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Abstract

We consider the Brans-Dicke scalar-tensor theory, supposing a weak

gravitational field generated by a material source with low rotating mo-

tion and nonzero magnetic monopole. In this context, we determine a

Kerr-Taub-NUT-type solution and the gravitomagnetic field. After, the

effects of frame dragging and gravitomagnetic time delay are explored

and the results obtained are compared with those predicted by General

Relativity.
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1 Introduction

When we take into account the formalism of the gravitomagnetism [8], the weak
field approximation of the General Relativity is admitted and, in a formal anal-
ogy with electrodynamics, one shows that the rotation of a mass creates the
gravitomagnetic field, while the rest mass only generates the gravitoelectric
field. However, other factors, as for example a magnetic monopole charge, also
produce gravitational effects. In fact, Newman, Tamburino and Unti obtained
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a solution of the coupled Einstein-Maxwell equations that considers the mag-
netic monopole charge of the source [14, 11]. In a more general context, the
Kerr-Taub-NUT metric describes the solution of the Einstein-Maxwell equa-
tions for a rotating body with nonzero magnetic monopole associated with
the NUT parameter ℓ [9, 12]. On the other hand, the Kerr-Taub-NUT so-
lution can be interpreted as possessing a source with mass, gravitomagnetic
dipole moment (angular momentum) and gravitomagnetic monopole moment
[4]. Currently, there is no evidence for the existence of magnetic monopole as
well as of gravitomagnetic monopole, but the Kerr-Taub-NUT spacetime has
been investigated in various aspects [7, 17].

The scalar-tensor theories of gravity are the simplest generalization of the
General Relativity [18]. These theories are popular, among other reasons
[1, 19, 15], because incorporate some ingredients of string theories, such as
a dilaton-like gravitational scalar field and its non-minimal coupling to the
curvature [13]. In the scalar-tensor theories context, the gravitational effects
are described by two fields: the spacetime metric gµν and the scalar field φ.
A coupling parameter ω = ω(φ) of the scalar field with the geometry is intro-
duced, being your value fixed from experimental observations; the case in that
ω = constant corresponds to the Brans-Dicke theory [6].

In this paper, we will consider the Brans-Dicke scalar-tensor theory, suppos-
ing a weak gravitational field generated by a material source with low rotating
motion and nonzero magnetic monopole. Using the fact that one can establish
a straightforward correspondence between weak field solutions in General Rel-
ativity and Brans-Dicke theory [2], we will determine a Kerr-Taub-NUT-type
solution and the gravitomagnetic field. After, some gravitomagnetic effects
will be explored. Therefore, in Section 2, we present some results about the
Brans-Dicke weak field and, in Section 3, the Kerr-Taub-NUT-type solution is
determined. The expression of the gravitomagnetic field is obtained in Section
4, being the effects of frame dragging and gravitomagnetic time delay studied
in Section 5. Finally, Section 6 is devoted to our conclusions.

2 The weak field approximation in Brans-Dicke

Theory

The field equations of the Brans-Dicke theory are [6]:

Gµν =
8π

φc4
Tµν +

ω

φ2

(
φ,µφ,ν −

1

2
gµνφ,αφ

,α

)
+

1

φ
(φ;µ;ν − gµν�φ) , (1)

�φ =
8πT

(2ω + 3) c4
, (2)
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where Gµν is the Einstein tensor and �φ = φ;σ
;σ = gσγφ;γ;σ. The energy-

momentum tensor associated with the material content is Tµν and T = T µ
µ.

