO DE OLIVEIRA, mens pais, pelo carinho, respeito e admiração.

A ALBERTO BEZERRA SILVA, men esposo, pela compreensão e afeto.

ANA CAROLINA MARTINS SILVA, minha filha, pela sua inestimável existência.

AGRADECIMENTOS

Aos Professores MICHEL FRANÇOIS FOSSY e NAGEL ALVES COSTA, pela orientação no desenvolvimento deste trabalho.

Ao Professor KEPLER BORGES FRANÇA, Coordenador do Curso de Pós-Graduação em Engenharia Química, pela amizade e força.

À Coordenação de Pós-Graduação, nas pessoas de MARIA JOSÉ BEZERRA e MARICÉ PEREIRA SILVA, pelo carinho, compreensão, apoio e paciência.

As amigas Líbia de Souza Conrado e Thalma Líbia, pela amizade sincera, incentivo e colaboração, na elaboração deste trabalho.

Aos professores e alunos do Curso de Pós-Graduação em Engenharia Química.

Ao CNPq.

RESUMO

O objetivo do presente trabalho é a redução do consumo energético da produção da Acetona. O estudo foi dividido em duas partes: Destilação convencional e destilação com recompressão mecânica do vapor. A primeira parte visa a obtenção da localizaão ótima do prato de alimentação, e também a faixa de análise em relação ao número de estágios. A segunda parte é dirigida para comparar os resultados obtidos com os sistemas mencionados acima, em função da influência do número de estágios, composições da alimentação, da recompressão do vapor sobre o trabalho de compressão. Através destes resultados a eficiência em termos energéticos foi observada, e concluiu-se que o sistema de compressão apresentou um menor consumo energético.

ABSTRACT

The objective of this work is to decrease the energetic consumption in the production of Acetone. It was divided in two parts: Convectional distillation and recompression mechanic vapour distillation. The first was to locate the optimum position to feed plate and also to analyse the range related with stages number. The second part concerns to compare the results obtained from both system as a function of stages number influence, feed compositions and vapour recompression in the compression work. From these results the efficiency was observed and concluded that compression system was more economic in term of energy consumption.

SIMBOLOGIA

Símbolo	Definições
a	Parâmetro da Equação de Soave-Redlich-Kwong;
a _{ij}	Parâmetro binário de interação;
A	Energia livre de Helmholt no estado Real;
Aj	Coeficiente da Equação (2.8) no estágio j;
A°	Energia livre de Helmholt no estado ideal;
ъ	Parâmetro da Equação de Soave-Redlich-Kwong;
Вј	Coeficiente da Equação (2.7) no estágio j;
сj	Coeficiente da Equação (2.7) no estágio j;
Cp	Capacidade calorífica a pressão constante;
Cv	Capacidade calorífica a volume constante;
ċa	Coeficiente da Equação (2.7) no estágio j;
E _{ij}	Equações de Equilíbrio do componente i no es-
	tágio j. Equação (2.2);
Fi	Fluxo de Alimentação no estágio j;
Fi	Fugacidade do componente i puro;
FI	Fugacidade do componente i puro na fase líqui-
	da;
Fi	Fugacidade do componente i no estado padrão;
F_1^{sat}	Fugacidade do componente i na temperatura de
	satuação;

Símbolo

Definições

<u>^</u>	
Fi .V	Fugacidade do componente i na fase líquida.
Fi	Fugacidade do componente i na fase vapor;
Gi	Energia livre de Gibbs do componente i puro;
Ħ	Entalpia real;
H°	Entalpia ideal;
н _ј	Equação do balanço de energia no estágio j;
	Equação (2.5);
H _{F,j}	Entalpia da alimentação no estágio j;
H _{L,j}	Entalpia do líquido no estágio j;
H _{v,j}	Entalpia do vapor no estágio j;
R _{i,j}	Constante de equilíbrio do componente i no es-
	tágio j;
ι	Constante do componente puro para o cálculo da
•	contribuição combinatorial;
Ъ	Fluxo molar de líquido no estágio j;
M _{1,j}	Equação do balanço de massa do componente i no
	estágio j;
n	Expoente da Equação (2.36);
N	Número de estágios;
P	Pressão do sistema;

Simbolo	Definições
P _i sat	Pressão de vapor do componente 1;
٩i	Parâmetro de área do componente 1;
£	Quantidade de calor no estágio j;
ri	Parâmetro de volume do componente i;
R	Constante dos gases;
R _D	Fator de incrustação;
S	Entropia no estado real;
Sa	Entropia no estado ideal;
T	Temperatura do sistema;
₹j	Temperatura do estágio j;
V	Volume do sistema;
Vi	Volume do componente i puro;
X _{i,j}	Composição molar do componente ino estágio j;
Z	Fator de compressibilidade;
Z _{1,j}	Número de coordenação da molécula;
W	Fator acêntrico;
Wc	Trabalho de compressão;
W _{is}	Trabalho isotérmico;
₩j	Fluxo de retirada de vapor no estágio j;
Wk	Trabalho adiabático;
Wp	Trabalho polítrópico;
Wreal	Trabalho real.

ï

ł

Símbolos Gregos

α	Coeficiente da equação da matriz didiagonal
	(Equação A-3.5).
β	Coeficiente da equação da matriz diadiagonal
	(Equação A-3.5).
۲ ₁	Coeficiente de atividade do componente i.
¥j	Coeficiente da equação da matriz diadiagonal
	(Equação A-3.5).
θi	Fração de volume do componente (método
	UNIFAC)
μ	Potencial químico.
μ°	Potencial químico em um estado de referência.
^v ki	Número de grupos do tipo k na molécula i.
$\phi_{\underline{i}}^{\mathbf{V}}$	Coeficiente de fugacidade do componente i na
-	fase vapor.
∮1 `	Coeficiente de fugacidade do componente i na
	fase líquida.
ф	Fração de área do componente i (método
	ር እርጉ እ የእርጉ እ

V_{ki} Númeero de grupos do tipo k na molécula i.

ÍNDICE

CAPÍTULO I	-	INTRODUÇÃO	1
CAPÍTULO II	-	FUNDAMENTOS TEÓRICOS	4
2.1	-	Simulação	4
2.1.1	-	Modelos matemáticos	5
2.2	_	Destilação	7
2.2.1	-	Conceito de estágio de equilíbrio.	8
2.2.2	-	Economia de energia de destilação.	8
2.2.3	-	Métodos rigorosos de destilação	20
2.2.3.1	-	Estrutura do problema - equação	
		MESH	20
2.2.4	-	Matriz tridiagonal	25
2.2.4.1	-	Cálculo das composições	25
2.2.5	-	Método do ponto de bolha (Bublle-	
		Point BP))	27
2.3	-	Equilíbrio Líquido-Vapor em Siste-	
		mas Miscíveis	31
2.3.1	-	Modelos para cálculo do equilíbrio-	
		vapor	31
2.3.1.1	-	Modelo ASOG (Analytical Solutions	
		of Groups)	33
2.3.1.2	-	Modelo UNIQUAC (Universal Quasi	
		Chemical)	33

Páginas

2.3.1.3	-	UNIFAC (Uniquac Functional Group	
		Activity Coefficients)	33
2.4	-	Sistema de Compressão	34
2.4.1	-	Teoria de compressão	35
2.4.2	-	Trabalho de compressão	35
CAPÍTULO III	-	MATERIAIS E MÉTODOS	38
3.1	-	Material Utilizado	38
3.2	-	Metodologia da Simulação	38
3.3	-	Métodos Utilizados pelo Simulador.	42
3.3.1	-	Torre de destilação	42
3.3.2	-	Sistema de compressão	43
3.3.3	-	Trocador de calor	44
3.3.4	-	Válvula	44
3.3.5	-	Divisor	45
3.4	-	Propriedades Termodinâmicas	45
3.4.1	-	Cálculos do equilíbrio de fases	45
3.4.2	-	Equação de estado	47
3.4.2.1	-	Aplicação	47
3.4.3	-	Métodos do coeficiente de fugaci-	
		dade	47
3.4.4	-	A pressão de vapor	49
3.4.5	-	Modelo UNIFAC	50
CAPÍTULO IV	-	RESULTADOS E DISCUSSÕES	52
4.1	-	Destilação Convencional	52
4.1.1	-	Localização da alimentação	52

Páginas

4.1.2	-	Razão de refluxo	56
4.1.3	-	Composição da alimentação	58
4.2	-	Destilação com Recompressão Mecâ-	
		nica do Vapor (MVR)	59
4.2.1	-	Número de estágios	59
4.2.2	-	Composição da alimentação	61
4.2.3	-	Compressão do vapor	63
4.3	-	Economia de Energia	64
CAPÍTULO V	-	CONCLUSÃO	66
CAPÍTULO VI	-	SUGESTÕES	68
REFERÊNCIAS BI	BLIOG	RÁFICAS	69
ADÊNDICE A			

APÊNIDE B

INTRODUÇÃO

CAPÍTULO I

INTRODUÇÃO

- A indústria química é um setor industrial caracterizado pelo uso intensivo de energia, especialmente de energia térmica. Com os significativos aumentos do petróleo, principal fonte desse tipo de energia, a indústria química foi particularmente atingida nos seus custos operacionais. Embora suas matérias-primas, a maioria derivados do petróleo, também tenham aumentado de preço, o aumento no preço dos combustíveis foi proporcionalmente maior.

Essa mudança de estrutura de preços, particularmente no dos combustíveis, mudou significativamente a relação entre os custos de investimento e os custos de operação nos dias de hoje, porém justificam-se maiores investimentos em favor de um menor consumo de energia.

 O consumo de vapor vivo nas indústrias químicas pode ser fortemente reduzido ou mesmo suprido pela instalação de um sistema de compressão mecânica dos vapores.

Esse método de economia de energia por compressão mecânica dos vapores está bem longe de ser novo. As primeiras definições identificadas são constituídas por uma patente de PELLETAN registrada por volta de 1830, porém sua aplicação tecnológica somente adquiriu importância a partir da década de 70, com a crescente elevação dos custos energéticos. - Na atualidade, onde o grande desafio é a conservação de energia, a destilação com recompressão mecânica do vapor (MVR) e integração térmica das correntes, assume um papel fundamental no sentido de racionalização de energia nos processos de destilação.

- A disponibilidade de computadores eletrônicos de grande porte tornou possível a solução rigorosa do modelo de estágios de equilíbrio de uma coluna de destilação em vários estágios, operando com um sistema multicomposto. O procedimento geral consiste em resolver alternadamente as equações de balanço material e as relações de equilíbrio até que o valor correto para o conjunto de vazão, temperatura e de composições tenham sido encontrados. A exatidão da solução é apenas limitada, entre outros fatores pela exatidão dos dados de equilíbrio de fase e de entalpia, sendo assim de fundamental importância, trabalhar com métodos termodinâmicos representativos do sistema projetado/simulado.

O presente trabalho está dividido em duas partes: destilação convencional e destilação com recompressão mecânica do vapor: o principal objetivo é otimizar em termos energéticos.

A primeira parte, visa a obtenção da localização ótima do prato de alimentação e também a razão de refluxo ótima de operação. A segunda parte, analisa a influência do número de estágios, das composições da alimentação e razão de compressão sobre o trabalho do compressor. Em seguida, analisa a economia de

energia, comparando os resultados dos modelos com recompressão mecânica do vapor com os obtidos a partir da destilação convencional.

FUNDAMENTOS TEÓRICOS

CAPÍTULO II

FUNDAMENTOS TEÓRICOS

2.1 - Simulação

Segundo Satyro (1990), simulação é a utilização de modelos matemáticos, de maneira que os mesmos reproduzam o comportamento real do sistema. É essencial em sistemas que necessitem de um conjunto muito grande de equações par a sua descrição, com vários reciclos e alimentações, cálculos iterativos, integrações, acesso ao banco de dados, etc.

0s simuladores de processo são utilizados de várias maneiras, desde avaliações preliminares de um processo até a análise da operação de uma mistura de produção. Já que cada emprego impõe uma exigência diferente sobre o sistema de simulação, é indispensável que este tenha eficiências diversificadas.

De acordo com Perry & Chilton (1985), o sistema de simulação deve fornecer ao usuário estimativas segura sobre o tamanho dos equipamentos, as cargas de aquecimento e resfriamento, os níveis de temperatura na rejeição de calor, as exigências de potência, de modo a se tornar possível uma avaliação confiável dos custos de instalação e produção. Além disso, o resultado da avaliação preliminar deve ter uma qualidade tal qual os seus dados possam servir de ponto de partida para o planejamento final. O projeto final inclui o planejamento detalhado das unidades de operação e o emprego de círculos['] rigorosos no balanço de calor e de massa de cada unidade.

2.1.1 - Modelos matemáticos

Satyro (1990), diz que o modelo matemático é aquele que reproduz o sistema abstratamente, ou seja, representa a realidade por meio de equações matemáticas.

São divididos em dois grupos, os modelos matemáticos:

- Modelos com parâmetros concentrados: onde a distribuição do sistema espacial não importa;

- Modelos com parâmetros distribuídos: onde a distribuição espacial é importante.

As equações utilizadas na elaboração de modelos matemáticos são mostrados na Tabela 2.1, abaixo:

Equação	Descrição		
Transporte	São as equações que descrevem as		
	taxas de transporte de energia, massa		
	e momento.		
Termodinâmica	São as equações derivadas da		
	termodinâmica clássica (entalpia,		
	entropia, calores de reação,		
	equilíbrio de fases, etc)		
Balanço	São as equações que descrevem os		
	balanços de massa e energia de um		
	determinado sistema.		
Cinéticas	São as equações que representam o		
	comportamento cinético de um sistema		
	químico reativo. Normalmente são		
	equações com coeficientes a serem		
	determinados empiricamente, ajustados		
	ao comportamento de uma determinada		
	reação química.		
Empíricas	São as equações baseadas em		
	observações experimentais (equações		
	para representação de propriedades,		
	regras de misturas, etc).		
Semi-empíricas	São as equações deduzidas a partir da		
	teoria, mas contém coeficientes		
	ajustados empiricamente por um		
	procedimento estatístico qualquer		
	(equação de Antoine par pressão de		
	vapor, equação de Wilke para a		
	viscosidade de gases, etc).		

