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Abstract

In this paper, we consider homogeneous cosmological solutions in the context of the Weyl ge-

ometrical scalar–tensor theory. Firstly, we exhibit an anisotropic Kasner type solution taking

advantage of some similarities between this theory and the Brans–Dicke theory. Next, we consider

an isotropic model with a flat spatial section sourced by matter configurations described by a

perfect fluid. In this model, we obtain an analytical solution for the stiff matter case. For other

cases, we carry out a complete qualitative analysis theory to investigate the general behaviour of

the solutions, presenting some possible scenarios. In this work, we do not consider the presence of

the cosmological constant nor do we take any potential of the scalar field into account. Because of

this, we do not find any solution describing the acceleration of the universe.
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I. INTRODUCTION

As is well known, scalar–tensor theories of gravity were proposed some years ago by

Jordan [1], and Brans and Dicke [2]. Later, they were extended in a more general frame-

work [3–5]. In fact, they represent a generalization of the simplest scalar–tensor theory of

gravity which is the Brans–Dicke theory [6, 7]. In general scalar–tensor theories of gravity,

the gravitational field is not described only by the usual tensor field gµν of general relativ-

ity. In addition to this, we have one or several long-range scalar fields which also mediate

gravitational interaction.

Scalar–tensor theories of gravity have been a subject of renewed interest. Certainly,

one motivation for this is the belief that, at least at sufficiently high energy scales, grav-

ity becomes scalar–tensorial in nature [8] and, therefore, these theories are important in

the very early Universe. On the other hand, two important theoretical developments have

been achieved such as, for example, unification models based on superstrings, which natu-

rally associate long-range scalar partners to the usual tensor gravity of Einstein theory [9].

Another motivation for the investigation of scalar–tensor theories is that inflationary cos-

mology in this framework seems to solve the fine-tuning problem and, in this way, give us

a mechanism of terminating inflationary eras [10]. Apart from the solution of this problem,

the scalar–tensor theories by themselves have direct implications for cosmology and for ex-

perimental tests of the gravitational interaction [11] and for this reason, they are relevant

in the investigation of the early Universe.

Among alternative theories of gravity, scalar–tensor theories are perhaps the most popular

ones. As we have pointed out before, in these theories, gravitational effects are described

by both a metric field gµν and a scalar field Φ. A well-known example is the Brans–Dicke

theory [2, 12], in which the geometry of the underlying space-time manifold is assumed to be

Riemannian, and the scalar field replaces the gravitational constant being interpreted as the

inverse of a varying gravitational coupling parameter. In addition to the reasons mentioned

above, the scalar–tensor theories are studied because they admit key ingredients of string

theories, such as a dilaton-like gravitational scalar field that has a non-minimal coupling to

the curvature [13]. On the other hand, a different approach, in which the scalar field appears

as part of the space-time geometry, namely, the Weyl geometrical scalar–tensor theory, has

been discussed recently in the literature [14]. Indeed, in this new approach, one considers
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the space-time structure as a very special case of the framework adopted in the original

Weyl unified field theory [15, 16], the geometrical space-time structure being that of a Weyl

integrable space-time (WIST) [17–21]. It is important to remark that other gravity theories

in which a scalar field plays a geometrical role have also been proposed [22–24].

Recently, some theoretical aspects concerning the Weyl geometrical scalar–tensor theory

have been studied, in particular the behaviour of the solutions when ω, the scalar field’s

coupling constant, goes to infinity [25]. The investigation of cosmological vacuum models

for different scalar potentials has also been carried out [26]. In the present article, we

extend this research to include anisotropic models of Kasner type. Here, we take advantage

of some similarities between vacuum solutions of the Weyl geometrical scalar–tensor theory

and those coming from the Brans–Dicke theory. We also examine cosmological solutions in

the presence of matter, a scenario that has not yet been investigated in Weyl geometrical

scalar–tensor theory, and at the same time, we compare the results obtained with similar

solutions already known from general relativity and the Brans–Dicke theory.

The paper is organized as follows. In Section II, we briefly review Weyl’s original theory,

which inspired the geometrical scalar–tensor approach. In Section III, the field equations

of the Weyl geometrical scalar–tensor theory are obtained. Then, a Kasner type solution

is exhibited in Section IV, while in Section V we work with a homogeneous and isotropic

cosmological model having a perfect fluid as a source, such that we find an analytical solution

for the stiff matter case and we study the other cases using the qualitative analysis of

dynamical systems. Finally, Section VI is devoted to our conclusions.

