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Abstract

In this work we consider the time-varying gravitomagnetism for-

malism in the context of the Brans-Dicke theory of gravity. Initially,

the gravitoelectric and gravitomagnetic potentials are exhibited. Then,

a linear model for the temporal variation of the angular momentum

of a massive body is presented. As an application, we examine the

gravitomagnetic time delay, comparing the results obtained with those

predicted by General Relativity.
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1 Introduction

In the linear approximation of the General Relativity theory is possible to
separate the gravitational effects in two parts: the first, linked with mass,
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and the second, connected with mass currents. In this framework, we say
that mass currents generate a field called, by analogy with electromagnetism,
the gravitomagnetic field [5]. Thereby, the rotation of the Earth produces a
gravitomagnetic field that causes a precession in gyroscopes orbiting around
the planet. This effect, named the Lense-Thirring effect, was verified by the
GP-B experiment with an accuracy of 19% [7]. However, other aspects of
gravitomagnetism have been studied [9] and there is an investigation line that
takes into account situations where the angular momentum of the source varies
with time [10]. Indeed, rarely the rotation rate of an astronomical source is
constant and, in the Earth case, the rotation rate decreases slowly due mostly
to tidal friction. As a consequence, the Earth-Moon distance increases at a
rate of 4 cm per year to ensure the conservation of angular momentum of the
system [3].

On the other hand, there are alternative theories to the General Relativity,
among which are highlighted the scalar-tensor theories [11]. These theories
introduce an additional field, the scalar field φ, which together with the space-
time metric gµν will be responsible for the description of gravitational phe-
nomena. In general, the scalar field coupling factor is ω(φ); the Brans-Dicke
theory [4] is obtained when ω(φ) = ω = constant. The scalar-tensor theories
are popular, among other reasons [1], because they incorporate key ingredi-
ents of string theories, such as a dilaton-like gravitational scalar field and its
non-minimal coupling to the curvature [8].

In this paper, we develop the time-varying gravitomagnetism formalism in
the context of Brans-Dicke theory. In this way, the gravitoelectric and grav-
itomagnetic potentials are obtained in Section 2. Following, in Section 3, we
consider a simple model in which the intrinsic angular momentum of a massive
body varies linearly with time. Then, in Section 4, we show an expression for
the gravitomagnetic time delay, comparing the result with General Relativity
predictions. Finally, in Section 5, the conclusions are presented.

2 Gravitomagnetism

The Brans-Dicke field equations are given by [4]

Gµν =
8π

c4φ
Tµν +

ω

φ2
(φ,µφ,ν −

1

2
gµνφ,αφ

,α) +
1

φ
(φ,µ;ν − gµν�φ), (1)

�φ =
8πT

c4(2ω + 3)
, (2)

where ω is the scalar field coupling constant and T = T α
α.

Let us consider the weak field approximation, in which gµν = ηµν + hµν ,
where ηµν = diag(−1, 1, 1, 1) denotes Minkowski metric tensor and hµν is a
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small perturbation term, so that we keep only first-order terms in hµν . Be-
sides, we take φ = φ0 + ε, where φ0 is constant and ε = ε(x) is also a small
perturbation term with |ε/φ0| ≪ 1. Thus, the field equations, using the Brans-
Dicke gauge (hµ

ν −
1

2
δµνh),µ = ε,νφ

−1
0 , reduce to [2]

�hµν = −
16π

c4φ0

[

Tµν −
ω + 1

2ω + 3
ηµνT

]

, (3)

�ε =
8πT

c4(2ω + 3)
, (4)

with h = hα
α. And more, with the definition

h̄µν = hµν −
1

2
ηµνh− εφ−1

0 ηµν , (5)

the equation (3) becomes

�h̄µν = −
16πG

c4

(

2ω + 3

2ω + 4

)

Tµν , (6)

being φ−1
0 =

(

2ω+3

2ω+4

)

G, where G is the Newton’s gravitational constant [4].
The general solution of the equation (6) is a superposition of the particular

retarded solution plus the general solution of the homogeneous wave equation.
Here, we are interested in the particular solution

hµν =
4G

c4

(

2ω + 3

2ω + 4

)
∫

Tµν(ct− |~r − ~r′| , ~r′)

|~r − ~r′|
d3x′. (7)