On the other hand, in the weak field approximation, we consider that the
metric is given by

gµν = ηµν + hµν , (3)

being ηµν the Minkowski metric and hµν a small perturbation, such that only
first-order terms in hµν are conserved. Moreover, the scalar field is

φ = φ0 + ε = φ0

(
1 +

ε

φ0

)
, (4)

where φ0 is a constant and ε a first-order term in the density of matter, so
that |ε/φ0| ≪ 1. Thus, we keep only the terms of first order in ε/φ0. Then,
equation (2) stays

�ε =
8πT

(2ω + 3) c4
. (5)

In this approximation, the solutions of the Brans-Dicke equations are re-
lated to the solutions of the General Relativity equations with the same Tµν .
Really, if the metric g̃µν(G, xα) is a known solution of Einstein’s equations for
a given Tµν , then the Brans-Dicke solution, corresponding to the same Tµν , is
given by [2]

gµν(x
α) = [1−G0ε(x

α)] g̃µν(G0, x
α), (6)

where G0 = 1/φ0 =
(
2ω+3

2ω+4

)
G. Therefore, the line element takes the form

ds2 = [1−G0ε(x
α)] d̃s

2
(G0, x

α). (7)

3 The Kerr-Taub-NUT-type solution

The Kerr-Taub-NUTmetric represents the solution of Einstein’s field equations

for a mass M rotating with angular momentum
−→
j and possessing non zero

magnetic monopole, corresponding to the gravitomagnetic monopole moment
µ = −ℓ, where ℓ is the NUT parameter. It can be written as [5]

d̃s
2

= −c2
(
1−

2GM

c2r

)
dt2 +

(
1 +

2GM

c2r

)
δijdx

idxj

−
4

c2

[
G

cr3
(
−→
j ×−→r )−

µc2z

r (x2 + y2)
(ẑ ×−→r )

]
· d−→r (cdt) , (8)

where
−→
j = jẑ, being G the Newtonian gravitational constant and c the speed

of light in vacuum. We use a Cartesian-like coordinate system xα = (ct,−→r )
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with−→r = (x, y, z) and α = 0, 1, 2, 3. The expression (8) is obtained considering
the weak field approximation conditions GM

c2r
≪ 1 and µ

r
≪ 1, and also the fact

that the localized and slowly rotating source satisfies the relation j
cMr

≪ 1.

If we define

Φ =
GM

r
, (9)

−→
A =

G

cr3
(
−→
j ×−→r )−

µc2z

r (x2 + y2)
(ẑ ×−→r ) , (10)

the metric (8) reduces to

d̃s
2
= −c2

(
1−

2Φ

c2

)
dt2 +

(
1 +

2Φ

c2

)
δijdx

idxj −
4

c2

(−→
A · d−→r

)
cdt. (11)

Now, using equations (7) and (11), we find the Kerr-Taub-NUT-type solu-
tion in Brans-Dicke theory:

ds2 = [1−G0ε(x
α)]

[
−c2

(
1−

2Φ(G0)

c2

)
dt2 −

4

c2

(−→
A (G0) · d

−→r
)
cdt

+

(
1 +

2Φ(G0)

c2

)
δijdx

idxj

]
, (12)

or yet,

ds2 = −c2
[
1−

2Φ(G0)

c2
−G0ε

]
dt2 −

4

c2

(−→
A (G0) · d

−→r
)
cdt

+

[
1 +

2Φ(G0)

c2
−G0ε

]
δijdx

idxj. (13)

For the sake of simplicity, one has

2
Λ

c2
=

2Φ(G0)

c2
+G0ε, (14)

2
Ψ

c2
=

2Φ(G0)

c2
−G0ε, (15)

and the metric can be expressed as

ds2 = −c2
(
1− 2

Λ

c2

)
dt2−

4

c2

(−→
A (G0) · d

−→r
)
cdt+

(
1 + 2

Ψ

c2

)
δijdx

idxj. (16)
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4 Gravitomagnetic field

Let us consider the motion of a test particle of mass m in the spacetime given

by (16). As is well known, the Lagrangian is given by L = −mc
ds

dt
. Then, we

conclude that

L = −mc2
(
1−

v2

c2

) 1

2

+mγΛ +mγ
v2

c2
Ψ−

2m

c
γ
−→
A (G0) · ~v, (17)

where γ = 1/
√

1− v2/c2, v is the particle velocity and only first-order terms

in Λ, Ψ and
−→
A (G0) were kept. Besides, in the weak gravitational field context,

we assume that the material particle has a small velocity and only terms until

second-order in
v

c
are preserved. Thus, taking into account all approximations,

we obtain

L = −mc2
(
1−

v2

c2

) 1

2

+mΛ−
2m

c

−→
A (G0) · ~v, (18)

which is analogous to the electromagnetic Lagrangian [10]. Hence, noting that

the equation of motion is
d~p

dt
= ~F , with the linear momentum ~p = γm~v, one

has
~F = −m (−∇Λ)−

2m

c
~v ×

[
∇×

−→
A (G0)