II. WEYL’S THEORY

In the first scalar–tensor theories, the so-called Jordan–Brans–Dicke theories, it is as-

sumed, as in general relativity, that the space-time geometry is purely Riemannian. On the

other hand, if the Palatini variational method is applied to deduce the field equations from

the action, then in a large class of scalar–tensor theories, a non-Riemannian compatibility

condition between the metric and the affine connection appears naturally (for a more general

result, see [27]). In this way, we have a theory that establishes the space-time geometry from

first principles, that is, the space-time manifold is dynamically generated by the choice of

the particular coupling of the scalar field in the gravitational sector. In the case where the
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action is that of the Brans–Dicke theory, this procedure leads to the so-calledWeyl integrable

space-times, a particular version of the geometry conceived by H. Weyl in his attempt to

unify gravity and electromagnetism [15]. Note, however, that here, it is the scalar field that

is being geometrized.

It is true that the Weyl geometry is one of the simplest generalizations of Riemannian ge-

ometry, in which the Riemannian compatibility condition between the metric and the affine

connection is weakened. This was an ingenious way that Weyl devised to introduce a covari-

ant vector field σµ in the geometry, which bears a great similarity with the electromagnetic

four-potential. Weyl went on and introduced the second-order tensor Fµν = ∂µσν − ∂νσµ,

which he interpreted as representing another kind of curvature, namely, the length curvature.

As a consequence of this modification in the Riemannian compatibility condition, the co-

variant derivative of the metric tensor does not vanish, as in Riemannian geometry, and the

length of vectors when parallel transported along a curve may change. However, such theory

suffered from a severe criticism by Einstein, who objected that the nonintegrability of length

implies that the rate at which a clock measures time, i.e., its clock rate, in this case would

depend on the past history of the clock. As a consequence of this fact, spectral lines with

sharp frequencies would not appear and the spectrum of neighbouring elements of the same

kind would be different [28]. This became known in the literature as the second clock effect

(incidentally, the first clock effect refers to the well-known effect corresponding to the “twin

paradox”, which is predicted by special and general relativity theories).

Weyl’s new compatibility condition is given by ∇αgµν = σαgµν , and is easily verified that

this condition is invariant under the conformal transformation gµν → ḡµν = efgµν carried out

simultaneously with the gauge transformation σµ → σ̄µ = σµ + ∂µf , where f is an arbitrary

scalar function. The discovery of this new symmetry is now considered by some authors as

the birth of modern gauge theories [29]. Now, if Fµν = 0 (null second curvature), which is

equivalent to say that the one-form σ is closed (dσ = 0), then there is no electromagnetic

field. In this case, we know that, from Poincaré’s lemma [30], it follows that there exists a

scalar field φ, such that σµ = ∂µφ, and, instead of a vector field σ, we are left with a scalar

field φ, which, in addition to the metric, is the fundamental object that characterizes the

geometry. A space-time endowed with this particular version of Weyl’s geometry came to

be known as aWeyl integrable space-time.

4



III. THE FIELD EQUATIONS

As we have already mentioned, in the Weyl geometrical scalar–tensor theory, the underly-

ing space-time manifold is that of a Weyl integrable space-time [17]. In this sense, the Weyl

nonmetricity condition involves a purely geometrical scalar field φ and is explicitly given

by [14]

▽αgµν = gµνφ,α. (1)

Moreover, one can define the Weyl connection, whose coefficients in a local coordinate

basis read

Γα
µν = {αµν} −

1

2
gαβ(gβµφ,ν + gβνφ,µ − gµνφ,β), (2)

with {αµν} representing the usual Christoffel symbols.