Tabela 2.1 - Equações utilizadas nos modelos matemáticos.

2.2 - Destilação

Segundo Foust et alii (1982), o processo de separação mais amplamente usado na indústria química é а destilação. Esta operação unitária é também denominada fracionamento ou destilação fracionada. А separação dos constituintes está baseada nas diferenças de volatilidade, uma fase vapor entra em contato com uma fase líquida, e há transferência de massa do líquido para o vapor e deste para aquele. O líquido e o vapor contém, em geral, os mesmos componentes, mas em quantídade relativas diferentes. O líquido está em seu ponto de bolha (é a temperatura na qual principia a vaporização, ou seja, é a temperatura onde ocorre o aparecimento da primeira bolha de vapor no líquido), e o vapor em equilíbrio no seu ponto de orvalho (é a temperatura na qual principa a condensação, ou seja, é a temperatura onde ocorre o aparecimento da primeira gota de líquido no vapor). Havendo transferência simultânea de massa do líquido pela vaporização e do vapor por condensação, o efeito final e o aumento da concentração do componente mais volátil no vapor e do componente menos volátil no líquido.

2.2.1 - Conceito de estágio de equilíbrio

O modelo de estágio de equilíbrio, afirma que as correntes de líquido e de vapor que deixam um estágio de equilíbrio estão em completo equilíbrio uma com a outra e se podem usar as relações termodinâmicas para determinar as concentrações das duas correntes.

A adoção do modelo de estágio de equilíbrio divide o projeto de uma torre de destilação em três partes:

- Reunião de dados e métodos termodinâmicos necessário para prever as composições das fases em equilíbrio;

 Cálculo do número de pratos teóricos necessário para realizar a separação especificada;

- A conversão do número de estágios de equilíbrio ao número equivalente de práticas reais, Perry & Chilton (1980).

2.2.2 - Economia de energia de destilação

Estimativas indicam que 25 a 40% do total de energia consumida pelas indústrias, é usada para o funcionamento dos equipamentos de destilação, Rush Jr. (1980).

Segundo Weinstein (1985), três áreas devem ser consideradas quando nos defrontamos com o problema de conservação de energia em processos de destilação:

1 - Melhorias operacionais em colunas existentes, com pequenos investimentos (taxa de refluxo, ponto de alimentação, isolamento térmico, pré-aquecimento de alimentação, controle, efeito da pressão de operação, incrustação), etc;

2 - Modificações extensas no equilibrio existente (integração térmica em uma mesma coluna, integração térmica com outras correntes de processo, destilação extrativa);

3 - Outros processos de separação como alternativa
à destilação (extração líquido-líquido, adsorção, etc).

O consumo específico global de energia na destilação pode ser fortemente reduzido pela instalação de um sistema, de compressão mecânica dos vapores ou através da integração térmica das correntes.

Vários pesquisadores (Null (1976), Mostafa (1981), Quadri (1981), Collura (1988)), estudaram sobre a destilação com recompressão do vapor e todos eles mostraram que é viável economicamente guando as seguintes condições forem satisfeitas:

1 - a energia não é disponível de outras fontes de processos;

2 - baixas temperaturas requeridas para a refrigeração;

3 - baixas temperaturas de operação (limitação térmica do compressor);

4 - Pressão moderada;

5 - Diferença de temperatura entre topo e fundo da coluna é pequena.

Então, a maioria das aplicações práticas da técnica de destilação MVR ocorre em sistemas binários onde a separação é difícil (baixa volatilidade relativa), Muhrel et alii (1990), exigindo um grande número de estágios, alta razão de refluxo e conseqüentemente alto consumo energético, Ferré (1985).

Weinstein (1985), apresenta dois esquemas para transferir o calor do topo para base da coluna por recompressão mecânica dos vapores, mostrado a seguir:

 Compressão dos vapores do topo da coluna (Fig.
2.1): A tempertura de saturação dos vapores é aumentada por compressão antes da passagem no refervedor de aquecimento da base da coluna.

Fig. 2.1 - Compressão de vapores de topo de coluna.

- Compressão do fluido intermediário (Fig. 2.2): Os vapores do topo são condensados em um condensador/fervevedor, vaporizando o fluido intermediário; este fluido é, em seguida, comprimido para aumentar a temperatura de saturação, com o objetivo de atingir a temperatura necessária ao refervedor de aquecimento da base da coluna.

Fig. 2.2 - Compressão por fluido intermediário

Costa (1993) estudou o modelo de destilação convencional para o sistema Etanol-água (Fig. 2.3) e com recompressão mecânica do vapor (Fig. 2.4). As especificações do processo e os resultados obtidos são mostrados nas Tabelas 2.2 e 2.3, respectivamente. Tabela 2.2 - Dados operacionais empregados por Costa

Sistema Etanol - Água

Alimentação	Convencional	MVR
. Fluxo molar	13200 lbmo <i>l</i> /h	13200 lbmo1/h
. Composição molar		
do etanol	2,98	2,9%
. Local	Ponto ótimo	Ponto ótimo
. Pressão da alimen-		
tação	2 atm	2 atm
. Temperatura	210°F	90°F
Grau de Separação		
. Composição molar		
do etanol no topo	83%	83%
. Composição molar		
do etanol no fundo	0,01%	0,01%
Dados Operacionais		
. Pressão do topo	1,0 atm	1,0 atm
. Pressão de descar-		· · · · · · · · · · · · · · · · · · ·
ga do compressor	-	4,0 atm

Além dessas especificações, adotou-se o número de estágios em 30, a eficiência polítrópica de 70%, e em todas as simulações fixou-se, em cada prato, uma eficiência de 50% e uma queda de pressão de 5 mm Hg. Quanto ao modelo termodinâmico, adotou-se o modelo de UNIFAC.

Número	Carga térmica		Razão de R	efluxo	Trabalho	Economia
de	(Gj/h)				de	
Estágio					Compressão	
	Convencional	MVR	Convencional	MVR	6 J/h	
30	35,6272	34,6360	2,7922	2,8990	5,4267	84,77%

Tabela 2.3 - Resultados obtidos por Costa.

Fig. 2.3 - Coluna de destilação convencional

Fig. 2.4 - Destilação com recompressão do Vapor (MVRL)

Carta et alii, estudaram a separação da mistura etil benzeno - xilenos por destilação com recompressão mecânica de vapor (Fig. 2.5). A figura 2.6 mostra o ciclo termodinâmico.

Eles mostram que a característica mais aplicável requerida pelo sistema com a aplicação econômica da recompressão de vapor são mostradas a seguir:

- a pequena diferença do ponto de bolha dos componentes;

- a pequena pressão da coluna;
- um alto consumo de energia;
- baixas temperaturas no processo.

Fig. 2.6 - Ciclo termodinâmico da bomba de calor.

Fig. 2.5 - Coluna de destilação com recompressão de vapor.

As especificações do processo e os resultados obtidos são mostrados nas Tabelas 2.4 e 2.5 respectivamente.

Tabela 2.4 - Dados operacionais empregados por Carta et alii.

Alimentação	
- Fluxo molar, kg/h	16700
- Composição	37,8% etilbenzeno
	39,07% p-xileno
	28,97% O-xileno
Composição do destilado etilbenzeno	99%
Composição do topo, etilbenzeno	48
Temperatura de alimentação, K	383
Temperatura do topo, K	455
Temperatura do fundo, K	484
Pressão do topo, bar	2.93
Destilado, kg/h	4.250
Razão de Refluxo	63,5
Calor do Refervedor Mwatt	30.6
Vapor de topo, kg/h	274.252
Número real de pratos	432

Pressão de saída do compressor	6.09
Razão do compressor	2.33
Tempertura de saída do compressor, K	490
Potência do compressor, KW	6.078
Trocador de calor,	9579
Produção de vapor	5.00
Trabalhado horas por ano	8.000
Custos do equipamento	705
Compressor 1000	1407
Consumo energia elétrica horas por ano	2480

Tabela 2.5 - Resultados obtidos por R. Carta.

No esquema (Fig. 2.7) apresentado por Gonzales (1984), os vapores do topo de uma coluna de destilação são compressíveis por um compressor acionado por energia elétrica. A energia elétrica transforma-se em energia de pressão e temperatura que é absorvida pelos vapores, aumentando assim o seu nível energético, de forma a poder usar tais vapores para acionar o refervedor onde então os vapores são condensados. Caso fosse usado o sistema convencional com refervedor acionado com vapor das caldeiras e condensador de topo descartando a energía para AGR, o consumo total de energia seria muito maior. Entretanto, como a energia elétrica é realmente mais cara que a térmica e o custo de investimento pode ser maior, o sistema tem aplicação limitada a casos de destilações difíceis, que usam altos refluxos e onde as diferenças de temperatura entre o topo e o fundo são pequenos, exigindo baixa faixa de compressão dos vapores de topo.

Fig. 2.7 - Recompressão de vapor.

2.2.3 - Métodos rigorosos de destilação

2.2.3.1 - Estrutura do problema - equação MESH

Os algorítimos para a resolução do conjunto de equações algébricas não lineares advindo da modelagem de sistemas multicomponentes são os mais diversos, mas baseiam-se nas equações de MESH para formação do conjunto de equações.

As equações que aparecem no modelo de estágio de equilíbrio, conforme as Figuras 2.8 e 2.9, são mostrados a seguir, que representam respectivamente um estágio de equilíbrio genérico e uma cascata contra corrente de N estágios respectivamente.

As equações MESH, referem-se respectivamente a:

- Balanço de massa, equilíbrio de vapor e líquido, somatório das frações molares ($\sum x_i = 1$) e balanço energético.

Se designarmos C, o número total de composições; N, o número de estágios, para cada componente em cada componente em cada estágio, teremos balanços de energia, material de equilíbrio líquido vapor e os requerimentos de frações molares de líquido e vapor para cada prato que deverá ser igual a 1.

Os quatro conjuntos de equações são:

Tipo 1 - Equação M - Balanço de massa para cada componente (C equações para cada estágio).

21

$$M_{i,j} = L_{j-1}X_{i,j-1} + V_{j+1}Y_{i,j+1} + F_{j}Z_{i,j} - (L_{j} - U_{j})X_{i,j} - (V_{j} + W_{j})Y_{i,j} =$$

(2.1)

Tipo 2 - Equação E - Relação de equilíbrio para cada componente.

$$\mathbf{E}_{i,j} = \mathbf{Y}_{i,j} - \mathbf{K}_{i,j} \mathbf{X}_{i,j} = \mathbf{0}$$
(2.2)

Tipo 3 - Equação S - Somatório das frações molares (uma equação para cada estágio).

$$(s_{y})_{j} = \sum_{i=1}^{C} y_{i,j} - 1 = 0$$
(2.3)

$$(\mathbf{S}_{\mathbf{x}})_{\mathbf{j}} = \sum_{\mathbf{i}=1}^{\mathbf{c}} \mathbf{X}_{\mathbf{i},\mathbf{j}} - 1 = 0$$
(2.4)

Tipo 4 - Equação H - Balanço de energia e Entalpia (uma equação para cada estágio)

$$H_{j} = L_{j} - 1^{H}L_{j} - 1 + V_{j} + 1^{H}V_{j} + 1 + F_{j}H_{F_{j}} - (L_{j} + V_{j})H_{L_{j}} - (V_{j} + W_{j})H_{V_{j}} - Q_{j} =$$
(2.5)

onde os termos de energia cinética e potencial foram ignorados. Para simplificar tais equações, uma equação de balanço material poderá ser usada ao invés das equações (2.3) e (2.4). Ela é obtida por combinação destas duas equações, e a $\sum_{i=1}^{c} \mathbf{Z}_{i,j} = 1,0$ equação .Com a expressão (2.1) somada sobre os C componentes e sobre os estágios 1 até j, chegaremos ao balanço total de massa na seção de retificação, conforme a figura 2.7, temos:

$$\mathbf{L}_{j} = \mathbf{V}_{j+1} + \sum_{n=1}^{j} (\mathbf{F}_{n} - \mathbf{U}_{n} - \mathbf{W}_{n}) - \mathbf{V}_{1}$$
(2.6)

Uma cascata em contra corrente com N estágios, conforme a figura 2.9 é representada por N(2C+3) equações com [N(3C+10)+1] variáveis. Se especificamos N e todos os Fj, Zi,j, Tfj, Pfj, Pj, Vj, Wj e Qj, conseguiremos representar o modelo por N(2C+3) equações algébricas simultâneas com N(2C+3) variáveis de saída desconhecidas que compreendem todos os xi,j, Yi,j, Lj, Vj e Tj, onde as equações de Massa, Equilíbrio e Entalpia são equações não lineares. O conjunto de equações não lineares devem ser resolvidas por técnicas iterativas.

Fig. 2.8 - Estágio de equilíbrio genérico.

Fig. 2.9 - Esquema geral cascata contra-corrente.

2.2.4 - Matriz tridiagonal

2.2.4.1 - Cálculo das composições

O algorítimo da matriz tridiagonal é o grande responsável pelo sucesso dos procedimentos iterativos do ponto de, bolha. Ele resulta de uma forma modificada das equações de Massa, quando elas são obtidas a partir de outras equações, selecionando-se Tj e Vj como variáveis iterativas, que deixamos as N equações lineares modificadas na variável desconhecida fração molar na fase líquida. O conjunto de equações de cada componente é resolvido por um algorítimo eficiente de autoria de Thomas e aplicado por Wang & Henke.