]
. (19)

Using equation (14), it follows that

~F = −m

[
−∇

(
Φ(G0) +

c2

2
G0ε

)]
−

2m

c
~v ×

[
∇×

−→
A (G0)

]
. (20)

The gravitoelectric field
−→
E = −∇Φ(G0) and the gravitomagnetic field

−→
B =

∇× ~A(G0) can be introduced [16]. In this way, equation (20) becomes

~F = −m~E −
2m

c
~v × ~B +

mc2

2
G0∇ε. (21)

Thus, the equation of motion does not take a Lorentz force law form due to
the scalar field term.

The fields
−→
E and

−→
B can be calculated from (9) and (10), with the exchange

G by G0. They are given by

−→
E =

(
2ω + 3

2ω + 4

)(
GM

r2

)
r̂ (22)

and
−→
B =

−→
b +

µc2−→r

r3
, (23)
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where
−→
b =

(
2ω + 3

2ω + 4

)
G

cr3

[
3r̂(r̂ ·

−→
j )−

−→
j
]
. (24)

It is interesting to note that when ω → ∞ the fields in the equations (22)
and (23) are reduced to the corresponding expressions in General Relativity
[5]. The factor 2ω+3

2ω+4
represents the contribution of the Brans-Dicke scalar field

since if ω is finite in (5) then ε = ε(xα). The vector
−→
b in the expression (23) is

the gravitomagnetic field in an ordinary approach [3], while the term with µ is
the gravitomagnetic monopole contribution, which is identical to the General
Relativity case.

5 Frame dragging and gravitomagnetic time

delay

An effect caused by the gravitomagnetic field is the dragging of inertial frames
around a rotating material source. As a consequence, the angular velocity of
precession of gyroscopes relative to distant stars will be given by [8]

−→
Ω =

−→
B

c
=

−→
b

c
+

µc−→r

r3
. (25)

The expression above exhibits the gravitomagnetic monopole contribution to
the gravitational effect of frame dragging. This contribution is similar to the
General Relativity case.

When a ray of light propagates from a point P1 : (ct1, ~r1) to a point P2 :
(ct2, ~r2) in the spacetime given by (3) and (16), the gravitomagnetic time delay
is defined by [3]

∆B = −
2

c3

∫ P2

P1

−→
A (G0) · d

−→r , (26)

where | d~r |= (δijdx
idxj)

1/2
designates the Euclidean length element along the

straight line that joins P1 to P2. Then, using (10) with G → G0, we will have

∆B = −
2

c3

(
2ω + 3

2ω + 4

)∫ P2

P1

[
G

cr3
(
−→
j ×−→r )

]
· d−→r

+
2µ

c

∫ P2

P1

[
z

r (x2 + y2)
(ẑ ×−→r )

]
· d−→r . (27)

The result indicates how the gravitomagnetic time delay depends on the grav-
itomagnetic monopole. On the other hand, if µ = 0 and we take the limit
ω → ∞ the corresponding expression in the General Relativity theory is ob-
tained [3].
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6 Conclusion

We obtain the Kerr-Taub-NUT-type solution in the scalar-tensor theory of
Brans-Dicke, considering the weak field approximation. In sequence, the grav-
itoelectric and the gravitomagnetic fields were introduced and we show that the
equation of motion does not take a Lorentz force law form due to the presence
of a term containing the scalar field ε. In the expression of the gravitomag-
netic field, we note that the term related with the gravitomagnetic monopole
is identical to the General Relativity case.

We approach gravitomagnetic effects as frame dragging and gravitomag-
netic time delay, exhibiting the dependence of these effects in relation to the
gravitomagnetic monopole and the Brans-Dicke factor 2ω+3

2ω+4
. Finally, the corre-

sponding expressions in General Relativity were recovered in the limit ω → ∞.
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