In turn, the field equations of the Weyl geometrical scalar–tensor theory can be written

as [25]

Gµν = −
(ω − 3

2
)

Φ2

(

Φ,µΦ,ν −
gµν
2

Φ,αΦ
,α
)

−
1

Φ
(Φ,µ;ν − gµν□Φ )−

gµν
2Φ

V (Φ)− 8πTµν , (3)

□Φ =
1

ω

(

−
1

2

dV

dΦ
Φ + V (Φ)

)

, (4)

where here, we are using the field variable Φ = e−φ, ω = const, V (φ) corresponds to the

scalar field potential, and Tµν represents the Weyl invariant energy–momentum tensor of

the matter fields. We denote by Gµν and □ the Einstein tensor and the d’Alembertian

operator, respectively, defined with respect to the Christoffel symbols. If V (Φ) = 2ΛΦ, one

can introduce the cosmological constant Λ. However, let us take Λ = 0, and then the field

equations are given by

Gµν = −
W

Φ2

(

Φ,µΦ,ν −
1

2
gµνΦ,αΦ

,α

)

−
1

Φ
Φ,µ;ν − 8πTµν , (5)

□Φ = 0, (6)

where W = ω − 3
2
. Additionally, we can obtain from (5) and (6) that

Rµν = −8πTµν +
8πT

2
gµν −

W

Φ2
Φ,µΦ,ν −

Φ,µ;ν

Φ
, (7)

with Rµν denoting the Ricci tensor and T = gµνT
µν . Equations (6) and (7) constitute the

field equations we use in the following.
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IV. KASNER TYPE SOLUTION

As is well known, the Kasner metric was obtained by the mathematician E. Kasner in 1921

and represents an exact solution to Einstein’s field equations. It describes an anisotropic

universe without matter, that is, it is a vacuum solution. Historically, interest in the Kasner

solution came from the fact that, although it may have a singularity (“big bang” or a “big

crunch”), an isotropic expansion or contraction of space is not allowed, and this led to the

generic singularity studies, the so-called BKL singularities [31].

The Kasner type solution in the Brans–Dicke theory of gravity is given by [2, 32]

ds2 = dt2 +R2
1dx

2 +R2
2dy

2 +R2
3dz

2, (8)

with

Ri = ri(at+ b)
pi

1+C , (9)

(i = 1, 2, 3) and the Brans–Dicke scalar field

ϕ = ϕ0(at+ b)
C

1+C , (10)

where a, b, ri, and ϕ0 are constants. The relations
∑

pi = 1 and

∑

p2i = 1− C(ωC − 2) (11)

between the constants pi, C and the scalar field coupling constant ω are also satisfied.

The space-time given by (8) corresponds to a homogeneous universe, without matter and

rotation, with distinct expansions along the three orthogonal axes, which reflects anisotropy.

Note that if a = 1 and b = 0, Equations (9) and (10) may be written as

Ri = rit
pi

1+C , (12)

ϕ = ϕ0t
C

1+C . (13)

In order to obtain a solution in the Weyl geometrical scalar–tensor theory, let us consider

the following result: a vacuum solution of the Weyl geometrical scalar–tensor theory can be

found if we make the change ω → W = ω − 3/2 in the correspondent vacuum solution of

the Brans–Dicke theory. In fact, the two theories are not physically equivalent given that in

Weyl’s geometrical scalar–tensor theory test particles follow affine Weyl geodesics (autopar-

allels) and not metric geodesics as in the case of the Brans–Dicke theory. Nonetheless, there

is a formal equality between the vacuum field equations of the two theories [14].
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Thus, the Kasner type solution in the Weyl geometrical scalar–tensor theory is given by

Equation (12) and

Φ = Φ0t
C

1+C , (14)

where
∑

pi = 1 and

∑

p2i = 1− C(WC − 2) = 1− C

[(

ω −
3

2

)

C − 2

]

. (15)

Now, if we choose C =
2

W
, it follows that

∑

p2i = 1. (16)

Furthermore, (12) and (14) become

Ri = rit
Wpi
W+2 = rit

[(ω−3/2)/(ω+1/2)]pi , (17)

Φ = Φ0t
2

W+2 = Φ0t
[2/(ω+1/2)]. (18)

In the limit ω → ∞, (17) and (18) tend to

Ri = tpi , (19)

Φ = Φ0, (20)

where we have taken ri = 1. On the other hand, from (1) and (2) we find that

∇αgµν = −gµν

(

Φ,α

Φ

)

, (21)

Γα
µν =

{

α
µν

}

+
1

2Φ
gαβ (gβµΦ,ν + gβνΦ,µ − gµνΦ,β) , (22)

by considering the scalar field in the form Φ = e−φ. Thus, when ω → ∞, the space-time

geometry becomes Riemannian as we have

∇αgµν = 0, and Γα
µν =

{

α
µν

}

. (23)