A modificação da equação M é obtida pela substituição das equações (2.2) e (2.6) na equação (2.1) para eliminar Y e L. Os resultados para cada componente em cada estágio são os seguintes:

$$A_{j}X_{i,j-1} + B_{j}X_{i,j} + C_{j}X_{i,j+1} = D_{j}$$
 (2.7)

onde:

 $A_{j} = V_{j} + \sum_{m=1}^{j-1} (F_{m} - U_{m} - W_{m}) - V_{1} \quad 2 \le j \le N$ (2.8)

 $B_{j} = [V_{j} + 1 + \sum_{m=1}^{j} (F_{m} - U_{m} - W_{m}) - V_{1} + U_{j} + (V_{j} + W_{j})K_{ij}]$ $1 \le j \le N$ (2.9)

 $C_{j} = V_{j+1}K_{i,j+1} \qquad 1 \le N \le N-1 \quad (2.10)$ $O_{j} = -F_{j}Z_{i,j} \qquad 1 \le j \le N \quad (2.11)$

 $\label{eq:main} \mbox{De acordo com a figura 2.9, $X1,0 = 0, VN+1 = 0,$} W1 = 0 e U$N = 0.$}$

Se as equações do tipo M modificadas forem agrupadas por componentes, elas poderão ser separadas como uma série de $C_{i,n}(X_{i,n}, V_n, f_n)=0$, onde, as funções C_{in} representam os balanços das componentes.

As equações $C_{i,n}$ são, em geral, não lineares em $V_{i,n}$, pois os valores de $K_{i,n}$, V_n e f_n que aparecem nestas equações serão funções de $X_{i,n}$. No entanto no procedimento iterativo necessário para a solução, o conjunto $C_{i,n}$ é resolvido, em cada etapa, com um conjunto de valores dados de $K_{i,n}$, V_n e f_n ; o conjunto é resolvido, portanto, como se fosse linear nos $K_{i,n}$, com os coeficientes constantes. Por isso os $C_{i,n}$ pode ser representado pelas equações matriciais.

(2.12)

 $C_iX_i = F_i$

As matrizes dos coeficientes C_i , são tridiagonais e quadrados de ordem N (Fig. 2.8) os x_i e f_i são matrizes coluna, Perry e Chilton (1980).

2.2.5 - Método do ponto de bolha (Bublle-Point (BP))

Friday e Smith (1964), investigaram o comportamento do método BP quanto a convergência e sugeriram que este método é eficiente apenas para alimentações com pequenas faixas de ebulição. A Fig. 2.10, apresenta o algorítimo do BP, desenvolvido por Wang & Henke para este método.

O nome ponto de bolha refere-se ao fato de que um novo conjunto de temperaturas dos estágios, é calculado a cada nova iteração a partir das equações do ponto de bolha. No método, todas as equações são separadas e resolvidas sequencialmente, exceto para as M equações modificadas que são resolvidas separadamente para cada componente pela técnica da matriz tridiagonal. A especificação do problema consiste na localização dos estágios e das condições térmicas das alimentações, pressão a cada estágio, fluxo de todas as correntes de retiradas laterais, taxas de transferência de calor a partir e para todos os estágios exceto para o estágio 1 (condensador) e o estágio N (Refervedor), número total de estágios, taxa de refluxo externo no ponto de bolha e taxa de vapor destilado.

Para início dos cálculos, o perfil de temperatura e as vazões de vapor ao longo da coluna devem ser previamente

admitidos, antes do começo do procedimento iterativos. Para a temperatura admite-se um perfil de temperatura linear com relação ao número de estágios. A temperatura do topo é assumida como sendo a de orvalho dos produtos destilados, e a temperatura de fundos é assumida como sendo a de bolha dos produtos residuais para as vazões de vapor admite-se vazão molar constante ao longo da coluna.

Na resolução do método BP, os valores $K_{i,j}$ são requeridos, emprega-se, para primeira operação, o valor de $K_{i,j}$ ideal dado por:

$$K_{i,j} = \frac{P_i^{Sat}}{P}$$

(2.13)

Dispõe-se agora de um conjunto de xi,j de onde se pode calcular as novas temperaturas pelo ponto de bolha usando o método de Newton-Raphoson e antes porém, os xij são normalizados para garantir que os valores usados no cálculo das novas temperaturas, tenham soma unitária. A normalização é dada por:

$$(X_{i,j})_{normalizado} = \frac{X_{i,j}}{\sum_{i=1}^{\sum} X_{i,j}}$$
(2.14)

Os valores de Q1, QN são calculados a partir do balanço de energia, conforme a Fig. 2.9. Esses valores são dados por:

$$Q_1 = F_1 H_{f_1} + V_2 H_{V_2} - V_1 H_{V_1} - (V_1 + L_1) H_{L_1}$$
(2.15)

$$Q_{N} = \sum_{i=1}^{N} (F_{j}H_{fj} - W_{j}H_{Vj} - V_{j}H_{Lj}) - \sum_{i=1}^{N-1} Q_{j} - V_{1}H_{V1} - L_{N}H_{LN} (2.16)$$

Os novos valores de $V_{\rm j}$ são dados pela resolução da matriz didiagonal (ver apêndice B).

O critério é dado por:

$$\tau = \sum_{i=1}^{n} [\tau_{j}^{(k)} - \tau_{j}^{(k-1)}]^{2} \le 0,01N \qquad (2.17)$$

Partida

Especificação: todos Fj, Zij, condições da alimentação (TFj, PFj, ou HFj),

Pj, Vj, Wj; todos Qj exceto Q1 e QN

N; L (razão de refluxo), V1 (vazão do destilado)

Fig. 2.10 - Algoritmo de Wang-Menke para o mátodo do ponto de bolha.

2.3 - Equilíbrio Líquido-Vapor em Sistemas Miscíveis

2.3.1 - Modelos para cálculo de equilíbrio líquido-vapor

O critério que deve ser satisfeito para o equilíbrio entre uma fase líquida e uma fase vapor, nas mesmas condições de temperatura e pressão, é dado por:

 $F_i^{V} = F_i^{L}$ (i = 1,2,...N) (2.18)

para un componente na fase vapor,

$$\mathbf{F}_{\mathbf{i}}^{\nabla} = \mathbf{Y}_{\mathbf{i}} \boldsymbol{\phi}_{\mathbf{i}}^{\rho} \tag{2.19}$$

para um componente na fase liquida

 $\mathbf{F_i^L} = \mathbf{X_i Y_i} \mathbf{F_i^O} \tag{2.20}$

Portanto, substituindo as equações 2.19 e 2.20 na equação 2.18, obtém-se:

$$Y_i \phi_i \rho = X_i Y_i F_2^{\circ}$$
(2.21)

Segundo SMITH & VAN NESS (1980), quando a fugocidade padrão F_i° é dada pela regra de Lewis-Randall, F_i° . Em pressões baixa é possível fazer as seguintes hipóteses:

- a fase vapor se comporta idialmente;

- as coordenadas da fase líquida são dependente da pressão.

então, de acordo com a segunda hipótese, temos:

$$\mathbf{F_i}^{\circ} = \mathbf{F_i}^{\mathbf{L}} = \mathbf{F_i}^{\mathbf{Sat}} = \mathbf{\phi}^{\mathbf{Sat}} \rho_i^{\mathbf{Sat}} \qquad (2.22)$$

 $\label{eq:uma} \text{Uma vez que a fase vapor tem comportamento ideal,} \textbf{P_i}^{v} = \boldsymbol{\varphi_i}^{\text{Sat}} = 1.$

Substituindo estes resultados na equação (2.21), temos:

$$Y_{i} = \frac{X_{i}Y_{i}P_{i}^{Sat}}{P}$$
(2.23)

A constante de equilíbrio do componente i em uma mistura é definido como:

$$K_{i} = \frac{Y_{i}}{X_{i}}$$
(2.24)

Comparando a equação (2.24) com a equação (2.23),

obtemos:

$$K_{i} = \frac{Y_{i} P_{i}^{Sat}}{P}$$
(2.25)

2.3.1.1 - Modelo ASOG (Analytical Solutions of Groups)

Desenvolvido por Derr & Deal (1984), onde o coeficiente de atividade é dividido em duas partes:

- Contribuição devido a diferença de tamanho das moléculas, determinado pela equação de Flory-Huggings (1953).

 Contribuição devido a interação molecular determinada pela equação de Wilson (1964) com aplicação de parâmetros binários de grupos.

2.3.1.2 - Modelo UNIQUAC (Universal Quasi Chemical)

Desenvolvido por Abrams & Prausnitz (1975), onde energia livre de Gibbs em excesso é dividida em duas partes:

 termo combinatorial leva em conta a não idealidade da fase líquida devido a diferença no tamanho e forma das moléculas.

 termo residual leva em conta a não idealidade devido às interações intermoleculares.

2.3.1.3 - UNIFAC (Uniquac Functional Group Activity Coefficients)

O método UNIFAC foi originalmente desenvolvido por Fredenslund et alii (1975). É utilizado para prever o coeficiente

de atividade de componentes abaixo do ponto crítico, temperatura entre 300 e 425 K, pressão moderando (até 5 atm), líquidos miscíveis, misturas não eletrolíticas e não poliméricas, GMEHLING et alii (1982).

Conforme Prausnitz et alii (1975), o método é baseado no conceito de contribuição de grupos. A hipótese fundamental é que a contribuição de um grupo é independente da contribuição de um outro grupo. A mistura líquida é considerada como uma solução de grupos estruturais, tais como CH₃, OH, CO e outros que quando adicionados formam a molécula. Considerando que a propriedade física de um fluido é a soma das contribuições individuais de cada grupo funcional, é possível calcular as propriedades da mistura a partir das propriedades dos grupos ao invés das propriedades das moléculas.

2.4 - Sistema de Compressão

Compressores são máquinas operatrizes de fluxo compressível , são utilizadas para proporcionar a elevação de pressão do gás ou escoamento gasoso, normalmente superior a 2,5 atm.

Segundo Barbosa (1984), algumas condições são impostas na instalação de um compressor:

- pressão de sucção;
- temperatura de sucção;
- pressão de descarga;

- natureza do gás.

Resultam da interação do compressor com o sistema:

- Vazão;
- Potência de compressão;
- Temperatura de descarga.

2.4.1 - Teoria de compressão

onde n assume os seguintes valores:

- processo isométrico, n = ∞;

- processo isobárico, n = 0;

- processo isotérmico, n = 1;
- processo isoentrópico, n = K = $\frac{Cp}{----}$

Quando o expoente \mathbf{n} é diferente de 0, 1, K e ∞ , o processo é denominado politrópico.

2.4.2 - Trabalho de compressão

O trabalho é obtido a partir do balanço de massa em escoamento permanente, desprezando as variações de energia cinética e potencial gravitacional, obtém-se:

6)

$$W_{C} = -\int_{P_{1}}^{P_{2}} V_{dp}$$

Avaliando a integral e definindo o rendimento termodinâmico, para cada processo, temos:

(2.27)

- trabalho isotérmico: é calculado ao longo de uma evolução isotérmica.

$$W_{is} = R t_1 \ln(\frac{P_2}{P_1})$$
 (2.28)

$$\eta_{is} = \frac{W_{is}}{W_{real}}$$
(2.29)

- trabalho adiabático, é calculado ao longo de uma evolução adiabática

$$W_{K} = -\frac{K}{K-1} R t_{1} [(\frac{P_{2}}{P_{1}})^{\frac{K-1}{K}} - 1]$$
 (2.30)

$$\eta_{\rm K} = \frac{W_{\rm K}}{W_{\rm real}} \tag{2.31}$$

Os trabalhos ideais isotérmico e adiabático dependem apenas das características do sistema. Enquanto que, o trabalho ideal politrópico depende do estado final do gás, que resulta da interação máquina-sistema.

O rendimento politrópico resulta na melhor apreciação da qualidade do projeto, visto que provém da comparação entre dois processos cujos estudos inicial e final coincidem.

MATERIAIS E MÉTODOS

CAPÍTULO III

MATERIAIS E MÉTODOS

3.1 - Material Utilizado

Foi utilizado o simulador de processo CHEMCAD II -V.2.2, desenvolvido pela Chemstations Inc., para ser implementado em microcomputadores. Ele simula o processo em estado estacionário que realiza balanços de massa e energia em sistemas químicos, sendo muito usado em plantas químicas, petroquímicas e de gás natural. Permite simular desde simple equilíbrio líquido vapor até completas unidades químicas.

Neste trabalho foi utilizado um microcomputador tipo 486 DX.

3.2 - Metodologia da Simulação

O simulador CHEMCAD II, utiliza uma seqüência de módulos para o projeto e avaliação dos equipamentos, dividindo o problema de simulação global em suas partes, ou seja torres, trocadores, compressores, divisores etc, e exigindo a especificação completa de cada equipamento. A pressão de cálculo de cada modo, é pré-determinada pelo usuário com passagem automática, seguindo para outro módulo, quando a convergência é alcançada.

A simulação foi feita em duas partes: A destilação convencional e a destilação com recompressão mecânica do vapor (MVC). A primeira parte simula a unidade convencional (Figura 3.1), estudando a influência da localização do prato de alimentação, para um certo número de estágio, sobre a carga térmica e sua razão de refluxo.

A partir desta análise, estudou-se o comportamento da razão de refluxo em função do número de estágios, com o objetivo de se determinar o refluxo mínimo e a faixa de análise, com relação ao número de estágio, para a destilação com recompressão mecânica do vapor.

A segunda parte, estuda as unidades com recompressão mecânica do vapor (Figura 3.2), estudando a influência do número de estágios, das composições da alimentação, carga térmica e razão de compressão.

No estudo da destilação convencional, para análise da influência do prato da alimentação as especificações dos processos são mostradas na Tabela 3.1.

Tabela 3.1 - Dados operacionais empregados na coluna convencional.

Sistema Acetona - Álcool Isopropílico

Alimentação:

. Fluxo molar: 100 kg mi/h

. Composição molar da acetona: 70%

. Local ponto ótimo

Grau de Separação:

. Composição molar da acetona no topo: 99,5%

. Composição molar da acetona no fundo: 0,5%

. Estado - Estacionário

Dados de Operação

Coluna convencional:

- . Pressão do topo: 1 atm
- . Pressão da alimentação: 1 atm

Coluna MVR:

- . Pressão do topo: 1.0 atm
- . Pressão de descarga do compressor: 2.5 atm.

Na avaliação da flexibilidade, manteve-se as especificações citadas acima, porém variando em cada, as composições da alimentação (além disso, adotou-se o número de estágios em 30).

