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We discuss the gravitomagnetism in the context of Brans-Dicke theory of gravity. We
obtain the equation of motion of a particle in terms of gravitoelectric and gravitomag-

netic fields. Comparing the result obtained with that predicted by general relativity we
show that the difference between the two theories lies in the gravitomagnetic force.
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1. Introduction

Lense and Thirring1 realized that as a consequence of the Einstein field equations

an effect called the Lense-Thirring precession (or “frame dragging”) should occur

near the spinning massive objects like the Earth. Frame dragging can be viewed as

a Machian effect,2 which is not predicted by Newtonian gravity. Effects of general

relativity associated with the rotation of massive bodies may be better understood

by using a formal analogy with electromagnetism. The idea is that mass currents

generate a field called the gravitomagnetic field.3

There are indirect evidences of the existence of gravitomagnetism in an as-

trophysical context and in the weak field and slow motion approximation valid

throughout the Solar System.4,5 On the other hand, the first accurate measurement

of the Lense-Thirring effect, with an error estimate of 10%, was performed using

the current technology of laser ranged satellites (LAGEOS and LAGEOS II).6 On

april 2004 has been launched the Gravity Probe B experiment,7 an ongoing space

mission using orbiting gyroscopes, which plans to measure the Lense-Thirring effect

with an error of about 1%. Certainly, these experimental programs will open new

possibilities of testing general relativity against other metric theories of gravity,8 in

particular the scalar-tensor theory. Our aim in this paper is to obtain a “Lorentz
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force law” with the gravitoelectric and gravitomagnetic fields in the context of

Brans-Dicke theory, and then compare the results with those predicted by general

relativity. To get this result we will use the fact that, in the weak field approxi-

mation, solutions of Brans-Dicke equations are simply related to the solutions of

general relativity equations for the same matter distribution.9

This paper is organized as follows. In Sec. 2, we introduce the basic ideas of

gravitomagnetism. Then, in Sec. 3, we show how general relativity and Brans-Dicke

theory of gravity are related in the weak field approximation. The gravitoelectric

and gravitomagnetic fields in Brans-Dicke theory are defined in Sec. 4 and the force

law is obtained. Section 5 is devoted to some remarks.

2. Gravitomagnetism in General Relativity

Considering the weak field approximation of general relativity we assume the met-

ric tensor gµν as being gµν = ηµν + hµυ , where ηµν = diag(−1, 1, 1, 1) denotes

Minkowski metric tensor and hµυ is a small perturbation term. Then, by keeping

only first-order terms in hµυ, the Einstein equations become

�hµν = −
16πG

c4
Tµν , (1)

where h
µ

ν = hµ
υ − 1

2
δµ
ν h and we are adopting the usual harmonic coordinate gauge(

hµ
υ − 1

2
δµ
ν h

)
,µ = 0.

If we assume a non-relativistic matter distribution with a mass density ρ and

velocity field −→v , then (1) yields

�h00 = −
16πG

c2
ρ, (2)

�h0i =
16πG

c3
ρvi, (3)

where vi denotes the velocity components, and terms such as p and vivj/c4 have

been neglected. Let us now specialise to the case of a stationary gravitational field

of a slowly rotating body. Then (2) and (3) reduce to

∇2

(
c2h00

4

)
≡ ∇2(Φ) = −4πGρ, (4)

∇2h0i =
16πG

c3
ρvi, (5)

where Φ is the gravitoelectric scalar potential. Far from the source we will have

Φ =
GM

r
, (6)

−→
h = −

2G(
−→
J ×−→r )

c3r3
≡ −

2
−→
A

c2
, (7)

where
−→
A is the gravitomagnetic vector potential vector, h0i are the components

of the vector
−→
h , M and

−→
J are the total mass and angular momentum of the
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source. In close analogy with electrodynamics we define the gravitoelectric field to

be
−→
E = −∇Φ and the gravitomagnetic field to be

−→
B =

−→
∇ ×

−→
A =

G

c

[
3r̂(r̂ ·

−→
J ) −

−→
J

r3

]
. (8)

With these conditions, the spacetime metric has the form

ds2 = −c2

(
1 − 2

Φ

c2

)
dt2 −

4

c

(
−→
A · d−→x

)
dt +

(
1 + 2

Φ

c2

)
δijdxidxj . (9)

The Lagrangian for the motion of a test particle of mass m is L = −mcds/dt.