Therefore, also taking into account (19) and (20), the Kasner solution of general relativity

is recovered in this limit.
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V. A PERFECT FLUID COSMOLOGICAL MODEL

The Friedmann–Robertson–Walker metric with a flat spatial section is given by

ds2 = dt2 −R2(t)
[

dr2 + r2
(

dϑ2 + sin2 ϑdχ2
)]

, (24)

where R(t) denotes the scale factor. In this cosmological model, the matter content is a

perfect fluid represented by the energy–momentum tensor

Tµν = (p+ ρ) uµuν − pgµν , (25)

with p = λρ, 0 ≤ λ ≤ 1, p being the thermodynamic pressure, ρ the energy density, and

uµ = (1, 0, 0, 0) the four-velocity vector field. Then, field Equations (6) and (7) reduce to

3R̈

R
= −4πρ (1 + 3λ)−W

Φ̇2

Φ2
−

Φ̈

Φ
, (26)

R̈

R
+

2Ṙ2

R
= 4πρ (1− λ)−

ṘΦ̇

RΦ
, (27)

Φ̈

Φ
+

3ṘΦ̇

RΦ
= 0. (28)

The dot means differentiation with respect to time. Moreover, due to the assumption of

spatial homogeneity, the scalar field Φ is supposed to be a function of t only. Additionally,

with the definitions θ = 3Ṙ
R

and Ψ = Φ̇
Φ
, one can express (26)–(28) in the form

θ̇ = −
θ2

3
− 4πρ (1 + 3λ)− (W + 1)Ψ2 − Ψ̇, (29)

θ̇ = −θ2 + 12πρ (1− λ)− θΨ, (30)

Ψ̇ = −Ψ2 − θΨ. (31)

By combining (29)–(31), we can derive the equation

θ2

3
−

WΨ2

2
+ θΨ = 8πρ. (32)

After some calculations and by using Equations (5) and (6), it is easy to show that

T µν
;ν =

T

2

Φ,µ

Φ
−

Φ,ν

Φ
T µν , (33)

which reduces to

ρ̇ = −

[

(1 + λ) θ +

(

1 + 3λ

2

)

Ψ

]

ρ (34)

in the context of the cosmological model considered.
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A. Stiff Matter Solution

Next, we obtain the equations of a dynamic system which lead us to carry out a rich

analysis of the solutions. For this purpose, let us consider the following equation, which

results from (29)–(31):

θ̇ = −
(1 + λ)

2
θ2 +

(1− 3λ)

2
θΨ−

3W (1− λ)

4
Ψ2. (35)

This equation, together with (31), constitutes a homogeneous autonomous planar dy-

namic system. It is important to note that the solutions of this system, θ(t) and Ψ(t), must

necessarily satisfy the constraint imposed by Equation (32).

Cosmological scenarios modelled by stiff matter have been investigated recently, partic-

ularly in connection with the problem of dark matter [33]. Now, let us consider the stiff

matter case in the geometrical scalar–tensor theory. Then, it follows from (35), in the case

known as stiff matter (λ = 1), that

θ̇ = −θ2 − θΨ. (36)

Clearly, an immediate solution of the system of Equations (31) and (36) is given by

Ψ = −θ, which leads to the particular solution (θ = θ0 , Ψ = Ψ0), θ0 and Ψ0 being

constants. Hence, we have 3Ṙ
R

= θ0,
Φ̇
Φ
= Ψ0, which then leads to

R(t) = R0 exp

(

θ0t

3

)

, (37)

Φ(t) = Φ0 exp (Ψ0t) , (38)

where R0 and Φ0 are constants, which we recognize as a de Sitter type solution, with the

scalar field also having an exponential behaviour. Furthermore, from (32), we can find

ρ = −
(3W + 4)

48π
θ20. (39)

Now, by defining α = θ+Ψ ̸= 0, let us find the general solution for the stiff matter case.

To do this, one can add Equations (31) and (36) to obtain

α̇ + α2 = 0, (40)

whose solution is

α =
1

t+D
, (41)
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where D is a constant. In turn, from Equation (34) with λ = 1, it follows that

ρ̇+ 2αρ = 0, (42)

whose solution is

ρ =
ρ0

(t+D)2
, (43)

with ρ0 constant.