Para a destilação com recompressão mecânica do vapor, na análise da influência do número de estágio, manteve-se a especificação da Tabela 3.1. Além dessas especificações, adotou-se a eficiência politrópica de 75%, na avaliação da flexibilidade, manteve-se as especificações citadas. Também usou-se os mesmos dados operacionais em termo das composições da alimentação, da análise de flexibilidade da unidade convencional.

Em todas as simulações fixou-se, em cada prato, uma eficiência de 50% e uma queda de pressão de 5 mm Hg.

Figura 3.1 - Coluna de destilação convencional.

Figura 3.2 - Destilação com recompressão do vapor.

3.3 - Métodos Utilizados pelo Simulador

3.3.1 - Torre de destilação

O módulo tower faz cálculo de equilíbrio líquido vapor multi-estágio, permitindo simular qualquer coluna simples, incluindo colunas de destilação e absorção.

Trabalha com colunas de até 100 estágios, 4 correntes de alimentação e 4 correntes de retirados laterais. Possui convergência muito rápida. É recomendado para a maioria dos sistemas químicos, com eficiência de estágio igual a 1.

Constitui-se num módulo altamente flexível, podendo-se especificar condições para o condensador, revertedor ou qualquer prato. Especificações como: razão de refluxo, temperatura, fração molar, fração recuperada, peso molecular de produtos, entre outras são também aceitas.

O módulo tower usa um algorítimo tipo inside-out para simular os cálculos prato a prato. O loop externo fornece um modelo local de entalpia e K (constante de equilíbrio) simples para ser usado em cálculos no loop interno. O loop interno executa a maioria dos cálculos de equilíbrio mássico-energético, baseado no modelo criado pelo loop externo, para encontrar as equações Mesh e as especificações do usuário. Quando o loop interno converge, o controle retorna ao loop externo que atualiza o modelo inicial usando resultados de cálculos rigorosos da

controle retorna ao loop externo que atualiza o modelo inicial usando resultados de cálculos rigorosos da constante de equilíbrio e entalpia. Quando o modelo simples equipara-se ao modelo argoroso dentro de uma especificada tolerância, o loop externo é dado como convergido. Se não, um novo e simples modelo entalpia e "K" é gerado pelo loop externo e os cálculos dentro do loop interno são repetidos.

3.3.2 - Sistema de compressão

O "módulo comp" simula operações iso-entrópicas e politrópicas. São especificadas as seguintes variáveis:

- Pressão final;
- Razão de compressão;
- Trabalho requerido.

Se a pressão no final ou a razão de compressão for especificada, as condições de corrente de saída e o trabalho requerido são calculados. Se o trabalho requerido for especificado, a pressão final e as condições da corrente de saída são calculadas. A eficiência adiabática pode ser obtida se a pressão final e o trabalho de compressão forem especificadas.

Para o nosso trabalho foi usada uma compressão politrópica.

3.3.3 - Trocador de calor

O "módulo HTXR" é usado para simular um trocador com uma ou duas corrente de entrada. Para uma corrente de entrada, o trocador pode ser usado como aquecedor ou resfriador, se o trocador possui duas correntes de entrada, dependendo da especificação, formas de operações mais complicadas são avaliadas, tais como:

- Cálculos de utilidade;
- Avaliação;
- Projeto do equipamento.

3.3.4 - Válvula

O "módulo VALV" faz um flash adiabático da corrente de entrada. A pressão final; queda de pressão, temperatura de bolha ou de orvalho pode ser especificadas.

No caso da especificação do ponto de bolha ou de orgalho, o módulo primeiro determina a pressão correspondente, depois a performance do flash adiabático. O módulo, também é utilizado como um separador de fases, se duas ou mais correntes de saídas forem epecificadas.

3.3.5 - Divisor

O "módulo DIVI" produz, a partir de uma corrente de entrada, diversas correntes de saída com a mesma composição e propriedades intensivas. O fluxo molar ou a composição molar podem ser especificadas.

3.4 - Propriedades Termodinâmicas

O CHEMCAD II provém uma grande variedade de opções de modelos para gerar a constante de equilíbrio K, entalpia, entropia, densidade, viscosidade e tensão superficial para as correntes do processo.

3.4.1 - Cálculos do equilíbrio de fases

O tratamento do equilíbrio líquido-vapor seria simples se todos os sistemas obedecessem a lei de Raoult, o que não é o caso do sistema do trabalho, pois, nestas circunstâncias, não seria necessária qualquer informação a respeito das misturas constituintes das fases. O fracasso da lei de Raoult deve, fundamentalmente, às diferenças entre as dimensões das moléculas e às interações entre as moléculas dos componentes.

O cálculo da constante de equilíbrio, depende do modelo termodinâmico selecionado pelo usuário. A Tabela 3.2,

apresenta as possibilidades de seleção mais importante para a destilação.

Tabela 3.2 - Métodos para o cálculo da constante de equilíbrio

Equação de Estado	Soave-Redlicen-Kwong Grayson-Street/Chad- Seader Peng-Robinson API Soave-Redlich-Kwong	$K_{i} = \frac{\phi_{i}L}{\phi_{i}V}$	São usadas principalmen- te para sis- temas de Hi- drocarbonetos
	dificador (4 parâmetros)		
Semi- Empírico	Grayson-Streed modifica- ção do modelo de Chow- Seada	$K_{i} = \frac{V_{i}^{0}}{\phi_{i} V}$	É usada para sistemas de Hidrocarbone- tos e frações pesadas de
			petróleo
Método do Coeficiente de atividade	UNIQUAC UNIFAC NILSON VAN LAAR NRTL MARGULES	$K_{i} = \frac{Y_{i} F_{i}^{O} L}{P_{i} F_{L}^{V}}$	São usados em sistemas quí- micos e com- ponentes não polares
	SCATCHARD-HILDEBRAND		
•	Pressão de vapor	$K_{i} = \frac{P_{i}sat}{P}$	É usado quando as fases vapor e líquido se comportam idealmente.

Fonte: Manual CHEMCAD II.

3.4.2 - Equação de estado

O comportamento do estado de uma substância é conhecida através da relação PVT, podendo matematicamente serão representados por F(P, T, V) = 0, que nos leva a equação de estado.

3.4.2.1 - Aplicação

É usada para avaliar propriedades (de substâncias puras ou misturas), tais como:

- 1 Densidade das fases líquida e vapor;
- 2 Pressão de vapor;
- 3 Propriedades críticas das misturas;
- 4 Relações de um equilíbrio líquido-vapor;
- 5 Funções desvios da idealidade para entalpia e

entropia.

3.4.3 - Métodos do coeficiente de fugacidade

Os coeficientes de fugacidade da fase vapor são determinados pela equação de estado de Soave-Readlich-Kwong.

Equação de Soave-Redlich-Kwong:

$$P = (Rt - V - b) - \frac{a}{V(V + b)} e$$
 (3.2)

$$z^{3} - z^{2} + (A - B - B^{2})xz - AB = 0$$
 (3.3)

Coeficiente de fugacidade da fase vapor:

$$\ln \phi_{i}^{\nabla} = -\ln(Z - B) + (Z - 1)B; - A / b(A_{i} - B_{i})\ln(1 + B / Z)$$

(3.4)

Desvio de entalpia

$$\frac{H-H^{H}}{RT} = 2 - 1 - \frac{A}{B} \left[1 - \frac{T}{a} \frac{da}{dt} \ln \left(1 + \frac{B}{2}\right) \right] (3.5)$$

onde

$$b = \sum_{i=1}^{n} [x_i, b_i] \qquad b_i = 0,08664 \text{ RTc}_i Pc_i$$

$$a = \sum_{i=1}^{n} \sum_{j=1}^{n} (x_{i}x_{j}(a_{i}a_{j}))^{0,5} (1 - K_{ij}))$$

$$a_{i} = a_{c_{i}}a_{i} \qquad a_{c_{i}} = \frac{0.42748(RTc_{i})^{2}}{Pc_{i}}$$

$$a_{i}^{0,5} = 1 + \mu_{i}(1 - Tr_{i}^{0,5})$$

$$\mu_{i} = 0.48 + 1.574\omega_{i} - 0.176 \quad \omega_{i}^{2}$$

$$A = \frac{P}{(P7)^{2}} \qquad B = \frac{bP}{RT}$$

$$B_{i} = \frac{b_{i}}{b} \qquad A_{i} = \frac{1}{a} \left[2ai^{0,5}\sum_{j}^{n} x_{j}a_{j}^{0,5}(1 - K_{ij})\right]$$

$$T(\frac{da}{dt}) = -\sum_{i=j}^{n} \sum_{j=1}^{n} x_{i}x_{j}\mu_{j}(a_{c_{i}}a_{c_{j}}T_{ij}^{0,5}) \quad (1 - K_{ij})$$

A fugacidade no estado padrão, é definida como:

$$\mathbf{F}_{i}^{\text{OL}} = \mathbf{P}_{i}^{\text{sat}} \phi_{i} \exp\left[\left(\mathbf{P} - \mathbf{P}_{i}^{\text{sat}}\right) \frac{\mathbf{V}_{i}}{(\mathbf{RT})}\right] \qquad (3.6)$$

3.4.4 - A pressão de vapor

A pressão de vapor das componentes puras é calculada através da equação de Antoine.

$$\ln p_{i}^{sat} = A - \frac{B}{T - C}$$
(3.7)

3.4.5 - Modelo UNIFAC

Foi escolhido como método para cálculo do coeficiente de afinidade, o método UNIFAC, de características préditivas, e que faz uso do método de contribuição dos grupos e é adequado para sistemas químicos líquidos não ideais.

3.4.6 - Modelos de entalpia e entropia

A entalpia de uma corrente de processo é calculada segundo a equação:

 $H^{\star} = H^{\star} + (\frac{H - H^{\star}}{RT}) . RT$ (3.8)

onde, H^{*} e a entalpia do gas ideal, calculada por:

$$H^* = \int C_{p} dt \tag{3.9}$$

com $c_p = a + bT^2 + CT^3 + dt^4 + CT^5 + fT^6$ (3.10)

Com as constantes a,..., f armazenadas no banco de dados do simulador o

 $\frac{H-H^2}{RT}$ e' a função de desvio da entalpia.

Quando o modelo de Soave-Redlich-Kwong (SRK) é selecionado,os fatores de compressibilidade e desvios de entalpia, são obtidos a partir da equação de estado SRK para a fase líquida e gasosa, sendo o modelo bastante acurado para sistemas contendo Hidrocarbonetos. A equação é:

 $\frac{H - H^{*}}{RT} = Z - 1 - \frac{A}{B} [1 - T / q * dq / dt]^{*} h(1 + B / 2) \quad (3.11)$ $T(dg / dt) = -\Sigma \Sigma x_{i} * x_{j} * m_{j} * (a_{c_{i}} * a_{c_{j}} * Tr_{j}^{0,5}) * (1 - K_{ij})$ (3.12)

A entalpia das correntes é calculada através da equação:

$$s = \int C_D / T * dt + s_D$$
 (3.13)

onde:

 $s_p = s - s^*$, e' o desvio da entropia.

Com a escolha do modelo SRK, o desvio de entropia e' calculado conforme se segue:

 $s - s^* / R + hP / Po = h(2 - B) + A / B^*[T / q dq / dt] * (1 + B / 2),$ (3.14)

Onde Po é a pressão de referência (14.699 psi).

RESULTADOS E DISCUSSÕES

CAPÍTULO IV

RESULTADOS E DISCUSSÕES

4.1 - Destilação Convencional

Os resultados das simulações são mostrados nas Tabelas 4.1 e 4.2. Os dados da Tabela 4.1 foram obtidos fixando o número de estágios e avaliando uma ótima localização do prato de alimentação.

A alimentação ótima, foi definida, como sendo, aquela em que se obtém a menor razão de refluxo para uma determinada especificação.

As especificações do processo utilizadas são mostradas na Tabela (3.1).

4.1.1 - Localização da alimentação

. Tendo como parâmetro o número de estágios, foi determinada a localização do prato de alimentação, onde graficamos a influência do estágio de alimentação sobre a razão de refluxo (Figura 4.1.a) e a influência do estágio de alimentação sobre a carga térmica (Figura 4.1.b). Observa-se que a razão de refluxo e a carga térmica variam em função da localizaçõ do prato de alimentação. A localização do prato de descarga exerce influência significativa sobre a carga térmica e razão de refluxo, quando o número de estágio está próximo ao valor mínimo (Figura 4.2) tornando-se independente, na faixa de análise do prato de carga, para número de estágios acima de 25.

Este comportamento se deve ao número reduzido de estágio na retificação.

Com a alimentação em uma bandeja cuja concentração não está próxima à sua composição, ocorre uma contaminação por efeito de mistura, alterando os perfis de temperatura e concentração ao longo da coluna, perdendo a eficiência de separação.

Portanto, necessita-se aumentar a razão de refluxo, o que implica em um aumento da carga térmica, para realizar a separação especificada.
Estágios	Prato de	Razão de	Carga Térmica	ΔP
	Alimentação	Refluxo	K _i /h	atm
	13	5.3021	1,359x10 ⁷	
	14	4.9991	1,295x10 ⁷	
20	15	4.9546	1,285x10 ⁷	0,256
	16	5.1003	1,316x10 ⁷	
	17	5.5373	1,410x10 ⁷	
	17	3.4	0,9532x10 ⁷	
	18	3.2893	0,9295x10 ⁷	
25	19	3.2390	0,9186x10 ⁷	0,32
	20	3.2608	0,9234x10 ⁷	
	21	3.3451	0,9413x10 ⁷	
	22	2.7641	0,8179x10 ⁷	
	23	2.7290	0,8104x10 ⁷	
30	24	2.7217	0,8098x10 ⁷	0,384
	25	2.7461	0,8141x10 ⁷	
	26	2.8183	0,8294x10 ⁷	
	26	2.5361	0.77x10 ⁷	
	27	2.5098	0,7644x10 ⁷	
35	28	2.4935	0,7608x10 ⁷	0,448
	29	2.5020	0,7627x10 ⁷	
	30	2.5223	0,7671x10 ⁷	
	31	2.3703	0,7350x10 ⁷	
	32	2.36	0,7328x10 ⁷	0,512
40	33	2.3551	0,7317x10 ⁷	
	34	2.3714	0,7354x10 ⁷	
<u></u>	35	2.3834	0,7378x10 ⁷	

Tabela 4.1 - Resultados das simulações para a coluna convencional.