Assuming a localized matter distribution with density ρ and velocity field
−→v , with the condition |−→v | << c, the components of the energy-momentum
tensor will be given by:

T00 = ρc2,

T0i = −cji, (8)

Tij = ρvivj + pδij,

where ~j = ρ~v is the mass current and p is the pressure. Considering the
expression of Tij and equation (7), it follows that

hij = O(c−4). (9)

The terms of this order will be neglected. Now, we define [6]:

h00 =
4Φ(t, ~r)

c2
, (10)
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h0i = −
2Ai(t, ~r)

c2
, (11)

being Φ(t, ~r) the gravitoelectric potential and ~A(t, ~r) the gravitomagnetic vec-
tor potential. Then, with these definitions and the expressions to T00 and T0i

given in (8), we find from (6) that

�Φ(t, ~r) = −4πG

(

2ω + 3

2ω + 4

)

ρ, (12)

�Ai(t, ~r) = −
8πG

c

(

2ω + 3

2ω + 4

)

ji. (13)

In the stationary case, (12) and (13) reduce to

∇2Φ(~r) = −4πG

(

2ω + 3

2ω + 4

)

ρ, (14)

∇2Ai(~r) = −
8πG

c

(

2ω + 3

2ω + 4

)

ji. (15)

If the matter distribution is confined around the origin of spatial coordinates,
so far from the source we will have the solutions

Φ(~r) =

(

2ω + 3

2ω + 4

)

GM

r
, (16)

~A(~r) =

(

2ω + 3

2ω + 4

)

G( ~J × ~r)

cr3
, (17)

where r = |~r|, M and ~J are the mass and angular momentum of the source.
The Brans-Dicke gauge can be written as h

µν
,µ = 0. Thus, using equations

(10) and (11), we obtain

2

c

∂Φ(t, ~r)

∂t
+∇ · ~A(t, ~r) = 0. (18)

3 Linear Model for Time-Varying Gravitomag-

netism

A simple model for time-varying gravitomagnetism can be developed if we
admit that the angular momentum of the source varies linearly with time
[10]. Indeed, in many cases of astrophysical interest, the temporal variation
of the angular momentum of the source cannot be effectively linear, but a
linear model corresponds to a first approximation of the problem. Also, in our
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discussion, only nonradiative situations are considered, in which the angular
momentum slowly varies with time.

To get the desired model, let us define the following time-dependent grav-
itational potentials:

Φ(t, ~r) = σ(t)Φ(~r), (19)

~A(t, ~r) = f(t) ~A(~r), (20)

where σ(t) and f(t) are functions to be determined. Hence, in according to
(18), we have

2

c
Φ(~r)

dσ

dt
+ f(t)∇ · ~A(~r) = 0. (21)

However, for the stationary potentials Φ(~r) and ~A(~r), the equation (18) implies

that ∇ · ~A(~r) = 0. Thus, it follows from (21) that

dσ

dt
= 0. (22)

Then, for simplicity, we make σ = 1. Now, using (11) and (20), we obtain

h̄0i(t, ~r) = −
2

c2
f(t)Ai(~r) = f(t)h̄0i(~r). (23)

Substituting this result in (6), we find that

d2f(t)

dt2
= 0, (24)

since T0i(t, ~r) = f(t)T0i(~r). Therefore, it is concluded that f(t) is a linear func-

tion of time; furthermore, f(t) must be such that the relation
2 |Ai(t,

−→r )|

c2
≪ 1

is satisfied in the interval of time considered, maintaining the weak field ap-
proximation valid.

Taking into account the previous results, the gravitational potentials, far
from the source, will be given by (16) and

~A = f(t) ~A(~r) = f(t)

(

2ω + 3

2ω + 4

)

G( ~J × ~r)

cr3
=

(

2ω + 3

2ω + 4

)

GJ(t)(Ĵ × ~r)

cr3
, (25)

being f(t) ~J ≡ J(t)Ĵ , where Ĵ is a fixed unit angular momentum vector of the
source.