To obtain the expression of θ, let us consider (32) and (43) and use that

Ψ = α− θ = 1
t+D

− θ. In this way we are led to

θ =
B

t+D
, (44)

Ψ =
1− B

t+D
, (45)

where

B =
3(W + 1)±

√

3 [(3 + 2W )− 16πρ0 (4 + 3W )]

4 + 3W
, (46)

while the condition (3 + 2W )− 16πρ0 (4 + 3W ) ≥ 0 is required to be satisfied.

On the other hand, if we replace (44) and (45) in (32), we obtain

ρ =
1

8π (t+D)2

[

B2

3
−

W

2
(1− B)2 +B (1− B)

]

. (47)

The solutions for the scale factor and the scalar field can be obtained by integrating the

expressions θ = 3Ṙ
R

and Ψ = Φ̇
Φ
, giving the following:

R(t) = R0 (t+D)B/3 , (48)

Φ(t) = Φ0 (t+D)1−B , (49)

with R0 and Φ0 being constants.

It should be noted that the constant B can also be written as

B = 1−
1

4 + 3W
±

√

3 [(3 + 2W )− 16πρ0 (4 + 3W )]

4 + 3W
. (50)

Thus, for a large W , we obtain

B = 1−
1

3W
±

√

1

3W
(2− 48πρ0) . (51)
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Let us now consider that ρ0 =
f(W )
24π

, f(W ) being a function which tends to one when W

is large. Therefore, B takes the form

B = 1−
1

3W
= 1 +O

(

1

W

)

. (52)

Under these conditions, one can obtain from (49) that

Φ(t) = Φ0 +O

(

1

W

)

. (53)

When Φ behaves as in (53) for a large W , it has been verified that any vacuum solution of

the Weyl geometrical scalar–tensor theory reduces to the corresponding general relativistic

solution in the limit W → ∞ [25]. This fact also occurs here, since Equations (48) and (49)

become equal to the Einstein solution

R(t) = R0t
1/3, (54)

Φ = Φ0, (55)

for W → ∞ (we take D = 0). Naturally, the geometry of the space-time becomes Rieman-

nian, according to Equations (21)–(23).

B. Qualitative Analysis for λ ̸= 1

For values of the parameter λ in the interval 0 ≤ λ < 1, we use the qualitative analysis

theory [34], by which many of the general characteristics of the integral solutions of the

system can be studied without working out explicit solutions θ(t) and Ψ(t). For this purpose,

let us start by writing Equations (31) and (35) of the dynamic system as

θ̇ = F (θ,Ψ) = −
(1 + λ)

2
θ2 +

(1− 3λ)

2
θΨ−

3W (1− λ)

4
Ψ2, (56)

Ψ̇ = H(θ,Ψ) = −Ψ2 − θΨ. (57)

An equilibrium point of the system, i.e., a solution that occurs when F (θ,Ψ) = H(θ,Ψ) =

0, is the origin of the phase plane, the point M (θ = 0,Ψ = 0). This solution represents

Minkowski’s space-time, being the only finite equilibrium point that is significant in the sys-

tem.

In the qualitative analysis of solutions of Equations (56) and (57), one must construct

the phase diagrams. For this, we make use of the Poincaré compactification method, which
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projects the phase plane into a sphere. A second mapping, in turn, projects this sphere

orthogonally onto a disk, whose circumference represents the infinity of the initial phase

plane [34].

C. Invariant Rays and Regions of Negative Energy Density

Initially, in our analysis, we obtain the invariant rays of the dynamic system defined

above. For this, let us make the change of variables θ = r cos β and Ψ = r sin β, r and β

being polar coordinates of the plane. In this way, we find

θ̇ = r2
[

−
(1 + λ)

2
cos2 β +

(1− 3λ)

2
cos β sin β −

3W (1− λ)

4
sin2 β

]

= r2F (β), (58)

Ψ̇ = r2
[

− sin2 β − cos β sin β
]

= r2H(β). (59)

Now, from the relations between the variables θ, Ψ, r, β, and Equations (58) and (59),

it can be shown that

β̇ = r
(

−F (β) sin β +H(β) cos β
)

. (60)

Next, we obtain the invariant rays, which, by definition, consist of solutions where the

ratio Ψ
θ
= tan β = const. Thus, putting β̇ = 0 in expression (60) leads to

tan β =
H(β)