Tabela 4.2 - Resultados das simulações para a Destilação Convencional.

Composição da	Razão de Refluxo	Carga Térmica
(molar)		kg/h
0.65	2.7610	0,7632x10 ⁷
0.70	2.7217	0,8089x10 ⁷
0.75	2.6996	0,8619x10 ⁷
0.80	2.6696	0,9100x10 ⁷

Figura 4.1a - Influência do Estágio de Alimentação Sobre a Razão de Refluxo.

Figura 4.1b - Influência do Estágio de Alimentação Sobre a Carga Térmica.

4.1.2 - Razão de refluxo

Quando se projeta colunas de destilação, o número de estágios necessários para realizar uma determinada separação depende da escolha do refluxo de operação. Então a otimização do refluxo torna-se um problema onde o objetivo é operar mínimos, mas garantindo que os produtos estejam dentro da especificação, CAMARGO (1990). O refluxo ótimo está situado entre 1.1 a 1.5 vezes o refluxo mínimo PERRY & GREEN (1984). O número de estágios em função da razão de refluxo teve como objetivo o estudo da obtenção do refluxo mínimo e a definição da faixa de análise, com relação ao número de estágios, e o prato de alimentação ótimo para a destilação com recompressão' mecânica do vapor (MVR). Pela Figura 4.2, observa-se que o refluxo mínimo é aproximadamente 2.4. Então encontra-se o valor da razão de refluxo ótima de operação entre 2.6 a 3.6, correspondendo, a partir da Figura 4.2, a um número entre 24 a 33 estágios. Neste trabalho, adota-se a faixa de 20 a 40 estágios para análise da destilação MVR.

Figura 4.2 - Influência da Razão de Refluxo Sobre o Número de Estágios.

4.1.3 - Composição da alimentação

A Figura 4.3 apresenta o efeito da composição da Acetona na alimentação sobre a carga térmica e a razão de refluxo. O comportamento inverso, com relação a quantidade de Acetona na alimentação, entre a carga térmica e razão de refluxo, devido o aumento da composição da Acetona, produz uma diminuição da temperatura de saturação da alimentação, diminuindo a temperatura em cada estágio, necessitando assim de um aumento da carga térmica para manter o perfil de temperatura e atingir as epecificações do processo. Enquanto que a razão de refluxo, a alimentação entra na coluna com maior pureza, necessitando menor razão de refluxo para efetuar a mesma separação.

4.2 - Destilação com Recompressão Mecânica do Vapor (MVR)

Através dos resultados obtidos para a coluna convencional foi possível montar a configuração MVR.

Foi estudado a influência do número de estágio, composição da alimentação e a razão de compressão do vapor. Manteve-se as especificações da Tabela (3.1), exceto os parâmetros analisados em cada caso.

Para a análise da influência das composições da alimentação e compressão, o valor do refluxo foi fixado como sendo 3 vezes o destilado. Assim, o número de estágios foi tomado como 30, com a localização da alimentação no ponto ótimo, os resultados das simulações são mostrados na Tabela 4.3.

4.2.1 - Número de estágios

Foram fixados 5 valores para o número de estágio da coluna. O prato foi escolhido de acordo com a destilação convencional. A Figura 4.4 mostra o comportamento de trabalho de compressão em função do número de estágios. Carga térmica é proporcional ao número de estágios.

Este comportamento deve-se ao fato de que quanto menor o número de estágios maior será a razão de refluxo, conseqüentemente maior será a vazão de vapor de topo. Como o trabalho de compressão é função da vazão de vapor do topo, o aumento desta vazão ocasiona uma elevação deste trabalho, como também para vaporização de parte do refluxo quando a pressão é reduzida de 2,5 pra 1 atm.

	Razão de Refluxo	Carga Térmica	Trabalho de Compressão kg/h
Núme			
ro de			
Estágios			
20	7.30	0.153015x10 ⁸	0.20214×10 ⁷
25	3.327	0.843218x10 ⁷	0,10512x10 ⁷
30	3.292	0.8366x10 ⁷	0.10426x10 ⁷
35	3.2618	0.8314x10 ⁷	0.10351x10 ⁷
40	3.081	0.789648x10 ⁷	0.099166x10 ⁷
Composição	Razão	Carga Térmica	Trabalho de Compressão
da	de		
Alimenta-	Refluxo	kg/h	kg/h
ção			
0.65	3.35	0,7526x10 ⁷	0.098092x10 ⁷
0.70	3.293	0.8366x10 ⁷	0.10426x10 ⁷
0.75 .	3.14	0.8429x10 ⁷	0.1077x107
0.80	2.99	0.8896x10 ⁷	0.11113x10 ⁷

Tabela 4.3 - Resultados das simulações para o MVR

Figura 4.4 - Influência do Estágio Sobre o Trabalho de Compressão.

4.2.2 - Composição da alimentação

A simulação foi realizada variando a composição da alimentação, Figura 4.5. Veirifica-se que o trabalho de compressão é diretamente proporcional a composição da alimentação.

Esse efeito pode ser explicado observando-se que, para uma determinada especificação de processo, quanto mais concentrado for a alimentação, maior será o fluxo de vapor na seção de retificação. Conseqüentemente, maior será a vazão de destilado e menor o refluxo. Portanto, como o trabalho de compressão é função da vazão de vapor de topo, o aumento de vapor produz uma elevação deste trabalho.

Figura 4.5 - Influência da Concentração da Acetona na Alimentação Sobre o Trabalho de Compressão.

4.2.3 - Compressão do vapor

As simulações foram realizadas variando a compressão do vapor. A Figura 4.6 mostra o comportamento da carga térmica em função da compressão do vapor, onde verifica-, se que a carga térmica é inversamente proporcional a compressão do vapor. Este comportamento deve-se ao fato de que quanto maior a pressão de descarga do compressor, maior será a fração vaporizada e conseqüentemente menor será a vazão interna do líquido na torre, acarretando uma menor carga térmica, para vaporização do líquido.

Tabela 4.4 - Resultados das simulações para a razão de compressão do vapor.

Pressão	Razão de	Carga Térmica	Trabalho de
(atm)	Refluxo	kg/h	Compressão
2	3.24	0.8515x10 ⁷	0.07675x10 ⁷
2.5	3.23	0.8305x107	0.10343x10 ⁷
3	3.23	0.8083x107	0.12499x10 ⁷
3.5	3.23	0.7655x10 ⁷	0.144053x10 ⁷

4.3 - Economia de Energia

Em geral, uma instalação de compressão mecânica de vapor não é outra coisa senão uma bomba de calor em circuito fechado.

A adição do compressor para pressurizar o vapor de topo da coluna convencional, é uma modificação que exige um grande investimento inicial, mas resulta em uma grande redução do consumo energético da instalação. Porém a implantação deste sistema, poderá ser invisível financeiramente, pois o compressor é acionado por energia elétrica e esta é geralmente mais cara que a energia térmica.

A eficiência deste trabalho é comprovada quando comparamos a destilação com recompressão mecânica do vapor com a destilação convencional. Estes resultados são mostrados na Tabela 4.5, onde procuramos estabelecer as condições mais adequadas de operação com o objetivo de reduzir o consumo energético do modelo estudado.

Tabela 4.5 - Compressão entre a carga térmica do sistema convencional e o trabalho de compressão do sistema MVR.

Número de Estágio	Carga Térmica K Joules/h	Trabalho de Compressão K J/h	Economia
20	1.285x10/	0.20214x10/	84,278
25	0.9186x107	0.10512x10/	88,55%
30	0.8089x10/	0.10426x10/	87,118
35	0.7608×10^{7}	0.10351x10/	86,39%
40	0.7317x10/	0.099166x10/	86,45%
Composição da			
Alimentação			
0.65	0.7632x107	0.098092x10 ⁷	84,148
0.70	0.8089x107	0.10426x10/	87,11%
0.75	0.8619x10/	0.1077x10 ⁷	87,50%
0.90	0.9100x107	0.11113x10 ⁷	87,78%

Carga Térmica.

65

CONCLUSÕES

CAPÍTULO V

CONCLUSÕES

A partir dos resultados obtidos pode-se concluir. - Quanto ao estudo da coluna convencional:

 Para a redução do consumo energético, a otimização do prato de alimentação é um fator muito importante.

 Com o aumento da composição da Acetona na alimentação, houve um aumento na razão de refluxo e conseqüentemente um aumento na carga térmica.

 A coluna deve ser projetada para uma razão de refluxo de operação entre 2.6 a 3.6, correspondendo a um número de 24 a 33 estágios.

- Quanto ao estudo da Destilação com Recompressão Mecânica do Vapor:

 A carga térmica é inversamente proporcional ao número de estágios.

 O trabalho de compressão é diretamente proporcional a composição da Acetona na destilação.

- A carga térmica é inversamente proporcional a compressão do vapor.

- Com o aumento da pressão de descarga do compressor, têm-se uma queda de carga térmica.

- A viabilidade de implantação de um sistema de compressão está intimamente ligado ao custo de energia elétrica.

SUGESTÕES

CAPÍTULO VI

SUGESTÕES

Com o objetivo de dar continuidade ao trabalho, sugerimos as seguintes etapas:

- Avaliar a viabilidade econômica, analisando o investimento inicial e a taxa de retorno obtida com o sistema de compressão.

- Fazer um estudo em cima da razão de compressão.

- Realizar os cálculos relativos a hidrodinâmica

da coluna, em termos de diâmetro, espaçamento entre os pratos, eficiência, etc.

REFERÊNCIAS BIBLIOGRÁFICAS

REFERÊNCIAS BIBLIOGRÁFICAS

- ABRAMS, D.S.; & PRAUSNITZ, J.M. AICHE, J; 21, 116, 1975, apud REID, R. C; PRAUSNUTZ, J;M; & POLING, B.E: The Properties of Gases and Liquids. McGraw-Hill Book Company, 1989.
- ANDERSON, T.F. & PRAUSNITZ, J.M. Application of the UNIQUAC Equation to Calculation Multicomponent Phase Equilibria.1. Ind Eng. Chem. Process Des. Dev. Vol 17, N° 4, 1978.BARBOSA, P.S., Compressores, PETROBRÁS, CENPES-DIVEN, 2ª edição, 1984.
- BROUSSE, E; CLAUDEL, B; & JALLUT, C. Modeling and Optimization of the Steadystate Operation of a Vapor Recompression Distillation Column, Chem.Eng. Sci.40,2073-2078, 1985.
- CARTA, R., KOVACID, A., & TOLA, G. Separação da mistura do etil benzeno-xilenos por destilação: Possível aplicação da recompressão do vapor. Chemical Eng. Commum. Vol 19, p.157-165, 1982.

- CHEMICAD II, Processos Flowsheet Simulator Chemstations inc. Engineering Software for the PC, 952, Echo Lane 450, Houston.
- COLLURA, M. A. & LUYBEN, W. L; Energgy-Saving Distillation Designs in Ethanol Production. Ind. Eng. Chem. Res. 27, p.1686-1696, 1988.
- DERR, E. L. and DEAL, C. H., Inst. Chem. Eng. Symp. Ser. (Lond.), 3, 40 (1969).
- FERRÉ, J.A.; CASTELLS, F. & FLORES, J; Optimization of a Distillation Column with a Direct Vapor Recompression Heat Pump. Ind. Eng. chem. Process Dev., 24, p.128-132, 1985.
- FLORY, P. J., Principles of polymer chemistry, cornell University Press, Sthaca, N. Y., 1953.
- FOUST, A.S., WENZELL, L.A., CLUMP, W.C., MAUS, L. & ANDERSEN, L.B., Princípios das Operações Unitárias, Guanabara Dois, 2ª ed., Rio de Janeiro, 1982.

FREDENSLUND,A; JONES,R.L; & PRAUSNITZ, J.M. AICHE J;21,1086, 1975, apud REID, R.C; PRAUSNITZ, J.M; & POLING, B.E. The Properties of Gases and Liquid. McGraw-Hill Book Company, 1989.

- GONZALEZ, G.S. Economia de energia em projetos. Revista Brasileira de Engenharia Química, p. 7-16, julho, 1984.
- GUNDERSEN, T; Computer and Chem. Eng; 3,245, 1982, apud CHEMCAD II.
- KERN, D.Q. Processos de Transferência de Calor. Ed. Guanabara Dois, Rio de Janeiro, 1982.
- MOSTAFA, H. A. Thermodynamic Availability Analysis of Fractional Distillation with Vapor Recompression, Can. J. Chem. Eng. 59, 487-491.
- MUHRER, C. A; COLLURA, M. A. & LUYBEN, W. L. Control of Vapor Recompression Distillation Columns. Ind. Eng.Chem. Res. 29, p.59-71, 1990.
- NULL, H. R. Chem. Eng. Prog. 63(7), p.58-64, 1976. apud MUHRER, C.A; COLLURA, M.A. & LUYBEN, W.L..... 1990.

- PERRY, R. H. & CHILTON, C. H., Manual de Engenharia Química, 5ª ed., Guanabara Dois, Rio de Janeiro, 1980.
- PERRY, R.H. & GREEN, D.W., Chemical Engineerings' Handbook, 6^a ed., Guanabara Dois, Rio de Janeiro, 1984.
- QUADRI, G. P. Hydrocarbon Process, 60, p.119-126, 1981. apud MUHRER, C.A., COLLURA, M.A. & LUYBEN, W.L.....1990.
- REID, R.C. PRAUSNITZ, J. M. & POLING, B.E. The Properties of Gases and Liquids. McGraw-Hill Book Company, 1988.
- SMITH, J.M; & VAN NESS, H. C; Introdução à Termodinâmica da Engenharia Química, Ed. Guanabara Dois, Rio de Janeiro, 1980.
- SOAVE, G; Chem. Eng. Sci.; 27,1197, 1972, apud CHEMCAD II, V-22.
- WEINSTEIN, E. Economia de Energia em Destilação. Revista Brasileira de Engenharia Química, 8, p.11-23, Julho, 1985.