To first order in Φ and
−→
A it becomes

L = −mc2

(
1 −

v2

c2

) 1

2

+ mγ

(
1 +

v2

c2

)
Φ −

2m

c
γ−→v ·

−→
A, (10)

where γ = 1/
√

1 − v2/c2. Indeed, in the weak gravitational field, we assume that

the particle has a small velocity.10 Then, we obtain from (10) that

L = −mc2

(
1 −

v2

c2

) 1

2

+ mΦ −
2m

c
−→v ·

−→
A. (11)

This equation is analogous to the electromagnetic case.11 Thus, the equation of

motion,
−→
F = d−→p /dt, with −→p = γm−→v , takes a Lorentz force law form

−→
F = −m

−→
E − 2m

−→v

c
×
−→
B. (12)

3. The Weak Field Approximation of Brans-Dicke Theory

In Brans-Dicke theory of gravity the field equations are given by12

Gµυ =
8π

c4φ
Tµυ +

ω

φ2
(φ,µ φ,υ −

1

2
gµυφ,α φ,α) +

1

φ
(φ,µ;υ −gµυ�φ). (13)

One can linearize Brans-Dicke field equations by assuming that the metric gµν

and the scalar field φ can be written as gµν = ηµν + hµυ and φ = φ0 + ǫ, where

φ0 is a constant and ǫ = ǫ(x) is a first-order term ( it is assumed that both |hµυ|

and
∣∣ǫφ−1

0

∣∣ are ≪ 1). In this procedure, we have used the Brans-Dicke gauge12

(
hµ

υ − 1
2
δµ
ν h

)
,µ = ǫ,υ φ−1

0 .

The problem of finding solutions of Brans-Dicke equations of gravity in the

weak field approximation may be reduced to solving the linearized Einstein field

equations for the same energy-momentum tensor.9 Indeed, if g∗µν(G, x) is a known

solution of the Einstein equations in the weak field approximation for a given Tµυ,

then the Brans-Dicke solution corresponding to the same Tµυ will be given in the

weak field approximation by

gµυ(x) = [1 − ǫG0]g
∗

µν(G0, x), (14)
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where G is the gravitational constant and G0 = φ−1
0 =

(
2ω+3
2ω+4

)
G and the function

ǫ(x) is a solution of the scalar field equation

�ǫ =
8πT

c4(2ω + 3)
, (15)

with T denoting the trace of Tµυ.

4. Gravitomagnetism in Brans-Dicke Theory

Let us consider the metric of the spacetime in the context of Brans-Dicke theory.

From (14) and (9), we have

ds2
BD = (1 − ǫG0)

[
−c2

(
1 − 2

Φ(G0)

c2

)
dt2 −

4

c

(
−→
A (G0) · d−→x

)
dt

+

(
1 + 2

Φ(G0)

c2

)
δijdxidxj

]
. (16)

This line element can be written as

ds2
BD = −c2

(
1 − 2

Φ(G0)

c2
− ǫG0

)
dt2 −

4

c

(
−→
A (G0) · d−→x

)
dt

+

(
1 + 2

Φ(G0)

c2
− ǫG0

)
δijdxidxj . (17)

Now, if we define

2
Φ1

c2
= 2

Φ(G0)

c2
+ ǫG0, (18)

2
Φ2

c2
= 2

Φ(G0)

c2
− ǫG0, (19)

the metric will be given by

ds2
BD = −c2

(
1 − 2

Φ1

c2

)
dt2 −

4

c

(
−→
A (G0) · d−→x

)
dt +

(
1 + 2

Φ2

c2

)
δijdxidxj . (20)

In close analogy to the general relativity approach, we will have the Lagrangian

of a particle of mass m

LBD = −mc2

(
1 −

v2

c2

) 1

2

+ mγΦ1 + mγ
v2

c2
Φ2 −

2m

c
γ−→v ·

−→
A (G0). (21)

However, since that v
c
≪ 1, the Lagrangian can be simplified

LBD = −mc2

(
1 −

v2

c2

) 1

2

+ mΦ1 −
2m

c
γ−→v ·

−→
A (G0). (22)

Again, we immediately arrive at the equation of motion

−→
F BD = −m

−→
E − 2m

−→v

c
×
−→
B (G0), (23)
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where

−→
E = −∇Φ1, (24)

and

−→
B (G0) =

−→
∇ ×

−→
A (G0) =

G0

c

[
3r̂(r̂ ·

−→
J ) −

−→
J

r3

]
=

(
2ω + 3

2ω + 4

)
−→
B. (25)

It is interesting to note that the gravitoelectric field is exactly the same of the gen-

eral relativity case. Really, the scalar field produced for a stationary mass point of

mass M is12 ǫ = 2M/c2r(2ω+3). Therefore, from (18), it follows that Φ1 = GM/r.

On the other hand, the difference between the two theories, in this approximation,

lies in the gravitomagnetic field due to the factor 2ω+3
2ω+4

.

5. Final Remarks

We have examined the equation of motion of a particle in gravitoelectric and grav-

itomagnetic fields in Brans-Dicke theory of gravity. It has been verified that the

gravitomagnetic force predicted by Brans-Dicke theory differs of the correspond-

ing force in general relativity by the correction factor 2ω+3
2ω+4

. As a consequence, the

Lense-Thirring effect will be quantitatively different in the two theories.13
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