F (β)
. (61)

Again, with the help of Equations (58) and (59), it follows from (61) that

tan β

(

W

2
tan2 β − tan β −

1

3

)

= 0. (62)

For W < −3
2
, the roots of (62) are β1 = 0 and β2 = π. The solutions representing

these invariant rays appear in phase diagrams such as curves AM and MA′, respectively

(see Figure 1, for example). When W > −3
2
, in addition to the roots β1 and β2 already

mentioned, there are four more:

β3 = tan−1

[

−
3

2

(

1 +

√

1 +
2W

3

)]

−1

, β4 = β3 + π, (63)

β5 = tan−1

[

−
3

2

(

1−

√

1 +
2W

3

)]

−1

, β6 = β5 + π, (64)
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which correspond to the curves BM , MB′, CM , and MC ′, respectively (see Figure 2,

for instance). These invariant rays depend on W and, as its value increases, the following

behaviour is observed: the line BB′ rotates anticlockwise approaching the θ-axis, while the

line CC ′ moves clockwise tending to make an angle of −180o with the positive direction of

the θ-axis. It should also be noted that if W = −3
2
, the lines BB′ and CC ′ coincide, making

an angle of −33.69o with the θ-axis.

FIG. 1: W < −3
2 (ω < 0).

FIG. 2: −3
2 < W < −4

3 (0 < ω < 1
6).

To continue, let us check if there are regions of the phase diagrams in which ρ < 0. In these
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regions, the solutions should not be admitted as physical solutions, at least classically.

We start by replacing Ψ = θ tan β in (32). We thus obtain

−θ2
(

W

2
tan2 β − tan β −

1

3

)

= 8πρ. (65)

It is easy to verify, taking into account (62), that the invariant rays lying on the lines BB′

and CC ′ represent vacuum solutions. Moreover, we have no region with a negative energy

density if W < −3
2
. On the other hand, when W > −3

2
, we find regions where ρ < 0 that

are delimited by the invariant rays that lie on the lines BB′ and CC ′. In the next section,

these regions are represented as dotted regions in the phase diagrams, which widen as the

value of W increases, tending to leave the classically allowed solutions localized in a narrow

region that includes the θ-axis.

D. Phase Diagrams

Now, one can obtain the basic representation of Weyl’s cosmological solutions on the

Poincaré sphere (the phase diagrams). This allows us to make a qualitative analysis of the

solutions at infinity. First, let us make some comments about the diagrams (Figures 1–3),

which are valid for λ ̸= 1 and are separated into intervals of W (or ω)1.

FIG. 3: W > 0 (ω > 3
2).

1 The cases W = − 3

2
, W − 4

3
and W = 0 were not analysed because they contain multiple equilibrium

points or singularities.
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Initially, for W < −3/2 (see Figure 1), the closed curves appearing in the diagram

represent nonsingular cosmological models, which start in the infinitely distant past from

Minkowski’s space-time (the point M (0, 0)) and tend to it again in the infinitely distant

future; these universes present an initial phase of contraction, and then move into an expan-

sive phase. For some of these solutions, the scalar field Φ is increasing (if Ψ > 0), while for

the others, it is decreasing, in which case Ψ < 0. On the other hand, it is possible to have

singular solutions with a constant scalar field (Ψ = 0): they are represented by the AM

curves, which correspond to solutions that start with a “big bang”, and then undergo an

expansive phase, finally tending to Minkowski’s space-time, and the MA′ curves, solutions

that start from Minkowski’s space-time (in the infinitely distant past, with the cosmic time

t → −∞), and follow a contraction regime until the final collapse.

In fact, the curves AM and MA′ also correspond to solutions of general relativity, since

from (56) with Ψ = 0, it follows that

θ̇ = −
(1 + λ)

2
θ2, (66)

whose solution is
1

θ
=

(1 + λ)

2
t+ δ, (67)

where δ is an arbitrary constant. Therefore, by setting δ = 0, we obtain the known scale

factor

R(t) = R0t
2/3(1+λ). (68)

In Figure 2, we consider the interval −3/2 < W < −4/3. In this diagram, there are six

invariant rays: AM , MA′, BM , MB′, CM , and MC ′. It is interesting to recall that the

dotted regions in the diagram contain solutions with ρ < 0, so that the curves restricted

to these regions do not correspond to physical models. Furthermore, solutions lying on the

lines BB′ and CC ′ are vacuum solutions (ρ = 0), possessing singularities in their geometries,

i.e., they are “big bang” models (BM and CM) or models that collapse (MB′and MC ′),

but with the scalar field varying. In the region where ρ > 0, one finds solutions similar to

those in the previous diagram and also expanding universes with decreasing Φ (BM) and

collapsing universes with increasing Φ (MB′).