WILSON, G. M. J. Am. Chem. Soc., 86:127 (1964).

A-1 Equação tipo M modificada

A equação 2.7 é obtida combinando as equações (2.2) e (2.1) para eliminar Y₁, j, Y₁, j+1,

 $L_{j-1}X_{i,j-1} + V_{j+1}K_{i,j+1} + F_{j}Z_{i,j} - (L_{j} + V_{j})X_{i,j} - (V_{j} + W_{j})K_{i,j}X_{i,j} = 0$ (A - 1.1) Rearranjando a equação A-1.1, tem-se:

$$L_{j} - 1X_{i, j} - 1 - [(V_{j} + W_{j})K_{i, j} + (L_{j} + V_{j})]X_{i, j} - V_{j} + 1K_{i, j} + 1X_{i, j} + 1 = -F_{j}Z_{i, j} (A - V_{j}) + 1K_{j} + 1K$$

definindo A_j , B_j , C_j $L_i, jX_i, j-1 - [(V_j + W_j)K_{i,j} + (L_j + V_j)]X_{i,j} - V_j + 1K_{i,j} + 1X_{i,j+1} = -F_jZ_{i,j}$ (A - 1.2)

definindo Aj, Bj, Cj e Dj, como:

 $A_j = L_j - 1$

вj	=	-[$(V_j + W_j)K_{i,j} + (L_j + V_j)$]	:	2	≤	Ċ	≤	N	(A - 1.3)
cj	=	V _{j + 1} K _{i, j}	:	1	≤	Ċ	≤	ы	(A - 1.4)
Di	=	-FiZi, i		1	≤	j	≤	N - 1	(A - 1.5)
2		5 - 7 5		1	<	÷	<	N	(A - 1, 6)

onde

 $L_{j-1} = V_j + \sum_{m=1}^{j-1} (F_m - U_m - W_m) - V_1$ (A - 1.7)

$$L_{j} = V_{j+1} + \sum_{m=1}^{j} (F_{m} - U_{m} - W_{m}) - V_{1}$$
 (A - 1.8)

substituindo estas definições na equação A - 1.2

$$A_{j}X_{i,j-1} + B_{j}X_{i,j-1} + C_{j}X_{i,j-1} = D_{j}$$
(2.7)

Esta equação sendo escrita para n estágios dá um conjunto de equações cujos coeficientes formam uma matriz tridiagonal.

A-2 Algorítmo de Thomas

A-2.1 Cálculo das Composições

No desenvolvimento do algorítmo de Thomas, escreve-se a equação 2.7 para o estágio de topo (estágio 1).

$$X_{i,1} = \frac{D_1 - C_1 X_{i,2}}{B_1}$$
 (A - 2.1)

Para o estagio 2, a equação 2.7, torna - se:

$$A_2X_{i,1} + B_2X_{i,2} + C_2X_{i,3} = D_2$$
 (A - 2.2)

combinando as equações (A - 2.1) e (A - 2.2) para eliminar $X_{i,1}$, temos:

$$X_{i,2} = (\frac{D_2 - A_2q_1}{B_2 - A_2P_1}) - \frac{C_2}{B_2 - A_2P_1} X_{i,3}$$
 (A - 2.3)

Em geral, temos:

$$X_{i,j} = \frac{D_{j} - A_{j}q_{j-1}}{B_{j} - A_{j}P_{j-1}} - \frac{C_{j}}{B_{j} - A_{j}P_{j-1}} X_{i,j+1} \qquad (A - 2.4)$$

definindo P_j e q, como:

$$P_{j} = \frac{C_{j}}{B_{j} - A_{j}P_{j} - 1}$$
 (A - 2.5)

$$q_{j} = \frac{D_{j} - A_{j}q_{j} - 1}{B_{j} - A_{j}P_{j} - 1}$$
 (A - 2.6)

substituindo as equações A - 2.5 e A - 2.6 na equação A - 2.6, obtemos:

$$X_{i,j} = q_j X_{i,j+1}$$
 (A - 2.7)

Para o estagio N, $X_{i,j+1} = 0$, então a equação A - 2.7, torna - se:

$$X_{i,N} = q_N \qquad (A - 2.8)$$

O algorítmo de Thomas, para a solução da equação linearizada (equação 2.12), é uma eliminação gaussiana, partindo do estágio 1 e trabalhando até o estágio N para finalmente isolar $X_{i,N}$. Os outros valores de $X_{i,j}$ são obtidos começando com $X_{i,N-1}$ por substituição na equação (A-2.7).

Para a determinação das temperaturas dos estágios, usa-se as mesmas relações.

A-3 - Matriz Didiagonal

A-3.1 Cálculo das Vazões

A Equação 2.6 pode ser escrita, como:

$$L_{j} = V_{j+1} + somal$$
 (A - 3.1)

onde

somal =
$$\sum_{m=1}^{J} (F_m - U_m - W_m) - V_1$$
 (A - 3.2)

Para o estagio j-1, a Equação A-3.1, torna-se:

$$L_{j-1} = V_j + soma2 \qquad (A - 3.3)$$

onde

soma2 =
$$\sum_{m=1}^{j-1} (F_m - U_m - W_m) - V_1$$
 (A - 3.4)

Combinando as equações A - 3.1 e A - 3.3 com a Equação 2.5, para eliminar L_j e $L_j = 1$. Obtemos depois de um rearranjo:

$$\alpha_{j}V_{j} + \beta_{j}V_{j+1} = \gamma_{j} \qquad (A - 3.5)$$

onde

 $a_{j} = H_{Lj-1} - H_{vj}$ (A - 3.6)

$$\beta_{j} = H_{vj+1} - H_{Lj}$$
 (A - 3.7)

 $\gamma_{j} = [somal] (H_{Lj-1} - H_{Lj-1}) + F_{j}(H_{Lj} - H_{Fj}) + w_{j}(H_{vj} - H_{ij}) + Q_{j}$

(A - 3.8)

em geral a Equação A - 3.5, pode ser escrita:

$$V_{j} = \frac{\gamma_{j-1} - \alpha_{j-1}V_{j-1}}{\beta_{j-1}}$$
 (A - 3.9)

ANEXO DO CAPÍTULO III

A-4 - Representação Gráfica do Ciclo Termodinâmico.

Destilação com Recompressão Mecânica do Vapor.

1 - T = 85.725°C 1' - T = 100.110°C 3 - T = 56.113°C

APÊNDICE B

CHEMCAD 2 Version 2.2

Filename : s1.DAT Date: 10-Jan-95 Time: 8:32 am

FLOWSHEET SUMMARY

Equipment Stream Numbers

1 TOWR 1 -2 -3

Stream Connections

Stream Equipment From To

COMPONENTS 140 145

THERMODYNAMICS K-value model :UNIFAC Enthalpy model :SRK

Tower Summary

Equipment name	
number	1
No. of stages	30
1st feed stage	24
Stg 1/Cond. P atm	1.00000
Cond. del P atm	.000000
Tower del P atm	.384000
Condenser type	total
Condenser mode	6
	Purity
Condenser spec	.995000
Comp position/name	1 Acetone
Reboiler mode	6
	Purity
Reboiler spec.	.500000E-02
Comp position/name	1 Acetone
Damping factor	1.00000
Max. iterations	50
Calculated Duties	
Condenser KJ /hr	795857E+07
Reboiler KJ /hr	.808401E+07

FLOW SUMMARIES

Page 3 CHEMCAD 2 - Version 2.2

Stream No.	1	2	3
Temp C	59.5821	56.1037	90.4651
Pres atm	1.00000	1.00000	1.38400
Enth KJ /hr	-458895.	-146275.	-187208.
Vapor mole fraction	.000000	.000000	.000000
Total kgmol/hr	99.9994	70.2018	29.7976
Flowrates in kgmol/hr			
Acetone	69.9995	69.8506	.148967
Isopropanol	29.9998	.351153	29.6486

DISTILLATION PROFILE

Page 4 CHEMCAD 2 - Version 2.2

K			* Net Fl	OWS *			
	Temp	Pres	Liquid	Vapor	Feeds	Products	Duties
Stg	C	atm	kgmol/hr	kgmol/hr	kgmol/hr	kgmol/hr	KJ /hr
1	56.1	1.000	191.07		3	70.202	79586E+07
2	56.1	1.000	190.65	261.27			
3	56.6	1.014	190.54	260.85			
4	57.0	1.027	190.42	260.74			
5	57.4	1.041	190.29	260.62			
6	57.8	1.055	190.13	260.49			
7	58.2	1.069	189.95	260.33			
8	58.7	1.082	189.76	260.16			
9	59.1	1.096	189.53	259.96			
10	59.5	1.110	189.28	259.73			
_ 11	59.9	1.123	188.99	259.48			,
12	60.3	1.137	188.66	259.19			
13	60.8	1.151	188.27	258.86			
14	61.2	1.165	187.83	258.48			
15	61.7	1.1/8	187.31	258.03			
16	62.1	1.192	186.70	257.52			
1/	62.6	1.206	185.96	256.90			
18	63.1	1.219	185.06	256.16			
19	63.0	1.233	103.94	200.20			
20	64.2	1 261	102.52	254.14			
21	65 7	1 274	178 30	252.72			
22	66 7	1 288	175.30	248 50			
23	68 0	1 302	272 68	240.30	00 000		
25	70 4	1 315	261 50	242.88			
26	75 1	1 329	247 42	231 70			
27	81 8	1 343	239.53	217.62			
28	86.9	1.357	238.01	209.74			
29	89.4	1.370	238.13	208.21			
30	90.5	1.384	200120	208.33		29.798	.80840E+07
Ref	lux rat:	io =2.72	217				

TRAY (COMPO	SITIO	1S	Un	it	#	1	T	OWR					
Stage	#	1	Т	=	56. v	10	deg	С		P	=	1.00	00	atm
Acetor Isopro Total	ne opanc kgmc	ol ol/hr		.000 .000 .000					.9949 .5002 191.0	98 98 06	E-02	•	000	000
Stage	#	2	Т	=	56.	13	deg	С		P	=	1.00	00	atm
Acetor Isopro Total	ne opano kgmo	ol ol/hr		.994 .500 261.	998 206 270	E-0)2		.9924 .7519 190.6	81 20 45	E-02	1.	002 665	54 24
Stage	#	3	Т	=	56.	55	deg	С		P	=	1.01	37	atm
Acetor Isopro Total	ne opanc kgmc	ol ol/hr		.993 .684 260.	158 176 847	E-0)2		.9897 .1027 190.5	29 06 42	E-01	1.	003 666	46 15
Stage	#	4	Т	=	56. v	98	deg	С		P	=	1.02	74	atm
Acetor Isopro Total	ne opano kgmo	ol ol/hr		.991 .885 260.	148 211 744	E-0	2		.9867 .1327 190.4	26 43 23	E-01	1.	004 666	48 86
Stage	#	5	Т	=	57.	40	deg	С		P	=	1.04	11	atm
Acetor Isopro Total	ne opanc kgmc	ol ol/hr		.988 .110 260.	954 461 624	E-0)1		.9834 .1655 190.2	48 22 86	E-01	1.	005 667	60 35
Stage	#	6	Т	=	57.	82	deg	С		P	=	1.05	49	atm
Acetor Isopro Total	ne opano kgmo	ol ol/hr		.986 .134 260.	561 394 488	E-0)1		.9798 .2013 190.1	70 04 31	E-01	1.	006 667	83 62
Stage	#	7	Т	=	58. v	24	deg	С		P	=	1.06 K	86	atm
Acetor Isopro Total	ne opano kgmo	ol ol/hr		.983 .160 260.	949 509 332	E-0)1		.9759 .2404 189.9	59 11 55	E-01	1.	008 667	19 64
Stage	#	8	Τ	=	58. v	66	deg	С		P x	=	1.08 K	23	atm
Acetor Isopro Total	ne opano kgmo	ol ol/hr	•	.981 .189 260.	.097 035 157	E-0)1		.9716 .2832 189.7	76 40 56	E-01	1.	009 667	70 40
Stage	#	9	Т	=	59. v	08	deg	С		P X	=	1.09 K	60	atm
Acetor Isopro Total	ne opano kgmo	ol ol/hr		.977 .220 259.	974 259 958	E-0)1		.9669 .3302 189.5	72 80 31	E-01	1.	011 666	.38 88

TRAY COMPOSITIONS Unit # 1 TOWR

Stage # 10	Т	=	59.50	deg	C	P =	1.1097 atm
Acetone Isopropanol Total kgmol/hr		.974 .254 259.	547 530E-0 733	01	.9617 .3821 189.2	785 150E-01 277	1.01327 .66605
Stage # 11	Т	=	59.92	deg	C	P =	1.1234 atm
Acetone Isopropanol Total kgmol/hr		.970 .292 259.	771 2292E- 478	01	.9560 .4396 188.9)37 529E-01 987	1.01541 .66486
Stage # 12	т	=	60.34 V	deg	C	P =	1.1371 atm
Acetone "Isopropanol Total kgmol/hr		.966 .334 259.	590 103E-0 188	01	.9496 .5037 188.6	528 719E-01 556	1.01786 .66327
Stage # 13	Т	=	60.77	deg	С	P =	1.1509 atm
Acetone Isopropanol Total kgmol/hr		.961 .380 258.	932 676E- 857	01	.9424 .5757 188.2	28 718E-01 274	1.02070 .66122
Stage # 14	Т	=	61.21 v	deg	C	P = x	1.1646 atm K
Acetone Isopropanol Total kgmol/hr		.956 .432 258.	5706 1939E-0 476	01	.9342 .6573 187.8	266 343E-01 332	1.02402 .65862
Stage # 15	Т	=	61.66	deg	С	P =	1.1783 atm
Acetone Isopropanol Total kgmol/hr		.950 .492 258.	0789 2112E- 034	01	.9249 .7508 187.3	911 391E-01 313	1.02798 .65537
Stage # 16	Т	=	62.12	deg	C	P =	1.1920 atm
Acetone Isopropanol Total kgmol/hr		.944 .559 257.	1017 9825E- 515	01	.9140 .8595 186.6	050 504E-01 599	1.03279 .65134
Stage # 17	. T	=	62.59 v	deg	С	P =	1.2057 atm K
Acetone "Isopropanol Total kgmol/hr		.936 .638 256.	5170 3301E- 900	01	.9012 .9875 185.9	245 553E-01 960	1.03875 .64635
Stage # 18	т	=	63.10	deg	С	P =	1.2194 atm
Acetone Isopropanol Total kgmol/hr		.926 .730 256	5938 0619E- .161	01	.8858 .1141 185.0	375 125 057	1.04635 .64019