We can obtain an expression for J(t) considering that the source undergoes
a linear change in its angular momentum, that goes since J1 at initial time t1
until J2 at t2. Then, we get

J(t) = J1 +

(

J2 − J1
t2 − t1

)

(t− t1). (26)
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4 Gravitomagnetic Time Delay

Let us calculate the gravitational time delay when a ray of electromagnetic
radiation propagate from a point P1 to a point P2, with the angular momentum
of source linearly varying since J1 until J2. The effect can be separated into
two parts: the Shapiro time delay [11] and the gravitomagnetic time delay, the
latter due to rotation of source.

If the ray propagate from a point P1 : (ct1, ~r1) to a point P2 : (ct2, ~r2) in
the spacetime with gµν = ηµν + hµν , then we will have [6]

∫ t2

t1

dt =
1

c

∫ P2

P1

| d~r | +
1

2c

∫ P2

P1

hµνk
µkνdl, (27)

where kµ = (1, k̂), k̂ is the constant unit propagation vector of the signal and

dl =| d~r |= (δijdx
idxj)

1/2
denotes the Euclidean length element along the

straight line that joins P1 to P2. Therefore, the gravitational time delay is
defined as

∆ =
1

2c

∫ P2

P1

hµνk
µkνdl. (28)

Moreover, using (5) and also that ηµνk
µkν = kµkµ = −1 + k̂ik̂i = −1 + 1 = 0,

we can write

∆ =
1

2c

∫ P2

P1

h̄µνk
µkνdl. (29)

Thus, from (10) and (11), one obtains

∆ =
2

c3

∫ P2

P1

Φ(t, ~r)dl −
2

c3

∫ P2

P1

~A(t, ~r) · k̂dl, (30)

where the Shapiro time delay is given by

∆S =
2

c3

∫ P2

P1

Φ(t, ~r)dl (31)

and the gravitomagnetic time delay is expressed by

∆GM = −
2

c3

∫ P2

P1

~A(t, ~r) · k̂dl. (32)

Substituting the potentials (16) and (25) in (31) and (32), we find that

∆S =
2GM

c3

(

2ω + 3

2ω + 4

)
∫ P2

P1

dl

r
, (33)
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∆GM = −
2G

c4

(

2ω + 3

2ω + 4

)
∫ P2

P1

J(t)(Ĵ × ~r)

r3
· k̂dl. (34)

The equation (33) is the Brans-Dicke Shapiro time delay [2]. On the other
hand, from (26), it follows that

J(t) = J(l) = J1 +
J2 − J1

L
l, (35)

where we take t = l/c, t1 = 0 and t2 = L/c, being L the length of the straight
line that joins P1 to P2. Thereby, (34) reads

∆GM = −
2G

c4

(

2ω + 3

2ω + 4

)

Ĵ ·

(

J1

∫ L

0

~r × k̂

r3
dl +

J2 − J1
L

∫ L

0

~r × k̂

r3
ldl

)

. (36)

Then, by solving the integrals [10], we have

∆GM = −
2G

c4

(

2ω + 3

2ω + 4

)

Ĵ ·

[

r̂1 × r̂2
1 + r̂1 · r̂2

(

J1
r1

+
J2
r2

)]

, (37)

with r̂1 and r̂2 indicating the unit vectors along ~r1 and ~r2, respectively. The
factor 2ω+3

2ω+4
represents the contribution of the scalar field, since that if ε 6= 0

in (4) then ω is finite. In the limit ω → ∞, the result of the gravitomagnetic
time delay in General Relativity is recovered [10]. It is worth mentioning that,
if the angular momentum is constant, with J1 = J2 = J , and we take the limit
ω → ∞, we regain the result of General Relativity to the stationary case [6].

5 Conclusion

We study the time-varying gravitomagnetism in the Brans-Dicke theory con-
text, exhibiting the gravitoelectric e gravitomagnetic potentials. After, was
developed a model in which the angular momentum of the source is linearly
dependent upon time. As an application, was obtained an expression to the
gravitomagnetic time delay. In the limit ω → ∞, the result of the gravitomag-
netic time delay in General Relativity was recovered.

The equation (37) may be of astrophysical interest in pulsar timing, pro-
vided that the angular momentum of a pulsar varies due to the external elec-
tromagnetic braking torques [3].
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