For W > −4
3
, it turns out that there are no nonsingular solutions in the diagrams.

In Figure 3 (W > 0), in addition to solutions that appeared in Figure 2 when ρ ≥ 0, we
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now observe the existence of expanding universes with increasing Φ (C ′M) and collapsing

universes with decreasing Φ (MC). As mentioned before, if W increases, the line BB′

moves anticlockwise approaching the line AA′, while the line CC ′ moves clockwise, also

approaching AA′; as a consequence, the “forbidden” regions (sectors MB′C ′ and MBC),

where ρ < 0, become wider. In the limit W → ∞, the line AA′ remains in the region where

the energy density ρ is positive, representing the solutions of general relativity given by (68).

Actually, for each value of W , the line AA′ contains the solutions (68) because Φ = const

(which implies Ψ = 0) is a solution to Equation (6).

In most of the diagrams, the equilibrium points do not appear as isolated points. In these

cases, they correspond to multiple equilibrium points, constituting the invariant rays. In

the other cases they appear on the Poincaré sphere as points at the infinity, whose nature

are indicating in the table below

Intervals A,A′ B,B′ C,C ′

W < −3/2 saddle points - -

−3/2 < W < −4/3 saddle points two-tangent nodes saddle points

W > −4/3 (W ̸= 0) saddle points two-tangent nodesÂ´ two-tangent nodes

Table 1: Behaviour of the equilibrium points on the Poincaré sphere.

VI. CONCLUSIONS

In this paper, we sought to find cosmological solutions in the context of the Weyl geomet-

rical scalar–tensor theory. The vacuum field equations of this theory are formally identical

to those of the Brans–Dicke theory, so we were able to obtain a Kasner type solution from

the corresponding solution in the Brans–Dicke theory. We also found that, in the limit

ω → ∞, the Kasner solution of general relativity was recovered. On the other hand, we

investigated the existence of solutions for homogeneous and isotropic models sourced by a

perfect fluid. In this case, we found an analytic solution for stiff matter and also showed

that the corresponding solution of general relativity could be obtained in the limit W → ∞.

For values of the parameter λ ̸= 1, no analytical solution was possible, and we used dynam-

ical systems theory to display the phase diagrams of the solutions in intervals of W (or ω).

When W > 0, we highlighted solutions representing universes with ρ > 0 and an increasing
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geometric scalar field, which started with a “big bang” and expanded to a final phase that

tended toward Minkowski’s space-time (the curves C ′M).

An interesting fact regarding the phase diagrams examined here is that there was no

difference between the cosmological models when different values of the parameter λ were

considered. In that sense, it can be seen that Equation (62), which determines the invariant

rays, did not depend on λ. Moreover, it should be noted that in the present context, matter

was not a source of the geometric scalar field Φ in Equation (6). By contrast, in the Brans–

Dicke theory, the scalar field equation is

□ϕ =
8πT

2ω + 3
, (69)

where, as is well known, T denotes the trace of the energy–momentum tensor. For the

case of a perfect fluid source, T = T (λ) and T = 0 only when λ = 1
3
. As a consequence,

in the present scalar–tensor theory, cosmological models differed according to the value of

the parameter λ [35].

In this work, we did not consider the presence of the cosmological constant, nor did

we take any potential of the scalar field into account. Because of this, we did not find

any solution describing the acceleration of the universe. Incidentally, models describing

cosmological scenarios in which the acceleration of the cosmos is driven by a scalar field,

quintessence models [36, 37] and Chaplygin gas models [38, 39] among others [40], have

been investigated with interest. Two lines of research that we leave for further work are (i)

an investigation of the role the geometric scalar field could play in approaching the problem

of dark matter and (ii) considering scenarios where the cosmological constant is present

with the hope that they can give some light to the problem of dark energy.
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