TRAY COMPOSITIO	NS	Unit #	1	TOWR	
Stage # 19 ♥	т	= 63.64 Y	deg	C P = X	1.2331 atm K
Acetone Isopropanol Total kgmol/hr		.915886 .841137E-0 255.259	01	.867042 .132958 183.936	1.05633 .63263
Stage # 20	Т	= 64.23	deg	C P =	1.2469 atm
Acetone Isopropanol Total kgmol/hr		.902388 .976118E-0 254.137	01	x .843425 .156575 182.517	1.06991 .62342
Stage # 21	Т	= 64.90	deg	C P =	1.2606 atm
Acetone Isopropanol Total kgmol/hr		.885530 .114470 252.719		.813067 .186933 180.691	1.08912 .61236
Stage # 22	Т	= 65.70	deg	C P =	1.2743 atm
Acetone Isopropanol Total kgmol/hr		.863973 .136027 250.893		.773094 .226906 178.303	1.11755 .59949
Stage # 23	Т	= 66.69	deg	C P =	1.2880 atm
Acetone Isopropanol Total kgmol/hr		.835781 .164219 248.505		.719510 .280490 175.155	1.16160 .58547
Stage # 24	Т	= 67.98	deg	C P =	1.3017 atm
Acetone Isopropanol Total kgmol/hr		.798333 .201667 245.357		.647744 .352256 272.681	1.23248 .57250
Stage # 25	Т	= 70.36	deg	C P =	1.3154 atm K
Acetone Isopropanol Total kgmol/hr		.726598 .273402 242.883		.516536 .483464 261.497	1.40668 .56551
Stage # 26	Т	= 75.09	deg	C P =	1.3291 atm K
Acetone ≃Isopropanol Total kgmol/hr		.582322 .417678 231.700		.315284 .684716 247.415	1.84698 .61000
Stage # 27	Т	= 81.76	deg	C P =	1.3429 atm K
Acetone Isopropanol Total kgmol/hr		.357770 .642230 217.618		.139143 .860857 239.534	2.57124 .74604

TRAY COMPOSITION	45	0	nit #	1	TOWE	ζ.	
Stage # 28	T	=	86.89 Y	deg	C	P = x	1.3566 atm K
Acetone Isopropanol Total kgmol/hr		.158201 .841799 209.737			.497890E-01 .950211 238.006		3.17743 .88591
Stage # 29	Т	=	89.39 y	deg	С	P = x	1.3703 atm K
Acetone .561990E-01 Isopropanol .943801 Total kgmol/hr 208.209				.16 .98 238	52148E-01 33785 3.129	3.46591 .95936	
Stage # 30	Т	=	90.47 Y	deg	С	P = x	1.3840 atm K
Acetone Jsopropanol Total kgmol/hr		.17 .98 208	8189E- 2181 .331	01	.49 .99 29.	99931E-02 5001 7976	3.56428 .98712
CHEMCAD 2 Version 2.2

Filename : carol1.DAT Date: 10-Jan-95 Time: 8:12 am

FLOWSHEET SUMMARY

Equipment Stream Numbers 1 TOWR 10 1 -3 -4 2 COMP 3 -5 3 HTXR 5 -6 6 -7 4 HTXR 5 DIVI 7 -8 -9 6 VALV 9 -10 Stream Connections Stream Equipment From To Recycle Sequence 2 3 4 5 6 1 Cut Streams 3 Accelerated Streams 3 Successive Substitution Method Recycle calculations have converged COMPONENTS 140 145 THERMODYNAMICS K-value model :UNIFAC Enthalpy model :SRK

Tower Summary

Equipment name	
number	1
No. of stages	30
1st feed stage	1
2nd feed stage	24
Stg 1/Cond. P atm	1.00000
Cond. del P atm	.000000
Tower del P atm	.384000
Condenser mode	0
	No Cond
Condenser spec	
Reboiler mode	5
	kgmol/hr
Reboiler spec.	.174241
Comp position/name	1 Acetone
Damping factor	1.00000
Max. iterations	100
Calculated Duties	
Reboiler KJ /hr	.752201E+07

Divider Summary

Equipment	name	
	number	5
Mode		1
		kgmol/hr
Flow rate	/ratio	65.1511
Flow rate	/ratio	.000000

Valve Summary

Equipment	name	6				
	number	Pres. out				
Pres. spec	c atm	1.00000				

Equipment name number 3 4 Delta P str 1 atm .000000 .000000 Delta P str 2 atm .000000 .000000 Vapor fraction 1 out 1.00000 .725000E-01 Spec. duty KJ /hr .772560E+07 Case flag Design Design Calc. duty KJ /hr -368431. -.752251E+07 Utility option flag 0 0

Compressor Summary

Equipment name	
number	2
Mode	2
90 1	P ratio/eff
Pout or ratio atm	2,50000
Comp. or Exp. type	Polytropic
Efficiency	.750000
Work	
Actual Kw	272.313
Theor. Kw	.000000
Cp/Cv	1.11307

				Page 5
FLOW SUMMARIES			CHEMCAD 2 -	Version 2.2
Stroam No.	1	3	4	5
Jemp C	60.2849	56.1250	90.4652	100.091
Pres atm	1.00000	1.00000	1.38400	2.50000
Enth KJ /hr	-500091.	.804249E+07	-219043.	.902283E+07
Vapor mole fraction	.000000	1.00000	.000000	1.00000
Total kgmol/hr	99.9994	283.416	34.8635	283.416
Flowrates in kgmol/hr				
Acetone	64.9996	282.072	.174241	282.072
Isopropanol	34.9998	1.34404	34.6892	1.34404
Stream No.	6	7	8	9
Temp C	85.6021	85.4805	85.4805	85.4805
Pres atm	2.50000	2.50000	2.50000	2.50000
Enth KJ /hr	.866339E+07	.103964E+07	238989.	800648.
Vapor mole fraction	1.00000	.725000E-01	.730000E-01	.730000E-01
Total kgmol/hr	283.416	283.416	65.1511	218.266
Flowrates in kgmol/hr				
Acetone	282.072	282.072	64.8421	217.231
Isopropanol	1.34404	1.34404	.308964	1.03507
Stream No.	10			
Temp C	56.1041			
Pres atm	1.00000			
Enth KJ /hr	801078.			
Vapor mole fraction	.188917			
Total kgmol/hr Flowrates in kgmol/hr	218.266			
r tont acco th Agmor/ ht	NAME AND A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTIONO			

Acetone 217.231 Isopropanol 1.03507

DISTILLATION PROFILE

Page 6 CHEMCAD 2 - Version 2.2

t type:	TOWR	Uni	t n	ame:		E	gp #	1						
			*	Net	Flo	ows	*							
Temp	Pres		Li	quid		Vap	or		Feeds		Prod	lucts	D	uties
С	atm		kg	mol/h	r	kam	nol/hr	2	kamol	/hr	kamo	l/hr	ĸ.	I /hr
56.1	1.000		17	6.68					218.2	7	283.	42		,
56.5	1.013		17	6.60		241	.82							
56.9	1.026		17	6.50		241	.73							
57.3	1.040		17	6.39		241	.64							
57.8	1.053		17	6.26		241	.52							
58.2	1.066		17	6.11		241	.39							
58.6	1.079		17	5.94		241	.25							
59.0	1.093		17	5.75		241	.08							
59.4	1.106		17	5.53		240	.88							
59.8	1.119		17	5.28		240	.66							
60.2	1.132		17	4.99		240	. 41							
60.6	1.146		17	4.66		240	.12							
61.0	1.159		17	4.28		239	.80							
61.5	1.172		17	3.83		239	.41							
61.9	1.185		17	3.31		238	.97							
62.3	1.199		17	2.69		238	.45							
62.8	1.212		17	1.94		237	.83							
63.3	1.225		17	1.02		237	.08							
63.9	1.238		16	9.88		236	.16							
64.5	1.252		16	8.43		235	.02							
65.2	1.265		16	6.55		233	.57							
66.1	1.278		16	4.07		231	.68							
67.2	1.291		16	0.80		229	.21							
68.6	1.305		25	8.76		225	.93		99.99	9				
71.1	1.318		24	8.50		223	.89							
75.9	1.331		23	6.30		213	.63							
82.3	1.344		22	9.82		201	. 44							
87.1	1.358		223	8.59		194	.95							
89.4	1.371		22	8.71		193	.73							
90.5	1.384					193	.85				34.8	63	•	75220E+07
# 10 er	nters st	:g #	1	at	56.	1 C		1.0	00	atm		18.892	0jo	vapor
# 1 er	nters st	:g #	24	at	60.	3 C	,	1.0	00	atm	7	.000	olo	vapor
	t type: Temp C 56.1 56.5 56.9 57.3 57.8 58.2 58.6 59.0 59.4 59.8 60.2 60.6 61.0 61.5 61.9 62.3 63.9 64.5 65.2 66.1 67.2 68.6 71.1 75.9 82.3 87.1 89.4 90.5 # 10 en # 1 en # 1 en	t type: TOWR Temp Pres C atm 56.1 1.000 56.5 1.013 56.9 1.026 57.3 1.040 57.8 1.053 58.2 1.066 58.6 1.079 59.0 1.093 59.4 1.106 59.8 1.119 60.2 1.132 60.6 1.146 61.0 1.159 61.5 1.172 61.9 1.185 62.3 1.199 62.8 1.212 63.3 1.225 63.9 1.238 64.5 1.252 65.2 1.265 66.1 1.278 67.2 1.291 68.6 1.305 71.1 1.318 75.9 1.331 82.3 1.344 87.1 1.358 89.4 1.371 90.5 1.384 # 10 enters st # 1 enters st	<pre>t type: TOWR Uni Temp Pres C atm 56.1 1.000 56.5 1.013 56.9 1.026 57.3 1.040 57.8 1.053 58.2 1.066 58.6 1.079 59.0 1.093 59.4 1.106 59.8 1.119 60.2 1.132 60.6 1.146 61.0 1.159 61.5 1.172 61.9 1.185 62.3 1.199 62.8 1.212 63.3 1.225 63.9 1.238 64.5 1.252 65.2 1.265 66.1 1.278 67.2 1.291 68.6 1.305 71.1 1.318 75.9 1.331 82.3 1.344 87.1 1.358 89.4 1.371 90.5 1.384 # 10 enters stg # # 1 enters stg # # 1 enters stg #</pre>	t type: TOWR Unit n * Temp Pres Li C atm kg 56.1 1.000 17 56.5 1.013 17 56.9 1.026 17 57.3 1.040 17 57.8 1.053 17 58.2 1.066 17 58.6 1.079 17 59.0 1.093 17 59.4 1.106 17 59.8 1.119 17 60.2 1.132 17 60.6 1.146 17 61.0 1.159 17 61.5 1.172 17 61.9 1.185 17 62.3 1.199 17 62.8 1.212 17 63.3 1.225 17 63.9 1.238 16 64.5 1.252 16 65.2 1.265 16 66.1 1.278 16 66.1 1.278 16 67.2 1.291 16 68.6 1.305 25 71.1 1.318 24 75.9 1.331 23 82.3 1.344 22 87.1 1.358 22 89.4 1.371 22 90.5 1.384 # 10 enters stg # 1 # 1 enters stg # 24	<pre>t type: TOWR Unit name:</pre>	t type: TOWR Unit name: * Net Flo Temp Pres Liquid C atm kgmol/hr 56.1 1.000 176.68 56.5 1.013 176.60 56.9 1.026 176.50 57.3 1.040 176.39 57.8 1.053 176.26 58.2 1.066 176.11 58.6 1.079 175.94 59.0 1.093 175.75 59.4 1.106 175.53 59.8 1.119 175.28 60.2 1.132 174.99 60.6 1.146 174.66 61.0 1.159 174.28 61.5 1.172 173.83 61.9 1.185 173.31 62.3 1.199 172.69 62.8 1.212 171.94 63.3 1.225 171.02 63.9 1.238 169.88 64.5 1.252 168.43 65.2 1.265 166.55 66.1 1.278 164.07 67.2 1.291 160.80 68.6 1.305 258.76 71.1 1.318 248.50 75.9 1.331 236.30 82.3 1.344 229.82 87.1 1.358 228.59 89.4 1.371 228.71 90.5 1.384 # 10 enters stg # 1 at 56. # 1 enters stg # 24 at 60.	t type: TOWR Unit name: * Net Flows Temp Pres Liquid Vap C atm kgmol/hr kgm 56.1 1.000 176.68 56.5 1.013 176.60 241 56.9 1.026 176.50 241 57.3 1.040 176.39 241 57.8 1.053 176.26 241 58.2 1.066 176.11 241 58.6 1.079 175.94 241 59.0 1.093 175.75 241 59.4 1.106 175.53 240 60.2 1.132 174.99 240 60.6 1.146 174.66 240 60.2 1.159 174.28 239 61.5 1.172 173.83 239 61.9 1.185 173.31 238 62.3 1.199 172.69 238 62.8 1.212 171.94 237 63.3 1.225 171.02 237 63.9 1.238 169.88 236 64.5 1.252 168.43 235 65.2 1.265 166.55 233 66.1 1.278 164.07 231 67.2 1.291 160.80 229 68.6 1.305 258.76 225 71.1 1.318 248.50 223 75.9 1.331 236.30 213 82.3 1.344 229.82 201 87.1 1.358 228.59 194 89.4 1.371 228.71 193 90.5 1.384 193	t type: TOWR Unit name: Eqp # * Net Flows * Temp Pres Liquid Vapor C atm kgmol/hr kgmol/hr 56.1 1.000 176.68 56.5 1.013 176.60 241.82 56.9 1.026 176.50 241.73 57.3 1.040 176.39 241.64 57.8 1.053 176.26 241.52 58.2 1.066 176.11 241.39 58.6 1.079 175.94 241.25 59.0 1.093 175.75 241.08 59.4 1.106 175.53 240.88 59.8 1.119 175.28 240.66 60.2 1.132 174.99 240.41 60.6 1.146 174.66 240.12 61.0 1.159 174.28 239.80 61.5 1.172 173.83 239.41 61.9 1.185 173.31 238.97 62.3 1.199 172.69 238.45 62.8 1.212 171.94 237.83 63.3 1.225 171.02 237.08 63.9 1.238 169.88 236.16 64.5 1.252 168.43 235.02 65.2 1.265 166.55 233.57 66.1 1.278 164.07 231.68 67.2 1.291 160.80 229.21 68.6 1.305 258.76 225.93 71.1 1.318 248.50 223.89 75.9 1.331 236.30 213.63 82.3 1.344 229.82 201.44 87.1 1.358 228.59 194.95 89.4 1.371 228.71 193.73 90.5 1.384 193.85 # 10 enters stg # 1 at 56.1 C, # 1 enters stg # 24 at 60.3 C,	t type: TOWR Unit name: Eqp # 1	t type: TOWR Unit name: Eqp # 1	t type: TOWR Unit name: Eqp # 1	t type: TOWR Unit name: Eqp # 1 * Net Flows * Temp Pres Liquid Vapor Feeds Prod C atm kgmol/hr kgmol/hr kgmol/hr 218.27 283. 56.1 1.000 176.68 218.27 283. 56.9 1.026 176.50 241.82 55.9 1.026 176.50 241.73 57.3 1.040 176.39 241.64 57.8 1.053 176.26 241.52 58.2 1.066 176.11 241.39 58.6 1.079 175.94 241.25 59.0 1.093 175.75 241.08 59.4 1.106 175.53 240.88 59.8 1.119 175.28 240.66 60.2 1.132 174.99 240.41 60.6 1.146 174.66 240.12 61.0 1.159 174.28 239.80 61.5 1.172 173.83 239.41 61.9 1.185 173.31 238.97 62.3 1.199 172.69 238.45 62.8 1.212 171.94 237.83 63.3 1.225 171.02 237.08 63.9 1.238 169.88 236.16 64.5 1.252 168.43 235.02 65.2 1.265 166.55 233.57 66.1 1.278 164.07 231.68 67.2 1.291 160.80 229.21 68.6 1.305 258.76 225.93 99.999 71.1 1.318 248.50 223.89 75.9 1.331 236.30 213.63 82.3 1.344 229.82 201.44 87.1 1.358 228.59 194.95 83.4 1.371 228.71 193.73 90.5 1.384 193.85 344.8 # 10 enters stg # 1 at 56.1 C, 1.00 atm , # 1 enters stg # 24 at 60.3 C, 1.00 atm ,	t type: TOWR Unit name: Eqp # 1 * Net Flows * Temp Pres Liquid Vapor Feeds Agmol/hr 56.5 1.013 176.60 241.82 56.5 1.013 176.60 241.82 56.9 1.026 176.50 241.73 57.3 1.040 176.39 241.64 57.8 1.053 176.26 241.52 58.2 1.066 176.11 241.39 58.6 1.079 175.94 241.25 59.0 1.093 175.75 241.08 59.4 1.106 175.53 240.88 59.8 1.119 175.28 240.66 60.2 1.132 174.99 240.41 60.6 1.146 174.66 240.12 61.0 1.159 174.28 239.80 61.5 1.172 173.83 239.41 61.9 1.185 173.31 238.97 62.3 1.199 172.69 238.45 62.8 1.212 171.94 237.83 63.3 1.225 171.02 237.08 63.9 1.238 169.88 236.16 64.5 1.252 168.43 235.02 65.2 1.265 166.55 233.57 66.1 1.278 164.07 231.68 67.2 1.291 160.80 229.21 68.6 1.305 258.76 225.93 99.999 71.1 1.318 248.50 223.89 75.9 1.331 226.71 193.73 90.5 1.384 193.85 34.863 # 10 enters stg # 1 at 56.1 C, 1.00 atm , 18.892 # 1 enters stg # 24 at 60.3 C, 1.00 atm , .000	t type: TOWR Unit name: Eqp # 1 * Net Flows * Temp Pres Liquid Vapor Feeds Products Di C atm kgmol/hr kgmol/hr 218.27 283.42 56.5 1.013 176.60 241.82 56.9 1.026 176.50 241.73 57.3 1.040 176.39 241.64 57.8 1.053 176.26 241.52 58.2 1.066 176.11 241.39 58.6 1.079 175.94 241.25 59.0 1.093 175.75 241.08 59.4 1.106 175.53 240.88 59.8 1.119 175.28 240.66 60.2 1.132 174.99 240.41 60.6 1.146 174.66 240.12 61.0 1.159 174.28 239.80 61.5 1.172 173.83 239.41 61.9 1.185 173.31 238.97 62.3 1.199 172.69 238.45 63.9 1.225 171.02 237.08 63.9 1.238 169.88 236.16 64.5 1.252 168.43 235.02 65.2 1.265 166.55 233.57 66.1 1.278 164.07 231.68 67.2 1.291 160.80 229.21 68.6 1.305 258.76 225.93 99.999 71.1 1.318 246.50 223.89 75.9 1.331 236.30 213.63 82.3 1.344 229.82 201.44 87.1 1.358 228.59 194.95 89.4 1.371 228.71 193.73 90.5 1.384 193.85 34.863 # 10 enters stg # 1 at 56.1 C, 1.00 atm , 18.892 % # 1 enters stg # 24 at 60.3 C, 1.00 atm , .000 %

TRAY (COMPO	SITION	IS	Un	it #	1	TOWR				
Stage	#	1	Т	=	56.13 v	3 deg	С	P =	1.00)00 at	m
Aceton Isopro Total	ne opano kgmo	ol ol/hr		.995 .474 283.	254 623E- 401	-02	.992 .713 176.	2869 8101E-02 682	1.	00240	
Stage	#	2	Т	=	56.54	4 deg	С	P =	1.01	.32 at	m
Acetor Isopro Total	ne opano kgmo	ol ol/hr		.993 .649 241.	9 508 224E- 817	-02	.990 .974 176.	x 259 053E-02 599	1.	00328 66652	A MERICAN CONTRACT OF A
Stage	#	3	т	=	56.94 v	4 deg	С	P =	1.02	265 at	m
Aceton Isopro Total	ne opano kgmo	ol ol/hr		.991 .839 241.	602 839E- 734	-02	.987 .125 176.	2414 862E-01 501	1.	00424 66727	
Stage	#	4	Т	=	57.35 v	5 deg	С	P =	1.03	197 at	m
Acetor Isopro Total	ne opano kgmo	ol ol/hr		.989 .104 241.	524 764E- 637	-01	.984 .156 176.	312 5876E-01 389	1.	00529 66782	
Stage	#	5	Т	=	57.70	5 deg	С	P =	1.05	30 at	m
Aceton Isopro Total	ne opano kgmo	ol ol/hr		.987 .127 241.	260 404E- 524	-01	.980 .190 176.	932 685E-01 259	1.	00645 66814	
Stage	#	6	Т	=	58.10	6 deg	С	P =	1.06	62 at	m
Acetor Isopro Total	ne opano kgmo	ol ol/hr		.984 .152 241.	793 075E- 394	-01	.977 .227 176.	242 577E-01 110	1.	00773 66823	
Stage	#	7	Т	= ,	58.5	6 deg	C	P =	1.07	94 at	m
Acetor Isopro Total	ne opano kgmo	ol ol/hr		.982 .178 241.	102 982E- 245	-01	.973 .267 175.	3209 7908E-01 940	1.	00914 66807	
Stage	#	8	Т	=	58.9	7 deg	C	P =	1.09	27 at	m
Acetor Isopr Total	ne opano kgmo	ol ol/hr		.979 .208 241.	162 382E 075	-01	.968 .312 175.	8788 2118E-01 747	1	01071 66764	
Stage	#	9	Т	=	59.3 v	7 deg	C	P =	1.10)59 at	m
Aceto Isopr Total	ne opano kgmo	ol ol/hr		.975 .240 240.	941 590E 882	-01	.963 .360 175.	3924 0758E-01 .527	1.	01247	

Page 7

TRAY COMPOSITIONS Unit # 1 TOWR

Stage # 10	Т	=	59.78	deg	С	P =	1.1192	atm
Acetone Isopropanol Total kgmol/hr		.972 .276 240.	2400 5001E-0 662	01	.9585 .4145 175.2	548 524E-01 276	1.014 .665	45 83
Stage # 11	Т	=	60.19 V	deg	С	P =	1.1324 k	atm
Acetone Isopropanol Total kgmol/hr		.968 .315 240.	8489 5111E-0 412	01	.9525 .4743 174.9	570 301E-01 989	1.016 .664	71 37
Stage # 12	Т	=	60.60 V	deg	С	P =	1.1457	atm
Acetone Isopropanol Total kgmol/hr		.964 .358 240.	145 3554E-0 125)1	.9458 .5412 174.6	877 233E-01 560	1.019 .662	31 48
Stage # 13	Т	=	61.02 v	deg	С	P =	1.1589 a	atm
Acetone Isopropanol Total kgmol/hr		.959 .407 239.	285 147E-0 795	01	.9383 .6168 174.2	819 814E-01 279	1.022:	34 08
Stage # 14	Т	=	61.45 V	deg	С	P =	1.1721 a	atm
Acetone Isopropanol Total kgmol/hr		.953 .461 239.	805 951E-0 414	01	.9296 .7030 173.8	598 016E-01 334	1.0259	93 10
Stage # 15	Т	=	61.89 v	deg	С	P =	1.1854 a K	atm
Acetone Isopropanol Total kgmol/hr		.947 .524 238.	2563 1369E-0 970	01	.9197 .8024 173.3	51 92E-01 812	1.0302	24 43
Stage # 16	Т	=	62.34 v	deg	С	P =	1.1986 a	atm
Acetone Isopropanol Total kgmol/hr		.940 .596 238.	0372 5281E-0 447)1	.9081 .9188 172.6	13 370E-01 590	1.035 .6489	52 93
Stage # 17	Т	н	62.82 v	deg	C	P =	1.2119 a	atm
Acetone Isopropanol Total kgmol/hr		.931 .680 237.	975 246E-0 825	01	.8942 .1057 171.9	280 720 941	1.0422	15 44
Stage # 18	Т	=	63.33 y	deg	С	P = x	1.2251 a K	atm
Acetone Isopropanol Total kgmol/hr		.922 .779 237	2018 9815E-0 076	01	.8775 .1224 171.0	535 465 023	1.050	69 77

Page 8

TRAY COMPOSITIO	NS	Unit #	1	TOWR	
Stage # 19	Т	= 63.88	deg	C P =	1.2383 atm
Acetone Isopropanol Total kgmol/hr		.910000 .900001E-0 236.159	01	.856839 .143161 169.881	1.06204 .62866
Stage # 20	Т	= 64.49	deg	C P =	1.2516 atm
Acetone Isopropanol Total kgmol/hr		.895197 .104803 235.016		x .830655 .169345 168.430	1.07770 .61887
Stage # 21	T	= 65.20	deg	C P =	1.2648 atm
Acetone Isopropanol Total kgmol/hr		.876554 .123446 233.565		.796702 .203298 166.550	1.10023 .60722
Stage # 22	Т	= 66.06	deg	C P =	1.2781 atm
Acetone Isopropanol Total kgmol/hr		.852519 .147481 231.685		.751641 .248359 164.072	1.13421 .59382
Stage # 23	Т	= 67.15	deg	C P =	1.2913 atm
Acetone Isopropanol Total kgmol/hr		.820866 .179134 229.207	¥	.691023 .308977 160.799	1.18790 .57976
Stage # 24	Т	= 68.59	deg	C P =	1.3046 atm
Acetone Isopropanol Total kgmol/hr		.778726 .221274 225.934		.610676 .389324 258.755	1.27519 .56835
Stage # 25	Т	= 71.07	deg	C P =	1.3178 atm
Acetone Isopropanol Total kgmol/hr		.704991 .295009 223.891		.480781 .519219 248.498	1.46634 .56818
Stage # 26	Т	= 75.86	deg	C P =	1.3310 atm K
Acetone . Isopropanol Total kgmol/hr		.558427 .441573 213.634		.290278 .709722 236.302	1.92377 .62218
Stage # 27	Т	= 82.26	deg	C P =	1.3443 atm K
Acetone Isopropanol Total kgmol/hr		.339653 .660347 201.438		.129262 .870738 229.818	2.62764 .75838

 \overline{F}

TRAY COMPOSITIONS Unit # 1 TOWR

Stage # 28	Т	=	87.06	deg	C	Ρ	= 👘		1.3575	atm
			Y			х		*0	K	
Acetone		.151	484		.473	877	E-01		3.196	570
Isopropanol	24	.848	3516		.952	612			.890	073
Total kgmol/hr		194.	954		228.	590				
Stage # 29	т	=	89.43	deg	С	P	=		1.3708	atm
			Y			х			K	
Acetone		.550	164E-0)1	.158	598	E-01		3.468	392
Isopropanol		.944	984		.984	140			. 960	21
Total kgmol/hr		193.	726		228.	710				
Stage # 30	Т	=	90.47	deg	C	Ρ	=		1.3840	atm
		·.	Y			х			K	
Acetone		.178	3134E-0)1	.499	773	E-02		3.564	130
Isopropanol		.982	187		.995	002			. 987	12
Total kgmol/hr		193.	846		34.8	640			A (0.0) - 31.	